
Washington University in St. Louis
Washington University Open Scholarship

All Theses and Dissertations (ETDs)

Spring 4-30-2013

Delivering Consistent Network Performance in
Multi-tenant Data Centers
Mart Albert Haitjema
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/etd

Part of the Computer Engineering Commons

This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has been accepted for inclusion in All
Theses and Dissertations (ETDs) by an authorized administrator of Washington University Open Scholarship. For more information, please contact
digital@wumail.wustl.edu.

Recommended Citation
Haitjema, Mart Albert, "Delivering Consistent Network Performance in Multi-tenant Data Centers" (2013). All Theses and
Dissertations (ETDs). 1077.
https://openscholarship.wustl.edu/etd/1077

https://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Fetd%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fetd%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd/1077?utm_source=openscholarship.wustl.edu%2Fetd%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS

School of Engineering and Applied Science

Department of Computer Science and Engineering

Dissertation Examination Committee:
Jonathan S. Turner, Chair

Roger D. Chamberlain
Patrick J. Crowley

Ron K. Cytron
Jason E. Fritts

Robert E. Morley

Delivering Consistent Network Performance in Multi-tenant Data Centers

by

Mart Albert Haitjema

A dissertation presented to the
Graduate School of Arts and Sciences

of Washington University in
partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2013
Saint Louis, Missouri

c© Copyright 2013 by Mart Albert Haitjema.

All rights reserved.

Contents

List of Figures . vi

List of Tables . viii

Acknowledgments . ix

Abstract . xi

1 Introduction . 1
1.1 Objectives . 2
1.2 Approach . 3
1.3 Contributions . 5
1.4 Methodology . 6
1.5 Organization . 7

2 Background . 8
2.1 Topology . 8

2.1.1 Partitioning the network into virtual networks: 9
2.2 Routing . 11

2.2.1 Routing in traditional data-center topologies 11
2.2.2 Oblivious flow-level routing 12
2.2.3 Adaptive flow-level routing . 13
2.2.4 Flow-splitting . 14
2.2.5 Packet-level routing . 14

2.3 Flow control . 15
2.3.1 Hardware-level mechanisms: 16
2.3.2 End-to-end protocols: . 16
2.3.3 System-wide techniques: . 17

3 Packet-level Routing . 20
3.1 The case for packet-level routing . 21

3.1.1 Methodology . 22
3.1.2 Oblivious flow-level routing 24
3.1.3 Understanding the performance of ECMP 28
3.1.4 Oblivious packet-level routing 32

3.2 Packet-level routing strategies in DCNs 32
3.2.1 Imbalances on small time-scales 33

ii

3.2.2 Accounting for packet size . 35
3.2.3 Accounting for topology . 37
3.2.4 Comparison of approaches . 40

3.3 Performance in context . 42
3.3.1 Separating routing & flow-control 42
3.3.2 Queueing theory model . 44
3.3.3 Evaluation . 45
3.3.4 Partitioning the DCN into tenants 48

3.4 Resequencing packets at end hosts . 50
3.4.1 Dealing with out-of-order arrivals 50
3.4.2 Design considerations . 51
3.4.3 Hybrid resequencer . 54
3.4.4 Evaluation . 57

3.5 Summary . 59

4 Isolating Tenants with Distributed Scheduling 61
4.1 Introduction . 61

4.1.1 Objectives . 62
4.2 Scheduling Framework . 62

4.2.1 Scheduling layer . 62
4.2.2 Tenant virtual networks . 64
4.2.3 Constraints on rates . 65
4.2.4 Assigning rates on VOQs . 67
4.2.5 Assigning rates on bottleneck links 68

4.3 Distributed Algorithm . 73
4.3.1 Link proxies . 73
4.3.2 Convergence to centralized rates: 77
4.3.3 Accounting for control-overhead 78
4.3.4 Related work . 79

4.4 Evaluation . 80
4.4.1 Isolation . 81
4.4.2 Distributed approach . 82
4.4.3 Flow control . 85

4.5 Discussion & future work . 87
4.5.1 Interactions with other protocols: 87
4.5.2 Virtual machines . 88
4.5.3 Practical considerations . 88

5 Backlog scheduling . 90
5.1 Introduction . 90
5.2 Backlog scheduling problem . 91

5.2.1 Preliminary definitions: . 91
5.3 Initial-backlog problem: . 95

iii

5.3.1 Problem definition: . 95
5.3.2 Rate-assignment as a network flow: 96
5.3.3 Max-min is not optimal . 97
5.3.4 Optimal algorithm: . 98
5.3.5 Bounds on optimal . 100

5.4 Deterministic backlog-schedule problem: 101
5.4.1 Problem definition: . 102
5.4.2 Optimal bounds . 102
5.4.3 Linear programming formulation 103
5.4.4 Proof of correctness . 108

5.5 Online backlog-scheduling: . 110
5.5.1 No online algorithm is optimal: 110
5.5.2 Any optimal initial-backlog algorithm is 2-competitive: 111
5.5.3 Any blocking algorithm is 2-competitive: 111

5.6 Evaluation . 112
5.6.1 Experimental setup . 113
5.6.2 Initial-backlog . 115
5.6.3 Backlog scheduling stress test 118

5.7 Extending the results to oversubscribed trees 120
5.8 Summary . 120

6 Conclusion . 122
6.1 Summary . 122
6.2 Future Directions . 123

Appendix A FatTree DCN Simulator . 126
A.1 Introduction . 126

A.1.1 Motivation . 126
A.1.2 OMNeT++ . 127
A.1.3 INET framework . 130

A.2 Simulator Overview . 130
A.2.1 Modeling FatTree DCNs . 132
A.2.2 BuildFatTree . 134

A.3 Server components . 134
A.3.1 Server . 134
A.3.2 Control module . 135
A.3.3 Application Layer . 136
A.3.4 Transport Layer . 137
A.3.5 Network Layer . 137
A.3.6 Scheduling Layer . 137
A.3.7 Resequencing Layer . 138
A.3.8 Link Layer . 139

iv

Appendix B DCN Queueing Models . 141
B.1 Overview . 141
B.2 Basic queueing theory concepts . 141

B.2.1 M/M/1 Queue . 142
B.2.2 M/M/1/K Queue . 142
B.2.3 Modeling a network of queues 143

B.3 M/M/1/K FatTree . 144
B.4 M/M/1/K LogicalTree . 147

References . 148

v

List of Figures

2.1 A fully provisioned 4-port 3-level FatTree. 8
2.2 FatTree partitioned into tenant virtual networks. 10
2.3 High performance router interconnect 10
2.4 Distributed scheduling in high-performance routers 18

3.1 Under ideal routing, a FatTree is equivalent to a tree. 20
3.2 Performance of ECMP routing under the permutation traffic pattern. 25
3.3 Performance of ECMP as the network scales. 26
3.4 Flows colliding in an unfolded 3-level 4-port FatTree. 27
3.5 ECMP routing under the pod-permutation traffic pattern 31
3.6 Performance of packet-level VLB under the permutation pattern. . . 32
3.7 Comparison of VLB and Round Robin (RR) with maximum size packets. 34
3.8 Performance with packet sizes alternating between max and min size. 36
3.9 Load balancing with multiple flows in a simple two port network. . . 37
3.10 Separating flow control from load balancing. 43
3.11 Fraction of the network’s capacity achievable as a function of the ac-

ceptable loss threshold. l = 3 levels, k = 12 ports, queue size K = 50
packets. 46

3.12 Per-port switch buffer size required to achieve given fraction of the
network’s capacity. l = 3 levels, k = 12 ports, loss threshold = 10−3. . 47

3.13 Capacity vs loss threshold with servers partitioned into tenants of size
m. l = 3 levels, k = 12 ports, loss threshold = 10−3. 49

3.14 Fraction of traffic arriving out-of-order. 50
3.15 Average delays experienced by packets. 58
3.16 Fraction of end-to-end delay spent in resequencer (out-of-order packets). 58

4.1 Conceptual view of scheduling as layer a implemented in the network-
ing stack of servers. 62

4.2 Two different tenant virtual network abstractions. 64
4.3 Effect of malicious traffic on the throughput of a “victim” tenant’s flow. 81
4.4 Effect of different scheduling intervals on VOQs 84
4.5 Effect of assigning VOQs a minimum rate of 10 Mbps. 85
4.6 Capacity vs threshold with scheduling 86
4.7 Queue size vs capacity with scheduling 87

vi

5.1 Feasible rate assignment as a feasible network flow. Flow values for an
example solution are shown in red. 96

5.2 Initial backlog “two-phase” stress test 117
5.3 Limit on the rate of backlog entering the scheduling layer. 118
5.4 Performance with “stress test” backlog schedule. 119

A.1 The compound module representing a server. 135
A.2 The compound module representing the scheduling layer. 138

B.1 A simple M/M/1 queue. 142
B.2 Splitting and joining traffic at M/M/1 queues. 144

vii

List of Tables

3.1 Imbalance in queueing at various stages in the network. 39
3.2 Throughput before maximum loss exceeds threshold - permutation traffic. 40
3.3 Throughput before maximum loss exceeds threshold - all-to-all traffic. 41
3.4 Throughput before average loss exceeds threshold - all-to-all traffic. . 41

viii

Acknowledgments

I would like to thank my advisor, Jon Turner, for his guidance and patience in the

research and final culmination of this thesis. He continually pushed me to make it

the best it could be, and I feel truly privileged to have had the chance to work with

him.

It has been a great pleasure working with many of my fellow students including

Shakir James, Todd Sproull, Charlie Wiseman, Rohan Sen, Ben Wun, Haowei Yuan,

Haraldur Thorvaldsson, Ritun Patney, and Joe Lancaster. I am especially indebted to

Charlie Wiseman and Rohan Sen for their guidance in my early years at Washington

University. I learned a great deal from them and their mentorship was invaluable.

I would also like to thank Shakir James and Todd Sproull for their friendship and

support. They made my life as a graduate student considerably more enjoyable.

I would also like to thank the staff of the CSE department: Kelli Eckman, Sharon

Matlock, Myrna Harbison, and Madeline Hawkins. A special thanks to the staff

members of the Applied Research Laboratory: John DeHart, Jytoi Parwatikar, Fred

Kuhns, Ken Wong, and Dave Zar. In particular, I would like to thank John DeHart

and Fred Kuhns for teaching me much of what I know about networking.

Finally, I would like to thank my parents, to whom this thesis is dedicated, as well

as my brother, Charles, and my sister, Coraline. This thesis would not have been

possible without their support and encouragement.

Mart Albert Haitjema

Washington University in Saint Louis

May 2013

ix

Dedicated to my parents, Henk and Bieneke Haitjema.

x

ABSTRACT OF THE DISSERTATION

Delivering Consistent Network Performance in Multi-tenant Data Centers

by

Mart Albert Haitjema

Doctor of Philosophy in Computer Engineering

Washington University in St. Louis, 2013

Jonathan S. Turner, Chairperson

Data centers are growing rapidly in size and have recently begun acquiring a new role

as cloud hosting platforms, allowing outside developers to deploy their own applica-

tions on large scales. As a result, today’s data centers are multi-tenant environments

that host an increasingly diverse set of applications, many of which have very de-

manding networking requirements. This has prompted research into new data center

architectures that offer increased capacity by using topologies that introduce multiple

paths between servers. To achieve consistent network performance in these networks,

traffic must be effectively load balanced among the available paths. In addition, some

form of system-wide traffic regulation is necessary to provide performance guarantees

to tenants.

To address these issues, this thesis introduces several software-based mechanisms that

were inspired by techniques used to regulate traffic in the interconnects of scalable

Internet routers. In particular, we borrow two key concepts that serve as the basis for

our approach. First, we investigate packet-level routing techniques that are similar to

xi

those used to balance load effectively in routers. This work is novel in the data center

context because most existing approaches route traffic at the level of flows to prevent

their packets from arriving out-of-order. We show that routing at the packet-level

allows for far more efficient use of the network’s resources and we provide a novel

resequencing scheme to deal with out-of-order arrivals.

Secondly, we introduce distributed scheduling as a means to engineer traffic in data

centers. In routers, distributed scheduling controls the rates between ports on differ-

ent line cards enabling traffic to move efficiently through the interconnect. We apply

the same basic idea to schedule rates between servers in the data center. We show

that scheduling can prevent congestion from occurring and can be used as a flexible

mechanism to support network performance guarantees for tenants. In contrast to

previous work, which relied on centralized controllers to schedule traffic, our approach

is fully distributed and we provide a novel distributed algorithm to control rates. In

addition, we introduce an optimization problem called backlog scheduling to study

scheduling strategies that facilitate more efficient application execution.

xii

Chapter 1

Introduction

Data center networks (DCNs) form an important part of the modern Internet, hosting

many of the applications and services that we use online. These networks were tradi-

tionally constructed to support the services of large organizations. With the growth

of cloud computing, however, they increasingly operate as pools of shared comput-

ing resources that serve the needs of multiple “tenants”. For example, cloud hosting

platforms like EC2 [11], enable anyone to access a large volume of compute resources

and deploy their own applications on a massive scale. As a result, many DCNs must

support a diverse mix of tenants that often have a wide range of requirements for

their applications.

One limitation facing tenants today is that many cloud environments provide little in

the way of guarantees on the performance of the intra-data center network [42, 39].

While they are typically given abstractions for the computing resources of the servers

they use, the network that connects the servers together is usually treated as a shared

resource. The result is that tenants often face network performance that can be highly

variable. This best effort network model is not ideally suited to meet the needs of

all tenants. For example, poor network performance has been cited as a barrier to

entry for high-performance scientific applications [30] and the lack of performance

isolation raises concerns over denial of service attacks [53, 60, 13]. A wide range of

existing applications also depend upon consistent network performance to perform

well, making it difficult for them to operate in this environment [59, 12].

1

1.1 Objectives

For at least some tenants, it will be useful to have the ability to engineer their

applications for consistent network performance. If data center networks can be

made to support this, they will likely be more attractive to potential users. However,

to retain the economic advantage that they provide, it will be important to make

efficient use of the network’s resources. Realizing this goal translates into the following

objectives:

• Provide tenants with virtual network abstractions: To engineer their

applications for consistent performance, tenants should be provided with guar-

antees on the bandwidth available between their servers. Ideally, these guar-

antees could come in the form of different virtual network abstractions. One

example of such an abstraction is the virtual switch [26, 14, 13], which provides

a tenant with the illusion of having all of its servers connected to the same

non-interfering switch.

• Achieve performance isolation among tenants: Tenants should not be

allowed to interfere with the bandwidth guarantees provided to other tenants.

They should also experience a low degree of packet loss and delay provided

they remain within the limits prescribed by their network abstractions. This

means the network must provide a form of traffic isolation among tenants that

is robust to the arbitrary traffic patterns they may produce.

• Support flexible assignments of servers to tenants: Maintaining a high

level of server utilization is a key factor in the economic advantage that data

centers provide. This makes agility, the ability to assign a tenant to any available

server, an important property that must be preserved [25].

• Operate in networks constructed from commodity switches: Another

aspect important to the success of data centers is their reliance on commod-

ity off-the-shelf components. Because they typically use commodity Ethernet

switches, they provide a cost advantage over high-performance computing clus-

ters that employ more specialized networking technologies. These switches are

cheap and easy to configure yet they provide speeds that are competitive with

2

the more expensive technologies. However, they currently lack the mechanisms

necessary to provide the type of performance guarantees offered by virtual net-

work abstractions. Developing custom hardware to address this issue may un-

dercut the cost advantage provided by commodity switches and would only

benefit the networks that adopt them. Therefore, an ideal solution would allow

for operation in networks constructed from existing off-the-shelf switches.

In the past, these goals have been difficult to reconcile. The use of Ethernet has con-

strained the design of data centers to a tree-structured topology that cannot provide

uniformly high capacity among servers because branches at higher levels of the tree

are shared among more servers [27, 26, 9]. In these networks, realizing the guaran-

tees offered by abstractions like the virtual switch would require assigning tenants

to servers that are close to one another in the tree, where bandwidth is plentiful.

However, this practice would limit network agility and lead to fragmentation of the

data center’s resources [26, 27].

Recently, researchers have proposed novel methods to construct new multi-path data

center networks using existing switches [9, 26, 29, 28, 44, 40]. These networks can

offer greatly increased capacity by providing multiple paths between servers yet they

remain economical by leveraging inexpensive off-the-shelf components. This makes it

feasible to provide tenants with separate virtual networks without sacrificing agility.

For instance, a FatTree [38] with full bisection bandwidth provides enough capacity

to allow all servers to send and receive at the full rate of their interfaces. In principle,

this makes it possible to provide every tenant with the virtual switch abstraction

regardless of how they are assigned to servers. However, the bandwidth that exists

between servers can only be fully utilized if traffic is balanced evenly among the

available paths. Moreover, additional mechanisms are still needed to provide traffic

isolation among tenants.

1.2 Approach

The work in this thesis was inspired by the observation that the design of large

high-performance Internet routers face many of the same issues. Such routers are

3

constructed using interconnection networks that are often similar to some of the multi-

path data center topologies. The Clos network [20], for example, is a generalization

of the topologies used by VL2 [26] and FatTree [9]. These routers must maintain

consistent performance even under extreme traffic conditions; this requires that they

load balance and regulate traffic effectively to make efficient use of their interconnect.

Since network performance in the data center should also be robust to the arbitrary

traffic produced by its tenants, we explore using similar techniques to regulate traffic

in the data center.

Specifically, we draw upon two key techniques that we have adapted to the data

center to serve as the basis for our approach. First, we use packet-level routing to

make the most efficient use of the multi-path data center networks. Routers typically

route the packets that arrive at an input separately through the interconnect and use

resequencing mechanisms to ensure they are sent in-order at outputs. By leveraging

simple routing techniques, such as Valiant Load Balancing (VLB) [56], they can

achieve near optimal load balancing independent of the pattern of traffic arriving at

the inputs [22]. We investigate applying similar techniques in the data center context.

This work is novel because most of the current approaches route traffic at the level

of flows to prevent their packets from arriving out-of-order. We have chosen to deal

with the problem of out-of-order arrivals by resequencing them in software.

The second component to our approach is based on distributed scheduling in routers.

Routers use distributed scheduling to control the rates between ports in order to move

traffic efficiently through the interconnect [22]. We apply this concept to the data

center network to control the rates that a tenant’s servers can send to one-another.

To do this, we introduce a scheduling layer in the networking stack of servers in a

manner that is transparent to tenants. By coordinating the rates between a tenant’s

servers, scheduling provides a mechanism for traffic isolation that effectively uses a

tenant’s servers to police its own traffic. We show that it can be used to support

abstractions such as the virtual switch as well as private tree structured networks like

the virtual oversubscribed cluster [14].

4

1.3 Contributions

This thesis makes several key contributions.

Packet-level routing & resequencing

First, this work is among the first to seriously investigate the use of packet-level

routing in data center networks. We perform an in-depth study on the limits of

packet-level routing on FatTree data center networks and introduce several new rout-

ing techniques specifically adapted to the data center environment. In contrast to

previous work, the emphasis of our investigation is to determine the bounds under

which performance isolation can be maintained between tenants. To our knowledge,

we are also the first to address the issue of out-of-order arrivals by resequencing pack-

ets in software at servers and we introduce a novel resequencing scheme that combines

the benefits of using time stamps and sequence numbers to reorder packets.

Framework for distributed scheduling

Second, we present a framework for distributed scheduling to control traffic in the

data center network. The use of scheduling with software rate limiters to enforce

tenant virtual network abstractions has been studied previously [14, 36]. However,

previous work has relied upon centralized controllers that schedule rates for the entire

network. This limits the frequency at which rates can change. Our contribution is to

allow rates to be set in a fully distributed manner, enabling rates to respond to changes

in traffic on the order of milliseconds. We provide a novel distributed asynchronous

algorithm that can assign rates between servers in max-min fair fashion as well as

in “backlog-proportional” fashion, which assigns rates in proportion to the volume

of traffic that servers have to send to one another. We evaluate the tradeoffs of

our approach and demonstrate that, in concert with packet-level routing, distributed

scheduling can provide performance guarantees to tenants regardless of how they are

assigned to servers or what traffic patterns they produce.

Strategies for efficiently scheduling tenant traffic

Thirdly, we investigate which strategies may schedule the traffic between a tenant’s

servers most efficiently. In particular, we introduce the concept of backlog-scheduling,

which defines the problem in terms of minimizing the time required to clear the

backlog of data that servers have to send to one another. While backlog-scheduling

5

does not characterize the optimal way to assign rates in general, it may apply to an

important class of applications, such as those based on MapReduce [23]. We provide

a set of formal problem definitions and take an algorithmic approach to study the

problem space. We prove that the backlog-proportional assignment of rates is optimal

for a restricted form of the problem and provide a linear program that optimally solves

the more general offline problem. To evaluate the performance of max-min and the

backlog-proportional algorithm, we use competitive analysis to place bounds on their

online performance. We show several examples of traffic patterns that can cause

the performance to approach these bounds and we simulate several of these cases to

demonstrate our results.

Packet-level simulator for data center networks

Finally, we develop a packet-level simulator based on the OMNeT++ discrete-event

simulation framework [7] to study large data center networks. OMNeT++ is free for

academic use and we have made our code publicly available for other researchers to

use.

1.4 Methodology

This thesis is concerned with providing consistently high network performance to

tenants in data center networks. Here we are concerned exclusively with the network

fabric connecting servers together, not their connection to the outside world. Our

target platforms are multi-path data center networks constructed from commodity

Ethernet switches and we focus specifically on the FatTree for our investigation of

packet-level routing. For our work on scheduling, we also assume that tenants have

been given network abstractions that include bandwidth guarantees. We are not

concerned with the allocation of virtual networks to tenants, however, and we do not

propose any new abstractions of our own. Rather, we build upon the work of others

to make these networks more practical by providing the necessary mechanisms to

support these abstractions flexibly.

The mechanisms that we propose focus on performance at the network-level. To pre-

serve agility, we assume that tenants may be assigned to servers arbitrarily. To be

6

robust to malicious traffic, we also assume that they may produce arbitrary traffic pat-

terns. In line with these goals, we use similar performance measures and procedures

to those used to evaluate interconnection networks. As a result, our evaluations typ-

ically focus on the worst case and use adversarial traffic patterns to probe the limits

of performance.

Given the size of modern data centers, it is impractical to evaluate an implementation

of our approach at scale. Instead, we rely on a combination of simulation and analysis

to evaluate our work. In our investigation of packet-level routing, we use probabilistic

analysis and queueing theory to validate our simulations and to determine the scaling

behavior of our results. The queueing theory models that we develop also help us to

examine the dependency between our routing and scheduling techniques and provide

insight into the extent to which the issues they address can be separated. While we

rely primarily on simulation to evaluate distributed scheduling, much of our work

on scheduling is algorithmic in nature and we compare our analytical results with

simulation.

1.5 Organization

The organization of this thesis is as follows. Chapter 2 provides additional background

and related work and expands on the details of our approach. In chapter 3, we

study packet-level routing and resequencing in FatTree data center networks. Chapter

4 introduces the scheduling framework and focuses on using scheduling to provide

isolation between tenants. In chapter 5 we introduce backlog scheduling as a case

study for examining scheduling strategies that improve the performance of tenant

applications. Finally, we summarize our findings in chapter 6 and point to a number

of interesting avenues for future work.

7

Chapter 2

Background

In this chapter we provide some background on the problem of providing network

performance to tenants in data center networks and review some of the relevant

related work.

Switch'

Server'

Figure 2.1: A fully provisioned 4-port 3-level FatTree.

2.1 Topology

FatTree

While a number of recent multi-path architectures have emerged, we will focus on

the FatTree [38] in this work. FatTrees are a popular topology in high-performance

computing interconnects and are also a natural choice for data center networks [61].

Figure 2.1, shows a simple 3-level FatTree constructed from 4-port switches. In this

example all links have the same capacity which means the bandwidth available be-

tween servers is determined by the number of paths. Note that the network proposed

by VL2 [26] is essentially the same as the FatTree shown here except that the switch-

to-switch links have a higher capacity than the server-to-switch links.

8

A FatTree with l levels and k port switches can be constructed recursively by viewing

each level as a subtree. We can think of a subtree at level 0 as consisting of just a

single server. At level 1, a subtree contains a switch with k
2

“downward facing” ports

connecting to level 0 subtrees (servers) and k
2

“upward facing” ports connecting to

switches at level 2. A level 2 subtree contains all of the level 1 subtrees that connect

to the same set of level 2 switches. Each of the downward facing ports of a level 2

switch connects to a separate subtree at level 1 so that each level 2 switch connects

to each of the k
2

subtrees. Each of the upward facing ports, however, connects to

a unique switch at level 3. This process repeats for each level until we reach the

root of the tree at level l. At this stage, all ports are downward facing which means

each switch connects to k subtrees causing the entire network to be encompassed.

The number of servers in a subtree at some level i < l is (k
2
)i and since there are k

subtrees at level l, the FatTree has k(k
2
)l−1 servers (e.g. 16 for the 4-port FatTree in

Figure 2.1).

Bisection bandwidth:

A common metric for the network capacity of an interconnection network is the

bisection bandwidth. A bisection is a cut that partitions the network into two evenly

sized sets 1 and the bandwidth of a bisection is equal to the sum of the capacity on

the links between the two sets. The network’s bisection bandwidth is the minimum

bandwidth between any two bisections. Notice that every level of the FatTree in

Figure 2.1 has the same number of links and thus the same bandwidth. As a result,

we could partition this network into any two sets and the bisection bandwidth will

always match the total bandwidth of the servers’ interfaces. This network is said to

have full bisection bandwidth.

2.1.1 Partitioning the network into virtual networks:

With full bisection bandwidth, we could partition the servers arbitrarily into groups

and provide each tenant with the virtual switch abstraction as illustrated in figure

2.2. This would provide tenants with full bandwidth between their servers without

placing constraints on agility. Achieving the isolation provided by this abstraction

would imply that servers connected to one virtual switch would be free to use the

1In the case of an odd number of endpoints, one set contains an extra endpoint.

9

Virtual
Switch

Tenant&A& Tenant&B& …&
Figure 2.2: FatTree partitioned into tenant virtual networks.

network arbitrarily without being able to affect servers connected to other virtual

switches.

Linecard Clos network Switch

Figure 2.3: High performance router interconnect

Non-interference:

Realizing the performance isolation provided by the virtual switch abstraction is

analogous to ensuring non-interference in an interconnection network, such as those

used in the construction of high-performance Internet routers. Figure 2.3 shows an

abstract representation of such a router interconnect. Ports are distributed across

physically separate linecards that are interconnected with a network of smaller switch

elements. Note that the Clos network [20] shown in this figure is an unfolded version

of the FatTree (i.e., the links are unidirectional). The definition of non-interference

provided by Dally and Towles [22], is a good one in this context. They state that

non-interference means that “an excess in traffic destined for line-card A, perhaps due

to a momentary overload, should not interfere with or ‘steal’ bandwidth from traffic

10

destined for a different line card B, even if messages destined to A and messages

destined to B share resources throughout the fabric”.

From this perspective, topology is one of three aspects needed to meet this require-

ment. The other two are:

• Routing: While the topology determines the physical capacity of the network,

the actual capacity that can be achieved, or “effective bisection bandwidth”

[31] depends on how well traffic is balanced among the paths. The coarse

granularity of flow-level routing means that load cannot be balanced precisely

among paths, making the performance of flow-level techniques dependent on the

traffic produced by tenants. In fact, previous studies have shown that under

many traffic patterns, only about half of the network’s capacity is achievable

[8, 32].

• Flow control: Even if full bisection bandwidth can be achieved, a malicious

tenant could still create congestion by concentrating traffic onto one of its

servers. By combining traffic from multiple servers it can exceed the capac-

ity available to the destination server creating congestion in the network that

can affect traffic to neighboring servers. In interconnection networks, this prob-

lem is known as “tree saturation” [22] and to provide consistent performance

guarantees, the network must be robust to such pathological traffic patterns. In

interconnection networks, the term flow control describes the mechanisms used

to prevent congestion and provide guarantees to different classes of traffic.

In the remainder of this section we consider the key issues and approaches to routing

and flow control and place related work within this framework.

2.2 Routing

2.2.1 Routing in traditional data-center topologies

Because data centers have traditionally been constructed using a tree-like topology,

they generally have limited path diversity making load balancing less of a concern.

11

When multiple paths do exist, they are typically between IP routers in the backbone

of the network. To balance load across these paths, routers equipped with Equal-

Cost Multi-Path (ECMP) can be used. ECMP assigns flows to paths randomly by

computing a hash based on the flow’s header. While it is an IP routing protocol,

many Ethernet switches support a variety of IP features, including EMCP. Since

Ethernet provides no support for multiple paths, ECMP provides a convenient option

for FatTrees built from commodity switches. In fact, VL2 [26], one of the early

proposals for constructing FatTree DCNs, relies upon this approach.

2.2.2 Oblivious flow-level routing

ECMP is an example of oblivious flow-level routing. Oblivious routing refers to any

approach that routes traffic randomly, rather than based upon the state of conges-

tion in the network. In the FatTree network, the number of paths between servers is

determined by the number of switches at the top level, which we refer to as “interme-

diate switches”. This means load can be balanced between a source and destination

by routing its traffic randomly through an intermediate switch. This approach is

attractive because it is simple; we expect all paths to receive roughly equal traffic

given that all paths have an equal probability of being chosen. As we will see in

chapter 3, this approach works well when traffic is split at fine granularity (i.e. at

the level of individual packets). When routing at the level of flows, however, it does

not always perform well, particularly when most of the traffic belongs to a small

number of large flows. Unfortunately this is often the type of traffic that we see in

data center networks [15]. Intuitively, the problem is that with fewer large flows, the

random assignment of flows to paths can cause some links to receive multiple flows

while others are left idle. The resulting “collisions” of flows on links reduces their

throughput. One study showed that this can be by as much as 60% of the network’s

capacity when the traffic consists of only one flow per server [8] and our simulations

have confirmed this result.

12

2.2.3 Adaptive flow-level routing

To improve the performance of flow-level routing, adaptive techniques can be used.

Adaptive techniques make routing decisions dynamically based on the state of con-

gestion in the network. The literature on adaptive routing can be divided into two

categories, centralized and distributed.

Centralized

In the first category, a central scheduler attempts to optimize the routing of flows

in the network by periodically recomputing routes for flows. Some examples of this

approach in the data center context are Hedera [8], DevoFlow [21], and MicroTE

[16]. The basic idea is to leverage the fact that most of the traffic in data centers

belongs to a smaller number of large flows. So by monitoring and rerouting only

these flows, a central scheduler could avoid most of the imbalance between paths yet

still be scalable. Several issues arise with this approach, however. First, to deter-

mine whether the mapping of flows creates an imbalance, the demands of flows must

be estimated. That is, the amount of bandwidth that a given flow would use if it

were not constrained by congestion along its path. This information must then be

communicated to a central scheduler, which can then compute a global schedule of

flows to paths and return updated routes to servers. This means that scheduling can

only benefit large long-lived flows. While studies suggest that most packets belong to

large flows [15] [26], large flows are not necessarily long lived with today’s Ethernet.

For example, at 10 gbps, even a 100 MB flow can complete within a second. This

raises doubts whether a central scheduler can make decisions rapidly enough at large

scales. In fact, it was shown through simulation that on traffic patterns based on real

traces, Hedera provides little benefit over ECMP when scheduling occurs at realistic

intervals (i.e. > 100 ms)[49].

Distributed

The scheduling of flows to paths is an optimization problem that is not easily dis-

tributed. Instead, distributed approaches focus on routing new flows heuristically,

based on the current levels of congestion detected in the network. That is, rather

than rerouting existing flows, these techniques simply try to route new flows to the

least congested paths. While routing decisions can be made in a distributed fash-

ion, some of the approaches in this category require the support of switches to infer

13

congestion and assign routes [41] and [54]. Since existing switches do not have such

features, these approaches are only useful if vendors were to adopt them in the near

future. A purely software based approach was proposed by Mahapatra and Yuan [41].

When a sever has a new flow to send, it first probes the available paths by sending a

packet along each path to determine the relative levels of congestion. They showed

through simulation that while their techniques can outperform oblivious flow-level

routing on average, it still performs significantly worse than packet-level routing.

2.2.4 Flow-splitting

There exists a small category of approaches that can be seen as lying in-between

packet-level and flow-level routing. Most notably, Multipath TCP [49] is a recent

development that allows flows to be broken into subflows which may then take sep-

arate paths. Thus increasing the number of sub-flows allows a flow’s traffic to be

spread across more paths. In the limit it would be possible to ensure a flow is split so

that it has a sub-flow assigned to each path at which point the behavior approaches

packet-level VLB, which we discuss below. This approach would require adopting this

particular version of TCP, however, and creating subflows does add new overhead to

TCP. This means tenants could not use other protocols such as UDP or deploy virtual

servers that provide their own version of TCP.

2.2.5 Packet-level routing

While oblivious routing can perform poorly at the level of flows, it is a logical choice

for packet-level routing in a FatTree topology. Randomly routing packets to inter-

mediate nodes is also known as Valiant Load Balancing (VLB) and it has the benefit

that its performance is independent of the traffic pattern [22]. Since all paths have

equal cost in a FatTree, it exactly balances load over long time scales. While this

approach is commonly used in interconnection networks in other contexts, it has re-

ceived little attention in the data center context. This is primarily because of the

assumption that packets within a flow should not be delivered out-of-order. While IP

does not guarantee in-order arrival of packets, it is generally treated as an implicit

requirement. One of the key concerns is that out-of-order arrivals can significantly

14

affect the performance of TCP because TCP treats out-of-order arrivals as a sign of

congestion [24]. In section 3.4 we will examine the degree to which packets can arrive

out of order and introduce a method to resequence out-of-order packets at servers to

address this issue.

There is surprisingly little in the literature on the use of packet-level routing in data

center networks. One recent paper, however, did challenge the assumption that

packet-order must be maintained in a FatTree DCN [37]. The basic argument is

that because all paths in a FatTree have an equal number of hops (equal cost), pack-

ets can only arrive out of order when the level of congestion on different paths differs

significantly. By using packet-level VLB, however, paths should experience roughly

an equal degree of congestion which limits the extent to which out-of-order delivery

can occur. They performed some simulations to demonstrate that the increase in

throughput from VLB could outweigh the drop in TCP performance due to out-of-

order arrivals. Another study [24] investigated packet-level routing in data center

networks and represents the work most closely related to our own. They investigated

three-different switch-based mechanisms to route packets. These included randomly

picking a port, round-robin, and a counter-based approach which keeps track of the

total number of bytes transferred on each link. While these require hardware support,

they turn out to be similar to several of the server-based strategies that we explore

in the next chapter.

2.3 Flow control

In general, the job of flow control is to control congestion and provide guarantees to

different classes of traffic. In this context, each tenant represents a separate traffic

class and their guarantees are defined by their virtual network abstractions. To

support these abstractions and provide traffic isolation among tenants requires a flow

control mechanism to perform the following functions:

• Prevent congestion from occurring in the network.

• Enforce the bandwidth limits imposed by virtual network abstractions.

15

2.3.1 Hardware-level mechanisms:

Most interconnection networks employ hardware-level flow-control mechanisms de-

signed to work in conjunction with the specific topology and routing mechanism.

One of the objectives of our approach is to work in networks constructed from exist-

ing off-the-shelf Ethernet switches. However, Ethernet was not designed to support

topologies such as the FatTree and provides few flow-control mechanisms that can

support the types of guarantees offered to tenants. VLANs can be used to create

separate virtual networks, effectively isolating tenants from one another. However,

they do not provide the ability to enforce the bandwidth limits defined by virtual

network abstractions. QCN [45] is an emerging standard that can provide hardware-

level bandwidth guarantees. However, it cannot enforce these guarantees across the

multiple paths that exist in topologies, such as the FatTree.

2.3.2 End-to-end protocols:

Currently, many data centers rely on tenants to use TCP to control congestion. For

tenants to engineer their applications for consistent performance, they should not be

constrained to using a particular protocol. Another issue with depending on end-

to-end mechanisms like TCP, is that they can only react to congestion. This makes

it difficult to provide isolation among tenants because it means that some level of

congestion must first occur. For example, a TCP flow increases its rate until it

detects congestion, typically through packet loss, at which point its sending rate will

be reduced. Since it has no way to determine the appropriate rate at which to send,

it immediately resumes increasing its sending rate to probe for available bandwidth.

This cycle ensures that several long-lived TCP flows will keep the switch queue on

a bottleneck link full. Alizadeh et al. call this “queue buildup” and identify it as a

performance impairment for a number of reasons [10]. First, every packet experiences

the maximum amount of queueing delay. Secondly, queue buildup means there is little

room left to absorb a burst of new traffic which can cause new flows to experience

packet loss and incur timeouts. Since TCP timeouts were designed for the round-

trip times common on the Internet, they can be particularly expensive in the data

center as evidenced by the TCP incasting phenomenon [19, 48, 43, 58]. Finally, on

16

shared memory switches, queue buildup on one port reduces the memory available

for buffering on other ports which exacerbates these issues. Therefore, queueing can

negatively affect performance for all tenants whose traffic passes through the switch.

Some Ethernet switches do include Explicit Congestion Notification (ECN), a feature

which allows switches to provide feedback to servers about congestion before packets

are lost due to full queues. By marking packets at a very low threshold, ECN can

be used to keep queueing in switches to a minimum. In order to fully utilize a link,

however, TCP’s congestion control algorithm normally depends on some amount of

queuing (typically equal to the bandwidth delay product). Data Center TCP [10]

proposed some changes to the way that TCP reacts to ECN in order to fully utilize

the link while allowing switches to keep queue levels to a minimum. Seawall [52]

is another end-to-end mechanism that was designed to provide isolation between

applications in the data center. It allows any protocol to be used but forces all traffic

between a tenant’s servers through TCP tunnels.

Even with ECN, end-to-end mechanisms face another limitation in that they can only

provide a limited form of performance isolation. While they can enforce bandwidth

limitations on individual flows, they cannot enforce limits on the aggregate bandwidth

consumed by a tenant’s servers on a link. This means that they cannot support more

sophisticated network abstractions such as the Virtual Oversubscribed Cluster [14],

which we will look at in section 4.2.2.

2.3.3 System-wide techniques:

In order to support these abstractions, aggregate rates must be enforced which re-

quires a system-wide approach.

Scheduling in Data Centers

In the data center this means explicitly scheduling the rates that servers can send to

one another and enforcing these rates at servers in software, typically by modifying

the kernel or hypervisor. This approach is reasonable because data centers are under

17

single administrative control which means that the networking stack of the kernel or

hypervisor is part of the trusted code base. By explicitly scheduling the rates between

all of a tenant’s servers, scheduling can ensure that a tenant does not use more than

its share of a bottleneck link. In principle, this means it can be used to enforce the

bandwidth constraints imposed by any arbitrary network topology. In addition, by

coordinating rates, explicit scheduling makes it possible to avoid congestion.

Current approaches schedule rates centrally

There are a number of approaches that schedule rates and enforce them in software.

XCo [50] proposes a general framework to schedule traffic in data center networks.

Their current approach uses a central scheduler to collect traffic information from

all of the servers in the network in order to create a global traffic matrix. Using

this information, the scheduler periodically provides servers with a time schedule

indicating the times during which each server can transmit. Ballani et al. describe

“Oktopus” [14], which also enforces server-to-server rates at end hosts using a central

controller. NetShare [36] also uses kernel-based rate limiting and a central controller

to schedule rates between servers. While this approach can avoid congestion, it is

unclear how well it can scale to manage large networks.

Distributed Scheduling in Interconnection Networks

1

 output 1

 output n

DS

In
te

rc
on

ne
ct

1

2 2

N N

VOQs

Input Ports Output Ports

Figure 2.4: Distributed scheduling in high-performance routers

18

Our work draws upon the concept of distributed scheduling used in interconnection

networks. Distributed scheduling is used as a flow control mechanism in large in-

terconnection networks [22] such as those used in high performance routers [51] [47]

[46]. It works by scheduling the rates that input ports can send to outputs through

the interconnect. Figure 2.4 shows a simplified router diagram that helps illustrates

the idea. Arriving packets are buffered at each input port in Virtual Output Queues

(VOQs) corresponding to the output ports that they are destined for. By controlling

the rate of traffic leaving each VOQ, the router can manage the rate that each input

sends to each output. These rates will be assigned periodically by a controller, shown

as DS in the figure, that resides at each port (or linecard). Controllers periodically

exchange information about the state of their queues and use this information to

independently assign rates to their VOQs. Congestion can be avoided by assigning

rates at inputs so that the total rate sent from inputs does not overload any of the

outputs. This approach can also be used to provide QoS guarantees by managing

separate VOQs for each traffic class, effectively providing virtual networks within the

interconnect [22].

While the scheduling that we propose uses the same basic idea, there are some im-

portant differences. In the router context, the network typically provides a speedup

relative to the speed of the ports. To accommodate this, each output has an output

queue which is where most of the queueing occurs. These queues are typically quite

large (e.g. 100 ms worth of traffic) and the VOQs at inputs usually only begin to fill

when there is an overload at an output. Maximizing throughput is often an objective

of the scheduling algorithm used in these routers. For example, Distributed BLOOFA

[47] attempts to remain work conserving by focusing traffic on the least occupied out-

put queues. However, there is no sensible analogy for an output-side queue at servers

in the data center network. Traffic arriving at a server may be destined for different

transport-level ports which may process incoming messages at different rates. It is

generally also not very practical to construct a data center network that provides a

speedup relative to the speed of the server’s interface. The scheduling that occurs

in routers also occurs on a very small time scale compared to the end-to-end delays

experienced by the traffic. In the data center network, control messages experience

the same end-to-end delay as the traffic being scheduled which means that scheduling

occurs on an inherently longer time scale.

19

Chapter 3

Packet-level Routing

In this chapter, we investigate the use of packet-level routing and resequencing in the

context of multi-tenant data center networks. Here we focus specifically on FatTree

networks constructed from commodity switches such as the simple example shown

in figure Figure 3.1a. The purpose of the FatTree is to approximate the topology

shown in Figure 3.1b since trees with such “fat” links are impractical to construct for

large networks. The motivation for using packet-level routing is to be able to view

the network by its logically equivalent tree. In this chapter, we argue that this is an

important property to achieve in the context of providing performance isolation while

maintaining agility.

1"Gbps"

1"Gbps"

(a) A fully provisioned 4-port 3-level FatTree
DCN.

4"Gbps"

1"Gbps"

(b) The same network represented logically as
a tree.

Figure 3.1: Under ideal routing, a FatTree is equivalent to a tree.

This chapter is divided into four sections.

• First, we make the case for packet-level routing by presenting a performance

study comparing flow-level and packet-level routing in the data center.

• Second, we adapt packet-level routing to the data center context by exploring

several ways to maximize performance.

20

• Third, we perform a thorough evaluation where we examine the tradeoff be-

tween isolation and network utilization and the degree to which performance is

dependent on flow control and the amount of buffering available at the switches.

• Finally, we show how to cope with out-of-order arrivals by describing an efficient

method for resequencing packets in software at servers.

3.1 The case for packet-level routing

There are several key reasons why we cannot rely on flow-level load balancing to

provide strong isolation among tenants. When flows are large, any non-optimal ar-

rangement of flows to paths will suffer from the same issue of “flows colliding” that we

described in section 2.2.2. Such flows suffer from reduced throughput which leads to

significant unfairness with those flows not experiencing congestion. To see why this is

true, we can consider that FatTrees are a type of Clos Network that are known to be

rearrangeably non-blocking in circuit switched contexts such as a telephone network.

In a rearrangeably non-blocking switch, it is always possible to route a call between

an input and a free output port but only if we can reroute existing calls. This mirrors

the situation in a data center where each server sends at full rate to one other server.

In order to achieve 100% throughput as traffic changes, this result means that flows

would have to be routed adaptively.

Adaptive routing presents a fundamental problem, however. Any adaptive technique

that we could use in a data center requires time to determine the state of traffic

in the network and compute new routes. Of course, these routes are only useful as

long as they match the current traffic pattern. When traffic changes more quickly

than the time scale on which routes are computed, then adaptive routing is no better

than oblivious routing. This was demonstrated in several previous studies [49] [54].

Moreover, adaptive techniques that do reroute flows quickly create another problem

because every time a flow is rerouted, its packets have the potential to arrive out-

of-order. Thus, even if adaptive techniques could react quickly enough to match the

performance of packet-level routing, it would undermine the very reason for using

flow-level routing in the first place, which is to avoid out-of-order arrivals.

21

In related work, average throughput is often the metric used to measure performance.

This makes sense when maximizing the overall utilization of the network is the goal.

However, emphasizing average throughput can hide the unfairness that can exist

between flows. In this work we are concerned with traffic isolation among tenants

and the degree to which this can be achieved depends directly on the degree to which

we can provide fairness among flows. This is because if we are to maintain agility,

we must assume that flows between different servers may belong to different tenants.

To achieve strong isolation, we cannot tolerate significant unfairness among flows.

Therefore, to properly evaluate load balancing in this context, we must emphasize

the minimum throughput achievable under any traffic pattern. This is also consistent

with the way throughput is measured in interconnection networks, where it is defined

as the minimum throughput of any flow [22].

3.1.1 Methodology

Before we present the results of our study, we briefly detail the methodology used.

We rely primarily on simulation but we devote a portion of this section to validate

some of our results through probabilistic analysis.

Topology

In this study, we will focus on FatTrees that are fully provisioned and we will assume

that all links have the same capacity. The reason for focusing on this type of network

is that routing is most important when the oversubscription factor is 1. An undersub-

scribed network has more capacity than the servers can use which means congestion

is less likely to occur as a result of poor load balancing. Such a network is also not

very practical to construct in the data center context. Oversubscribed networks, by

contrast, are more realistic and can be constructed by using fewer switches and thus

providing fewer paths among servers. While our work does consider oversubscribed

networks, the approach to routing does not fundamentally change when fewer paths

are present. Choosing to focus on the case where all links have the same capacity

also represents the case where routing is most important. Some FatTree topologies,

such as VL2 [26], use higher capacity switch-to-switch links than server-to-switch

links. These topologies provide the same capacity using fewer paths and are therefore

physically already a step closer to a tree. A comparison of the relative importance

22

of routing in FatTree data centers as the oversubscription ratio and link speeds are

varied can be found in [41].

Packet-level simulator

We used our own packet-level simulator written on top of the OMNeT++ framework

[7]. The simulator is described in detail in Appendix A. In all of our experiments,

we used 1 Gbps links. While our simulator can model propagation delay and bit

errors on links, for these simulations we used an idealized representation for links

that only captures transmission delay. Ethernet switches are modeled as idealized

output-buffered switches and we do not model their processing delay because this is

typically quite small (often less than a millisecond) on modern switches. We used

switch queue sizes in the range of 32-1024 KB, which are typical per-port buffer sizes

on commodity Ethernet switches [48]. Unless otherwise stated, switch queues in our

experiments are 32 KB.

Traffic pattern

Since our goal is to evaluate the performance of load balancing, it is important to

decouple the traffic source from the network. This means that the traffic pattern

presented to the network should be independent of the traffic that the network de-

livers. In other words, the traffic produced by the servers should not be affected by

loss or delay in the network. The specific traffic pattern used can be represented by

a matrix where element (i, j) represents the rate server i sends to j. The sum of a

row represents the total rate a server sends and the sum of a column represents the

total rate of traffic destined for it. These rates are expressed as a fraction of the

server’s interface. Since the purpose is to measure the performance of routing, the

traffic matrix should be normalized so that the rates do not exceed the limit of a

server’s interface. In other words, under ideal routing it should be possible to deliver

any traffic pattern as long as the sum of any column or row in the traffic matrix is

less than or equal to 1. In these simulations, each server sends at the same rate and

this value corresponds to the offered load.

Measuring latency and throughput

The capacity of the network is the minimum throughput achieved by the network

under any traffic pattern. We measure the average for each flow as well as the mean

and maximum latency experienced by packets in the flow. As we mentioned earlier,

23

the throughput of the network is defined as the minimum throughput of any flow.

However, at times we show both the average and the minimum throughput in our

results to highlight the difference. Data was collected using the replication method.

Each data point represents the mean of 30 iterations, where each iteration uses a

different random number seed. We used a measurement interval of 100 ms with

a 10 ms warmup interval to ensure the network reaches steady state prior to the

measurement interval. This warmup interval was chosen conservatively to match the

various network sizes and traffic patterns we used. By using the ensemble-average

technique to measure throughput and latency measurements over increasing intervals

of time, we found that the network actually reaches steady state much more quickly

for most of our simulations. Unless otherwise noted, error bars represent the 95%

confidence intervals where error was derived using Student’s t-distribution.

Source queue

The standard setup for measuring interconnection networks includes a source queue

in the terminal of each network [22]. With this setup, packets are counted and time

stamped (for latency measurements) when they enter the source queue and not when

they enter the network. The reason behind this approach is to measure the latency

and loss that occurs as a result of the network’s flow control mechanism. This is less

meaningful in our simulations, however, because Ethernet uses dropping flow control.

There is no link-layer flow control mechanism that prevents a server’s packets from

entering the network2. Servers in our simulation do have a source queue at their

interfaces but packets are only queued here when the traffic rate temporarily exceeds

the rate of the interface. Since the purpose is to measure the latency and loss that

occurs in the network, we measure the packets as they leave this queue.

3.1.2 Oblivious flow-level routing

To highlight the limitations of flow-level routing we will focus on oblivious routing.

Adaptive routing can perform much better on average than oblivious routing, but as

we discussed earlier, it provides little benefit under rapidly changing traffic. While

2Ethernet does support link-layer flow control but we do not use it here because issues such as
head-of-line blocking create complexities that limit its effectiveness in large multi-stage networks
[35, 48, 58, 50].

24

the traffic patterns that we use here to stress oblivious routing are static, on small

timescales, adaptive routing still exhibits the same worst-case behavior when the

traffic is dynamic.

For flow-level routing, a demanding traffic pattern is one where each server sends to

only one other server. This type of traffic pattern is called permutation traffic

[22] since the traffic matrix can be expressed as a permutation matrix. The intuition

behind why this represents a difficult case is simple. A flow can only be assigned to

one path with flow-level routing, so each server sends all of its traffic along a single

path. If a server were to split its outgoing bandwidth among multiple flows, it would

be more likely to spread its load evenly over more paths.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Offered load

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
h
ro

u
g
h
p
u
t

average flow

minimum flow

 saturation
throughput

Figure 3.2: Performance of ECMP routing under the permutation traffic pattern.

Figure 3.2 shows throughput vs offered load for a 3-level FatTree constructed from

16-port gigabit switches. This network has 1024 servers spread across 128 top of rack

switches (switches at layer 1). There are 64 intermediate switches and thus 64 paths

available between any two servers. The traffic pattern evaluated here matches the

permutation pattern described above with the exception that we added the restriction

that no server sends to another server within the same subtree. This helps to stress

the network as it forces all traffic to be routed through the intermediate switches.

25

Without this restriction, traffic within a given subtree would not be routed through

all three layers. As we can see, the average throughput over all server-to-server flows

is only around 40% of the offered load. This result matches the 60% loss rate reported

in VL2’s evaluation of ECMP [26].

Minimum throughput

Measuring the average throughput across all flows gives an optimistic view of per-

formance as it does not take into account fairness among flows. This is why it is

important to measure the throughput of the minimum flow when reporting through-

put. The line labeled “minimum flow” represents the minimum throughput among

all flows averaged across all 30 repetitions. This reveals that some flows receive less

than 1
4

th
of the throughput of the average flow. More importantly, this shows that

the network reaches saturation at around 15% of its capacity. This is the point at

which the minimum and the average throughput separate and it indicates the point

at which flows begin to affect each others throughput. Thus, if we relied on oblivious

routing, we could not allocate more than 1
7

th
of the network’s resources to tenants

and still guarantee isolation.

Scaling

0 4 8 12 16 20 24 28
k - ports per switch

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

T
h
ro

u
g
h
p
u
t

average flow

minimum flow

(a) Increasing port count (3-levels).

2 3 4 5 6
levels

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

T
h
ro

u
g
h
p
u
t

k=4 ports

k=8

k=12

average flow

min. flow

(b) Increasing number of levels.

Figure 3.3: Performance of ECMP as the network scales.

The performance of oblivious flow-level routing becomes slightly worse as we scale to

larger networks. Ethernet switches are only cost effective when they contain a limited

26

number of ports, which is, after all, the motivation behind constructing FatTree

networks out of many smaller, inexpensive switches. To keep the oversubscription

factor at 1, we can scale the network by keeping the number of levels in the FatTree

fixed at 3 and increase k, the number of ports per switch. Figure 3.3a shows the

performance for ECMP under the same permutation traffic pattern as we scale k

from 4 to 24. At 24 ports, we begin to approach the upper limit on the size of the

network that we can feasibly simulate on commodity PCs. At this size, however, it

already becomes clear that the drop in average throughput begins to level off around

40% of the network’s capacity.

We can also increase the size of the network by keeping the number of ports fixed and

increasing the number of levels. We show the scaling characteristics as we increase

the network from 3 to 5 levels for several different values of k in Figure 3.3b. This

shows that increasing the number of levels also reduces throughput but that the rate

of decline does begin to slow as we move beyond 5 levels. These results suggests that

we can simulate 3-level networks of modest size (e.g. 3-levels, 12-16 ports) and still

expect our results to extend to larger networks.

Stage&1& Stage&2& Stage&3& Stage&4&

A" B"

1st"half:"
Collisions&occur&between&flows&

from&the&same&subtree&

2nd"half:"
Collisions&occur&between&flows&

from&different&subtrees&

Figure 3.4: Flows colliding in an unfolded 3-level 4-port FatTree.

27

3.1.3 Understanding the performance of ECMP

To understand the poor performance of flow-level routing, we can use a probabilis-

tic method to compute the throughput that we should expect to see with ECMP.

Computing the throughput analytically allows us to validate the correctness of our

simulations and helps provide some insight into the behavior of flow-level routing.

The particular point of comparison we chose for this exercise was the performance of

ECMP in a 3-level FatTree as the switch port count is varied. This is similar to what

we presented in Figure 3.3a except that we used a restricted form of the permutation

traffic pattern so that we could limit our analysis to the first half of the network.

To determine the throughput of a given flow, we need to consider the ways in which it

may collide with other flows in the network. To aid in this discussion, we present an

unfolded view of the 4-port FatTree network in Figure 3.4. The unfolded FatTree is

essentially equivalent to the folded network shown earlier in Figure 3.1a with the main

difference being that the network is drawn with unidirectional links so that all traffic

flows form left to right. The unfolded view helps illustrate the ways in which flows

can collide and allows us to divide the network into a set stages which we can analyze

separately. This view does imply that all traffic must pass through the intermediate

switches which is not necessary for traffic local to a subtree in the folded network.

For the traffic pattern we use here, all traffic is between servers in different pods.

In the literature, a “pod” refers to the set of servers that share the same links to

the intermediate switches (i.e. a subtree at level l − 1). There are 4 such pods in

Figure 3.4 and a FatTree with k port switches has k pods. In the first half of the

network, flows can only collide if they are from servers in the same subtree. Also

notice that collisions in the first half only depend on the paths that flows take and

not their destinations. Flows from different pods can only collide in the second half

of the network when they are destined for the same subtree. Notice that flows that

collide on a link in the first half may diverge and subsequently reconverge on a link in

the second half. However, they can no longer affect each others’ throughput when this

happens. We can leverage this observation by adding a requirement that the servers

in one pod all choose destinations in the same pod. We call this the “pod-to-pod”

permutation pattern and under this traffic pattern, no further loss can occur after

the second stage.

28

Throughput in stage 1:

We begin by using the 4-port network as an example.

Let X be a random variable representing the number of flows on a link in stage 1, e.g

link A. Since there are 2 servers per switch, the possible outcomes are 0, 1, 2 flows.

Each flow is assigned randomly to a path independently of the other flows so a flow

is routed through link A with probability p = 1
2
:

p(X = x) =

1/4, if x = 0 flows

1/2, if x = 1 flows

1/4, if x = 2 flows

The throughput in stage 1 is equivalent to the expected load on link A. The load

on link A is a function of X, which we can represent as another random variable

A = g(X). Since each server has one flow sending at full offered load, A has outcomes

1 if it carries one or more flows and 0 otherwise. So we have:

pA(a) =

1/4, if a = 0

3/4, if a = 1

This gives us an expected load of E[A] = 0.75 in stage 1. Thus the average throughput

of a flow in stage 1 is also 0.75.

We can generalize this for k port switches by viewing X as the number of successes

in a series of n bernoulli trials where the probability of success is p = 1
n

for each trial.

This follows a binomial distribution B(n, p) giving X the probability mass function

(PMF):

PX(x) =

(
n

x

)
px(1− p)n−x (3.1)

Since the load on link A is 1 as long as x 6= 0 the expected throughput is equivalent

to 1− P (X = 0). Thus with n = k
2

the expected throughput in stage 1 is:

E[A] = 1− (1− 1

n
)n (3.2)

29

Observe that lim
n→∞

(1 − 1
n
) ≈ 1

e
. This means as we scale the number of ports, the

throughput in stage 1 converges to 1− 1
e
, which is roughly 63%.

Throughput in stage 2:

Finding the expected load on a link in stage 2 is more complicated since flows that

collide in stage 1 do not create the same load on links in stage 2. To find the total load

on some link B in stage 2, we first find the fraction of traffic from link A that continues

on to B. Let Y represent the flows that continue on to B from the X flows on link

A. For each pair (x, y) we need to compute the probability that P (X = x, Y = y).

For the 4-port case this joint probability distribution is:

PX,Y (x, y) =

1
4,

(0, 0)

1
4,

(1, 0)

1
4,

(1, 1)

1
16,

(2, 0)

1
8,

(2, 1)

1
16,

(2, 2)

We then calculate Z, the load from link A on link B:

Z =

{
Y/X if X > 0

0 if otherwise
(3.3)

For the 4-port case we have the PMF:

PZ(z) =

9
16,

0

1
8,

1
2

5
16,

1

Z represents the load on link B from one of the switches in stage 1. Since there are

two such switches, we need to consider the contributions of both. We can represent

their combined load on B as Z1+Z2. Since the link has a capacity of one, B = Z1+Z2

30

if Z1 + Z2 ≤ 1 and 1 otherwise. The PMF of B is then:

B(Z1 + Z2) =

81
256,

0

36
256,

1
2

139
256,

1

For this case where k = 4, the expected throughput in stage 2 is thus 157
256
≈ 0.613.

Since each pod is independent, this also represents the throughput we expect to see

under the “pod-to-pod” permutation pattern.

0 4 8 12 16 20 24 28

k - ports per switch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
h
ro

u
g
h
p
u
t

a
t

o
ff

e
re

d
 l
o
a
d
 1 Simulated average

Simulated minimum

Theoretical

Figure 3.5: ECMP routing under the pod-permutation traffic pattern

In order to compare our simulations to the analysis, we simulated the pod-permutation

traffic pattern for the values of k from 4 to 24 ports. We wrote a python script to carry

out the analysis described above for each value of k. The results are shown in figure

3.5 and demonstrate that the simulated throughput closely matches the theoretical

values.

31

0.00 0.25 0.50 0.75 1.00

Offered Load

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

T
h
ro

u
g
h
p
u
t

ECMP (avg)

ECMP (min)

VLB (avg)

VLB (min)

(a) Comparison of oblivious flow-level and
packet-level routing

0.90 0.92 0.94 0.96 0.98 1.00

Offered Load

0.90

0.92

0.94

0.96

0.98

1.00

T
h
ro

u
g
h
p
u
t

random size (min)

random size (avg)

max size (min)
max size (avg)

(b) VLB with different packet sizes

Figure 3.6: Performance of packet-level VLB under the permutation pattern.

3.1.4 Oblivious packet-level routing

To compare the performance of oblivious packet-level and flow-level routing, we re-

peated the same experiment shown in Figure 3.2 using packet-level VLB. The results

are shown in Figure 3.6a and shows that packet-level VLB clearly performs much

better than flow-level VLB. The average throughput is above 95% of the network’s

capacity. The degree of unfairness between flows is also much smaller; the minimum

throughput for any flow is only a few percent less than average. Figure 3.6b shows

the performance of VLB under high offered load with the traffic consisting of dif-

ferent packet sizes. The line labeled “max size” refers to traffic consisting of 1500

byte Ethernet frames, which is the standard MTU. The line labeled “random size”

represents sizes that are uniformly distributed between the minimum (84 bytes) and

maximum size Ethernet frames. The performance is worse for maximum size packets

because the limit on queue sizes at switches is in terms of bytes which means that

load balancing effectively occurs at a coarser granularity with large packets.

3.2 Packet-level routing strategies in DCNs

In the previous section we compared randomized packet-level and flow-level routing

and found that packet-level VLB performs significantly better than randomized rout-

ing at the flow-level. However, the results from Figure 3.6b indicate that there is

32

some room for improvement. In particular, there are three reasons to believe that a

more sophisticated strategy could perform better.

• First, randomly spreading packets ensures that all paths receive an equal amount

of traffic, on average, but when viewed over small time scales, significant im-

balances can exist. Moreover, if an imbalance produces longer delays on some

paths, these delays can persist for a fairly long time.

• Second, randomly spreading packets does not account for the varying size of

packets. Thus, even if all paths receive an equal number of packets, some may

receive significantly more load than others.

• Finally, routing based on paths does not account for the fact that paths leading

to different subtrees share different links. This means that balancing a server’s

traffic evenly among the intermediate switches does not necessarily ensure its

load is spread evenly across the links in each of the subtrees that it sends to.

In this section we take a closer look at these issues to examine how packet-level rout-

ing can be adapted to provide optimal performance in the data center environment.

The purpose here is to identify which strategies can, in principle, provide the best

performance. As such, we use a variety of traffic patterns and metrics that highlight

differences in order to understand the factors that effect performance and guide our

design choices. In the next section we follow a more rigorous methodology to evaluate

how well we can expect these approaches to perform in practice.

3.2.1 Imbalances on small time-scales

We will begin by addressing the imbalances created by randomly spreading packets.

To isolate the other factors, we will keep the sizes and destinations of packets fixed.

Thus we use the same permutation traffic pattern as before using a fixed packet size.

If we start by considering just the servers within a pod, then if there are p servers,

they share p paths. VLB ensures that by choosing paths randomly, on average each

path receives the same number of packets and thus the same load. On small time

scales, however, we should not expect load to be balanced evenly. For example, let’s

33

consider just the time it takes each server to send a single packet and let’s call this a

packet interval. For servers to balance load evenly over a single packet interval, each

server would have to choose a unique path for its packet. Of course, this is unlikely

to happen when paths are chosen at random. Balancing load evenly at this time

scale would require coordinating the transmission of every packet which is clearly not

practical in a data center network. Given that servers must make routing decisions

independently, we cannot avoid imbalance at the level of a single packet interval.

While we cannot prevent servers from choosing the same path in a given interval, we

can limit the number of times they do so. Let’s define a round as consist of p packet

intervals. Since there are p servers and p paths, load would be balanced evenly in a

round if each path receives p packets. With VLB, each server picks a path at random

at every interval. This means there is nothing to prevent all servers from sending

to just a single path over the course of the round. This means in the worst case it

is possible for one path to receive p2 packets. We can reduce this unevenness if we

prevent each server from using a given path more than one time per round. A simple

way to accomplish this is for each server to compute a permutation on the available

paths each round and send one packet to each path in a round robin fashion. We

implemented this approach which we call the “Permutation Round Robin” (PRR)

load balancer.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Offered Load

0.00

0.25

0.50

0.75

1.00

1.25

1.50

La
te

n
cy

 (
m

s)

VLB

RR

PRR

VLB (max)

RR (max)

PRR (max)

Zero load latency

Maximum latency

Figure 3.7: Comparison of VLB and Round Robin (RR) with maximum size packets.

34

Permutation Round Robin

We compared the performance of PRR to VLB by rerunning the experiment in Fig-

ure 3.6b. We found that PRR effectively achieves 100% throughput on permutation

traffic as the maximum loss rate for any flow was less than a tenth of a percent.

Therefore, rather than present the throughput, we show the difference in latency vs

offered load. In Figure 3.7 we plot both the average latency across flows and the

maximum latency experienced by a flow as a function of the offered load. When

there is no congestion in the network, no queueing occurs at switches which means

packets experience only the transmission delay at each hop in the network. This is

known as the zero load latency and we included the theoretical value for the network

in the figure. We also plotted the maximum latency, which corresponds to the de-

lay that a packet would have if it experienced the maximum possible queueing delay

at each hop. It is important to point out that this plot only shows the latency of

packets that are actually delivered. For this reason, the maximum latency of a flow

never reaches the theoretical maximum since packets are unlikely to experience the

maximum amount of delay at every hop without being dropped.

We also simulated the performance of a simpler round robin load balancer (RR) that

only performs an initial permutation on the list of paths rather than computing a new

permutation after each round. Interestingly, this approach performs slightly better.

The reason for this is that computing a new permutation can cause a server to use a

path twice in a row if the first path in the new permutation is the same as the last

path it used. Since each server may do this for a particular path, a path can receive

twice as many packets in the worst case. Thus while computing new permutations

can help to desynchronize servers that are sending to paths in the same order, doing

so frequently reduces performance.

3.2.2 Accounting for packet size

In most other contexts where randomized routing is used on topologies similar to the

FatTree, fixed size messages are used. Ethernet frames, by contrast, typically vary in

size from about 80 to 1500 bytes but may even be as large as 9000 bytes when jumbo

frames are allowed. This difference in size means that even if packets are spread

35

0.75 0.80 0.85 0.90 0.95 1.00
Offered load

10-5

10-4

10-3

10-2

10-1

100

M
a
x
 f

lo
w

 l
o
ss

 r
a
te

VLB

RR

P-RR

SD

Figure 3.8: Performance with packet sizes alternating between max and min size.

evenly among the paths, it is still possible to have large imbalances in load between

paths. To demonstrate this issue, we had the servers alternate between sending

maximum (1500 bytes) and minimum size packets. The result is shown in Figure 3.8.

Round robin performs particularly poorly here because every other path receives only

large packets. Of course this traffic pattern is somewhat contrived because in practice,

servers that saturate their link generally do so by sending large flows consisting mostly

of maximum sized packets. Nevertheless, traffic in real networks often follows a

bimodal distribution where packet sizes near the minimum and maximum are most

common and has been observed in traffic studies of data center networks as well [26].

We experimented with several ways of accounting for packet sizes. The most straight

forward is to include a counter with the round robin approach that keeps track of

the number of bytes sent. The Surplus Round Robin (SRR) load balancer works by

associating a “deficit counter” with each path that is initialized to 0. After sending a

packet along a particular path, the number of bytes in the packet is subtracted from

the counter associated with the path. We continue to send packets along the same

path until the counter becomes negative at which point we switch to using the next

path. When the counter for every path is negative, we begin a new round and all

counters are incremented by a fixed quantum, e.g. 1500 bytes.

36

We compared this approach to round-robin and found that the best performance was

always achieved with the smallest possible quantum (e.g. 1 byte). With such a small

quantum, SRR may have to cycle through the list of paths one or more times before

enough credits are added to find a path with non-negative credits. This suggests that

there is a much simpler approach. We can sort the list of paths by the number of

credits and always use the path with the most credits. When all paths have negative

credit we add a new quantum to each counter and perform a permutation on the list

of paths. The permutation causes ties among paths with equal credit to be broken

randomly. Its use is optional and serves to periodically desynchronize servers in a

similar fashion as PRR. We call this the sorted deficit (SD) load balancer and it

is also shown in the figure above. Since it achieves the same effect as SRR with a

quantum value of 1, we omitted SRR from our results and only show SD in Figure 3.8.

Intuitively we want a server to minimize the imbalance that its traffic creates among

the paths. Choosing the path with the most credits is the greedy choice that realizes

this goal. Without making assumptions about the sizes of future packets, this is also

the best that we can do.

3.2.3 Accounting for topology

1st$interval$

2nd$interval$

(a) RR after one round

4th$interval$

3rd$interval$

1st$interval$

2nd$interval$

(b) Per destination RR after two rounds

Figure 3.9: Load balancing with multiple flows in a simple two port network.

So far, we have focused on a single traffic pattern, the permutation pattern, in order

to demonstrate the effect of packet size and short-term imbalances on performance.

While VLB provides roughly the same performance under all traffic patterns, the

load balancers described above are more deterministic in nature which makes their

performance more dependent on the traffic pattern. While the permutation pattern

represents the worst case for flow-level routing, it represents an easy case for packet-

level routing. When sending to a single destination, a server that balances its traffic

37

across the paths in the first half of the network automatically balances its load across

the paths to the destination in the second half of the network.

When a server sends to multiple destinations, however, this assumption does not

always hold. For example, consider the very simple two-port network in Figure 3.9a.

Here one server has two flows to different destinations. Imagine that this server sends

to both destinations evenly and at a constant rate so that it sends one packet to each

destination in each round. There are two intermediate switches thus the server can

choose from two paths. If we used the round-robin approach, then, in each round,

the server would use the same path to send to the same destination. In other words,

every round would proceed in the same fashion as shown in Figure 3.9a. This would

mean that while load is balanced evenly in the first half of the network, each flow only

uses one path in the second half. Of course, in practice, such a cycle might quickly

be broken but over short intervals it can lead to imbalance in the second half of the

network.

To mitigate this, we would have to account for the destinations of packets when

choosing paths. However, routing decisions cannot simply be made independently

for each destination or balancing load in the second half would come at the cost of

creating an imbalance in the first half. Returning to our example, we can imagine

that the server performs RR on a per-destination basis. As shown in Figure 3.9b, this

ensures it uses a different path for each flow in the second round. Notice, however,

that the server now uses the same path in two subsequent intervals. In general, with

n destinations a server could use the same path up to n times in a row. This would

be true for any approach that would do its accounting per-destination since the next

path would always be dependent on the destination of the next packet. This suggests

that to properly balance traffic in both halves of the network, we would need to

consider the cost of creating an imbalance at every stage.

Multiphase Sorted Deficit

To examine the benefit of accounting for topology, we extended the SD load balancer

to keep track of the number of bytes placed on paths in multiple stages in order

to choose the least loaded path. We implemented two separate version of this load

38

balancer. We call the first version the two-phase (TP) load balancer. In addition to

normal set of counters, the TP load balancer maintains a separate list of counters

for each destination that it sends to. It simply adds the credits from both counters

together and chooses the path with the most credits. We then implemented a version

that maintains a separate list of counters for each subtree in the network. We call this

the multi-phase (MP) load balancer. The advantage of the two phase load balancer is

that it is simpler and does not require knowing the precise topology (e.g. number of

ports, levels, etc). The multi-phase, by contrast, effectively keeps a counter for each

link the server can send across, enabling it balance the server’s load as precisely as

possible.

Maximum queue length observed at each stage in KB
ECMP VLB RR P-RR SD P-SD TP P-TP MP P-MP

Permutation

stage 1 1024 699 18 37 19 37 19 35 9 13
stage 2 1024 628 21 35 19 38 19 35 19 38
stage 3 1024 586 19 35 19 37 19 35 19 37
stage 4 1024 417 18 32 16 31 16 32 12 18
stage 5 0 78 12 18 12 19 12 19 12 18

All-to-all

stage 1 1024 792 22 42 21 37 51 38 16 16
stage 2 1024 120 19 31 21 28 35 28 28 31
stage 3 1024 129 1024 132 1024 678 75 95 79 73
stage 4 1024 625 1024 794 1024 1024 136 201 116 127
stage 5 70 85 83 79 75 237 35 44 92 88

Table 3.1: Imbalance in queueing at various stages in the network.

Table 3.1 shows the maximum length of queues in various stages of a 3-level FatTree

with k = 12 ports. Here we compare the permutation traffic pattern with an “all-

to-all” traffic pattern in which every server sends to every other server. In this

experiment, servers sent maximum sized packets at uniform rates causing their packets

to be evenly spaced in time. We simulated each of the described load balancers with

and without the use of periodic permutations on the list of the paths they maintain

(denoted with the prefix P-). The values in the table indicate the maximum queue

length observed at each stage of the network across 30 runs with the offered load at 1.

To highlight the difference in queueing at various stages in the network, we increased

the size of switch queues to 1 MB. This means that values of 1024 KB correspond to

the maximum queue size and indicate that some packet loss is likely to occur.

Because packets are sent at fixed rates, there is a high degree of synchronization

that can occur between paths and destinations, even when periodic permutations are

used. The results show that all of the packet level strategies perform reasonably well

39

under the permutation pattern but that only the two-phase and multi-phase load

balancers perform well under the all-to-all pattern. While RR and SD manage to

avoid imbalances in the first half of the network, they fail to prevent the imbalances

that can occur in the second half of the network. The results also show that while

the multi-phase load balancer performs the best, it only performs slightly better than

the simpler two-phase approach.

3.2.4 Comparison of approaches

The previous experiment was used to demonstrate the imbalances that can occur

in the network and to illustrate the differences between the approaches. However,

it was somewhat contrived in the sense that each flow produces traffic at a fixed

rate according to a periodic process. This means the packets within each flow are

spaced uniformly in time which does not represent realistic traffic. In general, we use

random packet spacing by using an exponential distribution centered around a mean

corresponding to the sending rate of the flow. To provide a more accurate comparison

of the different approaches, we simulated three different traffic patterns under various

packet sizes using both random and uniform packet inter-arrival times. We used a

3-level FatTree consisting of k = 12 port switches for this experiment. The three

different packet sizes shown correspond to the ones described so far, i.e., maximum

size, random size, and alternating minimum and maximum size packets.

% of capacity before loss exceeeds threshold
Inter-arrivals Packet size ECMP VLB RR SRR SD TP MP

Uniform
random 0.18 0.95 1.00 1.00 1.00 1.00 1.00

maximum 0.18 0.95 1.00 1.00 1.00 1.00 1.00
alt. max min 0.19 0.90 0.96 1.00 1.00 1.00 1.00

Random
random 0.17 0.95 1.00 1.00 1.00 1.00 1.00

maximum 0.17 0.94 1.00 1.00 1.00 1.00 1.00
alt. max min 0.17 0.89 0.95 1.00 1.00 1.00 1.00

Table 3.2: Throughput before maximum loss exceeds threshold - permutation traffic.

For the experiment corresponding to Table 3.2 and Table 3.3, we increased the offered

load until the loss rate of some flow exceeds a certain threshold, which we set at 0.1%

of its packets. This measures the throughput achievable while ensuring that no flow

40

% of capacity before loss exceeeds threshold
Inter-arrivals Packet size ECMP VLB RR SRR SD TP MP

Uniform
random 0.89 0.88 0.89 0.89 0.89 0.89 0.95

maximum 0.13 0.10 0.06 0.08 0.08 0.07 0.27
alt. max min 0.94 0.80 0.80 0.80 0.80 0.80 0.82

Random
random 0.81 0.86 0.87 0.86 0.86 0.86 0.87

maximum 0.82 0.87 0.87 0.87 0.87 0.87 0.88
alt. max min 0.75 0.77 0.78 0.78 0.78 0.77 0.77

Table 3.3: Throughput before maximum loss exceeds threshold - all-to-all traffic.

% of capacity before loss exceeeds threshold
Inter-arrivals Packet size ECMP VLB RR SRR SD TP MP

Uniform
random 0.93 0.98 0.98 0.98 0.98 0.98 1.00

maximum 0.93 0.97 0.98 0.98 0.98 0.98 1.00
alt. max min 0.92 0.94 0.95 0.95 0.95 0.95 0.97

Random
random 0.92 0.96 0.96 0.96 0.96 0.96 0.97

maximum 0.92 0.95 0.96 0.96 0.96 0.96 0.97
alt. max min 0.89 0.91 0.92 0.92 0.92 0.92 0.92

Table 3.4: Throughput before average loss exceeds threshold - all-to-all traffic.

experiences more than a given degree of loss. Table 3.2 shows the results under the

permutation traffic pattern which shows that all of the load balancers do fairly well

with only RR and VLB failing to achieve 100% throughput.

For the case of the all-to-all traffic pattern in Table 3.3, however, we see that the

performance of ECMP improves but that all of the packet-level approaches perform

significantly worse. The relative improvement with ECMP can be explained by the

fact that with more flows, each server is effectively able to balance its traffic over

more paths. One reason for the poor performance with the packet-level approaches is

that with more flows per-server, each flow sends proportionally fewer packets. This

means the it can tolerate less packet loss over a given window of time making the

maximum loss threshold unusually sensitive to short term unfairness for cases such

as the all-to-all traffic pattern since there are 432 servers. In the experiment, we

measured loss over a 500 ms window. However, with 431 flows per server, the average

flow sends fewer than 100 maximum sized packets over this interval even at full offered

load. Thus the loss threshold will be exceeded as soon as any packet is lost. This also

explains the unusually poor performance that we see with uniform inter-arrival times

41

and maximum sized packets. This is an artifact caused by the use of deterministic

packet sizes and departure times which can lead to events becoming synchronized

causing some flows to consistently experience loss. For comparison, Table 3.4 shows

the results for the same experiment where the loss threshold was defined as the average

loss across all flows rather than the maximum.

It is important to point out the high rate of loss that occurs with random inter-arrivals

is independent of load balancing. Loss occurs not because the traffic is not evenly

balanced but rather that the combined traffic to a destination can temporarily exceed

the physical capacity of the network. If each server sends n flows then each flow only

sends at an average rate of 1
n
. Thus for a large number of flows, traffic can become

bursty causing some servers to receive packets from a large number of senders at the

same time. In effect, the traffic generated is inadmissible when viewed over small

time scales which means that loss would occur even with ideal routing. This will be

demonstrated in the next section by simulating on the equivalent logical tree network

3.3 Performance in context

The goal of the previous section was to identify the routing strategy that can, in

principle, provide the best performance. Our results indicated that performance

depends heavily on how well behaved or bursty the traffic is. In this section, we

apply a more rigorous methodology in order to build a more accurate picture of the

performance that we can expect in practice.

3.3.1 Separating routing & flow-control

To separate load balancing from flow control, we need some way to understand how

much queueing can result from each. This depends on how tightly each mechanism

can control traffic in the data center network. For example, the job of flow control is

to ensure that the traffic produced by servers represents an admissible traffic matrix.

Thus one way to characterize its effectiveness is the timescale on which it can do this.

At one extreme we can model the rate that a server i sends to a server j as a Poisson

42

Routing

Flow Control Poisson send process:

Loose:

Poisson Process

Strict:

Periodic Process

Periodic send process:

Poisson path selection: Periodic path selection:

Server i sends to j
with rate rij

Server i selects from
p paths in subtree

λ =
1
rij

Τ =
1
p

Τ =
1
rij

λ =
1
p

Figure 3.10: Separating flow control from load balancing.

process with rate parameter λ = 1
rij

. We call this “loose” flow control because it

means the flow control mechanism only ensures that the server’s rate matches rij on

average. At the other extreme, we can model the sending rate as a periodic function

where server i sends a packet to server j on a fixed period exactly equal to 1
rij

. We

call the periodic “strict” flow control because it is the finest timescale at which a

server can control its sending rate.

We use a similar approach to model routing by viewing the path that a server uses as a

periodic or Poisson process. Since the routing algorithm cannot control when or where

the next packet will be sent, we cannot control how often a server uses a given path

in a specific subtree. Here we can only model the selection of paths in each subtree as

a process. For VLB, this process is Poisson since it chooses randomly without regard

to the paths or destinations of previous packets. Thus it precisely represents loose

routing. Strict routing by contrast, would ensure that i use a given path once for

every p packets it sends through subtree s. As we discussed in 3.2.3, we cannot ensure

the selection of paths is truly periodic at every subtree since different destinations

share different subtrees. Strict routing is therefore an idealized representation. Given

that we cannot centrally manage the route of every packet through the network, strict

routing represents an upper bound on how evenly traffic can be balanced in a given

subtree.

43

Since flow control and routing represent two different dimensions, we can use this

strict/loose model to provide bounds on the space in which we are working. Given

that servers cannot coordinate to choose routes or police sending rates on the time

scale of individual packet transmissions, we can use strict routing and flow control to

get a lower bound on the amount of buffering needed in the network needed by any

approach.

Simulating the strict/loose model:

While we can simulate loose routing by using VLB, we cannot simulate strict routing

precisely. However, the multiphase load balancer will achieve periodic path selection

at every stage whenever possible. We can also use the logically equivalent tree rep-

resentation of the FatTree (as shown in Figure 3.1b) to model ideal load balancing.

With the logical tree form, we make the sizes of switch queues proportional to the

number of links they represent in the FatTree. Since there is only one path in a tree,

load balancing is effectively removed from consideration. This means simulating the

logical tree provides a loose upper bound on the performance of routing. Optimal

routing in the DCN must exist somewhere between the two points.

We can readily simulate loose and strict flow control because the sending process at

servers can be configured to be periodic or Poisson. However, note that the traf-

fic produced by servers is not truly Poisson since the sending rate of the server is

constrained by the speed of its interface. Nevertheless, this lets us capture the four

corners of this space with simulation. This gives us a sense of the relative impor-

tance of load balancing and flow control and provides upper and lower bounds on the

performance that we can expect in practice.

3.3.2 Queueing theory model

In addition to simulation, we can model two of the four cases analytically using

queueing theory. These models are described in more detail in B. The M/M/1/K

FatTree model represents the FatTree topology as a network of finite capacity M/M/1

queues. Under queueing theory, the arrival rate and departure rate of packets at an

M/M/1 queue is modeled as a Poisson process. As the arrival rate on every queue

(on every path) follows a Poission distribution, it effectively provides a model for

44

loose flow control with loose routing. It also most accurately represents an all-to-all

traffic pattern since the distribution of traffic rates in the network is proportional to

the number of servers. We can use this model to find a conservative lower bound on

the performance we might expect for the corner representing loose load balancing and

loose routing. The bound is especially conservative at offered loads near 1 because real

servers cannot send faster than the rate of their interface yet there is no upper bound

on the number of arrivals that can occur at a queue under a random distribution.

The M/M/1/K logical tree model can be used to approximate strict load balancing

and loose flow control.

3.3.3 Evaluation

There are two metrics that define the performance of load balancing in this context:

• Isolation: The degree of isolation we can provide to tenants.

• Utilization: The capacity that can be used by tenants.

We define isolation as the acceptable fraction of packet loss over all flows and we call

this the loss threshold. We then define the usable capacity as the offered load at which

the loss threshold is exceeded. We use the usable capacity metric as a way to define

utilization in this context since it represents the fraction of the capacity that can be

allocated to tenants while maintaining isolation.

This evaluation focuses on investigating two factors that affect the performance of

routing:

• Available buffering: The sizes of switch queues determines how much imbalance

we can tolerate before losing packets.

• Flow control: Bursty traffic can create substantial loss which means the degree

to which sending rates can be controlled is a key factor affecting performance.

Here we simulate the four corners of our strict/loose model to tease apart the effects

of flow control from routing. This allows us to better evaluate the relative differences

45

10-610-510-410-310-210-1

Loss threshold

0.75

0.80

0.85

0.90

0.95

1.00
U

sa
b
le

 c
a
p
a
ci

ty
LogicalTree: Strict FC

LogicalTree: Loose FC

FatTree: Strict FC, ~Strict LB (MP)

FatTree: Strict FC, Loose LB (VLB)

FatTree: Loose FC, ~Strict LB (MP)

FatTree: Loose FC, Loose LB (VLB)

M/M/1/K LogicalTree

M/M/1/K FatTree

Figure 3.11: Fraction of the network’s capacity achievable as a function of the
acceptable loss threshold. l = 3 levels, k = 12 ports, queue size K = 50 packets.

between our routing approaches. By varying the switch queue size, we can determine

how much buffering is needed to be able to utilize a given fraction of the network

while maintaining a given degree of isolation. This also serves as a guide to help weigh

some of the costs and tradeoffs of designing a network based around our approach.

Isolation vs. utilization

We begin by simulating the four corners of our loose/strict model under all-to-all

traffic and compare the results with our queueing theory model. For reasons that

we discuss in B.3, we made the packet size follow a Poisson distribution around the

medium packet size (midway between minimum and maximum sized) so that we could

provide the best comparison with our queueing theory models.

Figure 3.11 shows the maximum fraction of the network’s capacity that we can safely

use without exceeding a given loss threshold when the queue size is fixed at 50 packets.

With M/M/1/K the departure process is Poisson so this effectively models random

46

0.80 0.85 0.90 0.95 1.00
Usable capacity

101

102

103
S
w

it
ch

 q
u
e
u
e
 s

iz
e
 (

in
 p

a
ck

e
ts

)

FatTree: Strict FC, ~Strict LB (MP)

FatTree: Strict FC, Loose LB (VLB)

FatTree: Loose FC, ~Strict LB (MP)
FatTree: Loose FC, Loose LB (VLB)

M/M/1/K LogicalTree

M/M/1/K FatTree

LogicalTree: Strict FC
LogicalTree: Loose FC

Figure 3.12: Per-port switch buffer size required to achieve given fraction of the
network’s capacity. l = 3 levels, k = 12 ports, loss threshold = 10−3.

packet sizes. Since the capacity, K, is in terms of packets, we chose a value of 50

packets because it roughly corresponds to a limit of 32 KB when using average-sized

packets. In addition, to simulating the 4 corners of the space described earlier, we

plotted the results from our M/M/1/K FatTree and M/M/1/K LogicalTree analysis

in the figure. The results show that the lower bound on performance provided by

the M/M/1/K models is overly conservative. However, they show that, with a small

amount of buffering, we can expect to achieve a reasonable degree of isolation (e.g.

loss thresholds of 10−3 or 10−4) while being able to effectively utilize at least 85% of

the network’s capacity.

In Figure 3.12 we fix the loss threshold at 10−3 and we plot switch queue size as

a function of offered load. This is useful because it shows the per-port buffering

needed at switches to avoid exceeding the loss threshold when using a given fraction

of the network’s capacity. Note that queue size is shown with a logarithmic scale.

This is because, according to M/M/1 queueing theory, the length of the queue will

grow exponentially with the traffic intensity and our FatTree and LogicalTree models

47

show this. Our simulations for loose flow control (Poisson send process) also shows

exponential growth although at a slower rate. This makes sense because, as explained

in B.3, the rate of traffic on a link is constrained by the speed of the link. Since a

switch queue is fed by a finite number of links (i.e. at most 11 since k = 12 ports),

the arrival rate at a switch queue is not truly Poisson. The figure also shows our

simulated results for strict flow control (periodic send process) on both the FatTree

and its equivalent logical tree. In this case, the growth rate is much smaller and, with

the exception of the case using VLB routing, the required queueing stays well under

100 packets.

There are several key points to take away from these results.

• First, with loose flow control the arrival rates at switches appear Poisson making

the benefit provided by improved load balancing largely irrelevant. This can

be seen by the fact that, under loose flow control, both VLB and MP perform

nearly the same as when we simulate the logical tree, where routing is not a

factor. As we approach full offered load, these three curves converge and show

the same scaling characteristics as the M/M/1/K models.

• Secondly, with strict flow control, the MP load balancer performs significantly

better than VLB, approaching the performance of ideal routing (the Logical-

Tree: Strict FC case).

• Third, even under worst-case traffic, with loose flow control we can still expect

to use over 90% of the network given a reasonable amount of buffering (e.g. 100

packets worth).

• Finally, we can expect these results to scale with higher speed Ethernet links

since M/M/1 queues only depend on the relative rates of arrivals and departures.

3.3.4 Partitioning the DCN into tenants

While the all-to-all traffic case is useful because it allows us to compare our results

with our analytical model, it represents an extreme case. In a multi-tenant DCN, the

servers will be partitioned among a number of different tenants. In this context, we

48

can expect that most, if not all, of a server’s traffic to go to other servers belonging

to the same tenant. We should not expect that it is necessary for the network to

be robust to a network-wide all-to-all traffic pattern. A more reasonable worst case,

therefore, would be to evaluate performance when the servers in each tenant perform

an all-to-all exchange of traffic. To do this we chose to partition the network into

evenly sized tenants consisting of m randomly assigned servers. Each server sends to

all other servers in its partition at an average rate of 1
m−1 and we call this the “all-

to-all partition” pattern. Note that the permutation and all-to-all traffic patterns are

effectively special cases of this pattern with m = 2 and m = n respectively. A useful

midway point between these two extremes is to chose m = p where p is the number

of paths. Since n = p ∗ k, a network with k port switches would have k tenants.

10-610-510-410-310-210-1

Loss threshold

0.75

0.80

0.85

0.90

0.95

1.00

U
sa

b
le

 c
a
p
a
ci

ty

FatTree: Strict FC, ~Strict LB (MP)
FatTree: Strict FC, Loose LB (VLB)

FatTree: Loose FC, ~Strict LB (MP)
FatTree: Loose FC, Loose LB (VLB)

LogicalTree: Loose FC
LogicalTree: Strict FC

(a) Partitioned All-to-All (m = p = 36)

10-610-510-410-310-210-1

Loss threshold

0.75

0.80

0.85

0.90

0.95

1.00
U

sa
b
le

 c
a
p
a
ci

ty

FatTree: Strict FC, ~Strict LB (MP)
FatTree: Strict FC, Loose LB (VLB)

FatTree: Loose FC, ~Strict LB (MP)
FatTree: Loose FC, Loose LB (VLB)

LogicalTree: Strict FC
LogicalTree: Loose FC

(b) Partitioned All-to-All (m = 2)

Figure 3.13: Capacity vs loss threshold with servers partitioned into tenants of size
m. l = 3 levels, k = 12 ports, loss threshold = 10−3.

Figure 3.13 shows capacity vs threshold for the partitioned all-to-all traffic pattern

with both m = 2 and m = p below. In the m = p case, there are enough flows that

loose flow control drowns out the differences between loose and strict routing. When

we move to strict flow control, VLB continuse to perform poorly but the MP load

balancer now achieves optimal performance. With m = 2, a server receives traffic

from only one source which means the total traffic destined for it cannot exceed the

capacity of its interface even without flow control. As a result, performance under

the permutation pattern depends mostly on load balancing.

49

3.4 Resequencing packets at end hosts

Since paths can experience uneven levels of queueing, routing packets from the same

flow through different paths can easily cause them to arrive out-of-order. This is

demonstrated by Figure 3.14 which shows the fraction of packets arriving out of

order as a function of offered load. In this experiment the network was partitioned

into tenants with each tenant’s servers forming an all-to-all traffic pattern. As before,

each of the lines we show represents one of the four corners of the routing/flow control

space presented in section 3.3. Under strict routing and flow control, we see a minimal

number of out-of-order arrivals. A significant fraction of the traffic does arrive out-

of-order at the other extreme. With proper flow control, the result shows that most

packets arrive in order which is consistent with the findings of [24].

0.80 0.85 0.90 0.95 1.00

Offered load

10-2

10-1

100

101

102

%
 o

u
t-

o
f-

o
rd

e
r

Strict/MP

Strict/VLB
Loose/MP

Loose/VLB

(a) Maximum size packets

0.80 0.85 0.90 0.95 1.00

Offered load

10-2

10-1

100

101

102

%
 o

u
t-

o
f-

o
rd

e
r

Strict/MP
Strict/VLB Loose/MP

Loose/VLB

(b) Random size packets

Figure 3.14: Fraction of traffic arriving out-of-order.

3.4.1 Dealing with out-of-order arrivals

The effect that out-of-order arrivals have may depend on the protocol(s) used by the

tenant. While an IP network provides no guarantee that packets arrive in order, it is

generally treated as an implicit requirement. One of the key concerns that is typically

cited is the effect out-of-order arrivals have on the performance of TCP. A TCP flow

can re-order segments that arrive out-of-order but it typically interprets this as a

sign of network congestion. In particular, it causes the receiver to generate duplicate

ACKs which can cause the sender to react as if packets had been lost. Thus it leads

to spurious retransmissions and unnecessary reductions in the sending rate. As a

50

result, it is generally assumed that packet-level routing cannot be used in data center

networks. This assumption was recently challenged by [24]. They showed through

simulation that most packets do arrive in order and that in fact the negative effect on

TCP performance is out-weighed by the increase in throughput gained by packet-level

routing.

In this work, we propose to address this issue head-on and resequence packets in

software at the end hosts. This requires modifying the networking stack of servers to

include a resequencing layer that would sit below the network layer and would ensure

that all packets are reordered before delivering them to the layers above. This would

shield TCP from out-of-order arrivals all together. It would also present tenants with

a more robust network model upon which they can depend.

3.4.2 Design considerations

Since we are not aware of any similar work in the data center networking context,

we briefly consider the high-level approaches that one might take before discussing

our approach to resequencing. In order for packets to be resequenced at servers, they

must be marked in some way to identify their order. This can be done in one of two

ways; with sequence numbers or with timestamps. We describe the implications of

each approach in the data center context below.

Sequence-based resequencing:

Using sequence numbers would mean that a server creates a sequence number counter

for each server that it is sends packets to. When it sends a packet to a given destina-

tion, it would add the sequence number from the corresponding counter to the packet

and then increment the counter. The receiver can then use the sequence number to

determine which packet should come next and buffer any packets that arrive out-

of-order. Since a missing packet may never arrive, the receiver must use a timeout

to recover from loss. This is essentially the approach that TCP uses except that its

sequence numbers identify the order of bytes within a flow. The key advantage of this

approach over time-based resequencing is that a receiver can immediately determine

51

whether any packets are missing when it receives a packet. This means that packets

arriving in-order can be delivered immediately and experience no added delay due to

resequencing.

Per-flow state

One potential drawback of this approach is that it requires each server to maintain

separate resequencing state for each server it is communicating with. At the sending

side, it requires a separate sequence counter for each receiver and at the receiving

side a separate queue to reorder the packets from each server sending to it. Given

that data centers contain many servers which may be assigned to different tenants

over time, this state would need to be managed dynamically. This may make it more

difficult to implement in hardware (e.g. as a NIC feature) but can be managed in

software. Since the resequencing we propose is meant to exist transparently below any

network or transport layer protocol, we cannot know in advance when communication

with another server begins or ends. As a consequence we would need to depend on a

soft-state approach and use timeouts to remove resequencing state when servers have

ceased communicating.

Sequence number agreement

This raises another practical issue which is that the sender and receiver must agree on

what the initial sequence number is before they communicate. The use of timeouts

means that a simple approach like assuming the initial sequence number is 0 won’t

work since we cant be sure whether both servers have timed out and removed their

state when they resume communicating. In fact there is no way to guarantee sequence

number agreement without explicit two-way communication since any flag or special

packet the sender might use could be lost. For TCP, this issue is handled as part

of the two-way hand shake that occurs at the start of a flow. In the resequencing

layer we cannot know a priori when communication with another server begins or

ends which means we cannot perform such a handshake in advance. While this is a

minor issue, we would have to accept that some traffic might initially be delayed or

delivered out-of-order.

No Multicast

A final drawback to this approach is that it cannot easily be extended to handle

52

multicast. This is because sequence numbers only have meaning between two servers.

Separate state would be needed for each multicast sender in every multicast group.

Time-based resequencing:

The alternative to using sequence numbers is to mark packets with a timestamp.

This approach has been used in router interconnects where the inability to support

multicast and the need to maintain separate resequencing state at ports is more

problematic. In the data center, this method requires that servers mark each packet

with a timestamp indicating when the packet was sent. An advantage of this approach

is that each server only needs to maintain one resequencing buffer since all incoming

packets can be reordered based on their timestamp. The main source of difficulty

is that timestamps only indicate relative order. A receiver has no way of knowing

whether packets with earlier timestamps may still arrive. The only solution is to

establish some age threshold after which packets are considered “late”. To avoid

out-of-order delivery, the age threshold must be large enough to accommodate the

maximum delay between paths that is normally experienced.

Unnecessary delay

Thus a drawback of this approach is that the resequencer must delay every packet by

the age threshold which effectively means that each packet experiences the maximum

amount of network delay. To minimize this penalty, the age threshold can be made

to adjust adaptively to changing network conditions [55]. However, in the data cen-

ter context, servers in different subtrees have longer paths than servers in the same

subtree. Since the buffer does not separate the traffic from different servers, the age

threshold would need to be set to the delay over all paths leading to unnecessary

delay for traffic between local servers.

Clock synchronization

The second and more practical concern is that for this approach to work, server clocks

would need to be tightly synchronized. While it is not important to keep packets from

two different servers in order, the packets from both servers must be buffered until

they reach the age threshold and the only way the receiver can determine their age

is by relying on their timestamps. This means that when they are serviced from the

53

same queue, the only way to keep the packets from both servers long enough is to

increase the age threshold by the difference in their clocks. Since this adds directly

to the overall delay, the performance can never be better than the degree to which

synchronization can be achieved between servers.

3.4.3 Hybrid resequencer

We now describe the design of a new hybrid resequencer which uses both sequence

numbers and time stamps. Because it uses sequence numbers, it does require that

we maintain separate resequencing state per-server. However, by combining both

sequence numbers and timestamps we can leverage each to overcome the limitations

of the other. Resequencing state is managed dynamically at servers and we use

timeouts to remove the state at both sender and receiver. We briefly describe how

this hybrid resequencing scheme works below.

Receiver

A receiver creates a logically separate resequencer to manage the traffic from each

server sending to it. A resequencer includes a queue and an “expected sequence

number” (ESN) counter, which allows it operate based on sequence numbers and

deliver packets that arrive in-order immediately. When packets arrive whose sequence

numbers do not match the ESN counter, they are placed in the queue causing a

timeout to be set. However, the queue orders packets based on timestamp and the

timeout is set using an age threshold that adapts to the delay observed for this

sender’s traffic. While the queue is time based, packets are only allowed to leave the

queue when their sequence number matches the ESN counter. Thus when a timeout

occurs, the ESN counter is set to match the sequence number of the packet at the

front of the queue. The only exception to this rule is for multicast traffic which

would not use sequence numbers and would queued separately under this scheme.

This policy works because ordering packets by the sender’s timestamp should cause

their sequence numbers to be ordered as well. Because the packet at the front of the

queue contains the earliest timestamp, packets with sequence numbers between it and

the current ESN value must also have exceeded the age threshold when the timeout

54

occurs. Whenever the ESN counter is updated, resulting from either a timeout or

arriving packet, the queue is checked to see if the packet at the front has the sequence

number matching the new value. If it does, the packet is released and the counter is

incremented causing the check to be repeated. This ensures that any queued packets

are released as soon as their sequence numbers indicate they are in-order. Likewise,

when a packet moves to the front of the queue, the timeout is updated based on its

timestamp and the age threshold.

Sender

The behavior at the sender is much simpler. Whenever the server has a packet to send

it looks up the sequence number counter corresponding to the destination and writes

the current value along with the current time to the packet and then it increments

the counter. If no sequence counter exists, then one is allocated and initialized to 0.

This means that when the receiver allocates a queue for this sender, it should expect

the sequence numbers to start at 0 and initialize the ESN accordingly. Of course

it’s possible that the receiver already has a resequencing queue but that has not yet

timed out. With the hybrid approach, sequence number agreement issues are resolved

automatically because the receiver will begin using the correct sequence numbers once

a sender’s packet has reached the age threshold. The one exception to this behavior,

as previously mentioned, is that multicast packets only use timestamps.

Advantages

This approach offers several benefits which can be summarized as follows.

• First, packets that arrive in-order require no buffering and can be delivered

immediately without delay.

• Secondly, multicast traffic is handled automatically using the age threshold.

• Thirdly, the age threshold on each queue only needs to match the delay variation

for the corresponding sender which means that packets are never buffered longer

than necessary.

55

• Finally, clocks do not need to be synchronized since we only care about the

relative difference between timestamps and arrival time for a given sender’s

packets.

Practical considerations:

Clock frequency

While the sender and receiver clocks do not have to be synchronized to the same time,

they do need to operate at approximately the same frequency. This may be tricky if

no standard clock is available. It is conceivable, however, that the receiver could be

made to compensate if it can get an estimate of the difference in their clocks, e.g. by

measuring the drift in the average delay it measures over some window of time.

Clock resolution

A related issue is that the clocks require enough precision to differentiate the pack-

ets. A 10 gigabit link can support close to 15 million minimum sized packets per

second. This means we need access to a clock with a resolution on the order of

about 50 nanoseconds or better. This should be possible on modern machines when

resequencing is implemented in kernel space. Alternatively, if a standard clock with

microsecond precision is available, the desired effect could also be achieved by com-

bining the low-order bits of the sequence number with the timestamp. Since the age

threshold will be much larger than one microsecond, this would allow the receiver to

differentiate packets sent within the same microsecond without a significant impact

on performance.

Marking packets

How packets are actually marked with timestamps and sequence numbers is another

question that must be resolved. It may be possible to reuse existing protocol fields

to store these values (e.g. IP options). A more general approach would be to add a

shim to packets leaving the sender which is then removed by the receiver after passing

through the resequencing layer.

Packet overhead

Regardless of how packets are marked, including these fields increases the packet

header overhead thereby reducing the overall capacity usable by tenants. While the

56

hybrid resequencer does use both timestamps and sequence numbers, theses fields

do not have to be very wide. To correctly resequence packets, we only need enough

bits to differentiate among the maximum number of packets that can possibly be

queued at once. With hybrid resequencing this depends on the age threshold which

only needs to be as large as the maximum difference in delay between two servers.

Consider the back-of-the-envelope calculation at 10 Gbps used above. If the age

threshold were 1 ms, then the resequencer could never see more than 15,000 packets

at a time which means a 14-bit sequence number would be sufficient. Similarly, for

timestamps with 10 nanosecond precision, only 17 bits are needed to encode a 1

millisecond interval. Note that these numbers would be the same for a 10 millisecond

age threshold at 1 Gbps Given that this is less than 32-bits combined, we could use

4 bytes to encode each field which would add negligible packet overhead and should

be more than sufficient for the conditions under which scheduling would operate.

Server overhead

Our design was motivated by the need to minimize the overhead on a server’s re-

sources. Since incrementing and comparing sequence numbers are trivial operations,

we expect the queueing of packets to be the main source of overhead at servers. Not

only does buffering packets consume memory but inserting them in the correct order

into queues becomes more expensive as queue sizes grow. Given the speeds supported

by server NICs, buffering even a few milliseconds of traffic at line-rate could be prob-

lematic yet it is only under high-load that we should expect packets to begin arriving

out-of-order. This suggest that for resequencing to be practical, the level of queueing

across network paths must be fairly even.

3.4.4 Evaluation

Evaluating the overhead on servers can really only be accomplished with a full kernel-

space implementation which is beyond the scope of this thesis. Since we can expect

the performance to depend on the amount of queueing necessary, the evaluation is

only meaningful under the traffic characteristics the resequencer would subjected to.

Thus our evaluation focuses on understanding the space under which resequencing

would operate. To evaluate our resequencing approach, we implemented the hybrid

resequencer in the simulator and ran the switch queue size experiment shown in 3.12.

57

Simulator implementation

The implementation follows the description above with the caveat that we used a

simple approach to set age thresholds adaptively. At each queue we record the max-

imum delay observed by recording the difference in the arrival time and the packet’s

timestamp. Whenever a packet reaches the front of the queue, we set the timeout

to the packet’s timestamp plus this maximum delay. In other words, the age thresh-

old grows to the maximum delay experienced by the sender’s packets. This means

some packets are initially delivered out-of-order but then once the maximum delay is

observed, no more packets are delivered out-of-order. During our experiments, these

out-of-order deliveries mostly happen during the warmup phase so that by the time

the network reaches steady-state, negligible out-of-order deliveries occur.

0.2 0.4 0.6 0.8 1.0
Offered load

10-5

10-4

10-3

10-2

10-1

100

A
v
e
ra

g
e
 d

e
la

y
 (

m
s)

Strict/MP

Strict/VLB

Loose/MP
Loose/VLB

Network delay

Resequencing delay

(a) Maximum size packets

0.2 0.4 0.6 0.8 1.0
Offered load

10-5

10-4

10-3

10-2

10-1

100

A
v
e
ra

g
e
 d

e
la

y
 (

m
s)

Strict/MP

Strict/VLB

Loose/MP
Loose/VLB

Network delay

Resequencing delay

(b) Random size packets

Figure 3.15: Average delays experienced by packets.

0.2 0.4 0.6 0.8 1.0

Offered load

0

10

20

30

40

50

%
 o

f
o
v
e
ra

ll
d
e
la

y

Strict/VLB

Strict/MP

Loose/MP

Loose/VLB

(a) Maximum size packets

0.2 0.4 0.6 0.8 1.0

Offered load

0

10

20

30

40

50

%
 o

f
o
v
e
ra

ll
d
e
la

y

Strict/MP

Strict/VLB

Loose/MP
Loose/VLB

(b) Random size packets

Figure 3.16: Fraction of end-to-end delay spent in resequencer (out-of-order packets).

58

To evaluate our hybrid resequencer we repeated the experiment shown in Figure 3.14.

We measured the network delay and the delay that packets spend in the resequencer.

We show the resequencing delay compared to the network delay averaged over all

packets in Figure 3.15. In Figure 3.16 we show the fraction of the overall time

that out-of-order packets spend in the resequencer. Since packets arriving in the

proper order can be delivered immediately, we see that the average resequencing

delay is at least an order of magnitude less than the average network delay. This

would not be the case under a purely time-based approach since all packets would

have to be delayed until the age threshold was met. The results show that of the

packets that did arrive out-of-order, the time spent in the resequencer represents less

than half of their overall delay. This fraction would be higher had we used only

sequence numbers since timeouts would have to be set conservatively to match the

maximum network delay possible. Thus when a packet is lost, any buffered packet

would experience delays substantially longer than the network delay whereas under

the hybrid approach, the timeout occurs as soon as the missing packet falls outside

the window of delay normally observed for that particular flow.

3.5 Summary

In this chapter we explored the use of packet-level routing in multi-path data center

networks, focusing specifically on the FatTree. To make efficient use of the resources

in these networks, effective load balancing is critical. This is especially true when the

goals include preserving agility and achieving traffic isolation among tenants. Given

these objectives, tenants can only be allocated the minimum fraction of the network’s

capacity that is achievable under any traffic pattern where capacity is measured using

the minimum throughput of any flow. We argued that flow-level routing inherently

depends upon the traffic pattern used and we demonstrated that it exhibits very

poor worst case performance in this context, achieving only a small fraction of the

network’s capacity. By contrast, we used VLB to show that packet-level routing can

achieve the majority of the network’s capacity.

59

We explored several ways to improve the performance of packet-level routing by adapt-

ing it to the data center environment. However, we found our results were very sensi-

tive to bursty traffic. To investigate this, we presented a strict/loose model where we

modeled the sending rates of servers as either periodic or Poisson and we used this to

represent the range of flow control performance that we could expect in practice. We

found that our multi-phase routing algorithm can achieve nearly all of the available

capacity if the sending rates can be regulated to appear periodic. This result high-

lights the need for adequate flow control and helps motivate the scheduling framework

that we introduce in Chapter 4. We also compared our simulated results against a

set of queueing theory models that we developed. These were used to validate the

simulations and place bounds on the worst case performance.

Finally, we investigated the issue of out-of-order arrivals that results from allowing

packets within a flow to be routed separately. We found that a substantial fraction of

packets could arrive out-of-order if strict flow control and routing are not achieved. To

address this issue, we proposed resequencing packets in software and we introduced

a novel design that leverages the benefits of using both time stamps and sequence

numbers.

60

Chapter 4

Isolating Tenants with Distributed

Scheduling

4.1 Introduction

In this chapter we introduce the distributed scheduling framework. The basic idea

is similar to the distributed scheduling in router interconnects that we described in

section 2.3.3 except that instead of scheduling rates between router ports, the schedul-

ing we propose controls the rate at which servers send to one another. By explicitly

coordinating the sending rate of servers, this framework offers several benefits that

end-to-end approaches cannot. While it does require servers to exchange control pack-

ets, it is made scalable by the fact that the network is partitioned among tenants and

that rates are assigned in a fully distributed manner. To summarize these benefits,

we can view the scheduling framework as having three functions:

1. A network-wide flow control mechanism that regulates traffic and moves con-

gestion out of the network.

2. A QoS mechanism providing isolation between tenants by enforcing the limits

imposed by their virtual network abstractions.

3. A network service that can efficiently schedule the traffic between a tenant’s

servers.

In this chapter we will focus primarily on the first two roles and devote chapter 5 to

investigate the third.

61

4.1.1 Objectives

The main objectives for this chapter are as follows:

• Introduce the basic concept and demonstrate that it can provide network per-

formance isolation to tenants.

• Examine the basic tradeoffs and provide a discussion of some of the practical

concerns raised.

• Show that it can be used as a flow control mechanism and evaluate the benefit

it provides when combined with packet-level routing and resequencing.

4.2 Scheduling Framework

We begin by describing the basic scheduling framework.

Scheduling Layer

Network layer

Transport Layer

Link Layer
(Ethernet driver)

VOQs

Controller

1

n

1 VOQ for each server

Packet intercepted,
placed in queue

Application
Socket

Server

Figure 4.1: Conceptual view of scheduling as layer a implemented in the networking
stack of servers.

4.2.1 Scheduling layer

As shown in figure 4.1, the networking stack of servers is augmented with a scheduling

layer that exists below the network layer. This layer is assumed to exist outside of

62

the tenant’s control and is meant to operate transparently to the layers above. Note

that this is simply a conceptual view that ignores the use of virtual machines, which

we discuss in section 4.5.2.

Virtual Output Queues

The scheduling layer intercepts outgoing packets produced by the server and directs

them into separate Virtual Output Queues (VOQs) corresponding to their destina-

tion. By controlling the rate at which traffic may leave each VOQ, the scheduling

layer can effectively control the rate at which servers send to one another. The rate

assigned to a VOQ will depend, at least in part, on its backlog, that is the number of

bytes that it buffers.

Scheduling Controller

The scheduling layer also includes a logical controller which is responsible for man-

aging the VOQs and assigning them rates. VOQs require a minimum amount of

state and can be allocated dynamically and removed with a timeout after a period of

inactivity. In order to assign rates on VOQs, the controller runs a distributed schedul-

ing algorithm which requires that it periodically exchange control messages with the

scheduling controllers at the tenant’s other servers. The details of this exchange and

the precise manner in which rates are assigned is dependent on the scheduling algo-

rithm used. While there are a variety of ways in which this could work, we describe the

approach that we have taken in section 4.3 when we detail our distributed scheduling

algorithm. Since the scheduling of rates adds overhead, it can only occur periodically

and we call the interval at which rates are assigned the scheduling interval.

Regulating rates

An important aspect of the scheduling framework is its ability to act as a flow control

mechanism that regulates the traffic produced by servers. In section 3.3.3 we showed

that the performance of load balancing and resequencing is heavily dependent on the

time scale at which rates are controlled. In particular we found that the best per-

formance can only be achieved when the sending process at servers appears uniform.

In interconnection networks this is referred to as a regulated flow and is necessary to

control bursty traffic which is known to have a significant impact on the ability of the

network to provide QoS to different classes of flows [22]. To regulate server traffic,

63

the scheduling framework should ensure that the departure times of packets at VOQs

match the rates they are assigned as closely as possible.

4.2.2 Tenant virtual networks

As discussed in Chapter 2, we assume that the data center network has been par-

titioned among tenants so that tenants are assigned to different servers and have

been given virtual network abstractions that provide them with guarantees on the

bandwidth between their servers. It is worth reiterating that in this work we are not

concerned with the specific abstractions offered to tenants or the allocation of virtual

networks to tenants. Rather, we assume that the physical capacity exists to allow all

tenants to use the full capacity of their virtual networks provided that each tenant

stays within the limits defined by their abstraction. Here we will describe how the

scheduling framework can be used as a mechanism to enforce these limits.

C Mbps

Virtual Switch

1 2 N
(a) Virtual Switch Abstraction

Group 1 Group 2 Group N/S

Root Virtual
Switch

Group Virtual
Switch

C S
O

 Mbps

C Mbps

(b) Virtual Oversubscribed Cluster Abstraction

Figure 4.2: Two different tenant virtual network abstractions.

Example 1: Virtual Switch

Figure 4.2 shows two examples of the types of virtual network abstractions that

tenants may be given. The virtual switch (VS) abstraction, which has appeared in

several recent papers [26] [14], represents the simplest form of virtual network. A

tenant with this abstraction is given the illusion that each of its servers is connected

to the same virtual switch with some capacity C. Note that while the value of C is

the same across all of its servers, different tenants could be given VS’s with different

capacities depending on their needs and the available resources in the underlying

physical network. The results from section 3.3.4 suggest that given a FatTree with

full bisection bandwidth, it may be possible to give every tenant a VS with a capacity

64

near the full capacity of the physical interfaces of their servers as long as the traffic

produced by servers can be regulated sufficiently well.

Example 2: Virtual Oversubscribed Cluster

It may not always be practical to provision the data center with full bisection band-

width. For such cases, the Virtual Oversubscribed Cluster (VOC) abstraction pro-

vides a virtual network that more closely represents the limits of the underlying

physical network. Figure 4.2b shows this abstraction as it was first presented in [14]

(with the exception that we use C to represent the link capacity). A tenant with a

VOC would be allocated a set of servers divided into evenly sized groups of size S.

Within each group, servers would still have the illusion of sharing a virtual switch of

capacity C but these “group switches” would be connected to a root virtual switch

whose links are oversubscribed by an oversubscription factor O. This means that

while servers within a group can communicate at a rate C, they must share a link

with capacity S∗C
O

when communicating with servers in other groups.

General virtual network topologies

While these are just two examples, it should be possible to support any arbitrary

virtual network abstraction provided the topology forms a tree. To do so, we simply

need to translate the capacities on the links in the virtual topology into limits on the

aggregate sending rates of the servers that can send across them. In other words, we

can express the virtual topology in terms of constraints on the rates that we assign

to VOQs.

4.2.3 Constraints on rates

Before we can formulate these constraints, we need a few definitions:

Let fi,j represent the flow of traffic from server i to j.

Let bi,j denote the backlog server i has in its VOQ for server j.

Let ri,j represent the rate assigned to the VOQ.

Let F be the set of all server-to-server flows fi,j ∈ F .

65

Let B be the set of all backlogs in VOQs, bi,j ∈ B corresponding to the flows in F .

Let R represent the set of all rates assigned, ri,j ∈ R, which we call a rate assignment.

Let T represent the scheduling interval.

Note: we assume that rates (and link capacities) are expressed in terms of units of

backlog per scheduling interval.

This means that ri,j = bi,j represents the rate needed to clear the backlog of the VOQ

corresponding to flow fi,j in one scheduling interval.

The network as a directed graph

When we assign a rate ri,j, the corresponding flow fi,j consumes bandwidth on all of

the links along the path from server i to j. However, notice that links in the virtual

network topologies support full capacity in both directions (i.e. they are full duplex).

Since the rates that we assign to VOQs consume bandwidth in one direction, we need

to treat each of these bidirectional links as two logically separate links when assigning

rates. Therefore we represent the virtual network with a directed graph D = (VD, ED)

where each link in the topology is represented by two edges uv ∈ ED and vu ∈ ED.

Despite the potential for confusion, we will continue to refer to these edges as a links

and use the notation l rather than uv. Keep in mind, however, that flows represent

traffic in one direction which means that if a flow fi,j exists on l = uv, it cannot exist

on l−1 = vu.

We use the following notation to describe a link:

Let l = uv be a link in the graph D = (VD, ED), where uv ∈ ED.

Let cl represent the link’s capacity.

Let Pi,j represent the directed path from server i to server j.

Let Fl be the set of flows on link l, i.e., Fl ⊆ F where Fl = {fi,j ∈ F | l ∈ Pi,j}.
Let Bl represent the set of backlogs corresponding to the flows in Fl.

Feasible rate assignment:

We say a rate assignment is feasible if the rates do not violate any of the constraints

on any of the links.

Thus given a graph D = (VD, ED), a rate assignment is feasible if:∑
fi,j∈Fl

ri,j ≤ cl, ∀l ∈ ED (4.1)

66

4.2.4 Assigning rates on VOQs

Given the constraints that must be enforced, we can now consider how rates should

be assigned to VOQs.

Regulating tenant traffic

We begin by considering what happens when a server first begins sending to a des-

tination. As its packets arrive in the scheduling layer, a new VOQ is allocated for

the destination and the packets are placed in the VOQ until a rate is assigned. As-

suming there is sufficient capacity available on all of the links on the flow’s path, the

VOQ will simply receive the rate needed to clear its backlog over the next scheduling

interval (i.e. ri,j = bi,j). This means that at the end of the scheduling interval, all of

the packets that were in the VOQ when the interval began will have been sent and

those packets that remain in the VOQ correspond to those packets that arrived after

the interval began. Thus a growing buffer corresponds to an increase in the rate of

arriving traffic and would result in the VOQ receiving a larger rate, provided that the

capacity constraints in 4.1 are not violated. In this way, the rates assigned to VOQs

naturally reflect the rate of traffic produced at servers as long as these rates form a

feasible rate assignment.

Moving congestion out of the network

We can say that the traffic pattern is inadmissible when the total backlog that must

be transferred across one or more links exceeds its capacity, that is
∑
∀bi,j∈Bl

> cl for

some l ∈ ED. This happens when the rate of traffic being produced by the tenant

exceeds the capacity on some link in its virtual topology. This will cause the VOQs

corresponding to the flows on the overloaded link to grow since their is not enough

capacity to assign them the rates needed to clear their backlogs. If the pattern is

sustained, the VOQs will overflow and packets will be lost. Without the scheduling

layer, this buffering and packet loss would occur at the switch queue feeding the link.

By enforcing a feasible rate assignment, however, the scheduling framework ensures

67

this congestion occurs in the VOQs instead. In effect, the scheduling framework

moves the congestion that would normally occur in the network to the edge where it

only affects the flows that are responsible for creating it.

4.2.5 Assigning rates on bottleneck links

We now consider how scheduling should assign rates in the face of inadmissible traffic.

For now, we will assume that the rate of traffic arriving in VOQs does not depend on

the rates assigned to VOQs on the time scale at which scheduling occurs. Of course,

the traffic produced by protocols such as TCP, which exist above the scheduling layer,

will depend on the rate of traffic actually delivered but we will defer this discussion

until section 4.5.1. With inadmissible traffic, we must decide how to divide the

limited capacity on one or more bottleneck links. Given that the tenant has no

way to express the priority among its flows, how should rates be assigned? Without

making assumptions about the behavior of the application or protocols above the

scheduling layer, there is no clear way to answer this question. Here we will propose

two different ways in which rates could be assigned and in chapter 5 we will explore

whether there may be advantages to one approach over the other.

Max-min fair share

The first approach is to assign rates on the link in max-min fair fashion. The simplest

way to describe max-min fairness is that all flows not bottlenecked elsewhere in the

network receive an equal share on a link. If a flow cannot use its full share on a

link, the unused bandwidth will be distributed evenly among those flows that can

use more. Under ideal conditions, TCP flows converge to their max-min fair share of

bottleneck links and given that many applications use TCP, it is not unreasonable to

assume that a tenant will expect max-min fairness among its flows.

Before we can show how to calculate a max-min fair rate assignment, we first show

how to divide the capacity of a single link in max-min fair fashion. Because flows

may be bottlenecked by the bandwidth they receive on other links, we use the term

“request” to describe the rate that a flow can use on a link.

68

• Let qi,j,l denote the requested rate for flow fi,j on link l.

• Let Ql be the set of all requested rates on link l.

• Let si,j,l be the share given to flow fi,j on link l.

• Let Sl be the set of all shares assigned on link l.

Since a flow only needs the rate needed to clear its backlog, if it is not bottlenecked

elsewhere in the network then we can assume that its request simply matches its

backlog, i.e., qi,j,l = bi,j.

Max-min rate assignment

Algorithm 1 Assign max-min fair share on link

1: procedure MaxMin(Ql, cl)
2: Sl ← {} . The set of assigned shares
3: ul ← cl . Initialize the unused capacity
4: while Ql 6= {} do . Terminate when no requests remain
5: qi,j,l ← min(qi,j,l ∈ Ql) . Find the minimum request
6: si,j,l ← min(qi,j,l,

1
|Ql|

ul)
7: ul ← ul − si,j,l
8: Ql ← Ql − {qi,j,l} . Remove the request from consideration
9: Sl ← Sl ∪ {si,j,l}

10: return Sl

The procedure that we present above for computing max-min shares on a link is based

on one presented in [22]. It guarantees that at every iteration, any flow that remains

will receive at least min(qi,j,l,
1
|Ql|

ul). That is a flow either receives the rate it requests

or it receives an equal share of the the remaining capacity.

We follow the same principle to compute the max-min share assigned for all flows in

the network, i.e., the max-min rate assignment. Just as the procedure above assigns

to the smallest request first, the algorithm below assigns the rates in order from

smallest to largest share. At every iteration, a flow is guaranteed to receive either its

requested rate or the minimum share along its path. Note that while this algorithm

is our own, we do not claim that it is original.

69

Algorithm 2 Assign max-min rates

1: procedure MaxMinRates(D = (VD, ED), B)
2: R← {}
3: Q← {qi,j = bi,j : bi,j ∈ B}
4: for all l ∈ ED do . Initialize the state of all links
5: ul ← cl
6: Ql ← {qi,j,l = bi,j : fi,j ∈ Fl}
7: while Q 6= {} do
8: S ← {}
9: for all qi,j ∈ Q do

10: si,j ← min(qi,j,
1
|Ql|

ul : l ∈ Pi,j) . Minimum share along the path

11: S ← S ∪ {si,j}
12: si,j = min(si,j ∈ S) . Find the smallest share assigned
13: for all l ∈ Pi,j do . Remove the flow from consideration on links
14: ul ← ul − si,j
15: Ql ← Ql − {qi,j,l}
16: ri,j ← si,j
17: R← R ∪ {ri,j}
18: Q← Q− {qi,j}
19: return R

Backlog-proportional share

While max-min is desirable in many contexts because it provides fairness among flows,

the traffic that we schedule belongs to a single tenant. For this reason it may be

sensible to assign rates to flows in proportion to their backlog instead. Conceptually,

the process of assigning backlog-proportional rates is similar to that of max-min. At

every iteration, any remaining flow fi,j will be receive at least min(qi,j,l,
bi,j
bl
u

l
) where bl

represents the sum of the backlogs of the remaining flows. The procedure we present

for computing backlog-proportional shares on a link is slightly different, however.

This procedure first finds those flows whose backlog-proportional share exceeds their

request. These flows are added to the set of “unbottlenecked” flows U , and are simply

assigned the share they request. The while loop exits when no such flows remain at

which point all remaining flows belong to the set L. The set L represents the flows

that are “bottlenecked” by the backlog-proportional share they receive at this link.

Since the flows in U cannot use their share of the link, they must be removed from

70

1: procedure BklgProp(Ql, Bl, cl)
2: Sl ← {}
3: ul ← cl
4: bl ←

∑
∀bi,j∈Bl

bi,j . Compute the backlog of all flows on l

5: L← {} . Locally bottlenecked flows
6: U ← {} . Unbottlenecked flows (bottlenecked upstream)
7: while L 6= Fl − U do
8: L = Fl − U
9: for all fi,j ∈ L do

10: si,j,l ← bi,j
bl
ul

11: if qi,j,l < si,j,l then
12: si,j,l ← qi,j,l
13: Sl ← Sl ∪ {si,j,l}
14: U ← U ∪ {fi,j}
15: bl ← bl − si,j,l
16: ul ← ul − si,j,l
17: for all fi,j ∈ L do
18: Sl ← Sl ∪ {si,j,l}

consideration before we can determine the final shares that we assign to the flows

in L. Note that if we set all backlogs equal to 1, i.e., bi,j ← 1, ∀bi,j ∈ Bl then the

procedure above will produce the max-min shares on the link since the flows in L

always have equal backlogs and therefore an equal share of the remaining capacity.

This observation will come in handy in section 4.3 when we present our distributed

algorithm for solving max-min and backlog-proportional rates.

Backlog-proportional rate assignment

The centralized algorithm we present for computing backlog-proportional rates differs

slightly from the algorithm used for max-min. At each iteration, the algorithm below

finds the link with the smallest ratio of remaining capacity to backlog and assigns

rates using the shares that it computes. The intuition behind this choice is that the

share computed by the link for any of its remaining flows must be the smallest share

along the flow’s path.

71

Algorithm 3 Assign backlog-proportional rates

1: procedure Backlog-proportional(D = (VD, ED), B)
2: R← {}
3: for all l ∈ ED do . Initialize the state of all links
4: ul ← cl
5: Ql ← {qi,j,l = bi,j : fi,j ∈ Fl}
6: Bl ← {bi,j : fi,j ∈ Fl}
7: bl ←

∑
∀bi,j∈Bl

bi,j

8: while ED 6= {} do
9: l← l ∈ ED, where ul

bl
is minimum

10: Sl ← BklgProp(B) . Link is the bottleneck for all its flows
11: for all si,j,l ∈ Sl do
12: ri,j ← si,j,l . Assign rates using the shares it computes
13: R← R ∪ {ri,j}
14: for all o ∈ Pi,j, o 6= l do . Remove flow from other links on path
15: Qo ← Qo − {qi,j,o}
16: Bo ← Bo − {bi,j,o}
17: bo ← bo − bi,j
18: uo ← uo − ri,j
19: ED ← ED − {l} . Remove link from consideration

20: return R

72

Since a link is removed from consideration after each iteration, the algorithm must

terminate after no than |ED| iterations. To prove the correctness of the algorithm,

we claim that at every iteration, the rate assigned to a flow represents the mini-

mum of its backlog proportional share on all links. This claim can be proven by

contradiction. Suppose that in some iteration link l was chosen but a rate ri,j

was assigned which is greater than the flow’s backlog proportional share on some

other link u. That is, si,j,l > si,j,u, which by their definitions is equivalent to

min(qi,j,l,
bi,j
bl
ul) > min(qi,j,u,

bi,j
bu
uu). Because the algorithm does not modify the

requests once they are initialized, we know qi,j,u = qi,j,l = bi,j and since bi,j is con-

stant, we are left with ul
bl
> uu

bl
which contradicts the selection made by the algorithm

since l was the link with minimum ratio ul
bl

.

4.3 Distributed Algorithm

We now present our method for computing max-min and backlog-proportional rates in

a distributed asynchronous fashion. While the distributed algorithm that we present

uses the procedure for computing backlog-proportional shares, we will show that it

can be used to produce both backlog-proportional and max-min rate assignments.

4.3.1 Link proxies

The basic idea is to delegate servers to act as proxies for managing the rates on each

edge in the graph. Note that with the virtual switch abstraction, each server can

naturally act as the proxy for its own link. Keep in mind, however, that we use two

logically separate proxies to manage each of the bidirectional links in the tenant’s

topology. Before a server can send to another server under this scheme, it must be

assigned a rate by the proxy for each link along the path to the destination. Each

proxy computes the share assigned to a flow under the assumption that it is only

constrained by its request. While these shares may be inconsistent initially, we can

ensure that all proxies arrive at the same share for a flow by reducing its request to

match the minimum share it receives along the path. This is accomplished by the

exchange of control packets which is described below.

73

Control packets

As long as a server has backlog in one of its VOQs, it must periodically generate a

request packet containing the backlog and requested rate for the VOQ. This packet

is routed to the proxy corresponding to each link along the path to the destination.

If a proxy computes a share that is less than the requested rate, it assumes that it is

the bottleneck link for the flow and reduces the request field to the computed share

before sending the packet on to the proxy for the next link on the path. When the

packet arrives at the destination, the request field contains the flow’s minimum share

as currently reported by the proxies along the path. The destination server then

writes this value to the “share” field of a “response packet” that is then processed

by the same set of proxies in reverse order as it propagates back to the sender. The

response packet also includes a separate “rate” field which contains the actual rate

the sending server may assign to its VOQ. As will see shortly, separating the rates

from the shares computed by proxies helps ensure that the rates assigned to VOQs

always represent a feasible rate assignment.

Algorithm 4 Server

1: function generate request(flow fi,j)
2: requestPacket reqPkt(fi,j)
3: if MAX MIN then
4: reqPkt.backlog = 1
5: else if BKLG PROP then
6: reqPkt.backlog = bi,j

7: reqPkt.request = bi,j
8: return reqPkt

9: function handle request(flow fi,j, requestPacket reqPkt)
10: responsePacket rspPkt(fi,j)
11: rspPkt.share = reqPkt.request
12: rspPkt.rate = reqPkt.request
13: delete reqPkt
14: return rspPkt

15: function handle response(flow fi,j, responsePacket rspPkt)
16: ri,j = rspPkt.rate
17: delete reqPkt

74

Server behavior

While this entire scheme is implemented at the controller in the scheduling layer, the

algorithm separates the role of the servers from that of the proxies. The role of the

servers is summarized in Figure 4. The generate request() method is called once

every scheduling interval per VOQ. Note that the algorithm is fully asynchronous

and does not require VOQs to operate on the same clock. When the request packet

is generated, the request field corresponds to the backlog in the VOQ so that it only

receives the rate it needs to clear the backlog. To use max-min rates, the backlog field

is set to 1 so that all flows have the same backlog on all links. Note that the value

of the backlog does not include the size of control packets because these are sent as

soon as they are generated.

Proxy behavior

The behavior of the proxy is shown in Figure 5. If a request arrives for an unknown

flow, the proxy creates a new entry for the flow which consists of its backlog, requested

rate, assigned share, and the actual rate it is allowed to send at. When the proxy

processes the request packet, it records the flow’s backlog and and uses the request

field to compute a new share for the flow. Since the share it computes must be less

than or equal to the packet’s request, it overwrites the request field with its share.

Notice, however, that the proxy does not change the value of the request or share

that it records for the flow until it receives the flow’s response packet. There are

two reasons for this approach. First it allows us to mimic the central algorithm

by determining the minimum share a flow receives on the path before the state is

changed on any of the links. Secondly, it makes the processing of a flow’s request

and response at a proxy appear as an atomic operation which helps ensure that the

algorithm converges regardless of the order in which control packets arrive at proxies.

Decoupling the sending rates

While the minimum share ultimately represents the rate that we assign to a flow,

the rate field allows us to effectively decouple the rates assigned to VOQs from the

75

Algorithm 5 Proxy

1: procedure add new flow(flow fi,j)
2: Fl ← Fl ∪ {fi,j}
3: Bl ← Bl ∪ {bi,j = 0}
4: Ql ← Ql ∪ {qi,jl = 0}
5: Sl ← Sl ∪ {si,j,l = 0}
6: Rl ← Rl ∪ {ri,j,l = 0}
7: procedure handle request(flow fi,j, requestPacket reqPkt)
8: if fi,j /∈ F then
9: add new flow(fi,j)

10: bi,j ← reqPkt.backlog

11: Q̂l ← {qi,j,l : ∀qi,j,l ∈ Ql} . Create a copy of the recorded requests
12: ˆqi,j,l ← reqPkt.request

13: Ŝl ← BklgProp(Q̂l, Bl) . Compute the shares the proxy wants to assign
14: reqPkt.request← ˆsi,j,l
15: return pkt

16: procedure handle response(flow fi,j, responsePacket rspPkt)
17: qi,j,l ← rspPkt.share
18: si,j,l ← rspPkt.share . Record the new request/share here
19: ri,j,l ← assign rate(fi,j, rspPkt)
20: rspPkt.rate← ri,j,l
21: return rspPkt

22: function assign rate(flow fi,j, responsePacket rspPkt)

23: in use←
∑

∀ru,v,l∈R

ru,v,l

24: available← cl − (in use− ri,j,l)
25: return min(available, rspPkt.rate)

76

shares being computed at proxies. This is necessary because the sum of the shares

assigned at a proxy can temporarily exceed its capacity. For instance, imagine that

the proxy has already assigned all of its capacity to flows when the request from a

new flow arrives. The new flow will still receive a share of the link but the proxy will

not be able to notify the other flows that their shares have been reduced until all of

their subsequent control packets have been processed. To avoid creating congestion

until this happens, a flow may need to be assigned a rate that is temporarily less than

its share. The assign rate() procedure (line 22) ensures that the total rate assigned

never exceeds the link’s capacity regardless of what shares are assigned. By summing

up the recorded rates, it calculates the rate currently “in use” by the other flows. If

there is not enough capacity “available” to allow the flow’s rate to match its share,

the flow may have to wait until the next scheduling interval at which point the rate

recorded for other flows will have been reduced.

4.3.2 Convergence to centralized rates:

The distributed algorithm will converge to the correct rates in steady state. By this

we mean that if the backlogs are static over an extended period of time, the algorithm

must converge to the rates produced by the centralized algorithm in both the max-

min and backlog-proportional cases. The intuition is that if we set the request of

every flow to match its rate, as computed by either central algorithm, then the share

computed by every proxy for any given flow must match the flow’s request. This is

true because for both backlog-proportional and max-min rate assignments, the rate

assigned to a flow is always at least as large as its share across all of the links on its

path.

While we will not present a formal proof, we provide a sketch of the argument that

shows why the algorithm will converge. Here we focus on the shares recorded by

proxies and subsequently show that the rates must converge to the shares that they

assign. We will define a round to be the time at which a request and its corresponding

response packet have been processed by every proxy for every flow. Since we have

assumed the backlogs are static, the backlog recorded by all proxies will not change

after the first round. Now consider the link l chosen in the first iteration of the

backlog proportional algorithm. The proxy corresponding to this link must compute

77

the smallest shares for all of its flows in the second round since for any flow, this

proxy has the minimum ratio cl
bl

. Since the share it computes for any flow must be

the minimum share computed along the path, the request recorded for this flow at all

proxies must match the share it has computed after the second round. This means

that these requests can never increase after the second round since the request for

a flow is only set after every proxy has computed its share. As a result, these flows

have been effectively removed from consideration by all proxies along their paths.

Now consider the rate assigned in the first iteration of the max-min algorithm. If this

rate does not match the flow’s request, then it must be bottlenecked by the share

it received on some link in the centralized algorithm. The proxy that corresponds

to this link in the distributed algorithm must also be the proxy that computes the

smallest share when the backlogs of all flows at proxies are the same. This must be

true since the number of flows at proxies must match the number of flows on links in

the central algorithm in the first iteration. Using the same argument as before, this

means the flow is effectively removed from consideration after the second iteration.

Rates converge to shares:

Assuming that the shares computed by the proxies converge to the rates produced by

the central algorithm, it is easy to show that the rates assigned by the proxies also

converge. Notice that a proxy can never assign a rate to a flow that is larger than its

share. Thus, after the round in which shares converge to their final values, the rates

recorded at all proxies must be less than or equal to the shares they have recorded.

Since the shares can no longer change, it cannot be the case that in the following

round a proxy assigns a rate to a flow that is less than its share.

4.3.3 Accounting for control-overhead

Since control packets are not placed in VOQs, this control traffic is not captured by

the algorithm described above. This was done deliberately so that the rates assigned

by proxies represent the actual traffic produced by the tenant and to allow control

packets to be sent immediately. Of course, we must account for the extra bandwidth

consumed by control packets if we are to avoid congestion. A simple way to accomplish

this is to have the proxy subtract the control overhead from the capacity it can assign

to flows. One difficulty that arises, however, is that the traffic in each direction on a

78

link is managed by a separate proxy. As we described earlier, a flow only exists at one

of the proxies since it can only send in one direction which means that proxies can only

account for the bandwidth consumed by request packets. Even though it may make

sense for both proxies to be managed by the same server, it would be unfortunate to

require coupling their state simply to account for the bandwidth of response packets.

To solve this problem, we assume that as long as two servers communicate, each server

maintains a VOQ for the other even when traffic is sent primarily in one direction.

This is reasonable because in practice communication is rarely one way as protocols

like TCP require that receivers send back some form of acknowledgement. This allows

us to sidestep the issue because it means that control traffic is always the same in

both directions.

Thus if C represents the link’s capacity, we account for the control traffic at proxies

by modifying the add new flow() method as follows:

cl = C − 2 |Fl|
M

T
(4.2)

Since the number of flows will be constant in steady state, cl will be static which

means the correctness of the algorithm is preserved. By effectively reducing the links

capacity, the proxy reacts immediately to the presence of a new flow. Of course, it

may require a full round before the shares that it has recorded for flows reflect this

reduced capacity. It is important point out, however, the total rate assigned will

respond much more quickly since the assign rate() method will effectively “steal”

the bandwidth needed to support the control traffic for the new flow from the first

flow that already has a rate assigned on the link.

4.3.4 Related work

Our algorithm turns out to be similar in many respects to a distributed max-min

algorithm by Charny et al. [18]. They also require servers to receive explicitly assigned

rates on links by having them periodically send a control packet for each of their flows

containing the desired sending rate in a field that they call the “stamped rate”. As

with our approach, rates are computed separately on each link and the stamped rate

is reduced so that when the packet arrives at the destination it contains the minimum

79

share computed along the path. However, their approach relies on the switches to

actually process the packets and calculate rates on links which is less practical in our

context. In addition, our approach differs from their work in a number of other key

ways. First, they focus on max-min and use a different method to assign rates that

requires less state to be maintained at switches. Our algorithm, by contrast, also uses

the backlog in VOQs and can compute either backlog-proportional or max-min fair

rates. Secondly, they use a single control packet that contains a bit that indicates

whether or not the flow was bottlenecked along the path. If the bit is set, the sending

server must set the stamped rate of its subsequent control packet to the bottleneck

rate in the packet. Under our approach this is accomplished by the use of a separate

response packet which contains both the minimum share computed along the path as

well as the rate at which it is currently safe to send. This leads to the final difference

between our approaches which is the manner in which a feasible rate assignment is

maintained. They also note that to avoid congestion while the algorithm converges,

servers cannot immediately begin sending at the rates they are assigned. As we

described earlier, we use a separate share and rate field to explicitly decouple the

sending rates from the rates computed by the algorithm. The approach they chose

calls for servers to comply immediately when their sending rates are reduced but

requires them to wait several round trip times before adjusting to an increased rate.

4.4 Evaluation

To evaluate our approach, we implemented the scheduling framework and the dis-

tributed algorithm as described in this chapter into our simulator.

The main goals for our evaluation are as follows:

• Show that scheduling can provide isolation, even in the face of malicious tenants.

• Understanding the basic tradeoffs with our distributed approach to assigning

rates.

• Evaluate how well scheduling can be used in combination with packet-level load

balancing.

80

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Offered load

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
h
ro

u
g
h
p
u
t

Without scheduling

With scheduling (max-min)

Figure 4.3: Effect of malicious traffic on the throughput of a “victim” tenant’s flow.

Given these goals we focus on the virtual switch abstraction because it is the simplest

to understand and evaluate.

4.4.1 Isolation

To demonstrate that scheduling can provide isolation, we need to show that a tenant

cannot affect the bandwidth guarantees provided to another tenant. In order to do

this, we reproduced the tree saturation scenario described in section 2.1.1. For this

experiment we used a 3-level FatTree consisting of 8-port switches and 128 servers

and partitioned the network into two tenants, each consisting of 64 servers assigned at

random. We designated one tenant to act as a malicious tenant and the other tenant

to be the “victim” and we measured the throughput of the victim tenant’s traffic.

The malicious tenant creates an all-to-one traffic pattern where it picks one of its

servers at random and directs the traffic from all of its other servers to overload this

“target” server. By exceeding the capacity of the target server, the malicious tenant

saturates the links on the path to the target. Since the victim may have servers that

share these links, it will see its bandwidth to these servers reduced.

81

The graph 4.3 shows the throughput of the victim as we increase the sending rate

(offered load) of both tenants. Here we had the victim produce an all-to-all traffic

pattern and we show the minimum throughput measured across all of its flows with

and without the scheduling layer. Since the victim’s traffic is admissible, it does not

matter whether we use max-min or backlog proportional rates. We set the algorithm

to produce max-min rates but we ran the experiment with backlog-proportional rates

to verify that the results were the same. We see that without scheduling the malicious

tenant can begin to affect the victim’s throughput at around 5% offered load and

can effectively starve one or more of the victim flows at higher load. As expected,

the victim experiences virtually no disturbance when scheduling is used because the

scheduling layer in the malicious tenant’s servers prevents the total rate assigned to

the target server from exceeding its capacity. In this experiment we did not distinguish

between control and data packets when reporting the throughput of the tenant’s

traffic.

4.4.2 Distributed approach

Control overhead

In section 4.3.3 we described how the proxies account for control overhead by assuming

that request and response packets are sent at a fixed interval. Each server can be the

proxy for its own link which means that with the virtual switch abstraction control

packets can be sent directly between the source and destination of a flow and do not

have to be routed through proxies at intermediate servers. As a result, the control

overhead at a server scales linearly with the number of servers that it is actively

communicating with. This overhead can be quantified by 2 |Fl| MT where M is the

size of a control packet, T is the scheduling interval, and |Fl| is the number of flows

on the link. With a scheduling interval of T = 1 ms, each flow generates around 1.34

Mbps which is a little over a tenth of a percent of a gigabit link.

82

Scalability

For scheduling to remain feasible, the control overhead cannot consume more than

a few percent of the server’s capacity. With T = 1 ms a server could communicate

with on the order of a few tens of servers. Of course, there are many optimizations

that could be used to reduce the control overhead substantially. For example, control

information could be piggy backed on data packets and the scheduling interval could

be made dynamic. A fixed scheduling interval, however, has the advantage of making

the control overhead deterministic which is useful for evaluating our approach.

Scheduling interval

The scheduling interval represents key parameter that can be varied. If we reduced

the scheduling interval by a factor of 2 we would double the overhead. Increasing the

scheduling interval increases the amount of buffering required and also the amount

of time packets spend waiting in VOQs. On the other hand, reducing the schedul-

ing interval increases the control overhead which effectively reduces the bandwidth

available for the tenant’s traffic.

To examine this tradeoff we ran an experiment using scheduling intervals of 100

microseconds, 1 millisecond, and 10 milliseconds. In this experiment, a tenant with

16 servers creates an all-to-all traffic pattern between its servers. While all flows

use the same average sending rate, the packet sizes and inter-arrival times follow

a Poisson distribution leading to short but significant variations in their sending

rates. We compared the control overhead, the average and maximum VOQ size,

and the average time packets spent in VOQs. In this experiment, values represent

the average measurements across 10 iterations where each run consisted of 100 ms

warmup followed by a 1 second measurement period.

Figure 4.4 shows the average amount of time that packets are buffered in VOQs

as well as the average length of VOQs. In section 4.2.4 we described how under

admissible traffic patterns, VOQs receive the rate needed to clear their backlog over

the next scheduling interval. This has two consequences. First, it means we should

expect all packets to be delayed by the scheduling interval. Second, it means that the

83

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Offered load

10-1

100

101

102

103

104

105

106
M

e
a
n
 V

O
Q

 l
e
n
g
th

 (
b
y
te

s)

control overhead

T = 10 ms

T = 1 ms

T = 100 us

(a) Average length of VOQs

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Offered load

10-2

10-1

100

101

102

M
e
a
n
 V

O
Q

 d
e
la

y
 (

m
s)

T = 10 ms

T = 1 ms

T = 100 us

(b) Average time spent in VOQs

Figure 4.4: Effect of different scheduling intervals on VOQs

amount of buffering required to sustain a given rate depends directly on the scheduling

interval. A scheduling interval of T = 1 ms, for example, corresponds to 122 KB at 1

Gbps. Since sending rates are Poisson, however, the traffic pattern is inadmissible on

time scales. As a result, we see that the average delay is somewhat larger than the

scheduling interval.

The network effectively reaches saturation at the point when the average VOQ no

longer receives the rate needed to clear its backlog. Because the control traffic con-

sumes some of the available capacity, this happens before the offered load reaches 1.

Note that for T = 100µs this happens just before 80% since the control overhead

consumes 15 ∗ 1.34 Mbps which is more than 20% of each server’s capacity. At this

point the VOQs continue to grow in size until packets are dropped. It is important to

understand that reducing the scheduling interval does not increase the throughput,

provided VOQs are sized appropriately. In fact, the opposite is true since the increase

in control traffic effectively reduces the capacity that can be used to support the ten-

ants actual traffic. The results demonstrate that reducing the scheduling interval

below a millisecond provides diminishing returns. While a slightly larger scheduling

interval would mean that packets experience a few milliseconds of delay in VOQs,

this may be quite reasonable for many applications given that without scheduling,

packets can easily experience more than a millisecond of queueing delay at switches.

84

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Offered load

100

101

102

103

104

105

106
M

e
a
n
 V

O
Q

 l
e
n
g
th

 (
b
y
te

s)

T = 10 ms

T = 1 ms

T = 100 us

control overhead

(a) Average length of VOQs

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Offered load

10-4

10-3

10-2

10-1

100

101

102

M
e
a
n
 V

O
Q

 d
e
la

y
 (

m
s) T = 10 ms

T = 1 ms T = 100 us

control overhead

(b) Average time spent in VOQs

Figure 4.5: Effect of assigning VOQs a minimum rate of 10 Mbps.

Addressing VOQ delay with minimum rates

To address the issue of delay, we can assign minimum rates to VOQs. This may

benefit latency sensitive traffic since such traffic typically consists of short flows. The

minimum rate can be handled in the same way that we account for control traffic. This

means that until a VOQ times out, it receives the minimum rate which is effectively

subtracted from the allocatable capacity for the links along the path. We implemented

this approach and repeated the same experiment with a minimum VOQ rate of 10

Mbps Figure 4.5. The results show that at low offered load this significantly reduces

VOQ delay but that as the rate of the average flow approaches the minimum rate,

latency begins to approach the scheduling interval.

4.4.3 Flow control

Finally, we evaluate the use of scheduling as a flow control mechanism that regulates

server traffic. To do this, we revisit the strict/loose model for separating flow control

and routing that we described in section 3.3. While our simulation represents an

idealized implementation, it is still useful to evaluate where it falls within the space

outlined by the model. The experimental setup is the same as that described in

results shown in 3.3 except that we used an 8-port FatTree consisting of 128 servers.

The network was partitioned into 8 tenants with 16 servers that each produced an

all-to-all traffic pattern. The results are shown in Figure 4.6 and Figure 4.7. We

85

co
n
tr

o
l
o
v
e
rh

e
a
d

10-610-510-410-310-210-1

Loss threshold

0.88

0.90

0.92

0.94

0.96

0.98

1.00
Fr

a
ct

io
n
 o

f
ca

p
a
ci

ty
 a

ch
ie

v
a
b
le

Loose FC, ~Strict LB (MP)

Loose FC, Loose LB (VLB)

Scheduling (max-min), ~Strict LB (MP)

Scheduling (max-min), Loose (VLB)

Strict FC, ~Strict LB (MP)

Strict FC, Loose LB (VLB)

control overhead

Figure 4.6: Capacity vs threshold with scheduling

subtracted the control overhead from the measured capacity so that the point labeled

“control overhead” represents the capacity that can actually be used by the tenant.

These results demonstrate that with scheduling, we can achieve nearly the same per-

formance as with strict flow control. The caveat, is that we effectively have to sacrifice

part of the network’s capacity to support scheduling’s control traffic. However, a key

point is that even if the performance in practice were to lie somewhere between strict

and loose flow control, it would still provide a substantial improvement in the net-

work capacity that routing achieves. In fact, for loss thresholds that are under 1%,

the results show that scheduling effectively pays for itself since the capacity gained

significantly exceeds the control overhead.

86

0.80 0.85 0.90 0.95 1.00
Usable capacity

101

102

103

S
w

it
ch

 q
u
e
u
e
 s

iz
e
 (

p
a
ck

e
ts

)

Strict FC, Loose LB (VLB)

Strict FC, ~Strict LB (MP)

Loose FC, Loose LB (VLB)

Scheduling (Max-Min), Loose LB (VLB)

control overhead

Loose FC, ~Strict LB (MP)

Scheduling (Max-Min), ~Strict LB (MP)

Figure 4.7: Queue size vs capacity with scheduling

4.5 Discussion & future work

4.5.1 Interactions with other protocols:

In this chapter, we presented a simple model where scheduling exists transparently

to the layers above. We assumed that on the time scale at which rates are assigned,

the rate of traffic arriving in VOQs is independent of the rates that we assign in

the scheduling layer. Since other protocols, like TCP, may manage rates it’s worth

considering what effect scheduling has. Studying the interactions between TCP and

the scheduling layer is beyond the scope of this dissertation. For scheduling to be

practical it should not make the performance of protocols like TCP significantly worse.

While it’s important that scheduling not make the performance of protocols like TCP

significantly worse, it is important to note that scheduling has the potential to have

a positive impact on its performance as well. For example, by explicitly coordinating

with other servers, scheduling could allow TCP flows converge to their max-min fair

share more quickly and without first creating congestion in the process.

87

An interesting direction for future work would be to investigate coupling the schedul-

ing layer with protocols like TCP to improve performance or to expose an API to the

scheduling layer so that protocols, middelware, and applications could influence the

way rates are assigned. While we have presented one approach, the scheduling frame-

work could provide different network models to accommodate different applications.

These models may have different objectives such as minimizing latency, maximizing

the traffic transferred between servers, or simply preventing congestion while present-

ing a consistent view of the network to the layers above. In the next chapter we

consider one such direction with the backlog scheduling problem.

4.5.2 Virtual machines

Data centers often use virtualization and may assign different tenants to the same

server and some even allow users to provide their own guest operating systems. In

such an environment, scheduling would have to be implemented in the hypervisor,

where it exists outside of the control of tenants. This work was presented in the

context in which tenants are provided with virtual network abstractions which means

that if virtualization is used, tenants would receive a static slice of their server’s

interface. Since scheduling occurs separately within each tenant, it would not matter

whether rates are scheduled between physical servers or virtual servers.

4.5.3 Practical considerations

Granularity of rates:

In our discussion of how rates are assigned, we have assumed that rates represent

continuous values. In reality the scheduling layer can only control the times at which

discrete packets are sent. Thus the packet size limits the granularity at which it is

meaningful to control rates. Consider a 1 Gbps link and a scheduling interval of 1 ms,

for example. This translates to a little over 80 maximum-sized (1500 byte) packets

per interval. So when viewed over the space of one scheduling interval, rates can only

88

be controlled at a granularity of just over 1% of the link rate, which is more than 10

Mbps.

Controlling rates with high-precision:

A related issue is how effectively the scheduling layer can control server rates in soft-

ware. In our simulation model, we can schedule an event to trigger the transmission

of every packet at each VOQ. By taking into account the length of the packet being

transmitted and the transmission rate, we can calculate the next transmission time

thus are only limited in our precision by the granularity of packets. While it might be

possible to schedule similar events in the kernel given high-precision timers, this may

impose significant overhead due to context switching. Other protocols that control

rates do not face this issue. TCP, for example, uses the arrival of acknowledgements

to trigger the release of new packets and only uses timers to handle anomalies like

packet loss. To be practical, it may be necessary to balance precision with over-

head but such a tradeoff is difficult to evaluate without a complete and optimized

implementation.

89

Chapter 5

Backlog scheduling

5.1 Introduction

In chapter 4 we introduced the distributed scheduling framework which controls the

rate of traffic between a tenant’s servers. We demonstrated that performance isolation

can be achieved by any feasible assignment of rates and we provided a distributed

algorithm that assigns rates in max-min and backlog proportional fashion. In this

chapter we examine what impact different scheduling strategies may have on the per-

formance experienced by a tenant. While there is no general way to define the optimal

assignment of rates between a tenant’s servers, it is worth asking whether there may

be reasons for a tenant to favor one approach over another and what the impact may

be on the performance of its application. We attempt to explore this question by

introducing an additional scheduling objective; that of minimizing the overall time to

transfer the backlog that exists between a tenant’s servers. This provides one way of

relating the rates assigned in the scheduling layer to the performance of the tenant

application that may apply to an important class of data center applications. For

example, it may benefit applications like MapReduce [23], where performance is de-

pendent on the makespan of a set of data intensive tasks [59, 12]. To evaluate this

potential benefit, we introduce the backlog scheduling problem and consider three

variations of the basic problem that allow us to model scheduling within this new

context.

90

5.2 Backlog scheduling problem

The goal of the backlog scheduling problem is to minimize the overall time required

to transfer all of the backlogs that exist among a tenant’s servers. To understand the

nature of this problem, we start with a simplified view of scheduling where a central

algorithm with global knowledge produces a set of rate assignments for all servers on

fixed, periodic intervals. We also assume that all servers can send and receive at the

same rate and that a tenant is provided the abstraction of having all of its servers

connected to the same switch. Focusing on the virtual-switch abstraction allows us to

view the server interfaces as the only bottleneck around which rates must be sched-

uled.

There are three variations of the basic problem that we consider:

1. Initial-backlog: All traffic is present at time 0. This means we are given some

initial set of backlogs and we simply need to minimize the number of scheduling

intervals required to clear the backlog.

2. Deterministic backlog-schedule: New traffic can arrive at the start of each

scheduling interval and this amount is known in advance. This is a generaliza-

tion of the problem where backlog increases according to a fixed schedule that

is available to the algorithm.

3. Online backlog-schedule: New traffic can arrive at the start of each schedul-

ing interval but the amounts are not known in advance. This online version of

the problem more closely represents what any real scheduling algorithm must

confront in practice.

5.2.1 Preliminary definitions:

Let N = {1, 2, ..., n} be the set of n tenant servers whose traffic is being scheduled.

91

Backlog: Let the backlog bti,j ≥ 0 represents the data that server i ∈ N has to send

to server j ∈ N at the start of interval t.

Let Bt be the set of all server backlogs in interval t.

It is often useful to express Bt as an n × n matrix where row i corresponds to the

backlog that server i must send to each server and column j represents the backlog

that each server has for server j.

Bt =

bt1,1 bt1,2 · · · bt1,n

bt2,1 bt2,2 · · · bt2,n
...

...
. . .

...

btn,1 btn,2 · · · bn,n

Send backlog: We refer to the total amount of backlog that server i has to send

to all other servers as its send backlog. We denote the send backlog of server i at

interval t with bti,+ which is defined as:

bti,+ =
n∑
j=1

bti,j (5.1)

Receive backlog: Similarly, the total amount of backlog destined for server j is

called its receive backlog. We denote the receive backlog as bt+,j:

bt+,j =
n∑
i=1

bti,j (5.2)

Total backlog: We refer to the sum of all server backlogs as the total backlog and

its notation is bt+,+.

bt+,+ =
n∑
i=1

n∑
j=1

bti,j (5.3)

92

Backlog degree: The maximum of a server’s send and receive backlog is known as

its backlog degree. We use the notation βi(B
t) for the backlog degree of i:

βi(B
t) = max(bti,+, b

t
+,i) (5.4)

Maximum backlog degree: This term refers to the maximum backlog degree of

any server and is denoted simply with β.

β(Bt) = max(βi(B
t)) ∀i ∈ N (5.5)

Note that the notation βi(B
t) can be interpreted as the maximum of the values

corresponding to the sum of row i and sum of column i from the matrix Bt. The

notation β(Bt), therefore, is simply the maximum of all column sums and row sums

of matrix Bt.

Rates: Let rti,j represent the rate server i is assigned (by the algorithm) to server j

in interval t.

We will assume that all servers can send and receive at the same rate. Furthermore,

we assume that backlogs have been normalized to the rate value so that each server

can send and receive 1 unit of backlog per interval.

Rate assignment: We use the notation Rt to represent the set of all rates assigned

in an interval t. We refer to this as a rate assignment. As with backlogs, Rt may be

expressed as an n× n matrix.

Feasible rate assignment: A rate assignment Rt is feasible with respect to Bt if it

satisfies the following conditions:

rti,+ ≤ 1, for all i ∈ N (5.6)

rt+,j ≤ 1 for all j ∈ N (5.7)

0 ≤ rti,j ≤ bti,j for all i, j ∈ N (5.8)

93

Conditions 5.6 and 5.7 are the send and receive constraints which collectively ensure

that the rates assigned do not exceed the capacity of any server’s interface. Note that

an equivalent way to express these constraints would be β(Rt) ≤ 1. Condition 5.8

means that rates must be non-negative and they should not exceed the backlog that

is present.

Residual backlog: Because rates are expressed in terms of backlog per interval,

we can subtract a rate assignment from the backlog present to find the backlog that

remains at the end of an interval t.

That is we let Bt
r = Bt −Rt and we call Bt

r the residual backlog for interval t.

Bt
r =

bt1,1 − rt1,1 bt1,2 − rt1,2 · · · bt1,n − rt1,n
bt2,1 − rt2,1 bt2,2 − rt2,2 · · · bt2,n − rt2,n

...
...

. . .
...

btn,1 − rtn,1 btn,2 − rtn,2 · · · bn,n − rtn,n

Rate schedule: The solution that the scheduling algorithm produces is called a rate

schedule. A rate schedule is a set of rate-assignments representing the rates assigned

during consecutive scheduling intervals and is denoted simply as R. For example,

R = {R0, R1, ..., Rl−1} is a rate schedule consisting of rates for the scheduling intervals

0 through l−1. The length of the schedule is equal to the cardinality of the set |R| = l.

Schedule-sum notation: At times it is necessary to use one additional bit of no-

tation in order to express the sum of a set (or subset) of the matrices in a schedule.

We use the notation R+ to indicate the sum of all rate assignment matrices in the

schedule r. That is:

R+ =
l∑

i=0

Ri (5.9)

The sum of the matrices from interval s to t is written as Rs,t:

Rs,t =
t∑
i=s

Ri (5.10)

94

Feasible rate schedule: For a rate schedule R to be feasible, all rate assignments

must be feasible and all backlog must be cleared. One way to express the second

condition is that there must be no residual backlog at the end of the schedule.

So given schedule R of length |R| = l, R is feasible if:

Rt is feasible with respect to Bt, ∀t ∈ [0, l) (5.11)

Bl−1
r = 0n×n (5.12)

5.3 Initial-backlog problem:

Assume that at interval t = 0, there is some initial set of backlogs B0 and that no

new backlog arrives in subsequent intervals.

Since no new backlog can arrive, the backlog in interval t+ 1 is simply Bt+1 = Bt
r.

The residual backlog is defined as Bt
r = Bt − Rt, which implies that Bt

r = B0 − R0,t

and that schedule R clears the backlog if R+ = B0.

Therefore a rate schedule R is feasible with respect to B0 if:

∀Rt ∈ R, Rt is feasible with respect to B0 (5.13)

R+ = B0 (5.14)

5.3.1 Problem definition:

The goal is to find a feasible rate schedule that clears the backlog using the minimum

number of scheduling intervals. Therefore the problem can be stated as follows:

Given an initial set of backlogs B0, find a minimum cardinality feasible rate schedule

with respect to B0.

95

Input: Output:

j0

j1

j2

j3

i0

i1

i2

i3

1,0.5

1,1

1,1
1,0.5

1,1
1,1

1,0.5

1,0.5

0.5,0.5

1,0.5

1,0.5

1,1

 t s

1 0 0 0

0 1 0 0

1 0 1 0

0 0 0 0.5

0 1 2 3

0

1

2

3

Receiver

Se
nd

er

Server backlogs bt
i,j� Bt

0.5 0 0 0

0 1 0 0

0.5 0 0.5 0

0 0 0 0.5

0 1 2 3

0

1

2

3

Receiver

Se
nd

er

Server rates rt
i,j� Rt

1,0.5

ui,j = bt
i,j xi,j = rt

i,j xs,i = rt
i,+ xj,t = rt

+,j

Figure 5.1: Feasible rate assignment as a feasible network flow. Flow values for an
example solution are shown in red.

5.3.2 Rate-assignment as a network flow:

We can represent the problem of finding a feasible rate assignment Rt with respect

to Bt as finding a feasible flow in a flow network.

The flow network graph G = (V,E) can be constructed as follows.

Let each server be represented by two separate vertices; a send node i ∈ VS and a

receive node j ∈ VR.

For every backlog bti,j ∈ Bt, add an edge (i, j) from send node i ∈ VS to receive node

j ∈ VR with capacity ui,j = bti,j.

We now add two additional nodes; a source node s and a sink node t so that V =

VS ∪ VR ∪ {s, t}.
For each send node i ∈ VS add an edge (s, i) ∈ E with capacity us,i = 1.

This capacity represents the send capacity of server i which we assume is equal to 1.

Similarly, for each receiving node j ∈ VR add an edge (j, t) with capacity uj,t = 1 to

represent its receive capacity.

We can now assign a flow xi,j ∈ x to each edge in (i, j) ∈ E.

A flow on a network flow graph is feasible if for every node (except the source and

sink), the sum of the flows entering the node equals the sum of the flows leaving the

node and no edge is assigned a flow which exceeds its capacity. Figure 5.1, shows

an example of this construction. The input Bt is shown on the left and the rate

assignment Rt corresponding to the network flow x is shown on the right. It is easy

to verify that a feasible flow x on the graph G represents a feasible rate assignment

Rt. First notice condition 5.8 is satisfied since the flow between any send node i and

96

receive node j can’t exceed the capacity ui,j = bti,j. Since the total flow leaving any

send node i must match the flow entering node i, the total flow cannot exceed the

capacity on edge (s, i) which ensures that 5.6 is satisfied. Likewise, the capacity on

edge (j, t) ensures the last condition 5.7 is satisfied.

5.3.3 Max-min is not optimal

It is interesting to note that an algorithm that assigns rates according to max-min

fairness is not optimal for the initial backlog problem. We described such an algorithm

in section 4.2.5. A simple counter example is provided below. To keep this example

compact, we allow non-zero diagonal values in the matrix. While this implies that

servers can send to themselves, we can always reformulate the problem with additional

servers so that this is not the case.

Counter example:

B0 =

1 1 0
1
2

1
2

0
1
2

1
2

0

In this example, all three servers have backlog for the same two destinations which

means that the capacity at each destination must be divided among three competing

flows. Assigning flows in max-min fair fashion would result in a rate schedule requiring

3 intervals whereas a feasible rate schedule can be constructed with only 2 intervals

if we give priority to the flows originating from server 0.

The solution produced by max-min requires |R| = 3 intervals:

R0 =

1
3

1
3

0
1
3

1
3

0
1
3

1
3

0

R1 =

1
2

1
2

0
1
6

1
6

0
1
6

1
6

0

R2 =

1
6

1
6

0

0 0 0

0 0 0

97

An optimal solution R∗, uses |R∗| = 2 intervals:

R0 =

1
2

1
2

0
1
4

1
4

0
1
4

1
4

0

R1 =

1
2

1
2

0
1
4

1
4

0
1
4

1
4

0

5.3.4 Optimal algorithm:

Theorem: An optimal solution to the initial backlog problem B0 consists of dβ(B0)e
intervals.

Proof:

First notice that no feasible solution can consist of less than dβ(B0)e scheduling

intervals since β(B0) is the maximum amount of backlog that some server has to

send or receive and no server can send or receive more than one unit of backlog per

interval. To prove the forward direction, that some feasible schedule R always exists

with |R| = dβ(B0)e intervals, we present the following optimal algorithm and prove

its correctness.

Backlog-proportional algorithm:

Note that the algorithm presented here is a simplified graph version of the backlog

proportional algorithm presented in section 4.2.5.

Rates are assigned in proportion to backlog according to:

rti,j = min

(
bti,j,

bti,j
bti,+

,
bti,j
bt+,j

)
(5.15)

The first term ensures that the rate assigned is not more than is necessary to clear

the backlog between i and j. The second and third term are the backlog proportional

share of the send backlog at server i and the receive backlog at server j respectively.

The backlog-proportional algorithm uses the network flow graph construction for a

rate assignment as described above. It is a greedy algorithm that assigns flow to

each edge in proportion to the minimum of the edge’s share of the backlog at both

the send and receive node. The flow that is present at the end of each iteration

98

corresponds to a feasible rate assignment and the algorithm terminates after exactly

dβ(B0)e iterations.

Begin at interval t = 0 with Bt = B0:

algorithm Assign backlog-proportional rates:

1. Construct the network flow graph G = (V,E) to represent a rate assignment

corresponding to Bt.

2. For each edge (i, j) ∈ E s.t. i ∈ VS, j ∈ VR, assign xi,j = min
(
bti,j,

bti,j
bti,+

,
bti,j
bt+,j

)
3. Add the rate assignment Rt corresponding to flow x to schedule R = R ∪ {Rt}

4. Compute the residual backlog Bt
r = Bt −Rt

5. Repeat from step 1 with Bt = Bt
r until Bt

r = 0

Proof of correctness:

We first prove that the algorithm always produces a feasible schedule. We showed

earlier that the construction of G ensures that any feasible flow represents a feasible

rate assignment. Thus to satisfy condition 5.13, we must verify that the flow assigned

to any edge does not exceed its capacity.

Clearly for any edge (i, j) where i ∈ VS, j ∈ VR, xi,j ≤ ui,j since ui,j = bti,j and

xi,j = min
(
bti,j,

bti,j
bti,+

,
bti,j
bt+,j

)
≤ bti,j.

For any source edge (s, i), the flow entering i ∈ VS must match the flow leaving so

xs,i =
∑
j∈VR

xi,j.

Since xi,j ≤
bti,j
bti,+
∀i ∈ VS, j ∈ VR, we know xs,i ≤

∑
j∈VR

bti,j
bti,+

and us,i = 1.

Simplifying xs,i yields 1
bti,+

∑
j∈VR

bti,j =
bti,+
bti,+

= 1 so xs,i ≤ us,i.

Similarly, for any sink edge (j, t), xj,t ≤
∑
i∈VS

bti,j
bt+,j

= 1 and uj,t = 1 so xj,t ≤ uj,t.

Therefore, each iteration produces a feasible and the resulting set of rate assignments

forms a feasible schedule since the algorithm does not terminate until Bt
r = 0, when

the backlog is cleared.

99

To prove that the algorithm is optimal we need to show that it requires at most

dβ(Bt)e iterations.

To do this, it suffices to show that rti,+ ≥ bti,+ − (dβ(Bt)e − 1) and rt+,j ≥ bt+,j −
(dβ(Bt)e − 1) for all i and j.

Case β(Bt) ≤ 1:

Since bti,+ ≤ β(B0) ≤ 1 and bt+,j ≤ β(B0) ≤ 1 we know bti,j ≤
bti,j
bti,+

and bti,j ≤
bti,j
bt+,j

so

rti,j = bti,j for all i, j.

This implies rti,+ = bti,+ and rt+,j = bt+,j satisfying the conditions.

Case β(Bt) > 1:

Note that the condition rti,+ ≥ bti,j − (dβ(Bt)e − 1) is trivially satisfied if bti,+ ≤
(dβ(Bt)e − 1).

Thus assume bti,+ > (dβ(Bt)e − 1).

Since
⌈
bti,+
⌉

= dβ(Bt)e we can say that bt+,j ≤
⌈
bti,+
⌉
.

rti,j ≥ min
(
bti,j
bti,+

,
bti,j
bt+,j

)
= min

(
bti,j

max(bti,+,b
t
+,j)

)
≥ bti,j

dbti,+e
.

Thus rti,+ ≥
bti,+

dbti,+e
.

Let bti,+ = k + ε where k = (dβ(Bt)e − 1) ≥ 1 and ε ≤ 1.

We can write rti,+ ≥ k+ε
k+1

.

Since ε ≤ 1 it must be that k+ε
k+1
≥ ε so rti,+ ≥ ε.

Using k and ε, condition rti,+ ≥ bti,j−(dβ(Bt)e−1) can be restated as rti,+ ≥ (k+ε)−k.

Since we have shown rti,+ ≥ ε, the condition is satisfied.

The same argument shows rt+,j ≥ bt+,j − (dβ(Bt)e − 1).

5.3.5 Bounds on optimal

Given the optimal value, we can ask how much better is the optimal algorithm com-

pared to other algorithms like max-min? Here we only need to consider algorithms

that produce a blocking flow 3 since it does not make sense to leave spare bandwidth

unassigned. As it turns out, any such algorithm produces a solution that is within

twice the optimal value.

3A blocking flow on a network flow graph implies that the flow on any edge cannot be increased
without first decreasing the flow on some other edge.

100

Theorem: The solution produced by any blocking algorithm is at most 2 ∗ dβ(B0)e.
Proof:

Let R be the rate schedule produced by the algorithm for the input B0.

Now suppose that at some time T , some backlog bTi,j > 0 still remains.

We have assumed the rate assignment at each time step represents a blocking flow.

Thus for any interval 0 ≤ t < T , either rti,+ = 1 or rt+,j = 1 or both must be true.

In other words, either the backlog at i or the backlog to j is reduced by 1 or both.

Consequently, T < b0i,+ + b0+,j.

The definition of β ensures b0i,+ ≤ β(B0) and b0+,j ≤ β(B0) and since bTi,j > 0, we can

write that T < 2dβ(B0)e.
For the last interval in the schedule T = |R|−1, which means that |R| ≤ 2∗dβ(B0)e.

This result does not show that this bound is tight for an algorithm like max-min.

However, in section 5.6.2, we provide an example that demonstrates that the backlog

proportional algorithm can, in fact, outperform max-min by a factor of 2.

5.4 Deterministic backlog-schedule problem:

We now consider the deterministic backlog-schedule problem. In this version, the

backlog in an interval may increase according to a fixed schedule which we are given.

As before, the objective is to minimize the overall time it takes to transfer all of the

backlog. However, for this problem we need to add a few new definitions to represent

the input.

Backlog increment: In interval t, a backlog bti,j will increase by some value f ti,j

which we call a backlog increment.

Backlog increase: Let the backlog increase F t be the set of all backlog increments

∀f tij ∈ F t for interval t.

So the backlog at the start of each interval t is:

Bt = Bt−1
r + F t (5.16)

101

Backlog schedule: Let F be the set of all backlog increases ∀F t ∈ F which we will

refer to as the backlog schedule.

A rate schedule R is feasible with respect to a backlog schedule F if the following two

conditions are satisfied:

∀Rt ∈ R,Rt is feasible with respect to Bt (5.17)

R+ = F+ (5.18)

5.4.1 Problem definition:

Given a backlog schedule F , find a minimum cardinality rate schedule R with respect

to F .

5.4.2 Optimal bounds

Given the backlog-schedule F , let R represent some optimal solution with |R| = l.

We can assume that the number of intervals in the rate schedule must be at least as

long as the backlog schedule itself.

Thus a lower bound is:

|R| ≥ |F | (5.19)

If all of the backlog in the schedule were present at time 0, then this would be

equivalent to the initial-backlog problem which we know cannot be solved in fewer

intervals than the maximum backlog degree.

This gives a lower bound of:

|R| ≥ β(F+) (5.20)

Likewise, waiting until the interval at which the schedule ends means an optimal

initial backlog algorithm could clear the backlog in β(F+) intervals.

102

This gives an upper bound of:

|R| ≤ |F |+ β(F+) (5.21)

Additionally, we know that an optimal solution cannot require more intervals than

would be necessary to solve each increase F t ∈ F as a separate initial-backlog problem.

Thus if |F | = k:

|R| ≤ β(F 0) + β(F 1) + ...+ β(F k−1) (5.22)

Partitionable schedule: We say that a schedule is partitionable if it is possible to

clear the backlog present in some interval before the end of the schedule. That is, a

backlog schedule F is partitionable if there exists an interval t < |F | for which the sub-

schedule F ′ = {F 0, F 1, ..., F t−1} has a solution of length t. To solve a partitionable

schedule, we could simply solve each sub-schedule independently and concatenate

their solutions. Therefore we assume that a backlog schedule is not partitionable.

5.4.3 Linear programming formulation

We can formulate the deterministic backlog schedule problem as a linear program

(LP). The basic idea is that the variables in the LP represent the rates in an optimal

solution. Of course, we do not necessarily know the length of an optimal rate schedule

a priori. Since we know it must lie within the bounds derived above, we can begin

by thinking of the LP as a decision problem that checks whether a solution of length

l exists. We then provide an objective function and show that solving the LP as a

minimization problem also solves the optimization problem.

LP variables:

Assume an optimal solution R has |R| = l.

Let x be the set offset of variables in the LP.

For each Rt ∈ R, we add a variable xi,j,t ∈ x to represent rti,j ∈ Rt.

Since there are n servers, there are at most n2 rates to assign in each rate assignment

Rt ∈ R and since |R| = l, there are at most n2l variables in x.

103

LP constraints:

The variables are subject to 4 types of constraints which follow naturally from the

definition of a feasible rate assignment and a feasible schedule.

Send constraints:

Each server i ∈ N can only send one unit of backlog in each interval t ∈ [0, l):

n∑
j=1

xi,j,t ≤ 1 ∀i ∈ N,∀t ∈ [0, l) (5.23)

Receive constraints:

Each server j ∈ N can only receive one unit of backlog in each interval t ∈ [0, l):

n∑
i=1

xi,j,t ≤ 1 ∀j ∈ N,∀t ∈ [0, l) (5.24)

Backlog-present constraints:

The rate assigned through interval t cannot exceed the backlog present in the schedule

through interval t:
t∑

s=0

xi,j,s ≤ f 0,t
i,j ∀i, j ∈ N (5.25)

Backlog-cleared constraints:

The total rate assigned between i ∈ N and j ∈ N must match the total backlog in

the schedule:
l∑

t=0

xi,j,s = f+
i,j ∀i, j ∈ N (5.26)

We claim that any assignment to the variables that satisfies the constraints above must

correspond to a feasible rate schedule. The send and receive constraints correspond

directly to conditions 5.6 and 5.7 from the definition of a feasible rate assignment.

The backlog-present constraints indirectly capture the final requirement for a feasible

rate assignment which says that rti,j ≤ bti,j. This condition cannot be expressed

directly since bti,j is not constant as it depends on the rates assigned in previous

intervals. The value of f 0,t
i,j for a given interval t is constant, however, so we can write

104

bti,j = f 0,t
i,j − r

0,t−1
i,j . Thus rti,j ≤ f 0,t

i,j − r
0,t−1
i,j is an equivalent condition and moving all

rates to one side of the expression gives rti,j ≤ f 0,t
i,j which matches the backlog-present

constraint. While the first three sets of constraints capture the requirements for a

feasible rate assignment, the last set clearly matches the condition that the backlog

must be cleared.

Objective function:

The formulation described thus far models a feasible rate schedule and so will provide

a solution of length l if one exists. To solve the optimization problem, the LP should

return a solution using the minimum number of intervals. This means if we use

an upper bound on the optimal length (e.g. l = β(F+) + k), the LP should leave

all variables representing unneeded intervals equal to 0. This can be achieved if we

assign the appropriate set of cost coefficients to the variables and let the objective

be to minimize the total cost. In essence, the cost function should ensure that it is

always more expensive to use a variable in some interval t if a solution can be found

using only variables in intervals less than t.

An easy way to accomplish this is to assign costs according to:

ci,j,t = (f+
+,+)t (5.27)

Here f+
+,+ is the total backlog in the schedule. The intuition behind this choice is

simple. Since the cost grows exponentially with time, it can never be beneficial to

transfer more backlog in an earlier interval at the expense of delaying the transfer of

some backlog to a later interval. Therefore, a solution using t1 intervals will always

be cheaper than one using t2 > t1.

An example LP:

Consider the simple backlog-schedule F = {F 0, F 1}

F 0 =

[
1 1

1 0

]
F 1 =

[
0 0

0 1

]

105

We need to find an optimal solution R but we do not know |R|.
However, we know that an upper bound is |R| ≤ β(F 0) + β(F 1) = 2 + 1 = 3.

We can formulate the problem assuming R = {R0, R1, R2} and if the solution consists

of less than 3 intervals, the extra rate assignments at the end of the schedule will

consist of all zeros and can be pruned from the schedule.

Each rate rti,j is modeled by a variable xi,j,t so enumerating all possible rates provides

the list of variables in the LP:

x =
[
x1,1,0 x1,2,0 x2,1,0 x2,2,0 x1,1,1 x1,2,1 x2,1,1 x2,2,1 x1,1,2 x1,2,2 x2,1,2 x2,2,2

]

A linear program in standard form looks like:

minimize cTx

subject to Ax ≤ b

and x > 0

A and b are the matrix of coefficients and the right hand sides of the inequality

constraints respectively. We show the 4 types of constraints in our LP below which

collectively form the rows of A and b.

Send constraints:

x1,1,0 x1,2,0 x2,1,0 x2,2,0 x1,1,1 x1,2,1 x2,1,1 x2,2,1 x1,1,2 x1,2,2 x2,1,2 x2,2,2

t = 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0

t = 1 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0

t = 2 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 1 1

≤

TX

1

1

1

1

1

1

106

Receive constraints:

x1,1,0 x1,2,0 x2,1,0 x2,2,0 x1,1,1 x1,2,1 x2,1,1 x2,2,1 x1,1,2 x1,2,2 x2,1,2 x2,2,2

t = 0 1 0 1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0

t = 1 0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0

t = 2 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 1 0 1

≤

RX

1

1

1

1

1

1

Backlog-present constraints:

x1,1,0 x1,2,0 x2,1,0 x2,2,0 x1,1,1 x1,2,1 x2,1,1 x2,2,1 x1,1,2 x1,2,2 x2,1,2 x2,2,2

t = 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

t = 1 1 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 0

t = 2 1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1

≤

f 0,t
i,j

1

1

1

0

1

1

1

1

1

1

1

1

Backlog-cleared constraints:

x1,1,0 x1,2,0 x2,1,0 x2,2,0 x1,1,1 x1,2,1 x2,1,1 x2,2,1 x1,1,2 x1,2,2 x2,1,2 x2,2,2

1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1

 =

f+
i,j

1

1

1

1

The last set of constraints are expressed as an equality but can be converted into

standard form by adding a slack variable for each row. Also notice that we could

have omitted variable x1,1,0 since we can see from the schedule that r01,1 must be 0

given that no backlog is present. In general, if f 0,t
i,j = 0 then we can omit variable xi,j,t

107

since it means that no backlog can exist between i and j at interval t and so rti,j = 0.

The costs are as follows:

c =
[
1 1 1 1 4 4 4 4 16 16 16 16

]
Solution:

In this example, there is only one optimal solution which would consist of the following

values for the variables in the LP.

x =
[x1,1,0 x1,2,0 x2,1,0 x2,2,0 x1,1,1 x1,2,1 x2,1,1 x2,2,1 x1,1,2 x1,2,2 x2,1,2 x2,2,2

0 1 1 0 1 0 0 1 0 0 0 0
]

Since R2 = 0n,n, it can be pruned from the schedule leaving an optimal solution R of

length 2:

R0 =

[
0 1

1 0

]
R1 =

[
1 0

0 1

]

5.4.4 Proof of correctness

We have already shown that the formulation of the LP ensures that any feasible

rate schedule consisting of at most l intervals represents a solution to the LP and

vice versa. We now prove that the cost function guarantees that any minimum cost

solution to the LP corresponds to an optimal rate schedule.

Proof:

Let s be the length of an optimal solution S to the backlog schedule F .

Let x′ be a minimum cost solution to the LP when formulated with |S| intervals.

let x be a minimum cost solution to the LP when formulated with any number of

additional intervals.

Let c and c′ represent the cost of x and x′ respectively.

Suppose x represents some non-optimal schedule R.

This implies c < c′ and some xi,j,s > 0.

108

Note that since each variable xi,j,t = rti,j, we can view their values in terms of the flow

on the network flow graph for Rt.

The total backlog is f+
+,+ which means that the total flow in both x and x′ must

match.

Clearly x′ can have at most f+
+,+ units of flow in interval s− 1.

Note that x must also have at least 2 units of flow in interval s− 1.

If this were not true, it would imply that x does not represent a blocking flow in

interval s − 1 which means we could decrease the cost by moving flow from some

xi,j,s > 0 to xi,j,s−1.

For any interval t, the cost coefficient is (f+
+,+)t.

The cost of x′ is thus at most f+
+,+ ∗ (f+

+,+)s−1.

Suppose that x′ has 1 unit of flow in some interval later than s− 1 then its cost must

be at least 2 ∗ (f+
+,+)s−1 + 1 ∗ (f+

+,+)s = (f+
+,+ + 1) ∗ (f+

+,+)s−1.

This yields a contradiction since the cost of x′ is clearly greater than x.

Now suppose that the total flow x′ has in interval s or later is y < 1.

It must be possible to move y units to an earlier interval without shifting more than

a factor y ∗ f
+
+,+

2
of flow to later intervals.

This is because there are at least 2 of the f+
+,+ units of flow in interval s−1. The cost

increased incurred for these flows will be at most y ∗ f++,+

2
∗ (f+

+,+)s−1. However the

cost reduction will be at least y ∗ ((f+
+,+)s − (f+

+,+)s−1)s−1) = y ∗ (f+
+,+)s ∗ (f+

+,+)s−1 −
(f+

+,+)s−1)

To complete the proof we show that the LP formulation is valid which also proves

that the problem must be in P . To do this we show that the formulation uses a

polynomial number of variables and constraints and the representation of cost is

polynomial with respect to the size of the input/output. Notice that each server

requires one send constraint and one receive constraint per interval. Thus there are

at most n ∗ l send constraints and n ∗ l receive constraints since there are n servers

and l intervals. There are at most n2l “backlog present” constraints as we have one

such constraint corresponding to each variable. Finally there are at most n2 backlog-

cleared constraints. The LP requires O(n2l) variables and O(n2l) constraints. Clearly

n is polynomial in size with respect to the input F . Earlier we showed earlier that l

was bounded by l ≤ β(F+)+|F | which is an upper bound on the length of the output.

Therefore the number of variables and constraints are also polynomial in size they

are polynomial with respect to n and l. Finally, the cost of a variable in interval t is

109

(f+
+,+)t can be represented with log2(f

+
+,+) ∗ t bits which is polynomial with respect

to the input.

5.5 Online backlog-scheduling:

The deterministic backlog problem allows us to model how we would assign rates

given advanced knowledge of the backlog arriving at servers. In practice, we cannot

know what data a server has to send until it arrives in the scheduling layer. The

question that we seek to answer is how much better could we do given advanced

knowledge of the arriving backlog and what is the best approach when we do not

have the schedule available to us. In this section we consider the online version of the

problem to explore these questions. In this version, the backlog still arrives according

to a fixed schedule only this schedule is not provided to us. This allows us to compare

the initial backlog algorithms, which can only consider the backlog currently present,

with the optimal offline algorithm.

5.5.1 No online algorithm is optimal:

It is easy to see that no online algorithm can be optimal. Consider the two simple

backlog schedules F and F̂ that differ only in the second interval:

F = {F 0, F 1} :

F 0 =

[
1 0

1 0

]
F 1 =

[
0 1

0 0

]
F̂ = {F̂ 0, F̂ 1} :

F̂ 0 =

[
1 0

1 0

]
F̂ 1 =

[
0 0

0 1

]
Clearly, each problem has only one optimal solution and these differ in their first

interval:

R0 =

[
0 0

1 0

]
R̂0 =

[
1 0

0 0

]

110

Since an online algorithm is presented with the same input in interval 0, it cannot

distinguish between the two problems until interval 1 which means it cannot make a

deterministic decision that would be optimal in both cases.

5.5.2 Any optimal initial-backlog algorithm is 2-competitive:

We claim that any algorithm that optimally solves the initial backlog problem is 2-

competitive with an optimal backlog scheduling algorithm. Given backlog schedule

F , let R∗ be the optimal offline solution.

Let R be the solution produced by the initial backlog algorithm.

We know that |F | ≤ |R∗| ≤ |F |+ β(F+) from the bounds derived in section 5.4.2.

These bounds apply to R as well since no solution can finish before the end of the

schedule and the backlog that remains when the schedule ends at |F | is clearly no

greater than β(F+).

Thus if β(F+) ≤ |F | then since |R∗| ≤ |F | + β(F+) and |R| ≤ |F | + β(F+) we can

write |F | ≤ |R∗| ≤ |R| ≤ 2 ∗ |F |.
Likewise, if β(F+) > |F | then β(F+) ≤ |R∗| ≤ |R| ≤ 2 ∗ β(F+).

In either case we have |R|
|R∗| ≤ 2.

5.5.3 Any blocking algorithm is 2-competitive:

This can be proven by induction on the length of F , i.e., n = |F |.
Basis: n = 1

This case has already been proven since it is equivalent to the initial backlog problem.

Inductive step: Assume n holds, show n+ 1 also holds

First observe that if we partition a schedule F = Fa ∪ Fb then any blocking algo-

rithm that solves Fa in a intervals and Fb in b intervals must solve F in at most a+ b

intervals.

If this were not true it would imply that some interval in the solution to F is not be

a blocking flow since the total rate and flow must always match.

Any schedule of length |F ′| = n+1 can be expressed as F ′ = F ∪{F n} where |F | = n.

Let s and s′ represent the length of an optimal solution to F and F ′ respectively.

Note that s′ ≥ n+ 1, and s′ ≥ s must be true.

111

Also note that s′ ≥ s+ β(F n) otherwise the schedule F ′ would be partitionable.

Since |{F n}| = 1, any blocking algorithm can solve F n in 2β(F n) intervals.

By the induction hypothesis we know that F requires at most 2s intervals.

This means F ′ = F ∪ {F n} requires at most 2s+ 2β(F n) intervals.

Thus any blocking algorithm is at most 2(s+β(Fn))
s+β(Fn)

= 2 of optimal.

5.6 Evaluation

The purpose of backlog scheduling is to model how different scheduling algorithms

may impact the performance of one type of application, whose performance hinges on

the overall completion time of all of its flows. In the previous sections we examined

three different versions of the problem which allowed us to place limits on the differ-

ence in performance that we might expect. However, the backlog scheduling problem

provides no way to effectively evaluate how different algorithms will impact perfor-

mance in practice. This is because the backlog that arrives depends on the pattern of

arriving traffic which will naturally depend on the particular application. The prob-

lem also assumes that the rates assigned by the algorithm do not affect the schedule

of arriving backlog. This assumption was necessary to provide some type model for

scheduling but in reality the pattern of arriving traffic may depend on the pattern

of traffic delivered in some arbitrarily complex manner depending on the behavior of

the protocols and applications that lie above.

The objective of this evaluation is to gain a better understanding of the results that

we have derived. Rather than make assumptions about what constitutes normal

traffic, we will attempt to identify several traffic patterns that illustrate that the

performance of the algorithms do, in fact differ, as we have predicted. We also

simulate the traffic patterns that we find to confirm that the theoretical results can

be reproduced in simulation. In the process, we hope to develop some intuition about

why the performance of different algorithms vary and the types of traffic patterns

that stress these differences.

112

5.6.1 Experimental setup

Determining theoretical values

In order to find the solutions to the patterns described above, we needed the ability to

find the max-min and backlog-proportional solutions to a given backlog schedule and

compare them with the length of an optimal schedule. To do this, we implemented

both the max-min and backlog-proportional algorithms in python. We took advantage

of the numeric python package NumPy [6] and represented backlog schedules and their

solutions as lists of NumPy matrices. We wrote a short function that accepts a backlog

schedule and used the desired algorithm to produce a rate schedule. Note that we also

use this function for the initial backlog problem since it simply represents a special

case backlog schedule of length 1. To compute an optimal solution, we leveraged the

python convex optimization package CVXOPT [3] and developed code to produce the

LP formulation for a backlog schedule and convert the solution produced by the LP

solver into a rate schedule. In our evaluations we used backlog schedules consisting

of up to 50 intervals with backlog for as many 50 servers. For the largest inputs, the

LP formulation can require over a hundred thousand total variables and constraints

and to solve these efficiently, we added additional code to support the IBM CPLEX

solver [2]. All of the theoretical results presented below were collected using this code

base.

Simulating a backlog schedule

We also extended our python code base to translate a backlog schedule into a script

that could be read by the server nodes in our simulator. The script consists of a set

of messages that is read by the message application described in A.3.3. Essentially,

each backlog increase fi,j,t is defined as a message that will be sent to server j by

the message application at server i at time t. The message application partitions the

message into fixed size packets. These packets are sent immediately thus causing the

full backlog corresponding to fi,j,t to arrive in the VOQ at t. The application also

keeps track of when messages are sent and received and we record the time at which

the last message is received before ending the simulation.

113

In order to translate the backlog schedule into a message schedule, we have to define

the length of time that a scheduling interval represents and we have to express units of

backlog in terms of actual bytes. Note that the intervals represented by the schedule

do not have to correspond to the scheduling interval used by our distributed algorithm.

The backlog scheduling problem models scheduling as operating on discrete intervals

where rates are computed globally and rate and backlog quantities change instantly.

While this makes it easier to reason about, the actual scheduling that we described

in chapter 4 occurs in a distributed asynchronous fashion and only converges to the

behavior of the ideal model in steady state. Therefore for the simulations that we

present, we chose to have each interval in a schedule represent 100 ms and to avoid

confusion, we refer to this as an epoch. Using this interval, we can express backlog in

terms of bytes since a server can send one unit of backlog per interval. Thus to do

this, we had to use the effective sending rate (i.e. account for protocol overheads) so

that the backlog would cleared at the correct time if rates were set according to their

theoretical schedules.

An example message script for the following backlog schedule is shown below:

F = {F 0, F 1}

F 0 =

[
0 1

1 0

]
F 1 =

[
0 0

0 1

]

Backlog schedule F written at 2013-01-02 23:55:48.991388

|F|=2, n=2 servers, Beta(F+)=2.000000

The message script format is:

<source>;<destination>;<messageNum>;<startTime>;<messageSize>;<messageRate>

0; 0; 0; 0.0 ms; 0 B; 0 bps

0; 1; 0; 0.0 ms; 11898569 B; 0 bps

1; 0; 0; 0.0 ms; 11898569 B; 0 bps

1; 1; 0; 0.0 ms; 0 B; 0 bps

0; 0; 0; 100.0 ms; 0 B; 0 bps

0; 1; 0; 100.0 ms; 0 B; 0 bps

1; 0; 0; 100.0 ms; 0 B; 0 bps

1; 1; 0; 100.0 ms; 11898569 B; 0 bps

114

5.6.2 Initial-backlog

Earlier we demonstrated that assigning rates in max-min fair fashion can lead to

suboptimal solutions even in the initial backlog case. We can use the example we

showed in section 5.3.3 as a template for a pattern that we can use to probe the gap

in performance between the backlog-proportional and max-min algorithms. In the

example, the maximum backlog degree is β(B) = 2. Send node 0 and receive nodes

0 and 1 all have backlogs matching the maximum backlog degree. Thus these nodes

must reduce their backlog degree by 1 in each interval to finish in the optimal amount

of time (2 intervals). For send node 0 to do this, however, it must receive more than

its max-min fair share which is 1
3
.

The two “two-phase” pattern:

B0 =

n− 1 n− 1 0 0 ... 0

1 1 0 0 ... 0

...

1 1 0 0 ... 0

By introducing more servers, we can extend this scenario to create a wider gap be-

tween the max-min rate and the rate it must send to finish in the optimal amount

of time. Since the length of the solution depends on the last server to finish we only

need to exploit this gap at node 0. With n total servers, row 0 has n − 1 units of

backlog in each column while the remaining n − 1 rows have just 1. The maximum

backlog degree is β(B0) = 2 ∗ (n − 1) and since b0,+ = β(B0), an optimal solution

must clear 1 unit from row 0 in each interval. The max-min algorithm will fail to do

this causing it to clear the backlog in two phases.

Phase 0:

1
n

1
n

0 0 ... 0
1
n

1
n

0 0 ... 0

Rt = 1
n

1
n

0 0 ... 0

...
1
n

1
n

0 0 ... 0

Phase 1:

1
2

1
2

0 0 ... 0

0 0 0 0 ... 0

Rt = 0 0 0 0 ... 0

...

0 0 0 0 ... 0

115

In the first phase, every edge will be assigned 1
n

and it will last for n intervals at

which point all rows except row 0 are clear. At the start of the second phase, row 0

has n− 2 units remaining in each column. Since it will assign 1
2

to each, it will take
n−2
2

additional phases for a total of n + n−2
2

intervals. Since the optimal requires n

intervals, with large n the performance approaches 3
2
.

By generalizing the two phase pattern to use f flows instead of just two, we were able

to approach the worst case bound of 2. With n servers, the worst-case is found at

f =
√
n.

B0 =

0 1 f − 1

0 f + 1 f + 1 ... f + 1

1 1 1 ... 1

2 1 1 ... 1

...

n− 1 1 1 ... 1

Here the first and second phase both last n intervals causing max-min to have a length

of 2 ∗ f 2 while the optimal is β(B0) = (f + 1) ∗ f . This yields a ratio of 2f2

f(f+1)
which

approaches the upper bound of 2 for large n.

We collected the theoretical results for this pattern for n = 3 through n = 50 which

we compared through simulation. The results are shown in Figure 5.2. We let each

interval in the backlog schedule represent 100 ms. We fixed the scheduling interval

in simulation to T = 1 ms. We measured the length of time it took for the last

server to finish sending and divided it by 100 ms epoch to compare with the length of

the theoretical schedules. Since the scheduling interval is fixed, the control overhead

grows as n increases causing the distributed algorithms to require slightly more than

their ideal theoretical values.

In the experiment above, each backlog increase fi,j,t represents a message that starts

at time t. The application at server i sends the message out in its entirety as soon

as time t arrives which means that all of the backlog corresponding to fi,j,t arrives

instantly in the VOQ destined for server j. While this is how it is modeled by the

scheduling problem, it assumes large amounts of data can arrive as soon as it is

generated by an application. On the one hand this is reasonable given that protocols

like TCP often accept large messages from user space. Rather than have TCP buffer

this data, it should be possible to have this data (or knowledge of its arrival) be

116

0 5 10 15 20 25 30 35 40 45 50
n - (number of servers)

0

10

20

30

40

50

60

70

80

90

100

|R
|

-
(l

e
n
g
th

 o
f

sc
h
e
d
u
le

)

Theoretical - max-min

Theoretical - bklg-prop

Simulated - bklg-prop

Simulated - max-min

Figure 5.2: Initial backlog “two-phase” stress test

propagated immediately to the scheduling layer. For example, by manipulating the

receive window, we could force TCP to deliver a large window of segments as they

arrive.

We also ran the same simulation with a limit on the total rate at which messages

could leave the application and enter the scheduling layer. Here we set that limit to

match the sending rate of the server, i.e., 1 Gbps. The result is shown in Figure 5.3.

The limit did not affect the performance of max-min, as we should expect, since it

assigns all flows on a bottleneck link the same rate regardless of backlog. However,

the backlog proportional algorithm is clearly affected since the backlog that exists

according to the schedule arrives gradually. The limit effectively halves the gap

between the algorithms causing the backlog proportional algorithm to finish in 1.5

times the optimal length. This result shows that even with this tight restriction, the

backlog-proportional algorithm provides an improvement over max-min but that its

benefit hinges on exploiting full knowledge of the available backlog.

117

0 5 10 15 20 25 30 35 40 45 50
n - (number of servers)

0

10

20

30

40

50

60

70

80

90

100

|R
|

-
(l

e
n
g
th

 o
f

sc
h
e
d
u
le

)

Theoretical - max-min

Theoretical - bklg-prop

Simulated - bklg-prop

Simulated - max-min

Figure 5.3: Limit on the rate of backlog entering the scheduling layer.

5.6.3 Backlog scheduling stress test

In section 5.4.2 we presented an example that showed the backlog proportional algo-

rithm has a lower of 1.5 bound on the optimal offline solution. While we could find

individual cases where the backlog proportional solution was 1.5 times the optimal

length, we searched for a pattern that could be generalized to n servers. While we

were unable to discern the precise pattern, this process did yield some insight into

what the worse case looks like. For example, the more difficult cases arise when it

is possible to finish in |F | = β(F+) intervals but only if certain critical backlogs are

cleared in each interval. Based on our experience, we developed a “stress test” which

represents a difficult problem for the online algorithms. The stress test pattern for

the case of n = 4 is shown below:

F = {F 0, F 1, ..., F n−2}

F 0 =

0 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0

F 1 =

0 0 0 0

0 0 1 1

0 1 0 0

0 1 0 0

F 2 =

0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

118

With n servers, the backlog schedule for the stress test has length |F | = n − 1 and

max backlog degree β(F+) = n− 1. Note that the diagonals are all non-zero in order

to avoid having servers send to themselves. A similar stress test can be constructed

to include the diagonal values which results in |F | = β(F+) = n. We found this to

be a slightly more difficult case resulting in worse online performance. However, with

either version, the optimal solution S requires more than |S| > β(F+) intervals and

the ratio |S|
β(F+)

converges to just under 1.3 times as n scales. We suspect if we could

preserve |S| = β(F+) by using a variation of this pattern, we may be able to force the

max-min and the backlog-proportional algorithms to exhibit their worst case bounds.

0 5 10 15 20 25 30 35 40 45 50
n - (number of servers)

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

|R
|

-
(l

e
n
g
th

 o
f

sc
h
e
d
u
le

)

Theoretical - max-min

Theoretical - bklg-prop

Simulated - bklg-prop

Simulated - max-min

Theoretical - optimal LP

Figure 5.4: Performance with “stress test” backlog schedule.

We collected the theoretical values for n = 3 through n = 50 as before and the results

are shown in Figure 5.4. The length of the solution produced by the LP is also shown.

Here, we did not put a limit on the arrival of backlog into the scheduling layer for

the simulated results. While this pattern did not quite push the theoretical bound of

1.5, the results do illustrate performance in the range that we predicted.

119

5.7 Extending the results to oversubscribed trees

To model the backlog scheduling problem, we focused specifically on the virtual switch

abstraction. We have strong reason to believe, however, that many of these results

can be extended to any oversubscribed tree-structured network, such as the virtual

oversubscribed cluster. For example, it is easy to see that the LP formulation can be

extended to accommodate any network. We simply replace the server send and receive

constraints with the constraints matching condition 4.1, which are the equivalent

constraints on the individual links as described in section 4.1. It can also be shown

that the general backlog proportional algorithm described in 4.2.5 is still optimal for

the initial backlog problem. While we do not provide a proof here, if the maximum

backlog degree is redefined as the maximum ratio of backlog to capacity β(Bl)
cl

over any

link l, then following a similar approach to that used in section 5.3.4, it can be shown

that the backlog proportional algorithm requires at most
⌈
β(Bl)
cl

⌉
intervals which is

the minimum possible. We also wrote the python scripts described in section 5.6.1 to

support the oversubscribed cluster and accept the oversubscription factor O, cluster

size S, and link capacity C as parameters. The default values for these parameters

are chosen to allow the virtual switch to be treated as a special case. We tested many

different example schedules with several oversubscribed cluster parameters and did

not see results that violate the competitive bounds that we proved for the virtual

switch abstraction.

5.8 Summary

In this chapter we explored what impact different scheduling strategies may have on

the performance of an application in a data center network. In particular, we focused

on the metric of minimizing the total time to transfer all the backlog that must be

sent between servers which we modeled as an optimization problem. We showed that

to clear the backlog that is currently present, our backlog-proportional algorithm

is optimal and that max-min can require up to twice as long. By introducing the

backlog schedule to model the arrival of future backlog, we then reasoned about

how the scheduling algorithms would perform more generally. We provided a linear

programming formulation that optimally solves a backlog schedule offline and we

120

set bounds on the performance of online algorithms. We provided several examples

of backlog schedules that demonstrate these results which we also verified through

simulation with our distributed algorithm from chapter 4.

121

Chapter 6

Conclusion

6.1 Summary

This thesis makes several contributions. First, we explored the use of packet-level

routing in FatTree data center networks constructed from commodity Ethernet switches.

We showed that, in the context of providing bandwidth guarantees to tenants, packet-

level routing provides a fundamental advantage over flow-level routing, allowing a

significantly higher fraction of the network to be utilized. We proposed several new

routing algorithms and demonstrated that they can outperform purely random al-

gorithms like VLB if server traffic can be regulated to a sufficient degree. We also

proposed a novel resequencing method that uses a combination of timestamps and

sequence numbers to deal with the out-of-order arrivals that result from routing at

the level of packets.

As a second contribution, this thesis introduced a distributed scheduling framework

to control the rate of traffic between a tenant’s servers. It has two primary func-

tions. By tightly controlling the sending rates of servers, it acts as a flow control

mechanism that can prevent congestion and minimize queueing in the network. This

provides a benefit to packet-level routing because it limits the queueing that normally

occurs. Our results show that it enables our multi-phase routing algorithm to achieve

near optimal performance and that this improvement more than compensates for the

control overhead produced. Secondly, it complements previous work by providing a

distributed mechanism to enforce the bandwidth limits imposed on tenants by their

virtual network abstractions. We provided a novel distributed algorithm that can set

122

rates in both max-min and backlog-proportional fashion and demonstrated that it

provides the desired performance isolation with the virtual switch abstraction.

Finally, we proposed backlog scheduling as a means to investigate whether certain

scheduling strategies may be preferable for different classes of applications. We fo-

cused on the objective of minimizing the overall time required to transfer backlog

between servers and we used a formal approach, modeling the problem in three in-

cremental steps. We showed that to clear the backlog already present, the backlog

proportional algorithm was optimal and completes up to twice as quickly as max-

min. We then model the arrival of new backlog by introducing the backlog schedule

and we provided a linear program that optimally solves a backlog schedule offline.

We showed that given advanced knowledge of the arriving backlog, it is possible to

perform better but that the backlog-proportional algorithm is likely within 1.5 of the

optimal.

6.2 Future Directions

Our investigation of packet-level routing in Chapter 3 focused exclusively on the

FatTree topology. A logical next step would be to determine whether our results can

be applied to other mutli-path topologies. We expect that some of the results can be

extended to apply to other forms of the Clos network such as VL2.

One of the key unknowns that we confronted in our study is the precision with which

sending rates can be controlled. This presented a significant obstacle in our evaluation

of load balancing since we found that the results were very sensitive to bursty traffic.

To overcome this, we attempted to model the possible range of performance that

we could expect from flow control mechanisms in real data center networks. We did

this by modeling the sending rates of servers as a process that was either Poisson or

periodic. The results showed that our multi-phase load balancing algorithm only pro-

vides a significant improvement when the sending process is periodic. The scheduling

framework can, in principle, simulate the periodic process by strictly controlling the

departure times of packets at each VOQ. However, it remains to be seen whether it is

practical to achieve the performance of this strict model with a real implementation.

123

Therefore, an important step to further this work would be to determine where a real

implementation may lie on the strict/loose spectrum that we have examined.

Distributed scheduling opens up a rich problem space and the work that we have

done represents one approach. The goal was to explore the concept and understand

some of the trade-offs. There are many possible optimizations that were not pursued

in an effort to simplify the design and evaluation. A logical next step would be to

explore some of these optimizations and their tradeoffs. Additionally, our evaluation

focused solely on the virtual switch abstraction. Our proxy based algorithm supports

any network topology. However, more complex abstractions, such as the Virtual

Oversubscribed Cluster (VOC), raise additional scaling challenges since proxies for

oversubscribed links need to manage rates for many more servers. While support for

such topologies needs to be further developed, one property that could be exploited is

that with more servers, the relative differences between their rates decreases, partic-

ularly with max-min. This means rates on these links can be scheduled over a longer

scheduling interval without significantly impacting performance. Another approach

might be to distribute the proxy state for such links among “local proxies”. For ex-

ample, to manage rates on an oversubscribed link in the VOC abstraction, a local

proxy could be assigned at each group switch to manage the rates for the servers at

that switch. For local proxies to converge to the rates assigned by a single proxy, they

would need to maintain complete replicas of the state managed by the other proxies.

Alternatively, we could accept an approximate solution in exchange for reduced con-

trol overhead by allowing local proxies to exchange just the aggregate backlog and

bandwidth requested by their servers.

The use of VOQs with changing rates means the scheduling layer presents an incon-

sistent view of the network to the layers above. How precisely the scheduling layer

may interact with the protocols and applications above is a question worthy of further

exploration. One direction might be to examine how the scheduling layer interacts

with common protocols, such as TCP, and determine whether performance can be

improved by making scheduling protocol aware.

Another key question is how scheduling impacts the performance of different types

of applications. Given the unknown dependency between rates assigned and the

behavior of the application, the backlog scheduling problem provides one model to

124

help answer this question. However, it assumes the arriving backlog is effectively

independent of the backlog delivered on the timescale at which scheduling occurs. At

a high level, the role of the network in any distributed system is to deliver messages

between the various nodes. Therefore, the performance of any data center application

can only depend on the network as far as it is bottlenecked on the exchange of some

message between its servers. Without making assumptions about the application, we

cannot know which messages represent a bottleneck to the application at any given

time. Moreover, the scheduling layer cannot even determine where the boundaries of

the application layer messages are.

In-spite of these issues, it may still be possible to provide some general way to char-

acterize the performance of the application in terms of the rates assigned to VOQs.

We briefly describe one possible approach, which we call message scheduling, that

attempts to capture these unknowns. The essential idea is that messages can be de-

fined implicitly based on the amount of backlog that arrives over some period, e.g.

one scheduling interval. Given that the scheduling layer has no way to know what

messages matter most to the application, the goal would be to bound the time it

takes to deliver any message. In order to do this, lets suppose that in the absence of

competing traffic, it takes x units of time to deliver a given message. If it takes X

units to deliver the message with a given rate schedule, the stretch for that message

would be X
x

. The precise objective would then be to produce a schedule that mini-

mizes the maximum stretch over all messages. It is likely that if some algorithm could

bound the maximum stretch to some value S, then the application would complete

in at most S times the completion time it would have if every message were delivered

in the minimum time possible. This problem could be modeled incrementally in a

similar fashion to the backlog scheduling problem and it may provide an interesting

alternative to complement the approach that we have taken in this work.

125

Appendix A

FatTree DCN Simulator

A.1 Introduction

This appendix describes our FatTree data center network simulator. This simulator

was developed specifically to conduct the work presented in this thesis. However,

because it was built on top of the publicly available OMNeT++ [7] and INET [4]

frameworks, some of its components may potentially benefit other researchers who

are familiar with these tools. This appendix provides an overview of the simulator

and also serves as the primary documentation for others that wish to incorporate

parts of our simulation model into their own projects.

The simulator can be found at:

http://www.arl.wustl.edu/~mah5/dc_sim.html

A.1.1 Motivation

The simulator was developed to satisfy the following objectives:

• Scalable: Capable of simulating data centers of a reasonable scale, e.g. hundreds

or thousands of servers.

126

http://www.arl.wustl.edu/~mah5/dc_sim.html

• Adaptable: The networking stack of end hosts can be easily modified to in-

corporate new mechanisms, such as the distributed scheduling and packet-level

routing techniques described in this thesis.

• Reuse: Should leverage existing tools when possible and be reusable by others.

There are many existing tools for network simulation, such as ns-2/ns-3 [5]. These

tools are already capable of simulating Ethernet networks and with server nodes that

emulate the full TCP/IP stack. Often, these simulation models are highly detailed

and focus on providing the most complete and accurate representation of real world

hardware and software. While this makes them powerful simulation tools, it also

makes them less suited for our needs for several reasons. First, we do not need to

simulate every detail of each individual networking protocol. Simulating unnecessary

detail adds complexity that can obscure the essential behavior we are trying to study

and also adds overhead that can limit the speed and scale of our simulations. Second,

we will need to make substantial changes to the server nodes and switch nodes to

support the type of networks and mechanisms that we describe in this work. For

example, Ethernet does not natively support topologies with multiple paths, such as

the FatTree. Since there are different proposals to construct FatTree DCNs from ex-

isting switches, we would have to implement one of these approaches in the simulator

in order to simulate FatTree Ethernet networks. Making use of the existing protocol

implementations at server nodes would also be difficult since we would likely have to

address many of the same implementation-level issues that we would face implement-

ing our distributed scheduling framework and packet-level routing mechanisms in a

real operating system. Given these considerations, we decided to develop our own

light-weight packet-level simulator based on the OMNeT++ framework.

A.1.2 OMNeT++

OMNeT++ is a C++ framework for discrete event simulation. It consists of an

open-source simulation kernel, a library of extensible C++ components, and a suite

of tools to facilitate statistics collection, results analysis, graphical debugging, etc.

It is technically not a simulator in and of itself, but rather a simulation framework

that provides all of the general components necessary to build a simulator. Vargas

127

et al. [57] provide a good overview of OMNeT++’s design objectives. OMNeT++ is

also well documented and the reader is encouraged to consult the publicly available

user manual for more complete and up-to-date information. Here we provide a brief

overview of the relevant features needed to understand our simulator.

The OMNeT++ architecture consists of several components. First, there is a simula-

tion kernel that contains all of the machinery necessary to support simulation, such as

the event queue, random number generators, statistics collection tools, etc. Second,

there is a model component library that includes both a set of standard OMNeT++

components as well as any user-defined components. The simulation kernel inter-

faces with one of two environments; a graphical user environment, called TKENV,

or a command line environment, called CMDENV. TKENV is useful for graphical

debugging and visual demonstrations whereas CMDENV is more suited to running

large batches of automated simulations. Finally, the last component is the simulation

model which is executed by the simulation kernel and displayed by the environment.

Simulation Model

The simulation model is the primary component supplied by the user. OMNeT++

is built around the notion of modules, which are simple reusable components that

can be extended by the user. Modules can be connected together and interact via

message passing and they form the basis of the simulation model.

Modules

There are two types of modules; simple modules and compound modules. Simple

modules are the basic building blocks of a simulation model and can be connected

together to create compound modules. Each simple module corresponds to a C++

class that derives from OMNeT++’s cSimpleModule base class. While the C++

class determines how the module behaves, the modules themselves are defined using

OMNeT++’s “Network Description Language” (NED). The NED description for a

simple module contains two sections. First, is the parameters section which defines

any configurable properties and settings that the module may have. Second, is the

gates section which defines the “ports” that allow modules to exchange messages

with other modules. Compound modules include several additional sections to define

the submodules that they contain and the internal connections between submodules.

Note that submodules may be either simple modules or other compound modules.

128

Finally, a compound module can be defined as a “network” which is the top level

module that contains all of the other modules in the simulation model.

Channels

The connections between modules are called channels. The primary purpose of chan-

nels is to deliver messages between modules. While OMNeT++ is not specifically

designed to simulate communication networks, it does provide several types of chan-

nels such as “DelayChannel” and “DatarateChannel” which are intended to represent

physical links in a communication network.

Messages

Every event in simulation is represented by a message and all messages are instances

of objects derived from the cMessage class that OMNeT++ provides. When a mes-

sage arrives at a module, it uses the message properties to determine the type of event

that occurs. Thus to simulate any event, a module must first send a message which

causes the message to be placed on the event queue. To schedule an event to occur at

a specific time, a module can send a message to itself and specify the time at which

the message should arrive. A module can also trigger an event to occur in another

module by sending a message out one of its ports. In this case, the module that re-

ceives the message is determined by what is on the other end of the channel connected

to the module’s outgoing port. Similarly, the time of message arrival depends on the

type and properties of the channel and message. For example, OMNeT++ provides

a cPacket class that extends cMessage. When it is sent over a DatarateChannel, the

time of arrival is determined by the packet size and the channel’s data rate prop-

erty. New message types can also be created using OMNeT++’s message definition

language. OMNeT++ automatically reads the resulting .msg files and produces the

corresponding C++ class which the user may optionally extend.

Experiments

Since a user will often want to conduct many different experiments using the same

simulation model, OMNeT++ enforces a strict separation of the simulation model

from specific simulation experiments. The simulation model consists of all the NED

files, message files, and C++ code for the modules and messages in the simulation. An

experiment, by contrast, is defined by a special INI configuration file and is considered

separate from the model. The configuration file specifies which network module to

129

use, how the various module parameters should be set, which statistics to collect,

as well as all of the general simulation parameters, such as the simulation run time,

the warmup interval, the number of repetitions to perform, the seeds to use for the

random number streams, and so forth.

A.1.3 INET framework

The INET framework [4] is a popular third-party network simulation package devel-

oped for the OMNeT++ environment. It provides models for many common protocols

such as IPv4, IPv6, UDP, various TCP flavors, and many of the commonly used Eth-

ernet standards. To minimize complexity and avoid simulating unnecessary details,

we did not build our simulation model directly on top of the INET models. Instead,

we primarily use the INET code as a reference for our own implementation and to

leverage some of the constants and properties that it already defines (e.g., sizes of

fields in protocol headers). However, we did write an interface to support INET’s

implementation of TCP in our model but we did not use it for any of the simulations

that we performed in this thesis.

A.2 Simulator Overview

Our data center network simulator consists of the C++ source, NED and message

files, and a set of support utilities to create a light-weight OMNeT++ simulation

model for FatTree DCNs. Here we provide a brief overview of the simulator and its

components and provide a high-level view of how we modeled FatTree DCNs.

Dependencies

Our project uses OMNeT++ version 4.3 which is free for non-commercial use and

runs on Windows, OS X, and most Linux/Unix systems.

Some of the modules in our code also depend on the following:

130

• INET 2.0.0 [4]. Note that to create an OMNeT++ project using our code, INET

must be included in the project’s workspace and listed as a project reference.

• Boost C++ libraries [1]. We used boost version 1.52 and we link our code

against the boost system and boost filesystem libraries.

Directory structure

The root directory consists of three folders:

• src: the root folder for all of the simulation modeling files (i.e., NED files and

their corresponding C++ code)

• BuildFatTree: contains a simple command line application to generate NED

files for FatTree topologies.

• simulations: contains ini files for several example experiments as well as some

python scripts for results processing.

The structure of the src folder containing the model files is as follows:

• common: includes commonly used headers and also houses the base classes

that are common to multiple parts of the project.

• networks: this folder includes the NED files defining the data center topologies.

• node: all of the server code is kept here and its subfolders correspond to the

layers of the networking stack.

• packets: contains the OMNeT++ message definitions and C++ source that

define all the packets and control messages used.

• switch: contains the components that make up the network switches.

131

A.2.1 Modeling FatTree DCNs

Here we briefly describe our representations for the various elements that make up

our FatTree DCN simulation model.

Packets

Since we did not use the INET models for protocols like Ethernet and IP, we model

these protocols by creating simple message types that capture their essential behavior.

We created the following message definitions to represent the different packet types

for each protocol:

• DCN EthPacket: We extended OMNeT++’s cPacket type to model Ethernet

packets. We customized the automatically generated C++ class produced by

the message definition so that we could account for the minimum payload and

the various header fields in the Ethernet frame when setting the packet size.

We assumed the standard MTU of 1500 bytes to determine the maximum size

of Ethernet frames.

• DCN IPPacket: We extended the DCN EthPacket type to create a message

type for IP packets. It adds 20 bytes to account for the size of the IP header

fields. In addition, we assumed that we could overload existing IP options

fields in order to account for the sequence numbers and timestamps used by our

resequencing approach. As a result, we added an additional 8 bytes to the IP

overhead.

• DCN UDPPacket: To represent UDP datagrams, we extended the DCN IPPacket

type. It simply extends the packet size accounting logic to include the overhead

of the UDP header.

We did not create a separate TCP packet type since we rely on INET’s TCP model

to support TCP which already defines its own TCPSegment type. To support this

message type in our framework, we use the cMessage class’s encapsulate/decapsulate

feature to transport TCPSegments inside DCN IPPackets.

Links

To model network links, we created a DCLink class which is an extension of the

132

standard OMNeT++ cDatarateChannel class. This class automatically simulates

transmission delay by using the data rate of the link and the packet’s size field. The

links can support any bit rate but we primarily used a value of 1 Gbps for all of the

links in the network. The links can also simulate propagation delay as well as channel

noise by introducing random bit errors. However, we did not use these features in

any of our simulations.

Switches

We assume switches are store and forward switches (i.e., no cut-through switching).

We model the switches as ideal output-buffered switches by placing a queue in front of

each port and by directing packets into the queues corresponding to their destinations

as soon as they arrive. The routing logic at switches is hardcoded specifically to route

packets across the FatTree topology. While there are a variety of different approaches

to construct FatTree DCNs from existing switches, we do not tie our model to any

particular approach and only assume that some mechanism exists to allow servers

to choose paths for their packets. We model this by including a “path” field in

the DCN EthPacket class that can be set by a server enabling it to indicate to the

switches which path the packet should take. Dropping at switches occurs when the

output queue grows beyond the defined limit, which can be set in terms of bytes,

packets, or both.

Servers

Since this thesis focused on software-level mechanisms, the majority of the complexity

of our simulation model resides in the server nodes. We structured the server nodes

according to the layers of an operating system’s networking stack. We devote section

A.3 to describing each of the key modules that make up our server model.

Networks

In the network folder, we provide a set of NED files (SubFatTree.ned, FatTree.ned, and

ServerNode.ned) to recursively construct FatTree networks by generating a compound

module to represent each subtree. However, we found that this approach was not

very efficient because each time a packet traverses the network, it must be placed on

the event queue every time it passes between the compound modules corresponding

to different subtrees. We found that it was far more efficient to define one network

compound module that directly contains all of the switches and servers as submodules.

133

As a result, we wrote a stand alone application called BuildFatTree to automatically

produce NED files for different FatTree networks. While the link speed is configurable,

the program only produces fully provisioned FatTree networks (i.e., full bisection

bandwidth) that are constructed from links of the same speed. The program also

supports the ability to produce the logically equivalent tree topology for a given

FatTree network, as described in Chapter 3.

A.2.2 BuildFatTree

BuildFatTree application:

The BuildFatTree application is written in C++ and can be built by entering the

BuildFatTree folder and typing “make”. Running the application without any argu-

ments will cause its usage to be displayed. Once a NED file is produced, it should

be placed in the src/networks folder so that OMNeT++ can find it. Note that the

OMNeT IDE attempts to index all C++ and NED source files which can cause it to

slow down dramatically when processing large files. For this reason, the generated

NED files for large networks should not be placed in the working directory or the IDE

should be instructed not to look in the path containing these files.

A.3 Server components

In this section we provide some more information about the various modules that

make up the server nodes. All of these modules are found in the src/node direc-

tory. With the exception of the server folder (described below), the structure of this

directory reflects the various layers of the network stack of servers.

A.3.1 Server

Sever nodes are compound modules that implement the Server interface defined by

Server.ned. The Server interface is simple. Only one parameter must be specified,

134

Figure A.1: The compound module representing a server.

the address, it interfaces with the network through the port gate. The ServerBase

module defines the structure of the server node and is shown in Figure A.1.

A.3.2 Control module

Allows exchanging messages between modules without affecting the simulation. As

opposed to keeping a memory reference or using the direct connection, the motivation

behind the use of a separate control module was two fold. First, messages can be

addressed to specific modules in other servers using their names. Delivery details

handled automatically making it easier to exchange information. Second, it preserves

the ability of the model to be distributed.

135

A.3.3 Application Layer

While there were several application level modules that we developed, we primarily

used one which we describe here.

Message Application

The message application is designed to send fake data representing generic application-

layer messages. We used the message application to generate many of the traffic pat-

terns that we used in this dissertation. These messages are read in from a script file.

The message application at each of the server nodes in the simulation read through

the script to determine the messages that they have to send to other servers.

An example of the message script format is shown below:

Example script file 2012-04-13 16:53:12

The message script format is:

<source>;<destination>;<messageNum>;<startTime>;<messageSize>;<messageRate>

0 ; 1 ; 1 ; 0 s ; 512 KiB ; 100 Mbps

0 ; 1 ; 2 ; 500 ms ; 3.2 MiB ; 3 Mbps + 100 kbps

1 ; 2 ; 1 ; 1.5 s ; 1 GiB ; 0 bps

Each message has a source and a destination identifying the sending and receiv-

ing server respectively. The messageSize indicates the number of application-level

bytes in the message. The startTime indicates when the sending server should begin

sending the message. Once the startTime is reached, the sending server will begin

sending the message by generating UDP packets whose size is determined by the

MessageApplication’s payloadSize parameter. The actual packets produced by the

application are therefore larger than the payloadSize. If the messageRate parameter

has a non-zero value, then the packets will be produced at intervals to match the

specified rate. Note that this rate is in terms of the raw Ethernet sending rate and

does account for the protocol overheads. If no messageRate is specified (i.e., the value

is 0 bps) then the maxSendRate parameter determines when the next packet will be

sent. The messsageNum field is optional and is simply intended to make it easier to

136

differentiate between different messages between the same pair of servers. The Mes-

sageApplication automatically handles unit conversion and mathematical expressions

by leveraging the parser that OMNeT++ uses to process ini files.

The MessageApplication can also instantiate a “ScriptGenerator” class. The Script-

Generator class is used to generate script files for different traffic patterns according

to the “scriptGenType” parameter. When this feature is used, only the first server

(with address 0) generates the script file during the first stage of module initialization.

The rest of the servers simply read the script file during the second stage of module

initialization.

A.3.4 Transport Layer

This folder contains modules to support a simplified UDP protocol and several mod-

ules to interface with INET’s TCP models. The UDP module is called SimpleUDP

and simply handles encapsulation and decapsulation of DCN UDPPackets.

A.3.5 Network Layer

The purpose of the network layer is simply to multiplex and demultiplex traffic for

the transport layer modules. Currently, there is only one type of network layer which

is called VirtualIP. While fairly simple, it does have to interact with the InetTCP-

Wrapper class to decapuslate and encpauslate TCP packets when TCP is used.

A.3.6 Scheduling Layer

The scheduling layer is one of the more complex layers. As shown in Figure A.2, the

scheduling layer is a compound modules that contains several simple modules. The

demultiplexer module (“demux”) accepts traffic arriving from the network layer. The

multiplexer module (“mux”) forwards traffic down to the next lower layer in the stack.

The multiplexer is also responsible for notifying the controller when a packet arrives

for a destination for which there is currently no VOQ. Traffic can also enter into the

137

Figure A.2: The compound module representing the scheduling layer.

scheduling layer via the controller module which filters out scheduling packets and

delivers them to the SchedulingAlgorithm module (shown simply as “algorithm”).

We provide two different scheduling algorithm modules. The first can be found in the

“proxy” subfolder and corresponds to the proxy algorithm described in section 4.3.

The other module is called “schedFromeFile” which is found in the subfolder of the

same name. This module allows rates to be read in and set from a rate schedule script.

The format of the rate schedule script mirrors the format of the backlog scheduling

script described in section 5.6.1. The primary purpose of this module is to provide a

way to test the scheduling framework in the simulator.

A.3.7 Resequencing Layer

The resequencingLayer folder contains the implementation of our hybrid resequencing

approach described in section 3.4. While we implemented only one approach to rese-

quencing, the Resequencer.ned file defines an interface for reseqeuencers that other all

resequencers must implement. The HybridResequencer module is a compound mod-

ule that implements the Resequencer interface and represents our hybrid resequencer

138

approach. The HybridResequencer dynamically allocates ResequencerBuffer modules

when a packet arrives from a sender for which there is currently no buffer. The mod-

ules are removed according to a timeout. The HybridResequencer module also adds

sequence numbers to outgoing packets and demultiplexes incoming packets into the

appropriate ReseqeuncerBuffer instance. The ResequencerBuffer modules actually

handle all of the complexity of queueing and releasing packets based on sequence

numbers and timestamps.

A.3.8 Link Layer

The LinkLayer compound module contains several types of submodules. First, it

contains the ServerPortQueue module which is an extension of OMNeT++’s Queue

container and it buffers packets as they are sent into the network. The rxMeter

and txMeter are submodules that can optionally be enabled to measure and produce

statistics for the incoming and outgoing server bandwidth respectively. The Load-

Balancer.ned file contains all of the various approaches to load balancing described

in chapter 3. Finally, path modules are dynamically allocated to represent each of

the paths that the server can send to. The path modules are simply used to collect

statistics about the number of bytes each server places on each path.

List of load balancers

• ECMP: Equal Cost Multi-Path load balancer randomly hashes flows to paths

based on their source and destination address.

• VLB: Valiant Load Balancing randomly assigns each packet to a path.

• RR/P-RR: Round Robin & permutation round robin load balancers described

in section 3.2.2.

• SRR/P-SRR: Surplus Round Robin load balancer described in section 3.2.2.

• SD/D-SD: Sorted-Deficit load balancer described in section 3.2.2.

• TP/P-TP: Two-Phase load balancer described in section 3.2.3.

139

• MP/P-MP: Multi-Phase load balancer described in section 3.2.3.

140

Appendix B

DCN Queueing Models

B.1 Overview

This appendix describes the analytical models that we developed to analyze the per-

formance of load balancing in FatTree DCNs. Our basic approach depends on mod-

eling the network as a series of M/M/1 queues with finite capacity. Before describing

our approach in more detail, we briefly review some of the necessary queueing theory

concepts below.

B.2 Basic queueing theory concepts

Queueing theory has often been applied to model packet-switched communication

networks. Kendall [33] introduced some notation that has been widely adopted to

describe the basic model of a queue. This notation is most often seen in the form

A/B/C where A describes the arrival process, B the departure process, and C the

number of “servers” that serve the queue. We will not use the term “servers” or

their “service times” in relation to queues in order to avoid confusion with the word

referring to the physical server machines in the data center network. In our context,

C is always 1 because a queue models the buffering of packets being transmitted on

a link. In this work, we fill focus on the M/M/1 queue, which is the classic model of

a queue.

141

B.2.1 M/M/1 Queue

μλ#
Figure B.1: A simple M/M/1 queue.

Figure B.1 provides a simple representation of the M/M/1 queue. The arrival of

packets at the queue are assumed to follow a Poisson process, specified with the

parameter λ. This means that if packets arrive at an average rate λ, their arrival times

are exponentially distributed around 1
λ
. Similarly, the transmission time, that is the

time it takes to transmit a packet, is also assumed to be exponentially distributed so

the transmission process is also Poisson and specified with µ. Allowing both processes

be Poisson enables us to model the number of packets in a queue as a simple birth-

death process. This means we can construct a Markov chain to compute their steady

state probabilities, which is the reason M is used in the notation.

To summarize the relevant properties of an M/M/1 queue:

λ is the arrival rate

µ is the transmission rate

ρ = λ
µ

is the traffic intensity (also called duty factor)

pk is the steady state probability of their being k packets in the system

pk = (1− ρ)ρk (B.1)

B.2.2 M/M/1/K Queue

The M/M/1 queue is assumed to have infinite capacity and, as a result, the through-

put, T , is simply λ if ρ < 1. To accurately model throughput in a packet switched

network, we need to capture the fact that queues have finite capacity. The model that

does this is the M/M/1/K queue, where K is used to denote capacity. An M/M/1/K

queue has space for K packets, and this value includes any packet that is being trans-

mitted. To find the throughput we need to calculate the probability of the queue

being full when a packet arrives. In other words, we need the steady state probability

142

pK . As before, the steady state probabilities can be computed from the Markov chain.

The only difference with the M/M/1 case is that the chain is finite [34]. Since the

probability of a packet being dropped is pK , the probability that it gets through is

1− pK . So the throughput T , in terms of packets is T = λ(1− pK).

To summarize the relevant properties of an M/M/1/K queue:

K is the number of packets that can be stored in the queue plus the packet being

transmitted.

pk is the steady state probability of their being k packets in the system.

pK is the probability of a packet being dropped.

pK =
(1− ρ)ρK

1− ρK+1
(B.2)

T = λ(1− pK) is the expected throughput in terms of packets.

B.2.3 Modeling a network of queues

As it turns out, the memoryless property of the Poisson process makes it easy to

analyze a network of M/M/1 or M/M/1/K queues. Part of Burke’s Theorem [17]

states that the output process of an M/M/1 queue with input parameter λ and

output parameter µ generates a Poisson output process at rate λ. This means that

if we were to place two M/M/1 queues in series, they would behave identically to

two separate M/M/1 queues with input parameter λ. Similarly, with two M/M/1/K

queues in series, the input parameter λ at the downstream queue must match the

throughput T of the upstream queue. This mutual independence allows us to analyze

a network of queues by considering each queue separately and to analyze a given

queue we only need to determine its input rate λ. Figure B.2 shows how we can

calculate these rates in a network of queues by considering the splits and joins in

the topology. Since the sum of two Poisson processes with parameter λA and λB is

another Poisson process with parameter λA + λB, we can divide any fraction of an

upstream queues throughput among down queues. Thus we can split traffic from a

queue or merge traffic from multiple queues as long as the net rate between a set of

queues is preserved as indicated in the figure.

143

μA#λA#

μB#

μC#

λB#
TA#=##

λC#
+#

(a) Split.

μC#

μB#

μD#TD#

λB#

λC#

TB#

TC#
+# =##

(b) Join.

Figure B.2: Splitting and joining traffic at M/M/1 queues.

B.3 M/M/1/K FatTree

Using the basic approach described above, we now explain our M/M/1/K model for

the data center network. The basic idea is that we can replace each switch with

a set of M/M/1/K queues. By placing one queue in front of each link, the queues

essentially capture the behavior of an ideal output queued switch. We can then view

each server as a traffic source that emits packets as a Poisson process with a rate λ,

which corresponds to the offered load. If we assume that the destination and path

of each packet is random, then we have a model that represents an all-to-all traffic

pattern with random load balancing (i.e., VLB). Since the traffic is symmetric, the

behavior of all down queues or all up queues at a given level will be identical. Thus

if we analyze the queue at a downward facing port at level 1 (a port connected to

a server), then we can characterize the throughput or loss that the average flow will

experience. Because the queues have a finite capacity K, we can also use this model

to understand the relationship between switch queue size, loss, and offered load.

Note that this model is only approximate. For example, traffic on a link in real

network can never exceed the speed of the link so the arrival of packets at queues will

not truly be Poisson, particularly at rates close to the speed of the link. Additionally,

the departure times at M/M/1/K queues are independent of the arrival times but in a

real network, this is not the case. This means that this queueing theory model most

accurately represents the case where packets are exponentially distributed around

some mean size.

To determine the throughput/loss of the average flow, we need to find the rate of

arriving traffic at a downward facing queue at level 1. To do this, we need to determine

how traffic arriving at a given port is split among the other ports at the switch. We

can use the fact that since each server sends to every other server, the fraction of a

144

server’s traffic destined for a given subtree is equivalent to the fraction of the total

number of servers contained in that subtree. We can then leverage the recursive

structure of the FatTree to express these rates in terms of the traffic at queues at

other levels of the tree. We detail all of these expressions that we derived below.

Let λD(i) be the rate of arriving traffic at a down port at level i

Let λU(i) be the rate of arriving traffic at a down port at level i

Let TU(i) be the throughput at an up port at level i.

Let TD(i) be the throughput at a down port at level i.

Let S(i) be the number of servers in the subtree at level i.

S(i) =

{
(k
2
)i if i < l

k(k
2
)l−1 if i = l

(B.3)

Let n = S(l) be the number of servers in the network.

Let D(i) be the number of down ports at a switch at stage i.

D(i) =

{
k
2

if 0 < i < l

k if i = l
(B.4)

Let U(i) be the number of up ports at a switch at stage i.

U(i) =

{
k
2

if 0 < i < l

0 if i = l
(B.5)

Let SD(i) be the number of servers reachable on a down port at level i.

Let SU(i) be the number of servers reachable on up ports at level i.

SD(i) =
S(i)

D(i)
(B.6)

SU(i) = n− S(d) (B.7)

Let fD→D(i) be the fraction of traffic arriving at a down port that is routed to another

down port at level i.

145

Let fD→U(i) be the fraction of traffic arriving at a down port that is routed to an up

port at level i.

fD→D(i) =
S(i− 1)

n− S(i− 1)
(B.8)

fD→U(i) =
SU(i)

n− S(i− 1)
(B.9)

Let λD→D(d) be the rate from one down port to another.

Let λD→U(d) be the rate from a down port to an up port.

Let λU→D(d) be the rate from an up port to a down port.

λU→D(i) =
TU(i+ 1)

D(i)
(B.10)

λD→D(i) = TU(i− 1)FD→D(i) (B.11)

λD→U(i) = TU(i− 1)
FD→U
U(i)

(B.12)

We can now express λD and λU in terms of the traffic coming from up ports and down

ports.

λU(i) = λD→U(i)D(i) (B.13)

λD(i) = (D(i)− 1)λD→U(i) + U(i)(λU→D(i)) (B.14)

TU(i) = λU(i) ∗mm1k throughput(λU(i), K) (B.15)

TD(i) = λD(i) ∗mm1k throughput(λD(i), K) (B.16)

mm1k throughput(ρ,K) is computed as follows:

mm1k throughput(ρ,K)

{
(1−ρ)ρK
1−ρK+1 if ρ < 1
1

K+1
if ρ = 1

(B.17)

146

Now that we have an expression for the throughput for any port at a given level, we

can compute TD(1), the throughput of a downward facing port at level 1. This is

equivalent to the throughput of the average flow and 1 − TD(1) is equivalent to the

expected loss of the average flow. Since these values depend on the queue size K,

the offered load λ, and the dimensions of the FatTree (k and l), we can use these

expressions to determine the offered load at which the loss exceeds a given threshold

with a fixed queue size or the queue size needed to remain under a fixed loss threshold

for a given offered load. We wrote a python script to carry out these calculations which

we used to produce the results shown in section 3.3.3.

B.4 M/M/1/K LogicalTree

To model the logically equivalent tree for a FatTree network, we can use the exact

same idea. However, for the links in the logical tree, we scale the sizes of their queues

in proportion to the number of links that they represent in the FatTree. The number

of FatTree links that a link at level i represents turns out to be equivalent to the

number of servers in a subtree at level i divided by the number of down ports at a

switch at level i.

This means that the only expressions that are different in the logical tree representa-

tion are:

TU(i) = λU(i) ∗mm1k throughput(λU(i), K
S(i)

D(i)
) (B.18)

TD(i) = λD(i) ∗mm1k throughput(λD(i), K
S(i+ 1)

D(i+ 1)
) (B.19)

147

References

[1] boost. http://www.boost.org, March 2013.

[2] Cplex. http://ibm.com/, March 2013.

[3] Cvxopt. http://abel.ee.ucla.edu/cvxopt/, March 2013.

[4] Inet framework. http://inet.omnetpp.org, February 2013.

[5] ns-3. http://http://www.nsnam.org/overview/what-is-ns-3/, March 2013.

[6] Numpy. http://www.numpy.org, March 2013.

[7] Omnet++. http://www.omnetpp.org, March 2013.

[8] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat. Hed-
era: Dynamic flow scheduling for data center networks. In 7th Symposium on
Networked Systems Design and Implementation (NSDI 2010), 2010.

[9] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, com-
modity data center network architecture. SIGCOMM Comput. Commun. Rev.,
38(4):63–74, 2008.

[10] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data
center tcp (dctcp). In SIGCOMM ’10: Proceedings of the ACM SIGCOMM 2010
conference on SIGCOMM, pages 63–74, New York, NY, USA, 2010. ACM.

[11] Amazon. Amazon elastic compute cloud (amazon ec2), 2011. http://aws.

amazon.com/ec2/.

[12] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha,
and E. Harris. Reining in the outliers in map-reduce clusters using mantri.
In Proceedings of the 9th USENIX conference on Operating systems design and
implementation, pages 1–16. USENIX Association, 2010.

[13] H. Ballani, D. Gunawardena, and T. Karagiannis. Network sharing in multi-
tenant datacenters.

[14] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. Towards
predictable datacenter networks. In SIGCOMM ’11: Proceedings of the ACM
SIGCOMM 2011 conference on SIGCOMM, 2011.

148

http://www.boost.org
http://ibm.com/
http://abel.ee.ucla.edu/cvxopt/
http://inet.omnetpp.org
http://http://www.nsnam.org/overview/what-is-ns-3/
http://www.numpy.org
http://www.omnetpp.org
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/

[15] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. Under-
standing data center traffic characteristics. SIGCOMM Comput. Commun. Rev.,
40(1):92–99, 2010.

[16] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. Microte:
fine grained traffic engineering for data centers. In Proceedings of the Seventh
COnference on emerging Networking EXperiments and Technologies, CoNEXT
’11, pages 8:1–8:12, New York, NY, USA, 2011. ACM.

[17] Paul J. Burke. The output of a queuing system. Operations Research, 4(6):pp.
699–704, 1956.

[18] Anna Charny and Raj Jain. Congestion control with explicit rate indication. In
PROC. ICC’95, pages 1954–1963, 1995.

[19] Y. Chen, R. Griffith, J. Liu, R.H. Katz, and A.D. Joseph. Understanding tcp
incast throughput collapse in datacenter networks. In Proceedings of the 1st
ACM workshop on Research on enterprise networking, pages 73–82. ACM, 2009.

[20] C. Clos. A Study of Non-blocking switching networks. Bell Syst. Tech. J.,
32:406–424, 1953.

[21] Andrew R. Curtis, Jeffrey C. Mogul, Jean Tourrilhes, Praveen Yalagandula,
Puneet Sharma, and Sujata Banerjee. Devoflow: Scaling flow management for
high-performance networks. In SIGCOMM ’11: Proceedings of the ACM SIG-
COMM 2011 conference on SIGCOMM, 2011.

[22] William Dally and Brian Towles. Principles and Practices of Interconnection
Networks. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[23] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[24] A. Dixit, P. Prakash, and R.R. Kompella. On the efficacy of fine-grained traf-
fic splitting protocolsin data center networks. In ACM SIGCOMM Computer
Communication Review, volume 41, pages 430–431. ACM, 2011.

[25] Albert Greenberg, James Hamilton, David A. Maltz, and Parveen Patel. The
cost of a cloud: research problems in data center networks. SIGCOMM Comput.
Commun. Rev., 39(1):68–73, 2009.

[26] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta
Sengupta. Vl2: a scalable and flexible data center network. In SIGCOMM ’09:
Proceedings of the ACM SIGCOMM 2009 conference on Data communication,
pages 51–62, New York, NY, USA, 2009. ACM.

149

[27] Albert Greenberg, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta
Sengupta. Towards a next generation data center architecture: scalability and
commoditization. In PRESTO ’08: Proceedings of the ACM workshop on Pro-
grammable routers for extensible services of tomorrow, pages 57–62, New York,
NY, USA, 2008. ACM.

[28] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi,
Chen Tian, Yongguang Zhang, and Songwu Lu. Bcube: a high performance,
server-centric network architecture for modular data centers. SIGCOMM Com-
put. Commun. Rev., 39(4):63–74, 2009.

[29] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang, and Songwu
Lu. Dcell: a scalable and fault-tolerant network structure for data centers. SIG-
COMM Comput. Commun. Rev., 38(4):75–86, 2008.

[30] Qiming He, Shujia Zhou, Ben Kobler, Dan Duffy, and Tom McGlynn. Case study
for running hpc applications in public clouds. In Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing, HPDC
’10, pages 395–401, New York, NY, USA, 2010. ACM.

[31] T. Hoefler, T. Schneider, and A. Lumsdaine. Multistage switches are not cross-
bars: Effects of static routing in high-performance networks. In Proceedings of
the 2008 IEEE International Conference on Cluster Computing. IEEE Computer
Society, Oct. 2008.

[32] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. Multistage switches
are not crossbars: Effects of static routing in high-performance networks. In
CLUSTER, pages 116–125, 2008.

[33] David G. Kendall. Some problems in the theory of queues. Journal of the Royal
Statistical Society. Series B (Methodological), 13(2):pp. 151–185, 1951.

[34] Leonard Kleinrock. Queueing Systems. Volume 1: Theory. Wiley-Interscience,
1975.

[35] E. Krevat, V. Vasudevan, A. Phanishayee, D.G. Andersen, G.R. Ganger, G.A.
Gibson, and S. Seshan. On application-level approaches to avoiding tcp through-
put collapse in cluster-based storage systems. In Proceedings of the 2nd interna-
tional workshop on Petascale data storage: held in conjunction with Supercom-
puting’07, pages 1–4. ACM, 2007.

[36] Terry Lam and George Varghese. Netshare: Virtualizing bandwidth within the
cloud. Not published?, February 2009.

[37] Myungjin Lee, Sharon Goldberg, Ramana Rao Kompella, and George Varghese.
Fine-grained latency and loss measurements in the presence of reordering. In
SIGMETRICS 2011, San Jose, CA, June 2011.

150

[38] Charles E Leiserson. Fat-trees: universal networks for hardware-efficient super-
computing. Computers, IEEE Transactions on, 100(10):892–901, 1985.

[39] A. Li, X. Yang, S. Kandula, and M. Zhang. Cloudcmp: comparing public cloud
providers. In Proceedings of the 10th annual conference on Internet measurement,
pages 1–14. ACM, 2010.

[40] Dan Li, Chuanxiong Guo, Haitao Wu, Kun Tan, Yongguang Zhang, and Songwu
Lu. Ficonn: Using backup port for server interconnection in data centers. In
Proceedings of Infocom 2009, April 2009.

[41] Santosh Mahapatra and Xin Yuan. Load balancing mechanisms in data center
networks. In the 7th International Conference and Expo on Emerging Technolo-
gies for a Smarter World (CEWIT), September 2010.

[42] J.C. Mogul and L. Popa. What we talk about when we talk about cloud network
performance. ACM SIGCOMM Computer Communication Review, 42(5):44–48,
2012.

[43] D. Nagle, D. Serenyi, and A. Matthews. The panasas activescale storage clus-
ter: Delivering scalable high bandwidth storage. In Proceedings of the 2004
ACM/IEEE conference on Supercomputing, page 53. IEEE Computer Society,
2004.

[44] Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson
Huang, Pardis Miri, Sivasankar Radhakrishnan, Vikram Subramanya, and Amin
Vahdat. Portland: a scalable fault-tolerant layer 2 data center network fabric.
SIGCOMM Comput. Commun. Rev., 39(4):39–50, 2009.

[45] Rong Pan, Balaji Prabhakar, and Ashvin Laxmikantha. Qcn: Quantized conges-
tion notification. IEEE802, 1, 2007.

[46] Prashanth Pappu, Jyoti Parwatikar, Jonathan Turner, and Ken Wong. Dis-
tributed queueing in scalable high performance routers. In in Proceedings of
IEEE Infocom, 2003.

[47] Prashanth Pappu, Jonathan Turner, and Ken Wong. Work-conserving dis-
tributed schedulers for terabit routers. In SIGCOMM ’04: Proceedings of the
2004 conference on Applications, technologies, architectures, and protocols for
computer communications, pages 257–268, New York, NY, USA, 2004. ACM.

[48] Amar Phanishayee, Elie Krevat, Vijay Vasudevan, David G. Andersen, Gre-
gory R. Ganger, Garth A. Gibson, and Srinivasan Seshan. Measurement and
analysis of tcp throughput collapse in cluster-based storage systems. Technical
report, Carnegie Mellon University, 2007.

151

[49] Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Greenhalgh, Damon
Wischik, and Mark Handley. Improving datacenter performance and robustness
with multipath tcp. In SIGCOMM ’11: Proceedings of the ACM SIGCOMM
2011 conference on SIGCOMM, 2011.

[50] V.S. Rajanna, S. Shah, A. Jahagirdar, and K. Gopalan. Xco: Explicit coordina-
tion for preventing congestion in data center ethernet. In Proc. of International
Workshop on Storage Network Architecture and Parallel I/Os, 2010.

[51] A. Scicchitano, A. Bianco, P. Giaccone, E. Leonardi, and E. Schiattarella. Dis-
tributed scheduling in input queued switches. In IEEE ICC, 2007.

[52] Alan Shieh, Srikanth Kandula, Albert Greenberg, and Changhoon Kim. Seawall:
performance isolation for cloud datacenter networks. In Proceedings of the 2nd
USENIX conference on Hot topics in cloud computing, HotCloud’10, pages 1–1,
Berkeley, CA, USA, 2010. USENIX Association.

[53] Alan Shieh, Srikanth Kandula, Albert Greenberg, and Changhoon Kim. Sharing
the data center network. In To appear in Proc. of NSDI, April 2011., 2011.

[54] Ankit Singla and Chi-Yao Hong. Distributed traffic engineering in data center
networks. Technical report, University of Illinois at Urbana Champaign, 2011.

[55] Jonathan Turner. Resilient cell resequencing in terabit routers. In Proceedings
of the Allerton Conference on Communication, Control and Computing, 2003.

[56] L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication.
In Proceedings of the thirteenth annual ACM symposium on Theory of computing,
STOC ’81, pages 263–277, New York, NY, USA, 1981. ACM.

[57] A. Varga et al. The omnet++ discrete event simulation system. In Proceedings
of the European Simulation Multiconference (ESM’2001), volume 9. sn, 2001.

[58] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D.G. Andersen, G.R.
Ganger, G.A. Gibson, and B. Mueller. Safe and effective fine-grained tcp re-
transmissions for datacenter communication. ACM SIGCOMM Computer Com-
munication Review, 39(4):303–314, 2009.

[59] Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowstron. Better
never than late: Meeting deadlines in datacenter networks. In SIGCOMM ’11:
Proceedings of the ACM SIGCOMM 2011 conference on SIGCOMM, 2011.

[60] T. Wood, A. Gerber, KK Ramakrishnan, P. Shenoy, and J. Van der Merwe. The
case for enterprise-ready virtual private clouds. Usenix HotCloud, 2009.

[61] X. Yuan. On nonblocking folded-clos networks in the computer communication
environment. In 25th IEEE International Parallel & Distriburted Processing
Symposium (IPDPS), 2011.

152

Improving Data Center Network Performance, Haitjema, Ph.D. 2013

	Washington University in St. Louis
	Washington University Open Scholarship
	Spring 4-30-2013

	Delivering Consistent Network Performance in Multi-tenant Data Centers
	Mart Albert Haitjema
	Recommended Citation

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Introduction
	Objectives
	Approach
	Contributions
	Methodology
	Organization

	Background
	Topology
	Partitioning the network into virtual networks:

	Routing
	Routing in traditional data-center topologies
	Oblivious flow-level routing
	Adaptive flow-level routing
	Flow-splitting
	Packet-level routing

	Flow control
	Hardware-level mechanisms:
	End-to-end protocols:
	System-wide techniques:

	Packet-level Routing
	The case for packet-level routing
	Methodology
	Oblivious flow-level routing
	Understanding the performance of ECMP
	Oblivious packet-level routing

	Packet-level routing strategies in DCNs
	Imbalances on small time-scales
	Accounting for packet size
	Accounting for topology
	Comparison of approaches

	Performance in context
	Separating routing & flow-control
	Queueing theory model
	Evaluation
	Partitioning the DCN into tenants

	Resequencing packets at end hosts
	Dealing with out-of-order arrivals
	Design considerations
	Hybrid resequencer
	Evaluation

	Summary

	Isolating Tenants with Distributed Scheduling
	Introduction
	Objectives

	Scheduling Framework
	Scheduling layer
	Tenant virtual networks
	Constraints on rates
	Assigning rates on VOQs
	Assigning rates on bottleneck links

	Distributed Algorithm
	Link proxies
	Convergence to centralized rates:
	Accounting for control-overhead
	Related work

	Evaluation
	Isolation
	Distributed approach
	Flow control

	Discussion & future work
	Interactions with other protocols:
	Virtual machines
	Practical considerations

	Backlog scheduling
	Introduction
	Backlog scheduling problem
	Preliminary definitions:

	Initial-backlog problem:
	Problem definition:
	Rate-assignment as a network flow:
	Max-min is not optimal
	Optimal algorithm:
	Bounds on optimal

	Deterministic backlog-schedule problem:
	Problem definition:
	Optimal bounds
	Linear programming formulation
	Proof of correctness

	Online backlog-scheduling:
	No online algorithm is optimal:
	Any optimal initial-backlog algorithm is 2-competitive:
	Any blocking algorithm is 2-competitive:

	Evaluation
	Experimental setup
	Initial-backlog
	Backlog scheduling stress test

	Extending the results to oversubscribed trees
	Summary

	Conclusion
	Summary
	Future Directions

	Appendix A FatTree DCN Simulator
	Introduction
	Motivation
	OMNeT++
	INET framework

	Simulator Overview
	Modeling FatTree DCNs
	BuildFatTree

	Server components
	Server
	Control module
	Application Layer
	Transport Layer
	Network Layer
	Scheduling Layer
	Resequencing Layer
	Link Layer

	Appendix B DCN Queueing Models
	Overview
	Basic queueing theory concepts
	M/M/1 Queue
	M/M/1/K Queue
	Modeling a network of queues

	M/M/1/K FatTree
	M/M/1/K LogicalTree

	References

