9,926 research outputs found

    Four essays on quantitative economics applications to volatility analysis in Emerging Markets and renewable energy projects

    Get PDF
    [ES]Las decisiones financieras se pueden dividir en decisiones de inversión y decisiones de financiación. En lo que respecta a las decisiones de inversión, la incertidumbre acerca de la dinámica futura de las variables económicas y de las financieras tiene un rol fundamental. Eso, se explica porque los retornos esperados por las empresas y por los inversionistas se pueden ver afectados por los movimientos adversos en los mercados financieros y por los altos niveles de volatilidad. Como consecuencia, resulta crucial realizar un adecuado análisis y modelación de la volatilidad para el proceso de toma de decisiones financieras, por parte de las empresas y el diseño de estrategias de inversión y cobertura por parte de los inversionistas. En este sentido, el estudio de la volatilidad se ha convertido en uno de los temas más interesantes de la investigación en finanzas. Lo anterior ha cobrado mayor relevancia en los últimos años, teniendo en cuenta el escenario de alta volatilidad e incertidumbre que afrontan los mercados a nivel global. Este documento tiene como objetivo abordar cuatro cuestiones centrales, las cuales están relacionadas con la volatilidad financiera como campo de investigación. Esas cuestiones son, la transmisión y spillovers de volatilidad en mercados emergentes, la calibración de la superficie de volatilidad para proyectos de energía renovable y el pronóstico de los rendimientos de activos energéticos y spillovers de volatilidad a través de técnicas de machine learning. En el primer capítulo del documento, se examinan los efectos de transmisión de volatilidad entre un índice de energía y un índice financiero para los Mercados Emergentes. En consecuencia, mediante el uso de un modelo DCC, se muestra que los efectos de transmisión de volatilidad entre los índices empleados para la crisis subprime y la crisis del COVID-19 fueron diferentes. Lo anteriormente dicho, considerando que la primera crisis se originó en el sector financiero y luego se extendió al resto de la economía, mientras que la segunda se originó en el sector real y posteriormente afectó al resto de la economía. Teniendo en cuenta que la relación entre la volatilidad de los mercados es cambiante en el tiempo, en el segundo capítulo se llevó a cabo un análisis dinámico de los spillovers de volatilidad entre materias primas, Bitcoin y un índice de Mercados Emergentes. Así, empleando la metodología propuesta por Diebold y Yilmaz (2012), se concluyó que los efectos de los spillovers de volatilidad entre los activos analizados no son constantes en dirección e intensidad a través del tiempo. En particular, para períodos de crisis como el de la pandemia del COVID-19, hay reversiones en la dirección de los spillovers de volatilidad debido al sector en el que se originó la crisis. Además, en este capítulo se explota la naturaleza dinámica de los spillovers de volatilidad. Por lo tanto, se planteó que el índice de spillovers de volatilidad propuesto por Diebold y Yilmaz puede ser usado como una medida para pronosticar periodos de alta turbulencia. Lo anterior se desarrolló a través de modelos econométricos tradicionales y de técnicas de machine learning. En el tercer capítulo del documento, se propone un modelo que predice los retornos de los precios del carbono y del petróleo. En este sentido, se desarrolló un modelo híbrido, el cual combina las proyecciones obtenidas a partir de diferentes técnicas de machine learning y modelos econométricos tradicionales, obteniéndose resultados los cuales muestran las ventajas de emplear modelos híbridos que incorporan técnicas de machine learning, exclusivamente, para pronosticar variables financieras. Finalmente, en el capítulo cuatro, se presenta una metodología para la estimación de la volatilidad en la valoración de proyectos de energías renovables mediante opciones reales. En esta metodología, la cual es una extensión del enfoque de volatilidad implícita empleada para las opciones financieras, la volatilidad de un proyecto es la volatilidad implícita obtenida a partir de la superficie de la volatilidad de empresas comparables, según una determinada fecha de valoración y dada la relación deuda-capital de un proyecto de energía renovable. En este análisis, se utilizó el modelo estocástico 'alfa-beta-rho' para calibrar la superficie de la volatilidad para la valoración mediante opciones reales. Por último, al final del documento se presentan las conclusiones derivadas de los capítulos mencionados, así como algunas recomendaciones para las futuras investigaciones. [EN]Financial decisions can be divided in investment and financing decisions. Concerning investment decisions, the uncertainty about the future dynamics of financial and economic variables has a central role, considering that the returns expected by firms and investors can be affected by the adverse movements in financial markets and their high volatility. In consequence, the adequate volatility analysis and modeling is crucial for the firm’s financial decision-making process and the design of investing and hedging strategies by investors. In this regard, the study of volatility has become one of the most interesting topics in finance research. The foregoing has become more relevant in recent years considering the scenario of high volatility and uncertainty faced by markets globally. This document aims to address four central issues related to financial volatility as a research area. These are, volatility transmission and spillovers in Emerging Markets, the calibration of the volatility surface for renewable energy projects and the forecast of energy assets returns and volatility spillovers through machine learning techniques. In the first chapter of the document, the volatility transmission effects between an energy index and a financial index for Emerging Markets are examined. Then, by using a DCC model, it is shown that the volatility transmission effects between the employed indices for the subprime crisis and the COVID-19 pandemic were different. This, considering that the former crisis originated in the financial sector and spread to the rest of the economy, while the second originated in the real sector and trasmitted to the rest of the economy posteriorly. Considering that the relationship between markets volatility is time-varying, in the second chapter, a dynamic analysis of volatility spillovers between commodities, Bitcoin and an Emerging Markets index is developed. Employing the methodology proposed by Diebold and Yilmaz (2012), it is concluded that the volatility spillovers effects between the analyzed assets is not constant in direction and intensity over time. In particular, for periods of crisis such as the COVID-19 pandemics, there are reversals in the direction of volatility spillovers due to the sector in which the crises originate. In addition, in this chapter the dynamic nature of volatility spillovers is exploited. Hence, the volatility spillover index proposed by Diebold and Yilmaz is forecasted to be used as a measure to anticipate high turbulence periods. This, through both traditional econometric models and machine learning techniques. In the third chapter, a model for the prediction of carbon and oil prices is proposed. In this sense, a hybrid model that ensembles the forecasts obtained from different machine learning techniques and traditional econometric models is developed, obtaining results that show the advantages of employing hybrid models which combine machine learning techniques, exclusively, to forecast financial variables. In Chapter four, a methodology for the estimation of volatility in renewable energy projects valuation through real options is presented. In this methodology, which is an extension of the implied volatility approach employed for financial options, the volatility of the project is the implied volatility obtained from the volatility surface of comparable firms for a certain valuation date and given debt-to-equity relation of a renewable energy project. In this analysis, the stochastic ‘alpha-beta-rho’ model is utilized to calibrate the volatility surface for real option valuation purposes. Finally, the conclusions derived from the mentioned chapters are presented at the end of the document as well as some recommendations for future research

    Modelling electricity prices: from the state of the art to a draft of a new proposal

    Get PDF
    In the last decades a liberalization of the electric market has started; prices are now determined on the basis of contracts on regular markets and their behaviour is mainly driven by usual supply and demand forces. A large body of literature has been developed in order to analyze and forecast their evolution: it includes works with different aims and methodologies depending on the temporal horizon being studied. In this survey we depict the actual state of the art focusing only on the recent papers oriented to the determination of trends in electricity spot prices and to the forecast of these prices in the short run. Structural methods of analysis, which result appropriate for the determination of forward and future values are left behind. Studies have been divided into three broad classes: Autoregressive models, Regime switching models, Volatility models. Six fundamental points arise: the peculiarities of electricity market, the complex statistical properties of prices, the lack of economic foundations of statistical models used for price analysis, the primacy of uniequational approaches, the crucial role played by demand and supply in prices determination, the lack of clearcut evidence in favour of a specific framework of analysis. To take into account the previous stylized issues, we propose the adoption of a methodological framework not yet used to model and forecast electricity prices: a time varying parameters Dynamic Factor Model (DFM). Such an eclectic approach, introduced in the late ‘70s for macroeconomic analysis, enables the identification of the unobservable dynamics of demand and supply driving electricity prices, the coexistence of short term and long term determinants, the creation of forecasts on future trends. Moreover, we have the possibility of simulating the impact that mismatches between demand and supply have over the price variable. This way it is possible to evaluate whether congestions in the network (eventually leading black out phenomena) trigger price reactions that can be considered as warning mechanisms.

    Managing extreme cryptocurrency volatility in algorithmic trading: EGARCH via genetic algorithms and neural networks.

    Get PDF
    Política de acceso abierto tomada de: https://www.aimspress.com/index/news/solo-detail/openaccesspolicyThe blockchain ecosystem has seen a huge growth since 2009, with the introduction of Bitcoin, driven by conceptual and algorithmic innovations, along with the emergence of numerous new cryptocurrencies. While significant attention has been devoted to established cryptocurrencies like Bitcoin and Ethereum, the continuous introduction of new tokens requires a nuanced examination. In this article, we contribute a comparative analysis encompassing deep learning and quantum methods within neural networks and genetic algorithms, incorporating the innovative integration of EGARCH (Exponential Generalized Autoregressive Conditional Heteroscedasticity) into these methodologies. In this study, we evaluated how well Neural Networks and Genetic Algorithms predict “buy” or “sell” decisions for different cryptocurrencies, using F1 score, Precision, and Recall as key metrics. Our findings underscored the Adaptive Genetic Algorithm with Fuzzy Logic as the most accurate and precise within genetic algorithms. Furthermore, neural network methods, particularly the Quantum Neural Network, demonstrated noteworthy accuracy. Importantly, the X2Y2 cryptocurrency consistently attained the highest accuracy levels in both methodologies, emphasizing its predictive strength. Beyond aiding in the selection of optimal trading methodologies, we introduced the potential of EGARCH integration to enhance predictive capabilities, offering valuable insights for reducing risks associated with investing in nascent cryptocurrencies amidst limited historical market data. This research provides insights for investors, regulators, and developers in the cryptocurrency market. Investors can utilize accurate predictions to optimize investment decisions, regulators may consider implementing guidelines to ensure fairness, and developers play a pivotal role in refining neural network models for enhanced analysis.This research was funded by the Universitat de Barcelona, under the grant UB-AE-AS017634

    An Electricity Price Modeling Framework for Renewable-Dominant Markets

    Get PDF
    Renewables introduce new weather-induced patterns and risks for market participants active in the energy commodity sector. We present a flexible framework for power spot prices that is capable of incorporating a weather model for the joint distribution of local weather conditions. This not only allows us to make use of a long history of local weather data in the calibration procedure but also makes it possible to assess how changes in the renewable generation portfolio impact the characteristics of future wholesale spot prices. Empirical tests demonstrate the model’s capability to reproduce salient features of market variables. We furthermore show why our model offers unique benefits for market players compared to existing approaches

    Which Capital Growth Index for the Paris Residential Market?

    Get PDF
    In this paper we address the issue of measuring price performance for the Paris residential market. Our main focus is on choosing the appropiate index or indices capable of efficiently capturing capital growth, capital risk, and identifying the main risk factors inherent in this specific market.We identifying three existing indices but show that they may not be completely appropriate to address our main goals. We therefore construct two complementary repeat sales indices: a Case & Shiller (1987) Weighted Repeat sales (WRS) index and a Factorial index using the Baroni, Barthélémy & Mokhrane (2001) approach. We use the CD-BIEN database that contains more than 220 000 repeta sales transactions for residential properties in Paris area covering the period 1983-2001 period.We estimate these two indices for the Paris and close surrounding area and compare them to different existing indices: (I) the square metre index provides by the Chambre des Notaires de Paris and INSEE, (II) the IDP indices, (III) the listed real estate index. OUR conclusions yield interesting implications concerning real estate risk and suggest the construction of jointly using the repeat sales and the factorial approachesReal estate indexes; valuation-based index; repaet sales; risk factors

    Forecasting and modelling the VIX using Neural Networks

    Get PDF
    This study investigates the volatility forecasting ability of neural network models. In particular, we focus on the performance of Multi-layer Perceptron (MLP) and the Long Short Term (LSTM) Neural Networks in predicting the CBOE Volatility Index (VIX). The inputs into these models includes the VIX, GARCH(1,1) fitted values and various financial and macroeconomic explanatory variables, such as the S&P 500 returns and oil price. In addition, this study segments data into two sub-periods, namely a Calm and Crisis Period in the financial market. The segmentation of the periods caters for the changes in the predictive power of the aforementioned models, given the dierent market conditions. When forecasting the VIX, we show that the best performing model is found in the Calm Period. In addition, we show that the MLP has more predictive power than the LSTM
    corecore