637 research outputs found

    Methodology for modeling high performance distributed and parallel systems

    Get PDF
    Performance modeling of distributed and parallel systems is of considerable importance to the high performance computing community. To achieve high performance, proper task or process assignment and data or file allocation among processing sites is essential. This dissertation describes an elegant approach to model distributed and parallel systems, which combines the optimal static solutions for data allocation with dynamic policies for task assignment. A performance-efficient system model is developed using analytical tools and techniques. The system model is accomplished in three steps. First, the basic client-server model which allows only data transfer is evaluated. A prediction and evaluation method is developed to examine the system behavior and estimate performance measures. The method is based on known product form queueing networks. The next step extends the model so that each site of the system behaves as both client and server. A data-allocation strategy is designed at this stage which optimally assigns the data to the processing sites. The strategy is based on flow deviation technique in queueing models. The third stage considers process-migration policies. A novel on-line adaptive load-balancing algorithm is proposed which dynamically migrates processes and transfers data among different sites to minimize the job execution cost. The gradient-descent rule is used to optimize the cost function, which expresses the cost of process execution at different processing sites. The accuracy of the prediction method and the effectiveness of the analytical techniques is established by the simulations. The modeling procedure described here is general and applicable to any message-passing distributed and parallel system. The proposed techniques and tools can be easily utilized in other related areas such as networking and operating systems. This work contributes significantly towards the design of distributed and parallel systems where performance is critical

    Modelling adaptive routing in Wide Area Networks

    Get PDF
    Bibliography: leaves 132-138.This study investigates the modelling of adative routing algorithms with specific reference to the algorithm of an existing Wide Area Network (WAN). Packets in the network are routed at each node on the basis of routing tables which contain internal and external delays for each route from the node. The internal delay on a route represents the time that packets queued for transmission will have to wait before being transmitted, while the external delay on a route represents the delay to other nodes via that route. Several modelling methods are investigated and compared for the purpose of identifying the most appropriate and applicable technique. A model of routing in the WAN using an analytic technique is described. The hypothesis of this study is that dynamic routing can be modelled as a sequence of models exhibiting fixed routing. The modelling rationale is that a series of analytic models is run and solved. The routing algorithm of the WAN studied is such that, if viewed at any time instant, the network is one with static routing and no buffer overflow. This characteristic, together with a real time modelling requirement, influences the modelling technique which is applied. Each model represents a routing update interval and a multiclass open queueing network is used to solve the model during a particular interval. Descriptions of the design and implementation of X wan, an X Window based modelling system, are provided. A feature of the modelling system is that it provides a Graphical User Interface (GUI), allowing interactive network specification and the direct observation of network routing through the medium of this interface. Various applications of the modelling system are presented, and overall network behaviour is examined. Experimentation with the routing algorithm is conducted, and (tentative) recommendations are made on ways in which network performance could be improved. A different routing algorithm is also implemented, for the purpose of comparison and to demonstrate the ease with which this can be affected

    Flexible Scheduling in Middleware for Distributed rate-based real-time applications - Doctoral Dissertation, May 2002

    Get PDF
    Distributed rate-based real-time systems, such as process control and avionics mission computing systems, have traditionally been scheduled statically. Static scheduling provides assurance of schedulability prior to run-time overhead. However, static scheduling is brittle in the face of unanticipated overload, and treats invocation-to-invocation variations in resource requirements inflexibly. As a consequence, processing resources are often under-utilized in the average case, and the resulting systems are hard to adapt to meet new real-time processing requirements. Dynamic scheduling offers relief from the limitations of static scheduling. However, dynamic scheduling offers relief from the limitations of static scheduling. However, dynamic scheduling often has a high run-time cost because certain decisions are enforced on-line. Furthermore, under conditions of overload tasks can be scheduled dynamically that may never be dispatched, or that upon dispatch would miss their deadlines. We review the implications of these factors on rate-based distributed systems, and posits the necessity to combine static and dynamic approaches to exploit the strengths and compensate for the weakness of either approach in isolation. We present a general hybrid approach to real-time scheduling and dispatching in middleware, that can employ both static and dynamic components. This approach provides (1) feasibility assurance for the most critical tasks, (2) the ability to extend this assurance incrementally to operations in successively lower criticality equivalence classes, (3) the ability to trade off bounds on feasible utilization and dispatching over-head in cases where, for example, execution jitter is a factor or rates are not harmonically related, and (4) overall flexibility to make more optimal use of scarce computing resources and to enforce a wider range of application-specified execution requirements. This approach also meets additional constraints of an increasingly important class of rate-based systems, those with requirements for robust management of real-time performance in the face of rapidly and widely changing operating conditions. To support these requirements, we present a middleware framework that implements the hybrid scheduling and dispatching approach described above, and also provides support for (1) adaptive re-scheduling of operations at run-time and (2) reflective alternation among several scheduling strategies to improve real-time performance in the face of changing operating conditions. Adaptive re-scheduling must be performed whenever operating conditions exceed the ability of the scheduling and dispatching infrastructure to meet the critical real-time requirements of the system under the currently specified rates and execution times of operations. Adaptive re-scheduling relies on the ability to change the rates of execution of at least some operations, and may occur under the control of a higher-level middleware resource manager. Different rates of execution may be specified under different operating conditions, and the number of such possible combinations may be arbitrarily large. Furthermore, adaptive rescheduling may in turn require notification of rate-sensitive application components. It is therefore desirable to handle variations in operating conditions entirely within the scheduling and dispatching infrastructure when possible. A rate-based distributed real-time application, or a higher-level resource manager, could thus fall back on adaptive re-scheduling only when it cannot achieve acceptable real-time performance through self-adaptation. Reflective alternation among scheduling heuristics offers a way to tune real-time performance internally, and we offer foundational support for this approach. In particular, run-time observable information such as that provided by our metrics-feedback framework makes it possible to detect that a given current scheduling heuristic is underperforming the level of service another could provide. Furthermore we present empirical results for our framework in a realistic avionics mission computing environment. This forms the basis for guided adaption. This dissertation makes five contributions in support of flexible and adaptive scheduling and dispatching in middleware. First, we provide a middle scheduling framework that supports arbitrary and fine-grained composition of static/dynamic scheduling, to assure critical timeliness constraints while improving noncritical performance under a range of conditions. Second, we provide a flexible dispatching infrastructure framework composed of fine-grained primitives, and describe how appropriate configurations can be generated automatically based on the output of the scheduling framework. Third, we describe algorithms to reduce the overhead and duration of adaptive rescheduling, based on sorting for rate selection and priority assignment. Fourth, we provide timely and efficient performance information through an optimized metrics-feedback framework, to support higher-level reflection and adaptation decisions. Fifth, we present the results of empirical studies to quantify and evaluate the performance of alternative canonical scheduling heuristics, across a range of load and load jitter conditions. These studies were conducted within an avionics mission computing applications framework running on realistic middleware and embedded hardware. The results obtained from these studies (1) demonstrate the potential benefits of reflective alternation among distinct scheduling heuristics at run-time, and (2) suggest performance factors of interest for future work on adaptive control policies and mechanisms using this framework

    Parallel simulation techniques for telecommunication network modelling

    Get PDF
    In this thesis, we consider the application of parallel simulation to the performance modelling of telecommunication networks. A largely automated approach was first explored using a parallelizing compiler to speed up the simulation of simple models of circuit-switched networks. This yielded reasonable results for relatively little effort compared with other approaches. However, more complex simulation models of packet- and cell-based telecommunication networks, requiring the use of discrete event techniques, need an alternative approach. A critical review of parallel discrete event simulation indicated that a distributed model components approach using conservative or optimistic synchronization would be worth exploring. Experiments were therefore conducted using simulation models of queuing networks and Asynchronous Transfer Mode (ATM) networks to explore the potential speed-up possible using this approach. Specifically, it is shown that these techniques can be used successfully to speed-up the execution of useful telecommunication network simulations. A detailed investigation has demonstrated that conservative synchronization performs very well for applications with good look ahead properties and sufficient message traffic density and, given such properties, will significantly outperform optimistic synchronization. Optimistic synchronization, however, gives reasonable speed-up for models with a wider range of such properties and can be optimized for speed-up and memory usage at run time. Thus, it is confirmed as being more generally applicable particularly as model development is somewhat easier than for conservative synchronization. This has to be balanced against the more difficult task of developing and debugging an optimistic synchronization kernel and the application models

    Computer-Integrated Design and Manufacture of Integrated Circuits

    Get PDF
    Contains research goals and objectives, reports on sixteen research projects and a list of publications.Defense Advanced Research Projects Agency/U.S. Navy Contract N00174-93-K-0035Defense Advanced Research Projects Agency/U.S. Army Contract DABT 63-95-C-0088Multisponsored Projects Industrial/MIT Leaders for Manufacturing Progra

    Workload Prediction for Efficient Performance Isolation and System Reliability

    Get PDF
    In large-scaled and distributed systems, like multi-tier storage systems and cloud data centers, resource sharing among workloads brings multiple benefits while introducing many performance challenges. The key to effective workload multiplexing is accurate workload prediction. This thesis focuses on how to capture the salient characteristics of the real-world workloads to develop workload prediction methods and to drive scheduling and resource allocation policies, in order to achieve efficient and in-time resource isolation among applications. For a multi-tier storage system, high-priority user work is often multiplexed with low-priority background work. This brings the challenge of how to strike a balance between maintaining the user performance and maximizing the amount of finished background work. In this thesis, we propose two resource isolation policies based on different workload prediction methods: one is a Markovian model-based and the other is a neural networks-based. These policies aim at, via workload prediction, discovering the opportune time to schedule background work with minimum impact on user performance. Trace-driven simulations verify the efficiency of the two pro- posed resource isolation policies. The Markovian model-based policy successfully schedules the background work at the appropriate periods with small impact on the user performance. The neural networks-based policy adaptively schedules user and background work, resulting in meeting both performance requirements consistently. This thesis also proposes an accurate while efficient neural networks-based pre- diction method for data center usage series, called PRACTISE. Different from the traditional neural networks for time series prediction, PRACTISE selects the most informative features from the past observations of the time series itself. Testing on a large set of usage series in production data centers illustrates the accuracy (e.g., prediction error) and efficiency (e.g., time cost) of PRACTISE. The superiority of the usage prediction also allows a proactive resource management in the highly virtualized cloud data centers. In this thesis, we analyze on the performance tickets in the cloud data centers, and propose an active sizing algorithm, named ATM, that predicts the usage workloads and re-allocates capacity to work- loads to avoid VM performance tickets. Moreover, driven by cheap prediction of usage tails, we also present TailGuard in this thesis, which dynamically clones VMs among co-located boxes, in order to efficiently reduce the performance violations of physical boxes in cloud data centers

    Delivering Consistent Network Performance in Multi-tenant Data Centers

    Get PDF
    Data centers are growing rapidly in size and have recently begun acquiring a new role as cloud hosting platforms, allowing outside developers to deploy their own applications on large scales. As a result, today\u27s data centers are multi-tenant environments that host an increasingly diverse set of applications, many of which have very demanding networking requirements. This has prompted research into new data center architectures that offer increased capacity by using topologies that introduce multiple paths between servers. To achieve consistent network performance in these networks, traffic must be effectively load balanced among the available paths. In addition, some form of system-wide traffic regulation is necessary to provide performance guarantees to tenants. To address these issues, this thesis introduces several software-based mechanisms that were inspired by techniques used to regulate traffic in the interconnects of scalable Internet routers. In particular, we borrow two key concepts that serve as the basis for our approach. First, we investigate packet-level routing techniques that are similar to those used to balance load effectively in routers. This work is novel in the data center context because most existing approaches route traffic at the level of flows to prevent their packets from arriving out-of-order. We show that routing at the packet-level allows for far more efficient use of the network\u27s resources and we provide a novel resequencing scheme to deal with out-of-order arrivals. Secondly, we introduce distributed scheduling as a means to engineer traffic in data centers. In routers, distributed scheduling controls the rates between ports on different line cards enabling traffic to move efficiently through the interconnect. We apply the same basic idea to schedule rates between servers in the data center. We show that scheduling can prevent congestion from occurring and can be used as a flexible mechanism to support network performance guarantees for tenants. In contrast to previous work, which relied on centralized controllers to schedule traffic, our approach is fully distributed and we provide a novel distributed algorithm to control rates. In addition, we introduce an optimization problem called backlog scheduling to study scheduling strategies that facilitate more efficient application execution

    Cloud capacity planning and HSI based optimal resource provisioning

    Get PDF
    Cloud service providers offer spot instances through highest bidding plans that are at a very economical price compared to other pricing plans, namely on-demand and reservation. The usage of spot instance enables utilization of idle resources and provide service for cost sensitive tasks. However, this approach introduces the problem of cloud capacity allocation to different pricing plans that will have impact on the task completion time. To address these issues and improve the providers revenue, in this paper a capacity planning has been carried out based on the prediction of resource requirements for each of the different resource pricing pools. The paper also presents a solution to overcome the burden faced by the service provider due to the free issue of last hour at the time of out-of-bid situation. Simulation carried out based on capacity planning along with hybrid spot instance using Amazon EC2's price show that the resource utilization is improved across the different resource pricing pools with increased number of task completion and improved provider's revenue. © 2017 IEEE
    • …
    corecore