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Parallelized Reliability Estimation of 
Reconfigurable Computer Networks 

David Nicol * 
Subhendu Das 

College of mlliam and Mary 

DanPolumho 
NASA Langley Research Center 

Abstract 

This paper describes a parallelized system, ASSURE, for computing the reliabil
ity of embedded avionics flight control systems which are able to reconfigure them
selves in the event of failure. ASSURE accepts a grammar that describes a reliability 
semi-Markov state-space. From this it creates a parallel program that simultaneously 
generates and analyzes the state-space, placing upper and lower bounds on the prob
ability of system failure. ASSURE is implemented on a 32-node Intel iPSe/S60, and 
has achieved high processor efficiencies on real problems. Through a combination of 
improved algorithms, exploitation of parallelism, and use of an advanced micropro
cessor architecture, ASSURE has reduced the execution time on substantial problems 
by a factor of one thousand ove! previous workstation implementations. Furthermore, 
ASSURE's parallel execution rate on the iPSC/S60 is an order of magnitude faster 
than its serial execution rate on a Cray-2 supercomputer. While dynamic load balanc
ing is necessary for ASSURE's good performance, it is needed only infrequently; the 
particular method of load balancing used does not substantially affect performance. 

"This research was supported in part by the Army Avionics Research and Development Activity through 
NASA grant NAG-1-787, in part by NASA grant NAG-1-1132, in part by NASA grant NAS-1-18605, and in 
part by NSF Grant ASe 8819373. 



1 Introduction 

For some time reliability analyses of fault-tolerant flight control systems have used auto
mated tools such as ARIES, SURF, CARE III, ASSIST, and SURE for determining system 
failure probabilities[7] (also see the excellent survey in [8]). On large reliability models these 
programs require a great deal of computational effort. Typically the complexity of model 
analysis grows exponentially in the size of the model, forcing design engineers to use rel
atively simple reliability models. These tools simply are not equal to the challenge posed 
by the analysis of highly complex, highly reliable control systems such as the Integrated 
Airframe Propulsion System Architecture (IAPSA) [3]. These tools stand to benefit from 
parallel processing, if parallelism can be found and efficiently exploited. 

This paper concerns two tools, ASSIST and SURE, that are used to place upper and 
lower bounds on the probability of failure in computer systems which can reconfigure them
selves in the event of failure. We describe how these tools were rewritten to clearly expose 
parallelism, were extended to permit the construction of highly complex reliability mod
els, and were subsequently ported to a distributed memory parallel architecture, the Intel 
iPSC/860. The parallel run-time performance on 32 nodes of the iPSC/860 is one thousand 
times faster than the run-time of the original tools on a Sun 3/150. This dramatic gain is 
brought about by a combination of algorithmic improvements, parallelism, and use of the 
advanced (in 1990) Intel 80860 [4] microprocessor architecture. We exploit the parallelism 
inherent in searching state-spaces, a topic of active research interest (e.g, see [6, 18, 16]). 
Our contribution is to show how to transform a reliability model into a form that can be 
efficiently and automatically processed on a parallel architecture. Our experience empirically 
proves the potential of parallel processing on a class of applications which hitherto have not 
exploited parallelism. Our performance comparisons between the iPSC/860 and Cray-2 also 
empirically prove the clear superiority of parallel processing on scalar applications of this 
type. 

Our parallelized tool dynamically balances the workload whenever some processor goes 
idle. On the largest problems studied dynamic load balancing was called so infrequently 
that its cost does not detract greatly from the overall performance. However, failure to use 
dynamic load balancing can significantly degrade performance. 

This paper is organized as follows. §2 provides background information on reliability 
modeling, and the tools of interest. §3 introduces the ASSIST language, §4 describes the 
model analysis underlying the reliability tools, and §5 describes how we combined and par
allelized two existing tools. §6 reports on the measured performance of our tool on a suite 
of network reliability problems. §7 summaries this paper. 

2 Background 

We are interested in numerically estimating the reliability of complex highly reliable com
puter systems. The notion of a "state-space" pervades reliability analysis. Every component 
of a system is said to have a state. A reliability modeler is free to permit a component to 
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have anyone of a set of states; typical component states are GOOD, BAD, IN_USE, UN
USED. Components may fail; failures may trigger recovery processes such as reconfiguring 
around a failed component or replacing it. The time-to-failure distributions for individual 
components are taken to be exponential; the time-for-recovery distributions are permitted 
to be general. Formally, the reliability model is a semi-Markov process [17]. 

A semi-Markov state-space can be thought of as a directed graph, each node of which is a 
system state. A system state is typically described as a vector of integer-valued component 
state values; the system state changes when some component state changes, for example, if 
a processor or communication link fails. The amount of time the system spends in a state 
is random, and is known as the holding time. Arcs out of a state describe transitions that 
are possible from that state. The behavior of the modeled system over a time interval [0, T] 
is therefore described as a path through the state-space, with the sum of holding times of 
states on the path being at least T. Given any path through the state-space, there is a 
probability that the system's behavior in [0, T] is described precisely by that path. 

The system is considered to have failed when certain problem-dependent criteria are met. 
For example, a critical component may have a spare, but after both the component and its 
spare have failed the system may be unable to function. A system state reflecting some 
failure condition is known as a death-state. The tools discussed here estimate the transient 
probability that the system enters any death-state within a mission time T. 

We have implemented a parallelized reliability analysis tool based on mathematics dis
covered by White [19], and two existing tools developed by Butler and Johnson, all at the 
NASA Langley Research Center. SURE [2] was developed first. It accepts a fully expanded 
semi-Markov state-space which describes the reliability structure of a given problem, and 
determines upper and lower bounds on the probability of reaching any model death-state 
within the mission time T. Each state in the SURE input file is identified by a unique integer 

. (not vector) value. It was quickly recognized that SURE state-spaces are tedious to build 
by hand, especially given their size and the non-intuitive nature of state identifiers. ASSIST 
[9] was developed to automatically generate a SURE state-space from a compact and intu
itive description of the state space. The reliability modeler describes a system state as a 
vector of component states, and uses a simple language to describe death-state and search
pruning conditions, to describe conditions under which a particular type of state transition 
may occur, and how a state vector changes in response following a particular transition. 
ASSIST accepts the model description, and then generates a file containing the entire SURE 
state-space. A relatively small ASSIST model can describe a very large SURE state-space. 

Both ASSIST and SURE offer many features, perform a great deal of error checking, and 
present polished interfaces to their users. These tools are in use at approximately forty-five 
industrial and government sites. 

Reliability models with large state-spaces tax both ASSIST and SURE. One problem is 
simply that of state-space size-models have been known to completely exhaust a 50 MB 
disk partition allocated to virtual memory. The other problem is computational-the model 
analysis requires a traversal of every path from the starting state to any death-state. A 
typical large model may have states numbering in the thousands to tens of thousands and 

2 



have an order of magnitude more transitions. Large models create a combinatorial explosion 
in the amount of work that must be done. 

We have developed a tool, ASSURE, that dramatically reduces the time required to 
analyze ASSIST models. Unlike SURE, ASSURE analyzes system states that are explic
itly represented as vectors of state components. Like ASSIST, ASSURE uses the ASSIST 
language rules to determine whether a given state is a death-state, and to compute the tran
sitions out of the state. The most important innovation of ASSURE over ASSIST-+SURE 
is that ASSURE simultaneously generates and analyzes paths through the state-space. AS
SURE's space requirements are dramatically smaller, because ASSURE does not maintain 
the entire state-space in memory. ASSURE processes a system-state by analyzing it, after 
which it generates the state's descendents. The memory used used to represent that system 
state (and the path to it) are then discarded. A second innovation involves our internal rep
resentation of a system state, and a path to it. The innovation is made possible by the model 
analysis mathematics. The heart of SURE (and thus ASSURE) is a theorem that places up
per and lower bounds on the probability of the system traversing a given path through the 
state-space within a given amount of time [19]. When the mission time T is small relative 
to the mean component lifetime, the formulae comprising these bounds involve sums and 
products of characteristics of states along the path, implying that one can accumulate these 
characteristics during the search, instead of saving each individual characteristic. ASSURE 
is centered around a "path-record" data structure that contains a system state vector and 
all the accumulated characteristics of some path from the initial state to that system state. 
The memory required to store a path-record does not change as paths are extended through 
transitions. ASSURE iteratively removes a path-record from a work-list, determines whether 
the associated state is a death-state, should be pruned, or generates transitions. Discovery 
of a death-state prompts calculation of the upper and lower bounds of reaching that state 
by the path whose accumulated characteristics are recorded in the path record. Generated 
transitions result in new path-records that are attached to the front of a work list1 • The 
memory space for the analyzed path-record is reclaimed, and the process repeats. 

Our use of path-records was largely motivated by our anticipated need for dynamic load
balancing. A path-record may be processed on any processor; at any time a processor 
may share its load by removing a number of path-records from its work-list, and sending 
them to another processor. The recipient simply inserts them into its own work list. The 
design decision paid off. Dynamic load-balancing schemes were straightforward to implement, 
given the simplicity of the work-list and path-record data structures. However, this design 
decision constrains the utility of ASSURE to models where the mission time is small relative 
to the mean component lifetime. SURE uses different mathematics to compute bounds 
for large mission times. This mathematics requires that all characteristics of the given 
path be individually known, not simply accumulated. Consequently, the longer a path 
becomes, the more memory is required to save its salient characteristics. ASSURE could 
be modified to incorporate long mission time analysis; at the time ASSURE was designed 

IBy placing newly generated path-records at the front of the work-list ASSURE is employing a depth-first 
-·"!rsal. 
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we sought to simply demonstrate that many (not necessarily all) of the problems solved by 
ASSIST-4SURE could be effectively parallelized. 

3 The ASSIST Language 

The most fundamental idea we use in ASSURE was first exploited by ASSIST: semi-Markov 
processes of interest can be parametrically described by a simple grammar. To show the 
power of this idea, we now sketch the main features of the ASSIST language. 

Each state in a semi-Markov reliability model describes a possible system state in terms 
of factors affecting reliability. These states are typically expressible as vectors of integers, 
e.g., the number of working processors, whether a communication bus has failed (0/1), the 
number of spare processors. The system makes a transition from a given state when the 
value of some state vector component changes due to an additional failure or repair. 

ASSIST exploits the fact that very many transitions can be described parametrically. 
For example, imagine that a state has n working processors, each of which has a constant 
failure rate A. The rate at which the system makes a transition due to processor failure 
is nA. This single description characterizes a particular type of transition for all values of 
n. ASSIST recognizes parametric transitions using the TRANTO statement. A TRANTO 
statement consists of a Boolean conditional which indicates when the transition is permitted 
to occur, a destination expression which describes how the state is to be modified following 
the transition, and a rate statement which specifies the transition rate due to the specified 
transition. For example, a state may consist of a vector <NP, NS, F> where NP denotes the 
current number of working processors, NS is the current number of spare processors, and F 
is a flag indicating whether a failed processor is being replaced in this state. Consider the 
following TRANTO statement: 

IF F=O TRANTO NP=NP-1,F=1 BY NP*LAMBDA 

This type of transition may only occur if no previous processor failure is still being repaired, 
i.e., when F = o. In making the transition, the NP component of the state is decremented to 
reflect the failed processor, and the F component is set to 1 to indicate that a failed processor 
is being replaced. The cumulative rate at which this transition occurs is NP*LAMBDA, where 
LAMBDA is the processor failure rate. A preamble in the ASSIST file declares that variables 
NP and F are components of the system state vector, gives them initial values, and quantifies 
LAMBDA. 

A failed processor may be replaced by a spare. The TRANTO statement 

IF F=1 AND NS>O TRANTO NP=NP+1, F=O, NS=NS-1 BY <REPMEAN,REPSD> 

describes this transition. Here REPMEAN is the mean time of this transition, and REPSD is 
its standard deviation. This syntax flags the transition as being associated with a recovery 
process, and gives the information that SURE will need when considering this transition. 

Finally, it may happen that a processor will fail while another is being replaced. This is 
a condition that causes the system to fail, and can be flagged by setting the F variable to 2. 

4 



IF F=l TRANTO F=2 BY NP*LAMBDA 

Ultimately we are interested in the states where the system is considered to have failed. 
The DEATHIF statement describes such conditions. As we have mentioned, the system is 
considered to have failed if a co-incident fault occurs. This is indicated with the statement 

DEATHIF F=2 

Another type of failure occurs if a processor failed but there are no spares. This condition 
is indicated with the statement 

DEATHIF F=l AND NS=O 

ASSIST files may also specify that a search be "pruned", meaning that a path is not 
extended. Pruning is quite important for reducing the complexity of a search, allowing the 
search to concentrate on paths having the highest probability of traversal. The PRUNEIF 
statement identifies conditions for pruning a search in the same way that the DEATHIF 
statement identifies a death-state. One can also prune by probability-prune if the upper 
bound becomes sufficiently small. A number of other ASSIST features are largely self
explanatory. Figure 1 illustrates a complete, more complex ASSIST model. The system 
being modeled is composed of three fault-tolerant subsystems; the system is up if and only if 
all three subsystems are up. Each fault-tolerant subsystem is composed of three components, 
each having a distinct failure rate. A subsystem is up if any two of its components are up. 

The ASSIST syntax is intentionally designed to aid the automated generation of state 
transitions. Given a state vector we can easily determine (i) whether the state is a death
state (and hence has no transitions), (ii) whether the state meets any pruning criteria (again, 
no transitions), or (iii) the transitions permitted from the state. For example, consider the 
processing of the initial state in Figure 1 's example. None of the death-state conditions are 
satisfied, because all C, S and V components have value 1. The single pruning condition is 
not met, as NCF = O. However, a number of transitions may occur. Anyone of the C, S or V 
components may fail, leading to a state vector which is identical to the initial state, except 
that the status bit for the failed component is now 0, and the NCF component is 1. There 
are nine such states reachable from the initial state. Each of these may reach eight other 
states, and so on. 

In the course of developing ASSURE it became clear that the sparsity of ASSIST's 
syntax made it difficult to design reliability models of computer networks that incorporate 
sophisticated recovery algorithms. For example, consider a network that statically routes 
messages, i.e., the same path is used for every message between a given sender and receiver 
pair. Suppose that the network has many redundant routing nodes and communication 
links. The network is temporarily disabled whenever a routing node or link on a static 
route fails. However, the network can be made operational if a new route using different 
nodes and/or links can be found to replace the failed one. Therefore, to determine whether 
the network can be made functional following a link or node failure, we must essentially 
determine the post-failure network connectivity. Virtually the only way of using ASSIST 
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LAMBDA_S = 7.62E-4; 
TIME = 10.0; 
LAMBDA_V = 3.9E-4; 
LAMBDA_C = 3.5E-4; 

SPACE=(C: ARRAY[1 .. 3] OF 0 .. 1, 
S: ARRAY[1 .. 3] OF 0 .. 1, 
V: ARRAY[1 .. 3] OF 0 .. 1, 
NCF); 

START = (1,1,1,1,1,1,1,1,1,0); 

DEATHIF (C[1J+S[1J+V[1J <2 ) OR 
(C[2J+S[2J+V[2J < 2) OR 

(C[3J+S[3J+V[3J < 2); 

PRUNEIF NCF >= 5; 

FOR 1=1,3; 
IF C[I] > o TRANTO c[I] = 0, 
IF S [IJ > o TRANTO S [I] = 0, 
IF V[lJ > o TRANTO VEl] = 0, 

ENDFOR; 

NCF = NCF+1 
NCF = NCF+1 
NCF = NCF+1 

Figure 1: An Example ASSIST Model 

BY LAMBDA_C; 
BY LAMBDA_Sj 
BY LAMBDA_V; 

to test connectivity (e.g. in a DEATHIF statement) is to exhaustively enumerate all"of the 
state conditions under which the network is disconnected. This is clearly unsatisfactory for 
all but the smallest networks. To deal with this problem we extended the ASSIST syntax. 

We will later see that ASSURE translates ASSIST models into C functions. Given this 
approach it was natural to extend ASSIST by permitting explicit reference to C functions 
in DEATHIF and TRANTO statements. These functions are permitted to read (and in the 
case of TRANTO post-conditionals, write) ASSIST system state variables as though they 
were ordinary C integers or arrays of integers. Instead of constructing Boolean conditionals 
to identify death or transition conditions, we permit a call to a user-written C function that 
computes and returns a 0/1 value. In the network example above, we might write a C func
tion DisConnected 0 that determines the network connectivity as a function of the current 
system state. Extended ASSIST then permits the statement DEATHIF DisConnectedO. It 
is permissible to include function arguments in these C functions. Extended ASSIST also 
permits the user to define and initialize read-only data structures that may be referenced 
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from within the C functions. For example, this feature is useful for computing and storing 
the network topology, which otherwise would have to be expressed in ASSIST in terms of 
constants or one-dimensional arrays of constants. 

4 Model Analysis 

The mathematics underlying SURE permit one to place upper and lower bounds on the 
probability of the system traversing a given path within the mission time, T. These bounds 
depend on a classification of each transition on the path into one of three classes. These 
classes are explained below, along with definitions needed to express the bounds. 

Class 1: Class 1 is composed of failure transitions that occur in states from which there 
are only failure transitions. Characteristics of this transition are its rate, and the sum 
of the rates of all other transitions from this state. 

Class 2: A Class 2 transition is a recovery transition. Characteristics of this transition 
are the sum of all failure transitions from this state, the probability that this recovery 
succeeds over every other recovery transition from this state, and the mean and variance 
of this transition given that it is taken. 

Class 3: A Class 3 transition is a failure transition from a state that also contains a 
recovery transition. Characteristics of this transition are its rate, the sum of rates 
of other failure transitions from this state, the probability that the specified recovery 
transition succeeds over all other recovery transitions from this state, the mean and 
variance of the recovery transition given that it is taken. 

A technically complete description of these transition characteristics can be found elsewhere 
[2], and is not needed to describe ASSURE processing at a high level2 • 

A statement of the SURE theorem in terms that suit our purposes is given below. 

Theorem 1 (White) Let p be a path composed of k Class 1 transitions, m Class 2 tran
sitions, and n Class 9 transitions. The probability D(p, T) of taking a pathp through the 
state-space within the mission time T can be bounded as follows 

L(p, T) ~ D(p, T) ~ U(p, T). 

L(p, T) and U(p, T) have the form 

k ~ n 

L(p, T) = II G~7)(p, T) II G~7)(p, T) II G~7)(p, T) 
;=1 ;=1 ;=1 

2 A precise definition of these characteristics and the SURE theorem requires several pages of mathematics 
whose details are not essential for understanding ASSURE. 
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k m n 

U(p, T) = II e~y)(p, T) II e~y)(p, T) II e~y)(p, T) 
;=1 ;=1 ;=1 

where each eJf)(p, T) and eW)(p, T) is a function only of the number of Glass i transitions, 
T, and the characteristics of the jth Glass i transition on p. 

o 
This nice structure of U(p, T) and L(p, T) can be exploited for parallel processing. In the 
course of expanding p we do not need to store each individual transition's characteristics. 
We can "accumulate" them as appropriate, thereby saving space. For example, one of the 
product functions comprising U(p, T) is 

A1A2' .. AkTk 

k! 
where k is the number of Class 1 transitions in p, and the Ai's are their individual rates. 
When a Class 1 transition with rate A is taken one need only increment a Class 1 transition 
counter, and multiply a rate product accumulator by A. Once a death-state or pruning
condition terminates the expansion of p, then U(p, T) and L(p, T) can be computed from 
the accumulated characteristic data, and the upper and lower bounds on the system failure 
probability can be adjusted. 

SURE accepts a description of a directed graph representing a state-space. From the 
initial node S it initiates a depth-first-search of the graph. Whenever a node L without 
descendents is encountered the SURE theorem is applied to the specific path from S to L. 
Death-state nodes accumulate the upper and lower bounds of paths that reach them. Once 
an exhaustive all-paths traversal has been performed one determines the overall upper and 
lower bound by summing the bounds associated with each death-state node. One can also 
have the bounds for individually specified death-states printed. 

State space graphs may be cyclic, so that an all-paths traversal of the graph will never 
end. SURE handles the problem by always checking to see if the "next" node in a path 
is already on the path, forming a cycle. Cycles are "unrolled" for a user specified number 
of iterations; and the path is carefully truncated using equations developed in [2]. Another 
form of pruning is to simply terminate a path when the upper bound on the probability 
of taking the path falls below a user-specified pruning threshold. The overall upper bound 
on the failure probability is incremented by the path's upper bound, reflecting the worst 
case scenario where every node immediately reachable from the pruned path represents a 
death-state. ASSURE uses only the later method. It has been shown that pruning of this 
type is sufficient to terminate loops3. 

5 ASSURE 

ASSURE combines the respective functions of ASSIST and SURE into one integrated tooL 
At the same time as ASSURE identifies transitions out of a system state (as does ASSIST), 

3Private communication from Ricky Butler and Alan White. 
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Figure 2: Creating an ASSURE program 
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it analyzes those same transitions (as does SURE). Not only are we then able to analyze 
the problem in a single "pass", we achieve substantial savings in memory space as well, 
permitting ASSURE to analyze problems that defeat ASSIST--.SURE. We will later see 
that excellent parallel run-time efficiencies are also achieved. 

We used the UNIX tools Lex and Yacc [10] to describe the ASSIST grammar, and build an 
ASSIST language parser which transforms ASSIST models into C functions. As a first step, 
one builds the ASSIST parser, and compiles problem independent control code. This step 
happens only once. Following it, every ASSIST model undergoes two processing phases. In 
the pre-processing phase an ASSIST model is parsed, transformed into C functions which are 
then compiled and linked with the pre-compiled control routines. The pre-processing phase 
is followed by an execution phase where the problem is solved. These steps are illustrated in 
Figure 2. The pre-processing and execution phases will next be described in more detail. 

5.1 Pre-processing Phase 

The pre-processing phase is concerned with the translation of an ASSIST model into C rou
tines that recognize death-states, pruning conditions, and generate transition states. The 
ASSIST language syntax is closely related to the syntax of imperative programming lan
guages like Pascal and C. It is a conceptually simple matter to transform any Boolean 
expression of state variables expressed in ASSIST into a corresponding expression in C. 
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int CheckDeath(ptr) 

{ 
struct PathRecord *ptr; 1* pointer to a path-record *1 

if((ptr->State [0] +ptr->State [3]+ptr->State [6] <2) I I 
(ptr->State [1] +ptr->State [4] +ptr->State [7] <2) I I 
(ptr->State [2]+ptr->State [5] +ptr->State [a] <2)) 
{ AnalyzeDeathState(ptr); 

return(1); 
} 

return(O); 
} 

Figure 3: Translated C routine to recognize death-states 

Therefore, if we can map system state variables onto C language variables we can recognize 
death-state, pruning, and transition conditions. It is also straightforward to translate AS
SIST's looping constructs and the state modification statements following a TRANTO into 
C language statements. 

During the pre-processing stage an ASSIST file is parsed. References to state variables 
are translated into references to particular offsets within a system state array contained 
in a path-record. Problem specific C functions are generated for recognizing death-states, 
recognizing pruning conditions, and generating transitions. ASSURE control code passes 
a pointer to the path-record of interest to these routines. The routines use the pointer to 
access individual state variables. Consider the problem expressed in Figure 1. The system 
state is stored in the ten element array State contained in the path-record. Arrays C,S, and 
V are packed into State beginning at locations 0,3, and 6 respectively. NCF occupies location 
9. Let ptr be a pointer to a path record, and AnalyzeDeathState 0 be a routine called 
when a death-state is recognized. The ASSURE pre-processing stage will produce an integer 
function CheckDeath(ptr) (shown in Figure 3) that can be called to determine if the state 
pointed to by ptr is a death-state4

• The reader unfamiliar with C can interpret this code by 
keeping in mind that "struct" variables are basically records, that record fields are accessed 
through pointers with the -> symbol, and that I I denotes a logical OR. 

Pruning conditions are checked in entirely the same manner. 
If a path-record survives the death and pruning tests it is passed to a routine TranTo (ptr) 

that generates a list of path-records corresponding to the transition states reachable from 
the state pointed to by ptr. TranTo (ptr) tests each TRANTO condition; whenever one is 
satisfied a copy of ptr's path record is made, selected components are modified as described 
in the ASSIST model; the modified path-record is then attached to the list of transition path-

4The code shown in Figures 3 and 4 is equivalent to what is actually produced, but is far more readable. 
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struct PathRecordList *TranToeptr) 
struct PathRecord *ptr; 

{ 

struct PathRecordList *TListj 
struct PathRecord *TranPtr.*CopyPathRecorde)j 
int Ij 

TList = NULLj 
foreI=lj I<=3j I++) 

{ 

} 

if(ptr->State[O+I-l] > 0) 
1* make a copy *1 { TranPtr = CopyPathRecord(ptr)j 

TranPtr->rate = LAMBDA_Cj 
TranPtr->State[O+I-l] = OJ 
TranPtr->State[9] = ptr->State[9]-lj 

1* save transition rate *1 

Attach(TranPtr.TList)j 1* attach to tranto list *1 
} 

if(ptr->State[3+I-l] > 0) 
1* make a copy *1 { TranPtr = CopyPathRecord(ptr)j 

TranPtr->rate = LAMBDA_Sj 
TranPtr->State[3+I-l] = OJ 
TranPtr->State[9] = ptr->State[9]-lj 

1* save transition rate *1 

Attach(TranPtr.TList)j 1* attach to tranto list *1 
} 

if(ptr->State[6+I-l] > 0) 
1* make a copy *1 { TranPtr = CopyPathRecord(ptr)j 

TranPtr->rate = LAMBDA_Vj 
TranPtr->State[6+I-l] = OJ 
TranPtr->State[9] = ptr->State[9]-lj 

1* save transition rate *1 

Attach(TranPtr.TList)j 1* attach to tranto list *1 
} 

} 

return(TList)j 

Figure 4: Translated C routine to generate transitions 

records. The procedure generated for our example problem is given in Figure 4. Function 
CopyPathRecord(ptr) allocates a block of dynamic memory for a new path-record, copies 
the contents of the path-record pointed to by ptr, and returns a pointer to the newly allocated 
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block. Function Attach (TranPtr • TList) links the newly modified path-record onto a list of 
transition states generated by the state pointed to by ptr. The expressions used to compute 
indices into the State vector look curious at first glance. They are the product of a simple 
translation process that transforms an ASSIST index into a State vector index by adding 
an offset associated with the state variable, and subtracting one (because C arrays begin 
with index 0). Any ordinary compiler will combine the constants expressed in the index. 

It would be possible to write problem independent routines that interpret an ASSIST 
model, but it seemed to us that the run-time overhead of continually interpreting text would 
soon exceed the pre-processing cost of parsing the ASSIST file, and compiling the resulting 
routines. On the realistic problems we study, the pre-processing delay is small. 

5.2 Execution Phase 

Next we discuss ASSURE's execution phase. First we describe the serial algorithm, and then 
how it is parallelized. 

The execution phase begins once the ASSIST file has been translated, compiled, and 
linked with problem independent code. Like SURE, ASSURE explores the state space using 
a depth-first traversal. To start the processing, a path-record describing the starting state is 
placed in a list of path-records, WorkList. Processing then consists of iteratively selecting a 
path-record from the front of WorkList, testing the system state S it contains for death-state 
and pruning conditions, determining all of the states reachable from S and placing path
records for them at the front of WorkList. Processing is complete when WorkList is empty. 
The serial form of this algorithm is shown in Figure 5. The code is intended to be largely 
self-explanatory; functions of type void return no values, and the "!" operator applied to an 
integer is a Boolean 1 if the integer is zero, and is a Boolean 0 otherwise. 

ASSURE was designed to permit a straightforward parallelization of the execution phase 
on a distributed memory multiprocessor. We execute the algorithm above on one processor 
until the WorkList has at least as many path-records as there are processors. The path
records are then partitioned evenly among all processors, and placed into the individual 
WorkLists. Each processor then executes the serial algorithm. Whenever a path-record 
reveals a death or pruned state the path's probability bounds are computed and accumulated 
in variables that are local to the processor. The fact that a single processor's WorkList goes 
empty does not imply that the computation is completed (so that the PrintBounds 0 routine 
is not immediately called). An idle processor may reseed its WorkList and continue by asking 
for and receiving any path-record from a processor that has an overabundance of them. 
The issue of load-balancing is one we will later discuss in more detail. The computation 
is complete when the WorkList in every processor is empty. At this point one needs to 
accumulate the upper bounds computed in all processors, and likewise accumulate the lower 
bounds. These aggregate sums yield the overall upper and lower bounds on the probability 
of entering a death-state within the mission time. 

Key to the approach is the fact that any path-record may analyzed on any processor. 
One should appreciate the fact that this need not have been the case, and is in fact a 
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AnalyzeProblemO 
{ 

} 

1* Declaration local variables and forward function references *1 
struct PathRecordList *WorkList,*descendents; 
struct PathRecord *path,*Dequeue(); 
void Initialize(), ExtendPath(), Enqueue(), 

Release(), PrintBounds(); 
int Empty(), CheckDeath(), PrunePath(); 

1* Start working *1 
Initialize(WorkList); 
while(lEmpty(WorkList)) 
{ path = Dequeue(WorkList); 

if( !CheckDeath(path) && 
lPrunePath(path) ) 

{ descendents = TranTo(path); 
ExtendPath(descendents); 

1* load starting state *1 
1* while work to do *1 
1* get first path-record *1 

1* if path survives *1 
1* generate descendents *1 
1* classify transitions, 

accumulate new path 
characteristics *1 

Enqueue(descendents,WorkList); 1* stick new path-records 

at front of WorkList *1 

} 

} 

Release(path); 

PrintBounds 0 ; 

1* recover memory space *1 

1* report the reliability *1 

Figure 5: ASSURE Algorithm 

design decision with significant consequences. For example, suppose one needed to know the 
upper and lower bounds on reaching each individual death-state. This sort of information 
is easily provided by ASSIST-.SURE, but cannot be provided by ASSURE, at least in 
its present form. Since the state-space is not bound to processors, the contributions to 
any given death-state's bounds may be distributed among processors. No note is made 
of the state when the information from a death-state or pruned-state is incorporated into 
the bounds. Another consequence is that cycles in the state-space cannot be explicitly 
recognized. Because SURE maintains all the information it may need about a path, it can 
recognize a cycle and accurately prune paths that endlessly traverse the cycle. ASSURE 
cannot recognize cycles, because it only accumulates information about a path, it does not 
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maintain a history of a path's states. Our interest was in seeing if ASSIST~SURE could be 
parallelized and achieve high performance on an interesting class of problems. We judged 
that the features we chose not to support were not essential for a demonstration of parallel 
processing's via~ility for this application. 

Parallel ASSURE exploits parallelism by implementing a parallel depth-first-search for 
every terminal (i.e., death-state or pruned) node. This type of parallelism has already been 
well studied [6, 18, 16]; our contribution is to demonstrate that a general tool for an important 
application class can benefit from parallel processing, without the user having to be involved 
with the details of the parallelization. 

5.3 Dynamic Load Balancing 

A driving concern behind ASSURE's design was the recognition that ASSIST~SURE prob
lems are very dynamic in the demands they place on a system, and that dynamic load
balancing would likely be needed to achieve high parallel run-time efficiencies. We next 
briefly describe the methods we used. 

A summary of dynamic load balancing techniques for parallel searching is given in [11]. 
Methods described there are asynchronous, and local: when a processor becomes idle it polls 
a small subset of other processors, asking for more work. Our own view on load balancing 
has been more synchronous and global [13, 12, 14, 15] all processors are involved in every 
balancing of the workload. Each style has its advantages and disadvantages. The advantage 
of an asynchronous scheme is that processors with work to do are not delayed by a load
balancing from which they do not benefit. A disadvantage is that it is possible for workload 
to "pile up" in some localized subset of processors, after which it may take some time for 
repeated local load-balancing requests to siphon the excess workload from that region. A 
disadvantage of global schemes is that the per-balance overhead is higher; there is also 
some doubt about the scalability of global methods. An advantage is that a global scheme 
treats potential balancing problems as well as existing ones. When a global method evenly 
distributes all existing workload, processors that may soon be empty are given a transfusion 
of work before it is actually needed. Therefore, one expects that a global load-balancing 
method will be called less often than a local method. A final advantage follows from the fact 
that long messages are preferred on distributed memory multiprocessors, as the large fixed 
communication startup cost is amortized over more bytes. Global methods move more data, 
and so achieve a lower per-byte communication overhead. 

We explored the use of global methods, both because our experience has been in using 
such methods, and because of the possibility that state-spaces we search may have local 
concentrations of high workload (this occurs in regions where the modeled system is quickly 
able to recover from failures.) Global methods are appropriate for quickly breaking these 
concentrations up. 

Two important synchronous load-balancing algorithms have been discussed in the liter
ature. The "dimension-exchange" algorithm [5] assumes that every processor has a number 
of independent jobs; in d exchange steps it completely balances the workload, d being the 
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dimension of the hypercube (i.e., the system has 2d processors). In each step the algorithm 
balances the workload through one hypercube dimension, as follows. Let bd - 1bd- 2 ••• bo be 
the identity of a processor expressed in binary. In step j this processor balances the workload 
(i.e., number of jobs) between itself and processor bd- 1 ••• hj • .• bo: the processors compare 
their loads, and the one with more jobs sheds enough so that each have half of their total. 
If a processor's load is infinitely divisible, this algorithm is guaranteed to assign exactly the 
same amount of load to each processor by the end of d steps. Observe that each step actually 
requires 2 communications per processor-one to inform the partner of its load, the other to 
send or receive the load. 

Load balancing techniques based on parallel-prefix style computations called scans have 
also been suggested [1]. Our adaptation of this method involves two steps. First, every 
processor Pi submits the length Li of its WorkList to an enumeration scan that returns to 
Pi two values: Si = :E~;:'~ L j , and the sum W of all such list lengths. As discussed in [1], one 
can accomplish this in 2d parallel communication steps. Given Si, processor Pi knows that if 
all the path-records in the system were enumerated increasingly by processor identity, then 
its path records would be numbered Si through Si + Li - 1. The second step is to distribute 
the path-records. Since each processor knows the total number of path-records in the system 
(W), it is simple to evenly remap the path-records as a function of their enumeration indices. 
For example, processor Po will get path-records 0 through W/2d -l, PI will get records W/2 d 

through W/2d- I -l, and so on. Once a processor knows the indices of its current path-records 
it can easily compute the identity of processors to whom those path-records should be sent. 
However, a processor is not able to determine from whom it will receive path-records. If 
a processor receives an unanticipated message, the operating system keeps the message in 
system buffer space until a user process asks for it, at which point the system copies the 
entire message into a buffer indicated by the user process. It is easy to overflow the system 
buffer space if no message flow control is used. Our implementation deals with this problem 
by having each processor send short "header" messages to all processors to whom it will 
send path-records. Since the header messages are short, there is no danger of overflowing 
the system buffers into which they are initially received. Following the transmission of all 
such header messages a processor. engages in a global synchronization. The processors then 
logically receive their header messages following the global synchronization, being assured 
that all such messages are resident ·in the processor. Thus forewarned, a process can set 
up receive buffers in the user space for the path-records to follow, and again engage in a 
global synchronization. Following this synchronization the path-records are sent, received, 
and placed in the processor's WorkLists. As described above the scan-based method requires 
at least 4d parallel communication steps before the path-records are exchanged. It does have 
the potential advantage that a path-record is transmitted only once-a path-record may be 
passed as many as d times using the dimension exchange algorithm. 

As we will see in the next section, the choice of load-balancing mechanism has only 
a second-order effect on performance. One method may be significantly faster than the 
other, and yet the overall performance does not change significantly because load-balancing 
is needed so infrequently that its cost is not a major contributing factor to the overall 
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performance. However, we will see that performance is very much affected by whether any 
dynamic load balancing is employed. 

6 Performance 

We evaluated the performance of ASSURE on a suite of ASSIST models developed at NASA 
Langley to analyze fault tolerant communication networks. For each model we measure 
the time required to solve the problem using ASSIST-tSURE on a Sun 3/150 workstation, 
the time required by serial ASSURE on the same workstation, the time required by serial 
ASSURE on a Cray-2, and the time required by ASSURE on one node, and on 32 nodes of 
the Intel iPSC/860 multiprocessor. The iPSC/860 is resident at the Institute for Computer 
Applications in Science and Engineering at the NASA Langley Research Center; the Cray-2 
is also at NASA Langley. We find that the parallel version of ASSURE runs three orders of 
magnitude faster than ASSIST-tSURE. Roughly speaking, one order of magnitude can be 
attributed to the algorithmic improvement of ASSURE over ASSIST-tSURE, a second order 
of magnitude can be attributed to the architectural improvement of an i860 microprocessor 
over the 68020 used in the Sun 3/150, a final order of magnitude can attributed to the 
exploitation of parallelism. We find that on the largest problems the parallel version of 
ASSURE achieves high processor utilizations, and solves the problems faster, by an order 
of magnitude, than the serial supercomputer. It should be noted that as designed ASSURE 
is an inherently scalar code, and so cannot benefit from the vector processing capabilities 
of the CrayS; it is not cost-effective to use a Cray as a fast scalar processor. The point we 
wish to make with the comparison is that traditional supercomputer architectures are not 
optimal (or even reasonable) for this problem class. On the other hand, distributed memory 
architectures appear to be ideal for these problems. 

The networks in the problem suite achieve reliability through redundancy of network 
links, and use of dynamic reconfiguration when network components fail. The network 
fails whenever certain sequences of errors occur in a small enough span of time so that 
reconfiguration processes are defeated. The different ASSIST models vary in their level 

. of detail; the simpler ones aggregate certain aspects of network behavior, while the most 
complex one treats it in explicit detail using the extended ASSIST syntax to implement 
algorithmically expressed state-changes. The networks studied lead to state vectors with 
thirty to one hundred components; the most detailed network is illustrated in Figure 6. The 
network connects a fault tolerant processor (FTP) with an array of sensors. The FTP has 
four channels, accessing the network through one of six network interfaces; each interface 
is connected to one of two separate network partitions. Only one channel and one network 
partition is active at a time. The network partitions are comprised of redundant routing 
nodes and communication links, and serve to connect the channels to clusters of replicated 
sensors. For each of the reliability models pruning thresholds were selected so that the sum 

5 Any attempt to vectorize SURE would have to go to a great deal of trouble to construct appropriate 
vectors. It is not immediately obvious if or how this might be done. 
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o FTP CHANNEL 0 NODE 0 DEVICE B 

DEVICE 0 - NETWORK I INTERFACE 
DEVICE C 

INTERFACE 

LINK 6- DEVICE A 0 DEVICE D 

Figure 6: Fault-tolerant network studied 

of the upper bounds of all pruned states is at least an order of magnit>tde smaller than the 
sum of upper bounds on discovered death-states. 

Table 1 gives the number of lines of ASSIST grammar for each model, and the number 
of path-records analyzed by ASSURE. The number of lines given for Net4 includes the total 
number of C lines involved in the model. 

Table 2 gives the measured performance of ASSIST --+SURE and serial ASSURE. We 
executed ASSIST--+SURE on a Sun 3/150 workstation; serial ASSURE ran 0:1 the 3/150, 
one node of an iPSCj860, and a Cray-2. Measurements are on the Sun and Cray-2 are 
of CPU time; iPSC /860 measurements are of elapsed time. The elapsed time on the Cray 
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Model Number of ASSIST lines Number of path-records 
Net! 193 843,378 
Net2 269 724,038 
Net3 312 3,528,778 
Net4 1737 (including C code) 27,204,876 

Table 1: Size of model descriptions and number of path-records analyzed 

Model ASSIST~SURE ASSURE:3/150 ASSURE:i860 ASSURE:Cray-2 
Net! 1 hr., 48 min. 12 min. 63 secs. 76 secs. 
Net2 1 hr. 10 min. 56 secs. 69 secs. 
Net3 11 hr., 30 min. 35 min. 2 min., 40 sec. 2 min., 45 sec. 
Net4 N/A 6 hr., 12 min. 39 min., 40 sec. 54 min. 

ASSURE's serial performance on network problem suite 

Model NLB DE SLB 
(time, utilization) ( time, u tiliza tion) (time, u tiliza tion) 

Net! (5.5 sec., 36%) (3.6 sec., 55%) (4.0 sec., 49%) 
Net2 (5.2 sec., 41 %) (3.5 sec., 61 %) (3.9 sec., 55%) 
Net3 (9.7 sec., 51%) (8.2 sec., 61%) (9.4 sec., 53%) 
Net4 (163 sec., 45%) (88 sec., 85%) (93 sec., 80%) 

ASSURE's parallel performance on network problem suite 

Table 2: Serial and parallel performance measurements 

timings is at least seven times larger, due to time-shared multiprogramming. 
To evaluate the cost and benefits of dynamic remapping we ran each model five times 

using three different load balancing policies: no load-balancing (except for an initial distri
bution of path-records to each processor), dimension exchange (DE), and scan-based load 
balancing (SLB). For both the DE and SLB methods an empty processor broadcasts a re
quest to load-balance. A processor looks for such a message after every 500th path-record it 
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processes 6. A load-balance occurs after at least one processor is empty and all processors 
have recognized the request. 

Timings and processor utilizations obtained from these experiments are presented in 
Table 2. For each set of five runs the performance data shows little variation (with the 
exception of the number of load balancings on Net4), so that the averages we present are 
quite typical. For each model we give the time required to run the problem on 32 nodes 
of an Intel iPSC/860, the average processor efficiency at run-time (this figure multiplied by 
32 is the speedup), the average number of load balances required during the solution, and 
the average time required to perform a load balance once all processors are engaged in the 
balancing. 

One should also consider the time required to translate ASSIST into C and compile the 
program. The build time using the earlier Intel iPSC /2's compiler is between one and two 
minutes on all of our network problems. At the time of this writing the linking phase of 
the iPSC/860 compiler (which runs on the same 80386-based host computer used for the 
iPSC/2) requires far more time than is reasonable. As we expect this problem to be fixed in· 
the near future we omit exact timings of the build time. 

Some features of the parallel performance data in Table 2 and its comparison with the 
serial performance data are noteworthy. Most importantly, our approach gives the ASSIST 
modeler the ability to analyze models far more complex than was ever practical using only 
ASSIST and SURE. High run-time processor efficiencies are achieved on the most complex 
models. Our results suggest that even higher utilizations will be achieved on larger-scale 
problems. Indeed, for each of the problems studied here, extremely high utilizations are 
achieved when we decrease the pruning threshold further, thereby exposing more of the 
state-space for analysis. 

Table 3 reports the average number of load balancings required under the two schemes, 
and the average cost of performing a balance. The lower per-balance cost ()f the dimension 
exchange method can be attributed to fewer communication startups, and a lower volume 
of communication. There was sufficient variation in the number of load balancings required 
for Net4 to suspect that the averages given n.eed not be close to the true means. 

Despite the apparent superiority of the dimension exchange method over the scan-based 
method on these problems, the main point to be learned from these experiments is that the 
method used to balance load matters far less than the decision to support dynamic load 
balancing at all. Table 2 clearly shows the performance degradation suffered by the no-Ioad
balancing strategy. Load balancing is called so infrequently on the larger problems that its 
total cost has only a secondary impact on performance. 

7 Summary 

ASSURE is a tool for analyzing the reliability of embedded computer control systems. AS
SURE combines the functions of two prior tools, ASSIST and SURE. In doing so it achieves 

6The cost of probing for a the existence of a possible message is high on the iPSe/860 
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Model A vg. # Balances A vg. # Balances Balance Time (DE) Balance Time (SLB) 
(DE) (SLB) (milliseconds) (milliseconds) 

Netl 34.2 38 10.3 14.8 
Net2 39.2 45.6 9.7 14.3 
Net3 75.2 71.5 17.1 25.5 
Net4 133 109 21.8 35.5 

Table 3: Load Balancing Statistics 

significant run-time savings over ASSIST and SURE. To reduce run-times even farther, AS
SURE has been parallelized on a 32-node Intel iPSC/860 distributed memory multiprocessor. 
The parallelization is automatic-ASSURE's users need not concern themselves with any de
tails of the parallelization. On a suite of moderately complex models ASSURE achieved very 
high processor run-time efficiencies. On the iPSC/860 it has solved in eight run-time sec
onds a model that formerly required half a day on a Sun 3/150 workstation. Furthermore, 
its input model syntax has been extended to permit the natural construction of models that 
formerly could not be easily expressed. ASSURE performs especially well on large models, 
a processor efficiency of 85% is achieved on the most complex (and realistic) model in our 
suite. Furthermore, ASSURE executes an order of magnitude times faster on these model 
than ASSURE's serial implementation on a Cray-2. Our development and testing of this 
tool convincing demonstrates the real viability of using parallel machines to solve complex 
reliability problems. 
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