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ABSTRACT

In large-scaled and distributed systems, like multi-tier storage systems and cloud data
centers, resource sharing among workloads brings multiple benefits while introducing
many performance challenges. The key to effective workload multiplexing is accurate
workload prediction. This thesis focuses on how to capture the salient characteristics
of the real-world workloads to develop workload prediction methods and to drive
scheduling and resource allocation policies, in order to achieve efficient and in-time
resource isolation among applications.

For a multi-tier storage system, high-priority user work is often multiplexed with
low-priority background work. This brings the challenge of how to strike a balance
between maintaining the user performance and maximizing the amount of finished
background work. In this thesis, we propose two resource isolation policies based
on different workload prediction methods: one is a Markovian model-based and the
other is a neural networks-based. These policies aim at, via workload prediction,
discovering the opportune time to schedule background work with minimum impact
on user performance. Trace-driven simulations verify the efficiency of the two
proposed resource isolation policies. The Markovian model-based policy successfully
schedules the background work at the appropriate periods with small impact on the
user performance. The neural networks-based policy adaptively schedules user and
background work, resulting in meeting both performance requirements consistently.

This thesis also proposes an accurate while efficient neural networks-based
prediction method for data center usage series, called PRACTISE. Different from
the traditional neural networks for time series prediction, PRACTISE selects the
most informative features from the past observations of the time series itself.
Testing on a large set of usage series in production data centers illustrates the
accuracy (e.g., prediction error) and efficiency (e.g., time cost) of PRACTISE.

The superiority of the usage prediction also allows a proactive resource
management in the highly virtualized cloud data centers. In this thesis, we analyze
on the performance tickets in the cloud data centers, and propose an active sizing
algorithm, named ATM, that predicts the usage workloads and re-allocates
capacity to workloads to avoid VM performance tickets. Moreover, driven by cheap
prediction of usage tails, we also present TailGuard in this thesis, which
dynamically clones VMs among co-located boxes, in order to efficiently reduce the
performance violations of physical boxes in cloud data centers.
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Chapter 1

Introduction

In the era of ‘big data’, from large-scale enterprise and cloud storage systems to data

centers, today’s systems are highly distributed and shared by many applications. Such

resource sharing brings a host of benefits, including efficient resource utilization, low op-

erating cost, improved data availability, and enhanced reliability to name a few. However,

resource sharing also faces many challenges. For example, when multiple workloads com-

pete for limited resources, there is potential contention and interference which may not

only cause delays in the performance of individual workloads, but also result in inefficiency

of resource utilization. The challenges behind resource sharing could be summarized as

providing in-time and efficient resource isolation among different workloads, such that for

different applications, the corresponding Service-Level-Objectives (SLOs) are met, while

for the whole system, resources are well utilized. As a result, for the multiplexing systems,

when and how to isolate resources among different applications matters.

In various systems, including storage systems and networks, a lot of studies have been

done to answer the above challenges of resource sharing, such as fairness-driven resource

allocation algorithms [102, 18], and balancing trade-off of fairness and performance for

different applications, e.g., latency [54] and throughput [114]. In Figure 1.1, an illustration
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Figure 1.1: An illustration of steps for decisions on resource allocation in the multiplexing systems.

of each step to decide on resource allocations in a system is presented. As shown here,

there are two key variable components in the resource allocation decision process: demands

of applications, and resource allocation algorithms. Most of existing work is focused on

the latter one, while often assuming perfect knowledge of the future demand for each

application or just using the last value prediction. In reality, the demands of applications

show fluctuations across time, making the workload prediction non-trivial. In this thesis,

we focus on identifying the characteristics of workloads in different systems, proposing

prediction methods for them, and incorporating workload prediction into analytical models.

Such prediction methods for workloads are critical for performance analytical models and

state-of-the-art resource allocation algorithms in these resource-sharing systems.

Workload prediction can be roughly classified as: statistics based and time series based.

Statistics based prediction means applying the statistical characteristics of the previous

workload, e.g., the probability density function of a metric, to estimate the upcoming

workload. Time series based prediction learns the lagged function among the time series

itself to directly forecast the upcoming traffic. In today’s systems, the user workloads often

fluctuate overtime (see Figure 1.2). This observation suggests that traditional statistical
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Figure 1.2: Overview of two typical user workloads over three days in two different multiplexing
systems. (a) is an example of average arrival intensity of user work over three days in a single data
node of a large distributed storage cluster from EMC corporation, here x-axis represents the time in
the granularity of hour, and y-axis is the user arrival intensity per minute. (b) stands for a typical
VM, with its CPU demands over three days shown, in the IBM production data centers, and x-axis
represents the time in the granularity of hour, and y-axis is the CPU demand.

analysis based method fails to capture/predict the fluctuations at each time stamp. Thus,

it is critical to provide time series based workload prediction to forecast the fluctuations of

workload overtime, for in-time and efficient resource isolation. Time series based workload

prediction is often deployed into two categories: coarse-granularity and fine-granularity.

Coarse-granularity prediction methods, as the name suggests, divide the intensity of work-

loads into N states (e.g., N = 2), and then forecast the state of the upcoming workloads as

well as the corresponding duration residing on this state. Coarse-granularity workload pre-

diction works for coarse-grained performance requirements of multiplexing workloads, e.g.,

the mean latency for few hours, but fails in maintaining strict SLOs consistently. Thus,

there is a clear need for fine-granularity workload prediction, which is capable to forecast

the intensity of the upcoming workload in a smaller time window W (e.g., W = 10 min),

so as to timely adjust the input to the resource allocation decision process to consistently

meet performance requirements.

One specific target area to apply the workload prediction methods is multi-tier en-

terprise storage systems which have risen in popularity over the last decades. Multi-tier
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storage systems have limited fast-service-rate resources (e.g., DRAM), which are often

multiplexed by several application workloads, such as high-priority user workloads, inter-

nal workloads for system reliability, as well as data analytics work. The latter two (seen

as background work), although labeled as low priority, still affect the performance of user

work, especially if they are non-preemptive. Thus, it is critical and difficult to ensure

the performance of different workloads and system availability. To address this problem,

practitioners use on-line feedback [35] to reactively decide on resource isolation. However,

if user workload flows in the enterprise storage systems experience drastic changes, such

as burstiness, reactive resource isolation is too late to maintain user performance. Con-

sequently, it is desirable to pro-actively allocate resource among different workloads, by

deriving information on the upcoming workloads via time series-based workload predic-

tion.

Another area of interest to leverage the workload prediction methods is cloud data

centers, where virtual machines (VMs) are highly consolidated on physical boxes. With

physical resources being aggressively multiplexed across multiple VMs, the likelihood of

performance violations due to physical or virtual machines crossing predefined thresholds

dramatically increases [16]. As a result, developing efficient policies for maintenance on the

efficiency of resource multiplexing ratios and avoiding performance violations becomes an

important issue in cloud data centers, which can be achieved with the help of time series

based workload prediction.

In general, resource sharing in storage systems or cloud data centers, significantly affects

system performance and reliability, thus it is necessary to isolate resources in a pro-active

manner. Additionally, workload fluctuations in such systems create challenges for future

workload estimations. By taking advantage of time series-based workload prediction, one

can effectively predict the fluctuations for the future workloads and then incorporate them
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with the resource isolation decision process, such that limited resources are managed in a

pro-active way. This thesis focuses on how to predict future workloads accurately, and make

use of time series based workload prediction for achieving in-time and efficient resource

isolation in enterprise storage systems and cloud data centers.

1.1 Contributions

The contributions of this thesis are summarized as follows:

• effective hybrid analytical models are developed, that predict user traffic and co-

schedule user workloads with background work in multi-tier enterprise storage sys-

tems [121, 122, 123], see Section 1.1.1;

• a light-weight time series prediction method is designed to forecast usage series in

cloud data centers [120], see Section 1.1.2;

• efficient resource isolation polices are proposed, which efficiently predict the usage

series in data centers and proactively reduce performance violations of VMs [118]

and physical boxes [119] in cloud data centers, see Section 1.1.3

1.1.1 Hybrid analytical models for performance isolation in storage sys-

tems

In multi-tier enterprise storage systems, co-scheduling high-priority user workloads with

background works aims at improving the efficiency of resource usage as well as the data

reliability, while faces the challenge of performance interference among different work-

loads. In this thesis, we build hybrid analytical models that make use of time series based

workload prediction methods and incorporate with queueing models to predict/isolate the

performance of different workloads.
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• Coarse-grained performance isolation [121]: we propose a Markovian Arrival Process

(MAP) [84] model that learns user traffic pattern in the storage systems, and pre-

dicts when the user traffic intensity comes into a high or low state, then pro-actively

stops/starts bulks of internal system work. We show that this scheduling can result

in in-time isolation between user workloads and internal system work, compared to

existing on-line feedback methods.

• Fine-grained performance isolation [122, 123]: we design a novel hybrid approach

NeuQ, that consists of machine learning (ML) and queueing models. NeuQ applies

neural networks to predict the user workload intensities with fine-granularity and

then appropriately adjusts the input to a queueing model, in order to consistently

meet user SLOs while completing data analytics work as much as possible. Trace-

driven simulations confirm the efficiency of NeuQ in providing robust user and data

analytics work performance, with strict SLOs.

1.1.2 Prediction of data center time series

In cloud data centers, pro-active resource isolation among different VMs can effectively

provide guaranteed performance to multiple users timely. Key to achieving this goal is to

accurately predict physical and virtual machines’ usage patterns, especially peak loads in

these usage series. In this thesis, we propose a light-weight time series prediction method

that can predict the usage series in cloud data centers.

• Usage series prediction [120]: We propose a neural networks-based time series pre-

diction method, called PRACTISE, to forecast usage series of physical and virtual

machines in cloud data centers. We first find the dominant patterns in data center

usage series, using the autocorrelation function. Then, we select the most informa-

tive features for usage series prediction as input to neural networks. We show that
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the proposed neural networks-based time series prediction method achieves better

accuracy and efficiency, comparing with existing ARIMA/ARMA and vanilla neural

networks.

1.1.3 Active resource isolation in data centers

In today’s data centers, physical servers are highly consolidated by VMs. This improves the

efficiency of physical resource usage, but also brings the challenge of resource contentions.

Resource contentions result in performance violations and reduce system availabilities to

users. In this thesis, we develop an active sizing algorithm that is based on an efficient

usage workload prediction method and derives virtual resource allocation among co-located

VMs, such that performance violations for VMs are reduced or avoided. As well, in order

to avoid the performance violations in the physical boxes, we propose a VM cloning policy

that captures the relationship between usage mean and tails and proactively clones VMs

among co-located boxes.

• VM performance violation avoidance [118]: We propose an active sizing algorithm for

co-located VMs in cloud data centers, called ATM, deriving from a usage series pre-

diction algorithm, that captures the temporal and spatial dependency within/across

resources and co-located VMs. The proposed sizing method is shown to be able to

reduce the performance violations effectively in production data centers.

• Box performance violation avoidance [119]: An efficient VM cloning policy is pro-

posed for co-located physical boxes within the same tenant in cloud data centers,

called TailGuard , that discovers the hidden relationship between usage mean and

tails of boxes, and then proactively drives dynamical VM cloning among co-located

boxes. The proposed VM cloning policy is shown to efficiently reduce even avoid the

performance violations in physical boxes.
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1.2 Organization

This proposal is organized as follows. In Chapter 2, we present an overview of basic concepts

and terminology that are used in this thesis. In Chapter 3 and 4, we introduce two different

workload prediction methods for pro-active performance isolation in storage systems [121,

122, 123]. Followed by Chapter 5, a neural networks-based time series prediction method

is illustrated for resource usages in cloud data centers [120]. Chapter 6 and 7 demonstrate

an active resource isolation policy for co-located VMs [118] and boxes [119] in cloud data

centers. Lastly, Chapter 8 describes the research plan for the future work in details.
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Chapter 2

Background

In this chapter, we introduce basic concepts and models that are used in the entire thesis

to forecast workloads in systems. We also illustrate the performance impact of resource

sharing, which motivates this thesis.

2.1 Introduction to Time Series Prediction

Time series prediction is the use of models that forecast future values of time series variables

by extrapolating trends and patterns in the past values of the series or by extrapolating

the effect of other variables on the series. In general, based on different granularity re-

quirements, time series prediction is often divided into two categories: coarse-granularity

and fine-granularity prediction. In the following, we present two examples to illustrate the

intuitions behind the different-granularity predictions.

Today’s enterprise storage systems need to generate and finish internal system work

to enhance the data availability and system reliability. Since internal system work in

such systems is not instantaneously preemptive, it is desirable to find the most opportune

period (namely the period with low user arrival rates) to schedule system work such that

10



(a) Coarse-granularity works (b) Coarse-granularity fails

Figure 2.1: Using coarse-granularity time series based workload prediction for two different sce-
narios.

the impact on the user performance is minimum. Figure 2.1(a) gives an example of average

arrival intensity of user work over three days (shown as the solid lines in the figure) in a

single data node of a large distributed storage cluster. Here the x-axis represents time and

the y-axis stands for the arrival intensity per minute. In this figure, we mark the most

opportune period to schedule system work with the dotted lines. This example clearly

clarifies the need to predict the workload intensity in a coarse-granularity manner: using

high or low states.

Coarse-granularity resource isolation cannot guarantee the user performance consis-

tently, an counter example, that applies coarse-granularity time series prediction for co-

scheduling user workloads with data analytics work resulting in severe user performance

violation, is shown in Figure 2.1(b). For this example, we use fio [4] as the IO workload

generator and generate two types of IO workloads, user and data analytics. The intensity

of user IO requests emulates very closely the load pattern of user requests presented in

Figure 2.1(a). Note that during the first 60 minutes without data analytics work, user re-

sponse time remains in the range of 150 ms. While adding data analytics works in the low

state of user workload intensity (which could be predicted via coarse-granularity prediction

models) at around the 65th minute, we observe that the user response time immediately

increases by two orders of magnitude. This phenomenon suggests that with the require-
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ment of strict SLOs for different applications, coarse-granularity resource isolation cannot

satisfy the performance requirement. In this scenario, the fine-granularity time series based

workload prediction is preferred as input for the resource isolation decision process.

Next, we describe the techniques to achieve the above two different-granularity time

series predictions in detail.

2.1.1 Coarse-granularity Time Series Prediction

Coarse-granularity time series prediction, often divides the observed time series into several

states, and then forecasts which state the upcoming series belongs to and how long the series

stays in the predicted state. In this thesis, Markovian Arrival Processes (MAPs) are used to

express/predict the user traffic in coarse granularity. MAPs, introduced by Neuts [84], can

easily model and predict any kind of time series with coarse granularity, such as arrivals,

service, or even response times. Previous work in [10, 64, 42, 24] has developed efficient

schemes to fit and model different time series workloads in systems, approximating short-

range and long-range dependence.

A MAP divides the observed time series into N states (based on either requirements or

characteristics of the series [81]), and then provides the exponential intensity/rate of each

state, together with the jumping probabilities of background and completion transitions

within/across states [21]. A MAP can be specified by two square matrices (D0,D1), where

D0 describes the transitions across states without signifying any real event while D1 captures

all the transitions associated with real events in the MAP. For example, the schematic of

a 2-state MAP is shown in Figure 2.2, with the following 2×2 matrices of (D0,D1):

D0 =

[
−λ1,1 λ1,2
λ2,1 −λ2,2

]
, D1 =

[
µ1,1 µ1,2
µ2,1 µ2,2

]
(2.1)

where λ1,1 equals to (λ1,2 + µ1,1 + µ1,2), and λ2,2 is equal to (λ2,1 + µ2,1 + µ2,2). In D0, λ
−1
i,i is
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Figure 2.2: State transitions of MAP(2). Solid arrows relate with events transition in the MAP,
while dashed arrows associates with the state change only.

the mean time spent in state i before a jump; while λi, j/λi,i, with i 6= j, is the probability

of a background transition from the current state i to state j. Similarly, µi, j/λi,i represents

the probability of a completion transition from state i to state j, specifying µi,i/λi,i as the

probability of returning instantaneously to state i with a completion.

2.1.2 Fine-granularity Time Series Prediction

Different from coarse-granularity, fine-granularity prediction is able to predict the values of

the upcoming time series in each small time window W (e.g., W = 10 min). Traditional time

series models such as ARIMA/ARMA [23] and Holt-Winters exponential smoothing [51]

are limited by the linear basis function, while neural networks are able to model non-linear

functions. As a result, in this thesis, we leverage neural networks to predict time series in

fine granularity.

An artificial neural network consists of multiple nodes, or neurons, which are intercon-

nected to mimic a biological neural network [55], shown in Figure 2.3. These neurons have

adaptive weights, tuned by a learning algorithm, which enables neural networks to approx-

imate non-linear functions of their inputs. The adaptive weights describe the connection

strengths between neurons, activated during training and prediction. Taking advantage
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Figure 2.3: An artificial neural network is an interconnected group of nodes, akin to the vast
network of neurons in a brain. Here, each circular node represents an artificial neuron and an arrow
represents a connection from the output of one neuron to the input of another.

of the capability of modeling non-linear functions of the input, we use neural networks to

capture the hidden and complex characteristics lying within the time series itself, and then

to predict the upcoming series.

Neural networks for time series prediction consist of two steps: training and prediction.

At the first and the most important stage – training neural networks, the training data set

composes of the target variables and their corresponding inputs (also named as ‘features’).

Specifically, for time series prediction, if X is the target variable for prediction, and Xt is

the value of X at time t, then at the training stage, the goal is to train a neural network

model f of the form:

Xt = f (Xt−m1 ,Xt−m2 ,Xt−m3 , . . . ,Xt−mn)+ εt (2.2)

where Xt−mi , with i ∈ [1,n], represent the observations in the time series with mi time units

ahead of the target value Xt , and εt is the error term. To obtain a model with high accuracy,

Xt−mi , with i ∈ [1,n], should be informative for predicting the target value Xt . With the

neural networks trained at this stage, we are able to predict the upcoming series in fine

granularity at the second stage, with the informative features from the observed time series

14
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Figure 2.4: Illustrating the autocorrelation of a representative resource usage series of one VM in
the cloud data center.

as the input.

With the description in this section, one can make use of the above techniques to predict

the future series in either coarse or fine granularity. While for fine-granularity time series

prediction using neural networks, as mentioned above, plugging the informative features

is the key to achieving accurate time series prediction models. In the following section,

we describe one statistical measure that identifies the informative features for the neural

networks model.

2.2 Autocorrelation

The autocorrelation function (ACF) is a mathematical representation of the degree of

similarity in a time series and a lagged version of itself [63]. Given a stationary time series

{Xt}, where t ∈ N, autocorrelation ρk is defined as:

ρk = E[(Xt −X)(Xt+k−X)]/σ
2 (2.3)

where X and σ2 represent the mean and variance of {Xt}, respectively; the index k is

called the lag, which denotes the number of observations that separate Xt and Xt+k. The

autocorrelation metric is in the range of [−1,1]. Higher positive values indicate that the

two points between the computed lag distance are ‘similar’, i.e., have stronger correlation.

Zero values suggest no periodicity. Negative values show that the two points lag elements
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apart are diametrically different. As such, it is ideal to discover repeating patterns by

quantifying the relationship between different points of a time series as a function of the

time lag, via the autocorrelation function. In Figure 2.4, we present CPU usage series of

a certain VM in the cloud data center and its autocorrelation function. Visual inspection

of Figure 2.4(a) indicates the weekly pattern of this VM on its CPU consumption, while

Figure 2.4(b) quantifies the weekly pattern given that the autocorrelation values peak at

the lags equal to multiple weeks.

In summary, high absolute autocorrelation values suggest the strongly positive or neg-

ative similarity between two lagged points in the time series. In this case, one of these

two points could be used as an informative feature for predicting the other. As a result,

applying the autocorrelation function allows us to find the informative features for the

neural networks based fine-granularity time series prediction model.

2.3 Performance Impacts

After introducing the basic techniques for time series prediction, in this section, we will

take two simple examples to exemplify the performance impact from resource sharing in

the multi-tiered storage systems and cloud data centers.

2.3.1 Performance degradation when co-scheduling

To illustrate the impact on the user performance, e.g., response time (RT), when co-

scheduling user workloads with background work (e.g., system work) in multi-tier storage

systems. Without compromising on the generalization of the concept, we consider a two-

tier form as the test case with around 100× service rate difference between the fast and

slow tiers. We implement simulations that consider a time frame of a day. Here the mean

user arrival rate equals to 50 requests/min and the mean fast tier service rate is 10000
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Figure 2.5: User performance impacts from scheduling background work.

(user requests)/min or 100 (system requests)/min, all following exponential distributions.

Via simulations, we find that scheduling background work impacts user performance for

the following two reasons: 1) decreasing the fast tier hit rate for user workloads, and 2)

aggravating additional queueing delays.

First of all, we briefly discuss on the effect from fast tier hit rate change for user

workloads. When scheduling background work, due to the limited capacity of the fast

tier, the user working set is evicted from the fast tier. As a result, the fast tier hit rate

for the user workloads decreases when scheduling background work. We evaluate the

mean and tail user RT with the fast tier hit rate changes only, shown as the solid lines

in Figure 2.5. Notice that, here we directly test different fast tier hit rates rather than

introduce additional queueing delays from scheduling background work. It is clearly shown

that higher fast tier hit rate results in better user performance, for both mean and tail

(95%ile) RT, especially comparing the two extreme cases, i.e., fast tier hit rates equal

to 10% and 100%. This result confirms that scheduling background work impacts user

performance in terms of changing the fast tier hit rate for user workloads. Moreover, we

do another set of simulations, which introduce additional queueing delays from scheduling

background work. Here we only schedule background work during the idle time. Due

to the non-preemptive aspect of background work, scheduling background work during
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the idle time still results in additional queueing delays for the user workloads. Mean

and tail user RT with different fast tier hit rates, are presented as the dashed lines in

Figure 2.5. Comparing the two lines in Figure 2.5(a), for the same fast tier hit rate, we can

see an increase in mean user RT when additional queueing delays are calculated. Similar

results are derived for the tail user RT from Figure 2.5(b). This illustrates that scheduling

background work impacts user performance in terms of aggravating additional queueing

delays to user workloads. In summary, co-scheduling in the multi-tier storage systems has

a clear impact on user performance.

2.3.2 Resource Contention in data centers

To demonstrate the performance impact from resource sharing on today’s data centers,

we conduct an post-hoc characterization study on traces of ∼ 6K physical boxes in IBM

production data centers, containing CPU usage series over one week. Previous work [28] has

linked the performance violations with over utilizing resources in cloud data centers. While

the number of VMs in the physical boxes (namely the consolidation level) represents the

level of resource sharing in the physical boxes, to some extent. As a result, to illustrate the

performance impact from resource sharing in cloud data centers, we explore the relationship

between the consolidation level and resource usage across all physical boxes.

In Figure 2.6, we present the boxplots that show the 25th, 50th, and 75th percentiles

(boxes), the extremes of the distributions (whiskers) and the means (dots) of the number

of CPU usage excesses for different ranges of VM consolidation levels on the x-axis. Here a

usage excess represents the usage being above the pre-defined usage thresholds (e.g., 60%

or 70%) [16]. It is clear to see that higher VM consolidation levels result in more CPU

usage excesses, comparing the mean (circles in the figure) for each consolidation level. The

above result suggests that more VMs share the physical resource, higher probability to have
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Figure 2.6: Average number of box CPU usage excesses per day, across 6K different physical
servers with different consolidation levels.

usage violations. In conclusion, resource sharing in cloud data centers introduces incurring

performance violations caused by resource sharing.

2.4 Chapter Summary

In this chapter, we give an overview of basic concepts and terminology. On the one hand, we

focus on the time series prediction, the common theme in this thesis, as well as the related

techniques, including Markovian Arrival Process, neural networks and the autocorrelation

function. In particular, we give an overview of the Markovian Arrival Process to predict

the user workloads in coarse granularity (see Chapter 3) and neural networks to forecast

the user traffic in a much finer way (see Chapter 4). The autocorrelation function is used to

find the periodicity pattern in the time series, in order to determine the most informative

features for the neural networks based time series prediction (see Chapter 5). One the

other hand, we target at the performance impact of resource sharing, the main application

scenario in this thesis, for both storage systems (see Chapter 3-4) and cloud data centers

(see Chapter 6-7). In summary, this thesis applies different time series based workload
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prediction methods that can be incorporated with resource isolation and scheduling polices,

such that the guaranteed performance and system reliability are achieved.
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Chapter 3

Coarse-granularity Performance

Isolation

In this chapter, we focus on the performance isolation in the multi-tier storage systems

based on coarse-granularity workload prediction. As data storage technologies such as flash

make their way into either enterprise storage [89, 62] or cloud storage [1], it is essential

to integrate them with existing and (usually slower and cheaper, even vintage) ones, e.g.,

hard disk storage, in order to strike a good balance among overall performance, availability,

and cost [86]. Following tradition in costs across the data path of a computer system, the

fastest data tier, e.g., DRAM, is the most expensive, while the slowest tier, e.g., hard

disk storage, is the least expensive per unit of data stored. In high-performing enterprise

storage systems, it is common to find large DRAM caches, reaching as much as hundreds of

GByte capacity, SSD caches reaching tens of TBs capacity, and a variety of high-end HDDs

(15KRPM SAS HDDs) and low-end HDDs (7200RPM Nearline-SAS HDDs), all together

exceeding the PByte-range of storage capacity. Given such a structure in the IO hierarchy,

the expectation is that the bulk of user workload is served by the fast tiers, while slow tiers

are used to persistently store the majority of data as well as improve on storage capacity
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and data reliability. The challenge lies with determining what portion of the voluminous

data set to bring up to the smaller fast tiers and when to do that such that the benefits

with regard to user performance and overall system operation are the highest.

Storage systems, both enterprise ones and those supporting web services, often receive

the bulk of user traffic during business hours on weekdays. In addition, the storage system

generates itself a considerable amount of internal traffic as a result of complex features that

aim to enhance performance, reliability, availability, and integrity. Such system internal

work includes, but is not limited to, making additional copies of the data off-site for added

disaster recovery capabilities, snapshooting, deduplication, and policy compliance in a

multi-tenant system. Recently, other sources of work have emerged in scaled-out storage

systems such as virtual data analytics clusters that are brought up on demand to conduct

analysis on large data sets without moving the data to a separate compute cluster, requiring

effective interleaving of user and system workloads. As discussed in Chapter 2, during the

day, user requests peak in intensity at around noon. During night, at regular intervals,

the system generates its own work, which clearly is bulky and would have impacted user

performance significantly if not scheduled during off-peak hours.

Because the system work is the result of several features, it greatly surpasses in intensity

all other user traffic. More importantly, its working set is (usually) much larger than the

user working set. As a result, in a well balanced multi-tiered system, system work could

negatively impact data placement policies which ensure that the most active working set

is in the highest performing tier. To schedule system work at regular intervals (e.g., at

around midnight) does not necessarily guarantee good user performance (note that the

figure illustrates only the arrival intensity, not work that needs to be done). Here, we

contend that it is necessary to pair scheduling of system work with other system metrics

measuring user activity and workload, such as utilization due to user-traffic, user traffic
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intensity, and fast storage tier hit rates, in order to improve overall system usage while

ensuring that system work completes timely.

A critical difference between system internal work and user traffic is that the corre-

sponding working sets are vastly different in both footprint and location within the storage

system. Generally, the system working set is much larger than the user working set. As

a result, in a multi-tiered storage system with tiers having different capacities and perfor-

mance characteristics, standard efforts to isolate system and user workload in-time may

still result in poor user performance. As the system transitions between system work to

user work, high performing tiers could experience high user miss rates. Warming up the

faster tier with the user working set is not instantaneous [128] and unless done proactively

performance degradation of user traffic can become unsurmountable.

In this chapter, we propose an autonomic technique that over time learns the intensity

patterns of user work within a probabilistic model over long time-scales, i.e., days and hours.

The prediction of user intensity is paired with the knowledge of tier capacity, performance

differences across tiers, and other metrics such as active user data set to derive a schedule

for system work, i.e., when to start and stop it. Predicting user intensity patterns at large

time scales can support

• proactively stopping system work before the user intensity increases and warming up

the fast tier with the user working set,

• scheduling system work according to predicted user activity patterns such that large

amounts of system work is completed with minimal impact on user performance, and

• avoiding instability due to short-lived, low user intensity that may erroneously initiate

voluminous system work if short time-scale prediction or if reactive (i.e., feedback-

based) scheduling is used.
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Our methodology is light and robust. Its benefits are evaluated via trace-driven simulation

and actual experiments on a real test-bed. We do comparisons against feedback-based

techniques that are usually applied in such settings. Our experiments indicate that the

larger the fast tiers and the larger the active user working set, the higher the benefits of

having predictive models to schedule bulky system work.

This chapter is organized as follows. In Section 3.1, we discuss on the related work.

Section 3.2 presents a workload characterization of user workload in a storage system sup-

porting web data services. In Section 3.3, we present our predictive algorithm. Section 3.4

presents experiments on a real system and trace driven simulations that demonstrate the

effectiveness of our technique. We conclude this chapter in Section 3.5.

3.1 Related Work

There is a rich body of work in the literature on storage tiering. Hierarchical storage

systems are early examples of storage tiering techniques . HPSS [7] has higher tier (disk)

and lower tier (tape) but only allows files to be read or written from the higher tier while

the lower tier is treated as an offline device, e.g., data must first migrate to the higher tier

before been accessed. VxFS [44] improves the flexibility of the early hierarchical storage

systems by allowing user defined placement and migration rules. As the cost of SSDs

reduced, SSDs have been introduced in the storage hierarchy. HP’S 3PAR [89] and EMC’s

FAST [62] are examples of such systems.

Storage tiering is usually critical for meeting service level agreements (SLA) because it

can significantly boost the overall system performance. Amazon provides ElastiCache [1]

for improving application performance by adding an in-memory caching layer to the in-

frastructure. FlashTier [96] proposes an interface that is designed for using an SSD as a

fast storage tier. Everest [82] offloads bursty I/O workloads by using spare disk bandwidth
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to a virtual short-term persistent storage so that the I/O request latency during peaks is

improved. There are other storage tiering works focused on improving reliability [8, 87, 25]

and cost or energy savings [53, 86].

There are various system storage works that are usually scheduled as a “background”

activity for various purposes, including replication [99, 113], security [67], and data anal-

ysis [108, 80]. Several workload interleaving techniques [39, 124] have been proposed for

scheduling such system or background work, but they do not consider storage tiering.

The work most related to ours is optimizing storage cache warm up. Bonfire [128]

accelerates the cache warmup by using more efficient pre-load methods. Windows Super-

Fetch [5] pre-loads the frequently used system and application information and libraries

into memory based on the usage pattern in history to reduce the system boot and appli-

cation launching time. While Bonfire [128] and SuperFetch [5] focus mostly on identifying

the data locations that should be brought into the fast tier for higher efficiency, our work

concentrates into identifying when to proactively bring a specific and pre-identified data

set into the fast tier such that the system can be best utilized by system work with minimal

impact on user perceived performance. In this regard, our proposed predictive framework

can be viewed as complementary to Bonfire [128] and SuperFetch [5].

3.2 Trace Overview and Motivation

In this section, we present a set of production traces that describe how a storage system

is utilized from a large scale web application. The traces contain the user IO intensity

(in requested files per second) in a scale-out storage back-end of a mid-size web service

provider1. The web service has multiple locations that serve the user workload based on

geography. As a result, in each location the workload intensity follows well the day/night

1Due of confidentiality agreements, the traces or provider details can not be made publicly available.
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pattern (working hours vs. non-working hours) as well as weekday/weekend patterns.

Here we focus on the traffic received by a single data node. However, because of the load

balancing in the storage system, the behavior observed in a single node persists across all

other data nodes in the cluster.
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Figure 3.1: User request arrival intensity (number of arrivals per 10 minutes) over 10 days.
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Figure 3.2: User arrival intensity (number of arrivals per hour) over 35 days.

Figures 3.1 and 3.2 show the average arrival intensity of user requests per minute

averaged over 10 minutes and 1 hour intervals for 10 days and 35 days periods, respectively.

There is a clear daily and weekly pattern in the workload intensity. This is expected since

nowadays large scale web services, although available 24/7 worldwide, are deployed in

geographically distributed data enters, resulting in clear day-and-night patterns in each of

the available locations. Similar patterns are seen also in enterprise storage, which although

different in nature from web storage, serves heavy traffic during business hours and much

less during night hours. These patterns suggest opportunities for predicting user traffic

intensity. The ability to predict these drastic changes can be used to prepare the system

proactively for the heavy user workload, for example by moving the active user data set

26



to the fast tier before it starts being accessed. Effective prediction should also ensure that

the system schedules long and resource demanding internal work only when it is safely

predicted that the system is to enter a long period of low utilization.

We plot the empirical density of the user arrival rate at a granularity of a minute in

Figure 3.3 for all 35 days. The graph illustrates a clear bi-modal pattern, which confirms

that the arrival intensity changes between two general states that we roughly classify as

high/low. In the next section, we show how we incorporate the stochastic characteristics of

the user arrivals to derive a model that predicts the duration or each high and low intensity

periods.
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Figure 3.3: Empirical density of the arrival rate of user requests.

Prediction of low/high intensity user periods provides the system with the information

it needs to intelligently interleave user workload with voluminous system internal work.

For example, it can proactively stop the system work and warm up the fast tier storage

just before the high user intensity period so that the majority of user traffic is served by the

fast tier rather than the slow tier. As discussed later in the chapter, we do not determine

here what data to bring but rather when to bring them in the fast tier.

To illustrate the benefits of predicting arrivals of high and low intensity periods and

motivate our work, we evaluate three scenarios on handling system work in a data node:
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- user only: no system work in interleaved with user traffic,

- reactive: system work runs only during low user utilization periods; when user high

utilization is detected, the system work is stopped and reactively the fast tier cache is

warmed up with active user data,

- proactive with future knowledge: system work runs only during low user utilization

periods; since we know a priori when user high utilization starts, we stop system work

early enough to allow for the fast tier cache to be warmed up with active user data right

before the surge of user work.
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Figure 3.4: CDFs of user response time of day 20 for different algorithms.

Figure 3.4 illustrates the CDF of user response time when a single day worth of trace

data (see Figure 3.2) is used to drive a simulation of the above three scenarios. For the

two policies that allow system work, the simulation starts and stops it at the same time,

with the purpose of evaluating only the benefit of proactive vs. reactive fast tier warm up

(which takes the same amount of time in both scenarios). Clearly with a reactive warm

up a large portion of user requests experience long response time by being served from the

slow tier of the system. Both the body and the tail of the user response time distribution

benefits greatly by a proactive fast tier warm up, which can be is possible only if a model

enables prediction of arrival of high user utilization periods.
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3.3 Model-based Storage Tiering

The data patterns described in Section 3.2 (see Figures 3.1 and 3.2) favor prediction. User

intensities go through a clear high/low pattern which if captured accurately can be used to

intelligently interleave workloads with widely different demands. Indeed, this is the current

state of the practice in most data centers [16]. We aim to develop a model that would allow

for better overall system resource utilization by completing aggressively system work and

achieve better performance isolation across user and system workloads.

We first present a Markovian-based model that captures the duration of low/high traffic

intensities in user arrivals across different time scales (i.e., daily distinguishing between

weekday/weekend and hourly distinguishing between day/night activity). We also develop

a model that captures the changes in user performance as a function of fast tier hit rate.

Finally, we apply these models to predict when such periods of high/low intensities arrive

to schedule system work and cache warm up with the goal of optimizing performance.

3.3.1 Traffic Intensity Prediction Model

The preliminary workload analysis in Section 3.2 showed that there are repeatable low/high

daily intensity patterns. We refer to the state with high average arrival intensity as the

High state and the lower one as the Low state. The threshold for distinguishing the High

and Low states can be discovered via statistical analysis. Alternatively, the threshold could

be user-defined. We need to determine the following: how long does the user traffic resides

in each state, i.e., the duration of each state and the conditional probability that there

is a transition from one state to the next. The analysis of Section 3.2 also showed that

weekend High state intensity is different from weekday High state intensity. We aim to

capture these patterns in order to distinguish days with overall less intensity from days of

higher intensity.
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To capture this effect, we use a hierarchical model that captures different types or

classes of high/low intensities. The difference between these is that the average intensity

for the High or Low states may be different as well as the duration of each of these states.

Note that in addition to transitions within the High/Low states within each class, there

are probabilistic transitions from the states that represent one class (e.g., weekdays) to

another class (e.g., weekend or holidays). This hierarchical model is shown in Figure 3.5.

The model in Figure 3.5 has two classes of high/low intensities (capturing day/night and

weekday/weekend patterns). However if more classes are detected then the hierarchy of

the model can grow to accommodate them.
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Figure 3.5: High level Markovian model.

We start building the model by first categorizing the observed arrival intensities. We

use clustering to determine how many types of low/high intensities exist in the workload

using Silhouette [94] and K-means. Silhouette is used to calculate the dissimilarity value

s(i) of the average arrival intensity of day i. The dissimilarity value s(i) is defined as:

s(i) =
b(i)−a(i)

max{a(i),b(i)}
,

where i is the day index, a(i) is the average dissimilarity of day i to all other days within the

same cluster, and b(i) is the lowest average dissimilarity of day i to all days in a different
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cluster. Distance measures are the most common for calculating the dissimilarity values

a(i) and b(i). The values of s(i) are in [−1,1] and the larger its value the better, e.g.,

when s(i) approaches to 1, a(i)� b(i), which means that the distance between data within

each cluster is the smallest. More specifically, the following three steps are performed to

determine the number of clusters in the model:

1. Define the upper bound of the number of clusters as
√ n

2 , where n is the total number

of days in the historical information2.

2. Calculate the average s(i) for a different number of clusters;

3. Choose the number of clusters with the highest s(i).

After the number of clusters is determined, then we calculate the transition probabilities

between them. We also estimate the duration of High/Low states within each cluster as

well as their transition probabilities.

In a live system, the goal is to have an initial model built with the data collected over

the first few weeks of operations. Then, the model is updated continuously as new data

on user workload is collected, so that any changes in system operation and user access

patterns are reflected in the model.

Figure 3.6 illustrates the effectiveness of prediction by comparing it with actual state

changes. The dashed lines illustrate the points where the model detects a change in the state

(from High to Low or Low to High). The dotted line illustrates the actual state changes.

The graph shows that the model predicts effectively changes from one user intensity state

to the next.

2
√ n

2 is used as a rule of thumb in K-means to avoid too many clusters and unnecessary overheads [112].
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Figure 3.6: Comparison of actual and predicted arrival intensity state changes.

3.3.2 Fast Tier Hit Rate

The fast tier hit rate in a storage system is related to many factors, including its capacity

and active user working set. Here, we provide an estimation method for the instant fast

tier hit rate with the goal of estimating how it changes as active user data moves from the

slow tier up to the fast tier and vice versa.

As we focus mostly on large capacity fast tiers as well as large active data sets, it

becomes necessary to warm up the fast tier cache rather than allow it to be warmed up

gradually by the user accesses. Figure 3.4 clearly illustrates that warming up the cache

can tremendously affect performance.3

The average IO service rate for user traffic is a combination of fast storage tier access

speed and slow storage tier access speed and can be expressed as follows:

µ(t) = (1 + S(t))∗µorigi = H ∗R f ast +(1−H)∗Rslow, (3.1)

where µ(t) is the average service rate of user traffic at time t. µorigi is the original average

service rate of user traffic, e.g., when there is no system work. S(t) is the service slowdown

which describes how the average service rate changes from the original one. H is the fast

tier hit rate, Rslow is the average slow storage tier access speed and R f ast is the average fast

3The model presented here can be trivially extended to capture the no warm up case, i.e., passively
move data when first accessed, by changing the parameter of the average transfer speed between the fast
storage tier and slow storage tier to a function that is determined by the intensity of arrivals.
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storage tier access speed, implying that the fast tier hit rate can be defined as follows:

H =
(1 + S(t))∗µorigi−Rslow

R f ast −Rslow
(3.2)

with 0≤ H ≤ 100%.

When system work is served, the average service rate of user traffic unavoidably de-

creases due to sharing of the fast storage tier with the working set of the system workload.

We assume that the Service Slowdown increases linearly over time during the periods of

serving system work:

S(t) = S(ti−START )+ a∗ t, (3.3)

where S(ti−START ) is the Service Slowdown at the beginning of the time window i serving the

additional work. This parameter is necessary because the slowdown effects may propagate

through several windows of time. Finally, a is an coefficient that describes how fast the

slowdown increases during system work serving periods.

The maximum slowdown occurs when the fast storage tier is filled with the system

working set, and unavoidably all user traffic is served from the slow storage tier, therefore

Rslow = (1 + Smax)∗µorigi, (3.4)

or

Smax =
Rslow

µorigi
−1. (3.5)

Note that µorigi may not equal to R f ast because the Fast Tier Hit Rate may not equal to

100% even when no system work is served.

When S(ti−START ) = 0, i.e., when the fast storage tier is filled with the user working set,

Tf ast expresses the period before system work data starts occupying the entire fast storage

tier. After the user working set is removed from the fast storage tier, the user service
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slowdown reaches its maximum, i.e., no user IO requests can use the fast storage tier to

improve performance. According to Eq. 3.3 we have:

Smax = a∗Tf ast . (3.6)

By definition, the capacity C equals to the transfer speed F multiplied by time, therefore:

C = F ∗Tf ast (3.7)

and

µ(t) = (1 + S(t))∗µorigi. (3.8)

From Eq. 3.3 and Eq. 3.5 – Eq. 3.7, when t > ti−END, we have :

S(t) = S(ti−START )+ Smax∗F
C ∗ t.

= S(ti−START )+ F
C ∗ ( Rslow

µorigi
−1)∗ t, (3.9)

which shows that the user service slowdown is related to the average fast and slow storage

tier access speed, the average transfer speed between fast and slow storage tiers, the original

average service rate of user traffic, and the fast tier capacity.

When the system stops serving system work, the user service slowdown due to sharing

of the fast tier with system workload decreases over time. We assume that this decrease is

linear across time:

S(t) = S(ti−END)−b∗ t. (3.10)

S(ti−END) is the user service slowdown at the end time of system work serving window i

and b is an coefficient that describes how quickly the slowdown decreases over non-system

work serving periods.
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Similarly, when S(ti−END) = Smax, i.e., when the fast tier is filled with all system work

data, it takes Tf ast time units before the user working set refills the entire fast tier. After

the user working set is restored, the user service slowdown reaches its minimum, i.e., to the

original service rate without any system work. According to Eq. 3.10, when S(ti−END) =

Smax, S(t) = 0:

0 = Smax−b∗Tf ast . (3.11)

By comparing Eq. 3.3 and Eq. 3.10, we have b = a. Therefore, for ti−START ≤ t ≤ ti−END, we

have:

S(t) = S(ti−START )− Smax∗F
C ∗ t

= S(ti−START )− F
C ∗ ( Rslow

µorigi
−1)∗ t. (3.12)

Using Eq. 3.9 and Eq. 3.12

S(t) =



S(ti−START )− F
C ∗ ( Rslow

µorigi
−1)∗ t,

for ti−START ≤ t ≤ ti−END,

S(ti−END)+ F
C ∗ ( Rslow

µorigi
−1)∗ t,

for t > ti−END.

(3.13)

From Eq. 3.2 and Eq. 3.13 it follows that the hit rate is:

H =



µorigi(S(ti−START )+1)−Rslow− F
C ∗(Rslow−µorigi)∗t

R f ast−Rslow
,

for ti−START ≤ t ≤ ti−END,

µorigi(S(ti−START )+1)−Rslow+ F
C ∗(Rslow−µorigi)∗t

R f ast−Rslow
,

for t > ti−END.

(3.14)

35



3.3.3 Storage Tiering

Figure 3.7 presents an algorithm for scheduling system work in a multi-tier storage system.

In the characterization state, the algorithm collects arrival intensity information to compute

the parameters and build the Markovian model. Based on the Low and High states duration

and the fast tier warm up time, the algorithm schedules system work. For example, during

the Low state, the system work is served concurrently with the low user traffic because

the overall performance impact is small. The thresholds of the fast tier hit rate can be

considered a control knob. For example, the thresholds of Low state can be set much

smaller than the threshold of those of the High state so that more system work can be

finished.

The algorithm proactively warms up the fast tier by stopping system work ahead of the

predicted arrival of the High state. The warm up time depends on the fast tier capacity

and can be computed via Eq. 3.7. Such proactive action is critical because the fast tier

can not be warmed up instantly. For large fast tiers, the warm up may take a long time,

hours or in some cases even days [128]. Without proactive warm up, the user requests that

arrive in the initial period of the High state are to be impacted significantly.
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1.if system in characterization state do
a.collect arrival intensity information and use

Silhouette and K-means to do clustering.
b.Compute duration of High/Low states per cluster

and transition probabilities within and across clusters
c. Build the Markovian model with the computed

parameters and continue updating the model
while the system is in operation

2.if the system is in serving system work state do
a.Predict how long the system will be in Low state

and compute warmup time for fast storage tier Tf ast

b.if residual time in Low state > Tf ast

i. compute the Fast Tier Hit Rate and
average utilization UT ILpast of past t minutes

ii.if no outstanding user request
and H >= H low

threshold−lower
and UT ILpast <= UT ILthreshold
schedule system work

iii.else if H <= H low
threshold−lower, stop serving

system work until H = H low
threshold−upper

go to Step 2.b.iv
iv.else process user request or stay idle
v. go to Step 2.b

c. else if the residual time in Low state < Tf ast

i. stop serving system work and warm up the fast tier
ii. go to Step 2.b

d.else if system in high arrival intensity state
i. if no outstanding user request

and H >= Hhigh
threshold−lower

and UT ILpast <= UT ILthreshold
schedule system work

ii.else if H <= Hhigh
threshold−lower, stop serving

system work until H = Hhigh
threshold−upper

go to Step 2.d.iii
iii.else process user request or stay idle
iv.go to Step 2.b
go to Step 1

Figure 3.7: Prediction-based deployment of systems work.
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3.4 Experimental Evaluation

In this section, we evaluate the proposed scheduling framework via an extensive set of

experiments in a real system and through trace-driven simulations. We first describe the

testbed and the workload we use in Section 3.4.1 and then show the respective experimental

results that validate our method in Section 3.4.1.1. Then we use our traces from Section 3.2

to drive a set of simulation experiments for more sensitivity analysis of our predictive model.

Throughout this section we compare our framework with other common practices such as

feedback-based techniques.

3.4.1 Experimental Testbed and Workloads

Our testbed consists of a server with a disk enclosure attached to it, which provides data

services to a host. Its memory is 12GB and the disk enclosure has 12 SATA 7200RPM

HDDs of 3TB each. In our experiments the system memory emulates the fast tier and

the disk enclosure the slow tier used for the bulk of the data. The benefits of effective

workload prediction are high for system with large gaps in the performance characteristics

across tiers. For the shake of presentation clarity, we evaluate here the predictive framework

on a system with two-tiers only that provide services that differ by one order of magnitude.

We stress that our approach can be directly applied in a system with any number of storage

tiers.

The workload is generated and measured at the host machine. We use fio [4] as the IO

workload generator for the flexibility it provides to generate a wide range of IO workload

intensities and general patterns. We generate two types of IO workloads, user and system,

which differ on the active working set size rather than their access pattern. The working

set size for the user workload is 1GB4, i.e., such that it always fits into the memory of the

4Experiments with 4GB and 8GB user working sets yielded similar results and are omitted here due to
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server that emulates the fast tier. The system work has an active working set of 24GB,

i.e., it does not fit fully into the fast tier and the large slow tier is accessed to retrieve the

data. The access pattern for both user and system workload is 100% small random reads

to emulate common enterprise workloads that would benefit from prefetching (warm-up)

only if the working set can fully (or almost) fit in the high performing tier (i.e., the SSD).

Our framework determines only when to warm up the cache with a pre-determined user

data set. Determining what data should be brought into the cache is outside the scope.

The user active working set can be determined by evaluating statistically access patterns

such as the number of accesses per storage location. Here we also assume that the system

is provisioned in such a way that the fast tier can fit the entire (or the majority of the) user

active working set. The fast tier is warmed up via a sequential read of the user working

set.

We have measured the following system work scheduling policies:

• user-only - used only as a baseline to evaluate the impact of the additional system

work,

• feedback-based - a reactive policy that monitors the current load intensity in the

system and determines if it is in a high or low intensity period,

• prediction-based - a proactive policy (see Figure 3.7) that uses the proposed Markovian

model to predict user traffic intensity by having learned from past data the duration

of periods of high and low intensity.

Rules that determine the change of state (from High to Low or vice versa) for both the

feedback-based and the prediction-based policy are the same and follow the discussion in

Section 3.3. The main difference is that by predicting the arrival of the High state the

lack of space.

39



system can prefetch the user working set before the state changes and avoid performance

penalties in a large portion of user requests. The feedback-based policy is a reactive one: it

acts after it detects a state change. As a result, user requests arriving right after the state

change suffer from performance penalty of being served at the slow tier, till the fast tier is

warmed up. The larger the fast tier, the longer it takes to warm it up and the higher the

performance penalty of the feedback-based policy.

The prediction-based policy is designed to fall-back on the feedback-based policy: if

the prediction time for a High state is in the future but the High state is already detected,

then system work is stopped and the fast tier is warmed-up with the working set reactively.

3.4.1.1 Measurement Results

Using fio, we generate a random reads workload accessing data stored in our server. The

intensity of user IO requests is shown in Figure 3.8 and it emulates very closely the load

pattern of user requests shown in Section 3.2. Note that without any system work, the

response time of user IO requests remains in the same range of about 150ms. All IOs

are served from the fast tier. The user throughput however does increase by one order of

magnitude as the arrival intensity increases. This confirms that the storage system does

not suffer from queuing delays and it has the capacity to sustain more user load.

We add on the same experiment some system work. Initially, the system work is slowed

down as to not interfere with the user workload performance. In Figure 3.9 we show the

same user workload interleaved with system work with very low intensity, i.e., the system

throughput reaches up to 121 IOPS for the first 100 minutes. In the next 100 minutes the

intensity of system work increases and its throughput reaches 5968 IOPS, a two-orders of

magnitude increase from the first half of the experiment. User performance is not impacted

in the first half of the experiment, but system work here is minimal. The figure plots the
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throughput of both user and system work, as well as the response time of the user workload.

In the second part of the experiment (100 min to 200 min) where systems work is launched,

the increase in user response time is 50-fold, while its throughput is very low.
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Figure 3.8: User IOPS (throughput) and user response time over time, user-only policy.
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Figure 3.9: User and system IOPS (throughput) and user response time over time. In the first
half of the experiment there is minimal systems work, in the second half systems work is increased
by two orders of magnitude.
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Figure 3.10: User and system IOPS (throughput) and user response time over time. Till the 100th
minute, there is only user workload. In the time periods from the 100th to the 120th minute and
the 150th to the 170th minute, the feedback policy is launched. The prediction policy is launched
from the 120th to the 150th minute, as well as after the 170th minute to the end of the experiment.

In Figure 3.10 we do the same experiment but we now activate the feedback and the

prediction-based policies in the second half of the experiment, when the system work is
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launched/ The feedback policy was used from the 100th to the 120th minute as well as for

the time period between the 150th to the 170th minute. In the rest of the time periods,

the prediction-based policy is used. The graph shows that when the prediction policy

is activated (time periods: 120-150, and 170-200), user response time remains unscathed,

both with respect to throughput and response time. In the time periods when the feedback

policy is used, we see high throughput of system work but also user response time that are

orders of magnitude greater than the user-only case.
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Figure 3.11: Response time with warm up and without warm up across the experiment time.

What makes the difference in user performance between the feedback and prediction-

based policies is the timely fast-tier warm up. Figure 3.11 captures this effect. In this

experiment, we use a very small data set of 1GB and let the fast tier warm up 1) by the

accesses of the regular user workload (i.e., no explicit warm up) and 2) by specifically bring-

ing the working set up to the fast tier (warm up) via a sequential read of the user working

set. While it takes only 130 seconds to bring 1GB of data into our fast tier by reading

it sequentially (300 seconds and 700 seconds for 4GB and 8 GB of data, respectively), it

takes 600 seconds to fully warm up the cache by the user workload alone (more than one

hour for the 4GB and 8GB working sets). As the working sets and fast tier capacities grow

to TBytes, it becomes imperative not only to warm up the cache before the high user load

starts, but doing it proactively (with the aid of our model) than reactively (feedback). A

more fine-grained evaluation of our predictive policy is done via trace-driven simulation in
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the next subsection.

3.4.2 Simulation Results

In order to evaluate our predictive approach at a fine-grain level and better understand its

statistical properties, we experiment also with a trace-driven simulation that allows us to

change the various parameters of the experiment. The simulation, in particularly, allows

us to analyze the benefits of the predictive methods as the size of the fast tier increases,

without been constricted by the specific hardware as in the case of our limited testbed.

Our simulation is driven by the traces described in Section 3.2. Since the traces contain

only the arrival process, the service process is assumed to be exponentially distributed

with a mean service rate that ensures that the response time remains flat during the full

range of user arrival intensities. We simulate a two-tiered storage system with configurable

capacities and user active data set sizes to experiment with different fast tier warm up

times (i.e., 1 minute, 15 minutes, and 60 minutes).

We have implemented the feedback-based and the prediction-based policies for schedul-

ing system work. As a baseline comparison, we also report performance data when no sys-

tem work is launched (i.e., we also present the user-only case). The simulation, similar to

our measurement experiments, is built such that when the system is experiencing high user

arrival intensities, the system work is stopped. When the system experiences low arrival

intensities then the system serves both user requests and system work. The differences

between the predictive and feedback approaches lies on the exact time when the system

work is stopped and resumed.

For the results that we present here, the model is already trained with two weeks of

trace data and we present results when the model is applied in one of the days (day 20, see

Figure 3.2). Figure 3.12 illustrates the points where the two model predictions differ. The

43



0 4 8 12 16 20 24
0

40

80

120

Time: Hour

A
rr

iv
a

ls
/m

in

 

 

User Requests
Feedback
Prediction

Figure 3.12: Predicted state change by feedback and prediction methods.

lines that are marked as feedback illustrate the points in time where the arrival intensity

changes after observation. Note the feedback uses on-line detection, so there is a delay

between the true change point and detected moment The prediction lines correspond to

the time stamps where the model predicts that there is an imminent load change. Due to

the stochasticity of the arrival intensities and the Markovian-based model, the prediction

model deviates from the real change that is accurately detected by the reactive, feedback-

based method. Yet, this accuracy of the feedback model becomes almost a moot point

since it cannot be used to enable tier warm up before the high user load.
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Figure 3.13: Performance comparisons via simulation. Note the throughput for system work is
null in the user only case.

In our simulation experiments we compare the average user response time and the aver-

age system work throughput between different fast tier capacities (measured by the time it
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Figure 3.14: CDF of user response time.

takes them to warm up). The expectation is that the predictive method would detect the

incoming High state and proactively warm-up the fast tier earlier than the feedback method

detects the High state after the fact. As a result, system work runs for longer stretches un-

der the feedback method than the predictive method. Consequently, the predictive method

completes less system work, but also maintains high user performance. Note that the larger

the fast tier, the higher the benefits of the predictive approach, otherwise the system is left

to operate under high user arrival intensities and a cold fast tier for longer periods of time.

These behaviors are captured in Figure 3.13 and further corroborated by Figure 3.14 where

the CDF of the user response time is plotted under the scenario of a fast tier requiring 60

minutes to warm up. In the other two cases of smaller fast tiers, the differences between

the feedback method and the predictive methods are not as pronounced. As a final note,

note that in Figure 3.14 we have also added the ideal proactive policy that assumes full

knowledge of the future workload to initiate the tier warm up. The response time CDF

of the prediction-based policy is very close to that of the ideal one, which further argues

about the effectiveness of the model prediction.
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3.5 Chapter Summary

We have examined the effects of various workload interleaving techniques in tiered storage

and have demonstrated the performance benefits of a stochastic, Markovian-based model

that can be used to first learn and then predict cyclic patterns in user workload intensity.

Using a variety of user workload traces for production systems we have demonstrated the

robustness of the model as it effectively suggests when to deploy and when to stop the

deployment of system storage features in order to better, resulting in serving systems work

during the most opportune low utilization periods.
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Chapter 4

Fine-granularity Performance

Isolation

Different from Chapter 3, in this chapter, we emphasis on providing a performance pre-

diction model, that is able to achieve finer control of the resource isolations in nowadays

storage systems. Often in such systems, data analytics workloads co-exist with high priority

user workloads that operate within strict service level objectives (SLOs). Data analytics

workloads, e.g., personalized advertising, sentiment analysis, product recommendation,

database replication, dominate many systems today. Different than traditional internal

work (e.g., garbage collection, snapshots, upgrades), data analytics work requires faster

reaction in order to provide timely information [57, 31, 132], e.g., a delayed advertisement

event update could cause reduced income or a product recommendation should occur before

the user leaves the site. Since data analytics to enhance user experience and regular user

traffic share the same hardware, their effective resource management can greatly enhance

business value and user satisfaction.

Scheduling user traffic and data analytics work in the same system is a challenging

task. Scheduling data analytics too aggressively may cause user traffic to suffer from SLO
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violations. If scheduled too conservatively, data analytics work could not finish in time,

thus could loose its value. With user workload traffic that is repeatable and periodic across

different time scales [132, 111, 121], it is natural to interleave data analytics work with user

workload at periods of low user demands.

Key to the effective deployment of any policy that interleaves data analytics with SLO-

bound user level work, is the prediction of fluctuations in the user workload and especially

identifying a priori heavy or spiky loads. Here, we propose NeuQ, a neural network/queuing

hybrid solution: the queueing model that is the basis of co-scheduling decisions is signifi-

cantly enhanced by neural networks to improve its accuracy. The queueing models that we

use predict the magnitude of the potential performance interference of co-scheduling user

and data analytics workloads. An important parameter of the queueing model that greatly

affects its prediction accuracy is a priori knowledge of the upcoming arrival intensity, this

is successfully provided by the neural network.

To illustrate the effectiveness of NeuQ, we consider tiered storage systems as a use case.

In storage systems flash-based technologies (e.g., DRAM, SSD) are widely integrated into

data centers and scaled-out cloud storage systems [89, 62, 1]. Despite their performance

advantages over the traditional disk- or tape-based storage technologies (e.g., HDD), their

much higher cost per byte prevents flash-based storage technologies to completely replace

traditional disk or tape based storage devices. Hybrid, tiered architectures that integrate

flash with various disk technologies are common alternatives.

Tiered storage systems adopt a hierarchical design: fast tiers using flash storage devices

aiming at boosting performance and slow tiers using HDD devices for the purpose of

balancing capacity and cost, as well as for improving reliability [53, 86]. Their efficiency

is based on moving data to the right tier based on statistics of data access frequencies.

Data moving, i.e., what portion of data ought to be transfered and when this should take
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place, affect greatly performance as access times and capacities across different tiers differ

by orders of magnitude. This greatly depends on how the upcoming workload intensity is

known in advance and is vital for NeuQ’s success in offering co-scheduling decisions, as the

effects of tier warming greatly depend on timely information on this measure.

NeuQ guarantees user SLOs while maximizing data analytics throughput. To this end,

we do not treat data analytics simply as a best effort workload. Instead, our aim is to

schedule it as aggressively as the system allows without violating user SLOs. We stress

that the above performance targets are by no means a limitation of the proposed hybrid

model. Incorporating different targets (e.g., deadlines) for completion of data-analytics

workload are also easily handled, as we show here.

The proposed approach is fully automatic and robust. We validate its correctness and

efficiency via trace-driven simulation using two case studies: 1) enterprise traces from

Wikipedia [111] and 2) arrival traces in a scaled-out storage back-end of a mid-size web

service provider that we have also used in prior work1. Our extensive experimental eval-

uation shows that the prediction of the user traffic arrival intensity and data analytics

completion time is remarkably accurate. More importantly, compared to other state-of-

the-art scheduling approaches, the proposed solution strictly meets user SLOs while serving

aggressively data analytics workloads. In addition, our approach also supports different

scheduling objectives.

This chapter is organized as follows. In Section 4.1, we discusses on related work.

Section 4.2 presents the hybrid model: the machine learning model for traffic intensity

prediction and the queueing model. Section 4.3 presents extensive experimental evaluation

via trace driven simulations to verify the correctness and effectiveness of the proposed

methodology. We conclude in Section 4.4.

1The Wikipedia traces are publicly available [111]. Due of confidentiality agreements, the storage system
trace or provider details can not be made publicly available.
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4.1 Related Work

Analytical and simulation models have been widely used to quantify the impact of workload

changes to application and/or system performance, see [40, 53, 121, 11, 100, 127, 124]

and references therein. [121] uses a probabilistic model to define “workload states” via

hierarchical clustering. After state discovery, the observed workload is used to parameterize

a Markov Modulated Poisson Process that can accurately predict the duration of each state

as well as transitions from state to state. ARMA/ARIMA [45] have been adopted in [132]

to predict the user traffic overtime in order to achieve cost-efficient capacity planning.

However, this prediction method is limited to the linear basis function.

Machine learning techniques are used to overcome the limitations of the linear ba-

sis function of ARMA/ARIMA models, and are used for effective characterization of

TCP/IP [32] and web server views [65]. Machine learning techniques [33] have been also

used for performance prediction of total order broadcast, a key building block for fault-

tolerant replicated systems. Ensembles of time series models have been used to project

disk utilization trends in a cloud setting [103].

In general, analytical models are restricted by their simplified assumptions while ma-

chine learning models are effective in predicting performance for scenarios that have already

been observed in the past and fail when new patterns are observed. A gray-box performance

model that combines analytical modeling with machine learning has been proposed [38].

The authors advocate the use of analytical models to lower the initial training time of

machine-learning based predictors or enhance the accuracy of the analytic model by ad-

justing its error with the help of machine learning. In contrast to this work, what we

propose here is the usage of machine learning to accurately predict specific inputs of a

queueing model, which in turn we use to derive scheduling decisions.
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4.2 Methodology

In this section, we start with the description of the user workloads used in this work. Then

we illustrate how to use a neural network to build a traffic prediction model. Finally, we

introduce in details of the NeuQ scheduler that is powered by a queueing model.

4.2.1 Workload
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Figure 4.1: User request arrival intensity of storage workload over one month.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
200

400

600

800

1000

Time: Day

A
rr

iv
a

l 
In

te
n

s
it
y

(a
rr

iv
a

ls
/m

in
)

Figure 4.2: User request arrival intensity to Wikipedia over one month in 2007.

Data center workloads often follow periodic patterns across time [17, 11, 121, 14]. In

Figure 4.1, we demonstrate the arrival intensity of the storage system workload during one

month period [121]. In Figure 4.2, we present the arrival intensity of requests to Wikipedia

during October 2007 [111].
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Intuitively, the workload of Figure 4.2 shows a distinctive day/night pattern as well

as weekday/weekend pattern. To capture this, we carry out some statistical analysis by

calculating the autocorrelation of the time series of the arrival process. Autocorrelation

is the cross-correlation of a signal with itself [63]. Intuitively, it captures the similarity

between observations as a function of the lag between them. Autocorrelation values are in

the [−1,1] range, the closer the lag autocorrelation to 1, the closer the two observations.

Zero values indicate no relationship among the observations, while negative values indicate

that the range of values of the two observations is diametrically different.

The autocorrelation of user arrival intensity for the Wikipedia workload at varying time

lags is shown in Figures 4.3(a) and 4.3(b), that report on autocorrelations at the minute lag

(10-minute granularity) and day lag, respectively. The figures verify clear daily and weekly

patterns, as also observed in Figure 4.2. Autocorrelation reaches a maximum value per

day across all lags illustrating a clear daily pattern, ditto for Figure 4.3(b) that illustrates

a clear weekly pattern. Similar autocorrelation patterns are also observed for the storage

workload. In the following section, we use these properties to train a neural network that

can model user arrival intensity.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
−1

−0.5

0

0.5

1

                                                   Lag: min                                        × 1440

A
C

F

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0.5

0.75

1

Lag: day

A
C

F

(a) Minute granularity (b) Day granularity

Figure 4.3: Autocorrelation of arrivals for different granularities. Note for (a), the points are at
10-minute granularity, the ticks in x-axis is multiplied by 1440, e.g., 2 represents 2∗1440 minutes
or 2 days, so the lag is up to 14 days.
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4.2.2 Neural Network Model

Neural networks are a class of machine learning models that can capture periodicity within

different time scales. Traditional time series models such as ARMA/ARIMA [45] and Holt-

Winters exponential smoothing [51] are usually limited by the linear basis function. Neural

networks can instead model non-linear functions of the input, which makes them effective

for time series modeling [41]. A time series analysis consists of two steps: first building a

model that represents a time series, and then using the model to forecast future values.

If a time series has a regular pattern, then a value of the series should be a function of

previous values. An artificial neural network consists of multiple nodes, or neurons, which

are interconnected to mimic a biological neural network [56]. These neurons have adaptive

weights, tuned by a learning algorithm, which enables neural networks to approximate non-

linear functions of their inputs. The adaptive weights describe the connection strengths

between neurons, activated during training and prediction.

To build a neural network model for a time series, selecting the most relevant input that

can describe the trend, season, and noise is utterly important. To take care of trend and

season, or in other words, to capture the long-term pattern, we make use of the correlogram

in Figure 4.3(b). The figure shows that when the lag equals to seven days, the user traffic

is highly and positively correlated. Therefore, as input to our traffic model, we choose the

user arrival intensities of exactly one week ago. To capture the temporal change or noise,

which can be seen as a short-term pattern, we look into Figure 4.3(a) and see that for lag =

10 min the arrival intensities have the highest correlation value. This suggests to consider

the user arrival intensities of 10 min ago as another input to the model. With the above

inputs as features and current observations, we can train a neural network. When training

a neural network, the data are divided into three distinct subsets [58]: the training set,

that is used to train the weights (model parameters) of neural network; the validation set,
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which is used to minimize overfitting thus ensure a generalized solution; and the test set,

which is used for evaluating the accuracy of the trained neural network model. Here we

use the neural network toolbox provided by MATLAB [37] to train our traffic prediction

models.

When training a neural network, even with the same data, the trained model can have

different accuracy depending on the configured parameters, e.g., different initial weight val-

ues, different divisions of data used for training, validation, and test samples. Our primary

attempt to avoid using badly-behaved neural networks (that result in poor prediction), was

to train several neural networks on the same data set and select the one with the smallest

mean squared error. However, since the future largely remains unknown, it is possible

that the “best” neural network fails to do a good prediction in the future. To mitigate

this potential problem, we use an ensemble method [103], which averages predictions from

different neural networks. Even though the ensemble method may not always provide the

optimal prediction, it consistently produces accurate predictions without requiring manual

checking.

Last but not least, the computational complexity of the neural network training is not

significant, as the prediction model can forecast upcoming traffic for up to a week ahead,

suggesting that it is sufficient to update the neural network model as often as once per

week for the data in hand. The frequency of training can be adjusted based on different

needs.

4.2.3 Co-scheduling

As Figure 4.2 shows, user traffic demonstrates peaks and valleys, suggesting that one could

aggressively co-schedule data analytics work during the “low” user periods. Our intention

is to quantify how much additional work one could co-schedule such that overall system
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utilization increases while user SLOs are respected. Because we are aiming to provide a

scheduling approach that is easy to deploy and integrate with other management tools, we

refrain from making scheduling decisions for user requests too frequently, as this could result

in significant overhead. Therefore, our framework divides the time into small windows tw

and makes scheduling decisions only at the beginning of each window2.

4.2.3.1 Performance model for user traffic in a tiered storage system

To simplify presentation, we assume that the time window that the user SLO is computed

is the same as the scheduling window size tw.

Arrival process: Although in large time windows the arrival process shows a periodical

pattern, within each small time window tw, the arrival process can be viewed as a Poisson

process [63].

Service process: In a 2-tiered storage system3, if the working set of the coming IO

request is in the fast-tier (e.g., SSD), the request is served in fast tier. Otherwise, the

coming IO request is served in the slow-tier (e.g., disk). Here we assume the service process

for each tier follows an exponential distribution. The service process for the 2-tiered system

can be described by a hyper-exponential model [93] with mean service time:

E[s] = h×E[s1]+ (1−h)×E[s2], (4.1)

where E[s1] and E[s2] are the mean service times for the fast tier (tier 1) and slow tier (tier

2), respectively. h is the fast tier hit rate defined as the probability that a request is served

from the fast tier. The maximum value of the fast tier hit rate hmax is determined by the

2We assume tw = 1 minute in our experimental evaluation, but this could be adjusted according to the
specific system requirement.

3For presentation reasons, we use a 2-tiered storage system to explain our methodology, but it could be
easily extended to storage systems with more tiers. This discussion also applies to caching.
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workload characteristics and the capacity of the fast tier, e.g., if the entire working set can

loaded into the fast tier, then the maximum hit rate is 1, in which case all the requests are

served in the fast tier. Based on Eq. 4.1, the expectation of the squared service time can

be computed as follows [93]:

E[s2] = 2!×(h×E[s1]2 +(1−h)×E[s2]2), (4.2)

where E[s1]2 and E[s2]2 are the square of mean service times for the fast tier (tier 1) and

slow tier (tier 2), respectively.

Queuing model: Based on the above assumptions, the 2-tired storage system can be

modeled by a M/H2/1 queue for each small time window. We use the Pollaczek-Khinchine

formula [107] to compute the average response time of an M/H2/1 queue:

RT = E[s]+
λ ×E[s2]

2(1−ρ)
, (4.3)

where E[s] is the mean service time, E[s2] is the mean of squared service time, λ is average

arrival intensity, and ρ is the system utilization

ρ = λ ×E[s]. (4.4)

Combining Eqs. 4.1, 4.2, and 4.4 into Eq. 4.3, we have:

RT = h×E[s1]+ (1−h)×E[s2]+
λ × (h×E[s1]2 +(1−h)×E[s2]2)

1−λ × (h×E[s1]+ (1−h)×E[s2])
. (4.5)

From Eq. 4.5, it is clear that within each time window tw, the average user response time

RT is a function of the average arrival intensity of user requests λ , the mean service time

for each tier (E[s1] and E[s2]), and the fast tier hit rate h.
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4.2.3.2 NeuQ Scheduler

Co-scheduling data analytics work may have a performance impact on the user traffic.

From our performance model above, the first three parameters (λ , E[s1], and E[s2]) only

depend on the characteristics of user workload and performance of hardware devices, so

co-scheduling has no impact on these parameters. However, co-scheduling data analytics

work does impact the fast tier hit rate h because it evicts the user working set from the

fast tier and reduces the probability of serving user requests in the fast tier. Therefore,

in order to meet the user SLO (RTtarget), the fast tier hit rate of user traffic needs to be

maintained above a threshold that is computed from the user SLO and arrival intensity.

We compute the threshold (htarget) based on Eq. 4.5 by representing the fast tier hit rate

as a function of the user response time target and arrival intensity:

htarget =
λ × (RTtarget + E[s1]−E[s2])−

√
P

2λ × (E[s1]−E[s2])
, (4.6)

where:

(4.7)P = λ
2 × (RT 2

target + 2RTtarget × E[s1] + 2RTtarget × E[s2] + (E[s1]− E[s2])2)

− 2λ × (RTtarget − E[s1]− E[s2]) + 1.

Note that the fast tier hit rate depends on both user response time target and arrival

intensity because the latency is composed of service time and queuing waiting time, e.g.,

during periods of high arrival intensity, a higher fast tier hit rate is needed to achieve the

same response time target than during low arrival intensity periods.

Now the question becomes how to make scheduling decisions such that the data ana-

lytics work can be completed as fast as possible without affecting the user SLO. Because

the data analytics work is usually measured by the average completion time of submitted

jobs or the throughput, it is important to quantify and maximize the (cumulative) time
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slot allocated to the analytics work within each time window tw. When the system is not

as busy with user requests, there are 2 choices: (i) scheduling the data analytics work for

time tDA, which reduces the fast tier hit rate or (ii) explicit warming up the fast tier, which

recovers the fast tier hit rate.

In order to maximize the time slot allocated to data analytics work but maintain the

fast tier hit rate above the threshold htarget , different scheduling choices need to be made

based on the arrival intensity in the near future. Recall that the future arrival intensity

can be predicted using the neural network model introduced in Section 4.2.2. Therefore,

we can estimate the fast tier hit rate hDA after scheduling for tDA time units data analytics

work:

hDA = hbegin−
tDA

tevict
, (4.8)

where hbegin is the fast tier hit rate at the beginning of a time window and tevict is the time to

evict the entire user working set from a fully warmed up fast tier. Since the data analytics

work is very intensive, tevict can be approximated by the time to explicitly warm up the fast

tier from completely cold to fully warmed up, which we define as twarmup1, this can be easily

obtained by a quick profiling experiment such as the one shown in Figure 3.11. Assuming

that the remaining of idle time is used for explicit warm up of the fast tier, the fast tier

hit rate hwarmup is:

hwarmup = min{hbegin +
(1−λ ×E[s])× tw− tDA

twarmup1
,hmax}, (4.9)

recall that hmax is the maximum value of the fast tier hit rate. In addition, serving user

requests also changes the fast tier hit rate (no explicit warm up):

huser = hbegin +
λ ×E[s]× tw

twarmup2
, (4.10)

58



where twarmup2 is the time to non-explicitly warm up the fast tier from completely cold to

fully warmed up, which can be easily obtained by a quick profiling experiment. Combining

Eqs. 4.8, 4.9, and 4.10, we have the fast tier hit rate at the end of the time window hend :

(4.11)hend = min{hbegin −
tDA

twarmup1
+

(1− λ × E[s])× tw − tDA

twarmup1
+

λ × E[s]× tw
twarmup2

,hmax}.

Since each time window is very small, we assume that the fast tier hit rate only changes at

the end of the window, but stays the same within the window. To meet the SLO, the fast

tier hit rate needs to be maintained at or above the threshold i.e., hend ≥ htarget , therefore

(4.12)
tDA ≤ ((hbegin − htarget)× twarmup1 × twarmup2 + (1− λ × E[s])× tw × twarmup2 + λ

× E[s]× tw × twarmup1)× 1
2× twarmup2

.

From the above inequality, we can quantify the maximum amount of time to be allocated to

data analytics work without violating user SLOs. The co-scheduling decisions are based on

Eq. 4.12. We stress that this inequality is critical for the success of workload co-scheduling

as it regulates the amount of data analytics work that the system can systain in order to

not violate the user SLO.

Because the targeted fast tier hit rate changes with the arrival intensity, scheduling

decisions need to be evaluated well in advance. Here we determine how early a scheduling

decision needs to be evaluated such that there is enough time to fully warm up the fast

tier during this period. We define tadvance as:

tadvance = (hmax−hcurrent)× twarmup1, (4.13)

where hcurrent is the current fast tier hit rate. Based on the predicted arrival intensity after

tadvance, a correct scheduling decision (the time allocated to data analytics work) for the

current time window can be made.
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In addition, based on the time slot allocated to the data analytics work (Eq. 4.12), we

can estimate the throughput of data analytics work T hroughputDA as follows:

T hroughputDA =
tDA

sDA
(4.14)

where sDA is the average service time of data analytics work.

If the scheduling target is meeting deadlines for data analytics work, then the through-

put of data analytics work needs to meet the above requirements. Assume that the through-

put requirement is T hroughputtarget , then we have the following:

T hroughputDA =
tDA

sDA
≥ T hroughputtarget , (4.15)

therefore,

tDA ≥ T hroughputtarget ∗ sDA. (4.16)

The above inequality indicates the minimum amount of time to be allocated to the data

analytics work in order to meet the deadlines.

4.2.3.3 NeuQ Scheduler with Capacity Planning

The interesting question is whether it is possible to meet both user response time SLO

RTtarget and data analytics work throughput SLO T hroughputtarget as in practice, each work-

load usually has its own performance target. Such scheduling target is achievable through

capacity planning, thanks to the elastic storage techniques [69]. When the size of fast-tier

increases, serving data analytics work has less impact on evicting user working set that

resides in fast-tier, so increasing the capacity of fast-tier allows scheduling more aggres-

sively data analytics work during high user traffic intensity periods. Let’s denote vevict as

the speed of user working set being evicted from the fast tier. vevict can be computed as:
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vevict = δh
t f

, where δh is the change of user work hit rate during the data analytics work

serving time period t f . Recall tevict is the time to evict the entire user working set from a

fully warmed up fast-tier (with hit rate of hupper = 1) to completely cold (with hit rate of

hlower = 0), so we have: vevict =
hupper−hlower

tevict
= 1

tevict
. Let’s denote fast-tier capacity as C, then

the time to evict all data from fast-tier tall can be computed as: tall = C
µc

, where µc is the

service rate of the fast tier. Since the time to evict all data is equal to the time to evict

user working set from fully cached to empty, we have:

tevict =
C
µc

. (4.17)

For each time window:

hend = hbegin +
ρ ∗ tw

twarmup1

+
(1−ρ)∗ tw− tDA

twarmup2

− tDA

tevict
. (4.18)

Together with Eq. 4.12, Eq. 4.16, Eq. 4.17, and Eq. 4.18, it is possible to compute the

minimum fast-tier capacity to achieve the SLOs of both user work and data analytics

work.

4.3 Performance Evaluation

An integral part of the effectiveness of workload co-scheduling is the ability to predict

accurately the upcoming user workload. We first evaluate the accuracy of the prediction

model and then compare the performance of the proposed approach with other methods

in the literature. We also show several scenarios that illustrate the effectiveness of NeuQ.

Finally, we demonstrate NeuQ can support different scheduling targets.
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4.3.1 Traffic Prediction

We drive our simulations using the storage workload in [121] and the Wikipedia trace

that is shown in Figure 4.2 (both workloads with granularity of 1 minute). We trained

neural networks for the two workloads and used the trained models to predict incoming

traffic for the time period of the next three upcoming days. We also illustrate the model

with two different prediction lengths, i.e., 4 hours and 24 hours. Here, if the prediction

length equals to K hours, the neural network directly predicts the arrival intensities in the

next K hours. In the proposed NeuQ scheduler, the traffic intensity information is usually

needed only a few hours ahead, so such prediction length can fully satisfy the scheduler’s

needs. Consistent with the workload analysis of Section 4.2.1, for each observation during

training, we select the observations from the most recent time window and the one from

one week ago as features. In Figure 4.4, we show the traffic predictions with two prediction

lengths, as well as the actual traffic. The figure illustrates that for both of the storage

and Wikipedia traces, the shorter the prediction length, the more accurate the predictions.

Yet, even predicting 24 hours ahead, the overall prediction accuracy is still good.

0 6 12 18 24 30 36 42 48 54 60 66 72
0

30

60

90

120

Time: Hour

A
rr

iv
a
l 
In

te
n
s
it
y
 (

a
rr

iv
a
ls

/m
in

)

 

 

Storage User Traffic
Prediction Length = 4 Hours
Prediction Length = 24 Hours

0 6 12 18 24 30 36 42 48 54 60 66 72
200

400

600

800

1000

1200

Time: Hour

A
rr

iv
a
l 
In

te
n
s
it
y
 (

a
rr

iv
a
ls

/m
in

)

 

 

Wikipedia User Traffic
Prediction Length = 4 Hours
Prediction Length = 24 Hours

(a) Storage Trace (b) Wikipedia Trace

Figure 4.4: Traffic predictions from neural networks with different prediction lengths.

To quantify better the quality of the two prediction lengths, we use the absolute per-

centage error (APE) metric which is defined as:

APE =
|Prediction−Actual|

Actual
×100%. (4.19)
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When APE is close to 0, it suggests an accurate prediction. Figure 4.5 illustrates the

CDFs of the absolute percentage error for the two traffic predictions. For the storage trace,

Figure 4.5(a) shows that the 80 percentile of the APE for the 4 and 24-hour predictions,

is less than 12 and 18 percent respectively. For the Wikipedia trace, Figure 4.5(b) shows

that for the 4-hour prediction length, almost all the APEs are no more than 10 percent,

i.e., predictions are very accurate. For the 24-hour case, over 70 percent of the APEs are

less than 10 percent, and nearly 100 percent of them are no more than 20 percent.
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Figure 4.5: CDF of absolute percentage error of the neural network predictions.

4.3.2 Scheduler Comparisons

Here, we compare our NeuQ scheduler with two other state-of-the-art scheduling ap-

proaches in the literature. We also compare to a scheduling approach that only uses

neural network traffic prediction without any help from queueing models.

• On-line Feedback

The on-line feedback method [35] collects measurements during the most recent time
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window to check whether user performance requirements are met or violated. If met

and provided that the system is in a low utilization state in the current window, then

data analytics work is added. In the interest of showing the maximum benefit of this

scheduler, we assume that we know all future upcoming workload, i.e., we are certain

about the length of low/high utilization times due to user workload a priori.

• State Prediction

The state change prediction based method [121] divides the traffic into high/low

states, based on the average arrival intensity. It makes use of a Markovian Modulated

Poisson Process (MMPP) model to predict when the high state starts and ends. Based

on the state prediction, this method only schedules the data analytics work in the

low utilization state, while pro-actively warming up the fast tier with the active user

working set right before the arrival of a high utilization state.

• NeuralNet Scheduler

The NeuralNet scheduler decides the amount of data analytics work to schedule based

on the user arrival intensity prediction. Here the amount of data analytics work to

schedule in each time window increases/decreases linearly with the predicted user

arrival intensity in that time window. For example, if for the current window w1,

λ1 is the average user arrival intensity, and the amount of scheduled data analytics

work is n1, then for the incoming time window w2 with predicted average user arrival

intensity equal to λ2, the NeuralNet scheduler schedules λ1
λ2
×n1 data analytics work

in w2. Intuitively, if the user arrival intensity is predicted to increase, then the

NeuralNet scheduler schedules less data analytics work in the incoming time window.

Otherwise, more data analytics work is scheduled.

• NeuQ Scheduler
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The NeuQ scheduler makes scheduling decisions (how much and when to schedule

data analytics work) based on the hybrid model developed in Section 4.2.
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Figure 4.6: Storage system and Wikipedia user traffic for simulation, with the state changes and
traffic predictions.

We conduct trace-driven simulations on the storage workload in [121] and the Wikipedia

user traffic (days 26, 27, and 28 in Figure 4.2). Because the NeuQ scheduler and the state

prediction based scheduler depend on the accuracy of their workload model, we illustrate

in Figure 4.6 how well the MMPP model predicts changes in system state as well as the

neural network prediction, both methods are quite effective.

We start by comparing how fast data analytics work each method can complete, given

an SLO for user performance. We assume that the service times for the fast and slow

tiers are exponential distributed, and that the average service time between the two tiers

differs by two orders of magnitude. For the data analytics work, we assume that the

average time to finish one unit of work equals to the mean slow tier service time and we

use throughput to measure how fast it can be scheduled. Figure 4.7 illustrates the user RTs

and data analytics throughputs for the four policies. In each graph, the horizontal lines

represent the pre-defined user SLOs. Figure 4.7(a) shows that during heavy user traffic

periods (e.g., the 6th, 30th and 54th hour), user SLOs are consistently violated due to the

aggressive scheduling of data analytics. Similar phenomena are observed in Figure 4.7(e).

The system recovers after the violation is detected. The MMPP-based state prediction

method, see Figures 4.7(b) and 4.7(f), is more conservative and refrains from scheduling
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data analytics work while the system is in high utilization. Since this scheduler pro-actively

warms up the fast tier, it contains SLO violations. However, the stochastic nature of the

underlying Markovian-based model results in unavoidable inaccuracies for the exact time

that the system changes, which results in SLO violations when the high state approaches.

In Figures 4.7(c) and 4.7(g), the NeuralNet scheduler is evaluated. The figures show that

although less data analytics work is scheduled in heavy user traffic periods than during

hours of low traffic, the user SLO is still violated. Figures 4.7(d) and 4.7(h) illustrate the

performance of NeuQ. With NeuQ, there are no SLO violations while data analytics work

is served aggressively, and with even higher throughput as with on-line feedback. We also

list the percentage of user SLO violations, throughput of data analytics, and its coefficient

of variation (CV) for the above four policies in TABLE 4.1. NeuQ achieves 2× to 3× higher

data analytics throughput without any user SLO violation, while for the other policies, the

percentage of user SLO violations is much higher and still less efficient on data analytics

throughput.

Table 4.1: Average performance analysis for simulations
Storage Trace

% User SLO T PUTDA CV of
Violations (/min) T PUTDA

On-line Feedback 68.29 18.24 0.42
State Prediction 11.11 7.58 1.71

NeuralNet Scheduler 32.41 15.53 0.52
NeuQ Scheduler 0.00 26.45 0.23

Wikipedia Trace
% User SLO T PUTDA CV of
Violations (/min) T PUTDA

On-line Feedback 40.05 257.38 0.16
State Prediction 11.81 110.99 1.45

NeuralNet Scheduler 15.51 240.71 0.21
NeuQ Scheduler 0.00 271.69 0.13

To further illustrate the advantages of our proposed method, we present the CCDFs

that illustrate the tails of average user response times of each time window in Figure 4.8.
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(a) Storage Trace: On-line Feedback (e) Wikipedia Trace: On-line Feedback
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(b) Storage Trace: State Prediction (f) Wikipedia Trace: State Prediction
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(c) Storage Trace: NeuralNet Scheduler (g) Wikipedia Trace: NeuralNet Scheduler
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(d) Storage Trace: NeuQ Scheduler (h) Wikipedia Trace: NeuQ Scheduler

Figure 4.7: Performance comparisons via simulation.

NeuQ manages to strictly respect the user SLO (1000ms for the storage trace and 75ms

for the Wikipedia trace).

4.3.3 Model Effectiveness

The performance prediction model that is developed in Section 4.2 is the core of the

proposed NeuQ scheduler. Recall that the model allows us to regulate the amount of

data analytics work to be co-scheduled such that a certain SLO is met for the user work.
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Figure 4.8: CCDF of average user response time.

Similarly, if one needs to increase the throughput of data analytics, this would result in

affecting the user RT as well.
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Figure 4.9: Throughput of data analytics versus user response time: model (Eq. 4.14) and simu-
lation (NeuQ scheduler).

Figure 4.9 illustrates this relationship between user RT (x-axis) and data analytics

throughput (y-axis) for the storage and Wikipedia workloads. The figure plots the rela-

tionship of these measures as obtained both by simulation and by using the prediction
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model of Section 4.2 (Eq. 4.14). Both model and simulation numbers are in good agree-

ment, well-capturing the relationship trends of both measures. Further, by using Figure 4.9

one could estimate the maximum data analytics throughput to be achieved given a certain

SLO or conversely the sustained average user RT if a certain throughput for data analytics

work is expected.

4.3.4 Different Scheduling Targets

NeuQ can be used to support different scheduling targets. We first demonstrate the schedul-

ing target scenario of finishing the data analytics work by the pre-defined deadlines while

preserving the performance of user workload as much as possible. We use Storage trace for

evaluation and show two different scheduling targets:

• Scheduling Target 1: the deadline of data analytics work is 15 minutes for 500 units

of work. The SLO of user workload is SLO 1350ms.

• Scheduling Target 2: the deadline of data analytics work is 1.5 hours for 1500 units

of work. The SLO of user workload is SLO 850ms.

Scheduling Target 1 has a tighter deadline for data analytics work while relatively loose

SLO for the user workload, and Scheduling Target 2 is on the contrary. Both scheduling

scenarios consider meeting the deadline of data analytics work as first priority and meeting

SLO of user workload as a secondary target. The data analytics work that is not finished

by the deadline is dropped so that its impact is not propagated to the future analytics

work.

The results are presented in Figure 4.10. The left y-axis is the user response time

measured in ms and right y-axis is the percentage of the finished data analytics work. The

x-axis represents the elapsed time (3-day period). For Target 1 (left column of graphs), the
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(a) Scheduling Target 1: On-line Feedback (e) Scheduling Target 2: On-line Feedback
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(b) Scheduling Target 1: State Prediction (f) Scheduling Target 2: State Prediction
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(c) Scheduling Target 1: NeuralNet Scheduler (g) Scheduling Target 2: NeuralNet Scheduler
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(d) Scheduling Target 1: NeuQ Scheduler (h) Scheduling Target 2: NeuQ Scheduler

Figure 4.10: Performance comparisons via simulation. Scheduling Target 1 (left column of graph):
the deadline of data analytics work is 15 minutes for 500 units of work and the user workload SLO
is 1350ms. Scheduling Target 2 (right column of graph): the deadline of data analytics work is 1.5
hours for 1500 units of work and the user workload SLO is 850ms.

results suggest that only NeuQ can meet the deadlines of data analytics work (there are a

few exceptions, but very few and all above 80%) and all other methods fail. Meanwhile,

NeuQ also consistently archives the SLO of user workload, this is not the case for other

methods. Target 2 (right column of graphs) shares the same requirement for meeting

deadlines of data analytics work. Given the stricter SLO, none of the methods can meet the
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deadlines of data analytics work while also achieving the SLO for user workload. However,

it is clear that NeuQ results in smallest violation of the SLO of user workload among these

methods. The above experiments suggest that NeuQ has great use potential in reaching

other targets. For the experiments presented in Figure 4.10, especially for Scheduling

Target 1, it is necessary to tolerate high user SLOs to meet the 15 minutes deadline.

Then we evaluate the scheduling target scenario of meeting both user response time

target and data analytics work throughput target through capacity planning. We use

Wikipedia trace for evaluation and show six different scheduling targets:

• Scheduling Target 1: the deadline of data analytics work is 10 minutes for 3200 units

of work. The SLO of user workload is SLO 75ms.

• Scheduling Target 2: the deadline of data analytics work is 10 minutes for 3600 units

of work. The SLO of user workload is SLO 75ms.

• Scheduling Target 3: the deadline of data analytics work is 10 minutes for 4000 units

of work. The SLO of user workload is SLO 75ms.

• Scheduling Target 4: the deadline of data analytics work is 10 minutes for 3200 units

of work. The SLO of user workload is SLO 105ms.

• Scheduling Target 5: the deadline of data analytics work is 10 minutes for 3600 units

of work. The SLO of user workload is SLO 105ms.

• Scheduling Target 6: the deadline of data analytics work is 10 minutes for 4000 units

of work. The SLO of user workload is SLO 105ms.

These scheduling targets represent a variety selection of different user workload SLO

and data analytics work SLO combinations. The results are presented in Figure 4.11. The

left y-axis is the user response time measured in ms and right y-axis is the percentage of the
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Figure 4.11: User response time and finished data analytics work under various scheduling targets.

finished data analytics work. The x-axis represents the elapsed time in 3-day period. Due

to the interest of space, the results of other methods are not shown here. Because other

methods do not take into consideration of both user workload SLO and data analytics work

SLO, as expected, the SLOs could not be met at the same time. For NeuQ, it consistently

archives the SLOs of both user workload and data analytics work in different scenarios, see

Figure 4.11. We also plot the user working set evicting speed from fast-tier and fast-tier
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capacity demands overtime in Figure 4.12 and Figure 4.13 respectively. These plots show

how NeuQ correctly estimates the user working set evicting speed and fast-tier capacity

demands under different system load so that to plan in advance the fast-tier capacity to

accommodate both user workload and data analytics work in each time window.
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Figure 4.12: User working set evicting speed from fast-tier overtime with different scheduling
targets.
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Figure 4.13: Fast-tier capacity demands overtime with different scheduling targets.

4.4 Chapter Summary

Co-scheduling data analytics workloads with user workloads in multi-tiered storage sys-

tems is a challenging problem. In this chapter, we propose NeuQ scheduler, a hybrid

co-scheduling approach using machine learning and queueing models, that applies neural

networks to predict user workload intensities and then appropriately adjusts the input to

a queueing model in order to consistently meet user SLOs. Trace-driven simulations show
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that NeuQ can effectively reach performance targets under different user workloads and

different performance/scheduling targets from commercial systems.
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Chapter 5

Prediction of Data Center Time

Series

Previous Chapter introduces a vanilla neural networks based time series prediction method

for system workloads. However, this method is limited by the its input (all the past

observations) into the neural networks and its operational cost. As a result, in this chapter,

we focus on providing a selection method for the input data into the neural networks, for

the time series prediction in cloud data centers. Effective workload characterization and

prediction hold the answers to the conundrum of efficient resource allocation in distributed

and scaled out systems. Being able to accurately predict the upcoming workload within

the next time frame (i.e., in the next 10 minutes, half hour, hour, or even week) allows the

system to make proactive decisions, rather than reactive ones. Proactive decisions can be

used with superior performance in storage systems by timely warming up the cache with the

working set [121, 128], especially in systems where traditional internal work (e.g., garbage

collection, snapshots, upgrades) is interleaved with the user workload during opportune

times. Proactive scheduling of data analytics work can result in personalized advertising,

sentiment analysis, or timely product recommendation, i.e., before the user leaves the
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site [57, 31, 132].

Virtual machine (VM) consolidation and migration is another example where accurate

prediction of the physical machine utilizations can guide effective system usage [30, 83, 116].

In all of the above cases, prediction of the intensity of peak loads and of their timings

becomes key to the effective launching of proactive management.

To maintain performance at tails, e.g., at high percentiles of response times, resource

management policies [57, 30, 116], need to address the demands of peak loads instead of

average loads only. Depending on the capability of predicting peak load magnitudes and

timings, resources can be multiplexed at various degrees across users and across time. Such

predictions can guide VM consolidation in data centers.

In this chapter, we focus on data center workloads within the private cloud operated

by IBM and used by major corporations for their IT needs. Prior work on workload char-

acterization at IBM data centers [16] focused on statistical analysis of the usage of specific

components of the virtual and physical machines, e.g., CPU and IO [16, 14]. This statisti-

cal analysis focused on averages, percentiles, and trends, aiming to a better understanding

of how the workload evolves across a two-year period, but largely ignored the time series

of the various performance metrics. In this chapter, we focus on these time series and

develop methodologies for accurate prediction of various workload metrics and especially

peaks and their timings.

Classic time series models such as ARIMA [45] can be used for online prediction. Such

models first need to be trained using past observations and can predict the upcoming

workload. Alternatively, neural networks can be used in the same manner and provide

a black box approach to predict the future, especially to predict events that have been

observed in the past. Superior to the classic time series models that use a linear basis

function, neural networks model input using non-linear functions, which improves their
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ability to handle more complex observations. Features gathered from observations are not

all equally informative; some are relevant, while others are noise. Key to effective neural

network prediction is the discovery of the appropriate features. Neural network training is

then conducted based on these.

In this chapter, we develop a robust framework for prediction of data center time

series (PRACTISE) and illustrate the flexibility of such a black box approach by showing

remarkable accuracy in usage prediction of data center workloads in the wild. We focus

on four components: CPU, memory, disk, and network. We focus on an actual production

workload and particularly on 56 physical machines that host 775 virtual machines during a

time period of 61 days. Based on observations of the workload pattern and its periodicity,

we extract the features that identify the time periods in which the repetitive patterns

occur. We also develop a bagging module [20] and an online updating module to improve

the stability, accuracy, and speed of PRACTISE. We provide detailed comparisons with

ARIMA and show that the proposed black box approach offers a significant improvement

in predicting resource usage, by reducing average errors by three times. PRACTISE slashes

the false negative prediction rates of peak loads to less than 12% and achieves two fold to

nine fold improvements in the accuracy of timing predictions. PRACTISE is lightweight

and achieves training and prediction by an order of magnitude faster than other methods,

which allows it to be used online.

This chapter is organized as follows. Section 5.1 discusses related work. Section 5.2

presents an overview of the workload. Section 5.3 presents the machine learning model.

Section 5.4 presents extensive experimental evaluation. Section 5.5 discusses potential use

scenarios. We conclude in Section 5.6.
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5.1 Related Work

ARMA/ARIMA [45] have been widely used for time series prediction in several systems

areas. Tran and Reed use ARIMA to improve block prefetching for scientific applica-

tions [109]. They use ARIMA to predict the temporal access pattern and Markov models

to identify spatial access patterns and manage to identify what and how much to prefetch.

Their predictor is implemented on the Linux file system. In [132] ARIMA is used for

effective user traffic prediction for capacity planning. The authors focus on cost-efficient

database replication that is driven by the anticipated user traffic within the LinkedIn social

network. ARIMA models have also been used in sensor networks to reduce the frequency

of sampling and to improve on energy efficiency by transmitting only deviations from the

ARIMA-predicted values [66]. Anomaly detection is yet another area where ARIMA mod-

els have been used [130].

Machine learning techniques are used to overcome the limitation of the linear basis func-

tion of ARIMA models and are used for effective characterization of TCP/IP [32] and web

server views [65]. Neural networks are used for performance prediction of the total order

broadcast, which is a key building block for fault-tolerant replicated systems [33]. Ensem-

bles of time neural network models have been used to project disk utilization trends in a

cloud setting [103]. Neural networks and hidden Markov models are used for automatic IO

pattern classification and are evaluated with both sequential and parallel benchmarks [75].

Probabilistic models that define workload states via Markov Modulated Poisson Processes

have been used in [121] to interleave workloads with different performance objectives. Ma-

chine learning techniques have been widely used for workload prediction [9, 95, 34, 59]. In

contrast to these works, we rely on the autocorrelation and automate the entire learning

process.

The effectiveness of the proposed neural network approach that we advocate in this
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chapter is based on statistical analysis of the workload so that the most relevant features

are selected for the training data set. Training the model with careful feature selection

significantly improves its accuracy and stability but also increases the speed of training and

prediction, making it appropriate to use for online performance prediction and capacity

planning. In addition, due to the appropriate feature selection, PRACTISE can provide

short-term (e.g., 15 minutes) to long-term (e.g., one day or one week ahead) predictions and

achieve excellent accuracy. These superior predictions facilitate robust long-term capacity

planning and resource allocation.

5.2 VM Workloads in a Private Cloud

The target systems of this study are IBM private data centers, which are geographically

distributed across all continents. These systems are used by various industries, including

banking, pharmaceutical, IT, consulting, and retail, and are based on various UNIX-like

operating systems, i.e., AIX, HP-UX, Linux, and Solaris. Those systems are highly virtu-

alized, meaning that multiple virtual machines (VMs) are consolidated on a single physical

box. Both VMs and boxes are very heterogenous in terms of resource configuration. The

average virtualization level per box is ten [16]. We have collected resource utilization statis-

tics from several thousands of VMs and boxes since February 2013. The finest observation

granularity is 15 minutes1. The analysis here is based on two-month data from March 1,

2013 to April 30, 2013.

We focus on usage of four types of resources: CPU, memory, disk, and network. Using

the base observation window of 15 minutes, we collect the following statistics:

• CPU utilization: the percentage of time the CPU is active over the observation

1Collection of data is done by another IBM branch, therefore, we do not have any control on obtaining
data at lower granularity.
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Figure 5.1: CPU utilization over time for two different VMs.

window.

• Memory utilization: the percentage of memory capacity used.

• Disk space usage: the percentage of allocated disk space used.

• Network bandwidth usage: the total network traffic rate measured in mega bits

per second (Mbps).

The collected trace data is retrieved via vmstat, iostat, and supervisor specific monitoring

tools.

The VM workloads within the IBM private cloud exhibit clear periodic patterns over

time [16], see Figure 5.1. The figure focuses on two different VMs and illustrates the CPU

utilization within successive time windows of 15-minute across all 61 days. The upper plot

shows a regular periodic pattern with a period of 7 days, while the bottom one shows a

more complex pattern with clear trend changes. We also observe that similar periodic

patterns exist in different resources, i.e., memory, disk, and network. To the interest of

space, we do not present these results here. Pattern periodicity suggests that there exist

opportunities for workload prediction.

To capture and quantify such periodic patterns, we perform statistical analysis of the

workloads by computing the autocorrelation of the time series of CPU utilization. Au-

tocorrelation is a mathematical representation of the degree of similarity in a time series

and a lagged version of itself. As such, it is ideal for discovering repeating patterns by

quantifying the relationship between different points of a time series as a function of the
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Figure 5.2: Autocorrelation of CPU utilization for the two VMs of Figure 5.1.

time lag [63]. The autocorrelation metric is in the range of [−1,1]. Higher positive values

indicate that the two points between the computed lag distance are ”similar”, i.e., have

stronger correlation. Zero values suggest no periodicity. Negative values show that the two

points lag elements apart are diametrically different. We show the autocorrelation of CPU

resource usage for the two selected VMs in Figure 5.2. It is clear that the autocorrelation

becomes high at certain lag values and that the lag values2 can be different for different

VMs. In the following section, we demonstrate how to utilize autocorrelation to select

the appropriate features in order to train a neural network that can model the workloads

accurately.

5.3 Methodology

A time series prediction model uses past observations to forecast future values. There are

different ways to build the time series prediction model. Traditional time series e.g., the

ARMA/ARIMA [45] and Holt-Winters exponential smoothing [51] are based on a linear

basis function, and as a result they are not effective in predicting complex behaviors. In

addition, these models are backward looking only methods, which makes it difficult to

capture any new patterns that have not appeared before. Furthermore, the underlying

approximation function usually lacks intuitive explanations. For all of the above reasons,

it is difficult to improve the prediction accuracy of such types of models. On the other hand,

neural networks are capable of modeling input as non-linear functions, which offers great

2Note that a lag of 1 corresponds to two intervals 15 minutes apart.
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Figure 5.3: Overview of PRACTISE.

potential in handling complex time series [41]. We start from the standard universal neural

network toolbox provided by MATLAB [37] and then introduce PRACTISE by selecting

more appropriate features, using bagging and online updating to improve its accuracy and

stability. An overview of PRACTISE is shown in Figure 5.3. The workload is fed to the

autocorrelation-based feature selection module. The selected features then become inputs

to the neural network training component. The bagging module processes the aggregated

results. Finally, the online updating model monitors the prediction error and triggers a

retraining if large errors are detected. In the following, we introduce each component in

detail.

5.3.1 Universal Neural Network

Artificial neural networks are inspired by biological neural networks [56] and are composed

of many interconnected neurons. The weights associated with the neurons are used to

approximate non-linear functions of the inputs and are tuned during a training process.

Discovering appropriate features is the key to building an accurate neural network model.

The universal neural network toolbox provided by MATLAB uses a generalized algorithm

for feature selection. To train a neural network, the input data set is usually divided into

three subsets [58]: training, validation, and test. The neural network uses the training set

to tune its weights and utilizes the validation set to determine the convergence point and

prevent overfitting. The test set is used for evaluation of the training accuracy.
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Figure 5.4: CPU workload prediction by the neural network toolbox provided by MATLAB for
two different VMs. The two gaps in the first plot are due to the VM being switched off.

To understand the prediction accuracy of the standard neural network toolbox pro-

vided by MATLAB, we conducted extensive experiments. Figure 5.4 illustrates the default

MATLAB prediction (tagged BaselineNN) of the utilization of the two VMs shown in Fig-

ure 5.1. We have trained and validated the neural network using the first 14 days, and

we show here the results for days 15 to 24. The figure clearly shows the neural network’s

pitfalls as prediction accuracy is often poor. Using the standard MATLAB toolbox, the

underlying feature selection algorithm is not tuned to optimize the information provided

by the repeating patterns. Therefore, we are motivated to explore a better feature selection

algorithm for selecting the appropriate features for the data center workloads that we have

in hand.

5.3.2 Autocorrelation-based Features

Intuitively, appropriate features should reliably capture periodic behavior, changing trends,

and repeating patterns. To identify the appropriate features, we resort to the correlogram

in Figure 5.2 because autocorrelation can provide quantitative and qualitative information

on the above factors. Figure 5.2 shows that there can be several lags with high positive

autocorrelation values. This indicates that there exist several good candidate features that

represent short-term to long-term correlation patterns. To automate the process, we use

a local maximum detection function to identify the peak points in autocorrelations and

use the respective lag values as features for neural network training. In this way, different
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correlation ranges from short-term to long-term can all be captured, which improves the

effectiveness of the neural network. The remaining steps are the same as with the universal

neural network toolbox provided by MATLAB. We stress that the feature selection process

is fully automatic.

5.3.3 Bagging

The training features are not the sole factor in the prediction accuracy of a neural network

model; the quality of the trained model also depends on other factors. The training data

sets are another crucial factor [20]. As discussed earlier, the training set is split into

training, validation, and test subsets. Different ways of splitting may result in different

samples being used at different stages and therefore result in different trained models. In

order to minimize the artificial effects caused by a certain splitting rule, we split the data

set randomly several times (e.g., 20 times), and each split trains a different model. In

other words, we train a group of neutral network models by using the same data set but

with different splits. Each model has its own prediction result. The prediction results

from different models together become a distribution of prediction results. To compute the

final prediction results from the distribution of prediction results, we first use the 3-sigma

rule [110] (e.g., 99% confidence interval) and z-score [77] (e.g., within [-0.85,0.85]) to filter

out outliers and then compute the average of the remaining data as the final prediction.

Bagging may not always guarantee that optimal prediction is achieved, but it consistently

improves prediction accuracy compared to using only a single trained model.

5.3.4 Online Updating Module

In a real cloud environment, there can be sudden or permanent workload changes caused

by unexpected events. As neural network models rely on past information to forecast the
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Table 5.1: Training time using 14 days’ data and prediction length of 1 day.

VM ID Training Time (sec) Prediction Time (sec)
BaselineNN PRACTISE BaselineNN PRACTISE

18673 300 30 257 10

34732 480 50 360 15

future, workload characterization changes may not be timely reflected in the prediction

results. To ensure an agile response to workload characterization changes, we add an

online updating module. The update is triggered based on monitoring the prediction

errors periodically. If errors suddenly surge, a workload change is suspected and the neural

network model is retrained. We emphasize that the computational cost of the neural

network training and prediction is not significant thanks to the simple yet efficient feature

selection process. Thus, it allows us to retrain the model online quickly at low cost. We

demonstrate two examples in Table 5.1 to show how long PRACTISE takes for training

and prediction compared to BaselineNN on a machine with 2.8 GHz Intel Core i7 CPU,

16 GB memory and 750 GB SSD. From the table, it is clear that both the training time and

prediction time of PRACTISE are very low and that PRACTISE is one order of magnitude

faster than BaselineNN. This difference may appear modest, but if prediction has to be

done simultaneously for thousands of VMs and multiple resources, it becomes significant.

The training and prediction times change linearly with the amount of training data and

prediction length.

5.4 Experimental Evaluation

We describe the methods used for the evaluation below:

• ARIMA: the standard ARIMA algorithm, used as baseline comparison.
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• BaselineNN: the default setting of the neural networking toolbox provided by MAT-

LAB, used as a second baseline comparison.

• PRACTISE: the workload prediction framework proposed in this chapter.

Evaluation strategies. We use the first 14 days as training data and use the fol-

lowing 46 days as the data for evaluation of the prediction accuracy. With the online

updating module, PRACTISE automatically triggers a retraining if the monitored error is

outside the confidence interval determined by the 3 sigma rule [110]. We present the results

for prediction length of 1 day ahead. We also present two more cases, one predicting 2

hours ahead (short window) and one predicting 1 week ahead (long window). We evaluate

PRACTISE by comparing it to ARIMA and BaselineNN in two prediction scenarios: state

predictions and timing, and quantified predictions.

State predictions and timing. Several scheduling and management frameworks [121,

75] do not require quantified prediction. Instead, workloads are classified into states, e.g.,

peak states with relatively high resource usage and non-peak states with relatively low

resource usage3, and only qualitative predictions are needed. In such a scenario, the quality

of the prediction is measured by whether the future state can be predicted correctly. In

addition, it is critical to be able to not only predict a peak state, but also the time when

this state occurs. We quantify the timing of the predictions across all VMs in a cumulative

way, i.e., we count for how many 15-minute intervals the timing of the prediction of the

peak state is delayed.

With the given granularity of 15 minutes, every entry in the traces represents a peak

or non-peak state. The threshold between peak and non-peak states is determined via

K-means clustering. Because timely predicting peak states is utterly important, we first

3Here we focus on peaks because of literature [76, 22], but it can be applied to other utilization levels,
not only peaks.
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Figure 5.5: Prediction accuracy for peak states. The top plot is the false negative rate (FNR) of
peak state prediction, the middle plot is the precision of peak state prediction, and the bottom plot
is the recall of the peak state prediction.

evaluate the accuracy of peak state prediction. The top plot in Figure 5.5 illustrates the

rate of false negative peak state predictions, which is defined as the number of wrong peak

predictions (i.e., states that are predicted as non-peak) divided by the total number of

actual peak predictions. Results are across all VMs. PRACTISE consistently achieves

less than 12% false negatives across all resources. The false negative rates of ARIMA and

BaselineNN are much higher and very random across resources. We also provide two other
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Figure 5.6: Mean delay between prediction and actual occurrence of peak states.

commonly used metrics for evaluating prediction accuracy: precision, which is defined as

the fraction of retrieved instances that are relevant and recall, which is defined as the frac-

tion of relevant instances that are retrieved, see the middle and bottom plots in Figure 5.5

respectively. PRACTISE again consistently outperforms ARIMA and BaselineNN with

respect to the two metrics, which further validates the accuracy of PRACTISE.

Figure 5.6 illustrates the average delay (in minutes) between the prediction and the

actual occurrence of peak states across all 775 VMs. PRACTISE shows a remarkable

accuracy across all resources with values dramatically outperforming all other methods,

i.e., for VM CPU utilization, the average delay reduces from 36.80 minutes (ARIMA)

and 23.82 minutes (BaselineNN) to 6.22 minutes; for VM memory utilization, from 29.93

minutes (ARIMA) and 14.00 minutes (BaselineNN) to 8.00 minutes; for VM disk space

usage, from 161.88 minutes (ARIMA) and 45.75 minutes (BaselineNN) to 17.02 minutes;

and, for VM network bandwidth usage, from 63.12 minutes (ARIMA) and 18.75 minutes

(BaselineNN) to 10.05 minutes.

Quantified predictions. Scheduling and management frameworks do require quan-

tified prediction [131, 117], especially for systems that need to meet certain service level

objectives. We first show overtime plots for the actual workload and predicted results.

Results for VM CPU utilization, VM memory utilization, VM disk space usage, and VM
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Figure 5.7: Prediction for different resource usages of VMs

network bandwidth usage are shown in Figure 5.7(a)-(d) respectively4. Each point on the

graphs corresponds to the finest workload granularity that is available, i.e., 15 minutes. It

is clear that the prediction error of PRACTISE is consistently lower than both ARIMA

and BaselineNN, especially for sudden workload surges, thanks to the more appropriate

feature selection and bagging used in PRACTISE. Note that predicting sudden workload

surges is very important as it can drive timely scheduling/management.

4We zoom in a 3-day period for clearer presentation.
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Figure 5.8: Prediction for CPU utilization; the trends changes after day 17.

While the results presented before show cases of consistent periodicity across time,

in Figure 5.8 we show a more challenging case where the trends of the periodical pattern

change. The results show that PRACTISE can effectively capture this thanks to the online

updating component. ARIMA can also react to the trend change, but it fails to capture

most peak states. However, BaselineNN can only predict events that have been observed

before, and are therefore unable to capture such trend changes. The experiments cover a

variety of data center configurations and applications with various usage patterns, but due

to the interest of space, we skip other results here.

To quantify the prediction errors, we define the prediction error (APE) as |prediction−actual|
actual .

We show the CDFs for one specific VM (first row of Figure 5.9) for CPU, memory, disk,

and network. We also show the mean and 90th percentile in the legend. The results il-

lustrate clearly that PRACTISE is consistently superior in accuracy compared to ARIMA

and BaselineNN as PRACTISE achieves up to 3 times better prediction accuracy than

in terms of average prediction errors. The second row of Figure 5.9 illustrates the same
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Figure 5.9: Prediction error comparison for different prediction methods. The graphs are for VM
CPU utilization (column 1), VM memory utilization (column 2), VM disk space usage (column
3), VM network bandwidth prediction (column 4). The first column is for a selected VM and the
second column shows accumulated results over all VMs. Prediction length is 1 day ahead.

information but cumulative across all 775 VMs. The superiority of PRACTISE is also clear

in this comparison.

To demonstrate the importance of the bagging and the online updating modules, we

also compare the prediction errors when bagging and online updating are activated, see

Figure 5.10. The results indicate that with these two components, the prediction accuracy

can be significantly further improved, which verifies that these two enhancements are non-

trivial and useful.

Finally, we evaluate PRACTISE for different prediction lengths. We demonstrate the

prediction length of 2 hours and 1 week in Figure 5.11. The results clearly illustrate

that PRACTISE consistently outperforms ARIMA and BaselineNN for different prediction

lengths. In addition, the change in the size of the prediction window does not affect

robustness.

Challenging cases. PRACTISE relies on the autocorrelation values as features for

neural network training. Here we evaluate a challenging case with poor autocorrelation
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Figure 5.10: Prediction error comparison of VM CPU utilization with and without bagging (top
plot), and with and without online updating module (bottom plot).
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Figure 5.11: Prediction error comparison of VM CPU utilization for prediction length of 2 hours
(top plot) and 1 week (bottom plot). The results are accumulated across all VMs.

structure, see the top plot of Figure 5.12. The figure illustrates the autocorrelation plot of

the memory utilization of a VM. The autocorrelation function switches between positive

and negative values, which makes feature selection very challenging. The CDF of prediction

errors for this VM is presented in the bottom plot of Figure 5.12. The results suggest that

even for this case, PRACTISE still achieves relatively good prediction accuracy and clearly

outperforms ARIMA and BaselineNN. The robustness in prediction is due to the fact that

PRACTISE does not solely rely on the autocorrelation features but also on bagging and

online updating which contribute to more sophisticated predictions. We conclude that
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Figure 5.12: A challenging case (VM 34726). Autocorrelation (top plot) and prediction error
comparison (bottom plot) of memory utilization for different prediction methods.

PRACTISE is effective, efficient, and robust.

5.5 Discussion

In this chapter, we provided the first important step that is required for VM consolidation

and/or load balancing: a framework for efficient and accurate prediction of future load,

and in particular peak loads and their timing. This prediction is robust: even for cases

where the workload burstiness does not have a clear repetitive pattern, we still manage to

achieve remarkable accuracy and outperform ARIMA and generic neural network models

for future time windows that can range from 1 hour to a week. There are many important

implications of this work:
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Dynamic VM consolidation driven by resource demands of different per-

centiles: PRACTISE can provide resource usage predictions for VMs but also for physical

machines (PMs) where the various VMs may be consolidated. PRACTISE can provide

different types of usage statistics, e.g., means, and percentiles. Indeed, for PMs, the traces

provide the number of VMs per PM, as well as resource usage information. PRACTISE

can be used to predict this information and drive different consolidation strategies5 that are

based on different load statistics. Due to the remarkable accuracy of PRACTISE on cap-

turing the peak loads and their timings, the consolidation policy can aggressively conserve

resources without risking performance degradation.

VM consolidation driven by prediction of multiple resources: PRACTISE is

able to explore the availability of both CPU and memory on PMs. Most importantly,

having predictions on multiple resources, one can focus on the most scarce resource and

drive the consolidation policies accordingly. Even more specifically, since there is significant

burstiness in both memory and CPU usage, a strong prediction model can really help in

optimizing usage for both resources.

Minimizing the impact of VM migration: the VM migration overhead is known

to be non-negligible and application performance can thus drastically degrade, especially

when the migration timing collides with peak loads of the VMs or the underlying physical

hosts. Intelligent migration can greatly leverage the information of future loads provided

by PRACTISE and select the optimal timings for migrating VMs.

A bird’s eye view of data center resource usage: beyond VM consolidation, accu-

rate information on future loads of different resources enables a holistic load management

of the entire data center, including IT, cooling, and energy costs. The server loads consume

the energy to power up not only server resources but also the cooling facility. Fundamental

5PRACTISE shows excellent prediction results for the PMs in this data set. These results are not shown
due to lack of space.
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questions, such as turning on/off components, can not be addressed without a holistic view

of data center resource usage.

Other workloads: PRACTISE an be applied to any workloads with autocorrelation,

e.g., storage workloads [121].

5.6 Chapter Summary

In this chapter, we develop PRACTISE, an enhanced neural network based framework for

predicting the usage of various resources in data centers. PRACTISE uses autocorrelation-

based feature selection, boostrap aggregation, and online updating. We extensively evalu-

ate PRACTISE on predicting CPU, memory, disk and network usage on a set of 775 VMs

over a period of 2 months and compare its prediction effectiveness to ARIMA and basic

neural network models. We are able to achieve up to 3 times better prediction accuracy in

terms of average prediction errors and dramatic improvements (2- to 9-fold) with respect

to the prediction timings. Thanks to the excellent prediction accuracy of PRACTISE, we

are able to efficiently capture the peak loads in terms of their intensities and timing, in

contrast to classic time series models.
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Chapter 6

Active Sizing for Resource

Isolation in Data Centers

In the last chapter, we detailed introduce a neural networks based prediction method for

data center resource usage series. This allows us to proactively allocate resources in the

cloud data centers. Consequently, in this chapter, we propose an active sizing algorithm

using the usage series prediction to resolve the performance tickets in cloud data centers.

Performance ticketing systems provide the means to data centers to interactively improve

user experience, maintain performance at tails, and guarantee smooth system operation.

Typically, system monitoring and users issue tickets when encountering an array of per-

formance violations, e.g., unresponsive service, high resource usage due to transient load

dynamics, or persistent insufficient provisioning. Ticket resolution is unfortunately very

expensive [68, 49] as a significant amount of manual labor is required for root-cause analysis

and to remedy the detected problem [48]. Prior work has shown that there is strong corre-

lation of ticket issuing with resource usage exceeding certain predefined thresholds [15]. In

today’s data centers, with physical resources being aggressively multiplexed across multiple

virtual machines (VMs), the likelihood of issuing performance tickets due to physical or
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Figure 6.1: An illustration of spatial dependency across usage time series for 4 VMs co-located
on a box.

virtual machines crossing predefined usage thresholds dramatically increases.

Past work has established that resource usage at data centers exhibits strong tempo-

ral patterns [16, 14]. Beyond temporal dependencies that are established by usage time

series [120], it is common for co-located VMs to simultaneously compete for the limited

physical resources, essentially exhibiting strong spatial dependency. We illustrate a moti-

vating example in Figure 6.1 depicting the CPU usage time series1 of 4 VMs co-located

within the same physical box, where performance tickets are issued automatically when a

VM utilization exceeds a threshold of 60%. One can easily see the spatial dependency of

VMs 1, 3, and 4, i.e., time usages move up and down synchronously, and their respective

tickets are triggered together, at around the 19:00 hour mark. These time series come from

a data center production system and are quite representative of typical patterns in such

systems. The temporal and spatial dependencies among VMs not only increase the num-

ber of tickets but also the difficulty in identifying their root cause and the corresponding

resolution.

1We interchangeably use the terms time series and series.
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The focus of this chapter is to develop a methodology to increase the data center

dependability by using a proactive approach: reduce the number of tickets by predicting

when they will occur in the future and by employing dynamic virtual machine resizing to

adjust resource usage to avoid the triggering of future tickets. To this end, we first do a

detailed, post-hoc workload characterization study of usage time series in production data

centers of a major vendor which correspond to 80K VMs hosted on 6K physical servers. We

develop an Active Ticket Managing (ATM) system that predicts future VM resource usage

and proactively resizes the virtual resources of the resident VMs. The research challenges

are numerous and outlined as follows.

Effective usage prediction is prerequisite to the development of any management policy.

Indeed, in our past work we have shown that neural networks can be effectively employed

for prediction [120], but their effective usage remains prohibitively expensive in practical

situations as it suffers by its high training cost. In practice, in a large-scaled data center,

with more than tens of thousands of physical boxes and hundreds of thousands of VMs,

it is infeasible to rely on neural networks to predict future resource usage. We solve this

first problem by developing a prediction methodology that discovers spatial dependencies

across usage series and exploits them to develop an agile methodology for prediction. To

this end, we introduce the concept of signature VM series, a subset of usage series that

are representative of all other usage series. We are able to predict usage series not in the

signatures set and the usage violation tickets of co-located VMs, via a linear combination

of signature VM series, which provides a time series prediction model with as low as only

26% of the original time series. Second, based on predicted resource usage, we define

a multi-choice knapsack problem and develop a greedy algorithm to dynamically adjust

virtual resource allocation across co-located VMs. ATM is evaluated on production traces

of 80K VMs and a small test-bed deployment on a cluster that runs MediaWiki [6], the
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open source platform for Wikipedia. Our extensive evaluation results show that ATM has

remarkably high accuracy in prediction, i.e., reaching prediction errors as low as 20% and

significant ticket reductions, i.e., up to 60%−70% less tickets while using only 26% of the

original time series. The contributions of this chapter are as follows:

1) We do post-hoc characterization of usage ticket issuing in a large data center setting.

We focus on discovering the distribution of usage tickets and spatial patterns of resources

usages across co-located VMs. We find that usage tickets are mostly contributed by a small

set of VMs, and that VMs show significant cross correlation among their CPU and RAM

usage series.

2) Motivated by the strong spatial patterns across resources and co-located VMs, we

argue that a small number of signature usage time series can be used as predictors to

represent well the entire set of resource usage time series. This prediction methodology is

the basis of ATM.

3) We develop a VM resizing policy to reduce usage tickets by setting the upper limits

of CPU and RAM allocations when several VMs are co-located, a problem which is shown

to be NP-hard. We rigorously formulate the ticket minimization problem subject to the

physical capacity constraints. We propose a greedy algorithm to solve it and compare its

performance to the max-min fairness algorithm.

The outline of this chapter is as follows. Section 6.1 discusses on the related work.

Section 6.2 provides a characterization study on the usage tickets as well as the spatial

patterns among usage series of co-located VMs. We propose spatial-temporal prediction

methods for demand series in Section 6.3. In Section 6.4, we formulate the ticket min-

imization problem and demonstrate a greedy resizing algorithm to reduce usage tickets.

An extensive evaluation of ATM on both production traces and a Wikipedia cluster is

discussed in Section 6.5. Section 6.6 summarizes and concludes this chapter.
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6.1 Related Work

Ticketing systems are widely used to improve on system dependability, e.g., slow respon-

siveness, failure [15], software bugs [73, 85] and system misconfigurations [126]. Prior

art in ticketing systems centers on two directions: derive system management for soft-

ware concurrency [73], database systems [48], and distributed data-intensive systems [125]

but also to develop automatic detection systems for different types of tickets, bugs [85]

and software misconfigurations by leveraging the rich correlation between configuration

entries [126]. Machine learning has been used for automating ticket resolution recommen-

dation [129, 98, 19]. To the best of our knowledge, there are no proactive methodologies for

preventing ticket issuing, with the exception of models for database reconfiguration [50].

The proposed ATM policy fills this gap by not only deriving management insights for us-

age ticket patterns, but also by developing novel prediction and ticket avoidance strategies

using VM resizing.

Time series prediction and analysis have been viewed as an excellent way to develop

proactive system management policies [109, 132]. Temporal models such as ARIMA mod-

els [23] have been widely used to predict time series with strong seasonality. Sophisticated

neural network models show a strong promise in capturing highly irregular time series at

a cost of long training overheads [72]. Time series clustering aims to explore spatial de-

pendency, either through their original series, e.g., DTW [13], or extracted features [43],

e.g., moments. ATM combines spatial with temporal models to contain the cost of neural

network training and scales well for very large numbers of time series.

Virtualization technology has become the industry standard offering great opportuni-

ties to multiplex physical resources over a large number of VMs. There are two ways to

change the efficiency of resource multiplex ratios: by sizing the virtual resource capaci-

ties [101] and by dynamically consolidating VMs [115]. While dynamically changing the
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degree of VM consolidation is shown effective to take advantage of the time variability of

the workload [36], the overhead of migrating VMs can greatly reduce its performance ben-

efits. On the contrary, sizing resource of co-located VMs incurs less system overhead [101].

A central question of multiplexing resources is how to strike a good tradeoff of fairness

and performance for workloads, e.g., latency [54] and throughput [114]. Fairness driven

policies, e.g., max-min fairness, proportional fairness, and bottleneck resource fairness [18],

have been proposed for various systems components, including storage systems [114] and

networks [102]. The sizing algorithm proposed in ATM differs from related work by its

objective to reduce the number of usage tickets. While max-min fairness also reduces the

number of tickets, it cannot achieve this as effectively as ATM since ticket reduction is a

side-effect rather than a main focus.

6.2 Statistics and Observations

The motivation for the design of ATM is the urge to reduce usage tickets that are typically

issued when VM resource utilizations exceed certain thresholds. The trace that we consider

here comes from IBM production data centers serving various industries, including banking,

pharmaceutical, IT, consulting, and retail, and using various UNIX-like operating systems,

e.g., AIX, HP-UX, Linux, and Solaris. The majority of VMs in the trace are VMware

VMs. The trace contains CPU and RAM capacity but also utilization data taken at a

time granularity of 15 minutes for 6K physical boxes hosting more than 80K VMs during

a 7-day period from April 3, 2015 to April 9, 2015. Naturally, the level of consolidation is

very high, i.e., on average 10 VMs are consolidated within a single physical box [16]. In

addition, both VMs and boxes are very heterogeneous in terms of resource configuration.

In the following, we first show the distribution of usage tickets under different ticket

thresholds, followed by a more detailed analysis on the spatial patterns of usage series of
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co-located VMs. We aim to uncover how usage tickets are distributed across resources and

most importantly how usage patterns trigger usage tickets. We anticipate that the design

principles of the proposed ATM system leverages this characterization analysis.

6.2.1 Usage Tickets

Usage tickets are generated when utilization values exceed target thresholds. Naturally,

lower thresholds trigger a higher number of usage tickets and increase the cost of resolution,

whereas higher thresholds result into fewer tickets but at a higher risk of performance

degradation. To quantify the effect of different thresholds, we consider three threshold

levels, namely 60%, 70%, and 80%. Such values are commonly adopted in production

systems [19]. Figure 6.2 illustrates quantitative information on the issued tickets for the

CPU and RAM usage series of April 3, 2015. We focus on the following: how many

boxes have tickets and how these tickets are distributed across co-located VMs and their

resources.
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Figure 6.2: Characterization of usage tickets for CPU and RAM of VMs per box.

Figure 6.2(a) plots the percentage of boxes that have at least one VM usage ticket

under the different thresholds. Even with the highest ticket threshold of 80%, almost

40% of boxes obtain at least one ticket due to CPU violation and 10% due to RAM

violation, these percentages increase to 57% and 38%, respectively, when the threshold is

102



60%. Overall, the percentage of boxes having CPU tickets is higher than RAM tickets,

independently of the threshold. This can be explained by the fact that RAM tends to be

over-provisioned for performance reasons. Figure 6.2(b) illustrates the mean and standard

deviation of the number of tickets per box for CPU and RAM. The average number of

CPU(RAM) usage tickets per box are 39(15), 33(11), 29(9), for the three thresholds of

60%, 70%, and 80%, respectively, showing a relatively minor decreasing trend. The next

natural question is whether tickets are evenly distributed across all co-located VMs. To this

end, we compute the number of VMs that accounts for the majority of tickets, where the

majority is defined to 80% of usage tickets per box (this is an ad-hoc value). Figure 6.2(c)

shows that on average one to two VMs per box cause the majority of tickets irrespective of

the three threshold values. A further interesting observation is that since the culprit VMs

are few, if we increase the capacity allocation of the culprit VMs by removing resources

from other co-located VMs, then tickets may reduce. On the contrary, if tickets are evenly

distributed, resizing does not help.

6.2.2 Do Spatial Dependencies Exist?

To better understand the spatial patterns of usage tickets, we estimate the magnitude of

spatial dependency by computing the Pearson’s correlation coefficients [23] over each pair

of CPU and RAM usage series of co-located VMs. For each box and co-located VMs, we

compute four types of correlation coefficients ρ: (i) between any pair of CPU usage series

(intra-CPU), (ii) between any pair of RAM usage series (intra-RAM), (iii) between any pair

of CPU and RAM usage series (inter-all), and (iv) between CPU and RAM usage series

from the same VM (inter-pair). The first two correlation metrics measure the relationship

among specific resources, i.e. CPU and RAM, time series (“intra” resource measures),

the latter two focus on the relationship between CPU-RAM pairs (“inter” measures). For
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Figure 6.3: Cumulative distribution of correlation of intra-CPU, intra-RAM, inter-CPU/RAM.

each box, we compute the median value of the above measures and present the cumulative

distribution functions (CDFs) across all the boxes in Figure 6.3.

One can immediately see from the shapes of the CDFs that intra-RAM ρ is higher

than intra-CPU, followed by inter-resources measured from any pair of VM or the same

VM. This implies that inter-resource dependency is higher than the intra-resource one.

Indeed, the mean values for intra-CPU, intra-RAM, inter-CPU/RAM from any pair, inter-

CPU/RAM from the same VM are 0.26, 0.24, 0.30, and 0.62 respectively. The CDFs give a

clear message: the CPU-RAM pairs across co-located VMs are correlated, this is a fact that

we take advantage of when we attempt to use clustering to reduce the cost of prediction.

6.3 Spatial-Temporal Prediction Models

We first elaborate on the challenges for concurrent prediction for a large number of time se-

ries representing multiple resource usages from co-located VMs at production data centers.

The immediate obstacles of prediction given a large number of demand series are accuracy,

training overhead, and model scalability. Typically, temporal models [23], such as ARIMA

are not able to capture well bursty behaviors. More sophisticated temporal models such
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as neural networks, capture irregular patterns better but at much higher computational

overheads. Given such restrictions, it is important to come up with efficient and accurate

prediction models that also scale well.

We propose a new prediction methodology that combines both temporal and spatial

models to predict on each box the resource demand time series2 Di (∀i ∈ [1,M×N]) where

M is the number of co-located VMs and N is the number of different resources taken into

consideration. We introduce the concept of signature series: a minimum number of time

series that are predicted via temporal models. The rest of the demand series, termed as

dependent series, are predicted through a linear combination of signature series via spatial

models. Essentially, we divide the demand series, Di, into two sets: the signature set,

denoted by Ωs, and the dependent set, Ωd .

The novelty of ATM is to derive novel spatial models for dependent series while applying

existing temporal models to predict signature series. Many practical techniques exist in the

literature for reducing the overhead of temporal models by extracting and storing features

of the time series [120, 43]. We stress that any temporal prediction model can be directly

plugged into the ATM framework.

To derive the spatial models, we want to express all demand series Dk,k ∈Ωd by a linear

combination fk of the signature series D j, j ∈Ωs:

Dk = fk(D j). (6.1)

As every demand series can be either a signature or a dependent series, a brute force

solution to find the minimum signature set is to explore all 2N×M combinations of regression

models. For boxes hosting an average number of VMs, i.e., M around 10 and expected

2Demand series is the product of usage series and the allocated virtual capacity. Both demand and usage
series share the same correlation characteristics. For the purpose of virtual resource resizing, we predict
demand series directly.
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to grow as servers become more powerful, it is clear that this method is not viable. To

address this issue, we devise an efficient searching algorithm that can quickly find signature

series without using exhaustive search, by leveraging time series clustering techniques and

stepwise regression.

6.3.1 Searching for Signature Demand Series

Key to the discovery of signature series is clustering. We propose a two-step algorithm

to identify the signature set Ωs. Step 1 defines the initial set of signature series. This

is achieved using time series clustering, specifically dynamic time warping (DTW) [13]

or correlation based clustering (CBC) that we propose here. Step 2 defines the final

set of signature series by detecting and removing multicollinearity among initial set of

signature series using variance inflation factors (VIF) and stepwise regression. The intent

of the second step is to fix the pitfall that although signature series appear independent,

it is possible that a combination of certain subsets of the initial signature series can well

represent the others. For example, a group of series can be separated into three clusters

because of their dissimilarity in the distances or the correlation patterns. If however one of

the clusters can actually be well expressed as a linear combination of the other two, then

this falls under a classical example of multicollinearity. Figure 6.4 illustrates the steps of

signature set search.

Step 1: Time Series Clustering

Dynamic time warping is an effective solution for finding clusters of time series where the

distance across the series is short. A potential problem is that DTW falls short in capturing

within the cluster series that are of larger distance. Correlation based clustering solves this

problem by capturing highly correlated time series that are far enough apart and cannot
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Figure 6.4: Overview of searching for signature set.

be captured by DTW. Applying DTW on the exemplary four series shown in Figure 6.1

illustrates how clustering with DTW only offers a partial solution. DTW detects three

clusters: cluster 1 VM1, cluster 2 VM2, and cluster 3 VM3 and VM4. CBC instead puts

VM1, VM3, and VM4 within the same cluster. Indeed, the series D1 and D4 of VM1 and

VM4 can be well represented as linear models of the series D3 of VM3, e.g., D1 = a0 +aD3,

and D4 = b0 + bD3, where a0, a, b0, and b are scalars. In the remaining of this section we

provide details on DTW and CBC.

Dynamic Time Warping Clustering: The high level idea of DTW is to group series that

show low distance dissimilarity. To obtain the distance dissimilarity between two series

P = {p1, p2, ..., pi, ..., pn} and Q = {q1,q2, ...,q j, ...,qm}, we first build a matrix that consists

of the pair-wise squared distances, i.e., d(pi,q j) = (pi−q j)
2, between each pair of elements

pi and q j in the two series. The distance dissimilarity λ (n,m) of the two series is given by

the wrapping path through the matrix that minimizes the total cumulative distance [13]

and can be recursively computed as follows:

λ (i, j) = d(pi,q j) + min{λ (i−1, j−1),λ (i−1, j),λ (i, j−1)}. (6.2)
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Next, we apply hierarchical clustering [91] for any given number of clusters, ranging from

2 to (M×N)/2 since we aim to reduce the original set to at least its half. We determine

the optimal number of clusters, based on the average silhouette value [94] of all time series

within each cluster. For each series i, its silhouette value s(i) is defined as

s(i) =
b(i)−a(i)

max{b(i),a(i)}
(6.3)

where a(i) is the average distance dissimilarity between series i to all the other series within

the same cluster using DTW, and b(i) is the lowest average distance dissimilarity between

series i to the all the series in a different cluster. The higher the silhouette value, the better

the series lies within its cluster. For each number of clusters, we average the silhouette

values of all the series as the representative silhouette value. The optimal number of clusters

is the one with the maximal silhouette value. As last step and beyond conventional DTW,

we identify each signature series as the series with the lowest average dissimilarity in each

cluster.

Correlation-based Clustering: CBC focuses on grouping series showing high correlation.

For each box, we first compute the pairwise correlation coefficients, denoted as ρ, for all

pairs of the M×N series. For a demand series Di, there are (M×N− 1) pairs ρi,l,∀l 6= i.

To form the clusters, we rank each series Di, i ∈ [1,M×N] first by the total number of ρi,l

above a threshold ρT h, and second by the mean value of the ρi,l above the threshold. In the

following we set ρT h = 0.7, a common threshold value used to determine strong correlation

between two series, which suggests a potential for linear fitting [60]. After the series have

been ranked, we select the topmost one and remove it together with all the series being

correlated with it with a correlation coefficient higher than the threshold. These series are

now considered within a new cluster with the top ranked series being the signature series.

This procedure continues by selecting the next topmost series still in the ranked list and
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ends when the ranked list becomes empty.

Step 2: Stepwise Regression

To further reduce the number of signature series, we calculate the variance inflation factor

– a metric that can detect multicollinearity in regression. For each series in the signature

set, we regress it on the rest of signature series and obtain its VIF value [60]. The rule of

practice is that a VIF greater than 4 indicates a dependency with the other series in the

initial set. After detecting the risk of multicollinearity, i.e., at least one series has a VIF

greater than 4, we perform standard stepwise regression to remove the series that can be

represented as linear combinations of the other signature series.

6.3.2 Prediction Models

To predict all M×N demand series, we first predict the signature series Di (i ∈ Ωs), using

neural network models and their historical data [120]. To predict all dependent series, we

regress each dependent series on the set of signature series, obtaining coefficients using

ordinary least square estimates. We stress that the signature series predictions are not tied

to the any specific model rather any suitable prediction model can be easily plugged into

our ATM framework.

In summary, we first leverage historical data to develop spatial models to define de-

pendent series and their respective signatures. Later, we use temporal models to predict

the signature series and inexpensive linear transformation models to predict the dependent

series.
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6.3.3 Results on Spatial Models

Prior to moving to the proposed VM resizing policy, we present evaluation results of the

proposed spatial models across the demand series of the trace data (6K boxes and 80K

VMs) presented in Section 6.2. Our evaluation focuses on: (i) the difference between DTW

and CBC clustering, (ii) the effectiveness of clustering and stepwise regression, and (iii)

inter- v.s. intra-resource models, i.e., if it is necessary to treat different resource series,

e.g., CPU and RAM, separately. Since the purpose of spatial models is to use a minimum

subset of original series to accurately represent the data center, the metrics of interest are:

(i) the percent of signature series out of the total demand series and (ii) the prediction

error. In this section we only focus on the effectiveness of the spatial models, i.e., how close

the dependent series are from the actual time series counterparts. The overall prediction

accuracy of combining spatial models with temporal models is presented in Section 6.5.

6.3.3.1 Difference between DTW and CBC

Figure 6.5 compares the distribution of the number of clusters resulting from DTW and

CBC and highlights the type of each signature series, i.e., CPU or RAM. For DTW, roughly

70% of boxes have only 2 to 3 clusters, and the rest have 4 to 31 clusters. In contrast,

CBC is less aggressive resulting in a higher number of clusters and, consequently, a higher

number of signature series. This indicates a higher overhead to develop their temporal

models. Moreover, in terms of signature series types, under DTW, one can see that both

CPU and RAM roughly account for 50% of the signature series. This is consistent across

all DTW bars in Figure 6.5. Instead, with CBC, most signature series are CPU series.
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Figure 6.5: Comparison of clustering results using DTW and CBC.

6.3.3.2 Effectiveness of the Two-Step Approach

To better illustrate the benefits of time series clustering (DTW or CBC) and stepwise

regression, we compare the signature set reduction and prediction accuracy of each step in

Figure 6.6. Each box represents the 25th, 50th (mid line), and 75th percentiles, whereas the

dot marks the mean and the whiskers the most extreme data points.

Figure 6.6(a) shows the percent of signature series out of the total number of series for

each of the 6K physical boxes. Since DTW is quite aggressive in reducing the number of

time series, there is almost no further reduction after applying stepwise regression. Both

steps reduce the entire set to 26%. After CBC, the set is reduced to 82%, however stepwise

regression brings further down the number to 66%.

Considering prediction accuracy, as shown in Figure 6.6(b), both DTW and CBC ex-

perience minor losses. The average absolute percentage error (APE)3 from DTW is about

28%, while the average APE for CBC is only around 20%. Since stepwise regression almost

does not affect the signature set of DTW, one expects no obvious decrease in prediction

3APE is defined as APE =
|Actual−Fitting|

Actual
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Figure 6.6: Comparison of the two steps: effectiveness of clustering and stepwise regression.

accuracy. This is indeed shown in the graph. Surprisingly, the same holds true with

CBC where stepwise regression reduces CBC’s accuracy only by 1%. These results confirm

the effectiveness of stepwise regression in reducing the signature set without degrading in

prediction accuracy.

6.3.3.3 Inter- v.s. Intra-Resource Models

We compare the effectiveness of the proposed inter-resource models, i.e., combining CPU

and RAM as predictors, against the intra-resource models, in which CPU and RAM are

treated separately. In Figure 6.7, we summarize the prediction errors and reduction in

the original demand series. Inter-resource models can not only reach a lower prediction

error but also a higher reduction in the number of demand series, than intra-CPU and

intra-RAM models. We present the results in box plots. In terms of average APEs of

prediction for CBC(DTW), the inter model is around 20%(28%), whereas the intra-CPU

and intra-RAM are 21%(26%) and 23%(31%). Again, these results are in good agreement

with our observation in Section 6.2 that inter resource correlation is higher than intra-

CPU and intra-RAM correlations. In terms of the average number series in the signature

set for CBC(DTW), the inter model uses roughly 66%(26%) of the original series, while
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Figure 6.7: Comparison of inter- and intra-resource models.

intra-CPU and intra-RAM can use up to 81%(41%), 90%(45%) compared with the original

set. Overall, the inter model can greatly benefit from the correlation across co-located

resources.

6.4 Virtual Resource Resizing

Being able to accurately predict future usage enables the very first step to actively manage

usage-related tickets. Having future usage knowledge, it is possible to develop a virtual

resource resizing policy that can effectively reduce the number of usage tickets. The moni-

toring systems in modern data centers track the resource usages at discrete windows, e.g.,

15 minutes, termed as the ticketing window, and compare them with ticket thresholds to

determine whether a ticket needs to be issued or not. To avoid incurring overreaction to

transient loads, we set the resizing window to be greater than the ticketing window. For

the data centers considered here, ticket resolution occurs within a day of the ticket being

issued, so setting the resizing window to one day is a reasonable assumption. This implies

that the prediction horizon of the demand series needs to be also one day. Note that

past work has shown that the accuracy of prediction decreases as the prediction horizon
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increases [120], so setting the prediction window to such a high value makes ATM more

conservative than it can actually be. During each resizing window, ATM devises and ac-

tuates the virtual resource allocation of co-located VMs on boxes. The objective is to find

optimal sizes for co-located VMs to achieve the lowest number of tickets, subject to various

resource constraints at boxes. The resources considered are: virtual CPU measured in GHz

and virtual RAM measured in GB.

There exist a large body of virtual resource allocation studies aiming to satisfy various

performance targets, e.g., user response time, system utilization, and fairness. Max-min

fairness [106, 46] is one of the most applied allocation policies that tries to guarantee the

performance of small VMs, given the assumption of known demands. Our resizing prob-

lem can be viewed similarly but with the objective to minimize the occurrences of target

utilization threshold violations. We develop a resizing algorithm based on a rigorous op-

timization formulation, which is later transformed into a multi-choice knapsack problem

(MCKP) with tunable discretization parameters. The introduction of such discretization

parameters enables us to reduce the complexity and increase the safety margin in resource

allocation. In contrast to spatial-temporal prediction models, the resizing algorithm treats

CPU and RAM separately due to separate constraints on each resource. Hence for sim-

plicity, in the following we redefine the index i in Di to be the index of a VM rather than

the index of a specific resource on a VM.

6.4.1 Ticket Optimization Formulation

We formally introduce the problem, including notations and constraints, for resizing all

co-located VMs on a single box. The foremost important constraint is that the summation

of allocated virtual resources should be less than or equal to the total available virtual

resource, i.e., ∑iCi ≤C, where Ci denotes the virtual capacity allocated to VM i, and C is
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the total available virtual capacity at the box. The decision variable is Ci and needs to be

determined at the beginning of the resizing horizon.

The prediction module provides all demand series values for the entire resizing window,

equal to T ticketing windows, for VM i, Di = {Di,1, . . .Di,T}. We introduce an indicator

variable, Ii,t , when Ii,t = 1 a usage ticket occurs to VM i at ticketing window t, because

the demand exceeds a certain threshold of the capacity, say, αCi (e.g., α = 0.6); otherwise

Ii,t = 0. We aim to minimize the total number of tickets occurring on all co-located VMs

during the resizing window. Thus, we can write the objective function as ∑i ∑t Ii,t . In

summary, we can define the ticketing optimization problem as:

(R)min ∑
i

∑
t

Ii,t (6.4)

s.t. ∑
i

Ci ≤C (6.5)

Di,t −αCi ≤ Di,tIi, j (6.6)

Ii,t ∈ {0,1} (6.7)

Constraint (6.6) ensures that Ii,t = 1, when the demand exceeds the ticket threshold,

αCi; otherwise the objective function drives Ii,t to zero. The problem R is a classical mixed

integer linear programming (MILP), whose complexity greatly depends on the number of

integer variables, i.e., the indicator variables Ii,t in our case. The number of indicator

variables for each box is thus the product of the number of ticketing windows, T , and the

number of VMs, M.

6.4.1.1 Resizing Algorithm

Instead of resorting to a standard MILP solvers, such as CPLEX [3], we transform the

original problem into a multi-choice knapsack problem by Lemma 6.4.1: the optimal size
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for each VM must be equal to one of the demand values in Di or 0. The advantages of

transforming the original problem into a MCKP are twofold: (i) there exist a large number

of efficient algorithms for MCKP and (ii) it allows for a reduction of the number of integer

variables. We elaborate on the second point after formally introducing the transformation

of the original optimization problem to MCKP.

Lemma 6.4.1 For VM i, the optimal size Ci∗ ∈ Di∪{0}, Di = {Di,1,Di,2 . . .Di,T}.

Proof: If there exists an optimal solution (Ci∗) for each VM (i) for the resizing problem, Ci∗

has to be in one of the three ranges: [0,min{Di}), [min{Di},max{Di}), and [max{Di},+∞).

If Ci∗ is less than min{Di}, we argue that Ci∗ could be set to 0 and the objective function

stays unchanged while the constraints are not violated. Similarly, it is proven that if Ci∗ is

not less than max{Di}, Ci∗ can be set to max{Di}. If Ci∗ is in [min{Di},max{Di}), sort Di

in a descending order as Di
descend = {O1,O2, ...,Op,Op+1, ...}. Following the same reasoning,

it is possible to determine that ∃ q,Ci∗ ∈ [Oq,Oq+1). In addition, setting Ci∗ equal to Oq,

the minimum objective function can be obtained without any constraint violation. Hence

the optimal size Ci∗ is either in Di or 0. �

Based on Lemma 6.4.1, we can transform the original formulation into a multi-choice

knapsack problem, whose complexity can be further simplified by reducing the number of

indicator variables. We first introduce a reduced demand set with 0 added, denoted as

D′i, containing the unique values of the original demands in decreasing order, D′i,v+1 ≤ D′i,v.

According to Lemma 6.4.1, one of them is the optimal capacity. We note that D′i,v is not the

same as Di,t . The following small example illustrates the difference. Given a specific demand

series Di = {30,30,40,40,23,25,60,60,60,60}, its reduced series is D′i = {60,40,30,25,23,0}

containing only the unique values plus 0 in descending order.

We introduce a new binary variable Yi,v, denoting that the unique value D′i,v is chosen to

be the capacity for VM i. The next step to reduce the problem into MCKP is to define the
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number of tickets, denoted Pi,v, seen by VM i when the value of D′i,v is chosen as capacity,

i.e., Yi,v = 1. Following the previous example of reduced demand set, we show an example

of ticket calculation. Let us assume the current capacity is 70 and the ticketing threshold

for issuing usage tickets is 60%. We thus know that demands greater than 70×60% = 42

at any ticketing window will result into tickets. We can then obtain Pi = {0,4,6,8,9,10}.

Due to the decreasing order of D′i, Pi has an increasing order, i.e., Pi,v+1 ≥ Pi,v. The total

number of tickets for a box can thus be written as ∑i ∑vYi,vPi,v and the resource constraint

of the total capacity as ∑i ∑vYi,vD′i,v ≤C.

In summary, we reach a multi-choice knapsack problem, where items (in the original

knapsack problem) are divided into subgroups and exactly one item needs to be selected

from each group. Putting our problem into the context of multi-choice problem, we have

M groups of VM demands and we need to choose exactly one demand from each group as

their capacity. The decision variables are Yi,v denoting that a particular demand is chosen

as the size for VM i, where i ∈ [1,M] and that the number of tickets, Pi,v, can be seen as

“weights”. The transformed ticket reduction problem is:

(R′)min ∑
i

∑
v

Yi,vPi,v (6.8)

s.t. ∑
i

∑
v

Yi,vD′i,v ≤C (6.9)

∑
v

Yi,v = 1 (6.10)

Yi,v ∈ {0,1} (6.11)

The formulation of problem R′ enables the introduction of a tunable parameter, ε,

which decides the discretization of demand values. We illustrate this point using the

running example of original series Di and its reduced series D′i. The original formulation

R has 11 integer variables (including the 0), whereas the transformed problem R′ has only
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6 integer variables. One can even further decrease the number of binary variables in Pi

by discretizing the demand values, such as rounding off the first digit. For example using

D′i = {60,40,30,0}, where 23 and 25 are rounded up to 30. Another point worth mentioning

is that we need to update the number of corresponding tickets too, i.e., Pi = {0,4,6,10}.

Rounding up demands makes the resizing algorithm more aggressive in allocating resources.

Consequently, we formally introduce a discretization factor, ε, which further reduces the

complexity and provides a safety margin for resource allocation. We note that ε is only

applied on the predicted series. In summary, the initial step computes D′i from Di using ε,

and calculates their corresponding tickets, Pi for all co-located VMs i.

To solve the MCKP problem, we resort to the so-called minimal algorithm [90]. We

illustrate the general idea in the context of our resizing problem. The algorithm chooses

capacity candidates for each VM and shuffles around the capacity across VMs, comparing

to the available capacity and marginal ticket reductions. For all VMs, it chooses capacity

candidates that can incur a minimum number of tickets, i.e., starts from the maximum

values in D′i. When there is no sufficient capacity to achieve such allocations for all VMs,

the priority is given to the VM having the lowest marginal ticket reduction values (MTRV).

MTRV represents the additional ticket increment when reducing one unit of capacity pro-

visioning. Its formal definition is:

MT RV =
Pi,o−Pi,o−1

D′i,o−1−D′i,o
, (6.12)

where o denotes the index of candidates in D′i. The VM with the lowest MTRV is always

chosen to reduce the capacity provision from its current candidate value to the next one

in D′i. Note that as D′i is in decreasing order, the next candidate immediately implies a

capacity reduction. Once the candidate list is updated, the same process continues until

the sum of all candidates is less or equal to the available capacity.
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For a practical implementation, in addition to the constraint of total available capac-

ity, it is also imperative to consider the lower and upper bounds of capacity. In order

to avoid spillovers of unfinished demands from previous ticketing windows, we impose a

lower bound on the VM capacity size, such that its peak usage before resizing is satisfied.

Moreover, as any VM is not able to use more resources than the available resource amount

of the underlying physical box, we introduce the allocation upper bound based on the box

resource capacity. We can easily incorporate such lower and upper bounds into our resizing

algorithm by limiting the values in D′i for each VM i.

6.4.2 Results on Usage Ticket Reduction

Prior to moving on to the evaluation of the full-fledged ATM, i.e., the combination of

spatial-temporal prediction and resizing policy, we first show how effective the proposed

resizing algorithm is against existing resource allocation heuristics. For a fair comparison,

the demand inputs are based on the original dataset described in Section 6.2, instead of

prediction. We implement the max-min fairness algorithm [106] and a “stingy” algorithm

which only allocates the capacity according to the lower bound, i.e., the maximum de-

mand regardless of the ticket threshold, often used in practice. In contrast, the max-min

algorithm starts to allocate to all VMs the demand of the smallest VM, considering its

ticket threshold, and continues onto VMs in the increasing order of their demands until all

capacity is exhausted.

Here, we evaluate the data of April 3, 2015 across all 6K boxes and set the threshold

to trigger usage tickets to 60%: i.e., every 15-minute ticketing window the monitoring

system checks if the average usage of CPU or RAM of each VM exceeds the 60% of the

allocated capacity. Figure 6.8 summarizes the mean ticket reduction (in percent) and its

standard deviation, when applying the proposed ATM resizing, max-min fairness, and
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Figure 6.8: Ticket reduction for CPU and RAM: comparing ATM, max-min fairness, and stingy
algorithms.

stingy algorithms. As expected, the stingy algorithm is completely unaware of the ticket

threshold. On average it achieves a ticket reduction of 54% and 15% for CPU and RAM,

respectively. Max-min fairness reduces the tickets by around 70% for both CPU and RAM.

This is still roughly 30% worse than the ATM resizing results. Due to the nature of favoring

small VMs, large VMs can be severely punished under max-min fairness resulting in no

ticket reduction and explains the high standard deviation under max-min fairness.

As a pleasant surprise, our resizing algorithm does exceptionally well. It achieves 95%

and 96% usage ticket reductions for CPU and RAM, respectively, a remarkable improve-

ment for both performance and cost. This is also attributed to the fact that the systems

of the original traces are equipped with abundant resources, i.e., typically data centers are

lowly utilized [16]. By simply shuffling resources across co-located VMs, we are able to

achieve significant performance gain. Moreover, we also eliminate the overhead of inspect-

ing and resolving a large number of usage tickets, a process that is known to be expensive.

6.4.3 Actuation of Virtual Capacity

Cloud data center tenants are typically charged by the amount of virtual resources, for

example, the number of virtual cores. Consequently, any practical sizing policy should
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adhere to such a constraint, due to accounting and financial concerns. Therefore, to enforce

the virtual capacity limits decided in our algorithm, we use the control groups (cgroups)

feature of the Linux kernel [2]. Cgroups allow to limit, account for, and isolate resources

usages of groups of processes. By placing the processes and threads relating to each VM in

a separate cgroup, we can dynamically change the resource usage limits for each VM. To

simplify the cgroups configuration, we expose the resource limits through a web-based API

by running a small daemon at each hypervisor. The advantage of cgroups over directly

modifying the allocated virtual VM resources is that the latter typically requires a restart

of the guest OS while the former can be changed on-the-fly without disrupting the VM

operation. Moreover, cgroups offer a finer-grained CPU control with an almost continuous

CPU limit control rather than the stepwise decrease/increase of virtual cores.

6.5 Evaluation

We extensively evaluate ATM not only on a large number of data center production traces

but also experimentally on a cluster running MediaWiki. We focus on presenting the

effectiveness of ATM in ticket reduction to improve system dependability and to reduce

the high cost associated with ticket resolution. In the remaining of this section, we assume

that usage tickets related to CPU and RAM are automatically issued when VM utilization

is greater than 60%.

6.5.1 Production Systems

We focus on a subset of boxes from the data center trace (400 boxes) which have no

gaps in their traces. The remaining box traces suffer, throughout the 7 days of the trace,

from occasional gaps with no data. We show how different configurations of ATM can

proactively reduce the number of tickets. We engage training of the signature series for
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5 days and then apply ATM and VM resizing for the following day. We stress that this

analysis is post-hoc, i.e., we can not change the size of the actual VMs in the trace, we

focus only on the prediction accuracy and ticket reduction via ATM. On the contrary, in

the experimental evaluation on the MediaWiki cluster presented in the Section 6.5.2, we

do also illustrate VM resizing in a working system.

For the spatial models, we consider DTW and CBC clustering techniques and set the

discretization factor ε = 5. The temporal models used for the signature series are neural

networks [120]. ATM performs the prediction of 16000 usage series, each of which has 96

ticketing windows, with each window being 15 minutes long. After obtaining the predicted

series, ATM triggers the resizing algorithm for every box to determine the near optimal

CPU and RAM capacity for all co-located VMs. We note that results presented in this

section differ from Section 6.3 and 6.4, where only the proposed spatial models and resizing

algorithms are evaluated individually, excluding the temporal prediction models. Here, we

have the full effect of both prediction models.

6.5.1.1 Prediction Errors

Figure 6.9 presents the CDF of the prediction accuracy of ATM in terms of APE with

different spatial models, i.e., DTW and CBC clustering. For CPU and RAM usage, we

use the inter-resource model, i.e., signature series are a mix of CPU and RAM. The av-

erage prediction errors of resources usage per box are 31% and 23%, for DTW and CBC,

respectively. These are only slightly higher than the errors without the temporal models

presented in Section 6.3. The figure also illustrates the CDF of the mean absolute errors

for peak demands, i.e., usage higher than 60%. The average peak errors across all boxes

are 20% and 17% for DTW and CBC, respectively. This shows that neural networks can

capture well the temporal dynamics of the signature series. We further note that this high
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Figure 6.9: CDF of prediction accuracy of ATM on 400 production servers: AT MCBC, ACMDTW .

accuracy of temporal models is achieved at a high computational time and long historical

data, i.e., 5 days, whereas the prediction of dependent series via spatial models has a neg-

ligible cost. We also note that the reduction in demand series for this subset of 400 boxes

is similar to results shown in Section 6.3 across 6K boxes.

6.5.1.2 Ticket Reduction

Figure 6.10 compares the results of average ticket reduction using two different versions of

ATM against the max-min fairness, and stingy policies, see Section 6.4. Each bars illustrate

the mean and standard deviation of ticket reduction across boxes divided into CPU and

RAM tickets. The key observations are the following. Both versions of ATM are able to

achieve a higher ticket reduction, around 60% and 70% for CPU and RAM, respectively,

compared to the other two heuristics. We like to point out that the standard deviation

is high for all four strategies indicating huge difference across boxes. Different from the

resizing results shown in Section 6.4, max-min fairness shows worse reduction results than

stingy. This can be explained by the observed high variability across the chosen 400 boxes

which shows that max-min fairness could even result in a increase of the number of tickets

for a subset of the boxes, see the range of standard deviation. Max-min fairness favors
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Figure 6.10: Comparing ticket reduction: ATM, max-min fairness, and stingy resizing algorithms.

small VMs while dissatisfying big VMs, which results in more ticket violations than the

other policies. Another fact worth mentioning is that both versions of ATM are able to

achieve higher RAM ticket reductions, due higher RAM provisioning compared to CPU.

6.5.2 ATM on a MediaWiki Cluster

We experimentally evaluate our ticket reduction techniques also on a cluster running Me-

diaWiki, a latency-sensitive 3-tier web application composed by Apache (v2.4.7) as the ap-

plication server frontend, memcached (v1,4.14) as in-memory key-value store, and MySQL

(v5.5.40) as the database backend. The testbed is composed of four identical physical

servers. Each server runs Ubuntu server 14.04 LTS and is equipped with 16 GiB of DDR3

RAM with up to 41.6 GiB/s bandwidth, a 4-core Intel Core i7 3820 processor @ 3.6 GHz

with SMT, one 2-TB Sata III 7200 rpm hard disk, and one Gigabit Ethernet adapter.

Three servers host the VMs using QEMU-KVM (QEMU v2.0 with KVM on Linux kernel

3.13) as hypervisor. Each VM comprises two virtual CPUs and 4 GiB of RAM. The forth

server is used as the experiment orchestrator and load generator. Each application tier is

deployed into a separate VM. We consider a scenario of hosting two MediaWiki applica-

tions on these 4 physical servers, termed as wiki-one and wiki-two, see Figure 6.11. For
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Figure 6.11: MediaWiki testbed.

wiki-one, there are 4 Apache servers, 2 Memcached, and 1 DB, whereas there are only 2

Apache, 1 Memcached, and 1 DB in wiki-two. For each wiki, we have one load balancer

that distributes the requests across the different apache front-ends. The workload gener-

ator creates requests alternating between low and high intensity periods, each lasting one

hour.

Figure 6.12 illustrates the CPU usage series across all VMs located on nodes 2, 3 and 4

against the ticketing threshold set to 60%. The figure shows the CPU usage levels without

and with ATM resizing. One can observe that indeed resizing is very effective in achieving

CPU usage levels across time and all VMs below the 60% threshold. The consequent ticket

reduction is dramatic: tickets drop from 49 to only 1.

Besides ticket reduction, we also show performance values for the two wiki applications,

see Figure 6.13. The figure plots the the average user latencies (response times) and

average throughput (the average number of successful served requests per unit of time).

For wiki-one, the mean response times with resizing decrease from 20% (from 582 ms to 454

ms) comparing to the original experiment, whereas throughputs are maintained at almost

the same levels. For wiki-two, throughput increases by more than 20% (from 14 to 17

requests/sec) while response time increases by 7% (from 915 ms to 979 ms). This suggests
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Figure 6.12: Overtime plots of CPU utilization for VMs located on Node 2, 3 and 4, with and
without resizing.

that with ATM, the servers can fully serve the offered load, meet good performance values,

while at the same time keeping the number of tickets to a minimum demonstrating the

ultimate goal of ATM.

6.6 Chapter Summary

We presented ATM, a methodology to achieve efficient VM resizing so as to reduce VM

usage tickets that are issued in production data centers. We have shown the effectiveness

of ATM in predicting usage series in production data centers by exploiting spatial usage

patterns of co-located VMs within the same box and by using detailed prediction of a small

subset of the usage series, allowing the methodology to scale well. This prediction drives
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Figure 6.13: Performance comparison for wiki-one and wiki-two: original and resized with ATM.

the development of a VM resizing policy that is shown effective on a production trace and

a working prototype.
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Chapter 7

Reduction of Usage Tail Violations

Chapter 6 proposes an active resizing policy among co-located VMs in order to reduce the

usage tickets in VMs. But this method does not reduce tickets which come from resource

usage violations in physical boxes. In this chapter, we focus on reducing the usage tail

violations in physical boxes in cloud data centers. We continue with the analysis of the

IBM data center trace presented in Chapter 6. Recall that the trace data correspond

to 6K physical boxes serving more than 80K VMs over a time period of a week. Our

analysis shows that anomaly instances (AIs) fall into two categories: single AI where the

duration of the anomaly is short and continuous AI where the duration of the anomaly is

long. Figure 7.1 gives an overview of usage anomaly instances. Resource usage is typically

reported within discrete time windows (e.g., in our trace each time window equals to 15

minutes). While the usage series has fluctuations across time, it goes beyond the target

value three times. Twice the usage exceeds the target value for a short time of a single time

window (single AI). Once the usage exceeds the target value for a long time, corresponding

to multiple consecutive time windows (continuous AI). The trace characterization points to

one more important factor that distinguishes single and continuous AIs: we find that not

only the duration but also the magnitude of a continuous AI is larger than the single AI.
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Figure 7.1: How to determine a usage anomaly instance. An example on CPU usage.

While single AIs may be considered relatively harmless, continuous AIs have the potential

to significantly undermine the user perceived performance.

In this chapter, we develop a tail-driven anomaly avoidance policy, termed TailGuard ,

which aims to eliminate or at least drastically reduce continuous AIs in physical servers.

For example, TailGuard tries to ensure that the box CPU usage is below the predefined

target (e.g., 60%) for 95 percent of the time. To motivate the design of TailGuard , we

first do a detailed, post-hoc workload characterization study of usage time series (for both

CPU and RAM) in production data centers. TailGuard particularly consists of two steps:

a light-weight tail usage prediction method that explores the power of vast number of last

values of usages and a VM cloning strategy that redistributes the box CPU and RAM

loads based on tail prediction. Overall, this work makes three main contributions: AI

characterization, usage tail prediction, and anomaly mitigation.

This characterization analysis allows us to view the statistical characteristics of usage

time series and focuses on the properties of their tails. The key findings are as follows:

1) the culprit of continuous CPU AIs is VM consolidation. 2) CPU tail usage is highly

correlated to the mean CPU usage of physical servers and follows a Normal distribution. 3)
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RAM anomalies do not relate strongly to VM consolidation in contrast to CPU anomalies.

Based on these observations, the proposed TailGuard avoids AI, particularly CPU, by

predicting the tail usage of box CPU and redistributing VMs across boxes in an online

fashion. TailGuard first predicts the box CPU tail usage, by capturing the steady state of

tail distribution with respect to different levels of mean usage. In contrast to conventional

time series prediction, TailGuard is not only light-weight since it uses very recent data, e.g.,

past day, instead of long history of usage series, but also aware of the resource availability

of the tenants. Secondly, based on tail predictions and the level of resource availability

for each tenant, TailGuard redistributes box loads by proactively creating and placing

VM clones so as to ensure the box tail usage does not exceed the target value. The VM

cloning strategy combines the advantage of VM migration and load balancing at the cost

of duplicating the VM memory footprint.

TailGuard is evaluated using trace driven simulation. Results are summarized as fol-

lows: 1) the proposed prediction method of tail usage is computationally much cheaper

compared to accurate but expensive time-series predictions (e.g., neural networks), while

balancing tail usages across boxes; 2) VM cloning achieves a ten percent higher reduction

in CPU tail target violations than classic VM migration. It is also noteworthy that, thanks

to the reactive load balancing, our method achieves CPU tail usage reduction with mini-

mal RAM usage violation increase (up to 3 percent), which is lower than the one achieved

by proactive VM migration. Even by allowing target violations in up to 5 percent of the

time windows, TailGuard not only reduces the number of CPU AIs by 60 percent, but also

mitigates the duration of continuous CPU AIs dramatically, from a maximum duration of

over 25 time windows to 2 time windows.

The outline of this work is as follows: Section 7.1 discusses related work. Section 7.2

provides a characterization study of the CPU and RAM AIs. We propose TailGuard ,
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describing tail usage prediction method and a VM cloning strategy in Section 7.3. An

extensive evaluation of TailGuard for CPU AI reduction on production traces is discussed

in Section 7.4. Section 7.5 concludes this chapter.

7.1 Related Work

Performance anomaly detection has been the subject of many workload characterization

studies in recent years to improve system reliability by better understanding the reasons

behind system failures and/or bugs [15, 92, 28, 97]. These studies focus on statistical

analysis of trace data ranging from production data centers to large-scale storage systems.

Online performance anomaly detection methods have been proposed [29, 26, 52] in order

to detect anomalies in the upcoming future using either statistical methods or machine

learning techniques. An online performance anomaly prevention method for cloud com-

puting is proposed in [105], which integrates online anomaly prediction and learning-based

cause inference with predictive prevention actuation. The spatial-temporal dependencies

in usage time-series are explored in [118] for VM resizing, with an objective to reduce all

VM performance tickets in data centers, i.e., all usages need to be below the target. In

contrast, TailGuard focuses on avoiding box tail violations and makes a conscious tradeoff

between resource requirement and anomaly avoidance, based only on the last values of

usages collected from a vast number of boxes.

VM migration on a cluster of physical servers has long been proposed to mitigate per-

formance anomalies via load balancing [27]. The main question is determining when and

how to migrate VMs, aiming to optimize resource usage (e.g., network bandwidth [104])

and performance measures, including non-traditional ones such as energy consumption [47].

Several migration algorithms have been proposed including best-effort online VM migra-

tion [70, 104] as well as several performance models of online VM migration [71, 74].
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Yet, the performance effect of migration overhead cannot be disregarded [12], especially

in systems where service availability and responsiveness are under Service Level Agree-

ments (SLAs). Different from VM migration, in this chapter, TailGuard makes use of VM

cloning to handle excess load, opportunistic job placement, and parallel processing [61].

VM cloning enables VM management that is more flexible and of finer-granularity control

than VM migration.

7.2 Characterization

The trace considered here comes from production data centers serving various industries,

including banking, pharmaceutical, IT, consulting, and retail, and contains CPU and RAM

utilization at a time granularity of 15 minutes for 6K physical boxes hosting more than

80K VMs during a 7-day period from April 3, 2015 to April 9, 2015. Naturally, the level of

consolidation is very high, i.e., on average 10 VMs are consolidated within a single physical

box [16].

7.2.1 Overview

We first look into daily statistics of anomaly instances, assuming that an anomaly instance

is triggered when a resource usage exceeds a target [118]: 60% for CPU and 80% for RAM.

Figure 7.2(a) illustrates the empirical PDF of the daily average number of CPU excesses

per physical box. Note that each excess corresponds to the mean utilization across 15-

minute time window being above the target value. 40% of the boxes have a daily average

number of excesses below one. After that the fraction of boxes rapidly decays with only

3% of boxes which experience over 32 excesses per day (i.e., for more than 8 hours per

day). Figure 7.2(b) focuses on whether these excesses are single or continuous AIs. The

boxplots in this figure show the 25th, 50th, and 75th percentiles of the anomaly duration, the
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Figure 7.2: CPU and RAM: overview of anomaly instances.

whiskers correspond to extremes of the distribution, and the dots represent the average.

Note that the y-axis is in logscale and in units of 15-minute time windows. The figure

clearly illustrates that most anomaly instances are continuous, i.e., longer than one time

window. Figure 7.2(c) illustrates the relationship between the box mean CPU usage across

the excesses and the type of anomaly that it experiences. Here, the CDFs of single and

continuous anomaly instances are presented: it is clear that continuous anomaly instances

have higher usages than single ones.

Figure 7.2(d)-(f) presents similar results as Figure 7.2(a)-(c) but for RAM. Figure 7.2(d)

illustrates the empirical PDF of the average number of RAM excesses per box per day and

shows that RAM excesses seldom come alone: from at least 32 (26% of boxes) up to 96

(40% of boxes). Consequently, the boxplots of Figure 7.2(e) illustrate that these anomalies

are mostly continuous. Finally, Figure 7.2(f) shows that the CDF of single and continuous
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anomaly instances for different box mean RAM usages across the anomaly instances. RAM

continuous anomaly instances have higher usages than single ones and the difference is even

larger comparing to CPU anomalies. In summary, Figure 7.2 illustrates that for both CPU

and RAM anomaly instances, it is the continuous ones that tend to exceed significantly

the target value. Hence, continuous anomalies have the potential to harm performance for

a long period of time. This motivates us to look in detail into the tail usages for CPU and

RAM.

7.2.2 Root Cause Analysis for Box Anomaly Instance

A natural question is whether there is any relationship between the VM consolidation level

and the number of CPU/RAM anomaly instances. Figure 7.3(a) presents boxplots that

show the 25th, 50th, and 75th percentiles (boxes), the extremes of the distributions (whiskers)

and the means (dots) of the number of CPU usage excesses for different ranges of VM

consolidation levels on the x-axis. Consolidation level responds to the number of collocated

VMs. Figure 7.3(b) presents the same information but for RAM anomaly instances. It

is clear that higher VM consolidation levels result in more CPU anomaly instances while

RAM anomalies do not show a strong relationship with the VM consolidation level.

Figures 7.3(c) and (d) illustrate the probability that at least one excess is observed

on a VM residing on a given box that is also observed an excess for CPU and RAM

usage, respectively. Note that these probabilities are reported as a function of the VM

consolidation level. The figures illustrate that there is a strong relationship among the box

anomaly instances and a VM anomaly instance for CPU, as shown by probabilities higher

than 0.9 for all the consolidation levels. For RAM, the probabilities are less than 0.02

for all consolidation levels. The figures illustrate that there is a clear relationship among

the hosted VM anomalies and the box anomalies for CPU; this relationship is clearly not

134



Number of VMs
[1, 8) [8, 16) [16, 32) [32, 64) [64, 128]

N
u

m
b

e
r 

o
f 

U
s
a

g
e

 E
x
c
e

s
s
e

s

0

5

10

15

20

25

Number of VMs
[1, 8) [8, 16) [16, 32) [32, 64) [64, 128]

N
u

m
b

e
r 

o
f 

U
s
a

g
e

 E
x
c
e

s
s
e

s

0

10

20

30

40

50

60

70

80

90

100

(a) CPU: Consolidation level (b) RAM: Consolidation level

Number of VMs

[1, 8) [8, 16) [16, 32) [32, 64) [64, 128]

P
ro

b
(A

t 
le

a
s
t 

1
 V

M
 |
 B

O
X

)

0.8

0.85

0.9

0.95

1

Number of VMs

[1, 8) [8, 16) [16, 32) [32, 64) [64, 128]

P
ro

b
(A

t 
le

a
s
t 

1
 V

M
 |
 B

O
X

)

0

0.02

0.04

0.06

0.08

(c) CPU: Prob(VM|Box) (d) RAM: Prob(VM|Box)

Figure 7.3: CPU and RAM: root cause analysis for the box anomaly instance.

present for RAM.

To summarize, the above two figures illustrate that CPU anomaly instances in boxes

strongly depend on the VM CPU usage within these boxes, while this is not the case for

RAM anomaly instances which are triggered mainly because of boxes themselves and not

necessarily their residing VMs. This motivates us to focus on CPU AIs rather than RAM

ones.

7.2.3 Is CPU Usage Balanced?

In a private cloud data center, which is a single tenant environment, the hardware, storage

and network are dedicated to a single client or company. A tenant can be seen as a
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Figure 7.4: CDF of box CPU usage per tenant: mean and tail.

cluster of boxes, which allows customized placement of VMs and assignment of resources.

Figure 7.4(a) plots the CDF of box mean CPU usage across tenants. For selected means, we

also plot the standard deviation. The figure shows that the average usage of boxes for the

majority of tenants is low: 90% of tenants have an average CPU usage less than 35%. Yet,

the standard deviation is large, suggesting that there is significant load imbalance across

boxes. The same imbalance is observed for the CPU tail usages as shown in Figure 7.4(b)

that plots the CDF of the 95%ile of box CPU usage across tenants. If we are able to predict

the tail usages, then based on this information we can devise a balancing algorithm that

reduces tail usage and consequently anomaly instances.

A simple common approach for predicting moments of time series makes use of the

last value prediction, which predicts the future using the most recent observations. In

Figure 7.5, we demonstrate that the last value prediction works well for predicting the

mean usage, but not for the tail based on their coefficient of variation (C.V.), which is equal

to standard deviation divided by mean. The C.V. allows us to combine the information

on the mean and standard deviation into a single value. Figure 7.5(a) shows the CDF

of the C.V. of the daily box mean and 95%ile usage computed over one week across all
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Figure 7.5: Predict box CPU mean and tail usages using the most recent day’s observation.

boxes. It is clear that the box tail usages show higher C.V. values, on average 0.5, than the

box mean usages, on average 0.12, indicating that the mean usages remain more constant

over time. This is why applying simple last value prediction results in low prediction

errors for the mean usages and high prediction errors for the tail usages. This is clearly

shown in Figure 7.5(b) reporting the CDF of absolute percentage error (APE)1 of the

predictions. This observation motivates us to look into the relationship between the mean

(rather constant) and tail (highly variable) usages, in order to predict the tail usage via

the mean usage that is already predicted accurately using the last value.

To achieve this goal we divide the boxes into bins based on their mean CPU usage and

compute within each bin the distribution of the CPU tail usages across all boxes falling

into the same bin. Figure 7.6 illustrates the resulting PDFs for the 95%ile of CPU usages

with a bin width of ±3%. The figure shows that for each bin the tail usage distribution

resembles a Normal distribution. For example, for the bin corresponding to a mean CPU

usage equal to (60± 3)%, we see that average and standard deviation of a fitted Normal

distribution of the 95%ile CPU usages are 79.9% and 8.2%, respectively. This allows us to

1APE =
|Actual−Prediction|

Actual
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propose an anomaly instance reduction method based on the mean usage and the (already

known) distribution of the tail usages that correspond to this mean usage level.

7.3 TailGuard Policy

In this section, we present TailGuard , a tail-driven anomaly avoidance policy, that aims

to enhance datacenter tenants’ dependability by continuously ensuring their box CPU tail

usages are below a predefined target value. To avoid suffering from continuous AIs and

over-reacting to spontaneous single CPU AIs, TailGuard focuses on bounding the CPU tail

usages for each tenant. TailGuard proactively manages the CPU and RAM usages of the

boxes by intelligently distributing their load, i.e., learning from the past, predicting the

future, and actuating at the present. TailGuard consists of two key steps: (i) CPU tail

usage prediction and (ii) box load redistribution via VM cloning and online monitoring

for workload management. The workflow of the proposed approach for box CPU tail

usage reduction is shown in Figure 7.7. The focus of the tail prediction module is three-

fold: prediction accuracy, computational efficiency, and awareness of the overall resource
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Figure 7.7: Overview of TailGuard to avoid box CPU tail violation.

availability of tenants. To achieve good accuracy with low computation overhead and also

low requirement of data of the immediate past of a single tenant, TailGuard leverages trace

data across all tenants’ boxes, by constructing the empirical distribution of tail usages. We

advocate to use simple statistics related to such a distribution, e.g., the mean and standard

deviation, to predict the future tail usage of each box. In addition, TailGuard determines

the prediction scheme, i.e., the specific statistics related to the distribution of tail usages,

depending on the resource availability of each tenant.

The tail prediction is used as input for redistributing CPU and RAM loads across boxes

in each tenant such that their box CPU AIs, particularly the continuous ones, are mitigated

and avoided, with no or only few additional RAM usage violations happening. We propose

a tail redistribution policy via VM cloning, essentially by combining the ideas of migration

and load dispatching. Based on the CPU tail usage prediction for all boxes belonging to a

tenant, TailGuard first proactively creates VM clones for boxes that need to reduce their

loads, and places clones on boxes with spare capacity. TailGuard then dispatches the CPU

loads across original and cloned VMs, while assuming memory loads are replicated on both

original and cloned ones. The overview of the proposed VM cloning strategy is presented
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Figure 7.8: Overview of VM cloning and workload distribution.

in Figure 7.8.

After VM cloning, TailGuard enables online monitoring of CPU and RAM usage for

each box. When unexpected CPU or RAM usages are detected in the boxes with VM

clones, TailGuard reactively redistributes the workloads between the cloned and original

VMs, such that the boxes with VM clones stay with as few CPU AIs or RAM violations

as possible.

7.3.1 Predicting Box CPU Tail Usage

First we illustrate how TailGuard predicts individual box CPU tail usage, based on the

distribution of tails observed from a large population of boxes. Our solution is motivated

by the findings in Section 7.2: CPU tail usages are variable across time, while mean

CPU usages remain constant, see Figure 7.5. In addition, CPU tail usages appear to

follow Normal distributions after binning boxes based on their mean usages as reported in

Figure 7.6. We incorporate the resource availability of each tenant, as an indicator that

determines whether the tail prediction should be aggressive or conservative, i.e., the best

safety margin to use.
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Our objective is to predict the tail usage, L, for a given box by the mean and standard

deviation of the tail distribution it belongs to. As such, we can write

L = T + αST (7.1)

where T and ST denote the mean and standard deviation of the tail distribution of the

box, and α is a safety margin for the tail prediction based on the resource availability of

the tenant. For tenants with abundant resources, higher α values allow to over-estimate

the VM resources. This allows the use of more spare resources from boxes without tail

target violations and a stronger tail target violation avoidance. For tenants with scarce

resources, lower α values allow for more conservative estimates of the VM resources. This

results in less requests of spare capacity from boxes without tail target violations protecting

such boxes from potential tail target violations. We first explain how to obtain the box

tail distributions by binning, and then extract the mean and standard deviation of the

tail distribution per bin, to finally derive the tenant-resource-aware (TRA) tail prediction

based on the properties of tail distribution.

7.3.1.1 Finding the Tail Distribution

Here, we describe how to bin boxes by their mean usages such that we can obtain T and ST

(of the tail distributions) as a function of their mean usages. Figure 7.6 shows how binning

tail usages from all boxes by their mean usages can result into empirical distributions

that resemble the Normal distribution. We experiment with different bin widths of mean

usages, e.g., ±1%, ±2%, ±3% (as used in Figure 7.6) or higher. Different bin widths result

in different number of samples in each bin. On the one hand our objective is to find a

bin width that is big enough to contain a sufficient number of samples in each bin to be

statistically significant, such that the box tails in the majority of bins follow a Normal
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distribution. On the other hand we want the bin width to be small to have a stronger

relationship between the mean and tail usages. Specifically, we compute a pair (M,T ) for

each box and for all tenants, where M represents the mean usage and T is the tail usage, and

we bin them by their M values. From the data set considered in this work, we empirically

conclude that using a bin width of ±1% is already sufficient such that all bins contain at

least 30 tail samples [88], and more than 90% of the bins follow a Normal distribution as

verified by the Kolmogorov-Smirnov test [78].

We then use the tail binning results to answer the following question: can we find a

compact representation to describe the relationship among the bins, regarding to statistics

of tail usages. For each bin, we extract two sets of pairs: (i) (M,T ) – the average of M, i.e.,

the bin mean, and average of T , and (ii) (M,ST ) – the average of M and standard deviation

of T . We plot these two sets of pairs for all bins in Figure 7.9(a) and (b), respectively.

Visual inspection of Figure 7.9 indicates that there exists a linear dependency between the

bin mean and the average tail usage across bins and a quadratic dependency between the

bin mean and the standard deviation of tails across bins. Given T and ST for each bin

mean M, we fit the two curves using Eq. 7.2-7.3. Here a0 and a1 are the coefficients of the

linear fitting for T , whereas b0, b1, and b2 are the coefficients of the quadratic fitting for

ST .

T = f1(M) = a0 + a1(M) (7.2)

ST = f2(M) = b0 + b1(M)+ b2(M)2 (7.3)

Substituting Eq. 7.2-7.3 into Eq. 7.1, one can thus obtain the closed-form expression for

the estimates of the tail usages as a function of its mean usages. Essentially, to predict the

CPU tail usage for a box, we need to “learn” the fitting coefficients of functions Eq. 7.2-7.3
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Figure 7.9: Fit mean and standard deviation of tail (95%ile) distributions for different bins, using
bin mean usages.

from the empirical distributons of historical data and then use simple last value prediction

of M, as argued in Section 7.2.3. The final step is to decide the value of α in Eq. 7.1,

which is addressed in the next subsection in the light of the overall resource availability of

tenants.

7.3.1.2 TRA Tail Prediction

When considering Eq 7.1, the most accurate prediction is achieved by setting α = 0, i.e.,

L = T , whereas higher values of α will tend to over-estimate L providing increasing safety

margins. As one of the ultimate goals is to mitigate anomaly instances of tail usages exceed-

ing the target value, we determine the α value for all boxes belonging to the same tenant,

based on the tenant’s resource availability. Low-CPU-utilized tenants have abundant re-

sources for tail usage reductions, therefore conservatively predicting tail usages (i.e., higher

α safety margins), and aggressively re-allocating resources reduce the tail usage below the

target value, but do no harm to the original boxes with no tail target violations. High-

CPU-utilized tenants have relatively scarce resources, therefore aggressively predicting tail
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usages (i.e., lower α safety margins), and conservatively re-allocating resources result in

less resource re-allocation for tail usage reduction, but guarantee that the original boxes

without tail target violation remain in the ‘safe zone’.

The above illustration suggests that α should be customized based on the CPU avail-

ability of tenants. We propose to compute αi for tenant i by considering the target value

T G equal to the average tail usage obtained under an optimal case, where all boxes of ten-

ant i undergo perfect load balancing, i.e., every box is equally utilized at the optimal mean

value, M∗i . Basically, one can compute the maximum value of αi by solving the following

equation,

T G = f1(M∗i )+ αi f2(M∗i ). (7.4)

where f1 and f2 represent the fitted functions of Eq. 7.2-7.3.

Additionally, we impose a lower bound on αi, i.e., αi ≥ 0, to ensure that the tail pre-

diction is at least equal to T . All in all, the TRA tail prediction L̂ j for box j belonging to

tenant i is

L̂ j = f1(M̂ j)+ αi f2(M̂ j), (7.5)

where M̂ j denotes the predicted mean usage for box j. Comparing the predicted tail, L̂ j,

with the target value indicates if box j is expected to have a tail target violation or not.

7.3.2 VM Cloning

Here, we explain how TailGuard redistributes the box CPU and RAM loads by VM cloning

strategy, such that the probability of boxes in each tenant with CPU tail target violation

is minimized. It consists of two steps: (i) proactively create VM clones on boxes at the

beginning of the optimization horizon, e.g., one day ahead, and (ii) online monitor the

resource usage and reactively redistribute loads among original and cloned VMs. The

intention of additional VM clones is to redirect the load from the original box host to the box
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host of the cloned VM at the cost of duplicated memory footprint. We redistribute incoming

requests to the original and cloned VMs via simple Domain Name Server (DNS) based load

balancing [79]. This scheme is simple and compatible with a large set of applications.

7.3.2.1 Creating VM Clones

The TRA tail prediction provides two key pieces of information for cloning VMs for each

tenant i: the predicted tail usage for each box j, L̂ j, and the optimal box mean usage under

perfect load balancing, M∗i . Based on the comparison of the target value and the predicted

box tail usage, TailGuard decides which boxes need to migrate some workloads through

additional VM clones, these boxes constitute the reduction set, and which boxes have spare

capacity to receive VM clones on top of their existing VMs, so-called increasing set.

Creating VM clones: The VM configuration that can benefit most from cloning

is the one with large CPU usage and low RAM usage, as cloning has the advantage of

distributing CPU load but at the cost of replicating memory usage. Consequently, for each

box in the reduction set, TailGuard ranks their VMs (indexed by k) by the VM’s cloning

benefit ratio, ρk, defined as the mean VM CPU usage Ck divided by the mean VM RAM

usage Rk computed over all CPU AI points in the training window W , e.g., W = 1 day,

ρk = Ck
Rk

. The top ranked VMs have heavy CPU loads but low memory footprints.

For each box in the reduction set of tenant i, starting from the highest ranked VM,

TailGuard clones VMs to reduce the box mean CPU usage from its the latest value to M∗i .

We aggressively assume that upon cloning of VM k, the box CPU usage can be reduced by

Ck, except for the last cloned VM from this box. When cloning the last VM from box j,

removing all the CPU workloads on this VM may reduce the box CPU mean usage to less

than M∗i . As a result, for the last VM to be cloned, we only redistribute part of the CPU

workload to the cloned one, such that the mean CPU usage of box j is exactly reduced
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to M∗i . At each iteration we update the reduction set, as soon as the resulting box mean

usage is equal to M∗i .

Placing VM clones: TailGuard ranks the boxes in the increasing set of each tenant i

by the amount of spare resources, i.e., CPU and RAM, in a descending order with priority

first to CPU and then to RAM. The spare CPU is defined as the difference between the

current CPU usage and M∗i , while spare RAM refers to the difference between current

RAM usage and RAM target value. When placing the VM clones, TailGuard starts from

the top-ranked box regarding CPU and RAM spare resources, as long as it has sufficient

amount of spare resources to cater to the demands of cloned VMs. Whenever the clone is

placed we update the spare resources and the box rank in the increasing set. We terminate

the cloning strategy when either the reduction set or the increasing set exhausts.

7.3.2.2 Maintaining Safety Margins

We advocate the use of online monitoring on allocating CPU loads across the original and

cloned VMs and terminating clones upon observing RAM violation, to control that cloning

does not inadvertently introduce more violations. The focus is to protect the performance

of boxes that receive VM clones. TailGuard monitors online the CPU and RAM AIs for

each box receiving VM clones. Upon detecting a box CPU tail target violation, e.g., accu-

mulating more than 5 CPU excesses given a tail target metric of 95%ile and 96 observation

points per day, we reduce the workload of the hosted cloned VMs proportionally to the in-

tensity of the past observed excesses. On the contrary, if a box RAM violation is detected,

we directly terminate the cloned VMs, based on the RAM usage rank in a descending

order, till RAM usage is less than the RAM target value.

We note that the online workload distribution scheme proposed here can be imple-

mented via DNS-based load balancing. When a user wants to send a request to a VM, it
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has to first resolve the hostname to the IP address via a DNS lookup. DNS-based load

balancing allows to associate multiple IP addresses to the same hostname so that different

DNS lookups for the same hostname return different IP addresses. By updating the entries

one can control the workload sent to the original and cloned VM. Since most applications

use hostnames rather than IP addresses, DNS-based load balancing is compatible with a

large set of applications.

7.3.3 Putting All Together

Lastly, we illustrate how TailGuard puts the proposed TRA tail prediction, and VM cloning

strategy together. The optimization period is one day and the training period of the

model is past W days. Past work [15] has shown that most VM migrations in corporate

data centers occur once a day and around midnight. We propose implementation for

VM cloning to follow this same time frame. Figure 7.10 illustrates the schematics of the

proposed scheme. Particularly, TailGuard uses historical data of W days to learn the tail

distribution, and derive the closed-form solution of tail estimates in Eq. 7.5. The higher

the value of W is, the longer the historical data used. TailGuard then makes VM cloning

decisions for the next day. Prior to moving into the next optimization period, TailGuard

terminates all clones generated in the current period.

We experiment with prediction accuracy of the proposed scheme with two different

lengths of W . Specifically, we present the CDF of absolute percentage errors to predict

the 95%ile and 98%ile, using one and three days, see Figure 7.11. As the focus here is

to see the impact of the training window length, we set all αi to 0. We can see that

there is no obvious difference in the CPU tail usage predictions between three-day and

one-day training. Thanks to large amount of tail data collected from 6K boxes, one-

day training already shows robust prediction results. We leverage many box observations
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Figure 7.10: Dynamic method for tail prediction and VM cloning.
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Figure 7.11: CDF of box CPU tail usage prediction error for different training window sizes.

(spatial observations), rather than long-historical observations (temporal observations) for

each box.

7.4 Evaluation

In this section, we evaluate TailGuard for mitigating performance anomalies for 80 data-

center tenants, using more than 1K boxes and 10K VMs. Our focus is on the following

metrics of interest: (1) reduced CPU tail target violations for boxes, (2) reduced CPU

anomaly instances, and (3) reduced anomaly durations. Since accurate tail prediction is

central to the effectiveness of the proposed strategy, we also compare the tail prediction
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accuracy presented in Section 7.3 with the time series prediction based on neural networks

that have been shown very effective on the same trace [120]. In the following, we first

sketch the simulator design and present the effectiveness of the proposed methodology in

reducing (continuous) AIs. We then highlight how two parts of TailGuard , i.e., the tail

prediction scheme and VM cloning, outperform alternative approaches, i.e., time series

prediction and VM migration.

7.4.1 Experimental Set Up

Simulator: We develop a trace-driven simulator that emulates the system dynamics. The

input data of the simulator are CPU and RAM usages from VMs and boxes of 80 selected

tenants. The simulator computes the box CPU/RAM usages as the sum of the hosted VM

CPU/RAM usage plus the original box-only usage. When cloning a VM, its CPU usage is

predicted and apportioned as described in Section 7.3. For RAM usage of each cloned VM,

we use directly the VM value from the trace as we assume that RAM is replicated. For

all statistics related to RAM usage we use the last value from historical data as prediction

since the traces show that RAM usage for both boxes and VMs is stable across time.

Targets: Here, we consider the target usage values for box CPU and RAM for trigger-

ing tickets for anomaly instances at 60% and 80%, respectively. We experiment different

tail usages, such that different tolerances of CPU anomaly instances are evaluated. This

is customized to different system requirements. The specific CPU tail usages evaluated

here are the 90th, 95th, and 98th percentiles. In the following, we focus on presenting the

reduction of CPU tail target violation per tenant, as well as the reduction in the number

of CPU AIs.
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Figure 7.12: Reduction of CPU tail target violations for all tested tenants: the tail is set as 95%ile.

7.4.2 Big Picture

We first present an overview how TailGuard reduces tail target violations for the box CPU

of the 80 tenants, see Figure 7.12. The usage tail considered here is 95%ile. Each point

in Figure 7.12 represents a tenant, whose reduction of tail target violations is shown on

the y-axis, while the average CPU usage is depicted on the x-axis. The number of boxes

of each tenant is represented by the size of the bubble. A lower value on the x-axis shows

higher spare resource availability. The figure clearly shows that for bigger tenants and for

tenants that have higher spare capacity, the reduction is significantly higher due to the

higher degrees of freedom in VM redistributing.

7.4.3 Effectiveness of Tenant-Resource-Aware Tail Prediction

Here, we present how the proposed TailGuard can accurately capture the box CPU tail

dynamics and effectively reduce the tail target violation when driving the VM cloning.

We compare three variations for tail estimation with a neural network based time series

prediction (NN) [120] that accurately forecasts the entire trajectories of usages in the trace.
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In order to build NN prediction models, we first need to use historical data to train the

model. We use the trace data that correspond to the past three days, which is sufficiently

long to capture the time dependency within the series. We use the tail estimation scheme

proposed in Section 7.3, i.e., L = T + αSt with different values of α:

• α = 0, across all tenants, neutral prediction (NP), i.e., the mean of the tail distribution

is used as the predicted tail;

• α = 2, across all tenants, conservative prediction (CP), i.e., the predicted tail is the

mean plus two standard deviations which corresponds to the 97.5th percentile of the

Normal distribution ;

• αi, for tenant i, the proposed tenant-resource-aware tail prediction (TRA).

Prediction Accuracy: Figure 7.13(a) and (b) summarize the CDF of absolute and

raw percentage of prediction errors for the box CPU tail for the three tested days. The two

key findings are: (i) the proposed tail estimation scheme (of α = 0) is almost as accurate

as the time-consuming NN approach, and (ii) the proposed TRA overestimates the CPU tail,

but is still less conservative than CP.

The lowest prediction errors are achieved by NN with average value of around 20%,

but neural networks are computationally expensive and require long historical data for

training. Given shorter training data and much lower computational complexity, NP can

achieve very similar absolute prediction errors as NN. When looking to the distribution of

raw errors, NP tends to overestimate the box CPU tails as more than 60% of errors are

positive. In contrast, NN tends to underestimate the box CPU tail, since more than 70% of

errors are negative. TRA and CP have significant higher absolute and raw errors, due to their

conservativeness in estimation. In terms of raw errors, only 15% of prediction errors from

TRA are negative. As the ultimate objective is to enable efficient resource management,
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Figure 7.13: CDF of CPU tail prediction errors using different methods: the tail is set as 95%ile.

conservative prediction tends to resource over-provisioning, which is more desirable than

under-provisioning, which leads to high risk for performance anomalies.

Reduction of Tail Target Violation: To see the impact of the tail prediction

schemes and to evaluate the proposed TRA, we use the three tail prediction schemes to

drive VM cloning. Figure 7.14 summarizes the reduction of CPU tail target violations for

each tenant, for different considered tail percentiles and prediction schemes. Each box in

Figure 7.14 presents the distribution of tenants’ reduction of CPU tail target violation, for

different tail percentiles. Each rectangular box contains three horizontal lines that corre-

spond to the 25th, 50th and 75th percentiles, the circles show the mean. The whiskers show

the extreme values in the distribution. We can see that the proposed TRA achieves the

highest average reduction per tenant (shown by higher positions of circles), for all three

tail percentiles. Specifically, the average reduction of CPU tail target violation under the

TRA prediction scheme is around 50%, whereas CP and NP can only achieve average tail

reduction per tenant at around 30%−40%. For all three tail prediction methods, the in-

crease in number of RAM AIs is negligible, with all less than 3%. Another finding worth

mentioning is that, when increasing the tail percentiles, i.e., from 90%ile to 98%ile, the
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Figure 7.14: Comprison of CPU tail target violation reduction: CP v.s. NP v.s. TRA.

reduction drops slightly for all prediction schemes. This is because a more stringent per-

formance requirement is applied, allowing only very few AIs, and the potential of reducing

violation by redistributing the loads across boxes becomes lower. This also leads to the

explanation why CP outperforms NP in case of 90%ile, but NP results into better reduction

in the case of 95%ile and 98%ile.

To highlight the impact of different prediction schemes on mitigating tail target vio-

lations, we zoom into the performance of two tenants. One of the tenants has a lower

CPU utilization, meaning high resource availability, whereas the other tenant has a higher

CPU utilization. We list their reduction of CPU tail target violation in Table 7.1. CP is

able to remove all tail target violations for the tenant with a higher resource availability

but performs poorly for the second tenant. NP has the opposite performance for these two

tenants, arguing for the need of a prediction scheme that can self-adapt to the resource

availability. This is what TRA consistently does: tail prediction enables VM cloning to

achieve the highest amount of reduction for both tenants, as it uses different αi values for

box tail predictions, based on the resource availability of different tenants.
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Table 7.1: CPU tail target violation reduction: a case study comparing CP, NP and TRA with the
tail set as 95%ile.

Tenant with higher resource availability Tenant with lower resource availability
(mean CPU usage = 12%) (mean CPU usage = 42%)

CP 100 16.7

NP 75.0 50

TRA 100 50

7.4.4 Effectiveness of VM Cloning

Here, we highlight how TailGuard can reduce CPU tail target violation and AIs by VM

clonning strategy, with negligible impact on the RAM violations. We compare the VM

cloning with an alternative of VM migration only strategy, which migrates VMs from

boxes to boxes, without replicating the memory. For a fair comparison, we provide the

box tail prediction obtained from the TRA prediction scheme to both strategies. As both

strategies aim to redistribute the box workloads, we use the same criteria to determine

how many VMs to be moved out of certain boxes and how many additional VMs to be

allocated to certain boxes, see Section 7.3.2.

CPU Tail Target Violation: Figure 7.15 summarizes the distribution of the reduc-

tion of CPU tail target violations per tenant, when applying VM cloning and migration on

different tail percentiles. One can see that VM cloning is able to achieve a slightly higher

reduction of tail target violations for CPU by roughly 10%, shown by the difference of mean

values. Moreover, with VM cloning, the range of reduction of tail target violations for CPU

across all tenants is much smaller, supported by the shorter box. In addition, cloning guar-

antees tail reduction while migration does not necessarily do so, see the whiskers in the

respective boxes. Indeed, when the tail percentile is set to 98%ile, namely allowing only

2 CPU AIs for the entire day, VM migration can result into undesirable scenarios, i.e.,

certain tenants may experience a tremendous increment of CPU tail target violation as

shown by the negative values of reduction, while VM cloning can ensure a more consistent
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Figure 7.15: Comparison of CPU tail target violation reduction: VM cloning v.s. VM migration.

reduction in CPU tail target violations, and prevent the aggravation of CPU tail target

violation by online usage monitoring and workload management.

Another advantage worth mentioning is that VM cloning ensures RAM performance,

compared to VM migration. Our simulation results show that VM migration indeed results

into significant increment of number of RAM AIs, with roughly 50% increment for each

tenant on average. On the contrary, the proposed VM cloning strategy is able to bound

the increment of RAM usage violation within 3%. This is thanks to the online usage

monitoring and workload management, which is able to terminate clones upon detecting

any RAM violation.

Occurrences and Duration of CPU AIs: Now, we present the difference between

VM cloning and VM migration from the perspective of number of CPU AIs and their

duration. Figure 7.16(a) and (b) present the CDF of average reduction in number of CPU

AIs and the complementary CDF (CCDF) of average duration of CPU AIs per tenant,

respectively. We could see that VM cloning can achieve a mean reduction of 57% in

number of CPU AIs per tenant, while VM migration only reduces CPU AIs per tenant by
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Figure 7.16: Comparison of CPU AI for each tenant between VM cloning and VM migration: the
tail is set as 95%ile.

around 43%. Moreover, similar to the case of reduction in CPU tail target violation, VM

cloning guarantees almost no increment in the number of CPU AIs. However, there are

20% of tenants with an increased number of CPU AIs after VM migration. In terms of

duration of CPU AIs summarized as CCDF in Figure 7.16(b), VM cloning can bound the

duration of continuous CPU AIs below 2 time windows, whereas VM migration still results

in 6 time windows of continuous CPU AIs in the worst case. We note that in the original

testing trace, there are some tenants suffering from long-term continuous CPU AIs, as long

as 25 time windows, i.e., CPU usage exceeds the target value of 60% for more than 6 hours.

7.5 Chapter Summary

In this chapter, we develop TailGuard , a tail-driven anomaly avoidance policy, which can

effectively reduce continuous AIs for box CPU and avoid over-reacting to the spontaneous

single AI. The design of TailGuard is based on a large-scale characterization study of

production data centers. TailGuard is composed of two steps: a light-weight tail usage

predictor simply leveraging the power of the vast amount of usage data across boxes,
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and a VM cloning strategy combining the advantage of migrating VMs and balancing the

loads between clones. Moreover, we incorporate the concept of resource availability per

tenant into the tail prediction, such that TailGuard is able to adjust the conservativeness

of prediction based on the flexibility of redistributing CPU loads. The extensive evaluation

results on 80 tenants over 1K boxes over 3 days show that TailGuard is able to accurately

predict the box tail usage, with an accuracy comparable to a neural network-based time

series prediction. More importantly, while TailGuard purposely allows a small fraction of

AIs to avoid excessive resource provisioning, it can still achieve a significant reduction in

CPU AIs and drastically reduce the anomaly duration by 10 times.
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Chapter 8

Future Work

In Chapter 6, we propose a spatial-temporal prediction model, which efficiently predicts the

resource usage series in cloud data centers. Still, there exist several open questions, such

as the trade-off analysis between spatial and temporal models and the selection method of

signature series. In the future, we will work on the quantification of the trade-off between

spatial and temporal models and propose different signature selection methods, in order to

modify and customize the spatial-temporal prediction model.

Another interesting future direction is to further build on the models of Chapter 7,

where we propose a cheap usage tail prediction method for physical boxes. Preliminary

experiments show that TailGuard is very weak in predicting VM usage tails, this is because

VM usage tails show much higher variations than boxes. Given this problem, we plan to

develop a state-aware usage tail prediction method for VMs in the future.

When studying the traces from IBM cloud data centers, we find that a significant

amount of usage series have the problem of time holes, i.e., for time periods there are no

recorded trace data. This makes these traces unfit for prediction. We anticipate that the

existence of spatial-temporal dependency of the usage series in data centers [118] offers us

the opportunity to intelligently fill up these time holes, based on the remaining correlated
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and complete series. In the following, we will further elaborate on these future work.

8.1 Spatial-Temporal Prediction Models

This project will focus on developing a customized and more efficient spatial-temporal pre-

diction model. The proposed model in Chapter 6 is inflexible for user demands, i.e., it does

not consider the trade-off between prediction cost and accuracy. Moreover, the previous

prediction model only captures spatial characteristics to select the most representative sig-

nature series, but there is no clear consideration of temporal characteristics to build the

signature series. To this end, we intend to:

1. We will model the trade-off between prediction accuracy (expensive temporal models)

and computational cost (cheap spatial models). More specifically, we will quantify

how more reduction in series may affect the accuracy of prediction.

2. We will propose different methods of signature selection, which aim to choose the

best candidate to represent the other correlated series. Previous work assumes that

the signature series has the highest correlation with all other series in the same

cluster. However, this assumption ignores the importance of prediction accuracy from

temporal models. We will consider a temporal-driven signature selection method and

compare with the original method, to find the best signature selection method.

8.2 VM Usage Tail Prediction

Inspired by the box usage tail prediction method proposed in Chapter 7, where we establish

that the usage tail follows the normal distribution given the same usage mean, we first

directly apply this method to VM usage tails. Surprisingly, this prediction accuracy is
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below expectations. We select two different representative distributions of VM usage tails in

Figure 8.1. There we observe that VM usage tails do not really follow a normal distribution.
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Figure 8.1: The histogram of 95th percentile of VM CPU usage tails with two different usage
mean. The bars represent the real distribution of usage tails, and the red line is the fitted normal
distribution.

We intend to take the following steps:

1. We will correct the truncated data. From Figure 8.1, we clearly see that the usage

tail distribution is truncated at 100. This is because the usage recorded in the traces

is no more than 100%. But in this case, the demands from VMs are more than the

allocated virtual resource to them. To accurately capture the real demands of VMs,

we plan to leverage kernel estimation to correct these truncated data in a statistical

way.

2. We will focus on fitting the distribution of VM usage tails. As shown in Figure 8.1,

usage tails appear to separate into two different regions (states). Based on this

observation, we plan to propose a state-aware tail usage prediction method, that

applies bimodal distribution estimation method to fit VM usage tails, and then uses

a Markovian model to capture the state changes of VM usage tails.
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8.3 Missing Data in the Wild

In this project, we will concentrate on the problem of missing data in the real-world traces.

For plenty of reasons, such as system or sensor failures, it is common for the real-world

production systems to have missing data in their log files. In the traces of IBM cloud data

centers, almost over 30% of physical boxes experience time holes in their VM usage series.

In Figure 8.2, we show an example with missing data, where the CPU usage series of three

co-located VMs are presented. There we observe that during the first 5 days, the usage

series of these three VMs are quite correlated. On the 6th day, V M3 does not have any

recorded usage. However, given the strong correlation among these three VMs, we could

fill up the missing data in the usage series of V M3 based on V M1 and V M2.
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Figure 8.2: CPU usage series of three co-located VMs within the same box.

Motivated by the above example, we propose the following:

1. We first plan to characterize on the usage traces from IBM cloud data centers. More

specifically, we will measure the possibility to experience missing data and character-

ize the dependency within/among the usage series, to explore the potential solution

to fill up the missing data, from traces without missing data.

2. We also plan to quantify the dependency among the usage series and to propose a
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dependency-driven filling-up method. More specifically, with the spatial-dependency

analysis, the series with missing data could be filled-up or predicted using the remain-

ing highly correlated and complete series. Finally the proposed filling-up method will

be evaluated based on the real-world traces.
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