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Abstract—Engineers who design hard real-time embedded
systems express a need for several times the performance available
today while keeping safety as major criterion. A breakthrough
in performance is expected by parallelizing hard real-time appli-
cations and running them on an embedded multi-core processor,
which enables combining the requirements for high-performance
with timing-predictable execution.

parMERASA will provide a timing analyzable system of
parallel hard real-time applications running on a scalable multi-
core processor. parMERASA goes one step beyond mixed crit-
icality demands: It targets future complex control algorithms
by parallelizing hard real-time programs to run on predictable
multi-/many-core processors. We aim to achieve a breakthrough
in techniques for parallelization of industrial hard real-time pro-
grams, provide hard real-time support in system software, WCET
analysis and verification tools for multi-cores, and techniques for
predictable multi-core designs with up to 64 cores.

I. INTRODUCTION

The EC FP-7 parMERASA project (Oct. 1, 2011 until
Sept. 30, 2014) targets a timing analyzable system of parallel
hard real-time applications running on a scalable multi-core
processor. Several new scientific and technical challenges arise
in the light of timing analyzability: parallelization techniques
for industrial applications, timing analyzable parallel design
patterns, operating system visualization and efficient synchro-
nization mechanisms, guaranteed worst-case execution times
(WCET) of parallelized applications, verification and profiling
tools, and scalable memory hierarchies together with 1/O
systems for multi-core processors.

The objective of the parMERASA project is an at least
eightfold performance improvement of the WCET for paral-
lelized legacy applications in avionics, automotive, and con-
struction machinery domains in comparison to the original
single-core versions. Application companies selected suitable
sequential hard real-time programs that will be parallelized.
These applications are: for avionics (Honeywell International
s.r.o.) 3D Path Planning algorithm intended for airborne
collision avoidance, Stereo Navigation intended for aircraft
localization, and Global Navigation Satellite System; for au-
tomotive (DENSO AUTOMOTIVE Deutschland GmbH) an
diesel engine management system; and for construction ma-
chinery (BAUER Maschinen GmbH) the control algorithm
for a dynamic compaction machine. A software engineering
approach was developed to ease sequential to parallel program
transformation by developing and supporting suitable parallel
design patterns that are analyzable.

Static WCET analysis techniques for parallel programs are
under development and will be included into the OTAWA
[1] tool. The envisioned parMERASA multi-core processor
and system software provides temporal and spatial isolation
between tasks and scale up to 64 cores. Five verification and
parallelization support tools are under development by Rapita
Systems Ltd. based on the application companies’ require-
ments: (1) Extension of RapiTime! to provide on-target timing
and WCET analysis tool for parallel programs; (2) Extension
of RapiCover to provide on-target code coverage tool for
parallel programs; (3) Memory, cache and stack analysis tool

Uhttp://www.rapitasystems.com/products/RapiTime
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for parallel programs; (4) Tool to assist with the parallelization
of existing sequential software; (5) Visualization and profiling
tool for parallel programs.

parMERASA will impact new products for transportation
systems and industrial applications. It will influence automo-
tive and avionic standards by introducing parallel execution
and timing predictability as key features. This will contribute
to reinforce the EC position in the field of critical computing
systems and yield an advantage for European industry in the
highly competitive embedded systems markets.

The next section analyses market and application require-
ments. Section III presents some related EC projects and
section IV gives an overview of the project objectives. Sec-
tion V highlights the results reached so far after 18 months of
parMERASA project run-time.

II. MARKET AND APPLICATION REQUIREMENTS

DRIVING THE PROJECT

Providing higher performance than state-of-the-art embed-
ded processors can deliver today will increase safety, comfort,
number and quality of services, and lower emissions as well as
fuel demands for automotive, avionic and automation applica-
tions. Such a demand for increased computational performance
is widespread among key European industries.

In the avionic industry, the ever increasing demands for
additional aircraft functionality, safety and security drive mar-
kets towards the need for greater platform performance. For
instance, next-generation UAVs (unmanned aerial vehicles) are
expected to be much more complex in terms of sensing, likely
to involve an active electronically scanned area. All these
requests will presumably result in a significant increase in
the computational power hosted on board, together with the
necessity for absolute guarantees on the timing performance
of applications. Moreover, it will certainly be desirable to host
the workload on as few hardware platforms as possible in order
to reduce size, weight, and power (SWaP). Such a trend can
already be observed in the latest generation Airbus aircraft
A380 with a sixfold increase in the volume of the software
control system with respect to the previous generation aircrafts
A330/A340 [2].

Weight constraints in the automotive industry are less
stringent than in avionics, but cost demands are significantly
more severe. The German Federal Ministry of Education and
Research states in its "Report on Information and Communi-
cation Technology in Year 2020" (IKT 2020) [3] that 80%
of all innovations in passenger cars are due to software
and electronics, and computation related applications in the
automotive sector are increasing from year to year. Driver
assistance systems and ’safety relevant’ systems such as au-
tomatic emergency-braking triggered by collision avoidance
systems can evaluate more sensor signals and master more
complex situations if higher performance is provided by future
control units. Hybrid car technology and fuel injection can be
optimized to reduce gasoline consumption and emissions if
better processor performance is available.

Finally, on a similar level, automation systems from power
plants and large medical equipment to construction machinery
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can incorporate more sensors, more powerful control algo-
rithms, degrade performance gracefully saving highly expen-
sive down-times in the event of sensor or machine defects.

Satisfying these demands is of importance not only to max-
imize long-term economic benefits, but especially to ensure the
health and well-being of EC citizens by achieving maximum
levels of safety on the road and in the air; and by providing for
a high level of environmental protection regarding emissions
of atmospheric pollutants [4].

The common feature of all the application domains dis-
cussed above is that they have hard real-time constraints,
requiring absolute timing predictability, i.e. it is essential
to guarantee the timing correctness of the application such
that an execution deadline will never be missed. Processors
in use today for embedded applications with hard real-time
requirements are characterized by simpler architectures than
desktop processors, encompassing single cores, short pipelines
and in-order execution. However, the growing performance
requirements for hard real-time systems to host more com-
putationally intensive applications with increasingly high data
throughput rates makes it crucial that future processors are able
to provide higher performance than today. Multi-core processor
technology is increasingly considered as an effective solution
to cope with the performance requirements of embedded
systems.

This shift towards multi-core processors can be observed
in the avionic domain, which currently investigates multi-
core platforms and problems associated with their usage for
hosting mixed criticality applications, as well as their impact
on verification and certification processes.

Similar trends can be observed in the automotive do-
main: applications are under constant cost pressure, while
demands are made for higher performance because of new
standards and quality of service requirements. For this reason,
the automotive industry is investigating suitable "compound
ECUs" that compose the functionality of several conventional
ECUs, and multi-cores are of particular interest to perform the
aggregated tasks concurrently on separate cores. The benefit
of co-hosting applications on a single multi-core processor is
not only a reduction in recurring costs, but also to reduce
the volume of communication required among processors,
resulting in a simplified architecture which decreases testing
and development costs.

Moreover, multi-core processors offer solutions to increase
the overall aggregated performance of the system beyond
the co-hosting of mixed criticality workloads within a single
powerful processor. Higher performance levels can be achieved
with multi-core processors if applications are parallelized, i.e.
applications are split into threads that run in parallel on differ-
ent cores and synchronize when they need to communicate.

The upcoming multi-core processor technologies put high
demands on application companies: single-core oriented pro-
grams must be parallelized in order to exploit the performance
benefits of parallel execution on a multi-core processor. The
main obstacle for harnessing the potential performance in-
crease offered by multi-core technology is the parallelization
of state-of-the-art single-core applications to timing analyzable
thread-level parallel programs. The application industry typi-
cally lacks the parallelization know-how and adequate tools.



Hard real-time applications require absolute timing pre-
dictability in terms of WCET analyzability. There are two
families of approaches for performing the WCET analysis
of applications [5]: static WCET analysis and measurement-
based WCET analysis. Each approach is complementary to the
other. Static WCET analysis techniques are based on a timing
model of the hardware architecture, while measurement-based
approaches derive timings of small blocks of code by direct
observation of the execution of the program on the target,
avoiding the effort of having to build an exact timing model of
the processor, but without the full guarantee to catch the real
WCET. When used together, these methods provide additional
assurance of the correctness and precision of the approaches.
In addition, a close interaction of both methods enables much
tighter results as evidence or path information can be derived
by one method easily and used effectively in the other.

However, when moving towards parallel execution con-
sidering medium- or large-scale multi-cores, both approaches
raise new issues such as analysis of the communication
latencies on a network-on-chip (NoC) or determining the
behavior of a multi-level internal memory hierarchy physically
distributed over the nodes. Existing academic and commercial
WCET tools cannot analyze multi-threaded parallel applica-
tions and this gap should be filled to match the expected evo-
lution of embedded software. That is, the individual WCETSs of
parallel threads must be properly combined and, in particular,
communication times and waiting times at synchronization
points must be determined as accurately as possible.

Support for on target verification is essential in any certi-
fication process. Verification is concerned with the provision
of the assurance that requirements are satisfied, i.e. building
it right, whereas validation addresses the problem of ensuring
that the requirements are correct, i.e. building the right thing.
In this project we are focusing on verifying the requirements.
A typical verification example is the requirement to demon-
strate 100% statement code coverage on target, or even 100%
MC/DC (Modified Conditioning/Decision Coverage) coverage
for the highest safety levels for avionic applications as required
for example by the Do-178B airborne system and equipment
standard’. In addition, other on target analysis related to
debugging and performance profiling of parallel execution
are key requirements. Existing tools used for parallelization
of server and supercomputer applications do not take timing
requirements into account and are not applicable to real-
time embedded systems. Thus, providing generic on target
verification and timing analysis tools to support the provision
of such evidence and understanding of the behavior of the
whole system becomes essential.

III. RELATED PROJECTS

Several EC FP-7 projects, MERASA, PREDATOR,
PROARTIS, JEOPARD and T-CREST, have successfully
shown that hard real-time capable multi-core system design is
feasible at least for a small number of cores by a combination
of hardware techniques, adapted WCET tools, and timing
analyzable system software.

Thus, the PREDATOR project® (2007 - 2010) aimed to

Zhttp://www.do178site.com/
3http://www.predator-project.eu/

365

reduce the uncertainty in the timing behavior of multi-core
processors by providing system design guidelines at hardware
and software level. PREDATOR targeted the problem of pre-
dictability by developing deterministic designs which enable
traditional static and measurement-based WCET analysis ap-
proaches.

The JEOPARD project* (2007 - 2010) aimed to develop
a new framework for Java-based real-time applications on
modern multi-core processor systems. The strategic objective
of the JEOPARD project was to provide the tools for platform-
independent development of predictable systems that make use
of multi-core platforms.

The PROARTIS project® (2010 - 2013), whose partic-
ipants also include a subset of the parMERASA partners,
aims to facilitate a probabilistic approach to timing analysis.
The central hypothesis of PROARTIS is that new advanced
hardware/software features such as multi-cores enabling truly
randomized timing behavior can be defined for use in critical
real-time embedded (CRTE) systems.

The T-CREST project® (2011 - 2014) is developing a tim-
ing predictable system that will simplify the safety argument
with respect to maximum execution time while striving to
double performance for four cores and to be four times faster
for 16 cores than a standard processor of the same technology
(e.g. FPGA). The ultimate goal of the T-CREST system will
be to lower costs for safety relevant applications, reducing
system complexity and at the same time achieving faster timing
predictable execution.

The parMERASA project builds upon the results of the
completed MERASA project (2007 - 2010) that focused on
single-threaded execution of hard real-time tasks on multi-
cores with a relatively small number of cores. The shared-
memory and bus-based techniques of the MERASA proces-
sor actually limited the scalability to about four to eight
cores. Instead, parMERASA focuses on parallelization and
parallelization support tools for hard real-time applications
and targets a much higher performance with a multi-core
that should scale up to 64 cores. The parMERASA multi-
core replaces the real-time bus by a scalable timing analyz-
able (NoC) interconnection. The MERASA core simulator is
compatible with the TriCore instruction set architecture from
Infineon Technologies. The parMERASA platform is based on
the PowerPC instruction set architecture for the parMERASA
core. The developed techniques, however, should be applicable
to any other high-performance embedded processor with an
appropriate hardware structure.

IV. PROJECT OBJECTIVES

The aim of the parMERASA project is to parallelize hard
real-time applications in avionic, automotive and construction
machinery domains and execute the resulting parallel programs
on a timing predictable multi-core platform providing a much
higher guaranteed performance than contemporary solutions.

The two overall goals of the project are: (1) an increase of
the WCET performance of hard real-time embedded systems

“http://www.jeopard.org/
Shttp://www.proartis-project.eu/
Ohttp://www.t-crest.org/



by targeting timing predictable multi-cores; (2) an improve-
ment of performance of legacy code by starting from existing
industrial code and migrating it to parallel code preserving
timing predictability. Additional implicit goals of the project
are to provide a significant reduction of the design effort and
cost compared to the current state-of-the-art techniques.

Measurable objectives identified to achieve the overall
goals:

Ol1: Develop a software engineering approach targeting
WCET-aware parallelization techniques and parallel design
patterns that favor WCET analysis. The software engineering
approach should define a development path leading from
sequential legacy programs to parallel programs and maximize
software reuse. The project will develop at least four parallel
design patterns that are analyzable. These patterns should be
applicable to both commercial off-the-shelf (COTS) multi-
cores and the partMERASA platform and will be demonstrated
during the case studies.

0O2: Achieve parallelization of the industrial case studies
by adapting the software engineering approach and applying
suitable parallel design patterns. Deliver higher performance
than single core processors and achieve at least an eightfold
WCET speedup (WCET of the sequential program divided
by the WCET of the parallel program). This metric will be
demonstrated by applying the parMERASA WCET analysis
tools on the avionic, automotive, and construction machinery
case studies.

03: Develop on target verification tools, in particular
WCET analysis tools with less than 25% pessimism on WCET
estimates of parallel programs. Further tools should be devel-
oped concerning code coverage and memory analysis as well
as parallel program profiling and visualization. This objective
will be demonstrated by review of evidence that can support
a certification argument and by applying the tools to the case
studies.

O4: Develop a system architecture and system-level SW
that supports WCET analyzable parallelization. This will be
demonstrated by construction and evaluated during the case
studies.

0O5: Develop a scalable and timing analyzable multi-core
processor with at least a 16 fold average speed-up with 64
cores. This objective will be demonstrated by construction of
a simulator prototype and evaluated by running the case studies
on the simulator.

06: Contribute to standards. We aim at providing at least
four recommendations to either automotive or avionic stan-
dards. In particular we will propose a concept for applying
the developed parallel design patterns to AUTOSAR and the
IMA standard ARINC 653.

O7: Contribute to open source software. The software de-
veloped at the universities, i.e. the static WCET tool OTAWA,
the developed system software and the parMERASA simulator,
will be made publicly available under an open source license
at the end of the parMERASA project.

To reach the objectives the project was structured in three
main phases: requirement specification and concept (com-
pleted), implementation and parallelization towards maximum

366

parallelism (in progress), and optimization, refinement and
evaluation.

V. ACHIEVED RESULTS

A. Parallelization of Industrial Hard Real-time Programs and
Real-time Capable Parallel Design Patterns

The parMERASA pattern-supported parallelization ap-
proach [6], which is an extension of the approach described by
Jahr et al. [7] of University of Augsburg, defines a model-based
development path from sequential legacy programs to timing
analyzable parallel programs. Compared to development of
parallel software from scratch, the development and testing
effort is strongly reduced because of (a) high reuse of code
from the sequential implementation and (b) allowing only
best practice, clearly defined, and analyzable parallel design
patterns to introduce parallelism. They are defined, together
with platform dependent and timing analyzable synchroniza-
tion idioms [8], in the Pattern Catalogue.

The approach comprises two phases: First, based on the
sequential implementation, a model similar to the UML2
Activity Diagram consisting only of sequential code blocks
and parallel design patterns is constructed. The aim is to
express an extremely high degree of parallelism. Second,
this model is refined towards an optimal level of parallelism
by agglomeration of its nodes and definition of parameters
for scalable patterns. The first phase is platform independent
whereas in the second phase all the trade-offs and limitations
of the target platform have to be taken into account. Now
the implementation can be started; algorithmic skeletons are
available in an optimal case for efficient implementation of
the parallel design patterns.

The main advantages of the two well-known parallelization
approaches from the HPC domain, on which it is based,
are exhibited by the parMERASA approach, too: The clear
methodology is derived from the PCAM approach by Fos-
ter [9]; the strong use of parallel design patterns is adapted
from the approach by Mattson et al. [10], [11], [12].

Low overhead for static WCET analysis will be assured by
(a) allowing only analyzable parallel design patterns and (b)
an extension of the Patterns Catalogue with requirements for
static WCET analysis.

Strong tool support is envisioned [6] especially for the
adaption of parallelism to the target platform (phase 2); also
programming guidelines, decision support for the paralleliza-
tion and requirements for system software will be developed.

B. Avionic Applications

In the scope of parMERASA project, the avionic supplier
Honeywell International s.r.o. (HON) goal is to parallelize
applications running on the following three avionic electronic
systems: 1) a 3DPCAS (3D Path Planning/Collision Avoidance
System), 2) a SNS (Stereo Navigation System), and 3) a
GNSS (Global Navigation Satellite System) receiver. The
outcome of HON’s efforts are twofold. First, HON’s team
will be focused in a comparison study planned to validate the
parMERASA approach in the avionic domain. Second, HON’s
team will look at different perspectives of the design cycle for
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Fig. 1: Read memory access latencies in Freescale P4080

avionic electronic systems and compare partMERASA P with
COTS products being considered as an alternative.

The first application presents 3DPCAS. The 3DPCAS
application algorithm provides a good basis for parallelization,
and as such can be easily configured to evaluate the execution
time impact of different multi-core architectures. The 3DPCAS
application is based on the Laplacian multi-grid algorithm that
has been extended to take sensor data and use it to set up
boundary conditions for the grids. An implementation of the
3DPCAS was already analyzed on a Freescale QorlQ P4080
multi-core COTS platform.

The second application presents SNS. The SNS application
was deployed to a variety of ground vehicles for navigation in
GPS-denied situations. In the presence of GPS signal, it was
used as a surrogate for the IMU (Inertial Measurement Unit)
to determine vehicle rotation and translation change (rates
and velocities). An implementation of the SNS was recently
analyzed on a single core architecture with a maximum update
rate of 0.6 Hz. A HON goal is to execute SNS algorithms at
10 Hz (approximately 20 times faster than current single-core
implementation) by exploiting computation capabilities of a
multi-core platform.

The third application presents GNSS receiver. The GNSS
application is an in-development product, which is expected
to support all currently available global constellations: GPS,
GLONASS, Galileo, and Compass. By parallelizing GNSS re-
ceiver software, HON expects to reduce development and pro-
duction costs, and include computationally demanding features
such as: ARAIM (Advanced Receiver Autonomous Integrity
Monitoring), multi-path mitigation based on multi-correlators,
and vector tracking.

In Fig. 1 and Fig. 2, we present the preliminary results
of read and write memory access latencies on multi-core
COTS platform (Freescale QorIQ P4080) with disabled caches.
In both figures, we compare the maximum, minimum, and
average memory access latencies with 1, 2, 4, and 8 cores
configured to issue either read-only or write-only operations
at the same time. In Fig. 1, as the experiments suggest,
there is a minor increase in the read operations latency (as
expected) corresponding to the increased number of cores
concurrently accessing the memory. In Fig. 2, we observe an
increase in the maximum write memory access latency (as
expected), but the minimum write memory access latency
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decreases significantly (not intuitive). Furthermore, a write
operation results into a load and a store instruction at the
micro-architecture level, i.e., the core first loads cache-line
(with fixed transaction size) from the memory to a Data Line
Fill Buffer (a mini-cache that is part of the load-store unit
in each core), updates its contents, and stores the cache-line
back to the memory. With the limited knowledge of the micro-
architecture, we speculate that the latency decrease in the write
memory accesses results from possible snooping optimizations
for the load instructions. We speculate that these snooping
optimizations also cause write memory accesses to have lower
latency than read memory accesses. Regarding the reduction
in the average write memory access latency, we conclude that
memory controllers feature an open page policy, i.e., open
pages are only closed when necessary. Open page policy is
widely employed in COTS architectures, because it exploits
data locality. However, similarly to caches, it introduces vari-
ations, because memory latency dependent on the history of
memory accesses.

Based on the conducted experiments, we conclude that
significant increase in the range and variations of the memory
access latencies indicate that the COTS memory controllers are
sensitive to sharing. Furthermore, write-intensive workloads
seem to induce more volatile behavior than read-intensive
workloads.

C. Automotive Applications

The automotive supplier DENSO AUTOMOTIVE
Deutschland GmbH parallelises an existing diesel engine
management system. This is a typical application for
controlling a combustion engine. Its software structure
comprises many cyclic or event-driven functions called
runnables.

A key issue of parallelizing automotive software is the high
number of dependences between runnables. For that reason,
an application specific parallelization approach is developed,
which uses timing properties and data dependences as con-
straint. The reconstruction as AUTOSAR-VFB model as well
as state-of-the-art WCET analysis and measurement tools,
developed in the parMERASA project, are used to extract
these constraints from single-core code. Runnables are then
distributed over cores/clusters and executed in parallel, see
section V-H. To improve speed-up even further, runnables with



a high WCET are itself parallelized to execute on multiple
cores of one cluster.

Current work focuses on the extraction of timing properties
and data dependences from the sequential implementation.
Next steps focus on the development of strategies for the
distribution of runnables with the target to achieve a maximum
degree of parallelism, while the given constrains are main-
tained. The pattern-based parallelization approach developed
by University of Augsburg will be applied to the engine man-
agement system and evaluated on the parMERASA simulator.

D. Construction Machinery Applications

BAUER Maschinen GmbH is the leading manufacturer of
specialist foundation equipment, as e.g. drilling rigs, as well as
equipment for bored piles, diaphragm walls, anchors, and sheet
pile walls. Current control algorithms of BAUER Maschinen
are sequential, but in future, the control applications for con-
struction machines will be more complicated (more automatic
function, more safety and security functions are expected).
So limits in performance, time, and code structure of the
sequential code will be reached.

BAUER Maschinen GmbH parallelizes the control algo-
rithm for the dynamic compaction machine of BAUER Maschi-
nen GmbH. With this project the advantage (the increase of
performance) of parallelization of existing code should be
shown, without changing too much the well-known algorithm.
In steps 1 and 2 the control loop will be parallelized such
that each supervised sub-task (PWM, CAN connected, 1/0O)
will be potentially mapped on a different core, following a
master (control loop)/slave based parallel design pattern. Ag-
glomeration and mappings will be performed to find out which
sub-tasks to merge and map to different configurations, down
to the dual-cores and quad-cores that are already available.

E. WCET Analyzability and Verification Tools for Embedded
Multi-cores by Rapita Systems Ltd.

Rapita Systems Ltd. based in York, UK, is a specialist
in worst-case execution time analysis and simulation of real-
time embedded systems for the automotive, avionic, space and
telecommunication markets. RapiTime Systems Ltd. brings
into the project its RapiTime tool for measurement-based
WCET analysis. The company investigates verification tools
for safety critical systems using multi-cores.

Specifications for verification and profiling tools were de-
veloped based on the tool requirements of the project partners.
Five verification and parallelization support tools were selected
by Rapita Systems Ltd. based on the application compa-
nies’ requirements. The identified tools are: (1) extension of
RapiTime to provide on-target timing and WCET analysis
tool for parallel programs; (2) extension of RapiCover to
provide on-target code coverage tool for parallel programs;
(3) memory, cache and stack analysis tool for parallel pro-
grams; (4) tool to assist with the parallelization of existing
sequential software; (5) visualization and profiling tool for
parallel programs. It was decided based on the requirements of
the application companies that tools (4) and (5) are the most
urgently required ones in phase 2 of the project. Tools (1), (4)
and (5) are already being implemented. The remaining tools
are currently in the detailed specification phase.
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F. Static WCET analysis

Université Paul Sabatier, located in Toulouse, France,
hosts in its Computer Science Institute (IRIT) the TRACES
(Toulouse Research group on Architecture & Compilation
for Embedded Systems) research team, which has significant
experience in static WCET analysis. The TRACES team inves-
tigates automatic static WCET analysis of parallel applications.
It will adapt its static WCET analysis tool OTAWA’ by an
automatic static WCET analysis of parallel applications and
support features added in the parMERASA multi-core. The
current OTAWA tool supports several instruction sets and
micro-architectures and includes the TriCore instruction set
and the MERASA multi-core architectural description.

Timing analyzability of parallel design patterns was investi-
gated and synchronization primitives to implement the patterns
were devised [1]. A method to compute worst-case waiting
times in combination with an annotation scheme of the parallel
source code was proposed.

New techniques will be developed to support hardware
schemes involved in the design of timing predictable multi-
cores with 16 to 64 cores (multi-level and distributed memory
hierarchy as well as interconnection network).

The standard process of WCET analysis, designed to
support sequential tasks, will also be extended to support
parallel applications. Main issues are the identification of the
application structure and the determination of waiting times on
synchronizations and communications. Foreseen solutions will
combine code analysis techniques and user-/compiler-defined
annotations. These solutions will be completed with guidelines
to timing predictable parallel applications.

Up to now WCET analysis tool OTAWA was enhanced
by the PowerPC ISA, which was selected as core ISA of
the parMERASA multi-core processor, the specification of
the annotation format was refined, and a further analysis of
synchronization primitives is in progress.

G. System Architecture

One of the main responsibilities of the partMERASA sys-
tem architecture is to ensure that the timing assumptions done
at the application level are maintained. This is achieved by
the provision of time and space partitioning between appli-
cation partitions among each other. Fig. 3 shows the general
system architecture approach proposed for the parMERASA
project by University of Augsburg. The RTOS Kernel Library
represents the common basis for domain specific runtime
environment (RTE) implementations. It acts as a hardware
abstraction layer and provides the basic functionalities re-
quired by the application domain specific RTE services, that
is scheduling, protection, communication & synchronization,
and I/0. The implementation of RTE services is divided
by a protection boundary into non-critical/critical services
executed in user/kernel mode respectively. To ensure time and
space partitioning, only critical services can influence other
partitions. Non-critical services have no access across partition
boundaries except if explicitly allowed, for example through
memory mapping. This guarantees that malfunctioning, non-
critical services cannot affect the whole system. A domain

Thttp://www.otawa.fr/
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specific interface connects the application layer with the RTE
services.

The overall system architecture [13] was defined to support
the execution of parallelized hard real-time applications and
their WCET analyzability. Based on the requirements of the
different, industrial application domains, the parMERASA
system software will introduce specific RTEs called TinyAU-
TOSAR and TinyIMA. The AUTOSAR standard® respectively
ARINC 653 specification’ serve as basis for these RTEs.
Additionally, a construction machinery RTE will be provided.
Each RTE implementation will incorporate the RTOS Kernel
Library as a common basis. In all cases, extensions to support
advanced parMERASA mechanisms of synchronization, inter-
core communication, and parallel design patterns will be
implemented.

The parMERASA system software, i.e. RTOS Kernel Li-
brary as common platform basis, and individual "tiny" RTEs
for each application domain are under development to assist the
applications. Currently, the library is widely implemented and
the TinyAUTOSAR implementation is under construction. It
will follow the distributed approach of fos OS [14] respectively
MOSSCA [15] proposal for parallel RTOSs.

H. Embedded Multi-core Processors, System Architecture and
System Software

Safety critical real-time systems rely on incremental qual-
ification that allows each system component to be subject to
formal certification (including timing analysis) in isolation and
independently of other components, with obvious benefits for
cost, time and effort. Currently, incremental qualification is
guaranteed by providing robust space and time partitioning to
applications, i.e. the functional and timing behavior of each
application is not affected by other applications, so formal
certification can be provided. Therefore, the parMERASA
target applications impose the processor architecture to provide
mechanisms to guarantee time and space isolation among
applications. Moreover, such a property must remain the
same even when moving towards parallel execution in which

Shttp://www.autosar.org/
http://www.arinc.com/
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chical bus

applications are spawned in multiple parallel threads, i.e.
parallel threads belonging to one application cannot affect
the functional and timing behavior of parallel threads belong-
ing to other applications running simultaneously within the
parMERASA architecture.

Therefore, the parMERASA architecture relies on a clus-
tered processor architecture, in which cores are organized in
clusters connected through a dedicated NoC. At the same
time, each cluster is connected with another NoC that allows
cores from different clusters to communicate among them.
Such type of processor architectures are nowadays a reality
in the embedded system domain; examples include the STM
P2012 [16] and the Kalray MPPA 256 [17].

The use of clustered architectures provides to applications
isolated islands of communications, in which they can run.
Clusters prevent communication requests from different appli-
cations to interfere among them as only the NoC that connect
cores is used (intra-cluster communication). Only in case
applications want to communicate among each other (inter-
cluster communication), a potential interference may occur
in the NoC that connects the different clusters. However, in
most safety-critical real-time systems, such communication
is known statically at system integration (e.g. inter-partition
communication in the avionic domain and port communication
in the automotive domain), which allows scheduling the inter-
cluster communication in a predictable way.

It is important to remark that functional isolation is also
guaranteed by controlling inter-cluster communication: re-
quests from an application cannot access data from other
applications unless inter-cluster communication is used. To
that end, the processor architecture must provide a complete
memory management unit that will allow the operating system
to define different memory regions within each cluster: data
local to each core, data global to each cluster and data global
to all clusters.

Fig. 4 shows an example of a clustered architecture de-
ploying a two-level hierarchical bus. The application that
executes within cluster 1 will reside in memory 1 and so intra-
cluster requests will only use its corresponding bus, without
interference with other clusters. In case an application wants to
communicate with other applications, the requests will traverse
the second bus level without affecting other clusters, and the
message will be directly routed to the corresponding cluster in
which the destination application runs.



Moreover, the partMERASA architecture relies on caches
to reduce latencies and impact of interferences when multiple
cores from the same cluster want to access the memory. In this
case, because multiple cores can share data, it is mandatory to
guarantee coherent data accesses. To that end, a predictable
cache coherence mechanism has been proposed: the On-
demand Coherent Cache (ODC?) [18]. ODC? guarantees
coherent accesses only to data that is accessed inside critical
regions. Therefore, all local caches are kept free from shared
data outside critical regions. Nevertheless, the applications can
profit from the advantage of caches inside as well as outside of
critical regions. Because the proposed technique is free from
cache-to-cache communication, a tight worst-case execution
time analysis on the level of a single-core data cache analysis
is feasible.

VI. CONCLUSION

The parMERASA project targets parallelizing hard real-
time programs to run on predictable multi-/many-core proces-
sors. The first project phase (Oct. 2011 - June 2012) "Re-
quirement Specification and Concept" has been successfully
completed. The project is currently in the middle of the second
project phase (July 2012 - September 2013) "Full Specification
and Implementation".

From application side, five use cases were selected for
parallelization: for avionics (Honeywell International s.r.o.)
3D Path Planning, Stereo Navigation, and Global Navigation
Satellite System; for automotive (DENSO AUTOMOTIVE
Deutschland GmbH) a diesel engine management system; and
for construction machinery (BAUER Maschinen GmbH) the
control algorithm for a dynamic compaction machine.

A model-based parallelization approach for timing analyz-
able parallel software was developed making strong use of
parallel design patterns, which were selected together with
the application companies. For the static WCET analysis tool
OTAWA, source code annotations for parallelization analysis
were defined that are based on the parallel design patterns.
Requirements on verification tools were defined and five
verification and profiling tools were selected, which will be
implemented based on Rapita Systems’ RVS tools.

The overall system architecture, a common RTOS Kernel
Library and the required functionalities for TinyAUTOSAR,
TinyIMA, and construction machinery RTEs are defined. The
RTOS Kernel Library and TinyAUTOSAR functions are partly
implemented. Multi-core architecture design space exploration
was done based on the requirements of the applications, system
architecture and WCET analysis.

The experiences of parMERASA will be provided as
recommendations to the execution models of AUTOSAR and
IMA.
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