
978-1-5090-3239-6/17/$31.00©2017IEEE

Cloud Capacity Planning and HSI based Optimal
Resource Provisioning

Naidila Sadashiv* Dilip Kumar S M R. S. Goudar
Department of Computer Science and Engg. Department of Computer Science and Engg., Redknee,
Acharya Institute of Technology, University Visvesvarya College of Engg., Bangalore,
Bangalore, Bangalore, India 560 045
India 560 107 India 560 001
*Corresponding Author: Email- sadashiv@acharya.ac.in

Abstract- Cloud service providers offer spot instances through highest
bidding plans that are at a very economical price compared
to other pricing plans, namely on-demand and reservation. The usage
of spot instance enables utilization of idle resources and provide
service for cost sensitive tasks. However, this approach introduces the
problem of cloud capacity allocation to different pricing plans that
will have impact on the task completion time. To address these issues
and improve the providers revenue, in this paper a capacity planning
has been carried out based on the prediction of resource requirements
for each of the different resource pricing pools. The paper also
presents a solution to overcome the burden faced by the service
provider due to the free issue of last hour at the time of out-of-bid
situation. Simulation carried out based on capacity planning along
with hybrid spot instance using Amazon EC2’s price show that the
resource utilization is improved across the different resource pricing
pools with increased number of task completion and improved
provider’s revenue.

Keywords- Cloud Computing; Capacity Planning; Resource
Provisioning; Prediction; Hybrid Spot Instances;

I. INTRODUCTION

Cloud computing a promising model based on technology and
business, has revolutionized the resource usage model. In this
paradigm, resource and service requests can be made dynamically
or can be booked in advance to have a guaranty of the resource
availability. The use of such pricing plans introduces revenue
maximization tradeoffs to cloud service providers. Cloud capacity
for each of the pricing plans has to be carefully allocated to serve
the requests. The issue arises due to the uncertainty in resource
requirements under on-demand pricing plan though this model
generates highest revenue. In case for reservation category, the
requests is certain but the revenue generated is less when
compared to resource instance usage under on-demand plan.
Unutilized resources is an over head that lead to minimized
revenue. For better utilization of the idle resources and boost the
profit, the pioneer cloud service provider Amazon introduced spot
instances (SI) [1] and preemptible virtual machines [6] at fixed
pricing was recently launched by Google Compute Engine. SI
pricing model is based on the bidding strategy. User’s bid for the
spare instances and is allocated provided the bid price is more than
the current price of SI. During the resource usage, if the spot price
is higher than the user’s bid price, the resource usage is abruptly
terminated with no reliability of task completion. Such a scenario
is referred as out-of-bid. This trade-off that exists between SI cost
and service reliability is due to the uncertain request in the cloud
environment. To address this trade-off, there exists some work in
the literature that discuss about fault tolerant techniques [8], [17],

[18], [21]. They include task migration, replication, resubmission
and checkpointing. These approaches however impose cost,
time and resource overhead on the provider [4], [20] and
thereby over rule the reason of using SI. With the growing
demand for SI from different type of applications, provides
should address the prevailing trade-off between cost and
reliability of service [9], [10], [17], [22]. Thus, strategies that
optimally utilize the resource by providing reliable service
and also improve the provider’s profit is essential.
In this paper, the main objective is to carry out capacity
planning considering the dynamic nature of user’s request to
achieve optimal resource utilization and provide
uninterrupted service for long running user’s tasks. The work
also considers hybrid spot instance (HSI) to overcome the
overhead involved during the free issue of SI. In summary,
the contributions are formulating the capacity planning
problem that leads to maximization of SI provider’s revenue.
Queuing theory based prediction of resources forms the
basis to control the admission of requests for the different
pools. Proposed strategies are evaluated through simulation
driven by the real price traces. Results demonstrates that the
capacity planning based HSI improves utilization, revenue
and throughput. The rest of this paper is organized as
follows. Review of the related existing work and their
limitations are highlighted in Section II. Section III discusses
about SI in the Amazon Elastic Compute Cloud (EC2).
Section IV presents the proposed capacity planning for
different resource pools. Section V presents the simulation
results with discussion. Lastly, Section VI presents the
concluding remarks and scope for future work.

II. RELATED WORK

The section here discusses some of the research works
related to capacity planning and about allocation of SI in
cloud environment. Adelal et al. [14] presented a framework
for revenue management through capacity control for
allocating resources to customers. Considering the requests
for on-demand and usage level under reservation capacity,
stochastic dynamic programming technique based
admission control was performed. Anandasivam et al. [2]
based on bid-price control technique performed capacity
management. Incoming requests were accepted or denied
on the basis of bid value to increase revenue. However, the
other pricing plans were not considered in these works.
Segmentation of capacity among on-demand and SI market
based on Markov decision was proposed by Wang et al.
[19]. For spot market, an optimal mechanism considering on-
demand and SI requests using an auction based pricing was

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ePrints@Bangalore University

https://core.ac.uk/display/158348261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

considered, assuming that reserved requests will be
satisfied. Their work differs from the proposed work since
reliability of task completion is given preference in the
current work by minimizing abrupt task termination. To
handle the dynamicity in the workload during limited
resource capacity, Rodrigo et al. [3] proposed a prediction
based proactive approach for dynamic provisioning of
resources for SaaS applications. The ARIMA based
prediction model was considered to improve the utilization
and response time for users. A framework for allocation in
cloud was presented by Verma et al. in [16]. Here, based on
the dynamic nature of resource requirements, service
tenants were classified and its resource prediction was
prioritized to minimize the prediction time. Toosi et al. [15]
proposed an auction with greater probability of truthfulness
to improve provider’s profit. Their approach does not depend
on the history of bidding process. These all works
considered the prediction model as in the current approach
however, capacity planning and different pricing plans were
not focused. Chenhao Qu et al. [12] have explored the
utilization of spot instances to provision the availability-
critical web applications by taking the advantage of
differences in spot instance prices to reach improved
availability and cost saving. Deepak et al. [11] presented an
on-demand and adaptive spot based
just in time scheduling algorithm for scientific workflow to
provide fault tolerant schedules. The algorithm considered
the different pricing of resources to minimize the time and
cost. In an similar direction, an approach to estimate the spot
instance prices was proposed in [17]. Techniques for
handling the fault such as task migration, task duplication
and its analysis with checkpointing were carried out. This
approach however imposes cost over head and is addressed
through HSI strategy in the current work. Sangho et al. [21]
proposed an approach to minimize monetary costs by using
SI. Different static and dynamic checkpointing strategies
were studied and analyzed.
These above mentioned works considered SI for serving the
cost sensitive applications, focused on fault techniques and
to provide reliable service however, not in a unified manner.
Lack of capacity planning and addressing the free issue of SI
resource in the literature motivates the current work as its
plays a vital role in revenue maximization.

III. SI IN AMAZON ELASTIC COMPUTE CLOUD

This section highlights spot instances and its characteristics.
As on date, Amazon renders different type of instances
across 11 different regions. Each instance is a combination
of different resources that include CPU, memory, I/O, disk
etc. [1]. Instances. Among the instances provided, few
instances are general purpose, and some are grouped as
compute, memory and storage optimized for running
requirement specific applications. The instances are
configured with special features that enables application
deployment, management, and scalability of applications.
These instances are allotted to users on the basis of on-
demand or through reservation. The left over instances that
are unallocated and idle are provisioned as SI. It follows
dynamic bid pricing model as it depends on the uncertain
user’s request. SI price is freely available and sample of it is
shown in Fig. 1. Amazon has also launched a fleet of spot
instances, which represents a collection of SI that work
together as part of a distributed application. Spot fleet is
responsible for resource discovery, resource bid

management and also running their workloads at nominal
possible price. Upto 1000 spot fleets with 3000 instances per
fleet and per region is allowed. Details regarding the target
capacity, maximum bid price and dates are essential to
make a request. Few important characteristics of SI are
given as below:

 SI is provisioned when user bids a price that is
greater than current SI price and are hourly charged.

 SI is abruptly terminated provided the new spot bid
price

 is more than the current users bid price.
 At the time of out-of-bid situation, last hour is given

for free however, will be charged for the whole hour
if termination is requested from the user.

 Specification of spot instances for a predefined
duration

 workload is allowed however, there exists no
reliability
 for QoS.
In order to provide the benefits of SI and to address the
tradeoff
between cost and reliability of service, several checkpointing
and fault tolerant strategies are been performed.

Fig. 1: Amazon SI Bidding

IV. PROPOSED CAPACITY PLANNING

To utilize the resource and maximize revenue, it is vital for
the CSP to target for capacity planning among the different
pricing plans. This section describes an approach for
capacity allocation decision such that overall revenue is
increased with minimized task abrupt termination.
Assume the total provider’s capacity as C for a given type of
instance. Currently, some resources are allocated to user’s
requests under the three pricing policies that include on-
demand, reservation and SI and is denoted as R_OD, R_R
and R_SI respectively. Based on the historical requests made
at the capacity pool, prediction for on-demand resources
P_OD and reservation resources P_R are been carried out
in Section IV-1. On the basis of this prediction based
computation and allocation, the remaining capacity can be
allotted for running the spot instance requests as given
below:

P_SI = C - (R_OD +R_R +R_SI +P_OD+P_R) (1)

Utilization of resources through this capacity planning aims
to maximize revenue and is defined as below:

Maximize ∑(R_ODt + P_ODt)* P+(R_Rt +P_Rt)* α *P +(R_SIt +
 P_SI t)* β

 where t=0 to Τ-1 (2)

subject to constraint

R_ODt +R_ Rt+R_SIt+ P ODt+P Rt+ P SIt ≤ C

 where t=0....., Τ-1

α and P denotes on-demand resource price and β represents
the SI price. The above constraint guaranties that the
ongoing on-demand instances, reservations and SI along
with the predicted capacity need remains within the
providers capacity. This ensures that no SLA violations
occurs for the on-demand and reservation contracts.
1) How Much to Provision: Modeling the Capacity Planning:
The goal of the capacity planning is to allocate the required
capacity to the different pricing plans so that resource is efficiently
utilized with less abrupt SI termination. To address this issue, the
capacity pool is modeled as G|G|1 model that generally captures
arbitrary distribution of arrival and service times. Based on the
maximum incoming input request rate obtained from the historic
information and the capacity of the server, prediction of on-
demand resources are been computed. The model assumes that all
the instances are homogeneous however, can be enhanced to
incorporate more than one type of instances. On-demand resource
instances predicted for on-demand capacity pool is given in
Equation (3).
 P_ODt =(λaod * ϕ)/ λcod (3)

where λaod represents an estimate of arrival rate distribution seen
by the on-demand capacity pool. The rate of request that can be
served by a single on-demand instance is represented as λcod and is
obtained from queuing theory result [7] as given in Equation (4).

λcod ≥ [stod+ (σ2

aod + σ2
sod) / (2 * (ϒ - stod))] -1 (4)

where ϒ represents the expected mean response time of instance,
and stod represents the average service time for a request from the
instance in on-demand capacity pool. σaod and σsod denotes the
variance of inter-arrival and inter-service time respectively.

A. Capacity Planning based HSI Provisioning
Capacity planning using HSI resource provisioning is presented in
this section. The aim of HSI based resource provisioning is to
improve the reliability of current SI users by prohibiting abrupt
termination during out-of-bid situation. This is performed by
enabling users to stretch their bid price till checkpointing is carried
out or to perform rebid process until the user’s bid price equals the
on-demand price [13]. Such a bidding approach is enforced in ebay
as a measure to avoid rebidding.

--
Algorithm 1: Capacity Planning based HSI
--
Data: Total Capacity C, active-SI, usr-price, sb-price,
 sb-flag, sb-till-od, od-price, HSI-flag, sp-price,
 Another-chance=1
Result: usr-price
1 R_Util=Compute-Capacity-Utilized();
2 P_OD= Expected-Ondemand-Resource();
3 P_R= Expected-Reserved-Resource();
4 //Capacity planned for spot instance resource pool;
5 SI=C-(R_Util+P_OD+P_R);

6 if Out-of-Bid AND HSI then
7 while HSI-flag do
8 if old-user k Another-chance then
9 Another-chance = 0 ;
10 if sb-flag then
11 if usr-price ≤ sb-price and sp-price ≤
 sb-price then
12 Update-Hybrid-Spot-Price();
13 Continue;
14 else
15 terminate-si() ;
16 else if sb-till-od then
17 if usr-price _ od-price then
18 Update-Hybrid-Spot-Price();
19 else if usr-price ≥ od-price then
20 sp-price-equals-od-price++ ;
21 usr-price=od-price;
22 break ;
23 else
24 terminate-si() ;
25 else
26 terminate-si() ;

HSI strategy enables uninterrupted task completion within the
expected time. This strategy forbids abrupt task termination and
the burden of checkpointing. HSI will benefit the task that is
nearing its execution completion. The work here considers
Amazon spot instances however, it can be extended for instances
from other service providers.

V. PERFORMANCE EVALUATION

 This section discuses about the conduction of three different
groups of experiments. First, the overhead of free issue of last hour
and its cost is evaluated. Secondly, capacity planning based
resource management framework is analyzed. Lastly, performance
of the proposed capacity planning based hybrid spot instance is
compared with other baseline approaches using trace-driven
simulations.

 Fig. 2(a): Out-of-bid Overhead in Hours

Fig. 2(b): Out-of-bid Overhead Count

Most of the cloud service providers often regard their workload
traces as confidential. Google has published a dataset related to its
general workload [5]. Using this as the basis, requests are
synthesized by normalizing the requests time requirement to the
longest lifetime in the traces. Requests are categorized on the basis
of the type of request made. Requests that are non fault tolerant are
provisioned with on-demand instances, long term requests
requirement are fixed with reservation and for requests to be
performed at low compute price for a short duration are assigned
spot instances. On this basis, the requests are labeled with one of
these pricing plans randomly with the help of Gaussian distribution
considering the sample price of Amazon EC2 Instances [1]. For
simulation, 100 heterogeneous applications of different sizes and
completion time that range between 1 - 1000 minutes are
considered. The parameters such as out-of-bid, tasks completed
count, resource utilization and price involved for UNIX/Linux
m1.small (EC 1) are considered.

A. SI Overhead
Amazon leverages a pricing model that performs the resource
usage charging on an hourly basis. However, during out-of-bid
situation the last few minutes of an hour is been let-off and is not
charged. Fig. 2(a) and 2(b) demonstrates the over head in terms of
hours and the out-of-bid count involved during the simulation of
100 applications.

B. Impact of Capacity Planning
Capacity planning has been carried out to improve the revenue by
optimally allocating the capacity among the three different pricing
resource pools that include on-demand, reservation and SI.

3 (a) Task Execution and Rejection without Capacity Planning

3 (b) Task Execution and Rejection with Capacity Planning

Fig. 4: Comparison of Providers Revenue based on Capacity

Planning

1) Analysis of Task Execution and Rejection: On the basis of
historical information from the capacity pool, each of the pricing
plans are assigned with capacity such that the number of requests
executed are maximized and rejection of requests are reduced in all
the three pricing plans. Fig. 3(a) presents the number of tasks
executed and rejected without capacity planning in all the three
types of resource pools and Fig. 3(b) demonstrates the impact of
capacity planning based on prediction. In Fig. 3(a), more resource
is allocated for on-demand pricing pool without considering the
expected requirement. This results in execution of on-demand
requests however, few spot requests are fulfilled with large number
of spot request being rejected. On the other hand, based on the
predicted requests when capacity is planned it is seen that
maximum number of on-demand and as well as spot request’s are
executed. When the number of request tasks is more than 200,
some of the on-demand tasks as seen in Fig. 3(b) will be delayed
as spot instances will be suspended to overcome the shortage of
resource capacity. The number of such tasks is however less in Fig.
3(b) than in Fig. 3(a).

Fig. 5 (a): Resource Utilization without Capacity Planning

Fig. 5 (b): Resource Utilization with Capacity Planning

2) Analysis of Revenue based on Capacity Planning:
With capacity planning, sufficient amount of resources are
allocated for on-demand and reservation pool, the rest of the total
capacity is allocated to spot instances. Hence, situation of lack of

resource faced by on-demand request is very less that results in
very minimal task interruption leading to higher throughput of spot
instance. This minimizes the last partial hour overhead presented
in Fig. 2. Thus, revenue obtained by the provider is more when
capacity is planned as demonstrated in Fig. 4.

3) Analysis of Resource Utilization:
Utilization of resource when capacity is not planned and while
capacity planning is considered are presented in Fig. 5(a) and Fig.
5(b) respectively. It is seen that resources are not fully utilized in
Fig. 5(a) and some spot requests are being rejected. Appropriate
planning leads to better utilization as seen in Fig. 5(b). The result
however, depends on the precision of prediction model. Results
revels that there is still large amount of resources left under on-
demand resource pool in Fig. 5(b) and this ensures service
availability for the new requests without affecting the tasks
running under HSI.

C. Impact of HSI and Comparison with Baseline Policies:
The impact of capacity planning based HSI strategy on the task
performance and its comparison with baseline policies that include
base, hourly and no checkpointing has been performed. For base
checkpointing, the checkpointing is performed just-in-time.
Whereas for hourly checkpointing, it is done at the end of every
hour and is not applicable for nocheckpointing approach. Different
size applications are simulated on various type of instances.
Results of this simulation are discussed as given below:
Number of Executed Tasks: HSI enables the uninterrupted task
execution by stretching the bid or through redefinition of user bid
price. This increases task throughput when compared to other
existing policies where the tasks are abruptly terminated as
presented in Fig. 6 (a). Such tasks are a burden for both the user
and the providers in terms of resource and time.
Tasks Execution Time: The execution time for 100 tasks is
simulated as 500 minutes each. Based on the working of HSI,
abrupt termination is forbidden that lead to timely completion of
the HSI based tasks. This is not the case for existing policies and
hence, the terminated tasks have to be restarted by again going
through the bidding process. This results in longer execution time
for baseline policies as seen in the Fig. 6 (b).
Task Execution Cost: Task execution cost on m1.small (EC 1) is
presented in Fig. 6 (c). The cost involved for the task completion is
very less for HSI approach when compared to baseline policies. As
discussed above, the rebidding involved due to out-of-bid situation
causes an increase in the cost in case of the baseline policies.

VI. CONCLUSION

Amazon has pioneered spot instance as a resource provisioning
model that delivers unallocated idle resources through highest
bidding strategy. The aim of SI is to improve the provider’s
revenue and render service to cost sensitive users. In this paper, a
capacity planning approach is presented that identifies the capacity
pool size for the pricing plans that include on-demand, reservation
and SI that leads to improved providers revenue. Capacity
planning based on prediction and HSI resource provisioning to
achieve optimal resource utilization is the foundation of this work.
Simulation results demonstrate that the proposed strategy improves
reliability followed by throughput through stretch and rebid
approach during out-of-bid situation. Results also show that the
cloud SI provider’s revenue can be optimized by preventing the
free release of last incomplete service hour and checkpointing
through HSI. Future plan is to integrate a reactive module as the
next level of capacity planning. Another aspect is to carry out the

current work on various other hosted services other than EC2 and
analyze its impact on the QoS.

Fig. 6 (a): Number of Tasks Executed

Fig. 6 (b): Tasks Execution Time

Fig. 6 (c): Task Execution Cost

REFERENCES

[1] Amazon. http://aws.amazon.com/ec2/spot-instances, (accessed May,
2016).
[2] A. Anandasivam, S. Buschek, and R. Buyya. A heuristic approach for
capacity control in clouds. In 2009 IEEE Conference on Commerce and
Enterprise Computing, pages 90–97, 2009.
[3] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya. Workload prediction
using arima model and its impact on cloud application’s qos. IEEE Transactions on
Cloud Computing, 3(4):449–458, 2015.
[4] K. Chard and K. Bubendorfer. High performance resource allocation strategies
for computational economies. IEEE Tran. on Parallel and Distributed Systems,
24(1):72–84, Jan 2013.
[5] Google. http://code.google.com/p/googleclusterdata, (accessed February, 2014).
[6] Google. http://code.google.com/p/googleclusterdata, (accessed July, 2016).
[7] Leonard Kleinrock. Queueing Systems, volume II: Computer Applications.
Wiley Interscience, 1976.
[8] Haikun Liu, Hai Jin, Xiaofei Liao, Chen Yu, and Cheng-Zhong Xu. Live virtual
machine migration via asynchronous replication and state synchronization. IEEE
Tran. on Parallel and Distributed Systems, 22(12):1986–1999, Dec 2011.
[9] Samaan N. A novel economic sharing model in a federation of selfish cloud

providers. IEEE Tran. on Parallel and Distributed Systems, 25(1):12–21, Jan 2014.
[10] M. Spreitzer M. Steinder A. Tantawi N. Chohan, C. Castillo and C. Krintz. See
spot run using spot instances for mapreduce workflows. In 2nd USENIX Conf. on
Hot topics in Cloud Computing, pages 1–7, June 2010.
[11] Deepak Poola, Kotagiri Ramamohanarao, and Rajkumar Buyya. Enhancing
reliability of workflow execution using task replication and spot instances. ACM
Transactions on Autonomous and Adaptive Systems (TAAS), 10(4):30, 2016.
[12] Chenhao Qu, Rodrigo N. Calheiros, and Rajkumar Buyya. A reliable and cost-
efficient auto-scaling system for web applications using heterogeneous spot
instances. Journal of Network and Computer Applications, 65:167 – 180, 2016.
[13] N. Sadashiv, D. Kumar S M, and R. S. Goudar. Hybrid spot instance based
resource provisioning strategy in dynamic cloud environment. In 2014 International
Conference on High Performance Computing and Applications (ICHPCA), pages
1–6, 2014.
[14] A. N. Toosi, K. Vanmechelen, K. Ramamohanarao, and R. Buyya. Revenue
maximization with optimal capacity control in infrastructure as a service cloud
markets. IEEE Transactions on Cloud Computing, 3(3):261–274, 2015.
[15] Adel Nadjaran Toosi, Kurt Vanmechelen, Farzad Khodadadi, and Rajkumar
Buyya. An auction mechanism for cloud spot markets. ACM Transactions on
Autonomous and Adaptive Systems Journal, 11(1), February 2016.
[16] Manish Verma, G. R. Gangadharan, Nanjangud C. Narendra, Ravi Vadlamani,
Vidyadhar Inamdar, Lakshmi Ramachandran, Rodrigo N. Calheiros, and Rajkumar
Buyya. Dynamic resource demand prediction and allocation in multi-tenant service
clouds. Concurrency and Computation: Practice and Experience, pages 1 – 14,
2016.
[17] W. Voorsluys and R. Buyya. In IEEE 26th International Conf. on Advanced
Information Networking and Applications.
[18] S. Garg W. Voorsluys and R. Buyya. Provisioning spot market cloud resources
to create cost-effective virtual clusters. In 11th international conference on
Algorithms and architectures for parallel processing, pages 395–408, Feb 2011.
[19] W. Wang, B. Li, and B. Liang. Towards optimal capacity segmentation with
hybrid cloud pricing. In Distributed Computing Systems (ICDCS), 2012 IEEE 32nd
International Conference on, pages 425–434, 2012.
[20] Yi-Min Wang, Yennun Huang, Kiem-Phong Vo, Pe-Yu Chung, and C.
Kintala. Checkpointing and its applications. In 25th International Symposium on
Fault-Tolerant Computing, pages 22–31, June 1995.
[21] Sangho Yi, D. Kondo, and A. Andrzejak. In IEEE 3rd International Conf. on
Cloud Computing.
[22] Jianfeng Zhan, Lei Wang, Xiaona Li, Weisong Shi, Chuliang Weng Wenyao
Zhang, and Xiutao Zang. Cost-aware cooperative resource provisioning for
heterogeneous workloads in data centers. IEEE Tran. on Computers, 62(11):2155–
2168, Nov 2013.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

