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Abstract

This study investigates the volatility forecasting ability of neural network models. In particu-

lar, we focus on the performance of Multi-layer Perceptron (MLP) and the Long Short Term

(LSTM) Neural Networks in predicting the CBOE Volatility Index (VIX). The inputs into these

models includes the VIX, GARCH(1,1) fitted values and various financial and macroeconomic

explanatory variables, such as the S&P 500 returns and oil price. In addition, this study seg-

ments data into two sub-periods, namely a Calm and Crisis Period in the financial market. The

segmentation of the periods caters for the changes in the predictive power of the aforemen-

tioned models, given the di�erent market conditions. When forecasting the VIX, we show that

the best performing model is found in the Calm Period. In addition, we show that the MLP has

more predictive power than the LSTM.
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Chapter 1

Introduction

Volatility can be defined as the standard deviation of asset returns, and it is often considered

to be a good measure of market risk. Hence, volatility forecasting plays an important role

in financial risk management, asset management and volatility trading. If the volatility of a

security can be forecasted, then the fluctuations or pricing behaviour of the security can be

estimated over a short horizon. These estimates can then be used for calculating risk adjusted

asset allocations, option pricing formulas and for a more e�ective implementation of financial

instruments to hedge volatility risk.

Financial Market participants are often concerned about future market volatility, which can

be represented by the VIX. The VIX is expected to contain some predictive content. The

VIX is derived from the prices of a specific basket of S&P 500 options. The value of the

basket of S&P 500 options depends importantly on the future level of the S&P 500 volatility.

Political events, central bank announcements and other market events can be used to deduce

future volatility. If financial market participants are rationally processing the deductions then

the VIX can be conceived to reflect a crowd-sourced estimate of market uncertainty (Edwards

and Preston, 2017).

In the event of a Black Swan (unpredictable or unforeseen) financial market event, the VIX

has often been seen as a "fear gauge". During financial crises we tend to observe significant

volatility spikes. When Russia devalued the Ruble and Asian Financial Crisis, 1998, the VIX

peaked at 1.8 times the 1998 average. During the subprime crisis in 2007 to 2008, the VIX

peaked in 2008 at 80.86. The peak was significantly higher than the average VIX level in 2007

(17.53) and 2008 (32.27), this signaled extreme fear in the market. During the most recent

crisis, the COVID pandemic, 2020, the VIX reached a new record high of 82.69 (Kochlin,

2020). The COVID pandemic VIX peak coincided with the record 12-13% drop in the Dow

Jones Industrial Average, the NASDAQ Composite, and the S&P 500. It was 5.5 times greater

than the average VIX level (15.17) that was observed in the period between 2012 and February
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2020, this was a period characterised by low to medium volatility. Elevated VIX levels are

often associated with capital market shocks, evidenced by sharp price declines in equities

markets. Accurately forecasting future market volatility estimates allows practitioners to hedge

portolios against normal and tail risk events. However, the forecasting of market volatility can

be a di�cult task for most financial market practitioners. This study empirically investigates

models that can help accurately forecast the VIX, and hence future volatility.

Practitioners have often looked to models that consider realised and/or implied volatility

when forecasting future volatility. Additional considerations have shown that implied volatil-

ity models have often been favoured over realised volatility models, which utilise historical

volatility (Busch, Christensen and Nielsen, 2011). Implied volatility models have been con-

sidered as a more reliable predictor for volatility of the S&P 500 index. The VIX is a measure

of implied volatility. Many trading strategies rely on the VIX for hedging and speculative pur-

poses (Ahoniemi, 2007). The VIX is derived from bid/ask quotes of options on the S&P 500

index, it is widely followed by financial market participants and is considered not only to be the

expectation of volatility but also reflects investor sentiment and risk aversion (Audrino, Sigrist

and Ballinari, 2020; Chung, Tsai, Wang and Weng, 2011).

Several econometric time series models have been developed over the years to forecast

volatility. These models include Generalized Autoregressive Conditional Heteroskedastic-

ity (GARCH), stochastic volatility, historical volatility, option implied volatility etc. (Poon

Granger, 2005). With the advent of new developments in machine learning, researchers have

also tried relaxing assumptions of time series models and made use of neural network and

time series hybrid models. This study will explore a hybrid of artificial neural networks and

GARCH family models.

GARCH models are one of the many models that are used for time series forecasting in

finance and econometrics. Some of the advantages of econometric models is that they can be

theoretically explained and are based on sound statistical logic. One of the assumptions of the

model is that explanatory variables must be stationary, and a pitfall is when one of the qualitative

variables are mixed, the performance of the model deteriorates significantly (Cybenko,1989).

Some of the assumptions and pitfalls can be overcome by making use of an artificial neural

network when forecasting. An artificial neural network is a type of machine learning algorithm

with fewer restrictions and assumptions. It is a non-parametric data driven approach. Since it

is a data driven approach it relies heavily on the availability of data. When such a condition has

been met, it follows that an artificial neural network is capable of approximating all continuous

and finite functions (Cybenko, 1989). Moreover, Artificial Neural Networks are capable of

learning underlying patterns in data where other conventional methods may fail (Hiransha, et



3

al., 2018).

There are di�erent types of artificial neural networks (ANN), such as Feed Forward Neural

Network, Recurrent Neural Network (RNN), Generative Adversarial Neural Network, Convo-

lutional Neural Network (CNN), among others. The most basic form of an ANN is a Feed

Forward Neural Network where data flows from the input layer to the output layer without go-

ing backward. Hence, links between the layers are one way. Layers never touch the same node

again, thus information does not persist. RNNs allow information to flow back into previous

parts of the network thus each model in the layers depends on past events, which allows for in-

formation to persists. RNN can use their internal memory to process sequences of input data

and are thus suitable to use with time series data. One disadvantage of RNNs is the long-term

dependency problem where information gets lost over time because of the exploding and van-

ishing gradient problem (Qiu, Wang and Zhou, 2020). On the other hand, Neural Networks

such as LSTM solve the long-term dependency problem. LSTMs are a special type of RNN

that are capable of learning long term dependencies and finding patterns across time such that

future forecasts make sense. Finally, the CNN, which are mostly used for computer vision and

are able to learn deeper architectures than RNN. CNNs solve RNNs gradient vanishing and

exploding problem, since they can be stacked into deeper architectures (SPRH LABS, 2019).

The Multi-Layer Perceptron (MLP) is a feed-forward neural network that creates a latent

space where appropriate inputs are mapped from a set of inputs. The MLP has multiple layers

where each layer is fully connected to the next layer. An MLP consists of three types of layers:

an input layer, an output layer, and one or more hidden layers. If a neural network’s architecture

has more than one hidden layer, the neural network can be referred to as a deep learning neural

network (Yang, 2019). When working with artificial neural networks this paper will focus on

MLP and LSTM neural networks.

Several research papers have studied the forecasting power of neural networks in relation to

financial time series. The papers have shown that artificial neural networks have the capability

to accurately forecast various time series data such as stock price returns (Liu, Zhang and Ma,

2017). In this research, we explore whether the VIX can be more accurately predicted using

neural networks.

The objective of this study is to investigate the forecasting power of the MLP and LSTM

neural networks on the VIX time series, using GARCH (1,1) fitted values and other macroeco-

nomic variables. We also conduct a comparative analysis of the neural networks. Moreover,

we investigate how this forecasting power changes across di�erent volatility regimes, namely

Crisis Periods with medium-to-high volatility and Calm Periods where there is low-to-medium
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volatility. If the volatility fluctuates rapidly over a given period that is considered high volatil-

ity and if more stable over a longer period of time, it is considered low volatility. We will

expand on this in Chapter 3 where we detail the research methodology.

The remainder of this study is organised as follows. Chapter 2 presents the Literature View,

in particular, research on volatility modelling and neural networks. Chapter 3 presents the data

used in the modelling process. In addition, it introduces the methodology in the form of the

models used to forecast the VIX and the technique employed when segmenting the data into

two regimes. Finally, Chapter 4 investigates the forecasting ability of the models, and Chapter

5 concludes the study.
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Chapter 2

Literature Review

Numerous research have been dedicated to forecasting volatility and the VIX index. Poon and

Granger (2005) looked at 93 studies that conducted tests on volatility forecasting methods. They

showed that there was no clear dominant model amongst the time series models investigated.

In some instances they ranked the best performing model as historical volatility, followed

by GARCH and then stochastic volatility. The results in their study also showed a possible

ranking where option implied volatility models outperformed time series models. In practice,

the option implied volatility is given by the VIX index levels and has been used as a more

reliable predictor of volatility in stock markets.

Liu, Guo and Qiao (2015) proposed a new GARCH approach for forecasting the VIX and

variance risk premium. They used the GARCH, GJR-GARCH and Heston Nandi models to

forecast the VIX. To assess their models, they used one-day out of sample VIX level. The

study showed that the traditional empirical GARCH parameters underestimated the VIX level

by 20-30% on average before 22 September 2003 and 10-13% thereafter. It is worth noting

that after 22 September 2003 a new methodology had been developed to calculate the VIX by

CBOE. Awartani and Corradi (2005) have shown how the predictive ability of both symmetric

and asymmetric GARCH models decreases over longer time horizons, so as more data points

are used the performance of GARCH models may deteriorate. The deterioration of the GARCH

models may also be compounded by observing time series where the stationarity assumption

does not hold. A stationary time series exhibits statistical properties such as constant mean,

variance, over time.

Stationarity can be considered a restricting assumption. We also observe that GARCH

models may struggle to work with huge amounts of data and long-range dependence. Such

shortfalls may be remedied through the use of Neural Networks. Neural Networks are data

driven approaches which often outperform when there is a large amount of data. Moreover,

neural networks such as RNN and LSTM are capable of dealing with long-term dependencies
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in input sequences. Preliminary analysis into VIX show that the index displays long-range

dependency, hence, there exists long memory in both option implied and realised variances

(Fernandes, Medeiro, Scharth, 2014). Therefore, Neural Networks may be able to adequately

forecast the VIX.

Several research papers have been dedicated to assessing how neural networks perform with

financial time series. Liu, Zhang and Ma (2017) used a CNN and LSTM for quantitative

strategy analysis in stock markets. They used a CNN for stock selection and LSTM for stock

price prediction as timing signals. They found that the CNN with LSTM quantitative strategy

significantly outperformed the benchmark, with predictions for stock market prices by LSTM

being highly accurate. The overall model was found to be feasible, robust and highly profitable.

Hiransha et al. (2018) used four di�erent types of deep learning architectures for the National

Stock Exchange of India Limited (NSE) and New York Stock Exchange (NYSE) stock market

prediction, namely Multiple Layer Perceptron, Recurrent Neural Networks, Convolutional

Neural Network and Long Short-Term Memory. They trained the architectures with one single

company from the NSE and predicted for five other di�erent companies from both the NSE

and NYSE. The study found that the CNN outperformed the other models. Moreover, although

the network was trained on NSE stock price data it was able to predict NYSE stock price data

because both stock markets share some common inner dynamics. CNN was more capable of

capturing abrupt changes in the stock prices and capturing most of the seasonal patterns.

For forecasting the volatility of a stock price index, Kim and Won (2018) used a hybrid model

integrating multiple GARCH type models (GARCH, EGARCH, EWMA). They compared the

performance of single plain GARCH type models, single neural network models and then the

innovative hybrid models. They built separate models with the KOSPI 200 Index, Gold Price,

Oil Price, CB Interest rate and KTB interest rate. The models performed in line with theoretical

studies. The EWMA model was suitable for capturing short term changes, the GARCH model

captured volatility clustering and leptokurtic distribution, and finally the EGARCH was suitable

for leverage e�ect modelling. The authors combined the di�erent GARCH type models and

LSTM to fully capture the advantages of a hybrid model. In particular, they combined GARCH,

EGARCH, and LSTM; GARCH, EWMA and LSTM; EGARCH, EWMA and LSTM to predict

stock price volatility. They also had varying combinations of single type GARCH models with

LSTM, single type GARCH models with a feed forward neural network and a triple hybrid type

models with LSTM. They found that triple hybrid models with GARCH, EGARCH, EWMA

and LSTM had the best prediction accuracy. However, the triple hybrid type models overlapped

certain parameter characteristics with the double hybrid model. Di�erent hybrid models have

been tested by several authors to forecasting stock price index volatility. Bildrici and Ersin

(2012) combined Markov Switching GARCH models with Neural Networks, specifically, the
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multiple layer perceptron model, radial basis functions and hybrid MLP models. They used the

radial basis function model to train and generate both time series forecasts and certainty factors.

The multi-layer perceptron consists of an input, hidden and output layer. The hybrid MLP

added an additional layer of input to the multi-layer perceptron. The regime switching GARCH

Neural Network allowed the generalization of Markov Switching GARCH type models. They

modelled the stock price index volatility of the IMKB100 stock index. Their work showed how

combining the asymmetric power of GARCH models and neural networks led to better results

when forecasting volatility.

Over the years there has been a significant amount of academic papers focused on using

neural networks and hybrid models for financial time series forecasting. Research has shown

that there is a huge benefit to combining traditional econometric methods with neural networks,

and sometimes neural networks by themselves have significantly delivered performance that

was better than conventional econometric methods, because of their deep architectures which

give them the capability to learn patterns where conventional methods may fail (Roh, 2007).

Research has covered stock price forecasting and stock price index volatility forecasting. There

is an opportunity to further extend neural networks to forecast the VIX, which is the index that

is mostly used by practitioners for options trading, portfolio management, risk management

etc. (Shaikh and Pasha, 2015).

In this study, we will explore how deep learning neural network architectures will perform

when forecasting the VIX. We will forecast the VIX with MLP and LSTM models, that will

include GARCH fitted values as inputs. Given that we will be making use of GARCH fitted

values, which will be derived from the GARCH models, these models could be considered as

hybrid models, namely MLP-GARCH and LSTM-GARCH. The hybrid model ANN-GARCH

will closely follow the literature by Kristjanpoller and Minutolo (2015), where they used ANN-

GARCH to model Gold Price Volatility. Whilst we consider the core data in our model to

be VIX daily changes and GARCH volatility, we consider other financial and macroeconomic

data that has been used to try explain variation in VIX with traditional time series models.

Dai et.al (2020) use a combination approach to forecast stock return volatility, they find that

the combination of stock market, brent and crude oil volatility helps predict stock return

volatility. With stock market volatility and crude oil volatility increasing the predictive power.

The authors also added macroeconomic information such as commercial paper rates, treasury

spread, default return spread, growth in industrial production, industrial production volatility,

inflation volatility, the US housing statistics and the market factor of Fama French three factor

models. The study found that adding macroeconomic information increased the predictive

power of the regression model when looking at out of sample forecasts. We expect similar

behavior when building the Neural Network Models.
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The forecasting ability of neural networks and GARCH has been covered in numerous

studies. Various authors have investigated the modelling power of neural networks when it

comes to stock market price prediction and volatility modelling. Some researchers have gone

on to build hybrid time series and neural network models. This study seeks to add to the

literature on using neural networks and GARCH for forecasting in the financial market. In

particular, it focuses on forecasting the VIX and investigating whether the performance of the

models changes across di�erent volatility regimes. Our study also analyses the impact a neural

network structure could have on the performance of the model.
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Chapter 3

Data and Methodology

3.1 Data

The data used in this study as captured from Bloomberg. We get daily data for the S&P 500

index levels, WTI crude oil price, S&P 500 futures, Gold price, MSCI EAFE index levels and

10-year US Government Bond Yield. We look at data from 01 January 2007 to 21 February

2020. The study makes use of closing prices and the returns/daily changes as inputs in the

models. The logged returns presented in Table 3.1 are given by ;=( %C
%C�1

) and daily changes by
%C�%C�1
%C�1 .

Table 3.1: Explanatory Variables- Daily data used in models

Variable Category Inputs in Model(s)

S&P 500 Index Closing Price Logged Returns and Closing Price
WTI Crude Oil Closing Price Logged Returns and Closing Price

S&P 500 futures Closing Price Daily Change in Price and Closing
Price

Gold Closing Price Logged Returns and Closing Price
MSCI EAFE Closing Price Logged Returns and Closing Price
10-year US Govern-
ment Bond Yield Closing Rate Daily Change in Rate and Closing

Rate

VIX VIX closing level Daily Change in levels and Closing
level

The macroeconomic factors above were chosen in line with Ahoniemi (2007). The afore-

mentioned paper investigates how the financial and economic indicator data of the factors

outlined above could be used to construct a number of explanatory variables for VIX time

series models. In particular, the S&P 500 index is found to be a statistically significant ex-

planatory variable in longer sample periods. The VIX often moves in the opposite direction as

the S&P 500 index. The explanatory variables have varying risk and return characteristics. In

the event of a black swan event we see that there is significant movement in the variables out-

lined above. The VIX is often seen as a "fear gauge" and Gold is seen as a safe haven in times
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of uncertainty. We opted for aforementioned variables because there has been evidence of sig-

nificant linkages between VIX, US Treasury bond yields, Commodity Prices and Developed

Market Indices (Vychytilova, 2015).

We use lagged versions of the explanatory variables presented in Table 3.1 and GARCH

fitted values, to be presented in Chapter 3.2, as inputs for our models. Lagged variables allow

for varying amounts of recent history to be fitted into our models. The lagged variables may

also allow us to capture the cyclical trends that exist in financial markets. In addition, the

dependent variable’s present value may depend on it’s own and other independent variables’

past values. We will further elaborate on how the lagged variables are chosen and included in

the models in Chapter 3.2.2 which covers the methodology of the Neural Network models.

The data is segmented into separate time periods in order to assess the performance of the

model across di�erent volatility regimes. In particular, we form periods of medium to high

volatility regime as well as a low to medium volatility regime. We shall refer our medium to

high volatility regime as the Crisis Period and low to medium volatility regime as the Calm

Period.

In order to obtain the two di�erent sub-periods (Calm and Crisis Period) we visually

inspect the VIX close time series data. In addition, we attempt to detect structural break

by implementing a dynamic programming algorithm, which uses the Bellman principle, as

implemented in R statistical software, to identify structural breaks empirically (Zeileis et.al,

2003). The Bellman principle is based on the study by Bai and Perron (1998), who in their

seminal paper came up with a way to endogenously detect multiple structural breaks in time

series.

Following the methods above, we obtain a breakpoint date of 18 January 2012. Figure 3.1

presents a graphical presentation of our breakpoint date in our data. Data in the first sub-period

runs from 01 January 2007 to 18 January 2012, this period includes data from the subprime

mortgage crisis, which ran from 2007-2010. We consider this Period our medium to high

volatility regime, the Crisis period. The rest of the data runs from 19 January 2012 to 21

February 2020, is considered our low to medium volatility regime or the Calm period. The

Crisis and Calm periods will each have their data split into in-sample and and out-of-sample

data (training, validation and test sets). Our descriptive statistics in Chapter 4.1 concur with

the Calm and Crisis periods. The standard deviation of the VIX close in the Calm and Crisis

period are 3.76 and 11.10, respectively.
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Figure 3.1: VIX close and break point at 2012-01-1

3.2 Methodology

The objective of this study is to empirically investigate whether we can predict the VIX using

VIX lagged returns, GARCH volatility and other financial and economic data. The study will

analyse the VIX post 2007. Most recent data has shown to have more predictive power so we

model the 1 day ahead and 5 days ahead VIX. We use the following lagged values as inputs

into our neural networks: GARCH volatility, VIX returns, S&P 500 index closing price, S&P

500 index returns, WTI crude oil price, WTI crude oil returns, S&P 500 futures closing price,

S&P 500 futures closing price returns, Gold price, Gold Returns, MSCI EAFE index, MSCI

EAFE index returns, 10 year US Government Bond Yield and changes the in the 10 year US

Government Bond Yield.

3.2.1 GARCH

GARCH models have become really popular for application to economic and financial data

in the past years. Such models have been found to be extremely useful for modelling and

forecasting movements in volatilities. Two well-known examples are; pricing financial options,

or in the context of risk management. Recent studies have experimented with combining

GARCH methods with neural networks (Brooks, Burke and Persand, 2001).

Kristjanpoller and Minutolo (2015) were able to show that when working with ANN-

GARCH models, neural networks were able to learn GARCH forecasting errors for Gold Price

volatility. To model the GARCH forecasting error they introduced independent variables to the

multi-layer perceptron namely; the daily variations of Euro/Dollar and Dollar/Yen exchange

rates, the stock market index returns of the Dow Jones Industrial (DJI) and the Financial Time

Stock Exchange (FTSE), as well as the daily price variation of oil.
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According to the study by Ahoniemi (2007) the GARCH (1,1) specification is able to improve

both the point forecasts and direction prediction of the VIX, hence we implement GARCH(1,1)

specification in our analysis. We build GARCH(1,1) models for each sub-period separately so

as to capture the models applicable for each regime. Roh (2006) mentions that GARCH(1,1)

model brings about a similar e�ect like using the long time lag ARCH model even if it uses

a small number of parameters. Therefore, it is desirable to use the GARCH(1,1) model to

make a time series which has the characteristics of volatility, clustering and fat tail from the

perspective of conditional variances. Based on our results in the following section, Chapter 4,

Table 4.1, we see that our S&P 500 time series is characterised by volatility clustering and fat

tails, therefore, a GARCH(1,1) model would be suitable.

The GARCH(1,1) models can be written under the following empirical measure as in Lu

et.al (2016).

;=( (C
(C�1

) = `+ Y2
C , (3.1)

EC = l+ VEC�1 +DC�1, (3.2)

where (C is the "stock" price at time C, EC is the conditional variance estimated by GARCH

at time C, Y =
p
EC IC , IC is a standard normal variable or empirical random variable with

a mean of zero and a variance of 1. For GARCH(1,1), DC = UY2
C (Bollerslev, 1986), GJR

DC = (U+W�{IC < 0})Y2
C

To build the hybrid GARCH and Neural Network model, we extend the di�erent neural

network architecture types with results from equation (3.2). We include the GARCH(1,1)

fitted values as input values so that the MLP and LSTM can learn the patterns of conditional

volatility.

3.2.2 Neural Networks

Multi-Layer Perceptron (MLP)

The MLP is a feed-forward neural network that creates a latent space where appropriate outputs

are mapped from a set of inputs. It has multiple layers where each layer is fully connected

to the next layer. An MLP consists of three types of layers: an input layer, an output layer,

and one or more hidden layers. If neural network architecture has more than one hidden layer,

the neural network can be considered as a deep learning neural network (Yang, 2019). The

representation of the MLP is given by:
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+�-C = (k8 (,8 · G8 + 18))C , (3.3)

where 8 represents the layer, k8 represents the element wise function/activation function,

18 represents the bias, ,8 represents the hidden-to-hidden weight matrix and G8 includes the

GARCH(1,1) fitted values from equation (3.2). A simplified diagram of an MLP is presented

in Figure 3.2.

Figure 3.2: MLP architecture

In the diagram presented in Figure 3.2 we can see that information in an MLP flows forward

and never backwards this is in contrast with an RNN which allows information to flow back.

Recurrent Neural Networks (RNN)

RNNs allow information to flow back into previous parts of the network thus each model in

the layers depends on past events, which allows for information to persist.

A disadvantage of RNNs is the long-term dependency problem where information gets lost

over time because of the exploding and vanishing gradient problem. Neural Networks such as

LSTM solve the long-term dependency problem. LSTMs are a special type of RNN that are

capable of learning long term dependencies and finding patterns across time such that future

forecasts make sense. The presentation for RNNs and LSTMs is found in the next section. In

the following section we follow the methodology of Qiu, Wang and Zhou (2020) and Ghosh et

al. (2019). The representation of RNNs is given by:

58 = (⌘(8�1)) = k(, · ⌘(8�1) +* · (G8 + 1)). (3.4)
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In the conventional RNN model we evolve a hidden state ⌘ according to a hidden-to-hidden

weight matrix, and an input to hidden weight matrix*. The final hidden states ⌘C are derived

from the layer-wise function, equation (3.4). The prediction function 6 is then parameterized

by matrix-vector multiplication for any ⌘. Finally, + in equation (3.5) is the hidden-to-output

matrix and 2 is the output bias vector.

6(⌘) =+ · ⌘+ 2, (3.5)

+�-C = (6(⌘))C . (3.6)

If we were to use the conventional RNN to predict the VIX the output of prediction function

6, equation (3.5) at time C, would give us the VIX forecast.

RNNs form of a chain of repeating units in the neural network. The chain allows for

information to flow back to the cell state, this can be seen in Figure 3.3 (Ghosh et al., 2019).

The illustration in Figure 3.3 shows how the modules output hidden state ⌘. The hidden state

⌘ is then carried into other modules.

In conventional RNNs, this type of architecture can have a simple structure like a single C0=⌘

layer as shown in Figure 3.3. In any RNN structure, there is input and output gates. In contrast,

the LSTM has input, forgotten and output gates. This allows the LSTM to deal with the long

term dependency problem by filtering information through the gate structure. Consequently,

the state of memory cells are maintained and updated, through the forgotten gate.

Figure 3.3: Standard RNN architecture with single layer

The cell state information that can stay in the LSTM module is determined by the forgotten

gate. The main function if the forgotten gate is to determine how much of the previous cell

state ⇠(C�1) is reserved in the cell state of the current time ⇠C . The input gate, on the other

hand, determines how much of the current input GC is reserved into the current cell state ⇠C .

This serves to prevent insignificant content from entering memory cells (Qiu, Wang and Zhou,
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2020).

The input gate has two main functions. The first one is to determine the state of the cell

that needs to be updated. The value that is to be updated is selected by the sigmoid layer (f)

that is presented in equation (3.7). The sigmoid layers are presented as a in Figure 3.4. The

second main function is to update the information that needs to be updated to the cell state.

The C0=⌘ layer controls how much new information can be added. The adding and updating of

information is given in equation (3.8) and (3.9) respectively, where 5C represents the forgotten

gate at time C.

8C = f(,C · [⌘(C�1) ,GC] + 18), (3.7)

⇠̂C = C0=⌘(,2 · [⌘(C�1) ,GC] + 12), (3.8)

⇠C = 5C ⇥⇠(C�1) + 8C ⇥ ⇠̂C , (3.9)

$C = f(,f · [⌘(C�1) ,GC] + 1>), (3.10)

⌘C =$C ⇥ C0=⌘(⇠C). (3.11)

The final output portion as obtained from the output gate $C is presented by equation (3.10),

and the final output value of the cell is defined by equation (3.11).

Figure 3.4: LSTM architecture containing four interacting layers

Financial and economic data is also included in equation (3.3) and (3.7) as part of the input

values given by G.

In the first instance we use all available data in each sub-period to train the model. GARCH

fitted values are extracted from the GARCH model and are used in conjunction with the

explanatory variables presented in Table 3.1 as features. Our out-of-sample dataset consists

21 days, as that is how many trading days there would typically be in a month. To increase

the granularity and strength of our model we lag our explanatory variables. It is necessary
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to lag the explanatory variables as predictions at time C are built based on the knowledge of

the explanatory variables at time C � 1 or further back in time. We experiment with varying

lag-lengths in our models. We opt for the 10 and 66 day lag-length as these result in a better

out-of-sample performance. Moreover, with 10 days (two weeks) feature lags and 66 days

(quarter) feature lags one can interpolate the one month performance of the models, and one

week or less would be too short for our volatility modelling purposes.

A lagged data frame is created for each feature in the model. That is, to forecast 1

day ahead VIX value, we look at the value of each feature for a lag of 10 days and a

lag of 66 days, e.g., for a 10 day lag +�-C = feature1(C�1) + feature1(C�2) ...feature1(C�10) +

feature2(C�1) + feature2(C�2) ..+feature2(C�10) +... feature=(C�10) and similarly for a 66 day lag

+�-C = feature1(C�1) + feature1(C�2) + ... + feature1(C�66) + feature2(C�1) + feature2(C�2) + ..+

feature2(C�66) +... feature=(C�66) , where the features include GARCH fitted values and input

variables from the financial and economic data. When we forecast 5 days ahead, the specifi-

cation looks similar, except we look at the feature(C�5) first, which is the value of the feature 5

days before our forecast date.

In order to come up with a better comparative analysis of the two hybrid models we further

segment the two sub-periods. Within the two sub-periods we model and forecast out of sample

VIX for 21 days, for 3 windows. Thus for both sub-periods we will have 3 forecast windows

each, summing up to six windows (Calm Period end dates: 2020/02/21, 2018/01/11 and

2016/05/10; Crisis Period end dates 2012/01/18, 2011/03/11 and 2011/04/12).

For consistency when comparing the models, we use the same number of observations,

because of data scarcity and strict LSTM array shapes we target 920 observations for each

model. In each instance we build a separate model with 920 so as to have a robust analysis

on how the hybrid models perform in the two volatility regimes. Looking at the LSTM we

find that because of shape specifications we can only forecast 20 days ahead, but with MLP

we can forecast 21 days as there are no limitations with respect to the shape of the data when

considering the MLP. We do not expect there to be any bias with regards to assessing the

performance as each forecast is independent of any other forecasts. After taking out the 21 out

of sample days, the remaining data is used for training and validation, the split is 80/20. We

present results on our out of sample days, which is the test set.

Hyperparameter tuning of neural networks

Neural networks can consist of three kinds of layers namely an input layer, one or more hidden

layers and an output layer. If the neural network has more than one hidden layer it could be

considered a deep learning neural network.
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The multi-layer perceptron has many hyperparameters one can tune, but we concentrate on

the following:

1. The number of hidden layers will define the depth of the algorithm and, consequently,

how complex computations can the MLP model process.

2. The number of neurons per layer. The number of neurons per layer define the width of

the network and the latent space.

Several research papers in the machine learning community concur the Universal Approxi-

mation theorem, which states that a neural network with a su�ciently large shallow (two-layer)

architecture can approximate any wide set of continuous functions to any desired non-zero

level of error (Gori, 2018; Lu and Lu, 2020; Scarselli and Chung Tsoi, 1998). This theory is

tested in our study, one challenge is knowing how many neurons and layers are needed for an

optimal model. We do a grid search to see how many neurons and hidden layers are needed

to approximate the various models. Similar to the MLP, for the LSTM model we analyse how

many LSTM layers and the number of neurons it takes to reach the optimal model.

3.2.3 Measuring Forecast Accuracy

To assess the forecasting power of the various models we compare the Mean Absolute Errors

(MAE) and the hit ratios.

Absolute error refers to the magnitude of di�erence between the predicted value and the

actual or true value of an observation. MAE takes the average of absolute errors for a specified

group of values. It is regularly used as a loss function for regression models and can be used

in machine learning algorithms to solve optimisation problems (C3 AI, 2022). The MAE is

given by:

"�⇢ =
Õ=

C=1 |+�-C �+�-2;>B4C |
=

, (3.12)

where +�-C is the predicted value and +�-2;>B4C is the true value.

The hit ratio is determined by the number of correct signs (correct VIX level direction)

divided by the total number of predictions. The overall hit ratio is the ratio of correct predictions

to all predictions. The hit ratio is given as:
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�8C '0C8> =
#D<14A > 5 2>AA42C B86=B

)>C0; =D<14A > 5 ?A4382C8>=B
⇥100. (3.13)

MAE assesses the accuracy of the point forecast of the VIX and the hit ratio assesses the

directional accuracy, that is, whether the VIX is forecasted to move down/up. We build our

models to forecast the level of the VIX and not the movement, and so when looking for the

overall best performing model the MAE takes precedent over the hit ratio.

The methodology and data detailed in this chapter allow us to carry out the intended

research. In the following chapter, we shall present the results and findings from our empirical

investigations.
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Chapter 4

Empirical Results

4.1 Descriptive Statistics

A summary of our data follows. Table 4.1 presents the descriptive statistics for our input

variables. Looking at the sample mean of the VIX close in Table 4.1, we see that the mean

of the VIX close in the Crisis period (25.47) is higher than the mean during the Calm period

(15.17). Moreover, the sample standard deviation of the VIX close in the Crisis period (11.10)

is higher than the one during the Calm period (3.76). Variables such as MSCI EAFE close, S&P

500 futures close and S&P 500 close behave as expected (in line with empirical evidence), with

higher sample means in the Calm period and lower minimums in the Crisis Period. We also

see Gold closing price as more volatile in the Crisis period, with a higher standard deviation

and range than the Calm period.

Figure 4.1: Log-returns S&P 500

Before we proceed to build the GARCH(1,1) model, we analyse the descriptive statistics of

the S&P 500 returns, which is the series we will be using when building the GARCH model.

The results for kurtosis, skewness and the Jacque-Bera test statistic indicate that the daily S&P

500 returns do not follow a normal distribution. There is also excess kurtosis for the S&P 500
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returns and the kurtosis coe�cients are greater than 3 in both sub-periods which suggests that

the data follows a leptokurtic distribution for both sub-periods. The Jacque-Bera test statistic

rejects the null hypothesis of normal distribution in both sub-periods. The summary statistics

also show that the S&P 500 return series is negatively skewed. Figure 4.1 represents the daily

log returns if the S&P 500.

Table 4.1: Descriptive Statistics of dataset

Crisis Period, medium to high volatility (01 January 2007 to 18 January 2012)

mean sd median min max range skew kurtosis se

VIX close 25.47 11.1 22.9 9.89 80.86 70.97 1.82 4.12 0.31
VIX changes 0 0.08 -0.01 -0.35 0.5 0.85 0.78 4.13 0
MSCI EAFE close 1694.4 360.82 1622.13 911.39 2388.74 1477.35 0.2 -0.98 10.21
MSCI EAFE returns 0 0.02 0 -0.09 0.08 0.17 -0.21 4.97 0
S&P 500 futures close 1211.93 205.95 1229.88 676 1576.25 900.25 -0.32 -0.68 5.83
S&P 500 futures returns 0 0.02 0 -0.1 0.13 0.24 -0.04 9.01 0
S&P 500 close 1212.13 203.65 1230.57 676.53 1565.15 888.62 -0.35 -0.67 5.76
S&P 500 returns 0 0.02 0 -0.09 0.11 0.2 -0.25 6.83 0
US 10 year Bond close 3.5 0.77 3.52 1.72 5.3 3.58 -0.02 -0.42 0.02
US 10 year Bond changes 0 0.02 0 -0.17 0.1 0.28 -0.35 3.48 0
WTI Crude Oil close 81.97 21.1 80.47 33.87 145.29 111.42 0.33 0.2 0.6
WTI Crude Oil returns 0 0.03 0 -0.13 0.16 0.29 0.1 4.38 0
Gold Close 1065.34 315.66 954.94 607.4 1882.96 1275.56 0.62 -0.57 8.94
Gold Returns 0 0.01 0 -0.07 0.1 0.17 -0.05 4.68 0

Calm Period, low to medium volatility (19 January 2012 to 21 February 2020)

mean sd median min max range skew kurtosis se

VIX close 15.17 3.76 14.3 9.14 40.74 31.6 1.49 3.79 0.08
VIX changes 0 0.08 0 -0.3 0.77 1.07 1.14 7.39 0
MSCI EAFE close 1796.62 167.58 1826.15 1308.01 2186.65 878.64 -0.49 -0.35 3.72
MSCI EAFE returns 0 0.01 0 -0.07 0.04 0.11 -0.66 5.94 0
S&P 500 futures close 2175.23 519.94 2090 1273 3387.25 2114.25 0.19 -0.9 11.55
S& P500 futures returns 0 0.01 0 -0.06 0.05 0.11 -0.65 5.11 0
S&P 500 close 2177.63 518.03 2093.25 1278.05 3386.15 2108.1 0.18 -0.89 11.51
S&P 500 returns 0 0.01 0 -0.04 0.05 0.09 -0.45 3.22 0
US 10 year Bond close 2.24 0.44 2.25 1.36 3.24 1.88 0.12 -0.97 0.01
US 10 year Bond changes 0 0.02 0 -0.11 0.1 0.22 0.14 1.48 0
WTI Crude Oil close 68.48 22.29 60.2 26.21 110.53 84.32 0.38 -1.31 0.5
WTI Crude Oil returns 0 0.02 0 -0.11 0.14 0.24 0.14 3.82 0
Gold Close 1337.84 167.2 1289.76 1051.1 1790.15 739.05 0.99 0.11 3.72
Gold Returns 0 0.01 0 -0.1 0.05 0.14 -0.68 8.67 0

To determine whether a GARCH model would be suitable for the data we conduct further

statistical tests on the segmented data. Presented in Table 4.2 are results from the Augmented

Dickey-Fuller (ADF), Phillips-Perron Unit Root (PP), Jacque-Bera and ARCH tests. These are

to test for the underlying assumptions of the GARCH model. The unit root tests ADF and PP,

test for the stationarity of the dataset and the ARCH LM-test tests for the ARCH e�ect which

determines whether or not a GARCH model is suitable (Jebran, Chen, Ullah and Mirza, 2017).

We run an ARCH LM-test to test for ARCH e�ects and from the results we find that the test

statistic is significant for both the sub-periods at the 1% level. The ADF and PP tests also give
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us significant test statistics indicating our data is stationary at level for both sub periods. The

statistical tests indicate that the GARCH statistical conditions have been met, hence we can

proceed to build a GARCH model.

Following the GARCH model building we extract the GARCH fitted values and use those

as inputs in our neural networks. Inputs into our neural networks the following lagged values:

GARCH volatility, VIX returns, S&P 500 index closing price, S&P 500 index returns, WTI

crude oil price, WTI crude oil returns, S&P 500 futures closing price, S&P 500 futures closing

price returns, Gold price, Gold Returns, MSCI EAFE index, MSCI EAFE index returns,

10-year US Government Bond Yield and changes the in the 10 year US Government Bond

Yield.

Table 4.2: Statistical Tests for S&P 500 Log-Returns

Statistical Tests S&P 500 Log-Returns
Crisis Period Calm Period

ARCH LM-test 204,58*** 166,69***
Augmented Dickey-Fuller Test 10,769*** -13,225***
Phillips-Perron Unit Root Test -1353,2*** -1918,9***
Jarque Bera Test 2448,5*** 946,9***
Box-Pierce Test 62,061*** 98,221***

Notes on Tables: The asterisks ***, **, * represent significance at 1, 5 and 10% respectively.

Once we have determined that we can fit an ARCH model with the statistical tests performed

above we proceed to fit a GARCH(1,1) model. Given that the model does not follow a normal

distribution we fit the model using a Student-t distribution. The Student-t distribution, may be

of greater fit because of the high peaks and fat tails, as presented in the Descriptive Statistics

section. Table 4.3 presents the results from the GARCH(1,1) fit. Results indicate that the

coe�cients `, l, U and V are statistically significant in both sub-periods. When we analyse

the results we find that as we look into the Akaike Information Criterion (AIC) we find that

the GARCH(1,1) model might be more suited for the Calm period where we get an AIC figure

-7.07 lower than the Crisis period -5.89. The Calm Period also has a higher Log Likelihood of

7159 compared to the Crisis Period where the Log Likelihood 3682.
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Table 4.3: GARCH results

Error Analysis Crisis Period

Estimate Std. Error t value Pr(>|t|)

` 1.020e-03 2.722e-04 3.746 0.00018 ***
l 2.166e-06 1.025e-06 2.113 0.03458 *
U 1.314e-01 2.275e-02 5.773 7.78e-09 ***
V 8.776e-01 1.747e-02 50.235 < 2e-16 ***

Log Likelihood
3681.663 normalized: 2.95005

Information Criterion Statistics:
AIC BIC SIC HQIC

-5.892087 -5.871537 -5.892119 -5.884361

Error Analysis Calm Period:
Estimate Std. Error t value Pr(>|t|)

` 8.349e-04 1.280e-04 6.524 6.86e-11 ***
l 3.396e-06 8.063e-07 4.212 2.53e-05 ***
U 1.948e-01 2.961e-02 6.580 4.71e-11 ***
V 7.728e-01 2.956e-02 26.145 < 2e-16 ***

Log Likelihood:
7159.222 normalized: 3.537165
Information Criterion Statistics:
AIC BIC SIC HQIC

-7.069389 -7.055523 -7.069401 -7.064301

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Following the GARCH model building we extract the GARCH fitted values and use those

as inputs in our neural networks. Inputs into our neural networks the following lagged values:

GARCH volatility, VIX returns, S&P 500 index closing price, S&P 500 index returns, WTI

crude oil price, WTI crude oil returns, S&P 500 futures closing price, S&P 500 futures closing

price returns, Gold price, Gold Returns, MSCI EAFE index, MSCI EAFE index returns,

10-year US Government Bond Yield and changes the in the 10 year US Government Bond

Yield.
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4.2 Neural Network Results

Neural Network models can overfit the data when optimising for performance. We account

for overfitting in our model building by setting aside an out-of-sample dataset (test set) and

splitting our in-sample dataset between the training set (80%) and validation set (20%). In

addition, we use an L1 regularisation technique, which is also referred to as Lasso Regression.

Lasso Regression adds penalty terms when optimising the models for performance, it shrinks

the less important features’ coe�cients to zero. This means it can remove features with no

predictive content and thus aiding with feature selection.

The neural network modelling results from the out-of-sample data are presented as follows,

first we assess the forecasting power of the neural networks given all the data points. This allows

us to focus on how well the model is able to predict the VIX given all the available data points

within the scope of this study, i.e., post 2007, we still segment our data between the two sub-

periods and build those models separately, so we are able to track the performance of the models

across the two regimes. Following this assessment, we proceed to analyse the architectures

and performances of the top performing models. The objective of the first assessment is to

meet the first aim of the study, which is to empirically investigate the performance of the neural

network in forecasting the VIX. The second aim is to investigate whether the performance of

the neural network varies across the di�erent regimes, particularly across the Crisis and Calm

Period. Subsequently, as mentioned in the Methodology section, we assess the performance of

the models given the three forecast windows in each sub-period. We expect the performance of

the results based on MAE to deteriorate given we are working with less observations in these

forecast windows. Despite the deterioration of the results, we expect to better assess how the

performance varies across the two sub-periods.

Based on the first set of results we see that indeed the VIX can be forecast with neural

networks and the models can achieve promising levels of accuracy. We also find that the

models are capable of forecasting not just a one day ahead forecast but also a 5 day ahead

forecast. We do a deviation comparison of the models, first based on MAE and then finally

the hit ratio. As the objective of the research is to investigate point accuracy when forecasting

the VIX, the MAE takes precedent in terms of assessing the overall top performing model.

Performance results are presented in Table 4.4.

To begin, the results indicate that the MAE ranges from 1.03 to 6.48 and the hit ratio ranges

from 37% to 84%. The MLP in the Calm Period with 10 day lag that forecasts 5 days ahead has

the lowest MAE at 1.03 indicating that it is the top performing model, this model is followed

by the MLP in the Calm Period with 66 day lag that forecast 1 day ahead with an MAE of 1.06.
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The best performing models are highlighted in green.

Table 4.4: Performance results (MAE and Hit ratio)

Performance of models based on Mean Absolute Error

Forecast horizon 10 day lags 66 day lags 10 day lags 66 day lags

Crisis Period ended
2012/01/18

Calm Period ended 2020/02/21

MLP 1 5.18 4.44 2.15 1.06
5 1.50 2.69 1.03 1.29

LSTM 1 4.99 1.77 2.61 6.44
5 6.48 2.37 1.52 4.42

Performance of models based on Hit Ratio

Forecast hori-
zon

10 day lags 66 day lags 10 day lags 66 day lags

Crisis Period ended
2012/01/18

Calm Period ended 2020/02/21

MLP 1 58% 84% 45% 60%
5 75% 55% 45% 55%

LSTM 1 53% 42% 58% 47%
5 37% 53% 63% 47%

The results for the models are presented in Figures 4.2 and 4.3, predicted_10 represents

predicted values for features with 10 day lag, predicted_66 represents predicted values for

features with 66 day lag and VIX close is the actual VIX value. Figures 4.2 and 4.3 are for the

Calm Period ended 21/02/2020.
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Figure 4.2: MLP Calm Period ended 2020/02/21
1 day ahead

Figure 4.3: MLP Calm Period ended 2020/02/21
5 days ahead

Relating to the hit ratio, which indicates the percentage of times that the model predicts the

direction correctly, we see that the MLP in the Calm Period with 66 day lag that forecast 1 day

ahead outperforms the MLP in the Calm Period with 10 day lag that forecasts 5 days ahead,

with hit ratios of 60% and 45%, respectively. The highest hit ratio in the Calm Period is 63%,

which is for the LSTM with 10 day lag forecasting 5 days ahead. The predicted values are

presented in Figure 4.4. The MAE for this model is 1.52, the model has the fifth lowest MAE

out of the 16 models built in this instance.

We can also draw a direct comparison between MLP and LSTM. Given that the 5-days

ahead forecast produced the lowest MAE for both models (1,03 and 1,52), MLP outperformed

LSTM in this regard. However, when viewing from the perspective of hit ratio, LSTM 5-day

ahead forecast produced better results than the MLP instead (with 63% vs 45%).

A further direct comparison into the MLP versus the LSTM in the Calm Period follows.

Referencing the MAE, we see that the MLP definitively outperforms the LSTM, where all

MAE values for MLP are lower than LSTM. The hit ratio, however, yields mixed results. We

see the MLP, with a 66 day lag, results in hit ratios of 60% (1 day ahead) and 50% (5 days

ahead), thus outperforming the LSTM with a hit ratio of 47% for both 1 day and 5 day ahead

forecast. Conversely, on a 10 day lag, we see higher hit ratios 58% (1 day ahead), 63% (5 days

ahead) resulting from the LSTM, thus outperforming performance the MLP, with a hit ratio of

45% for both 1 day and 5 days ahead forecasts. Therefore, we can see that the lag period has a

significant impact on the hit ratios of both models in the Calm Period. It is evident that over the

shorter lag period (10 days) the LSTM outperforms the MLP in terms of the hit ratio. Whereas

over the longer lag period (66 days) the converse is true (MLP hit ratio higher than LSTM).

Finally, we can compare the MLP versus the LSTM in the Crisis Period. When analysing

the results based on MAE we see that the LSTM outperforms the MLP in all cases, except one,

which is the 10 day lag and 5 day ahead forecast (MAE LSTM 6.48 versus MAE MLP 1.50).

On the other hand, the results for hit ratio indicate that the MLP outperforms the LSTM. We
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can see that in each instance, the MLP has a higher hit ratio. For example, MLP 10 day lag

1 day ahead forecast has a hit ratio of 58% which is greater than the LSTM 10 day lag 1 day

ahead forecast with a hit ratio of 53%. Another example is where MLP 66 day lag, 1 day ahead

forecast has a hit ratio of 84% which is greater than the LSTM 66 day lag 1 day ahead with a

hit ratio of 42%.

Figure 4.4: LSTM Calm Period ended 2020/02/21 5 days ahead

Following the most prior analysis, we further investigate the architectures of the best per-

forming models (the MLP in the Calm Period with 66 day lag that forecasts 1 day ahead and

the MLP in the Calm Period with 10 day lag that forecasts 5 days ahead). When building the

neural network we searched across various model architectures to obtain optimal models, we

varied the number of neurons and the number of hidden layers. The best model was selected

based on the lowest mean residual deviance or mean squared error in the validation dataset.

The various models built for the best performing models presented above are given in Table

4.5 and Table 4.6.
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Table 4.5: Calm Period MLP 1 day ahead 66 day lag

Hidden Layers & Neurons Mean Residual Deviance

(100, 100, 100, 100) 0.428
(100, 150, 200) 0.440
(200, 200, 200) 0.446
(100, 100, 100) 0.451
(100, 100, 150, 150) 0.479
(200) 0.534
(150) 0.597
(30, 40) 0.638
(80) 0.640
(20, 30, 50) 0.642
(20, 20, 20) 0.667
(30, 30) 0.670
(100) 0.675
(50) 0.682
(40) 0.828
(30) 0.840
(20, 20) 0.895
(20, 30) 0.900
(20) 1.113

Table 4.6: MLP 5 days ahead with 10 day lag respectively

Hidden Layers & Neurons Mean Residual Deviance

(100, 150, 200) 0.184
(100, 100, 100) 0.186
(200, 200, 200) 0.193
(100, 100, 150, 150) 0.199
(100, 100, 100, 100) 0.205
(30, 30) 0.206
(150) 0.209
(200) 0.211
(100) 0.213
(80) 0.214
(20, 20, 20) 0.218
(20, 30) 0.219
(20, 30, 50) 0.219
(30, 40) 0.226
(50) 0.229
(20, 20) 0.230
(30) 0.237
(40) 0.238
(20) 0.256

For Table 4.6 the model is predicting 5 days ahead whilst in Table 4.5 the model is predicting

1 day ahead, additionally, in Table 4.5 the model considers 66 day lag and in Table 4.6 the

model considers 10 day lag Initially, in Table 4.5, we see that increasing the number of hidden
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layers from three to four hidden layers decreases the mean residual deviance by 0.012, in Table

4.6 we see that building the model past three hidden layers does not result in an improvement

in the mean residual deviance, which indicates that the three hidden layers could be su�cient.

Models with three hidden layers can be considered to be deep learning neural networks. The

range of the Mean Residual Deviance in Table 4.5 is 0.428 to 1.113, and in Table 4.6 the range

is 0.184 to 0.256, the marginal improvements in the mean residual deviance is Table 4.6 across

the various architectures are lower than the marginal improvements in Table 4.5. The structure

of the inputs and the output a�ects how long it takes the model to reach the lowest RMSE/MSE,

in terms of epochs. In supervised learning, the neural network passes through the input data is

from the neurons in one layer to the neurons in the next layer. This process is repeated many

times and one iteration is called an epoch (Georgevici and Terblanche, 2019). The best epoch

is one where learning is optimised, this is where the RMSE is the lowest. The scoring histories

of the above two models is captured in Figures 9 and 10.

The scoring histories of the best performing models are presented in Figures 4.5 and 4.6.

We see a huge di�erence in the epochs that are run through to reach the optimal models. For

MLP in the Calm Period with 66 day lag that forecasts 1 day ahead the best epoch is 190 and the

best epoch for the MLP in the Calm Period with 10 day lag that forecasts 5 days ahead is 1810.

The epochs required to reach the optimal models in all our models are presented in Table 4.7.

The results show that there is not a perfect number of epochs that can satisfy the models across

the various models. When analysing the results in Table 4.7, particularly the MLP, we see that

as we increase the features i.e. from 10 day lag to 66 day lag, the models require significantly

less epochs. This implies that the network has to run through less iterations, decreasing the

amount of time it takes to reach the lowest RMSE for the given architecture.

Figure 4.5: Scoring history Calm Period MLP 1 day ahead 66 day lag best epoch 190
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Figure 4.6: Scoring history Calm Period MLP 5 days ahead 10 day lag that best epoch 1810

Table 4.7: Epochs to reach optimal models

Epochs to reach optimal models

Forecast horizon 10 day lag 66 day lag 10 day lag 66 day lag

Crisis Period ended
2012/01/18

Calm Period ended 2020/02/21

MLP 1 1900 990 820 190
5 2680 110 1810 130

LSTM 1 210 300 100 100
5 130 150 70 90

The models we have presented so far showcase the forecasting power of the models with

respect to the VIX, one other objective of the study was to see how the performance of the model

is a�ected in di�erent volatility regimes, just analysing results from two periods might not be

enough to conclude that the models perform better in the calm period. Accordingly, we proceed

with this study by extending our modelling to more forecast windows within both sub-periods.

One disadvantage of this is we have less observations to work with, as we shift our forecast

windows to dates within the periods. For consistency when comparing the models we 900

observations are used to train data for each forecast window. We have six periods that we look at

in total when assessing the performance in di�erent volatility regimes (Calm Period end dates:

2020/02/21, 2018/01/11 and 2016/05/10; Crisis Period end dates 2012/01/18, 2011/03/11 and

2011/04/12). The MAE results are presented in Table 4.8. The first thing we notice is that the

forecasting power of the model with respect to previously best performing model, MLP with

Calm Period ended 2020/02/21, is significantly reduced, this could be because we are now just

using 900 observations and previously we were working with over 2000 observations.
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Figure 4.7: MLP Calm Period ended 2020/02/21 1 day ahead

Figure 4.8: MLP Calm Period ended 2020/02/21 5 days ahead

Table 4.8: Performance results 2

Performance of models based on Mean Absolute Error

10 day lags 66 day lags 10 day lags 66 day lags
Forecast hori-
zon

Crisis Period ended 2012/01/18 Calm Period ended 2020/02/21

MLP 1 4.54 5.52 5.92 2.28
5 4.10 1.98 8.96 3.48

LSTM 1 5.06 7.45 5.00 3.67
5 2.33 4.83 5.58 4.38

Crisis Period ended 2011/03/11 Calm Period ended 2018/01/11

MLP 1 2.32 2.20 3.06 0.96
5 4.13 2.01 0.76 0.53

LSTM 1 4.03 1.97 3.56 9.30
5 7.81 3.88 5.96 13.69

Crisis Period ended 2011/04/12 Calm Period ended 2016/05/10

MLP 1 2.58 2.69 2.21 0.83
5 3.54 2.87 5.55 2.67

LSTM 1 6.29 3.91 1.75 2.06
5 4.25 3.57 4.39 3.99

Investigating the performance of the models based on the Mean Absolute Error, the re-
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sults indicate that on average the MLP outperforms the LSTM. For the Crisis Period ended

2012/01/18, we see that in all cases the MLP outperforms the LSTM, except in the case where

we are forecasting 5 days ahead with a 10 day lag. We see a similar situation in the Crisis Period

ended 2011/03/11, where the MLP outperforms the LSTM in all cases, except where the mod-

els are forecasting 1 day ahead with 66 day lag. In the final Crisis Period ended 2011/04/12

we see that MLP outperforms LSTM invariably. This is similar to the Calm Period ended

2018/01/11, where the MLP also outperforms LSTM invariably. In the other Calm Periods we

see that there are instances where the LSTM beats the MLP. This is in the Calm Periods ended

2016/05/10 and 2020/02/21 we see that the LSTM outperforms MLP in cases where we use

10 day lag. Specifically, the LSTM forecasting both 1 day and 5 days ahead with 10 day lag.

Overall, it is evident that in most cases the MLP outperforms LSTM. In the Crisis Period MLP

outperforms LSTM in 10 out of 12 cases. In the Calm Period the MLP outperforms the LSTM

in 8 out of 12 cases. Hence, 75% of the time the MLP outperforms the LSTM in predicting the

value of the VIX.

The top performing model is the MLP for the Calm Period ended 2018/01/11, where the

model is forecasting 5 days ahead, the MAE for the 66 days lag is 0.53 and the MAE for the

10 day lag is 0.76. Results show that in this instance more features equates to an improved

MAE. This assertion however does not hold when looking at the hit ratio in Table 4.9. We see

in this table that the 10 day lag have a significantly higher hit ratio, it predicts the movement of

the correctly 70% of the time, whilst with the 66 day lag the model only predicts the direction

correctly 25% of the time.

Figure 4.9: MLP Calm Period ended 2018/01/11 5 days ahead

Moreover, when investigating the models in terms of how often they predict direction

correctly we find that the MLP for the Crisis Period ended 2012/01/18 predicts the direction

of the VIX correctly 80% of the time, the model is forecasting 5 days ahead with 10 day lag,

although this model is able to capture the shape of the VIX, when assessing the model relative

to the other models it does not capture the point forecast of the VIX well, the MAE of this
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model is 4.09. The plot in Figure 4.10 has predictions of this model, predictions are given by

predicted_10 and the actual VIX is given by VIX close lines.

Figure 4.10: MLP Crisis Period ended 2012/01/18 1 day ahead

Table 4.9: Performance results 3

Performance of models based on Hit Ratio

2[2]*Forecast horizon 10 day lag 66 day lag 10 day lag 66 day lag

Crisis Period ended:
2012/01/18

Calm Period ended:

2/21/20

MLP 1 65% 55% 50% 45%
5 80% 30% 55% 65%

LSTM 1 53% 63% 53% 53%
5 63% 47% 47% 53%

3/11/11 1/11/18

MLP 1 40% 60% 50% 45%
5 45% 50% 70% 25%

LSTM 1 47% 21% 37% 47%
5 47% 47% 52% 48%

4/12/11 5/10/16

MLP 1 40% 50% 52% 48%
5 65% 30% 55% 70%

LSTM 1 37% 68% 50% 49%
5 42% 53% 68% 53%

Multiple forecast windows allow for a better deviation comparison when analysing the

di�erences in the performance across the two sub-periods that is the Crisis and Calm Period.

Since we cannot directly compare two periods as per the previous analysis where we only had
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one forecast window per regime, we make the contrast based on average MAE for both MLP

and LSTM in both the Crisis and Calm Period.

Table 4.10: Performance results 4

Average Performance based on Mean Absolute Error

Crisis Period Calm Period

MLP 10 day lags 66 day lags 10 day lags 66 day lags
1 3.15 3.47 3.73 1.36
5 3.92 2.29 5.09 2.23

LSTM 10 day lags 66 day lags 10 day lags 66 day lags
1 5.13 4.44 3.44 5.01
5 4.80 4.10 5.31 7.35

Taking into consideration the average MAE for the two periods, as presented in Table 4.10,

we find that the top 3 best performing MLPs (Calm) 1 day ahead 66 day lag > MLPs (Calm) 5

days ahead 66 day lag > MLPs (Crisis) 5 days ahead Crisis 66 day lag. Analysing the overall

results we see that although the top two models are in the Calm Period, there are instances

where models in the Crisis Period outperform the Calm Period. For example, the MLPs in

the Crisis Period forecasting 1 day ahead with 10 day lag, average MAE 3.14, outperforms the

MLPs in the Calm Period forecasting 1 day ahead with 10 day lag. Another example is where

the LSTMs in the Crisis Period forecasting 5 days ahead with 66 day lag, average MAE 4.10,

outperformed LSTMs forecasting 5 days ahead with an average MAE 7.35. Given our analysis

there is no clear dominant regime. The top three models , Table 10, are highlighted in green.

We further analyse the di�erent neural networks with Figure 4.11 and 4.12.

Figure 4.11: Average Performance based on Mean Absolute Error - Crisis Period

From Figure 4.11, we see that the MLP MAE is lower than the LSTM MAE invariably.

Hence, the MLP is the dominant model in the Crisis Period in terms of its ability to forecast
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the value of the VIX index.

Figure 4.12: Average Performance based on Mean Absolute Error - Calm Period

From Figure 4.12, we can see that the MLP MAE is lower than the LSTM MAE in all cases,

except in the case when we are forecasting 1 day ahead with a 10 day lag. Hence, the MLP is

the dominant model in the Calm Period in terms of its ability to forecast the value of the VIX

index.
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Chapter 5

Conclusion

The VIX is seen as a forward-looking estimate of volatility. Thus asset managers, risk managers

and traders rely on the VIX for their investment decisions. This study seeks to add to the existing

literature that focuses on forecasting the VIX. We estimate 1 day ahead and 5 days ahead point

forecasts of the VIX using machine learning techniques.

The main objective of this study is to investigate whether the VIX is forecastable with the

use of neural networks. In particular, we investigate the forecasting power of both the LSTM

and MLP models across varying structures. In addition, we investigate how the models behave

across di�erent volatility regimes, namely a period of low-to-medium volatility (Calm Period)

and a period of medium-to-high volatility (Crisis Period). Our results indicate that the MLP

Neural Network outperforms the LSTM. A number of models are built with varying number

of features, with some forecasting 1 day ahead and others 5 days ahead. The best performing

model given both the Mean Absolute Error and the Hit ratio is the MLP in the Calm Period.

It forecasts 5 days ahead, with 10 day lag in the features, producing a low MAE and high

Hit ratio overall. While the Hit ratio gives the percentage of times which the model predicts

the direction of the VIX correctly, the MAE shows prediction errors which is the absolute

di�erence between the true value and predicted value.

The average levels of error, also show that although the best performing model is found in

the Calm Period, there are instances where the levels of error in the Crisis Period are lower than

those in the Calm Period. Compellingly, our results show that neural network model forecasting

power does not always deteriorate when there is more volatility in the financial market. This is

well in line with studies on the neural networks Universal Approximation theorem, which states

that a neural network with a su�ciently large shallow (two-layer) architecture can approximate

any wide set of continuous functions to any desired non-zero level of error (Gori, 2018; Lu and

Lu, 2020; Scarselli and Chung Tsoi, 1998).

When analysing the best performing model across the varying structures, we find that an
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increase in the number of hidden layers up to three hidden layers leads to an improvement in the

level of error. Additionally, increasing the number of neurons has a similar e�ect. Interestingly,

we also find that going past three hidden layers does not significantly improve the level of error.

Model builders then have to decide whether the decrease in the level of error warrants the

complexity of the model and the extra time required.

This study adds to the literature that covers the VIX and the forecasting power of neural

networks on time series data. Specifically, we focus on deriving the point forecasts of the

VIX. We find that there are varying levels of predictability in di�erent forecast windows, and

given a change in the input data, the architectures needed to reach an optimal model changes.

While predicting the VIX is not an easy task, predictability of the VIX using neural networks

is possible.

Trading strategies were not within the scope of this research. How the predictability of the

VIX could be used for trading strategies by traders to potentially profit from this predictability is

left for further research. Future research could also potentially focus on predicting the direction

of the VIX using neural networks.
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