51 research outputs found

    A Compositional Approach to Embedded System Design

    Get PDF
    An important observable trend in embedded system design is the growing system complexity. Besides the sheer increase of functionality, the growing complexity has another dimension which is the resulting heterogeneity with respect to the different functions and components of an embedded system. This means that functions from different application domains are tightly coupled in a single embedded system. It is established industry practice that specialized specification languages and design environments are used in each application domain. The resulting heterogeneity of the specification is increased even further by reused components (legacy code, IP). Since there is little hope that a single suitable language will replace this heterogeneous set of languages, multi-language design is becoming increasingly important for complex embedded systems. The key problems in the context of multi-language design are the safe integration of the differently specified subsystems and the optimized implementation of the whole system. Both require the reliable validation of the system function as well as of the non-functional system properties. Current cosimulation-based approaches are well suited for functional validation and debugging. However, these approaches are less powerful for the validation of non-functional system properties. In this dissertation, a novel compositional approach to embedded system design is presented which augments existing cosimulation-based design flows with formal analysis capabilities regarding non-functional system properties such as timing or power consumption. Starting from a truly multi-language specification, the system is transformed into an abstract internal design representation which serves as basis for system-wide analysis and optimization.Ein wesentlicher Trend im Entwurf eingebetteter Systeme ist die steigende Komplexität der zu entwerfenden Systeme. Neben der zunehmenden Funktionalität hat die steigende Komplexität eine weitere Dimension: die resultierende Heterogenität bezüglich der verschiedenen Funktionen und Komponenten eines eingebetteten Systems. Dies bedeutet, daß Funktionen aus verschiedenen Anwendungsbereichen in einem einzelnen System eng miteinander kooperieren. Es ist in der industriellen Praxis etabliert, daß in jedem Anwendungsbereich spezialisierte Spezifikationssprachen zum Einsatz kommen. Da wenig Hoffnung besteht, daß eine einzige geeignete Sprache diesen heterogenen Mix von Sprachen ersetzen wird, gewinnt der mehrsprachige Entwurf für komplexe eingebettete Systeme an Bedeutung. Die Hauptprobleme im Bereich des mehrsprachigen Entwurfs sind die sichere Integration der verschieden spezifizierten Teilsysteme und die optimierte Implementierung des gesamten Systems. Beide Probleme verlangen eine zuverlässige Validierung der Systemfunktion sowie der nichtfunktionalen Systemeigenschaften. Heutige cosimulationsbasierte Ansätze aus Forschung und Industrie sind gut geeignet für die funktionale Validierung und Fehlersuche, haben aber Schwächen bei der Validierung nichtfunktionaler Systemeigenschaften. In der vorliegenden Arbeit wird ein neuartiger kompositionaler Ansatz für den Entwurf eingebetteter Systeme vorgestellt, der existierende cosimulationsbasierte Entwurfsflüsse um Fähigkeiten zur Analyse nichtfunktionaler Systemeigenschaften ergänzt. Ausgehend von einer mehrsprachigen Spezifikation, wird das System in eine abstrakte homogene interne Darstellung transformiert, die als Grundlage für die systemweite Analyse und Optimierung dient

    Design methodologies for instruction-set extensible processors

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Java for Cost Effective Embedded Real-Time Software

    Get PDF

    Highly-configurable FPGA-based platform for wireless network research

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 155-164).Over the past few years, researchers have developed many cross-layer wireless protocols to improve the performance of wireless networks. Experimental evaluations of these protocols require both high-speed simulations and real-time on-air experimentations. Unfortunately, radios implemented in pure software are usually inadequate for either because they are typically two to three orders of magnitude slower than commodity hardware. FPGA-based platforms provide much better speeds but are quite difficult to modify because of the way high-speed designs are typically implemented by trading modularity for performance. Experimenting with cross-layer protocols requires a flexible way to convey information beyond the data itself from lower to higher layers, and a way for higher layers to configure lower layers dynamically and within some latency bounds. One also needs to be able to modify a layer's processing pipeline without triggering a cascade of changes. In this thesis, we discuss an alternative approach to implement a high-performance yet configurable radio design on an FPGA platform that satisfies these requirements. We propose that all modules in the design must possess two important design properties, namely latency-insensitivity and datadriven control, which facilitate modular refinements. We have developed Airblue, an FPGA-based radio, that has all these properties and runs at speeds comparable to commodity hardware. Our baseline design is 802.11g compliant and is able to achieve reliable communication for bit rates up to 24 Mbps. We show in the thesis that we can implement SoftRate, a cross-layer rate adaptation protocol, by modifying only 5.6% of the source code (967 lines). We also show that our modular design approach allows us to abstract the details of the FPGA platform from the main design, thus making the design portable across multiple FPGA platforms. By taking advantage of this virtualization capability, we were able to turn Airblue into a high-speed hardware software co-simulator with simulation speed beyond 20 Mbps.by Man Cheuk Ng.Ph.D

    Approaches to parallel performance prediction

    Get PDF

    Unifying software and hardware of multithreaded reconfigurable applications within operating system processes

    Get PDF
    Novel reconfigurable System-on-Chip (SoC) devices offer combining software with application-specific hardware accelerators to speed up applications. However, by mixing user software and user hardware, principal programming abstractions and system-software commodities are usually lost, since hardware accelerators (1) do not have execution context —it is typically the programmer who is supposed to provide it, for each accelerator, (2) do not have virtual memory abstraction —it is again programmer who shall communicate data from user software space to user hardware, even if it is usually burdensome (or sometimes impossible!), (3) cannot invoke system services (e.g., to allocate memory, open files, communicate), and (4) are not easily portable —they depend mostly on system-level interfacing, although they logically belong to the application level. We introduce a unified Operating System (OS) process for codesigned reconfigurable applications that provides (1) unified memory abstraction for software and hardware application parts, (2) execution transfers from software to hardware and vice versa, thus enabling hardware accelerators to use systems services and callback other software and hardware functions, and (3) multithreaded execution of multiple software and hardware threads. The unified OS process ensures portability of codesigned applications, by providing standardised means of interfacing. Having just-another abstraction layer usually affects performance: we show that the runtime optimisations in the system layer supporting the unified OS process can minimise the performance loss and even outperform typical approaches. The unified OS process also fosters unrestricted automated synthesis of software to hardware, thus allowing unlimited migration of application components. We demonstrate the advantages of the unified OS process in practice, for Linux systems running on Xilinx Virtex-II Pro and Altera Excalibur reconfigurable devices

    A Problem-Oriented Approach for Dynamic Verification of Heterogeneous Embedded Systems

    Get PDF
    This work presents a virtual prototyping methodology for the design and verification of industrial devices in the field level of industrial automation systems. This work demonstrates that virtual prototypes can help increase the confidence in the correctness of a design thanks to a deeper understanding of the complex interactions between hardware, software, analog and mixed-signal components of embedded systems and the physical processes they interact with
    corecore