55 research outputs found

    Driver Assistance System and Feedback for Hybrid Electric Vehicles Using Sensor Fusion

    Get PDF
    abstract: Transportation plays a significant role in every human's life. Numerous factors, such as cost of living, available amenities, work style, to name a few, play a vital role in determining the amount of travel time. Such factors, among others, led in part to an increased need for private transportation and, consequently, leading to an increase in the purchase of private cars. Also, road safety was impacted by numerous factors such as Driving Under Influence (DUI), driver’s distraction due to the increase in the use of mobile devices while driving. These factors led to an increasing need for an Advanced Driver Assistance System (ADAS) to help the driver stay aware of the environment and to improve road safety. EcoCAR3 is one of the Advanced Vehicle Technology Competitions, sponsored by the United States Department of Energy (DoE) and managed by Argonne National Laboratory in partnership with the North American automotive industry. Students are challenged beyond the traditional classroom environment in these competitions, where they redesign a donated production vehicle to improve energy efficiency and to meet emission standards while maintaining the features that are attractive to the customer, including but not limited to performance, consumer acceptability, safety, and cost. This thesis presents a driver assistance system interface that was implemented as part of EcoCAR3, including the adopted sensors, hardware and software components, system implementation, validation, and testing. The implemented driver assistance system uses a combination of range measurement sensors to determine the distance, relative location, & the relative velocity of obstacles and surrounding objects together with a computer vision algorithm for obstacle detection and classification. The sensor system and vision system were tested individually and then combined within the overall system. Also, a visual and audio feedback system was designed and implemented to provide timely feedback for the driver as an attempt to enhance situational awareness and improve safety. Since the driver assistance system was designed and developed as part of a DoE sponsored competition, the system needed to satisfy competition requirements and rules. This work attempted to optimize the system in terms of performance, robustness, and cost while satisfying these constraints.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Miniature Mobile Systems for Inspection of Ferromagnetic Structures

    Get PDF
    Power plants require periodical inspections to control their state. To ensure a safe operation, parts that could fail before the next inspection are repaired or replaced, since a forced outage due to a failure can cost up to millions of dollars per day. Non-Destructive Testing (NDT) methods are used to detect different defects that could occur, such as cracks, thinning, corrosion or pitting. Some parts are inspected directly in situ, but may be difficult to access; these can require opening access holes or building scaffoldings. Other parts are disassembled and inspected in workshops, when the required inspection tools cannot be moved. In this thesis, we developed innovative miniature mobile systems able to move within these small and complex installations and inspect them. Bringing sensors to difficult-to-access places using climbing robots can reduce the inspection time and costs, because some dismantling or scaffolding can be eliminated. New miniature sensors can help to inspect complex parts without disassembling them, and reduce the inspection costs, as well. To perform such inspections, miniature mobile systems require a high mobility and keen sensing capabilities. The following approach was used to develop these systems. First, different innovative climbing robots are developed. They use magnetic adhesion, as most structures are made of ferromagnetic steel. Then, vision is embedded in some of the robots. Performing visual inspections becomes thus possible, as well as controlling the robots remotely, without viewing them. Finally, non-visual NDT sensors are developed and embedded in some of the robots, allowing them to detect defects that simple vision cannot detect. Achieving the miniaturization of the developed systems requires strong system integration during these three steps. A set of examples for the different steps has been designed, implemented and tested to illustrate this approach. The Tripillars robots, for instance, use caterpillars, and are able to climb on surfaces of any inclination and to pass inner angles. The Cy-mag3Ds robots use an innovative magnetic wheel concept, and are able to climb on surfaces of any inclination and to pass inner angles, outer angles and surface flips. The Tubulos robots move in tubes of 25 mm diameter at any inclination. All robots embed the required electronics, actuators, sensors and energy to be controlled remotely by the user. Wireless transmission of the commands signals allows the systems to maintain their full mobility without disturbing cables. Integrating Hall sensors near the magnetic systems allows them to measure the adhesion force. This information improves the security of the robots, since when the adhesion force becomes low, the robots can be stopped before they fall. The Tubulo II uses Magnetic Switchable Devices (MSDs) for adhesion. An MSD is composed of a ferromagnetic stator and one or more moving magnets; it has the advantage of requiring only a low force to switch on or off a high adhesion force. MSDs have the advantage of being easy to clean of the magnetic dust that is present in most real environments and that sticks strongly to magnetic systems. As an additional step toward inspection, a camera is embedded on the Cy-mag3D II and the Tubulos. It allows these robots to inspect visually the structures the robots move in, and to control them remotely. The perspective of a climbing robot in an unknown environment is often not enough to give the user a sense of its scale, and to move efficiently in it. A distance sensor is designed and embedded on the Cy-mag3D II, which increases the user's perception of the environment substantially; Finally, an innovative miniature Magnetic Particle Inspection (MPI) system was developed to inspect turbine blades without disassembling them. An MSD is used to perform the required magnetization. The system can automatically inspect a flat surface, performing all the required steps of MPI: magnetize, spray magnetic particles, record images under UV light and demagnetize. Thanks to the strong integration and miniaturization, the system can potentially inspect complex parts such as steam turbines

    Development of an ultra-fast X-ray camera using hybrid pixel detectors

    Get PDF
    L objectif du projet, dont le travail présenté dans cette thèse est une partie, était de développer une caméra à rayons X ultra-rapide utilisant des pixels hybrides pour l imagerie biomédicale et la science des matériaux. La technologie à pixels hybrides permet de répondre aux besoins des ces deux champs de recherche, en particulier en apportant la possibilité de sélectionner l énergie des rayons X détectés et de les imager à faible dose. Dans cette thèse, nous présentons une caméra ultra-rapide basée sur l utilisation de circuits intégrés XPAD3-S développés pour le comptage de rayons X. En collaboration avec l ESRF et SOLEIL, le CPPM a construit trois caméras XPAD3. Deux d entre elles sont utilisée sur les lignes de faisceau des synchrotrons SOLEIL et ESRF, et le troisième est installé dans le dispositif d irradiation PIXSCAN II du CPPM. La caméra XPAD3 est un détecteur de rayons X de grande surface composé de huit modules de détection comprenant chacun sept circuits XPAD3-S équipés d un système d acquisition de données ultra-rapide. Le système de lecture de la caméra est basé sur l interface PCI Express et sur l utilisation de circuits programmables FPGA. La caméra permet d obtenir jusqu à 240 images/s, le nombre maximum d images étant limité par la taille de la mémoire RAM du PC d acquisition. Les performances de ce dispositif ont été caractérisées grâce à plusieurs expériences à haut débit de lecture réalisées dans le système d irradiation PIXSCAN II. Celles-ci sont décrites dans le dernier chapitre de cette thèse.The aim of the project, of which the work described in this thesis is part, was to design a high-speed X-ray camera using hybrid pixels applied to biomedical imaging and for material science. As a matter of fact the hybrid pixel technology meets the requirements of these two research fields, particularly by providing energy selection and low dose imaging capabilities. In this thesis, high frame rate X-ray imaging based on the XPAD3-S photons counting chip is presented. Within a collaboration between CPPM, ESRF and SOLEIL, three XPAD3 cameras were built. Two of them are being operated at the beamline of the ESRF and SOLEIL synchrotron facilities and the third one is embedded in the PIXSCAN II irradiation setup of CPPM. The XPAD3 camera is a large surface X-ray detector composed of eight detection modules of seven XPAD3-S chips each with a high-speed data acquisition system. The readout architecture of the camera is based on the PCI Express interface and on programmable FPGA chips. The camera achieves a readout speed of 240 images/s, with maximum number of images limited by the RAM memory of the acquisition PC. The performance of the device was characterize by carrying out several high speed imaging experiments using the PIXSCAN II irradiation setup described in the last chapter of this thesis.AIX-MARSEILLE2-Bib.electronique (130559901) / SudocSudocFranceF

    Applications for FPGA's on Nanosatellites

    Get PDF
    This thesis examines the feasibility of using a Field Programmable Gate Array (FPGA) based design on-board a CubeSat-sized nanosatellite. FPGAs are programmable logic devices that allow for the implementation of custom digital hardware on a single Integrated Circuit (IC). By using these FPGAs in spacecraft, more efficient processing can be done by moving the design onto hardware. A variety of different FPGA-based designs are looked at, including a Watchdog Timer (WDT), a Global Positioning System (GPS) receiver, and a camera interface

    Characterization of radiation-hard monolithic CMOS sensors

    Get PDF
    The work presented in this thesis consists of the characterisation of monolithic CMOS sensors targeting the requirements of the outer-most layer of the ATLAS Inner Tracker after the High Luminosity upgrade of the Large Hadron Collider. Three detectors are investigated: an investigator chip and two large scale demonstrators (MALTA and mini-MALTA). The investigator chip is designed in the standard TowerJazz 180 nm technology and served as a tool to investigate the geometric parameters that affect the pixel capacitance. The MALTA chip is designed in the modified TowerJazz 180 nm technology and implements a novel asynchronous readout to minimise power consumption. The sensor is irradiated with X-rays up to 1.25 MRad to test the resistance of the front-end circuit to ionising radiation effects. The mini-MALTA chip is designed following the results obtained on MALTA and implements an improved front-end and pixel layout to enhance the radiation hardness of MALTA. A similar X-ray irradiation campaign is done for this chip showing good radiation hardness after 80 MRad of TID. Aside from the characterisation work, FPGA-based readouts for the MALTA and mini-MALTA chips were developed in collaboration with the CMOS development group at CERN

    Fast data acquisition for silicon tracking detectors at high rates

    Get PDF
    Silicon tracking detectors play a key role in many current high energy physics experiments. To enhance experimental sensitivities for searches for new physics, beam energies and event rates are constantly being increased, which leads to growing volumes of detector data that have to be processed. This thesis covers high-speed data acquisition for silicon tracking detectors in the context of the Mu3e experiment and future hadron collider experiments. For the Mu3e experiment, a vertical slice of the trigger-less readout system is realized as a beam telescope consisting of 8 layers of pixel sensors that are read out using a prototype of the Mu3e front-end board. The performance of the full readout system is studied during beam tests. Sensor hit rates of up to 5 MHz can be handled without significant losses. Hence, the system fulfils the requirements for the first phase of the experiment. To fully exploit the potential of silicon tracking detectors at future hadron collider experiments, the implementation of high-speed data links is mandatory. Wireless links operating at frequencies of 60 GHz and above present an attractive alternative to electrical and optical links, as they offer high bandwidth, small form factor and low power consumption. This thesis describes readout concepts for tracking detectors applying wireless data transfer and presents studies of wireless data transmission

    A Survey on FPGA-Based Sensor Systems: Towards Intelligent and Reconfigurable Low-Power Sensors for Computer Vision, Control and Signal Processing

    Get PDF
    The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.The research leading to these results has received funding from the Spanish Government and European FEDER funds (DPI2012-32390), the Valencia Regional Government (PROMETEO/2013/085) and the University of Alicante (GRE12-17)

    Novel Mobile Computation Offloading Framework for Android Devices

    Get PDF
    The thesis implements an offloading framework for GoogleTM AndroidTM based on mobile devices. Today, the full potential for smartphones may be constrained by certain technical limits such as battery endurance and computational performance. Modern mobile applications own more powerful functions but need larger computation and faster frame rate, which consume more battery energy. Using the proposed offloading framework, mobile devices can offload computational intensive workload to servers to save battery energy consumption and reduce the execution time. The framework can also enable software developers to easily build and deploy services on the servers to support mobile devices to run computationally intensive jobs. Compared with other offloading schemes for android cell phones, the scheme enables developers to choose which parts of the codes are potentially offloading. As developers fully understand the data flow models of the apps, they are considered most capable of making offloading decisions. Developers can minimize communication overhead brought by offloading by carefully partitioning source code by data dependency. Experiment results and data showed that the proposed offloading scheme could significantly reduce computational time and battery energy consumption

    High-speed camera serial interface verification

    Get PDF
    This thesis focuses on the D-PHY interface verification defined by the international MIPI alliance. The interface is a commonly used standard in the mobile camera and display interface and most of the component suppliers directly support that standard. The current standard revision is the third approved version. When the first standard version supported 1 Gbps per lane, the current version supports lane-speed up to 2.5 Gbps. The increase in bandwidth has brought new needs for the signal integrity verification. During the past years, the camera signal integrity has not been a critical design parameter. Nowadays, the interface performance is often close to its electrophysical limits and many design parameters need to be considered during the system design phase. The purpose of this thesis is to create a reliable verification environment for the D-PHY camera interface verification. The target for quality is to build a reference level measurement environment. The system will replace manual measurements which take a lot of resources. The system will be used in verification, but as important as the verification is to understand better the current and incoming challenges and practical limits in system design
    • …
    corecore