
An Embedded Real-Time Co-Processor for Control Applications

R. Cayssials, O. Alimenti, F. Luque and E. Ferro
Universidad Nacional del Sur - CONICET

Department of Electrical Engineering
Bahía Blanca - Argentina

{iecayss}@criba.edu.ar

Abstract

In this paper we present a high performance real-time microcontroller (uRT51) based on an 8051
core. The uRT51 is an 8-bits processor that includes a Real-Time co-processing unit. We have
implemented the speed control of a DC motor to evaluate the uRT51 performance. The uRT51
shows a control performance suitable for low-cost, low-power, embedded real-time control
applications in which real-time systems based on RTOS fail.

KeyWords: Real-Time Systems, Real-Time Co-Processing, Embedded Systems.

Workshop de Procesamiento Distribuido y Paralelo (WPDP)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301043597?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

Digital control utilises real-time systems to control systems. A typical control system is made up of
a set of control tasks in addition to other non-control tasks (like user interaction, health monitoring,
etc). Digital control techniques are applied to design efficient control strategies. These techniques
are based on discrete-time models that require to meet strict timing intervals. Hence, the precision
on these temporal requirements should be used to evaluate the control performance that the real-
time systems can achieve.
Real-time systems consist of a set of tasks that has to be executed by a processor. Most of real-time
systems are implemented using a Real-Time Operating System (RTOS). The scheduler is a special
task of the RTOS that shares the processor among the tasks that require execution. The scheduler
implements a priority discipline to determine the next task to be executed. The execution of the
scheduler produces overhead on the systems.
Several approaches have been proposed to implement processors with real-time features. In [1, 3,
5], a co-processor architecture is proposed to support real-time applications. It implements RTOS
functions over a reduced set of tasks. In [6, 7], the AAMP processor is shown to be used in
avionics. The AAMP was verified to have a predictable behaviour, but it does not have special real-
time features. In [9], the δ Framework is proposed as a method to implement RTOS functions in a
reconfigurable hardware. None of these approaches are available for commercial, industrial or
educational developments. They are very restrictive on both the priority discipline implemented and
the number of tasks supported. Besides, all these approaches are evaluated considering scheduling
parameters (e.g. tasks' response times, missed deadlines, idle cpu-time, etc.) instead of evaluate the
effects that they produce on the controlled application.
The uRT51 is a processor designed to be applied in embedded real-time applications. Its
architecture was designed from a real-time point of view and consequently any arbitrary priority
discipline can be implemented over a set of up to 65000 tasks. The URT51 is available together
with the uRT51 Programming Suite that allows the designer to program, to debug and to analyse its
application.
In this paper we evaluate the performance of the uRT51 processor in a control application. We
propose a speed control of a DC motor to compare the performance of the uRT51 processor with
the one obtained using a RTOS. The experiments show that the uRT51 outperforms a RTOS-based
real-time system. It is shown that the uRT51 is suitable for low-cost, low-power embedded real-
time control applications.
Section 2 introduces the main concepts on digital control. Section 3 describes a typical
implementation of a real-time operating system. In section 4 we present the effects that a scheduling
mechanism produces on the control tasks. The architecture of the uRT51 processor is shortly
explained in section 5. In section 6 we demonstrate how to control the speed of a DC motor using
the uRT51 processor. In section 7 the performance of the uRT51 was evaluated for the four real-
time tasks of the application implemented. Results are analysed in section 8. Conclusions are drawn
in section 9.

2. Digital Control

The basic operation of a digital control system (Fig.1) is to read information from multiple sensors,
calculate the output and send the results to actuators.
The control application is mathematically modelled by the transfer function G(s). The control
design problem is to specify the transfer function C(z) to give to the closed-loop the desire
characteristics. These characteristics include stability and perhaps some specification on the step
response such as the percent overshoot, settling time, and steady-state error.
C(z) is implemented as software and it is executed by a processor. The input to C(z) is a sequence of
numbers obtained from an A/D converter and the output is a sequence of numbers that is converted
to a piecewise control signal by the D/A converter. Both A/D and D/A converters are sampled at
regular intervals and transform the continuous-time transfer function G(s) into a discrete-time

model of the control application. The discrete-time model derived from this transformation is not an
approximation but an exact description of the behaviour of the application at sampling intervals
([4]).
The computational execution of C(z) takes some time to complete. If the computational delay is
very small compared with the dynamic of the system, it can be neglected. Anyway, a good design
should take into account this delay in order to assess the effect of time delay on the close-loop and
decide whether or not it is negligible.
A variable sampling interval during runtime produces a jitter that is not modelled by the discrete-
time model and consequently it could lead to an undesirable behaviour of the application. Real-time
systems should be design in order to reduce/eliminate the jitter on both the sampling interval of the
inputs and the updating interval of the actuators.

Figure 1: Classical Feedback Discrete-Time Control System. C(z) is the transfer function
of the controller and G(s) is the transfer function that models the application.

3. Real-Time Operating System (RTOS) Functions

A real-time system is modelled as a set Π of n periodic tasks to be executed on a processor. Each
task i performs a certain function and it is characterised by its period, Ti, its deadline, Di, and its
execution time, Ci.
Tasks must be invoked periodically according to its period. This can be done by a timer associated
to each task. However, as the number of tasks increases, a lot of systems resources would be
consumed by these timers. Instead, most of RTOS runs a time-based task invoked by a periodic
timer interrupt that goes off at regular intervals and checks whether a real-time task has to be
invoked or not ([2]). Because the timer task is invoked at discrete intervals, denoted Ttimer, the time
in a real time system is considered slotted and either tasks’ periods and tasks’ deadlines should be
expressed in slots. Therefore, task i will have to be invoked either every ⎣Ti/Ttimer⎦ or every
⎡Ti/Ttimer ⎤ slots.
For instance, if timer task is set to go off every Ttimer = 500µs, a real time task with a period of T =
1.6ms, should be invoked either every 3 slots (1.5 ms) or 4 slots (2 ms). In both cases there exists a
drift in the task invocation.
The scheduler is executed after the timer task in order to determine the task that grants the processor
in the next slot. Hence, Ttimer has influence either on the system time resolution as well as the
overhead that the RTOS produces.

4. Real-Time Scheduling of Control Tasks

Scheduler assigns the processor according to the priority discipline that it implements. The fixed
priority (FP) is one of the most important disciplines in real-time and most of RTOSs implement it.
In a FP discipline each real-time task is assigned with a priority in the design time and it remains
fixed during runtime.
If each real-time task of the system meets its deadline, then it is said that the system is schedulable.
Real-time advance techniques compute the worst case of response of any real-time task of the
system in order to analyse its schedulability.
The time that a task has to wait to be executed/completed depends on the computation time required
by higher priority tasks which are ready to be executed. Because the pattern of releases is not fixed,
and execution times of a task may varied from invocation to invocation, this result in a variable

interference and therefore a variable response time of the task. These time variations produce a jitter
on both input sampling and output updating of the control system.
A real-time task may be executed immediately after its invocation or may be completed just before
its deadline. The maximum absolute jitter of task i is equal to Di and consequently a real-time task i
could produce a sampling interval, Si such that:
 iiiii DTSDT +≤≤− (1)

This leads to a relative jitter of ± Di/Ti. Shorter deadlines improve the control performance of the
system but require more powerful computational processors to make the system schedulable.

5. The uRT51 processor

The uRT51 is a processor intended for low-power, control, real-time, embedded applications. The
uRT51 microprocessor is available in VHDL and can be synthesised for Altera, Xilinx and ASIC
devices. The uRT51 Programming Suite is an IDE environment to program, to debug and to analyse
an uRT51 application. The authors can supply all the tools required to work with the uRT51
processor.

uP core

Real-Time

Unit

Debugging
Unit

clk
Memory

Controller

RAM

Flash

I/O

uRT51 Programming Suite

uRT51

Figure 2: The uRT51 processor architecture

The uRT51 processor consists of the following building blocks (Figure 2):
• The uP core implements a subset of the 8051 instruction set and it can recognise some special
real-time instructions to be executed by the Real-Time unit. Input/Output devices can be driven
directly by the uP core.
• The Real-Time Unit controls the real-time behaviour of the uRT51 processor. It is a co-
processing unit that supports any arbitrary priority discipline and up to 65000 tasks. When no task is
requiring to be executed, real-time unit halts all the uRT51 activities and consequently it reduces the
power consumption of the system.
• The Debugging Unit allows an easy integration with the uRT51 Programming Suite. All the
activities of the uRT51 can be controlled and supervised by the uRT51 Programming Suite through
the Debugging Unit.
• The Memory Controller implements all the control functionality to connect the uRT51
processor to external memories. It supports different bus widths. Input/Output devices can be
connected in the uRT51’s Memory Map.
The architecture was designed to work with a 10MHz external clock. With this clock frequency,
both tasks’ period and tasks’ deadline can be expressed with a time resolution of 100ns. The RTU
does not execute any timer subroutine and consequently there is not RTOS overhead. Hence, both
the schedulability of the system and the response time of the control tasks are improved. The unique
cost associated with the uRT51 is the context switching (save the content of the registers of the
actual task plus recall the registers of the new task). This time is 32.60 us.

6. DC Motor Speed Control

In this section we describe the application we used to evaluate the performance of the
uRT51processor.

6.1. Description of the application
The speed of the DC motor is controlled varying the energy transferred to the motor using a pulse
width modulation (PWM) technique.
The PWM technique is based on changing the duty cycle of the power supplied to the motor. The
duty cycle is defined as the ratio between the time that the power is on and the period of the wave
(Fig.3). The energy supplied to the motor when the power is on is converted to mechanical
movement of the motor. When the power is off, the motor remains moving because the energy that
was transferred when the power was on. However, the power should be connected before the
velocity of the motor decay below a certain value. Therefore, the period of the PWM wave, denoted
TPWM, depends on both the electrical and the mechanical characteristics of the motor and the load. In
our case, good velocity stability was achieved for PWM periods between 10ms and 20ms. The
resolution on the motor speed will depend on the precision we could get on both the time that power
is on and the period of the PWM wave.

 Ton

TPWM

Figure 3: PWM wave of the power supplied to the motor to control its velocity. The energy
transferred to the motor is proportional to the duty cycle of the wave (Ton/TPWM).

The speed is measured indirectly using an optical sensor and a slotted disc attached to the shaft of
the motor (Fig.4). The sensor toggles its output every 2·π / 36 rad. The speed of the motor is then
measured counting the number of toggles occurred in a certain interval Is. The maximum speed of
the motor is 2400rpm and consequently the reading of the output of the sensor should be done faster
than once every 347.22 µs. If the task in charge of reading the output of the sensor is invoked
slower than this interval, then a toggle could be missed and consequently the calculus of the
velocity will be erroneous.

Real-Time System

Task 2

Task 4

Task 3

Task 1

DC

Motor
Power
Supply

PWM
Control

DC
Motor

Sensor

Communication
Interface

Sensor data
acquisition

Current Speed
Speed

calculus

toogles’ count

Setpoint

To remote control
and supervision

Application

Figure 4: Scheme of the DC motor speed control. The PWM module controls the energy
supplied to the motor and the sensor toggles its output every 2·π 36 rad.

In order to reduce the error in the calculus of the velocity, the interval Is considered should be long
enough. If the interval is short, then the influence of one toggle will produce great variations on the
speed calculus. However, as Is increases, the response of the motor to changes in the load or in the
setpoint of the speed will decrease. As a tradeoff between both considerations, we chose an interval
equal to 23ms.
The speed setpoint is configured by a remote computer through a serial link. In this way, control
and supervision of the motor can be done remotely using a standard communication link.

6.2. Specification of the real-time system
Four well define real-time tasks can be defined from the control functions that the system must
perform (Fig.4).

• Task 1: Data Acquisition
This task is in charge of monitoring the sensor and counts the number of toggles that the sensor
produces on its output. The task period should be less than 347.22 µs in order to avoid missing
output toggles.

• Task 2: PWM control
Task 2 modifies the duty cycle of the PWM wave according to the difference between the setpoint
and the speed of the motor. If the speed of the motor is lower than the setpoint, then the duty cycle
of the PWM wave is increased, otherwise it is decreased. Task 2 is invoked m times every PWM
wave period. Each time that task 2 is invoked, it checks if the power of the motor should be turn
either on or off to produce the desire duty cycle.
We set the period of the PWM wave in TPWM = 20ms and the period of task 2 equal to 1ms. So, the
resolution on the duty cycle is equal to 5%. Smaller resolutions will produce more precision on the
speed of the motor but a higher load on the real-time system.

• Task 3: Speed calculus
Task 3 calculates the speed of the motor through the angle elapsed in the interval Is. There exists a
trade-off on the Is selection between the precision and the reaction of the system. As Is increases, the
error in the calculus of the speed of the motor decreases but the reaction of the control to changes
on both the setpoint and the motor load becomes slower. However, a higher precision on the
calculus of the speed allows us to increase the gain of the PWM control and consequently reacts
faster to changes on both the setpoint and load conditions. A boundary on the precision in the
calculus of the speed should be given by the precision we can get on the PWM control. There is not
point to get a higher precision on the calculus of the speed if it is not possible to control it in a
comparable magnitude.

• Task 4: Communication interface
This task sends to and receives from, through an asynchronous serial link working at 960 bytes/s,
the current speed of the motor and the setpoint, respectively. In order to avoid missing bytes
received through the serial link and to transmit at the maximum transmission rate, task 4 should be
invoked at least every 1 / 960 s ≈ 1ms.

7. Evaluation

Whilst periods and deadlines depend on the functions that control tasks must perform, the execution
time depends on the computational characteristics of the processor. The four real-time tasks were
implemented to be executed on the uRT51 processor. The worst case execution time of each task is
given in system clock period units on the Table 1.

Task C [clock

periods]
1 401
2 436
3 506
4 366

Table 1: Worst case execution time of the tasks of the system expressed in clock periods

The priority assignment is done according to a rate monotonic policy (RM). In RM, tasks with
shorter periods are assigned to higher priorities. Table 2 shows the period, the deadline and the
priority of each one of the real-time tasks. Higher priorities are represented by lower priority
indexes.

Task T D Priority
1 347.22µs 347.22µs 0

(highest)
2 1ms 1ms 1
3 23ms 23ms 3
4 1ms 1ms 2

Table 2: Period, deadline and priority of the real-time tasks

A timer/scheduling mechanism was implemented for four tasks. The evaluation of the system was
performed using a FPGA development board to implement them. Clock frequencies were set to 10,
20, 40, 50, 80 and 100MHz. The uRT51 Programming Suite was used to program the system and to
analyse the runtime behaviour of the systems.
Figures 5, 6, 7 and 8 show the average jitter of task 1, 2, 3 and 4, respectively.

The uRT51 processor can schedule the system with a 10MHz clock frequency while the RTOS-
based system needs at least a frequency of 50MHz to schedule it because the RTOS overhead.

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80 90 100
Frequency [MHz]

jitter [us]

Figure 5: Average Jitter of task 1

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100
Frequency [MHz]

jitter [us]

Figure 6: Average Jitter of task 2

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100
Frequency [MHz]

jitter [us]

Figure 7: Average Jitter of task 3

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100
Frequency [MHz]

jitter [us]

Figure 8: Average Jitter of task 4

8. Result Analysis

From the point of view of the real-time scheduling theory, the overhead of the system is reduced
when the uRT51 is used. Besides, with an uRT51 processor the system is schedulable at lower clock
frequencies with the following advantages:
• the power consumption of the system is reduced. The power dissipation of a digital is proportional
to the clock frequency of the system. Besides, the voltage of the system can be driven down and
consequently the power consumption of the system is reduced [8].
• lower cost technology can be used. When lower clock frequencies are applied, cheaper
technologies can be used in the processor implementation.
• the electromagnetic interference is reduced when lower clock frequencies are applied and
consequently systems can meet standards easily.
On the other hand, from a control theory point of view, the performance is improved when a uRT51
processor is utilised because the average jitter of the tasks is much less. In a real-time system based
on a RTOS, the slot time has a greater influence on the control performance than the clock
frequency.

9. Conclusions

In this paper we evaluate experimentally the performance of the uRT51 processor in a control
application.
The uRT51 processor requires a much less frequency to schedule the real-time system. Whilst the
uRT51 processor schedules the DC motor speed control application with a 10 Mhz clock, a RTOS
needs at least a 50Mhz clock. Better and cheaper digital designs can be achieved at lower clock
frequencies.
The control properties of the real-time system are improved because the jitter of the control tasks is
reduced. Consequently, the perturbations that the real-time system produces on the control
application are reduced as well.
We can conclude that the characteristics of the uRT51 processor make it suitable to be applied to
low-cost, low-power embedded real-time control applications.

References

[1] M. Colnaric andW.A. Halang. Architectural support for predictability in hard real time systems.
Control Engineering Practice, 1(1):281–285, 1993.
[2] Bill O. Gallmeister. POSIX.4: Programming for the Real World. O’Reilly & Associates, January
1995.
[3] Vlado Glavini´c, Stjepan Gros, and Matjaz Colnari ´c. Vhdl-based modeling of a hard real-time
task processor. In IEEE ISIE’99, pages 49–54, Bled, Slovenia, 1999.
[4] Vaccaro Richard J. Digital Control: A State-Space Approach. McGraw-Hill Series in Electrical
and Computer Engineering, 1995.
[5] W.A. Halang M. Colnaric, D. Verber. Supporting high integrity and behavioural predictability
of hard real-time systems. Informatica, Special Issue on Parallel and Distributed Real-Time
Systems, 19(1):59–69, February 1995.
[6] Mandayam K. Srivas and Steven P. Miller. Formal verification of an avionics microprocessor.
Technical Report CSL-95-04, SRI Internaltional Computer Science Laboratory, Menlo Park CA
94025, USA, June 1995.
[7] Matthew M. Wilding Steven P. Miller, David A. Greve and Mandayan Srivas. Formal
verification of the aamp-fv microcode. Contractor Report NASA/CR-1999-208992, National
Aeronautics and Space Administration, 7121 Standard Drive, Hanover, MD21076-1320, February
1999.
[8] Clive Watts and Ravi Ambatipudi. Dynamic energy management in embedded systems. IEEE
Computing and Control Engineering, pages 36– 40, October/November 2003.

[9] Jaehwan Lee and J. Lee and V. J. Mooney III and K. Ingstrom and A. Daleby and T. Klevin and
L. Lindh, "A Comparison of the RTU Hardware RTOS with a Hardware/Software RTOS", In
Proceedings of the ASP-DAC 2003. Design Automation Conference, pages 683-688, Jan. 2003.

