92,601 research outputs found

    parMERASA Multi-Core Execution of Parallelised Hard Real-Time Applications Supporting Analysability

    Get PDF
    International audienceEngineers who design hard real-time embedded systems express a need for several times the performance available today while keeping safety as major criterion. A breakthrough in performance is expected by parallelizing hard real-time applications and running them on an embedded multi-core processor, which enables combining the requirements for high-performance with timing-predictable execution. parMERASA will provide a timing analyzable system of parallel hard real-time applications running on a scalable multicore processor. parMERASA goes one step beyond mixed criticality demands: It targets future complex control algorithms by parallelizing hard real-time programs to run on predictable multi-/many-core processors. We aim to achieve a breakthrough in techniques for parallelization of industrial hard real-time programs, provide hard real-time support in system software, WCET analysis and verification tools for multi-cores, and techniques for predictable multi-core designs with up to 64 cores

    An embedded real-time co-processor for control applications

    Get PDF
    In this paper we present a high performance real-time microcontroller (uRT51) based on an 8051 core. The uRT51 is an 8-bits processor that includes a Real-Time co-processing unit. We have implemented the speed control of a DC motor to evaluate the uRT51 performance. The uRT51 shows a control performance suitable for low-cost, low-power, embedded real-time control applications in which real-time systems based on RTOS failVI Workshop de Procesamiento Distribuido y Paralelo (WPDP)Red de Universidades con Carreras en Informática (RedUNCI

    Enabling SMT for real-time embedded systems

    Get PDF
    In order to deal with real time constraints, current embedded processors are usually simple in-order processors with no speculation capabilities to ensure that execution times of applications are predictable. However, embedded systems require ever more compute power and the trend is that they will become as complex as current high performance systems. SMTs are viable candidates for future high performance embedded processors, because of their good cost/performance trade-off. However, current SMTs exhibit unpredictable performance. Hence, the SMT hardware needs to be adapted in order to meet real time constraints. This paper is a first step toward the use of high performance SMT processors in future real time systems. We present a novel collaboration between OS and SMT processors that entails that the OS exercises control over how resources are shared inside the processor. We illustrate this collaboration by a mechanism in which the OS cooperates with the SMT hardware to guarantee that a given thread runs at a specific speed, enabling SMT for real-time systems.Peer ReviewedPostprint (published version

    Flexible and Distributed Real-Time Control on a 4G Telecom MPSoC

    Get PDF
    International audienceApplications like 4G baseband modem require single-chip implementation to meet the integration and power consumption requirements. These applications demand a high computing performance with real-time constraints, low-power consumption and low cost. With the rapid evolution of telecom standards and the increasing demand for multi-standard products, the need for exible baseband solutions is growing. The concept of Multi-Processor System-on-Chip (MPSoC) is well adapted to enable hardware reuse between products and between multiple wireless standards in the same device. Based on the experience of two heterogeneous Software Defined Radio (SDR) telecom chipsets, this paper presents a distributed control architecture for the homoGENEous Processor arraY (GENEPY) platform for 4G applications. This MPSoC platform is built with telecom baseband processors interconnected with a Network-on-Chip. The control is performed by a MIPS processor embedded in each baseband processor. This control processor can locally reconfigure and schedule the applications with real-time telecom constraints

    parMERASA – multicore execution of parallelised hard real-time applications supporting analysability

    Get PDF
    Abstract-Engineers who design hard real-time embedded systems express a need for several times the performance available today while keeping safety as major criterion. A breakthrough in performance is expected by parallelizing hard real-time applications and running them on an embedded multi-core processor, which enables combining the requirements for high-performance with timing-predictable execution. parMERASA will provide a timing analyzable system of parallel hard real-time applications running on a scalable multicore processor. parMERASA goes one step beyond mixed criticality demands: It targets future complex control algorithms by parallelizing hard real-time programs to run on predictable multi-/many-core processors. We aim to achieve a breakthrough in techniques for parallelization of industrial hard real-time programs, provide hard real-time support in system software, WCET analysis and verification tools for multi-cores, and techniques for predictable multi-core designs with up to 64 cores

    An embedded real-time co-processor for control applications

    Get PDF
    In this paper we present a high performance real-time microcontroller (uRT51) based on an 8051 core. The uRT51 is an 8-bits processor that includes a Real-Time co-processing unit. We have implemented the speed control of a DC motor to evaluate the uRT51 performance. The uRT51 shows a control performance suitable for low-cost, low-power, embedded real-time control applications in which real-time systems based on RTOS failVI Workshop de Procesamiento Distribuido y Paralelo (WPDP)Red de Universidades con Carreras en Informática (RedUNCI

    Distributed modular RT-systems for detector DAQ, trigger and control applications

    Get PDF
    A modular approach to development of distributed modular system architecture for detector control, data acquisition and trigger data processing is proposed. A multilevel parallel-pipeline model of data acquisition, processing and control is proposed and discussed. Multiprocessor architecture with SCI-based interconnections is proposed as good high-performance system for parallel-pipeline data processing. A network (Ethernet -100) can be used for loading, monitoring and diagnostic purposes independent of basic interconnections. The modular cPCI-based structures with high speed modular interconnections are proposed for DAQ and control applications. For distributed control RT-systems, to construct the effective (cost-performance) systems the same platform of an Intel compatible processor board should be used. The basic computer multiprocessor nodes consist of high-power PC MB (Industrial Computer Systems), which are interconnected by SCI modules and link to embedded microprocessor-based sub-systems for control applications. The required number of multiprocessor nodes should be interconnected by SCI for parallel-pipeline data processing in real time (according to the multilevel model) and link to RT-systems for embedded control. (19 refs)

    A Workload Generator for Evaluating SMT Real-Time Systems

    Full text link
    [EN] Real-time tasks have experience a significant complexity increase in the last years. We can find examples of real-time tasks in nowadays systems that control self-driving cars or multimedia systems, among others. To cope with the high performance requirements of such systems, real-time systems are moving from simple in-order processor to complex out-of-order multicore processors. Furthermore, we expect real-time systems to use simultaneous multithreading (SMT) processors in a near future since these architectures address two key design concerns of embedded systems, that is, they provide higher performance and power efficiency than single-threaded multicores. The main drawback that multicores and SMT architectures present from a real-time perspective is that they implement shared resources. Single-threaded multicores usually share the main memory and the LLC, and SMT processor share additionally most of the microarchitectural core resources. Processes running concurrently can interfere in the shared resources, which increases the performance variability and predictability of these systems. We expect an increasing effort in the next years to mitigate these drawbacks and implement real-time systems with multicore SMT processors. Workload generation is a tedious and time-consuming task in the real-time research field because the workloads dispose of many parameters that should be correctly adjusted to provide flexible and representative workloads. Typically used workload generators, however, fail when designing workloads for theses architectures because they are not aware of the architectural characteristics of SMT systems. In this paper we present the task class-based (TCB) workload generator aimed at providing workloads to evaluate real-time systems with SMT multicore processors in an ease and automatized way.Furió Novejarque, C.; Feliu-Pérez, J.; Petit Martí, SV.; Duro-Gómez, J.; Sahuquillo Borrás, J. (2018). A Workload Generator for Evaluating SMT Real-Time Systems. IEEE Computer Society. 367-374. doi:10.1109/HPCS.2018.00067S36737

    REAL-TIME ADAPTIVE PULSE COMPRESSION ON RECONFIGURABLE, SYSTEM-ON-CHIP (SOC) PLATFORMS

    Get PDF
    New radar applications need to perform complex algorithms and process a large quantity of data to generate useful information for the users. This situation has motivated the search for better processing solutions that include low-power high-performance processors, efficient algorithms, and high-speed interfaces. In this work, hardware implementation of adaptive pulse compression algorithms for real-time transceiver optimization is presented, and is based on a System-on-Chip architecture for reconfigurable hardware devices. This study also evaluates the performance of dedicated coprocessors as hardware accelerator units to speed up and improve the computation of computing-intensive tasks such matrix multiplication and matrix inversion, which are essential units to solve the covariance matrix. The tradeoffs between latency and hardware utilization are also presented. Moreover, the system architecture takes advantage of the embedded processor, which is interconnected with the logic resources through high-performance buses, to perform floating-point operations, control the processing blocks, and communicate with an external PC through a customized software interface. The overall system functionality is demonstrated and tested for real-time operations using a Ku-band testbed together with a low-cost channel emulator for different types of waveforms

    Parallelized reliability estimation of reconfigurable computer networks

    Get PDF
    A parallelized system, ASSURE, for computing the reliability of embedded avionics flight control systems which are able to reconfigure themselves in the event of failure is described. ASSURE accepts a grammar that describes a reliability semi-Markov state-space. From this it creates a parallel program that simultaneously generates and analyzes the state-space, placing upper and lower bounds on the probability of system failure. ASSURE is implemented on a 32-node Intel iPSC/860, and has achieved high processor efficiencies on real problems. Through a combination of improved algorithms, exploitation of parallelism, and use of an advanced microprocessor architecture, ASSURE has reduced the execution time on substantial problems by a factor of one thousand over previous workstation implementations. Furthermore, ASSURE's parallel execution rate on the iPSC/860 is an order of magnitude faster than its serial execution rate on a Cray-2 supercomputer. While dynamic load balancing is necessary for ASSURE's good performance, it is needed only infrequently; the particular method of load balancing used does not substantially affect performance
    corecore