
Washington University in St. Louis
Washington University Open Scholarship
Engineering and Applied Science Theses &
Dissertations McKelvey School of Engineering

Winter 12-15-2014

Novel Mobile Computation Offloading
Framework for Android Devices
Meng Wang
Washington University in St Louis

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the McKelvey School of Engineering at Washington University Open Scholarship. It has been
accepted for inclusion in Engineering and Applied Science Theses & Dissertations by an authorized administrator of Washington University Open
Scholarship. For more information, please contact digital@wumail.wustl.edu.

Recommended Citation
Wang, Meng, "Novel Mobile Computation Offloading Framework for Android Devices" (2014). Engineering and Applied Science Theses
& Dissertations. 16.
https://openscholarship.wustl.edu/eng_etds/16

https://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Feng_etds%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng?utm_source=openscholarship.wustl.edu%2Feng_etds%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=openscholarship.wustl.edu%2Feng_etds%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/16?utm_source=openscholarship.wustl.edu%2Feng_etds%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS

School of Engineering and Applied Science

Department of Electrical and System Engineering

Thesis Examination Committee

Paul Min, Chair

Hiro Mukai

Heinz Schaettler

Novel Mobile Computation Offloading Framework for Android Devices

by

Meng Wang

A thesis presented to the School of Engineering

of Washington University in St. Louis in partial fulfillment of the

requirements for the degree of

Master of Science

December 2014

Saint Louis, Missouri

	 ii	

Contents	

List of Figures .. iii

Acknowledgments .. iv
Abstract .. vi

Chapter 1 Motivation and System Overview ... 1
1.1 Background Introduction .. 1

1.1.1 History of Mobile Phones .. 1
1.1.2 Limitations of Smartphones ... 2

1.2 Potential Solutions .. 3
1.2.1 Mobile Operating System .. 4
1.2.2 Mobile Framework .. 6
1.2.3 Offloading .. 7

Chapter 2 Proposed Mobile Computation Offloading Framework .. 9
2.1 Background Introduction .. 9
2.2 Related Work of Offloading Framework ... 11
2.3 Proposed Offloading Framework ... 12

2.3.1 Decision Maker .. 14
2.3.2 Execution Server .. 15

2.4 Implementation ... 17
Chapter 3 Experiments Setup and Results ... 18

3.1 The framework of Sample App and Offloading System .. 18
3.1.1 Background Noise Spectrum Android App ... 19
3.1.2 The Flow Charts of Original and Proposed Apps .. 20

3.2 Experiments .. 24
3.2.1 Information of Test Equipment ... 24
3.2.2 Experiment Result and Analysis .. 25

Chapter 4 Distributing System ... 28
4.1 Framework of BOINC .. 29
4.2 Test ... 32

Chapter 5 Discussion and Conclusion .. 35
5.1 Discussion .. 35
5.2 Related Work .. 36
5.3 Future Work ... 37
5.4 Conclusion .. 38

Bibliography ... 39
	

	 iii	

List of Figures

Figure 2.1: Conventional Software Resource Configuration ...10
Figure 2.2: Proposed Mobile Framework ...13
Figure 3.1: Flow Chart of Spectrum Analysis App without Offloading ..21
Figure 3.2: Flow Chart of Spectrum Analysis App with Offloading ...22
Figure 3.3: Execution Time of the Sample App with and without Offloading Support25
Figure 3.4: Remained Battery Energy ..26
Figure 4.1: Basic Infrastructure of BOINC ..30
Figure 4.2: Flow Chart of BOINC Software ..30
Figure 4.3: Debian BOINC Server ...33
Figure 4.4: Input File ..33
Figure 4.5: Output File ...34

	 iv	

Acknowledgments

Special thanks to Dr. Min and Dr. Hung.

 Meng Wang

Washington University in Saint Louis

December 2014

	 v	

Dedicated to my parents.

	 vi	

ABSTRACT OF THE THESIS
	

Novel Mobile Computation Offloading Framework for Android Devices

by

Meng Wang

Master of Science in Electrical Engineering

Washington University in St. Louis, December 2014

Researcher Advisor: Professor Paul Min

The thesis implements an offloading framework for GoogleTM AndroidTM based on mobile

devices. Today, the full potential for smartphones may be constrained by certain technical limits

such as battery endurance and computational performance. Modern mobile applications own

more powerful functions but need larger computation and faster frame rate, which consume more

battery energy. Using the proposed offloading framework, mobile devices can offload

computational intensive workload to servers to save battery energy consumption and reduce the

execution time. The framework can also enable software developers to easily build and deploy

services on the servers to support mobile devices to run computationally intensive jobs.

Compared with other offloading schemes for android cell phones, the scheme enables developers

to choose which parts of the codes are potentially offloading. As developers fully understand the

data flow models of the apps, they are considered most capable of making offloading decisions.

Developers can minimize communication overhead brought by offloading by carefully

partitioning source code by data dependency. Experiment results and data showed that the

proposed offloading scheme could significantly reduce computational time and battery energy

consumption.

	 1	

Chapter 1

Motivation and System Overview

The main motivation of the research is implementing a novel offloading mobile framework that

improves the battery life and computational performance of Android smartphones. Smartphones

have brought much convenience to people’s life. People can use smartphones to stay in touch

with people they care about, schedule their daily events, send emails, and read news. Offloading

heavy computational workload can improve battery life and computational performance, which

could enhance user experience significantly.

1.1 Background Introduction

Smartphones have played a more and more significant role in people’s daily life due to the

convenience and entertainment they bring. People can talk with their family members, trade

stocks and play games wherever they are.

1.1.1 History of Mobile Phones

In 1947 AT&T introduced Mobile Telephone Service to many towns in America [22]. In 1973,

Motorola created the first handheld mobile. Martin Cooper, who was a Motorola researcher at

the time, made the world’s first mobile phone call [22]. The prototype had to charge for 10 hours

	 2	

and only had a 30 minutes talk time [22]. The 2G mobile phone system was widely deployed in

1990s. With increasing demand on data communication, 2G technology was replaced by 3G

technology in mobile phone from 2001. Now, equipment manufacturers and carriers pay more

attention on offering 4G and LTE technologies to accommodate bandwidth-intensive applications

[22].

Today, emerging smartphone and tablet PC technologies have redefined personal computing in

our everyday lives. Some mobile devices, such as smart phones, iPad and Kindle, have replaced

PC as the most widely used computing devices in terms of Internet usage statistics. These mobile

devices have become so popular due to the better ergonomic interface and portability over

conventional laptops. We can expect that more and more applications, which were originally

developed for traditional computers, will be ported to smartphones and tablet PCs. Furthermore,

more and more novel mobile applications are developed and become popular in users’ daily life.

They bring not only convenience but also entertainment to users. For example, an app, Google

maps, is based on many map-based services, such as Google Maps website, Google Ride Finder,

Google Transit [1]. The app can provide users a planning route for traveling. It is considered as

one of the world’s most popular mobile apps [1]. Flappy birds, a smartphone game, that a player

can control a bird to fly between pipes without collision [2], was released in May 2013 and

suddenly become a global phenomenon in early 2014.

1.1.2 Limitations of Smartphones

However, the full potential for smartphones and tablet PCs may be constrained by certain

technical limits such as battery endurance, computational performance, and portability. Modern

	 3	

mobile applications own more powerful functions but need larger computation and faster frame

rate, which consume more battery energy. Over the years, battery’s energy density has not

improved as significantly as semiconductor technologies. Unlike conventional cell phones, for

which a single charge may last for several days, today’s smartphones and other mobile devices

barely sustain normal usage for a day without being charged. Hence, there are two ways to

prolong battery endurance: one that increases the energy capacity, i.e., increasing the battery size,

and one that reduces power consumption rate. Increasing the battery size leads to the increase in

manufacturing cost as well. Also the device size is virtually fixed for ergonomic consideration,

we are very likely to trade battery endurance for computational performance, or vice versa, when

designing a smartphone or a tablet PC. That is, we either make our device superior in

performance but running out of battery sooner, or make them withstand longer at potentially

lower performance. With the device size assumed to be fixed, we may tradeoff battery endurance

for computational performance as part of designing a smartphone or a tablet PC.

1.2 Potential Solutions

There are many ways to decrease battery consumption, such as turning off unused apps and

components. However, background services, which the users may not even be aware, routinely

take up the CPU and/or the communication module in mobile devices. These services affect the

power consumption significantly even when mobile devices are not in use.

Considering the computational performance, we expect that more advanced system on chips,

which provide higher performance per watt, will be made available for mobile devices. However,

	 4	

there is still a long way to go before any mobile system on chips can be on part with its

contemporary x86 CPUs in performance while keeping the power consumption low enough to

handheld applications. Therefore, PC software titles, even the ones that are generally considered

light-weight and widely adopted on contemporary PCs, may become “processor hogs” when

ported onto mobile platforms. This is a significant concern since PC software developers (except

those who work on 3D games and scientific computing) have been dealing for many years with

regard to overpowered PC processors. At the same time, underpowered mobile system on chips

may eventually suppress the creativity and possibility of mobile applications. We are thus

seeking ways to increase computational capability on mobile devices without sacrificing battery

life.

1.2.1 Mobile Operating System

There are many mobile operating systems in the market, such as Android, iOS, Blackberry and

Windows Phone. According to the statistical data, Android tops 81.3% of smartphone market

share, iOS owns 13.4% of smartphone market share, Windows Phone grows to 4.1% of

smartphone market share and Blackberry has only 1.0% of the market share [3]. In this thesis, we

mainly focus on Android operating system and just provide some comparisons between Android

and iOS.

Android operating system is based on Linux kernel. It is based on direct manipulation, which

uses touch inputs, such as swiping, tapping and pinching to manipulate on-screen objects [6]. It

is applied on smartphones, tablets, smart TVs and cameras. iOS operating system is developed

by Apple. It is derived from Mac OS X, which is based on a series of Unix-based graphical

	 5	

interface operating systems [4]. iOS is also based on direct manipulation, which use multiple

touch gestures, such as swiping, tapping and pinching to manipulate on-screen objects [4].

Android smart phone often gives an impression of shorter battery endurance than Apple’s iPhone

family with larger battery packs and tighter third-party software control. Therefore, reducing the

power consumption rate through background services is a critical issue for Android based mobile

computing devices. One of its popular reasons is that Google publishes most of the source code

for Android, including network and telephony stacks, under free and open-source software

licenses [6]. It allows users to change their system according to their preference.

At user interface part, iOS does not allow users to change its user interface, which frustrates for

those who want to personalize their smartphones [5]. In contrast, Android devices are more open

to users to build their personalized user interface. In terms of stability, iOS is more stable than

Android, because iOS only gives users or apps low priorities to control the mobile operating

system and does not allow users to change the operating system in order to ensure the integrity.

However, Android gives developers and enthusiasts Android Open Source Project source to

develop their personalized versions of operating system [6].

However, Android offers an open platform and users can customize their operating system, it is

possible to expose their private information. Additionally, manufacturers can choose different

hardware, models and screen size, which can cause a compatible problem. Also, some updated

apps won’t have an excellent performance in every Android phones.

	 6	

1.2.2 Mobile Framework

Today, the Internet connectivity is essential for mobile computing devices. People can use iPhone

or Kindle to search information on the Internet, communicate with friends and share photos with

family members. Advanced wireless communication allows mobile users to access the Internet as

a natural part of computing device. Therefore, we can regard the Internet as a virtual bus and

offload some performance demanding workload tasks to the cloud servers. The cloud servers at

data center are thus performance accelerators in the local analogy. Since the servers located at

data centers are highly upgradable and scalable, and more importantly, the capabilities of the

servers are not limited by the battery energy. Thus, offloading the workload from the mobile

devices to the servers can significantly reduce power consumption rate in the mobile devices and

improve performance significantly.

However, most third-party developers have little incentive to build their software products under

cloud computing paradigm and hosting the services associated with them. It is obvious that most

third-party software developers are not concerned about the power consumption caused by their

products. Since consumers generally do not associate the battery life to a particular software

product, attracting consumers with functionalities and features is always software developers’ top

priority no matter how much energy the software consumes. Moreover, setting up dedicated

servers to host the offloaded services is a high-profile investment and brings low competitive

advantage in return. Device vendor (e.g., Samsung), on the other hand, may realize tremendous

benefits by providing a reliable mobile computation offloading framework which improves the

performance (e.g., batter endurance, timeliness, features, reliability) of their products

significantly.

	 7	

1.2.3 Offloading

Offloading has become a promising technique to solve this problem by allowing smartphones to

offload computationally intensive workload to servers. Although computational offloading,

which emerged around 1970s, is not a brand new concept, its potential has never been so

extensively explored until advanced wireless communication and high-speed Internet can

sufficiently support it without significantly degrading the user experience [7]. Cloud computing,

which was a different approach to explore the potential of ubiquitous Internet connectivity,

facilitates and inspires innovations on computational offloading scheme [8][9]. Various efforts

have been made to offload Java applications to the servers to take advantage of the cross-

platform capability of Java bytecode [10]-[12]. Following the huge success of all-touch

smartphone first introduced by Apple iPhone, Google came up with Android, which is an open-

source and royalty-free mobile operating system, to compete against it. Google’s strategy

eventually pays off as Android has obtained the highest market share among all mobile operation

systems as of the first quarter of 2013 according to IDC’s latest statistic [15]. In addition to the

commercial success, Android’s open-source nature also invites researchers to innovate on mobile

computing technologies, including offloading schemes [13][14], without building a mobile

computing platform from scratch. Like many other researchers, we decide to implement our

offload framework on Android due to its popularity and openness.

We can image that some tasks must keep working even when the Internet connection is

unavailable, such as an alarm clock or a calendar reminder. These tasks may be offloaded but we

should also implement a mechanism on the framework to launch backup tasks locally in case the

	 8	

Internet connection is lost. Also not every computational workload on a mobile device can be

offloaded. For instance, if a background service is location sensitive, offloading it might be

unwise since the device has to continuously send updated coordinates to the server.

Decisions on what to offload are challenging. For example, data synchronization overhead,

which depends on data volume and transmission bandwidth, the execution context of workload,

and the differences in execution capability between the mobile SoC and the server’s processor,

can affect the advantage of offloading. Profiling the workload and monitoring the network

quality-of-service (QoS) are essential in this framework. Furthermore, since the computation and

communication characteristics are dynamic rather than static, a daemon, which periodically

measures computational capability, communication performance, power consumption and

dynamically makes offloading decisions for each offloadable task, is required in the framework.

In this thesis, we propose a simple and novel mobile offloading framework for Android devices.

According to our experiment result based on two sample apps, the proposed framework enables

app developers to easily take advantage of computational offloading to reduce significant amount

of energy consumption and execution time.

	 9	

Chapter 2

Proposed Mobile Computation

Offloading Framework

2.1 Background Introduction

Before we present the proposed offloading framework, we would like to briefly review how the

internal structure of a conventional app looks like. As we can see, the conventional app

comprises multiple functional blocks communicating with each other. Some of the functional

blocks perform numerical calculation or data process, while some of them are responsible for

interacting with users. The app can also employ the communication abstract provided by the

operating system to access a third party server over the Internet. Note we deliberately avoid

using object-oriented programming terms in order to provide a more generalized view of

software structure.

	 10	

	

Figure 2.1: Conventional Software Resource Configuration

Device

Task

Wake-‐up	
Timer

Comm.	
Abstract

Front-‐end

Task Task

Internet

3
rd
	 Party	

Server

	 11	

A conventional way for configuring software resource on a smart phone or a tablet PC is shown

in Figure 2.1. There are a wake-up timer abstract, some tasks which are periodically woken up by

the timer abstract, some tasks which are not driven by the timer abstract, multiple front-end

abstracts which are associated to the tasks, a communication abstract which handles the Internet

connection, and one or more third-party servers which provide proprietary information over the

Internet. The tasks here are defined by functions and can be in any granularity. However, we

prefer to take functions as the basic elements of computation to better isolate them by their

characteristics. In this configuration, the device side is fully responsible for providing the CPU

time and energy required by the processes.

2.2 Related Work of Offloading Framework

In [13], the authors emulated an Android cell phone on the server to execute offload code. The

server also emulates all embedded sensors, such as GPS, in order to recreate the complete

runtime environment. By cloning the lower level abstraction, app developers do not need to

change any code. However, if an app heavily depends on a built-in sensor, the smartphone has to

constantly report the sensor reading to the server over the Internet, which spends significant

amount of communication bandwidth and battery energy. For apps with relatively low

computational complexity, the additional communication cost can easily defeat the purpose of

offloading. For example, when a user is using a location-based information app, the mobile

device has to send its coordinates to the server constantly and drains up the battery quickly. In

[14], the authors are aware of the potential high communication cost of cloning a complete

smartphone runtime environment remotely and thus limit the offloading target to pure functions,

	 12	

which require only small and simple data structures. However, pure functions are not necessarily

computationally intensive and thus offloading those functions might not save battery energy

either.

2.3 Proposed Offloading Framework

To address these shortcomings, we propose a new mobile offloading framework. The proposed

framework gives each app developer, who is most familiar with the app’s computational and data

flow model, explicit control of assigning potentially offloadable sections of the source code.

Although the proposed framework requires app developers to add some lines to pack offloadable

sections and call communication subroutines to interact with the server asynchronously, the

additional effort is minimized.

	 13	

	

Figure 2.2: Proposed Mobile Framework

	 14	

2.3.1 Decision Maker

Figure 2.2 shows the proposed framework for Android platform. On the device side, in addition

to what we have in the conventional configuration, we place a decision maker as an inter-task

communication gateway between the offloadable functional blocks and conventional ones to

decide whether a called offlodable function should be performed by its local Dalvik bytecode or

its remote Java applet. In the future, each offloading decision will be made based on the

information provided by various components, including a device status register file, a profiler, a

service status register file, and the manifest XML file explicitly defines the offloading

parameters, such as service level agreement (SLA), for each offloadable block. A server side

service status monitor, which keeps track of real-time workload of the server will be also

proposed to assist the decision maker.

The decision maker is a simple subroutine which is called at the beginning of each offloadable

block. An external data structure is accessed for historic performance record by the decision

maker to estimate and compare the potential cost of offloading before deciding whether the

offloading is beneficial. The effectiveness of an offloading decision maker relies on the accuracy

on cost estimation. If we want to optimize the responsiveness of the proposed framework, the

decision maker should estimate the end-to-end execution time for both cases and pick the shorter

one. The end-to-end execution time is defined as the time lapse from when a task is called to

when its result returned to the caller.

In the proposed mobile offloading framework, app developers are responsible for determining

which sections of the source code could be offloaded. Obviously, the decision should be made

	 15	

carefully as not every functional block can be offloaded to the server. For instance, offloading a

location service daemon, which constantly accesses the GPS abstraction, might not be a wise

decision, since it requires the device to continuously post its coordinates to the server over the

Internet. It is expected that only computationally intensive blocks with low data dependency on

the rest of the app could be offloaded. As app developers are most familiar with the

computational and data flow models used in their app, we believe it is a better solution than

online or offline machine analysis. Additionally, if the network condition is too bad, such as slow

upload speed, the maker should not call the offloaded function.

2.3.2 Execution Server

An execution server is the key component which schedules and dispatches offloaded tasks. It is

implemented on the server side. It is a highly customized HTTP server written in Java. It talks

with device side HttpPipe object via HTTP connections. The server is responsible of checking

the availability of an offloadable applet, receiving and storing an offloadable applet, launching

the offloadable applet, retrieving the output, and sending it back to the device. The action

performed by the server is selected by interpreting each incoming HTTP message. Besides the

generic HTTP header fields, the client-server primitive is based on XML-style messages carried

in HTTP request and response bodies. The instruction indicates the properties of a request is a

series of flags and key-value pairs between <inst> and </inst>, while the optional data field is

inserted between <data> and </data>. Flags are written as <flag/>, while key-value pairs are

parsed as <key> value </key>. The XML-style message scheme is easier to be read and

interpreted automatically, and highly extensible.

	 16	

Each uploaded offloadable applet file is stored in <package_name>/<applet _id>/ folder of the

server’s file system, where the applet ID is the absolute value of the file’s hash code. Each

offloadable applet file is renamed as “offload.*” to simplify the subsequent launch operation.

The isolation among different apps is achieved by storing the offloadable applet files in different

folders in the file system. It is still possible, though very unlikely, that different offloadable

applet files have the same package name and generate identical hash code. In that case, the

unlucky developer should put some garbage code in one of the offloadable applet to solve the

hash collision. We do not implement any collision resolution mechanism to handle this extremely

rare case.

Launching an offloadable applet is done by creating a runtime process with shell command. The

output string is subsequently retrieved from the process with getInputStream method and sent

back to the client side. By performing the launch of each offloadable applet with system shell

command, process lifecycle is managed by the platform. Therefore, it is much easier to integrate

the server with off-the-shelf high availability server tools such as Linux Virtual Server than

container approaches.

Two additional classes are created to help the main server class. The first one is ShellThread,

which is responsible of performing shell command in a separated thread. Since the AVD should

be running in the background and its boot-up time is incredibly long, we must launch it with the

help of a ShellThread object. ShellThread objects are also used in launch applets in JVM or ADB

shell. However, we call the launch method directly without creating new thread because 1) each

offload request is already handled in a separate server thread, 2) the server thread should be

	 17	

blocked anyway until the result is ready to be picked up from System.out.

The other helper class is ConstDef, which is static class to aggregate all the constants, mainly the

location of Android SDK, used by the server. It is the only class an operator would need to edit

when configuring a computer as an offload server.

2.4 Implementation

As the programming syntax and API support are almost identical, except some platform specific

calls, we expect an app developer can reuse the entire offloadable code block to compile the Java

applet. The only required change is inserting an input stream deserializer and an output object

serializer at the input and output ends, respectively, thus each offloadable functional block only

uses streams to communicate with outside. It is mandatory in order to unify the communication

interface as API, which will be further explained in the next section.

In current implementation, we assume each offloadable applet is available on the server and

ready to be launched by the execution server by its unique identifier. We propose a static applet

upload system open to all app developers to submit up-to-date offloadable applets. Consequently,

mobile devices do not have to deliver them to the server during runtime.

Once the execution of an offloadable applet is completed, the server returns the output stream to

the mobile device and kills the process along with the underlying JVM to realease the

computational resource. The mobile device can continue performing subsequent tasks since then.

	 18	

Chapter 3

Experiments Setup and Results

In this proposed mobile offloading framework, we expect the framework can realize two goals.

The first one is shortening the time of processing data and the second one is saving much more

energy of mobile devices. Hence, we create an Android app, which is compute-intensive, to test

this framework. Two parameters, calculation time and percentage of battery energy drop, are

significant in this test. We run the experiment 100 times on different frameworks in order to

observe their difference based on the two parameters mentioned above.

3.1 The framework of Sample App and

Offloading System

Today, Android apps have become more and more powerful. They are small, easy to install, and

easy to use. There are over one million Android apps in Google play, Google’s official digital

distribution platform. Students can communicate with their friends, post their daily photos and

share their important moments through social media apps. Children can play mobile games

online and watch cartoons or funny videos in YouTube. Photographers can use apps to manage

and edit their raw photos. Mobile apps have brought a whole new world beyond human’s

imagination and got way more sophisticated than simple personal information management tools.

	 19	

Many mobile app developers are seeking new ways to unleash the capability of mobile devices.

Although recently mobile processors have performance pretty close to contemporary desktop

ones, battery drainage concerns is still holding the potential of mobile computing devices back.

The proposed mobile framework is positioned in mitigate this problem and grant more freedom

for mobile apps.

3.1.1 Background Noise Spectrum Android App

In order to evaluate the proposed mobile offloading framework, we create an Android app, which

performs background noise spectrum analysis. First we assume that most background noise is

location dependent, time-invariant for small window, but time-variant for long term. That is,

background noise in each location at certain time has its unique characteristics based on our

assumption. If we can sample the background noise and analyze it at each location and time

frame, we would be able to establish a time variant map of background noise signature. With this

map, we could

1. Perform a noise cancellation service within a carrier’s infrastructure,

2. Take advantage of the geographic information retrieved from the background noise,

3. Identify the probable source location from an unknown audio data by comparing the

characteristic of its background noise, which could be helpful in forensic investigation.

In the sample app, the mobile device records background noise for a short period of time as a

WAV file from the microphone. The WAV audio format is an uncompressed audio format. It can

ensure a high quality of the sound file and be an ideal format for drawing background noise

spectrum. The app then sample and collect data from the wave file and call Fast-Fourier

	 20	

transform (FFT) function to transform the audio sample to frequency domain and displays the

spectrum on the mobile device in the end. Obviously, the most computationally intensive block

of the app is FFT, hence we can observe the difference of calculation time and consumed

percentage of battery energy between the original mobile framework and the new proposed

mobile framework.

3.1.2 The Flow Charts of Original and Proposed Apps

The flow chart of the app is shown in Figure 3.1. In this figure, background noise is recorded and

sampled based on FFT rules. The sample data is stored in an array. The FFT function processes

data and plot the data on the phone screen. As mentioned above, the block of FFT needs large

computation. Consequently, we fork the app and create another version, which utilize the

proposed framework by offloading the FFT block. The remaining tasks, such as background

noise recording, sampling the data and spectrum plotting, still take place on the mobile device.

The block diagram of the app with offloaded FFT block is shown in Figure 3.2.

	 21	

	

Figure 3.1: Flow Chart of Spectrum Analysis App without Offloading

	 22	

	

Figure 3.2: Flow Chart of Spectrum Analysis App with Offloading

	 23	

As we can see in Figure 3.2, the original flow chart is slightly modified. The app still keeps some

functions, such as recording and sampling background noise and plotting spectrum on the screen,

which are not specifically computationally intensive. The FFT processing block, however, is

separated and moved to a server. In order to send recorded audio sample to and receive the

spectrum data from the FFT processing block, which resides on the server side now, we insert

several additional interface blocks to the flow diagram. In the proposed offloading framework,

data transmissions of both directions are serialized as streams (casted as socket streams) to

simplify and unify the communication interface. In this application, at first the recorded audio

data is sampled and stored as an array object. Then it is serialized into a stream before

transmitted over the Internet, and deserialized back to an array object after received on the server

side to feed the FFT processing block. The output data generated by the FFT processing block,

i.e., the spectrum array, goes through the same conversion to traverse back and be plotted on the

mobile device.

Comparing to Figure 3.1, the extra blocks converting data object back and forth twice in Figure

3.2 make the app with offloaded FFT processing look very inefficient. However, the data

conversion is a relatively low cost practice as 1-dimensional arrays can be easily serialized to

and deserialized from stream objects. It is believed that the saving from offloading the FFT

process outweighs the overhead in data conversion. Additionally, a server usually has more

advanced hardware, such as more powerful CPU and larger memory, and its capability is not

bounded by battery consumption. The overall performance, in terms of the average execution

time and battery consumption rate, of some apps will be improved in the proposed framework.

The hypothesis will be proved by the data in the following part.

	 24	

3.2 Experiments

In order to observe the performance improvement and battery usage, we suspend the dynamical

offloading mechanism, which automatically decides whether an offloadable block should be

offloaded or running locally according to the communication cost and service availability

information available at the time. Therefore, the decision marker and the service status monitor

are omitted in our experiment. We used the two aforementioned apps, the original background

noise analyzer app, which exclusively runs on the mobile device, and the forked one, which

offloads the FFT processing block to the server. Furthermore, we assume the FFT applet is

always available on the server. Therefore, only input and output data streams traverse between

the mobile device and the server.

3.2.1 Information of Test Equipment

We use a Samsung Galaxy S III mini 8GB as the test mobile device. This smartphone is

equipped with a dual-core ARM Cortex-A9 processor running at 1 GHz, 1 GB RAM, and 8 GB

flash memory as secondary storage. It runs Android 4.1.2 (Jelly Bean) out of box without any

firmware update or tweak. Although it supports GSM and HSDPA connectivity as most

contemporary smartphones in US market, we only use Wi-Fi connection in the experiment. Its

1500 mAh batter pack is relatively small, which helps us to easily observe energy consumption

from the battery bar.

	 25	

On the server side, we used a MacBook Pro to host our server program. It is equipped with a

dual-core Intel Core i7 at 2.9 GHz, which can be overclocked up to 3.6 GHz with Turbo Boost

technology, 8 GB PC3-12800 DDR3 SDRAM, and a 750 GB 5400-rpm hard drive. The server

program runs on Java SE Runtime Environment build 1.7.0_07-b10 on top of OSX 10.8.4.

3.2.2 Experiment Result and Analysis

To observe the performance difference, we measure the time lapses for both apps to analyze a 2-

second wave file by performing 32768-point FFT and display the spectrum plotting for 30 times.

The execution time comparison is shown in Figure 3.3. In average, the original app takes 15.52

seconds to complete the analysis while the forked app without offloaded FFT block takes only

2.27 seconds. Therefore, in spite of the overhead on data conversions and transmissions, the

proposed offloading framework still boost the performance of the sample app by 6.85 times.

0
2
4
6
8
10
12
14
16
18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Execution	 Time

Original W/	 Offloading

Sec.

Test	 Number
	

Figure 3.3: Execution Time of the Sample App with and without Offloading Support

	 26	

	

Figure 3.4: Remained Battery Energy

To compare the battery energy consumption, we run each app 100 times right after the battery is

fully charged then use KingSoft Battery Doctor to check the remaining percentage of battery

energy. The mobile device retains only 93% of the batter energy after running the original app

100 times. In Comparison, it retains 97% of the battery energy after running the forked app with

offloaded FFT 100 times. The result is shown in Figure 3.4.

According to Figure 3.3 and Figure 3.4, we can conclude that both speed and energy

consumption of processing computationally intensive tasks are improved significantly with the

proposed mobile framework. The server, which is hosted on a general personal computer, is not

only equipped with a higher performance processor and larger memory than contemporary smart

phone, but also is highly upgradable and scalable. In the proposed mobile framework, the

relatively high performance server computer can significantly reduce the processing time of the

90%	 92%	 94%	 96%	 98%	

App	 (ofJload)	

App	 (original)	

	 27	

FFT block. Even though penalized by the data conversion and communication overhead, the

execution time is still shorter than it is in the original arrangement. More importantly, the

server’s computational capability is not bounded by battery energy (although the energy

consumption of data centers has become a critical issue). Therefore, app developers can employ

excessively complex algorithms without worrying about the battery drain as long as the

execution of computational intensive blocks is carefully offloaded.

	 28	

Chapter 4

Distributing System

We believe, in the future, more and more tasks will be offloaded to servers and eventually

become overwhelming. Grid computing is an excellent approach to accommodate the new load.

Grid computing is a family of distributed computing. It can enable organizations to utilize either

well-organized computer cluster, or remaining CPU time of their existing computer to perform

computational intensive tasks [17]. In grid computing, each computational project is partitioned

into numerous independent tasks. A server supervises many computers, i.e., client nodes. When

the server detects one of the computers is idle, it pushed a new task to the idle node. The server is

also responsible of retrieving and aggregating the results from the nodes.

In addition to utilizing dedicated computer cluster, grid computing technology also enables

utilizing unused computational resource on personal computers. Today, personal computers have

become overly powerful for most users. When performing some simple activities, such as

browsing the Internet, chatting with others or editing an office document, computers spend most

of the time on waiting for the next keyboard or mouse event and the CPU time is wasted.

Therefore, some researchers developed volunteer computing technology to utilize the CPU time

by harnessing personal computers with client software. [18] Among the volunteer computing

technologies, Berkeley Open Infrastructure for Network Computing (BOINC) is arguably the

most prominent framework. With BOINC, users can create and deploy their own grid computing

applications.

	 29	

There are some advantages to implement the server in the proposed framework with grid

computing technology. First of all, most offloadable tasks are independent and can be processed

simultaneously. Secondly, the server can be implemented and scaled up with virtually no cost by

aggregating unused computational resources on current operational computers rather than piling

up dedicated blade server computers on racks. Finally, since the server only monitors

participating computers and forwards tasks to the idling ones, it is less likely to be overwhelmed

by high quantity of incoming offloading requests.

4.1 Framework of BOINC

Among the volunteer computing technologies, Berkeley Open Infrastructure for Network

Computing (BOINC) is arguably the most prominent framework. BOINC is an open source

middleware system for grid computing created in 2002 [24]. It provides a platform for

organizations to publish their own computational applications and for volunteers to participate in

some scientific projects.

Figure 4.1 shows the basic infrastructure of BOINC. BOINC consists two mainly parts: a server

system and client computers. A server system can monitor its client computers’ status. If a client

is idle, it will be issued at least one new work unit, which do not require more RAM than it has.

The clients run the work unit, each comprises of an executable application and input files. Once

the computation is completed, the output data is saved as a file and uploaded back to the server.

The server can subsequently issue new work unit to the client to keep it from idling [19].

	 30	

	

Figure 4.1: Basic Infrastructure of BOINC [19]

	

Figure 4.2: Flow Chart of BOINC Software [19]

	 31	

The Figure 4.2 shows how the BOINC software works. The green box is installed in a user’s

computer. There are four components in the green box: Application, Core Client, Screensaver,

and GUI. Each application is a scientific computing program. A work unit can run several

applications simultaneously if it has more than one processor core. The result of each application

is sent to Core Client when available. Core Client then subsequently exchanges works with

scheduler and data sever through an HTTP session. GUI part uses TCP to control Core Client and

interact with users to start, suspend and resume an application. Screensaver part is not essential,

which only informs an application to generate screensaver graphics.

If we can make use of BOINC to process mobile offloading tasks, offloading blocks will be

saved as Applications in the server. When a mobile device sends a request along with the input

data to the server, the server recognizes the associated Application and sends both the

Application and input data to an idle Core Client as a work unit. The Core Client then uploads

the result back to the server with through HTTP session.

The operation loop is technically sensible. However, we still need to evaluate the feasibility of

using BOINC to implement the server in the proposed framework. In our test, we use BOINC

Server Debian Virtual Machine, which can be run upon VirtualBox, to setup up a BOINC Server

and create our own BOINC project. It provides the necessary directories to run a project and

MySQL, Apache2, and PHP, which are necessary software, are installed in it.

	 32	

4.2 Test

We used a MacBook Air as the test tool. It is equipped with a dual-core Intel Core i5 at 1.3 GHz,

4 GB 1600 MHz DDR3, and a 128 GB Flash-Storage hard drive. The operating system is OS X

Version 10.9.5. The VirtualBox version is 4.2.18 r88780. The BOINC Server Debian Virtual

Machine is equipped with Debian System based on UNIX. Its base memory is 384 MB. We set

up a BOINC server by using a BOINC server VM, whose image can be downloaded in the

official website, with all the necessary software already installed. This virtual machine can be

run in VirtualBox on this Mac OS X. Also we use VirtualBox to create another VM instance to

simulate a client computer. The user Operating System is Ubuntu. Its base 2048 MB memory,

two network adapters: Intel PRO/1000 MT Desktop (NAT) and Intel PRO/1000 MT Desktop

(Internal Network, ‘intnet’) and BOINC client software installed. Then we create an application,

which can be executed by the client VM instance, and add it on the server. In this test, we use the

uppercase application, which can transform all the characters of an ordinary ASCII file into

upper case, as the example project.

	 33	

	

Figure 4.3: Debian BOINC Server

In Figure 4.3, the apps folder contains an executable file named uppercase. We place input text

files in the download folder. And when the client computer is idle, it downloads the executable

file and input file from the server and uploads an output file to the upload folder, when it has

completed the computation task.

	

Figure 4.4: Input File

	 34	

	

Figure 4.5: Output File

From the Figure 4.4 and Figure 4.5, there are 20 ‘a’ in an input file and 20 ‘A’ in an output file.

Based on this hand-on test, we learn that BOINC is driven by scripts to automate the data input,

execution, and data output as files. That is the execution control has a very transparent interface

to work unit issuer. Therefore, BOINC allows users to easily build their own project and use

other computers to do computation tasks with a proper script.

In the future, Android developers can offload computationally intensive blocks as executable

files along with input data and script files to the server. The whole offload request is

subsequently refactored as a BOINC work unit. When the data is processed, the result is written

into a file and sent back to mobile devices from the BOINC server.

	 35	

Chapter 5

Discussion and Conclusion

Google Android provides an open-source platform for developers to freely customize their

phones and develop fantastic mobile apps. The proposed mobile framework uses offloading and

grid computing to improve their performance: execution time and consumption of battery energy.

5.1 Discussion

In the proposed framework, the server can help mobile devices to process complex

computational tasks, which potentially take long time and drain much battery energy on mobile

devices. The computational tasks on the server can further be offloaded to other computers with

surplus resources using BOINC client-server architecture to scale up. Backed by scalable servers

in data centers, mobile computing devices with the proposed offloading scheme are able to

provide more computation cycles per battery charge without compromising their portability,

performance, software features, and hardware cost. Additionally, the framework provides a

simple and friendly interface for Android app developers. Developers only need to extract

offloading part from their apps, upload relevant offloading applet to the execution server and

insert a data conversion function. They are not required to modify most parts of their code. We

also believe that the proposed framework will enable new generation of applications on mobile

computing devices, leveraging virtually unlimited computing resources in the cloud.

	 36	

It is easy for developers to know the time and space complexities of each offloading task based

computer science analysis. However, estimating the server execution time is very difficult. There

are a lot of factors, which need to be considered. For example, the network delay will be longer

if the server and a mobile device has a long geographical distance or the networking technology

is too low. Hence, the estimation of the processing time in the proposed framework is a mixture

of analytical, empirical, and statistical approaches, rather than pure analytical.

The background noise analyzer app used to demonstrate the advantages of offloading is an

extreme sample. We will develop more sample apps, which can better present the real world apps

and improve the generality and completeness of the API of the proposed framework.

5.2 Related Work

Kwon and Tilevich have proposed a distributed mobile execution framework [20], which is also

based on the offloading concept. The approach, however, is quite different from the proposed

framework.

Although both frameworks require source code to be altered and recompiled, the approach taken

in [20] is very different from the proposed one. In [20], the authors focus on the programming

model to enable offloading and exception handling when network is unavailable, while the

proposed framework is essentially an API to unify the interaction between mobile devices and

servers. Furthermore, in [20], the authors do not define a unified interface for the server to host

	 37	

offloaded tasks. The server-side processing is ad-hoc to each offloadable task.

In contrary, the proposed framework provides a unified, intuitive, and transparent interface for

both offloadable classes and corresponding servers. More importantly, using serialized single-

input, single output (SISO) data interface for offloadable tasks significantly simplify the

potential integration with BOINC.

5.3 Future Work

In the future, mobile apps firstly communicate with the server, when they are ready to execute

offloading task. The server should look up whether a relevant executable applet is already existed

in it. If it cannot find the relevant executable applet, mobile apps have to upload offloading

blocks to the server and save them as applet files in the server. It is convenient for other users,

when they use same apps to process the data.

Also, information security is very important in the society. Sending data and receiving data may

become a potential threat to the information security. In the future, we would like to develop a

more secured protocol for the communication between servers and mobile devices.

Finally, we expect to test the connection between the BOINC server and mobile devices. It is an

important part because when the BOINC server gets results from clients, results should be sent

back to mobile devices.

	 38	

5.4 Conclusion

This thesis describes a new proposed mobile framework, which can accelerate the data

processing and save battery energy. By offloading proper functional blocks, which are

computational intensive and have low data dependency to the rest of the app, to the server, a

mobile device can save significant amount of battery energy and provide more responsive user

experience. App developers only need to put a little extra effort on adapting an existing Android

app to the proposed offloading framework and significantly improve the battery life and user

experience.

To evaluate the performance and efficiency of the proposed framework, we developed a sample

app with conventional and offloading configurations. The experiment results fully demonstrate

that the advantages of the proposed framework. In the future, some ideas can be added in the

framework and make the framework more advanced, intelligent and efficient.

	 39	

Bibliography

[1] http://en.wikipedia.org/wiki/Google_Maps#cite_note-5

[2] http://en.wikipedia.org/wiki/Flappy_Bird

[3] http://www.engadget.com/2013/10/31/strategy-analytics-q3-2013-phone-share/

[4] http://en.wikipedia.org/wiki/OS_X

[5] http://tech.co/ios-vs-android-app-development-consumer-experience-comparison-2014-

02

[6] http://en.wikipedia.org/wiki/Android_(operating_system)#cite_note-AndroidOverview-

12

[7] K. Yang, S. Ou, and H. H. Chen, “On effective offloading services for resource-

constrained mobile devices running heavier mobile Internet applications,” IEEE

Communications Magazine, vol. 46, no. 1, pp. 56-63, Jan. 2008.

[8] T. Erl, R. Puttini, and Z. Mahmood, Cloud Computing: Concepts, Technology &

Architecture. 1st ed., Prentice Hall, N. J, 2013.

[9] C. Baun, M. Kunze, J. Nimis, and S. Tai, Cloud Computing: Web-Based Dynamic IT

Services. 2nd ed., Springer-Verlag Berlin Heidelberg, N.Y, 2011.

[10] D. Kovachev, and R. Klamma, “Beyond the clinet-server architectures: A survey of

mobile cloud techniques,” IEEE int. Conf. on Communications in China Workshops

(ICCC), Beijing, China, Aug.2012, pp. 20-25.

[11] G. Chen, B. T. Kang, M. Kandemir, N. Vijakrishnan, M. J. Irwin, and R.Chandramouli,

“Studying energy trade offs in offloading computation/compilation in Java-enabled

	 40	

mobile devices,” IEEE Trans. Parallel and Distrib. Sys., vol. 15, no. 9, pp. 795-809, Sept.

2004.

[12] S. Park, Y. Choi, Q. Chen, and H. Y. Yeom, “Some: selective offloading for a mobile

computing environment,” IEEE int.

[13] E. Y. Chen, S. Ogata, and K. Horikawa, “Offloading android applications to the cloud

without customizing Android,” in IEEE int. Conf. on Pervasive Computing and Commun

Workshops (PERCOM Workshops), Lugano, Switzerland, Mar. 2012, pp. 788-793.

[14] H. Y. Chen, Y. H. Lin, and C. M. Cheng, “COCA: Computing offload to clouds using

AOP,” IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

(CCGrid), May 2012, pp. 466-473.

[15] K. Restivo, R. Llamas, and M. Shirer. (2013, May 16). Android and iOS Combine for

92.3% of All Smartphone Operating System Shipments in the First Quarter While

Windows Phone Leapfrogs BlackBerry, According to IDC [Online]. Available:

http://www.idc.com/getdoc.jsp?containerId=prUS24108913

[16] “Java SE Embedded Performance Versus Android 2.2“ [Online] Available:

https://blogs.oracle.com/javaseembedded/entry/how_does_android_22s_performance_sta

ck_up_against_java_se_embedded

[17] http://boinc.berkeley.edu/trac/wiki/DesktopGrid

[18] http://w3.linux-magazine.com/issue/71/Distributed_Applications_With_BOINC.pdf

[19] http://boinc.berkeley.edu/wiki/How_BOINC_works

[20] Young-Woo Kwon and Eli Tilevich, “Power-Efficient and Fault-Tolerant Distributed

Mobile Execution,” in 32nd International Conference on Distributed Computing Systems

(ICDCS 2012), 2012.

	 41	

[21] http://en.wikipedia.org/wiki/Mobile_phone

[22] http://en.wikipedia.org/wiki/History_of_mobile_phones

[23] Distributed Applications with BOINC

[24] http://en.wikipedia.org/wiki/Berkeley_Open_Infrastructure_for_Network_Computing

	Washington University in St. Louis
	Washington University Open Scholarship
	Winter 12-15-2014

	Novel Mobile Computation Offloading Framework for Android Devices
	Meng Wang
	Recommended Citation

	Microsoft Word - Thesis Draft.docx

