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Abstract

The machine unmakes the man. Now that the machine is so perfect, the

engineer is nobody. – Ralph Waldo Emerson

Customizing the processor core, by extending its instruction set architecture

with application specific custom instructions, is becoming more and more popular

to meet the increasing performance requirement of embedded system design. The

proliferation of high performance reprogrammable hardware makes this approach

even more flexible. By integrating custom functional units (CFU) in parallel with

standard ALUs in the processor core, the processor can be configured to accelerate

different applications. A single custom instruction encapsulates a frequently occur-

ring computation pattern involving multiple primitive operations. Parallelism and

logic optimization among these operations can be exploited to implement the CFU,

which leads to improved performance over executing the operations individually in

basic function units. Other benefits of using custom instructions, such as compact

code size, reduced register pressure, and less memory hierarchy overhead, contribute

to improved energy efficiency.

The fundamental problem of the instruction-set extensible processor design is

the hardware-software partitioning problem, which identifies the set of custom in-

structions for a given application. Custom instructions are identified on the dataflow

graph of the application. This problem can be further divided into two subproblems:

viii
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(1) enumeration of the set of feasible subgraphs (patterns) of the dataflow graph as

candidates custom instructions, and (2) choosing a subset of these subgraphs to

cover the application for optimized performance under various design constraints.

However, solving both subproblems optimally are intractable and computationally

expensive. Most previous works impose strong restrictions on the topology of pat-

terns to reduce the number of candidates, and then use heuristics to choose a suitable

subset.

Through our study, we find that the number of all the possible candidate pat-

terns under relaxed architectural constraints is far from exponential. However, the

current state-of-the-art enumeration algorithms do not scale well when the size of

dataflow graph increases. These large dataflow graphs pack considerable execution

parallelism and are ideal to make use of custom instructions. Moreover, modern

compiler transformations also form large dataflow graphs across the control flow to

expose more parallelism. Therefore, scalable and high quality custom instruction

identification methodologies are required.

The contributions of this thesis are the following. First, we propose efficient

and scalable subgraph enumeration algorithms for candidate custom instructions.

Through exhaustive enumeration, isomorphic subgraphs embedded inside the dataflow

graphs, which can be covered by the same custom instruction, are fully exposed.

Second, based on our custom instruction identification methodology, we conduct a

systematic study of the effects and correlations between various design constraints

and system performance on a broad range of embedded applications. This study

provides a valuable reference for the design of general extensible processors. Finally,

we apply our methodologies in the context of real-time systems, to improve the

worst-case execution time of applications using custom instructions.
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Chapter 1

Introduction

The breeding of distantly related or unrelated individuals often produces

a hybrid of superior quality. – The American Heritage Dictionary, in the

paraphrase of “outbreeding”.

Driven by the advances of semiconductor industry during the past three decades,

electronic products with computation capability have permeated into every aspect of

our daily work and life. Such devices like industrial machines, household appliances,

medical equipments, automobiles, or recently popular cell phones, MP3 player and

digital cameras, are very different from general purpose computer systems such as

workstations and PCs in both appearance and functions. As their cores of compu-

tation are usually small and hidden behind the scenes, they are called Embedded

Systems. In fact, there are far more embedded applications than those using gen-

eral purpose computers. There is research showing that everyone among the urban

population is surrounded by more than 10 embedded devices.

Though there is no standard definition for embedded systems, the most impor-

tant characteristic is included in a general one: an Embedded System is any computer

system or computing device that performs a dedicated function or is designed for

1
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use with a specific embedded software application. Most embedded computers

run the same application during their entire lifetime, and such applications usually

have relatively small and well-defined computation kernels and more regular data

sets than general-purpose applications [69]. The additional knowledge of the deter-

minacy, on the one hand, offers more opportunities to explore system effectiveness;

on the other hand, it raises the design challenges in that the hardware architecture

should be specialized to best suit the given application.

1.1 Specialization

An effective embedded system for a given application is always designed around var-

ious constraints. A product should not only meet its computational requirements,

i.e., the performance constraints, but also needs to be cost effective and efficient,

in terms of silicon area and power consumption constraints. A general purpose

computer for a simple task like operating a washing machine is overkill and very

expensive. On the other hand, the same general purpose computer may be ineffi-

cient or even infeasible for certain I/O, data or computational intensive applications

requiring very high throughput, such as network processing, image processing, en-

cryption among others. Power consumption is frequently a major concern of many

portable devices, which renders power hungry general purpose computers less favor-

able. For real-time embedded systems, timing constraints must be assured for task

executions to meet their deadlines. Ideally, an embedded system should provide suf-

ficient performance at minimum cost and power consumption. One way to achieve

this is specialization — the exploitation and translation of application peculiarities

into the system design. Specialization involves many aspects such as the design of

processing unit, memory system, interconnecting network topology and others. This

thesis focuses on the processing unit design — the heart of the computation.
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srl $13, $2,  20
andi $25, $13, 1
srl $14, $2,  21
andi $24, $14, 6
or    $15, $25, $24
srl $13, $2,  22
andi $14, $13, 56
or    $25, $15, $14
sll $24, $25, 2

Sequence of MIPS instructions

27 26 25 23 22 20

7 6 5 4 3 2
0. . . 0 . . .

Actual bit-level logic (wiring only)

Figure 1.1: Performance overhead of using general purpose instructions, for a bit
permutation example in DES encryption algorithm (adapted from [44]).

1.1.1 Inefficiency of General Purpose Processors

A General Purpose Processor (GPP) is mostly designed with its generality in mind,

achieved through the following sources. First, an application is broken down into

a set of most fine grained yet general operations (e.g., 32-bit integer addition). A

proper combinations of these fine grained general operations can be used to express

any sorts of computations. This set of general operations defines the interface be-

tween the software and the processor, and is referred to as the Instruction-Set Archi-

tecture (ISA). Single operations or the instructions are executed through temporal

reuse of a set of Functional Units (FU) inside the processor. Second, the sequence

of instructions (and data), referred to as the program, is stored in a separate storage

(i.e., the memory hierarchy). Each instruction is loaded and executed by the GPP

at run time through a fetch-decode-execute cycle. In this Von Neumann architec-

ture, computations can be changed simply by replacing the programs in the storage,

without modifying the underlining hardware. The programs are hence referred to

as Software due to the ultra flexibility and fluidity of realizing and switching among

different computations.

The efficiency degradation of a GPP is largely caused by the requirement to
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maintain generality. First, using general purpose instructions can lead to large

performance overhead. A very good example is shown in Figure 1.1, where sparse

yet simple bit permutations need to be encoded with a long instruction sequence.

Moreover, a uniform bit length (e.g., 32-bit) of operands is under utilized in most

occasions. Second, computation on a GPP needs to be sequentialized to reuse a

handful of FUs. In this process, dependencies, from both dataflow and control

flow, slow down the performance. As an example, the sum of 3 variables needs to

be broken down into 2 consecutive 2-input additions. With the second addition

data-dependent on the result of the first one, the execution on a general purpose

2-input FU requires two cycles to finish. On the other hand, the delay of a 3-input

adder implemented directly with hardware increases only marginally. Figure 1.2

shows the block diagram of a 16-bit 3-input adder, which is composed of a layer

of full adders on top of a 16-bit 2-input carry look-ahead adder. While the 16-bit

2-input carry look-ahead adder usually involves 8 gate levels (implemented in four

4-input carry look-ahead adders with a lookahead carry unit), the full adders on

top involve only 2 gate levels. Therefore, the delay of a 16-bit 3-input adder is

increased roughly 25% compared to that of a 2-input one. For a 32-bit 3-input

adder, the relative delay increase is even less. If the clock cycle of the processor is

not constrained by the FU, as is often the case, the 3-input addition can be executed

within the same processor cycle. The sequential model of GPP execution marks the

key difference between the implementations in software and specialized hardware1.

Third, the energy efficiency of the instruction fetch-decode-execute cycle is quite

poor. Comparing with the energy consumed by the real computations, much more

energy is spent on the memory hierarchy and complicated mechanisms to fill the

1Modern GPP architectures are able to exploit, to some extent, the lateral dataflow parallelism.
Superscalar processors utilize large reservation stations and wide multi-issue units; VLIW proces-
sors rely on instruction packages containing multiple parallel instructions. Both architectures are
restricted by the number of FUs that can execute concurrently, where a linear increase in number
of FUs increase the overall circuit complexity significantly. Control flow parallelism faces the same
restrictions as the dataflow part.
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16-BIT CARRY LOOK-AHEAD ADDER

FA

X15 Y15 Z15

C16 S15

B15

FA

X14 Y14 Z14

C15 S14

B14

FA

X0 Y0 Z0

C1 S0

B0

FA

X1 Y1 Z1

C2 S1

B1 A0A1A15 A2

…

S[15:0]

0

Figure 1.2: Architecture of a 16-bit, 3-input adder (adapted from [32]).

execution pipeline (to name a few, branch prediction, out-of-order execution and

predicated execution) for sustained performance.

1.1.2 ASICs — the Extreme Specialization

As opposed to software running on a GPP, the Application-Specific Integrated Cir-

cuit (ASIC) is referred to as the Hardware implementation of the application. ASICs

hard-wire the application logic across the hardware space — a “sea of gates”. The

hardware logic can be directly derived from the application (e.g., the application

fragment in Figure 1.1 only needs simple wiring), combined for gate level optimiza-

tions and adapted to exact bit-widths. Most importantly, unlike GPPs that rely on

the reuse of FUs over time, ASICs exploit spatial parallelism offered in the hardware

space. The inherently concurrent execution model is able to exploit virtually all the

parallelism. Without the instruction fetch-decode-execute cycle, high performance

and low power consumption can be achieved simultaneously.

However, the efficiency of ASICs does come at the cost of programmability.

ASICs are totally inflexible. Once the device is fabricated, its functionalities are

fixed. Every new product, even with small differences, needs to go through a new
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design and mask process2, which drastically increases the design time and Non-

Recurring Engineering (NRE3) cost. Updating existing equipments for new stan-

dards is not possible without hardware replacement. This inflexibility is especially

undesirable for small volume products with minor functional changes (e.g., different

models of cell phones in the same series), or under tight time-to-market pressure.

1.1.3 Software vs. Hardware

The differences between software and hardware are further elaborated in Table 1.1.

Table 1.2 summarizes and expands a little on the general pros and cons of using

GPPs or ASICs over common design concerns.

As we can imagine, GPPs and ASICs sit at the very two ends of the spectrum

with exactly opposite pros and cons. Either choice causes sacrifice of the benefits

from the other one. Consequently, the current industrial practice couples GPPs and

ASICs to different extents so as to take advantage of the combined strength, yielding

a spectrum of possible choices.

1.1.4 Spectrum of Specializations

Specialized circuits can be integrated to cooperate with the processor at various lev-

els. Fine grained specialization can be done at the instruction level of the processor.

In this way, frequently occurring computational patterns (which include multiple

operations) can be executed more efficiently as complex instructions in specialized

functional units directly on the processor’s datapath.

2Mask process creates photographic molds for multi-layered IC, and is usually very expensive.
3NRE refers to the one-time cost of researching, designing, and testing a new product, and is

supposed to be amortized in the later per-product sales.
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Software Hardware

Execution model Sequential model. Concurrent model.
Logic encoding As formatted instructions in

the system memory.
As hard-coded gates on the
chip space.

Logic decoding On-the-fly by the decoding
logic in the processor pipeline.
Generated signals control the
actual function of the FU for
the instruction.

Not needed.

Logic granularity Coarse, operations being “gen-
eral” and operating on stan-
dard bit-length operands.

Fine, exact bit-level manipula-
tions and bit-length.

Execution granularity Fine, each instruction per-
forms a single operation.

Coarse, a single hardware
function packs a portion of
computations.

Table 1.1: Software vs. Hardware.

Design Concern Using GPP Using ASIC

Performance Low, due to logic overhead, in-
struction fetch and decode over-
head, and most importantly
lack of concurrency.

High, due to bit-level manip-
ulation, exact bit-width, logic
combination and optimization,
and concurrent execution.

Power consumption High, due to instruction load-
ing, pipelining with high clock
frequency, cache, out-of-order
execution, etc.

Low, no instruction overhead,
lower clocking.

NRE cost Low, given off-the-shelf GPP,
this mainly involves software
development, supported by ro-
bust and fully automated com-
pilation tools.

High, requiring intimate hard-
ware design knowledge, expen-
sive development and verifi-
cation equipments and tools,
mask cost.

Manufactory cost High, GPP system cost more
silicon than ASICs.

May cost less silicon.

Time-to-market Fast, less development time. Slow, long development and
pre-manufacturing process.

Risk Small, low NRE cost and fast
time-to-market.

Big, high NRE cost and slow
time-to-market.

Maintainability Good, software maintenance is
easier, bug fix and functional
changes can be applied easily.

Poor, any faults found after
fabrication may cause produc-
tion recall.

Table 1.2: GPP vs. ASIC
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DSPRISC CISC ASIC
Loosely coupled
Processor + ASIC

Processor +
Coprocessor

Software Hardware

SIMD

Fine grained 
specialization

Coarse grained 
specialization

Performance
Flexibility

ASIP

Figure 1.3: Spectrum of system specialization.

CISC, DSP, SIMD, ASIP architectures in Figure 1.3 are light weight fine grained

specialization of processor’s instruction set. For a RISC (Reduced Instruction-set

Computer) processor on the leftmost side, each operation is executed with a sin-

gle word-level instruction. A CISC (Complex Instruction-set Computer) processor

allows a computational instruction to operate directly on operands in the system

memory. This essentially is a coarser grained instruction consisting of both the

memory access operations for the operands and the computational operation.

Digital Signal Processors (DSP) employ the single cycle MAC (Multiply-Accumulate)

instruction to accelerate intensive product accumulations, i.e., Sum =
∑
Xi ∗ Yi. A

MAC instruction computes the repeating pattern Sumi = Xi ∗ Yi + Sumi−1 each in

a single cycle, and accumulate the sum in an internal register progressively in the

MAC unit. Note that in a GPP, the same pattern will be executed as a multiply in-

struction (maybe multi-cycle) followed by an add instruction, with the result of each

instruction output to the register file. The block diagram and computation logic of

a MAC unit are depicted in Figure 1.4. In order to achieve high performance, MAC

units often use high speed combinational multipliers at the cost of the number of

transistors.

Unlike collapsing data dependent operations as the MAC instruction, a SIMD

(Single Instruction, Multiple Data) architecture exploits the parallelism among the

operations. A single SIMD instruction applies the same operation on several in-
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XY
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Multiplier

Accumulator
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*
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*
+

Xi Yi

Xi+1 Yi+1

Sumi-1

Sumi

Sumi+1

Figure 1.4: MAC in a DSP. (a) Chaining basic operations on the dataflow, (b) Block
diagram of a MAC unit.

dependent data sources concurrently. Instructions of this kind are employed in

supercomputers for long vector operations in scientific computation. They are also

widely adapted in multimedia instruction-set extensions, such as MMX, SSE and

3DNOW!, to enhance short vector operations in multimedia and communication

applications. SIMD units are usually assisted by wide registers and register ports

for larger operand bandwidth.

ASIPs (Application Specific Instruction-set Processor) have their instruction-

set tailored to a specific application or application domain. For example, special

instructions are used in processors specialized in encryption for bit permutation and

s-box operations [72], and in fast fourier transform to perform or assist butterfly

operations [52]. In fact, DSPs and SIMDs are instances of ASIPs originally in the

domain of digital signal processing and scientific computation, even though their

functions tend to become an integral part of general purpose processors for wide

range of consumer applications.

In a coarse grained specialization approach, computationally intensive tasks or

kernel loops are mapped to the hardware, loosely coupled with the host processor as
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a co-processor. The host processor works with the co-processor in a “master/slave”

fashion. Special communication instruments are used for data transfer and syn-

chronization via system bus or network in between. The co-processor has a higher

degree of independence but it incurs longer communication latency with the proces-

sor, compared to specialized functional units. Computation kernels mapped to the

co-processor usually require intensive algorithmic and hardware oriented optimiza-

tions to exploit full performance potential. In this sense, the intimate knowledge of

hardware and effort required from the designers and tools are comparable to that of

a pure ASIC design. However, the decoupling of computation kernels does provide

opportunities of reusing the hardware component. Through proper parametrization

and interfacing, verified high performance hardware components of useful algorithms

can be plugged into a different system with less design and manufacturing effort.

An example of loosely coupled hardware module is reviewed in Section 2.1.2.

In general, specialization on larger execution granularity carries more perfor-

mance advantages. More effort, mainly focusing on loop transformation and op-

timization to expose more parallelism or even algorithm changes to adapt to the

concurrent execution model, is needed to achieve optimized performance. On the

other hand, fine grained specialization is more flexible, as smaller computation pat-

terns strike a more balanced distribution of software/hardware execution, and can

be reused wherever they appear. Computation patterns can be deduced from the

software implementation of the application, which fits well in the software compila-

tion process. The trade-off goes to the less performance gain compared to a coarse

grained approach.
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Figure 1.5: General structure of a FPGA.

1.1.5 FPGAs and Reconfigurable Computing

Coupling hard-wired logic with microprocessors strikes the balance between perfor-

mance and design effort. However, it does not break the “fixed once fabricated”

model. A more flexible solution has only unfolded with recent availability of high

density, high performance reconfigurable hardware, which is capable of being re-

programmed conveniently and swiftly after fabrication. Reconfigurable hardware is

also able to achieve high performance through concurrent execution model of com-

putation. Therefore, it is considered as the glue technology connecting the worlds of

software and hardware. The methodologies and applications of utilizing hardware

reconfigurability are known as Reconfigurable Computing .

The basis of reconfigurable computing is reconfigurable devices, a common ex-

ample being Field-Programmable Gate Arrays (FPGAs). As indicated with the

phrase “Field-Programmable”, the functionality of an FPGA can be determined

on-site, rather than at the time of its fabrication. An FPGA contains an array of

small computational elements known as logic blocks, surrounded and connected by

programmable routing resources. The functionality of logic blocks and connectivity

of routing resources are determined through multiple programmable configuration
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points. Each configuration point is associated with SRAM bits in SRAM based

FPGAs. Reconfiguration is merely the process of loading organized bitstream to

the SRAM. Figure 1.5 shows the general structure of a FPGA. In a real product,

hundreds of thousands of logic blocks can be integrated on a single chip (e.g., 330K

logic blocks on a Xilinx Virtex-5 chip [41] comparable roughly to the logic capacity

of a million gates), onto which even large and complex algorithms can be mapped.

The logic blocks of most commercially available FPGAs are based on Lookup

Tables (LUT). LUTs express fine-grained bit-level logic, and are hence very flexible

to implement random digital logic and bit-level manipulations. As depicted in Fig-

ure 1.6 (a), an LUT is simply a piece of 2N bit memory indexed by its inputs of size

N . By loading the values of the memory bits, an LUT is capable of performing any

N -input logic functions. Besides the LUT, a logic block usually contains additional

logic for clocking (Figure 1.6 (b)). Functions of more than N inputs and 1 outputs

are implemented by stacking multiple logic blocks through the routing resource. For

example, a binary full adder involving 3 inputs (2 addends and 1 carry-in) and 2

outputs (sum and carry-out) can be implemented using two 4-input LUTs for sum

and carry-out respectively4, each leaving one input unused. A standard 16-bit carry

ripple adder can be obtained by properly connecting 16 binary full adders. However,

certain operations, e.g., multiplication and floating-point computations, cannot be

implemented efficiently on LUTs due to the very regular on-chip routing structure

and massive amount of resource required. Some FPGAs embed small hard-wired

multipliers with logic blocks to assist multiplications [41]. Designers also need to

transform float-point computations to fix-point ones whenever possible. Otherwise,

it is better to avoid mapping those computations onto FPGAs.

FPGAs can be coupled with a host processor at different levels [14, 23], replac-

4Most current FPGAs [39, 41] include fast carry logics within logic blocks with dedicated carry-
in and carry-out routings to speed up carry based computations. In this case, a binary fulladder
requires only a single logic block.
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Figure 1.6: Typical LUT based logic block. (a) A widely used 4-input 1-output
LUT, (b) Block diagram of the logic block.

ing the functions of hard-wired components. The processor is not only used for

non-intensive computations and flow control, but also as an agent to set up and re-

configure the FPGA. SRAM based FPGAs need to be configured at system start-up.

Reconfigurations can be performed at run-time to timeshare the limited reconfig-

urable resources among different phases of the execution or different applications.

FPGAs are able to achieve substantial performance improvement over a pure

general purpose processor based system. Although reconfigurability of FPGAs

comes at the cost of penalties on performance, area and power consumption com-

pared to hard-wired solutions, it is however well justified especially under the fol-

lowing circumstances:

• Maintaining, upgrading or modifying the functionalities are desirable after

device deployment.

• Small volume products based on existing reconfigurable systems could bypass

the expensive and time consuming manufacturing process.

• The concept of “virtual hardware” helps radically reduce hardware cost, where

components operating under different scenarios do not need to co-exist phys-

ically and can be instantiated on demand, sharing the same reconfigurable

resource.
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• For an application with certain data values changing slowly over time, e.g., a

key-specified encrypter, the set of values lasting for a period of time can be

used to create an optimized configuration for the time window. By treating

those data values as constants, logic of the configuration can be greatly sim-

plified through partial evaluation techniques. As inputs are instantiated, such

a customized system may achieve even higher performance than the ASICs.

1.2 Instruction-set Extensible Processors

The efforts of this thesis go to the fine grained specialization of the processor’s

instruction-set. In particular, we focus on the processors with configurable instruction-

set. Such a processor core is usually divided into two parts: the static logic for the

basic ISA, and the configurable logic for the application specific instructions. The

configurable part of the processor can either be implemented in reconfigurable logic

for flexibility and run-time reconfigurability, or hard-wired for higher performance

and lower power consumption. In either case, with well defined hardware interfaces

between the two parts, the complexity of the design effort to tailor the processor for

a particular application is narrowed down to defining the new instructions [47].

As the set of configurable application specific instructions is usually referred to

as the Instruction-set Extension (ISE), we call such a processor, under the category

of ASIP, an Instruction-set Extensible Processor (ISEP), or Extensible Processor.

While instructions from the basic ISA are base instructions, an instruction cus-

tomizable for specific applications is a Custom Instruction.

The general architecture of an extensible processor is shown in Figure 1.7. Cus-

tom Functional Units (CFU) are integrated in the base processor core at the same

level as other base functional units, and access the input and output operands stored
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Figure 1.7: General architecture of instruction-set extensible processors. (a) Cus-
tom functional units (CFU) embedded in the processor datapath, (b) A complex
computation pattern encapsulated as a custom instruction.

in the register file. A custom instruction is an encapsulation of a frequently occur-

ring computation pattern involving a cluster of basic operations (see Figure1.7(b)),

and can be executed with a single fetch-decode-execute pass. Hardware implementa-

tion of the operation cluster with the CFU exploits the concurrency among parallel

operations (e.g., the two ANDs in Figure1.7(b)), optimizes performance of chained

(dependent) operations at the gate level (e.g., a 3-input adder); thus it is able to

improve the overall execution time. Besides, as the clock period of the processor

pipeline is often not constrained by the ALUs5, the increase of actual latency of

the combined logic may not prolong the clock period or require extra cycles. For

example, logic operations as in Figure 1.7(b) are only one level logic, and several of

them can be easily chained within a clock period.

A custom instruction may require more input and output operands than the

typical 2-input 1-output instructions; but it also brings about better register usage

by eliminating the need to output intermediate values, which otherwise need to

5For example, the out-of-order issue logic of a superscalar processor often becomes the bottleneck
for the clock period since its latency increases quadratically with the size of the issue window [78].
Also, while gate level logic benefits much from process technology advances, bypass network latency
does not [62], and can become the bottleneck as well. After all, most processors run at frequencies
lower than their technology limits. For portable embedded systems, a slower clock frequency is
often required and essential to reduce power consumption. Reduced execution overhead due to
custom instructions also creates opportunities to lower the clock frequency.
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be written back to the register file (e.g., the results of the two AND operations in

Figure 1.7(b)). The denser code leads to smaller code size. Energy consumption

can also be reduced due to improved memory hierarchy performance (code size

reduction, less cache footprints) and other factors mentioned earlier.

In specific designs, coarser grained ALU based logic blocks can be used to imple-

ment the reconfigurable CFUs, trading off bit-level manipulation flexibility against

faster reconfiguration and execution performance. Instead of using a single unified

register file with large number of read/write ports for CFU inputs and outputs,

multiple or dedicated register banks can be used. The design space has conflicting

objective functions such as performance, flexibility and complexity. We will study

specific extensible processors and some of the design options later in Chapter 3.

1.2.1 Hardware-Software Partitioning

The main design effort of tailoring an extensible processor is to define the custom

instructions for the given application to meet design goals. Identifying suitable

custom instructions is the hardware-software partitioning process that divides the

computations between the processor execution (using base instructions) and hard-

ware execution (using custom instructions). Various design constraints must be

satisfied in order to deliver a viable system, including performance, silicon area

cost, power consumption and architectural limitations. This problem is frequently

modeled as a single objective optimization procedure by optimizing a certain as-

pect (usually performance), while putting constraints on the others. Specifically,

the custom instruction identification process extracts suitable computation patterns

from the application to derive the ISE for the maximal performance under design

constraints.
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A general hardware-software partitioning practice usually starts with the soft-

ware implementation of the application written in high-level languages (e.g., C/C++,

FORTRAN). The application is compiled, and profiled by executing it with typical

data sets on the target processor. Based on the profiling information, hot spots,

which occupy noticeable potions of the total execution time, are located. These hot

spots indicate the code locations that may benefit from hardware execution, and

are candidates for hardware implementations. The designer then tries to map the

functionality corresponding to the hot spots to hardware (custom instructions, in

our case). If the hardware area exceeds the preset budget, the designer will need

to optimize the hardware functions for area while possibly trading off some per-

formance. Unfortunately, the process of mapping software code to the hardware is

tedious, time consuming and highly dependent on the knowledge of the designer.

Although an experienced designer can even perform algorithmic changes to expose

more opportunities for efficient hardware implementation, regularities embedded

inside large and complicated computation paths are sometimes hard to discover.

Manual effort is therefore unlikely to cover the computation optimally with limited

hardware resource.

In order to overcome these difficulties of manual partitioning, we present a com-

piler based automatic custom instruction identification flow. In a software devel-

opment environment, the compiler breaks down high-level language statements into

basic operations and map these operations to processor instructions to produce the

machine executable. In our design flow, the compiler in addition performs ISE iden-

tification to find suitable computation patterns and generates the executable with

custom instructions. Instead of manual algorithmic changes, we rely on modern

compiler transformations to expose potential parallelism among base operations.

Large computation paths can be efficiently explored by methodologies devised in

this thesis. Software programmers can also easily adapt to the ISEP design flow
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without in depth hardware knowledge.

1.2.2 Compiler and Intermediate Representation

A generic compiler processes the code of the application as follows. High-level

language statements are first transformed by the compiler front-end to the Inter-

mediate Representation (IR), structured internally as graphs. Various analysis and

re-arrangements of operations known as machine independent optimizations are car-

ried out on the IR. Then, the back-end of the compiler generates binary executables

for the target processor by binding IR objects to actual architectural resources, op-

erations to instructions, operands to registers or memory locations, concurrencies

and dependencies to time slots, through instruction binding, register allocation, and

instruction scheduling, respectively. Various machine dependent optimizations are

also performed at the back-end.

The IR consists of Control Flow Graph (CFG) and Dataflow Graph (DFG,

also called Data Dependence Graph) that are used for the ISE identification. CFG

expresses the structure of the application’s logic flow (if-else, loops and function

calls) by partitioning the code into basic blocks over control flow altering operations,

i.e., jumps and branches. An edge between two basic blocks indicates a possible

control flow direction to take, depending on the outcome of the branch condition

(if any). For each basic block, DFG is constructed to express the dataflow6, with

operations as nodes and edges attributing the dependencies among the operands.

Figure 1.8 shows an example of CFG and DFG corresponding to a code segment. For

a GPP, each operation on the DFG is usually covered with one machine instruction

6A basic blocks is the basic unit for instruction scheduling because control flow within it does not
change. However, basic blocks are usually very small (average 4-5 instructions each) and severely
constraint the performance of modern Instruction Level Parallelism processors (superscalars and
VLIWs). Larger blocks containing multiple basic blocks, e.g., traces, superblocks and hyperblocks,
are exploited with architectural support. DFGs can be built upon those blocks as well. We will
see how custom instructions can be used in those cases in Section 2.2.2.
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int f(f_no, x, y, z)
int f_no, x, y, z;

{
int res;
if(f_no==1)

res = (x & y) | (~x & z);
else

res = x ^ y ^ z;
return res;

}

. . .
if (f_no==1)

res = (x & y) | (~x & z);

res = x ^ y ^ z;

return res;

BB0

BB1

BB2

BB3

&

y x

z~&

|

res

BB1

(a) (b) (c)

Figure 1.8: Intermediate representation. (a) Source code of a function (adapted
from Secure Hash Algorithm), (b) Its control flow graph, (c) Dataflow graph of
basic block 1.

during instruction binding. However, a custom instruction intends to cover a cluster

of operations and is hence captured as a Subgraph of the DFG.

1.2.3 An Overview of the Design Flow

In our design flow, the compiler should perform three additional tasks: identify-

ing the ISE, generating the binary executables under the new instruction-set, and

producing the new CFUs.

ISE identification is essentially a problem of regularity extraction, which at-

tempts to find common substructures in a set of graphs. Topologically equivalent

DFG subgraphs perform the same logic function, forming a template pattern for a

potential custom instruction. Each occurrence is an instance of the template. The

target of ISE identification problem is to find a small number of templates along

with their instances to cover the DFGs for the fastest execution. This problem

involves the following two subproblems. (1) Candidate pattern enumeration — enu-

merate a set of subgraphs from the application’s DFG and build the pattern library

of templates and their instances. (2) Custom instruction selection — evaluate each

candidate in the library and select an optimal subset under various design con-
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straints. The first subproblem is a subgraph enumeration problem, while the second

is an optimization problem.

The work flow of the partitioning process is depicted in Figure 1.9. ISE identifi-

cation is plugged in between the compiler front-end and back-end. Heavily executed

hot spots of the application, identified through program profiling, are processed by

ISE identification algorithms. The resultant templates are then passed to the com-

piler back-end. During instruction binding, the instances of these templates will

be mapped to custom instructions, either by simple peephole substitution or by

the pattern matcher that recognizes the new templates, to produce the executables.

Hardware description of the templates are generated and fed to the synthesis tool

chain to build the CFUs on the target hardware. Decoding logic of the processor

also needs to be modified for the new instructions.

1.3 Contributions and Organization of this Thesis

The main contributions of this thesis are the efficient and scalable custom instruc-

tion identification methodologies. The capabilities of handling very large dataflow

graphs and subgraphs with relaxed architectural constraints are essential for the

custom instructions to exploit greater parallelism and operation chaining oppor-

tunities exposed by modern compiler transformations. Thus it is crucial for the

automatic design flow to generate high quality solution for the given application.

Specific contributions are listed as follows:

1. We present efficient and scalable subgraph enumeration algorithms for the

candidate pattern enumeration problem. Through exhaustive enumeration,

isomorphic subgraphs embedded inside the dataflow graphs, which can be
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covered by the same custom instructions, are fully exposed to the selection

process. Our custom instruction selection method based on integer linear

programming (ILP) is able to exploit subgraph isomorphism optimally. Given

this, the resulting effect indicates that a small set of custom instructions can

usually achieve most performance improvement of the applications.

2. Based on our custom instruction identification methodology, we then con-

duct a systematic study of the effects and correlations between various design

constraints and system performance on a broad range of embedded bench-

mark applications. In particular, a dynamic execution trace based method is

adapted to broaden the scope of custom instruction identification beyond ba-

sic blocks, which allows us to characterize the limit potential of using custom

instructions. This study provides a valuable reference for the design of general

extensible processors.

3. We explore a novel application of using custom instructions to meet timing

constraints of real-time systems. Custom instructions are selected using a

modified ILP formulation to minimize the worst-case execution time of the

application. We also devise high quality heuristic selection algorithms to avoid

the complexity of solving ILP formulations, which yield identical selections to

the optimal ones most of the times within very short run time.

This thesis is organized as follows. We discuss existing extensible processors

and several important design issues in Chapter 2 in order to provide a more compre-

hensive background for the ISEP scene. Related works on the custom instruction

identification problem are reviewed in Chapter 3. In Chapter 4, we present the

scalable subgraph enumeration algorithms for the candidate pattern enumeration

problem. We describe the optimal custom instruction selection based on integer

linear programming in Chapter 5. In the same chapter, we present the study on
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the performance impact using custom instructions under various design constraints.

Methodologies of applying custom instructions to improve worst-case execution time

for real-time applications are presented in Chapter 6. Finally, Chapter 7 concludes

the thesis.



Chapter 2

Instruction-Set Extensible

Processors

A huge gap exists between what we know is possible with today’s ma-

chines and what we have so far been able to finish. – Donald E. Knuth

We review previous works on instruction-set extensible processors in this chap-

ter. Note that this review does not intend to be exhaustive, but highlights different

options and important design issues, and serve as a more comprehensive background

of the ISEP scene.

2.1 Past Systems

The order of the presentation in this section shows the trace of system evolvement.

We study seven systems, which grow in features and sophistication. The focus of

systems with reconfigurable ISE are mainly on the architecture design of effective re-

configurable CFUs that can be swiftly reconfigured, and relaxing the I/O constraints

24
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of the CFUs. The focus of configurable extensible processors with synthesized CFUs

are on the design environment which provides a high-level interface to specify the

logic of custom instructions and evaluate their effects, the automatic generation of

the compilation tool chain and hardware descriptions. The techniques studied in

this section merely show the possibilities. Again, a real life extensible processor is a

trade-off among different aspects, satisfying various design constraints.

2.1.1 DISC

Global Controller

Li
ne

ar
 H

W
 s

pa
ce

Memory

Host Processor

DISC processor

control address data

Instruction Module B

Instruction Module A

Figure 2.1: DISC system (adapted from [81]).

DISC [81], standing for “Dynamic Instruction Set Computer”, is one of the

earliest attempts in reconfigurable instruction set customization at Brigham Young

university. In the DISC processor (Figure 2.1), custom instructions along with

most primitive instructions are executed in the reconfigurable “instruction mod-

ules”. The instructions are controlled and sequenced by the global controller, which

is also in charge of memory accesses and reconfiguration requests. An instruction

module is implemented on the linear reconfigurable hardware space, occupies mul-

tiple consecutive rows of fixed width (e.g., a constant shifter consumes 1 row, while

an adder/subtracter takes 3 rows), and communicates with the global controller
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through the underlining bus. The instruction modules are also relocatable, such

that they can fit into consecutive rows available anywhere on the RA (Reconfig-

urable Array). In fact, the row based RA design turns out to be very effective for

relatively small dataflow computations due to its simplicity and predictable timing

model, and is adapted in most later systems, such as Garp [34], PRISC [70] and

Chimaera [82].

At run time, the global controller takes an instruction from the memory, exe-

cutes it if its corresponding instruction module is available. Otherwise, the global

controller halts the execution, and sends a request to the host processor for the

missing instruction module. According to the current status of the resource occu-

pation, the host processor either allocates the rows if available, or free up other

instruction modules using simple LRU (Least-Recently-Used) algorithm to make

room for the new instruction module. After the instruction module is loaded from

the pre-synthesized instruction library to the allocated space of the RA, the global

controller resumes execution.

The problem of DISC is its uniform treatment of custom instructions and simple

primitive instructions. Primitive operations executing on hard-wired ALUs can be

more efficient than executing them on reconfigurable logic. Executing primitive

operations on hard-wired ALUs will also reduce the complexity of run-time resource

management. The full fledged host processor used for only resource allocation and

reconfiguration is highly under utilized. Instead, a much simpler processor, even

integrated with the global controller, can achieve the same functionality.

2.1.2 Garp

The Garp project at UC Berkeley [34] has a similar reconfiguration array architec-

ture as DISC (linear hardware space and row based reconfiguration), and addresses
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several of DISC’s limitations. Instead of executing primitive operations on the RA,

the host – a MIPS II processor takes over the primitive operations. The MIPS

II instruction set is augmented to manage the RA. There is no explicit run-time

resource management in Garp, partially because mapping only the computational

intensive kernels reduces total resource requirement and hence configuration swaps.

In addition, Garp can cache upto four configurations, allowing fast configuration

switches in a transparent fashion. This way, resource management is replaced by

cache management.

Some additional instructions are added to the MIPS II core to control the RA.

A configuration in the main memory is loaded (or switched to if cached) through

a gaconf instruction. Input data is set up by mtga instructions, which transfers

the value of a MIPS II register to an RA register. Meanwhile, mtga is able to set

the internal clock counter of RA to a positive value, indicating the cycles needed to

complete the custom function. Finally, mfga waits the counter to decrease to zero,

and reads the result data back to a MIPS II register from an RA register.

As the RA has no direct access to MIPS II registers, small dataflow graph com-

putation would carry communication overhead due to the use of explicit data transfer

instructions (e.g., mtga and mfga). This may offset the performance improvements.

In fact, the RA is built with direct access to the memory, targeting coarser grained

innermost loop computations [13], where communication overhead can be amortized.

Although the RA in DISC processor also has memory access (through the global

controller), all instruction modules (primitive and custom operations) are architec-

turally equal. In contrast, custom functions in Garp are executed differently from

the normal instructions; the RA works more like a slave to the MIPS II processor.

Technically, Garp is a loosely coupled reconfigurable architecture. However, the im-

provements over DISC project as suggested above do provide useful guidelines for

later extensible processor designs.
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Figure 2.2: PRISC system (adapted from [70]). (a) Datapath, (b) Format of the
32-bit FPU instruction.

2.1.3 PRISC

PRISC (PRogrammable Instruction Set Computer) [70] is the very first work that

defines the typical architectural of an ISEP (see Section 1.2). As depicted in Fig-

ure 2.2(a), a single 2-inputs 1-output PFU (Programmable Functional Unit) is added

at the execution stage of a RISC processor pipeline in parallel with standard FUs.

The PFU behaves the same way as other FUs that have direct access to the register

file and bypassing network, and is restricted to 1 cycle execution latency for simpler

synchronization.

The PFU instruction is encoded with a standard 32-bit format shown in Fig-

ure 2.2(b). expfu is the opcode triggering the PFU, while LPnum specifies a certain

PFU configuration, each corresponding to a different custom function. At run time,

the current PFU configuration specifier is hold in a special 11-bit register. A mis-

match between the register and the LPnum field of a PFU instruction causes an

exception. The exception handler will then reconfigure the PFU to the configura-

tion specified by LPnum, and update the special register accordingly. Configuration

bits are sent to the PFU via Paddr and Pdata ports (Figure 2.2(a)). This is done

either by the processor using augmented load instructions sequentially for a low

speed solution, or by a dedicated configuration controller with fast memory access
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for a high speed solution. The minimum reconfiguration latency is reported to be

around 100 cycles. As there is only 1 PFU and configuration switches within a loop

body is highly undesirable, a 1 configuration per loop restriction is imposed.

Automatic but straight forward hardware-software partitioning is used to group

operations for the PFU. At first, the operations of the target application are ana-

lyzed, and the ones not suitable for mapping to the PFU are marked (i.e., memory

operations, floating-point operations, multiplication and division). Starting with a

suitable operation on the dataflow graph, the algorithm follows the data dependen-

cies backwards and greedily includes suitable operations in the function along the

way. The backward traversal terminates when the next operation is a non-suitable

one, or including it yields a function requiring more than 2 source operands or more

than 1 destination operand. The resultant group of suitable operations is called a

maximal, and will be fed to the hardware synthesizer to produce the corresponding

configuration image.

The main limitation of PRISC is that the PFU is restricted to 2-input 1-output

functions. Even though this simplifies operands encoding and minimizes modifi-

cation to the register file, it severely restrains the PFU from implementing larger

groups of operations with more number of input/output operands which stand for

higher performance improvements. Furthermore, no reuse of equivalent logic func-

tion at different locations with the same PFU is considered, even though encoding

input/output registers in the PFU instruction format already provides this flexibil-

ity. However, this kind of reuse may not really be beneficial due to the single PFU

setup, unless the equivalent functions occur consecutively without being replaced by

the other configurations in the middle.
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Figure 2.3: Chimaera system (adapted from [82, 33]). (a) Block diagram, (b)
RPUOP instruction format.

2.1.4 Chimaera

The Chimaera reconfigurable functional unit [82, 33] (RFU) developed at North-

western University is inspired by PRISC, but is more sophisticated and integrated

inside an out-of-order superscalar processor core. The main innovation of the Chi-

maera RFU is its capability of using up to 9 input registers and producing 1 result

in an output register. This is achieved through a special design of the RA, where

the values of all the registers (in fact the shadow registers in Figure 2.3(a)) are

propagated through out the RA and hard-wired in the configurations so that they

can be accessed simultaneously (see [82] for details). Hard-wiring the inputs on the

one hand eliminates the need of encoding input registers explicitly in the RFU in-

struction (see the instruction format in Figure 2.3(b)). In fact, it is not possible to

encode so many input operands in a single 32-bit instruction. On the other hand,

as a trade-off, RFU instructions cannot be reused upon any changes in the input

operands. This inflexibility is partially compensated by accommodating multiple

RFU configurations on the RA, with its resource managed by the configuration and

caching unit (similar to the DISC processor).

In order to interface with the out-of-order core, a shadow register file of size equal
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Figure 2.4: The CCA system (adapted from [21, 20]). (a) The CCA (Configurable
Compute Accelerator), (b) System architecture.

to the number of logical registers (9, in Chimaera) is used1. A shadow register is

read-only to the RA and is synchronized with the corresponding physical register for

the RFU operation through the register renaming logic. The single result is written

back to the host register file like normal instructions. Due to register renaming,

extra read/write ports must be added to the host register file to communicate with

the RA, which implies drastic increase in power and area of the host register file.

However, cost is a secondary concern in the design of Chimaera.

2.1.5 CCA

A CCA (Configurable Compute Accelerator) is used instead of the reconfigurable

array in the system developed at University of Michigan [21, 20]. Unlike the fine-

grained configurable RA, CCA is composed of a layered network of FUs, each capable

of several fast word-level dataflow operations, i.e., logical, addition/subtraction,

move or shift (see Figure 2.4(a)). The function of each FU and their connectivity

1In a out-of-order core, usually there are more physical registers than logical registers to solve
false dependencies through register renaming.
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can be specified by only a few bits, while hundreds are needed in an LUT based

RA. Coarser logic granularity guarantees faster reconfiguration time. In fact, the

whole CCA can be defined using around 200 bits, such that configuring the CCA

on-the-fly with control signals rather than writing to the associated SRAM is made

possible2. The trade-off here is that the CCA is unable to exploit bit/sub-word

level optimizations, and only the subgraphs, which are able to fit in the fixed CCA

topology, can be used.

In the first CCA system, the CCA configuration is conventionally encoded in the

instruction stream [21]. Under the assumption of a Pentium P6 microarchitecture,

where a µop takes 118 bits, each custom instruction can be encoded with 2 consec-

utive µops. However, it easily takes 6, 7 consecutive instructions in a normal 32-bit

format, which carries large overhead. The problem of lengthy encoding is tackled in

the second CCA system [20], where the control bits for a particular CCA function is

generated during program execution. Here, the original group of instructions is not

directly replaced by a custom instruction, but wrapped up in a small function that

remains in the code space. In particular, it is replace by a modified brl (branch and

link instruction for function calls) instruction jumping to the small function. The

brl instruction indicates a custom function. The architecture of this CCA system is

depicted in Figure 2.4(b). During the first encounter of a custom function, the brl

instruction is executed as a normal function call. The control generator records the

corresponding group of instructions and generates the control bits for the custom

function. It also marks live-in registers as input registers for the custom function.

The control bits are later sent to an entry in the config cache, while the index of

the config cache entry and input registers are encoded in the Branch Target Buffer

(BTB) entry corresponding to the brl instruction. Upon later encounters of the

brl instruction, the additional encoded information is retrieved from its BTB entry

2For fine-grained RA, it is impractical to generate the control signals simultaneously for the
large number of configuration points. Writing to the SRAM, a.k.a., reconfiguration, is needed to
accumulate the control signals.
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Figure 2.5: The PEAS environment (adapted from [71, 46]). (a) Main functions of
the system, (b) Micro-operation description of the ADDU instruction.

during instruction decoding, according to which the CCA is configured and used in

the execution stage.

2.1.6 PEAS

PEAS (Practical Environment for ASIP development) is a workbench for ASIP de-

sign, resulting from the collaboration of several universities in Japan [71, 46]. The

PEAS system yields a simple in-order pipelined processor core from the designer’s

specifications of key architecture/micro-architecture parameters and functionalities.

A complex custom instruction can be defined using micro-operation description by

specifying the operations and dataflow on each pipeline stage. Figure 2.5(b) depicts

the description of a simple ADDU instruction execution in three pipeline stages. Al-

though similar to micro-code programming, the micro-operation description of an

instruction will be eventually hard-wired. The data path and control logic such

as pipeline interlock and interrupt manipulation are automatically constructed by

PEAS. The designer can further fine tune the custom instruction by assigning pa-

rameterizable resources to its constituent operations, such as changing the bit width

and algorithm of the operation (e.g., carry-lookahead for addition). Other architec-

ture parameters like the number of pipeline stages, registers and delayed branch

slots can also be manipulated.
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The main functions of PEAS are depicted in Figure 2.5(a). The application

is profiled using the application program analyzer to identify the hot spots of the

application and evaluate a particular design later. The GUI accepts the designer

specifications and consults the hardware database (FHM-DB) for appropriately pa-

rameterized hardware modules assigned to the operations through resource declara-

tion. The HDL generator then generates the hardware description of the processor

including required architecture/micro-architecture features. Two version of hard-

ware description are available — the behavior level version for fast simulation and

evaluation, and the RTL/gate level version ready for synthesis. The output also

includes the C compiler and assembler tool chain retargeted for the new processor.

The design can be improved through the iterative modify-simulate circle.

Being able to customize the entire instruction set effectively makes use of limited

hardware resources and yields more compact design. However, it also makes the pro-

cessor hard to verify. Therefore PEAS is restricted to the simple in-order pipelined

architecture. In contrast, most commercial configurable processor solutions (e.g.,

Tensilica’s Xtensa [29], ARC’s ARCtangent processor, CoWare’s Processor Designer

[26], 3DSP’s SP-5flex [1], etc.) consists of a proven base processor, which is aug-

mented to the minimum extent necessary to achieve the required efficiency.

2.1.7 Xtensa

Tensilica’s Xtensa processor is the leading industrial solution for instruction set

customization [29]. Built around a base 16/24-bit instruction set architecture, and

designed from scratch to be customizable, Xtensa allows customization on a wide

range of architectural parameters. Application specific parallelism and performance

improvement can be exploited through three ways: VLIW like instruction bundle

being able to pack and execute several instructions in parallel, SIMD instructions
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with wide registers for vector processing, or user defined custom instructions.

The behavior of a custom instruction is defined by using the Tensilica Instruc-

tion Extension (TIE) language [79]. TIE is similar to Verilog, but with additional

syntax to handle the pipelining of multi-cycle custom instructions, and additional

constructs to define various internal hardware structures, such as function for re-

source sharing and table of constants. Processor correctness (exceptions, pipeline

hazards, etc.) with the custom instruction is ensured by the TIE compiler. The TIE

compiler generates the software interface to the custom instructions as an intrinsic

C/C++ function, so that the user can invoke it using function call semantics (e.g.,

use variable names rather than registers). The format of the Xtensa instruction set

allows only 2 input and 1 output operands in the instruction. This restriction can

be relaxed by using user defined state registers, which are hard-wired and can be

implicitly accessed by the custom instruction. Reading from and writing to a state

register outside the custom instruction must be explicitly managed by using move

instructions that transfer data between the normal register file and the particular

state register. This overhead makes state registers best suitable to hold loop invari-

ants or values shared among consecutive custom instructions (e.g., the accumulated

value of a series of MAC instructions).

The latest iteration of Xtensa development tools include the XPRES compiler,

which automatically generates the optimized processor and custom instructions from

the C/C++ code of the application [30]. This is in accordance with the goal of this

thesis.
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2.2 Design Issues and Options

2.2.1 Instruction Encoding

The encoding of custom instructions defines the interface between the software and

custom hardware. It is often trivial to assign opcodes to custom instructions when

enough unused opcodes are available; otherwise an extra input field should be used to

specify the differences. The difficulties mainly lie in the encoding of more operands

required by larger subgraphs of operations for higher performance. However, a vari-

able length instruction solution is undesirable for its global impact on the whole

system (decoding logic, pipeline bandwidth, memory/cache alignment, etc.). Differ-

ent approaches attempt to squeeze the operands in a fixed-length instruction format,

usually in 32 bits. Operands can be encoded directly, indirectly or implicitly.

Direct encoding expresses an operand as it is. The difference is, instead of the

whole register file (or large immediate values), the length of a operand field can be

reduced to address a subset. For example, encoding R0 to R7 out of all 32 registers

in the register file only needs 3 bits. The effect of this is studied in [51]. Here, an

operand field of a particular custom instruction instance can be encoded with its

shortest bit requirement (e.g., R3 with 2 bits), or longer. With this, multiple 32-bit

formats are generated for the same custom instruction. The format with longer fields

is able to cover more of its instances, while consuming the code space more quickly.

The rest of the custom instruction instances can be utilized by moving their inputs

to appropriate registers through extra MOVE instructions3. Algorithms are devised

to select the instruction formats for the best performance.

The limitation of direct encoding is that instances of the same custom function

may require more than one encoding format, which are eventually treated as different

3Actually, a smart register allocator, which attempts to assign registers according to a particular
format and eliminates the extra MOVEs with a global view, is more desirable.
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custom instructions. Special treatment to adapt to a different format may intro-

duce overhead (e.g., MOVEs). However, direct encoding only requires the instruction

decoding stage to support more operands formats, which involves relatively simpler

hardware modification.

Implicit encoding like Chimaera (Section 2.1.4) does not specify the operands

at all; instead it hard-codes them in the configuration with addressing flexibility en-

tirely sacrificed. This is different from indirect encoding, where short length “hints”

are encoded in the instruction format, and extra hardware is used to restore the

hints to actual operands. In [68], the authors observe that only a small subset of

registers may appear in a field of a particular custom instruction. For example,

among all its instances, if only {R6, R7, R10, R21} ever appear as the first input

operand, the field can be encoded with 2 bits. The decoding logic is customized

(hard-coded) to translate the shortened operands to the original locations for this

custom instruction. Similarly, in [61], a hardware look-up-table index is used to

replace a long immediate value in the custom instruction, and is referred to by the

decoding logic. In [24], instead of encoding the input operands in the consuming

custom instruction, they are encoded with their producer instructions. A small sep-

arate register bank is added before the CFU to hold at most 3 input values. Two

bits are encoded in every normal instruction to indicate whether and where to copy

their single output value to the small register bank4. In [42], forwarding latches

after the EX and MEM stages in a single issue pipeline are exploited to provide

up to 2 extra inputs to the next custom instruction. Five bits are required in the

custom instruction to encode the extra operands for all input possibilities. Both

the last two works make use of small temporary storages. The order of the custom

instruction and instructions providing its inputs must be carefully arranged, and

context switches and exceptions must be properly managed in this core. A dynamic

4These 2 bits are usually automatically available as most instruction formats do not use up the
full 32 bits. Otherwise there will be overhead.



CHAPTER 2. INSTRUCTION-SET EXTENSIBLE PROCESSORS 38

(a)

…

…
s = a+b
if (i>1)

s = s+c

T F

s = a+b
…

…
if (i>1)

s = a+b
s = s+c

T F

Code motion

i1:

i2:

i1:

i2:

i1’:

(c)(b)

ADD

SEL

ba p1

y

ADD

c

x

y

…

…
x = a+b
if (i>1)

y = x+c

p1 p2T F

i1:

i2:

if (i==2)
c = a+b

else
c = a–b

c = foo(a, b, i)

…

…

Control
localization

ADD SUB

SEL

CMP

a bi

2

c

Figure 2.6: Ways of forming custom instructions across the control flow. (a) Down-
ward code motion, (b) Predicated execution, (c) Control localization.

scheme of indirect encoding like the CCA system [20] can also be useful, where the

original operations for the custom instruction are kept in the code space and can be

referred to generate the proper input and output operands at run time.

2.2.2 Crossing the Control Flow

The atomicity of executing operations in a custom instruction makes them most

natural to be extracted from a basic block with a single control flow entry and

a single exit. However, compilation and hardware techniques that exploit more

instruction level parallelism beyond the small scope of basic blocks for GPPs can be

consulted to break this boundary. For example, loop unrolling and loop fusion [45]

enlarge the loop body by merging iterations of the same loop and with bodies of

other loops, respectively.

A custom instruction can also perform operations across conditional branches.

This allows it to be extracted from larger scheduling entities, such as superblocks

and hyperblocks [38, 58]. We discuss three possibilities as follows.
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First, code motion techniques can be used to move operations of the custom

instruction originally spanning across the conditional branch together in a single

basic block. The correctness of the program is preserved by adding compensation

code and/or instruction reordering within the basic block and surrounding ones.

This process is essentially the same as the bookkeeping code induced through code

motion used in trace scheduling [27]. An example of a custom instruction identified

across a conditional branch consisting of two operations i1 and i2 is shown in

Figure 2.6(a). In this example, we move operation i1 originally before the branch

downwards to the taken side, where operation i2 resides. Here, the branch condition

must not be dependent on the moving operation (i1). If any operation on the other

side of the branch depends directly or indirectly on the result of the moving operation

(variable s), the moving operation must be duplicated there (i1’) to maintain the

semantic correctness of the program. After code motion, the custom instruction will

be able to safely replace operations i1 and i2.

Second, given architectural support, predicated execution can be exploited to

handle operations across conditional branches. In predicated execution, the execu-

tion of an instruction is data-dependent on an extra boolean operand, referred to as

the predicate, determined by the outcome of the branch condition. If the predicate

of the instruction is true, it is executed normally; otherwise, it will be “squashed”

by being converted to a no op before entering the execution stage of the pipeline.

By using predicates, the original control dependence is converted to data depen-

dencies, and the conditional branch is eliminated [36]. This conversion process is

called “if-conversion”. For a custom instruction, each predicate of the constituent

operations is an extra input to a selector (multiplexor). All the included operations

are executed, and the correct results are selected to output. Figure 2.6(b) shows

an example. After if-conversion, the code is merged into a single big basic block,

with operations on the two sides of the original branch associated with predicate p1
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and p2 respectively (p2 = p1). The lower part of the figure shows the logic of the

custom instruction consisting of operation i1 and i2. Note that even though y is

a destination operand in operation i2, it is still required as an input, because its

original value is needed if predicate p1 is not true5. Unlike code motion, a custom

instruction using predicates can include operations on both sides of the conditional

branch.

Third, control localization transforms the entire branch into a temporary, ag-

gregate function [54]. This function can be implemented as a custom instruction in

a similar way to that of predicated execution (execute both branches and select the

correct output). It also can be treated as a single unit that can be further combined

with other operations. Figure 2.6(c) shows an example of control localization.

5However, this input can be eliminated if certain mechanism is devised not to overwrite y if its
value does not need to be changed (depending on the value of the predicate).
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Related Works

As people are walking all the time, in the same spot, a path appears.

– Lu Xun, in “Village Opera”

Identifying the set of custom instructions for the given application is the hardware-

software partitioning problem that divides the computation between the processor

execution (by base instructions) and hardware execution (by custom instructions).

The goal of this process is to find a relatively small set of patterns from the appli-

cation for custom instructions so as to meet design objectives (e.g., performance,

energy improvement). It further involves the following two subproblems. (1) Candi-

date pattern enumeration, which enumerates suitable patterns from the application

as potential candidates for custom instructions. (2) Custom instruction selection,

which selects an optimal subset of the patterns as custom instructions under various

design constraint. A large body of research has been devoted into custom instruction

identification. We review the related works in this chapter.

41
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3.1 Candidate Pattern Enumeration

Some early works generates candidate complex instructions directly on the linear

code space by iteratively combining operations in subsequent lines of code [10]. It

is restrictive, since the linear layout of the code sequence reflects only one possible

partial order of the operations from the exact dependencies among them. Instead,

dataflow graph (DFG) is used as a general model across nearly all other works. A

DataFlow Graph G(V,E) represents the computation flow of data corresponding

to a code fragment of the application. The nodes V represent the operations and

the edges E represent the dependencies among the operations. G(V,E) is a directed

acyclic graph (DAG). Given a DFG, a pattern is an induced subgraph of the DFG.

A pattern can be a possible candidate for custom instruction. The candidate pattern

enumeration problem is to enumerate subgraphs suitable for custom instructions.

The number of patterns of a DFG is exponential in terms of the number of nodes

of the DFG. Fortunately, not all the patterns are feasible for custom instructions.

For example, a non-convex pattern which involves inter-dependency with operations

outside the pattern is infeasible, because it cannot be executed atomically (e.g.,

pattern {1, 3} consisting of node 1 and 3 in Figure 3.1 is not convex, because an

outside node, node 2, depends on the outcome of node 3, while node 1 depends on the

outcome of node 2). Architectural constraints also impose feasibility requirement on

the number of input/output operands of a pattern. Other constraints may also be

imposed artificially to reduce the complexity of the enumeration. Here, we classify

the previous works in pattern enumeration according to the restrictions imposed on

the feasibility of patterns and properties of the pattern enumeration process.
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Figure 3.1: Dataflow graph. (a) Two non-overlapped candidate patterns, (b) Over-
lapped candidate patterns, (c) Overlapped patterns cannot be scheduled together.

3.1.1 A Classification of Previous Custom Instruction Enu-

meration Methods

Topology Only tree patterns are considered in [57, 73]. The rationale behind

this is that dynamic programming can be applied to cover the DFG (tree) optimally

using as few tree patterns as possible in polynomial time [2]. This simplifies the code

generation process using the pattern matcher. However, as pointed out in [56], trees

are heuristic formulation of the original DFGs, which are DAGs. When the DFG

is not a tree, it will be decomposed into a forrest of disjoint trees. This artificially

breaks some dependent operations in the original DFG apart, and deprives them of

being included in the same pattern. Most other works identify DAG subgraphs for

candidates.

Number of Operands The maximum number of input and output operands of

custom instructions is typically constrained by the length of the instruction and/or

the number of ports to the register files. However, these restrictions can sometime

lead to very efficient enumeration algorithms. For example, Pozzi et al.[67] has

developed a greedy algorithm that can identify the maximal Multiple Inputs Single

Output (MISO) patterns. The complexity of the algorithm is linear in the number of
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nodes in the DFG. The problem of using Multiple Inputs Multiple Outputs (MIMO)

patterns is that there can potentially be exponential number of them in terms of

the number of nodes in the DFG. Arnold et al. [6] use an iterative technique that

replaces the occurrences of previously identified smaller patterns with single nodes

to avoid the exponential blowup. Cong et al. [25] enumerate all possible K-feasible

cones (a K-feasible cone is a special case of MIMO subgraph which has a single sink

node and at most K input operands.) through a single pass of the DFG. Choi et al.

[19] restrict the number of operations that can be included in a pattern. Clark et al.

[22] use a heuristic algorithm that starts with small MIMO patterns and expands

their patterns only in the directions that can possibly lead to good patterns through

a guiding function. Baleani et al. [9] use another heuristic algorithm that adds

nodes to the current pattern in topological order till input or output constraint is

violated; the algorithm then starts a new pattern only with the node that caused the

violation. All these algorithms only generate a small subset of the candidate patterns

that meet input and output constraints. They may miss opportunities to produce

the globally optimal set of custom instructions. During the course of research in

this thesis, Atasu’s work [8] is the only approach that exhaustively enumerates all

possible patterns. However, scalability becomes a major obstacle when the DFG

size increases. Since we are targeting the same goal, we will describe [8] in detail

later in Section 4.2.1. Later, Chen et. al. propose another algorithm [17] to this

problem, which reports similar run time to that in this thesis.

Connectivity A candidate subgraph (pattern) may contain one or more disjoint

components. Including multiple components in a subgraph increases the potential to

exploit parallelism and thus may provide better performance if the base architecture

does not support instruction-level parallelism (ILP). On the other hand, doing so

may not be beneficial for an ILP processor that would have been able to exploit this

parallelism anyway. In [35] and [37], independent operations which can be scheduled
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in the same time step form a candidate pattern. [8, 19, 28] consider independent

operations as well as dependent ones within a candidate pattern. Others [6, 9, 22,

25, 67, 57, 73] identify subgraphs with only one component.

Overlap As the final set of selected custom instructions do not normally overlap

in the DFG, some works [9, 67] do not consider overlapped candidate patterns (e.g.,

patterns {0, 1, 2} and {1, 2, 3} overlaps at node 1 and 2, so only one of them will be

enumerated). Enumerating non-overlapping candidate patterns requires only linear

time since each node on the DFG is visited only once. However, isomorphic patterns

embedded inside the DFG may be missed, which yields poor result when the design

constraints are tight. For example in Figure 3.1(a), when only 1 custom instruction

is allowed, pattern {0, 1, 2} may be chosen, ignoring the possibility that {4, 5, 6}

and {1, 2, 3} are isomorphic and can be accelerated by the same custom instruction.

Other works [8, 6, 9, 22, 25] enumerate overlapped patterns as they may be used to

produce a better optima considering custom instruction reuse. Figure 3.1(b) shows

all the 3-input, 1-output convex patterns of the DFG, where isomorphic patterns

are exposed so as to be properly reused.

Implicit pattern enumeration Two recent works [7, 55] use ILP formulation

to generate a single best performing subgraph in each iteration of their algorithms.

In this way, all the subgraphs are potentially enumerated in an implicit manner

and evaluated by the ILP solver. Only the best one is produced. However, in

order for the algorithms to terminate, the constituent nodes in the current best

subgraph cannot be included in further subgraphs, which means candidate subgraphs

generated during the iterations cannot be overlapped. These methods therefore

may miss custom instruction reuse opportunities. All other works identify patterns

explicitly.
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Order of pattern identification and selection Many previous works take a

two step approach where the first step identifies the set of candidate patterns and

the second step does the selection. Some combine the two steps. For such works like

[7, 22], candidate enumeration step is by itself a screening process that eliminates

patterns unlikely to be selected during the selection step. This reduces the time and

storage complexity of the algorithm at the risk of missing the global optima. In [37],

potential candidate patterns are generated as part of the neighbor states during the

simulated annealing process to produce the best schedule time (with the selection

of complex instructions).

3.2 Custom Instruction Selection

In custom instruction selection, the benefit of a candidate pattern is evaluated as

the product of its speedup cycles (if implemented as a custom instruction) and its

execution frequency via profiling. Each pattern also has a cost value in terms of

silicon area. The process generally aims at selecting a subset from the candidate

patterns under the cost budget for the best performance gain.

Usually, only a subset of the enumerated candidate patterns will be selected for

implementation by custom instructions. There are two reasons behind this. First,

the resource is limited for custom instructions and custom functional units. Adding

many custom instructions for the application does not only cost extra resource (in

terms of silicon area, or reconfiguration time in case of reconfigurable implemen-

tation), but also complicates the circuit design (e.g., decoder, bypass network).

Therefore, only the most cost-effective custom instructions will be selected. Second,

only a subset of patterns will be used to cover the code of the application in code

generation. Usually the code is covered by a non-overlapping set of patterns, such

that a base operation is covered by at most one custom instruction. The potential
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problem of covering a base operation with multiple custom instructions is not only

that the same computations are unnecessarily duplicated in these custom instruc-

tions, but also that this may generate unschedulable code. Figure 3.1(c) shows two

patterns overlapping at node 4. If we select the pattern on the left (p1), the one on

the right (p2) must not be selected. This is because, the left input of node 4 is now

an internal value for p1 that cannot be accessed by p2.

If the custom instruction selection process has selected the template patterns

and individual pattern instances precisely, custom instructions can substitute the

base operations directly in place [37]. This approach achieves the best performance

under an omniscient selection process, such as using Integer Linear Programming

(ILP) [51]. In practice, some works separate this process into two steps — first,

select the template patterns, and then second, deploy custom instructions in a code

covering process which matches the application code with pattern templates and

substitutes base operations with custom instructions. The argument of deploying

custom instructions in a separate instruction covering phase (probably by a pat-

tern matcher) is that the exact locations of the custom instructions need not to be

known in advance. This gives some flexibility for code generation, such as adapting

to different schedules of operations or making use of the same patterns on a differ-

ent application without running through the selection algorithms. It also tolerates

certain approximation in selecting the templates, because the exact selection of the

pattern instances may not be respected anyway in the covering process (e.g., given

the templates of both shaded patterns in Figure 3.1 are selected, even if pattern

instances {1, 2, 3} and {4, 5, 6} are chosen precisely, {0, 1, 2} may still be used to

cover the subject DFG by the pattern matcher). For example, in [25], the selection

of best performing pattern templates is approximated by solving a 0-1 knapsack

problem1. While covering is performed optimally by a binate covering formulation.

10-1 knapsack assumes fixed benefit values for each candidate pattern template, which is not
true as selecting a pattern instance disqualifies other instances overlapping with it, such that the
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Liem et al. [57] use dynamic programming to select patterns by covering the

subject DFG (tree) with the minimum number of tree patterns (instances). Arnold

[5] modifies the dynamic programming to handle the DAGs instead of just trees.

This is similar to the technology mapping problem in hardware synthesis. However,

the process of dynamic programming is unaware of subgraph isomorphism, that is, it

does not minimize the number of pattern templates and hence custom instructions.

Brisk et al. [11] use All-Pairs Common Slack Graph (APCSG) to capture the

extent of feasibility that two operations may be paired (grouped) together. At each

step, the pairs are evaluated. The value of the same pair type is accumulated so

as to account for isomorphism. The top ranked pairs are merged as single nodes

on both APCSG and the subject DFG at the end of each step. These nodes can

be paired iteratively and grow in the later steps. The algorithm terminates after

a certain coverage of the subject DFG is reached. Other greedy heuristics are also

proposed based on the priority ranking of the candidate patterns [18, 22, 49]. Even

though heuristic methods may miss the global optima, they are very useful as they

often give good enough results typically with quadratic time complexity.

In order to achieve better optima, genetic algorithm (GA) is employed in [73].

A chromosome represents a selection of the patterns. The cross-over between two

feasible chromosomes is ensured to produce a feasible off-spring by removing the con-

flicting patterns (which cover the same base operation). Mutation of a chromosome

is done by adding a random pattern which is not yet included to the chromosome,

and removing the other patterns conflicting with the added one. The fitness function

favors the case where more number of base operations are covered with less number

of pattern templates. The GA terminates after a certain number of generations,

and the result with the best fitness value is used to cover the application. In [65],

GA is extended to optimize performance using run-time reconfigurable CFUs. A

actual benefit values of templates involving those instances need to be updated.
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Multi-objective GA based method is described in [15] to discover the Pareto front of

the performance improvement under different values of the area constraint instead

of a single solution. Simulated annealing (SA) is used in [37].

Integer linear programming formulation is described in [51] with the objective

to maximize performance under the constraints of chip area and number of custom

instructions. Branch-and-bound algorithm is used in [77]. While guaranteeing the

optimal result, these approaches have exponential run time complexity, and thus

need to be used selectively.



Chapter 4

Scalable Custom Instructions

Identification

More knowledge means less search. – Patrick Henry Winston

Modern compiler techniques such as trace, superblock/hyperblock formation,

and loop unrolling often explore opportunities across basic block boundaries. Dataflow

graphs involving multiple basic blocks can be much larger than those of individual

ones. Moreover, datapath intensive embedded applications (such as encryption al-

gorithms) usually contain huge basic blocks themselves. These large DFGs pack

considerable amount of operations suitable for custom instructions, such that larger

subgraphs involving more operations can be formed for greater performance improve-

ment. It is important that the custom instruction identification algorithm is scalable

enough to explore large DFGs and produce subgraphs under relaxed architectural

constraints. In this chapter, we address the scalability issues of custom instruction

enumeration and describe an efficient algorithm for the exact enumeration of all

possible candidate instructions.

50
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4.1 Custom Instruction Enumeration Problem

Custom instruction identification attempts to find a relatively small set of common

subgraphs from the application’s dataflow graph for custom instructions, so as to

improve the system performance at reasonable hardware cost. Suitable subgraphs

(or patterns) need to be identified first, as candidates for custom instructions among

which the best ones can be selected. Obviously, the effect of the final selection

depends critically on the property of the candidate subgraphs.

Enumerating all possible subgraphs of a given graph is intractable and compu-

tationally expensive. The number of subgraphs or patterns for a DFG is, in general,

exponential in terms of the number of nodes in the DFG. However, some of these

subgraphs are infeasible due to various microarchitectural constraints (e.g., max-

imum number of input and output operands, area, and delay of each subgraph).

Moreover, a subgraph is infeasible if the custom instruction cannot be executed

atomically (named as convexity constraint – see Section 4.1.1 for details).

As we have discussed in Chapter 3, previous approaches either put very limiting

constraints on the number of operands [25, 67] or use heuristics [9, 22] to explore

the design space quickly. However, tight constraints can significantly restrict the

performance potential of using custom instructions. The custom instruction identi-

fication approach proposed in [8] is the only work targeting exhaustive enumeration

of feasible patterns. The algorithm walks through the design space represented by a

binary decision tree, and prunes unnecessary design points effectively based on con-

straint violation of patterns. However, in the worst case, it will look at 2N patterns

where N is the number of nodes in the DFG. Therefore, scalability issues may still

occur when it deals with very large DFGs.

Next, we formally define the custom instruction enumeration problem and no-

tions used in the later part of this chapter.
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Figure 4.1: An example dataflow graph. Valid nodes are numbered according to
reverse topological order. Invalid nodes corresponding to memory load operations
(LD) are unshaded. Two regions are separated by a LD operation.

4.1.1 Problem Definition

Dataflow Graph (DFG)

Given a program, custom instructions are identified on the dataflow graphs corre-

sponding to the basic blocks. A DataFlow Graph G(V,E) represents the compu-

tation flow of data within a basic block. The nodes V represent the operations and

the edges E represent the dependencies among the operations. G(V,E) is a directed

acyclic graph (DAG). Node u is a predecessor of v if there exists a directed path

{u, x1, . . . , xi, v} between them, denoted as u ∈ predecessors(v). Similarly, u is a

successor of v if there exists a directed path {v, x1, . . . , xi, u} between them, denoted

as u ∈ successors(v). Note that v ∈ predecessor(v) and v ∈ successor(v).

Not all types of operations are allowed to be included as part of a custom in-

struction. For example, memory access and control transfer operations are typically
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not included. Therefore, we mark the nodes of the DFG as valid nodes or invalid

nodes. A node is a valid node if its corresponding operation can be included as

part of a custom instruction; otherwise, it is an invalid node. An example DFG is

shown in Figure 4.1.

A DFG can be partitioned into multiple regions. Given a DFG G(V,E), we

define a region R(V′,E′) as the maximal subgraph of G s.t. (1) V′ contains only

valid nodes, (2) there exists a path between any pair of nodes of V′ in the undirected

graph that underlies R, and (3) there does not exist any edge between a node in V′

and a valid node in (V − V′). Invalid nodes do not belong to any region. Figure 4.1

shows a DFG divided into two regions by a memory load operation.

Patterns

Given a DFG, a pattern is an induced subgraph of the DFG. A pattern can be a

possible candidate for custom instruction. For convenience, we represent a pattern

by its set of nodes. A pattern p is connected if for any pair of nodes 〈u, v〉 in

p, there exists a path between u and v in the undirected graph that underlies the

directed induced subgraph of p. A pattern is disjoint if it is not connected. The

number of input and output operands of p are denoted as IN(p) and OUT(p),

respectively. A node of p connected to an input (output) operand is called an input

(output) node, and we denote p’s input nodes and output nodes as IN SET(p)

and OUT SET(p), respectively. Note that immediate operands are also counted

as input operands. Since isomorphic subgraphs with different immediate values

are exploited with the same custom instruction, the immediate values need to be

explicitly encoded in the instructions.

The following special patterns are of interest for the custom instruction enumer-

ation problem.
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• MISO: A pattern p with only one output operand is called a MISO (Multiple

Input Single Output) pattern. Clearly, a MISO pattern should be connected.

MISO patterns are supported by all instruction set architectures (ISA).

• Connected MIMO: A connected pattern with multiple input operands and

multiple output operands is called a connected MIMO (Multiple Input Multi-

ple Output) pattern. MIMO patterns may not be supported by all ISAs.

• Disjoint MIMO: A disjoint pattern with multiple input operands and mul-

tiple output operands is called a disjoint MIMO pattern. A disjoint MIMO

pattern consists of two or more MISO or MIMO patterns. Disjoint MIMO

patterns are more useful for architectures with limited or no mechanisms to

exploit instruction-level parallelism.

In addition, we define a special kind of pattern called a cone. A cone is a rooted

DAG in the dataflow graph s.t. either there is a path from the root node r to every

other node in the cone (downCone(r)) or there is a path from every other node to

the root node (upCone(r)). An upCone(r) is a MISO if r is the only output node

of the cone. In Figure 4.1, pattern {5, 6, 7} is an upCone(5), while pattern {6, 4,

5} is a downCone(6). We also define maximal upCone (downCone) of a node r in a

DFG G, maxUpCone(r,G) (maxDownCone(r,G)), as the upCone (downCone)

in G rooted at r s.t. for any other upCone (downCone) q in G which is rooted at

r, q ⊂ maxUpCone(r,G). For example in Figure 4.1, maxUpCone(5) is {5, 6, 7, 14,

15, 16}.

Feasibility of Patterns

Given a DFG, not all patterns are feasible as custom instructions. A non-convex

pattern is infeasible because it can not be executed as custom instruction atomically.
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A pattern p is convex if there does not exist any path in the DFG from a node

x ∈ p to another node n ∈ p that contains a node l /∈ p. For example, in Figure 4.1,

pattern {6, 14, 15} is convex. Meanwhile, pattern p1 with nodes {4, 6, 14} is non-

convex (due to an invalid operation – the memory load). Similarly, pattern p2 with

nodes {5, 6, 15} is also non-convex. However, note that the non-convexities of p1

and p2 arise due to different reasons. p1 is non-convex because we cannot include

the invalid node corresponding to the memory load operation in the pattern, while

p2 is non-convex because we choose not to include node 7 in the pattern. We call

the first case external non-convexity and the second one internal non-convexity. A

non-convex pattern p is external non-convex if their exists a path from a node

m ∈ p to another node n ∈ p, which contains an invalid node x /∈ p. Otherwise, the

non-convex pattern is internal non-convex.

In addition, the maximum number of allowed input and output operands for

a pattern is limited. We call these input constraint and output constraint

respectively. For example, if a custom instruction is allowed to have only two output

operands, then the 3-output pattern {6, 14, 15} in Figure 4.1 is infeasible. In

summary, a pattern extracted from the DFG is feasible only if it is convex and

satisfies the input and output constraints.

Problem Definition

Given the DFG corresponding to a code fragment, the problem is to enumerate

all feasible MISO, connected MIMO, and disjoint MIMO patterns for that code

fragment. In the worst case, the number of feasible patterns of a DFG is exponential

in terms of the number of nodes of the DFG. Therefore, the overall complexity of

any exact enumeration algorithm is exponential. However, our experience suggests

that, in practice, the number of feasible patterns in a DFG is far from exponential.
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Therefore, it is possible to design an efficient algorithm for exact enumeration of

feasible patterns.

4.2 Exhaustive Pattern Enumeration

During the course of the work in this thesis, method in [8, 66] is the only previous

approach that exhaustively enumerates all feasible patterns of a DFG1. We call this

the SingleStep algorithm as it enumerates all feasible MISO, connected MIMO, and

disjoint MIMO patterns through a combined design space exploration. In contrast,

we call our algorithm MultiStep algorithm as it generates MISO, connected MIMO,

and disjoint MIMO patterns in three different stages. We first describe SingleStep

algorithm in this section, followed by our own algorithm.

4.2.1 SingleStep Algorithm

The SingleStep algorithm first assigns labels 0 . . .N− 1 to the valid operations

(nodes) of the DFG in reverse topological order, where N is the number of valid

operations in the DFG. It then searches an abstract binary tree containing N + 1

levels and 2N+1 − 1 nodes to generate feasible patterns. The root node at level 0

represents the empty pattern. The two children of the root represent the presence

and absence of operation 0, i.e., an empty pattern and a pattern containing opera-

tion 0, respectively. The nodes at level i (0 < i ≤ N) represent all possible patterns

with operations 0 . . . i− 1. Basically, the search tree visits the operations in reverse

topological order and explores the patterns corresponding to presence/absence of

each operation. Clearly, the search space is exponential. However, the algorithm

1[66] describes an improved version of the algorithm in [8] by the same authors. We use [66] as
the baseline for efficiency comparison.
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uses a clever strategy to prune the search space. If the pattern corresponding to

a node s in the abstract search tree violates output and/or convexity constraint,

then there is no need to explore the subtree of s. As the operations in the DFG are

visited in reverse topological order, all the patterns corresponding to the nodes in

the subtree of s are guaranteed to violate output and/or convexity constraint. Due

to the same reasoning, certain cases of input violation caused by permanent inputs,

which once introduced cannot be resolved in the deeper subtree, can also be used

to prune the search space.

4.2.2 MultiStep Algorithm

In contrast to the SingleStep algorithm, our MultiStep algorithm does not attempt

to generate all feasible patterns in a single step. It breaks up the pattern generation

process into three steps corresponding to cone, connected MIMO, and disjoint MIMO

patterns. The first step generates upCones and downCones. Recall that a MISO

pattern is a downCone with only one output node. Therefore, the first step implicitly

generates all the MISO patterns. The second step combines two or more cones to

generate connected MIMO patterns, and finally the third step combines two or more

cones/MIMO patterns to generate disjoint MIMO patterns.

The MultiStep algorithm is based on the intuition that it is advantageous to

separate out connected and disjoint MIMO pattern generation. The reason is the

following. On one hand, connected MIMO pattern generation algorithm does not

need to consider nodes that are far apart and have no chance of participating in a

connected pattern together. Therefore the design space is reduced considerably. On

the other hand, lots of infeasible patterns are filtered out during connected pattern

generation step and are not considered subsequently during disjoint pattern gener-

ation step. Thus the separation of concern speeds up the algorithm substantially.
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Our enumeration algorithm is supported by the following two theorems.

Theorem 1 Any connected MIMO pattern p with IN(p) input operands and OUT(p)

output operands can be generated by combining convex upCones with at most IN(p)

input operands or convex downCones with at most OUT(p) output operands.

Proof Let v1, . . . , vN be the nodes of p, where N is the number of nodes in p. Clearly,

maxCone(v1, p) ∪ . . .∪ maxCone(vN, p) = p, where maxCone(vi, p) can either be

maxUpCone(vi, p) or maxDownCone(vi, p). First, we prove that for pi = maxUpCone(vi, p),

IN(pi) ≤ IN(p) for any 1 ≤ i ≤ N by showing that any input operand of pi should

also be an input operand of p. We prove this by contradiction. Let us assume the

input operand of pi is not an input to p, it must be produced by a node v such that

v /∈ pi and v ∈ p. However, if such v exists, then v ∈ maxDownCone(vi, p), which

is a contradiction since pi = maxUpCone(vi, p). Second, we prove by contradiction

that pi is convex. Let us assume that pi is non-convex. Then, there exists at least

a pair of nodes m, n ∈ pi such that there exists a path from m to n that contains a

node y /∈ pi. As pi is the maxUpCone of node vi in p, if y /∈ pi, then y /∈ p. There-

fore, p is also non-convex, which is a contradiction. Similarly, we can prove the case

for downCones through the use of maxDownCone(vi, p). �

In other words, it is possible to generate any feasible connected MIMO patterns

by combining one or more cones. For example, the pattern {6, 7, 14, 15} in Fig-

ure 4.1 can be generated by combining upCone(6) = {6, 14, 15} with downCone(15)

= {7, 15}. The above theorem provides a key search space reduction technique by

excluding some combination of cones. Specifically, to generate all the connected

MIMO patterns, MultiStep algorithm only needs all upCones that satisfy convex-

ity/input constraints and all downCones that satisfy convexity/output constraints.

This allows the algorithm to prune aggressively.
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Theorem 2 Any connected component pi of a feasible disjoint pattern dp must be

a feasible connected pattern.

Proof A connected component pi of a disjoint MIMO pattern dp is a maximal

connected subgraph in dp. An input of pi must also be an input of dp. So

IN(pi) ≤ IN(dp). As dp satisfies input constraint, pi must also satisfy the input

constraint. The same reasoning holds for the output constraint.

We prove by contradiction that pi is convex. Let us assume pi is non-convex.

Then there exists at least a pair of nodes m, n ∈ pi s.t. there exists a path from m

to n that contains a node x /∈ pi. There are two cases for x. (1) x /∈ dp: In this

case dp is also non-convex, which is a contradiction; (2) x ∈ dp: As pi is a maximal

connected subgraph, x is not connected to pi. So there must be two nodes y, z /∈ pi

and connected to pi on a path 〈m, y, . . . , x, . . . , z, n〉. We have y, z /∈ dp, otherwise

they will belong to pi too. So now we have two paths 〈m, y, . . . , x〉 and 〈x, . . . , z, n〉

that make dp non-convex, which is again a contradiction. So pi must be convex. �

Theorem 2 shows that a feasible disjoint pattern can be generated from one or

more feasible connected patterns. The possible combination of feasible patterns is

much smaller than that of arbitrary patterns, resulting in more efficient enumeration.

The rest of this section describes our MultiStep algorithm in detail.

4.2.3 Generation of Cones

The first step generates all the convex upCones that satisfy input constraints and

convex downCones that satisfy output constraints. Recall that a cone is a connected

pattern and hence cannot contain nodes from different regions of a DFG. Therefore,

we generate cones for each region individually. First, we traverse the nodes of each
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Algorithm 1: Enumeration of upCones of region R
ConeGen

begin
for all nodes v of R in topological order do1

upConeSet(v) := {{v}};2

for all possible combination of immediate predecessors of v do3

Let v1, . . . , vi be the selected immediate predecessors;4

tmpConeSet := CrossProduct(upConeSet(v1), . . . , upConeSet(vi), {{v}});5

prune tmpConeSet for convexity and input violation;6

upConeSet(v) := upConeSet(v) ∪ tmpConeSet;7

end

CrossProduct (set1, . . . , setn)
begin

resSet := φ;8

set := set1 × . . .× setn;9

for each s ∈ set do10

Let s = 〈s1, . . . , sn〉;11

resSet := resSet ∪ {s1 ∪ . . . ∪ sn};12

return resSet;13

end

region in topological order and calculate the set of possible convex upCones that

satisfy input constraints at each node. Similarly, we traverse the nodes of each

region in reverse topological order to calculate the set of possible convex downCones

at each node that satisfy output constraints.

Algorithm 1 details the generation of upCones for a region R. We define

upConeSet(v) as the set of upCones for node v satisfying both the input operands

and convexity constraints. Recall that each upCone (pattern) in the set upConeSet(v),

in turn, is again represented as a set of nodes. Given a node v, let v1, . . . , vk be its

immediate predecessors in the region. As we are traversing the nodes in topologi-

cally sorted order, the set of upConeSet(vi) (vi ∈ predecessors(v)) is known when v is

visited. Therefore, we can compute upConeSet(v). For example, the upConeSet(14)

and upConeSet(15) (in Figure 4.1) are {{14}} and {{15}, {15, 16}}, respectively.
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Therefore, upConeSet(6) is {{6}, {6, 14}, {6, 15}, {6, 15, 16}, {6, 14, 15}, {6, 14,

15, 16}}.

This step may generate some upCones (e.g., {5, 6, 15} at node 5 in Figure 4.1)

that do not satisfy convexity and/or input operands constraint. The algorithm

eliminates such upCones in line 6. Such elimination is safe according to Theorem 1.

Note that the algorithm does not eliminate any upCone that does not satisfy output

constraint.

The generation of downCones is similar to Algorithm 1. However, in this case,

the traversal is in reverse topological order. Also the cones violating convexity

and/or output constraints are eliminated.

4.2.4 Generation of Connected MIMO Patterns

Partial decomposition

In order to understand the mechanism of connected MIMO generation algorithm,

let us first see how a feasible connected pattern can be decomposed and reproduced.

Any feasible connected pattern p can be reproduced by concatenating a series of

upward cones and downward cones. A partial decomposition is formed on each

concatenation step, which is a connected subgraph of p. Starting from a sink node

vs, which we treat as the initial partial decomposition pd0, we extend it upwards

and downwards by adding upward cones and downward cones step by step until the

partial decomposition becomes p. The process is as follows:

Step 1: We extend vs upwards, which is the initial extension node, by combining

it with maxUpCone(vs, p), such that dp1 = vs ∪maxUpCone(vs, p);
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Figure 4.2: Forming a feasible connected MIMO pattern through partial decompo-
sition. Decomposition cones are dashed on each step. Trivial decomposition cones,
like {1} for every downward extension and {2} in pd3, are omitted. They are elim-
inated in the algorithm.

. . .

Step n: If the (n−1)th step is upward, the nth step extends downwards through ex-

tension nodes set ext = {v|v ∈ OUT SET(dpn−1)}, and produces the next par-

tial decomposition dpn = dpn−1 ∪ Σv∈extmaxDownCone(v, p). If the (n−1)th

step is downward, the nth step extends upwards analogously on the reverse

direction.

The extension stops until the partial decomposition covers all the nodes in (becomes

the same as) p. Figure 4.2 shows an example graph, its decomposition cones and

partial decompositions, starting with node 1.

We can get a few observations from the decomposition process. First, as sug-

gested with Theorem 1, each constituent upward (or downward) cone satisfies input

(or output) constraint and convexity constraint. Second, each partial decomposition
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after an upward (or downward) extension step satisfies input (or output) constraint

and convexity constraint. This can be proven similarly as Theorem 1, and suggests

that intermediate patterns violating the constraints can be discarded. Third, a de-

composition cone overlaps with the partial decomposition of the previous extension

step at least at the extension nodes. Fourth, extension nodes that cannot introduce

new nodes to the partial decomposition can be eliminated. For example, node 1 in

Figure 4.2 is a downward extension node in every downward extension step. How-

ever, it cannot extend to new nodes that the current partial decomposition has not

reached; hence it can be eliminated. The last three observations lead to pruning

strategies in the connected MIMO generation algorithm.

Enumeration by Set

A more productive way than forming patterns individually would be to process

the set of patterns that can be extended through the same set of extension nodes

together. We illustrate the key process of connected MIMO generation algorithm

by walking through the generation of all feasible connected patterns involving node

1 in Figure 4.3, assuming that the graph in the previous example is a region itself

and input and output constraints are not imposed.

Firstly, we extend node 1 upwards, resulting in all the patterns in upConeSet(1).

Instead of using the partial decomposition for a single pattern, we use the notion of

extended region to identify extension nodes for a set of patterns. Extended region

is a subgraph of region R that has already been expanded to. An upward (or down-

ward) extension by node v will add maxUpCone(v,R) (or maxDownCone(v,R))

to the existing extended region. The extended region after each extension step is

shaded in the example. For now, the extended region is maxUpCone(1,R), and

two downward extension nodes 5 and 7 are identified by taking the output nodes
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Figure 4.3: Generating all feasible connected patterns involving node 1.

Extend ({5,7}, down)

Node 1, OUT_SET(maxUpCone(1))={5,7}
Collect patterns
involving 1

{7} {5} {5,7}

Extend ({3}, up) Extend ({6}, up)

Eliminated Collect patterns
involving 1,5

Collect patterns
involving 1,5,7

5

7

2 9

{3} {6}

Extend ({9}, down)
{9}

Extend ({9}, down)
{9}

Collect patterns
involving 1,3,5

Collect patterns
involving 1,5,6,71

4

3

6

8

P {9} {9}
Collect patterns
involving 1,3,5,9

Collect patterns
involving 1,5,6,7,9

E t d d

P

5

7

2

4 6

9 5

7

2

4 6

9 5

7

2

4 6

9

Extended
region

New sub-region
introduced

{3} {9}

5

7

2 9

1 3 8 1 3 8 1 3 8

(b) (c) (d)
{5}

1

4

3

6

8 5

7

2

4 6

9 5

7

2

4 6

9 5

7

2

4 6

9

( )

{5,7}

{6} {9}

1

4

3

6

8 1

4

3

6

8 1

4

3

6

8

(a)

(e) (f) (g)

Figure 4.4: A recursive process of collecting patterns for the example in Fig. 4.3.
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of the extended region (node 1 is a trivial downward extension node that is omit-

ted). All possible downward (or upward) extensions to new nodes that have not

been extended to must go through the outputs (or inputs) of extended region. Two

downward extension nodes 5 and 7 produces 3 combinations {5}, {7} and {5,7},

indicating 3 possible ways of extension. Each of these combination yields a differ-

ent subset of patterns involving extension nodes 5 or 7. Extending through each

combination would produce new extension nodes of its own, resulting in different

extension paths. This is handled by a recursive process of further extensions. For

now, next step downward extension will split into three – extending through {5}, {7}

or {5,7}. However, {7} can be eliminated due to the same extension effects through

{5,7}, because any further patterns involving node 1 and 7 must also contain node

5 for the sake of convexity. Such predecessor and successor relation between two

extension nodes can help reduce the number of combinations greatly.

Secondly, assuming that we take the {5} extension path (Figure 4.3(b)), all the

intermediate patterns from the previous extension step containing node 5 but not

7 are combined with downCones from downConeSet(5). Further upward extension

node 3 is identified from the new extended region. Such extension goes on upwards

and downwards until no further extension nodes are identified. Figure 4.4 illustrates

the recursive extension process by function calls and patterns collected at each level.

The top level obtains all the patterns involving node 1. Note that not all the pat-

terns (including intermediate patterns) produced are feasible if inputs and outputs

constraints are imposed, and they are deleted along the way or in the end.

Connected MIMO Generation Algorithm

Connected MIMO generation algorithm is formally elaborated in Algorithm 2. The

algorithm traverses the nodes in a region R in reverse topological order (line 1).
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Algorithm 2: Generation of feasible connected MIMO patterns of region R
with redundancy reductions.
MIMOGen
begin

for all nodes v of R in reverse topological order do1

extStats.newExt := ExtIdentify(down, extendedReg :=2

maxUpCone(v,R),NODES(upConeSet(v)));
extStats.extCombAll := v;3

extStats.extAll := extStats.newExt;4

if extStats.newExt 6= φ then5

connectedMIMOSet(v) := Extend(down,upConeSet(v), extStats, extendedReg)6

∪ upConeSet(v);
remove v from R;7

end

Extend (direction,MIMOSet, oldExtStats, oldExtendedReg)
begin

newMIMOSet := MIMOSet;8

for all possible combination of oldExtStats.newExt do9

Let extComb = {v1, . . . , vi} be the current combination;10

if ExtCombEli(direction, extComb, oldExtStats.newExt) then continue;11

newExtStats.extCombAll = oldExtStats.extCombAll ∪ extComb;12

P := {p|p ∈ MIMOSet
∧

p ⊇ newExtStats.extCombAll
∧

13

p ∩ (oldExtStats.extAll− newExtStats.extCombAll) = φ};
if direction = down then14

tmpMIMOSet := CrossProduct(downConeSet(v1), . . . ,downConeSet(vi),P);15

prune tmpMIMOSet for convexity and output violation;16

newExtendedReg := oldExtendedReg ∪ (
⋃

v∈extComb maxDownCone(v,R));17

else
tmpMIMOSet := CrossProduct(upConeSet(v1), . . . ,upConeSet(vi),P));18

prune tmpMIMOSet for convexity and input constraint violation;19

newExtendedReg := oldExtendedReg ∪ (
⋃

v∈extComb maxUpCone(v,R));20

newExtStats.newExt := ExtIdentify(!direction,newExtendedReg,NODES(tmpMIMOSet));21

newExtStats.extAll := oldExtStats.extAll ∪ newExtStats.newExt;22

if newExtStats.newExt 6= φ then23

newMIMOSet := Extend(!direction, tmpMIMOSet, newExtStats,newExtendedReg)24

∪ newMIMOSet;
else

newMIMOSet := tmpMIMOSet ∪ newMIMOSet;25

prune newMIMOSet for input and output constraint violation;26

return newMIMOSet;27

end
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Algorithm 3: Auxiliary functions for the connected MIMO generation algo-
rithm.
ExtIdentify (direction, extendedReg, wetReg)
begin

/* Identify downward extension nodes */

if direction = down then1

newExt := OUT SET(extendedReg);2

for v ∈ newExt do3

if maxDownCone(v,R) ⊆ extendedReg then remove v from4

newExt;
else if v /∈ wetReg then remove v from newExt;5

else
// Upward case is analogous.6

return newExt;7

end

bool ExtCombEli (direction, extComb, newExt)
begin

for any pair u and v ∈ newExt, where u ∈ predecessor(v) do8

if direction = down
∧

u ∈ extComb
∧

v /∈ extComb then return true;9

else if direction = up
∧

v ∈ extComb
∧

u /∈ extComb then return10

true;
return false;11

end

It maintains the following invariant: when the traversal of a node v is completed,

all the feasible connected patterns involving v have been enumerated. Therefore,

node v need not be considered further and can be masked, along with existing

subgraphs/cones involving v.

For each starting node v as the initial extension node, which must be a sink

node for the rest of region R, the algorithm resembles the process in the example

of Figure 4.3. It identifies new extension nodes (line 2, 21) and enumerates their

combinations (line 9) upwards and downwards, and splits the search recursively

along each extension node combination with the Extend function. Extend takes in

four arguments: (1) direction can take values up or down, and indicates whether

the current extension step is upward or downward. (2) MIMOSet is a set of patterns
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passed from the previous level, as the base set of patterns to be combined with

cones of extension nodes. (3) oldExtStats contains three sets of extension nodes,

expressing the progress of the extension: newExt is the set of new extension nodes

identified from the previous level, combinations of which will be enumerated and

extended at the current level; extAll is the set of all the extension nodes identified

so far along the recursive extension up to the current level; extCombAll is the set

of all the extension nodes that have actually been extended up to the previous

level. For example, at the bottom level of the middle path (in the dashed box) in

Figure 4.4, node 9 is the only extension node identified from the previous level, so

newExt={9}; extAll={1, 5, 7, 3, 9} and extCombAll={1, 5, 3}. For each extension

node combination (only {9} in this case), the new extCombAll is generated (line

12), and used together with extAll to pick up a subset of patterns in MIMOSet to

extend (line 13). (4) oldExtendedReg is the extended region from the previous step

used to identify further extension nodes (line 2, 21).

Extension nodes are identified in the ExtIdentify function depicted in Algo-

rithm 3. Possible downward extension nodes are identified as the output nodes of

extended region. However, extension nodes that can not produce new patterns are

eliminated in two ways. First, extension nodes that introduce no new extended

region are eliminated (line 4). Second, extension nodes falling outside the wet re-

gion are eliminated (line 5). Wet region (as computed in line 21 of Algorithm 2)

is a subregion of R that contains nodes appearing in at least one subgraph pro-

duced in the current extension step (tmpMIMOSet). These subgraphs are the base

set to be further extended. If none of these subgraphs covers the extension node,

the extension node can be eliminated (recall that a partial decomposition must be

overlapping with the decomposition cone at least on the extension node so as to be

extended). For instance, in the example of Figure 4.3(a), if a 2-input constraint is

imposed, then upConeSet(1) = {{1}, {1, 2}, {1, 5}, {1, 2, 5}}. Extension node 7 will
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be eliminated since it is not covered by the wet region {1, 2, 5}. In other words,

if we see the extended region as the area that have been explored in sight, the wet

region will be the footsteps.

Function ExtCombEli tests a given extension node combination and bypasses it

if it is redundant (line 11 in Algorithm 2). For two downward extension nodes u and

v identified, if u ∈ predecessor(v), the extension node combination with u but not

v has the same effects with the combination containing both, thus can be bypassed

safely (line 9). The reasoning for this is partial decompositions with node u must

also contain node v, thus further extensions of two cases will be the same. Suppose

previous upward extension node e is successor of both u and v (such e must exist

obviously). All the partial decompositions contain node e. As a result, if a partial

decomposition contains u, it must also contain v to ensure the convexity to node e.

Line 10 is the test along upward direction analogously.

4.2.5 Generation of Disjoint MIMO Patterns

Disjoint pattern enumeration algorithm produces the set of all feasible disjoint

MIMO patterns denoted as DPS. According to Theorem 2, each disjoint pattern

dp ∈ DPS is composed of more than one connected patterns that satisfy the input,

output and convexity constraints. We use the the set of all feasible connected MIMO

patterns denoted as CPS as the base to produce all the disjoint patterns.

We observed that the number of output nodes of any feasible disjoint pattern

is simply the summation of those of its constituent connected patterns. Based on

this observation, we classify the patterns according to the the number of output

nodes. We define CPSi and DPSi as the set of all the feasible connected patterns

and disjoint patterns with exactly i output nodes, respectively. Note that according
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to our definition CPSi ∩DPSi = ∅. Feasible disjoint patterns with n output nodes

can be generated by combining feasible connected patterns with less than n output

nodes. More formally, we have to consider all possible partitions of n (a partition of

a positive integer n is a way of writing n as a sum of positive integers) except for

the partition with single element n. For example, the partitions of integer 4 are 4,

3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1. Therefore

DPS4 = (CPS3 × CPS1) ∪ (CPS2 × CPS2) ∪ (CPS2 × CPS1 × CPS1)

∪(CPS1 × CPS1 × CPS1 × CPS1)

where × and ∪ represent cross product and union operations, respectively. However,

we can simplify the disjoint pattern generation process by replacing certain parts of

the above equation with DPSi. Following we show the equations for disjoint patterns

with up to 5 output nodes.

DPS1 = ∅

DPS2 = CPS1 × CPS1

DPS3 = (CPS2 × CPS1) ∪ (CPS1 × CPS1 × CPS1)

= (CPS2 × CPS1) ∪ (DPS2 × CPS1)

DPS4 = (CPS3 × CPS1) ∪ (CPS2 × CPS2) ∪ (CPS2 × CPS1 × CPS1)

∪(CPS1 × CPS1 × CPS1 × CPS1)

= (CPS3 × CPS1) ∪ (CPS2 × CPS2)

∪ ((CPS2 × CPS1) ∪ (CPS1 × CPS1 × CPS1))× CPS1

= (CPS3 × CPS1) ∪ (CPS2 × CPS2) ∪ (DPS3 × CPS1)

DPS5 = (CPS4 × CPS1) ∪ (CPS3 × CPS2) ∪ (DPS4 × CPS1)

The above equations indicate that the disjoint patterns should be generated

in increasing order of the number of output nodes (i.e., DPS2, DPS3, ...). Also

each cross product operation is performed on two sets, i.e., each disjoint pattern

is obtained by composing two previously generated patterns (connected or dis-

joint), thus simplifying the generation algorithm. Note that starting from DPS6,
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Figure 4.5: Non-connectivity/Convexity check based on upward scope. (a) p2 con-
nects with p1. (b) p2 introduces non-convexity.

cross product operation on more than two sets need to be performed; for example

CPS2 × CPS2 × CPS2 cannot be resolved. However, the term CPS2 × CPS2 appears

during the generation of DPS4. By re-using these intermediate results, we can still

ensure that the cross product is always performed with two sets.

Pruning

Directly computing the right side of each equation from DPSi may produce infea-

sible or redundant patterns. For example, if we combine two connected patterns

that overlap with each other, the resulting pattern will either be connected or will

have lesser number of output nodes than expected. Non-convex patterns may also

be generated in this process. In order to avoid this, we must ensure that each fea-

sible disjoint pattern is generated by combining two patterns p1 and p2 (disjoint or

connected) that are (1) disjoint from each other and (2) there is no path from p1 to

p2 or p2 to p1. The second condition ensures that combining the two patterns does

not result in a non-convex disjoint pattern.

We define upward scope of a pattern p (upScope(p)) for this purpose. It is the

collection of all the predecessors of the nodes in pattern p. When combining two pat-

terns p1 and p2, if p1 ∩ upScope(p2) 6= φ or p2 ∩ upScope(p1) 6= φ, they need not to
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be combined because either non-connectivity and/or convexity condition will be vio-

lated. Let us assume that p2 ∩ upScope(p1) 6= φ, there must exists node v ∈ p2 and

u ∈ p1 such that v ∈ predecessors(u). Now that there exists a path 〈v, . . . , xi, . . . , u〉

between v and u, if all xi belongs to either p1 or p2, then the combined subgraph

will be a connected one; otherwise, the combined subgraph should be non-convex.

Figure 4.5 shows these two cases. In disjoint pattern generation process, the upward

scope for each pattern need to be computed and stored to perform this check.

To further prune the search space, we first number the nodes according to reverse

topologically sorted order. Next we define CPSv
i as the set of feasible connected

patterns with i output nodes and v as the smallest numbered node. Similar definition

applies to DPSv
i . Clearly,

DPSi =
⋃

v∈valid nodes

DPSv
i

DPS =
MAXOUT⋃

i=2

DPSi

where MAXOUT is the output constraint.

Algorithm 4 details the disjoint pattern generation steps. It computes DPSv
i for

each valid node v in the innermost loop according to the corresponding equation

(line 8), aggregates them to form DPSi (line 20) and finally DPS (line 21).

DPSv
i is computed by combining pattern sets of node v with pattern sets of

node u, where u is bigger than v in reverse topologically sorted order (line 6).

Non-symmetrical terms, such as CPS1 × CPS2 should be combined twice with their

place exchanged (line 18–19). Upward scope check helps reduce the design space

at two places. First, node u can be entirely bypassed if it falls in upScope(v) (line

7); otherwise non-connectivity or convexity will be violated. Second, constituent

pattern p1 from pattern set of v can be bypassed if upScope(p1) overlaps with u
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Algorithm 4: Feasible disjoint pattern enumeration
DPSetGen
begin

DPS := φ;1

for i = 2 to MAXOUT do2

DPSi := φ;3

for all valid nodes v of DFG in reverse topological order do4

DPSv
i := φ;5

for all valid nodes u s.t. order(u) > order(v) do6

if u ∈ upScope({v}) then continue with the next u;7

for every term T on r.h.s. of the equation of DPSi do8

Let T = T1× T2;
for all the patterns p1 in T1 with smallest node v do9

if u ∈ upScope(p1) then10

continue with the next p1;11

for all patterns p2 in T2 with smallest node u do12

if p1 ∩ upScope(p2) 6= φ or p2 ∩ upScope(p1) 6= φ then13

continue to the next p2;14

tmp := p1 ∪ p2;15

if InCheck (tmp) then16

DPSv
i := DPSv

i ∪ {tmp};17

if T1 6= T2 then18

repeat lines 9 to 17 by exchanging the place of T1 and T2;19

DPSi := DPSi ∪DPSv
i ;20

DPS := DPS ∪DPSi;21

end

(line 10). These two checks bypass a set of combinations at each time and greatly

reduce the search space. A normal upward scope check between two constituent

patterns is conducted before combining them (line 13). Lastly, the resultant pattern

is added to DPSv
i subject to input check (line 16–17).

4.2.6 Optimizations

In this section, we describe the data structures and some optimizations employed in

the implementation of the pattern generation algorithm.
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Data structures

We use fixed-length bit vectors to represent each pattern. The length of the bit

vectors is equal to the number of nodes in the DFG. Given the bit vector of a pattern,

each bit simply indicates the presence and absence of a node in that pattern. Bit

vector representation provides a very natural and efficient means to combine two or

more patterns (as in line 12 of Algorithm 1 through bit-wise OR operation). Many

other information related to node set, such as max upward cone, predecessors and

successors of a node, extended region, upward scope of a pattern, are also represented

with bit vectors, and inter-operate efficiently with patterns using bit-wise operations.

We also need to remove duplicates while constructing a set of patterns. This

requires both efficient search as well as insertion that cannot be achieved either with

sorted array or linked list. We maintain a set of patterns as a 2-3 Tree [3]. The

patterns in a 2-3 tree are sorted by the value of their bit-vectors; every query or

insertion of a pattern can be achieved within O(log2(n)) time, where n is the total

number of patterns present in the 2-3 tree. A pattern is inserted in the 2-3 tree only

if it is not present already.

Checking for Input/Output constraints

Given a pattern p generated by combining patterns p1, . . . , pn, IN SET(p)⊆ IN SET(p1)

∪ . . . ∪ IN SET(pn) (similarly for OUT SET(p)). Therefore, in order to check for

violation of input/output operand constraints in a pattern, we will need to look at

the input/output nodes of the constituent patterns. For this purpose, we maintain

the set of input/output nodes with each pattern.
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Checking for convexity constraint

Convexity check of DPSetGen algorithm (Algorithm 4) is done using upward scope

checks because of the peculiarity of non-connectivity. Here we discuss convex-

ity check in ConeGen and MIMOGen algorithms (Algorithm 1 and 2). In order to

check for convexity of a produced pattern p, we consider all immediate succes-

sors from the nodes in OUT SET(p). If, for one such immediate successor u /∈ p,

successors(u) ∩ p 6= φ, then p fails the convexity constraint.

Furthermore, we can use the notion of external non-convexity to prune some

of the participating patterns, including which will definitely cause non-convexity,

before forming new patterns by cross production. This is very helpful in reducing

the intensity of the cross production. Recall that external non-convexity is caused

by invalid nodes. Specifically, for any node v, there exists an external conflicting

set (ECS(v), can be empty) such that any node within cannot coexist with v in

a valid pattern, otherwise external non-convexity will occur. Let us now see the

cross production of ConeGen (as in line 5 of Algorithm 1). As any resultant pattern

contains v, participating patterns from upConeSet(v1), . . . , upConeSet(vi) involving

any node in ECS(v) can be filtered out before the actual cross production. Similarly,

in MIMOGen, because any resultant pattern contains all the selected extension nodes

(newExtStats.extCombAll), participating patterns involving nodes in
⋃

vi
ECS(vi)

(vi ∈ newExtStats.extCombAll) should be filtered out before the cross productions

(line 15 and 18).

Computing external conflicting sets involve a pre-processing step. Given a region

R, we first identify special pairs of nodes, called boundary pairs. Two nodes u and

v in R are called a boundary pair if there exists a path 〈u, x1, . . . xn, v〉 in the DFG

s.t. x1, . . . xn do not belong to R. For example in Figure 4.1, 〈4, 14〉 and 〈0, 15〉 are

boundary pairs. Clearly, if 〈u, v〉 is a boundary pair, then u and v cannot coexist
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in any convex pattern. Moreover for any node x ∈ maxUpCone(u,R), it cannot

coexist with any node y ∈ maxDownCone(v,R) in a convex pattern and vice versa.

ECS(v) is the collection of v’s predecessors and successors that cannot coexists with

v. Such predecessor set of v can be computed as the union of such predecessors of

v’s immediate predecessors and the ones that introduced by v if v forms a boundary

pair. Hence the computation for all nodes in the region can be done through a single

pass according to topological order. Analogously, such successor sets for all nodes

can be obtained through a pass according to reverse topological order.

Refinement before cross productions

The number of patterns generated from a cross production is the product of the

number of patterns in the participating pattern sets. Refinement filters away

unnecessary patterns from constituent sets before the cross production, combining

which will certainly produce infeasible or redundant results. This filtering reduces

the design space greatly.

Refinement can be used before cross production throughout the algorithm, ac-

cording to different refinement conditions. As discussed, refinement can be applied

according to external conflict sets. Line 13 in Algorithm 2 refines the base pattern

set to be extended. Further refinement can be applied to cone sets too before the

cross productions (at line 15 or 18). Here, any pattern p in the base pattern set

P contains all the selected extension nodes. In a downward extension case, a new

pattern is formed by taking the union of p and one or several downward cones.

For a downward cone dc from a current downward extension node v and a selected

(maybe previously selected) extension node e that e ∈ successors(v), e appears in

the new pattern irrespective of whether e is part of dc or not. In other words, the

effect of a downward cone with e and one without e are the same. Here we filter out
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the downward cone without e. For example in Figure 4.3(b), we extend downwards

through node 5. Only the cones in downConeSet(5) containing node 1 are kept.

On the implementation part, in order to traverse all the patterns (which are

stored as leaf nodes of a 2-3 tree) of a pattern set quickly, the patterns are also

linked as a linked list. Refinement is done by bypassing unnecessary patterns on the

linked list before the cross production. The refined linked list should be restored

before the set is used again, because other cross production may require different

refinements.

On demand downward cone set generation

The generation of downward cone sets of each node can be pushed to the time

when they are needed in MIMOGen. The full set of downConeSet(v) is not useful

if v never becomes a downward extension node, or when it does, some nodes in

maxDownCone(v) have already been masked (downCones including these nodes

will not be used then). For instance, for the region in Figure 4.3, downConeSet(2)

is not needed because it will never become a downward extension node. Another

example is suppose we visit node 3 instead of 1 first, node 7 is not a downward

extension node for node 3. Node 7 will only become a downward extension node

when MIMOGen visits other nodes (e.g., 1 or 8) after node 3 is done and masked. At

that time, we only generate downConeSet(7) without the presence of node 3.

More pruning in DPSetGen

In DPSetGen, when combining p1 and p2 fails upScope check (line 13–14), p2 is

skipped. Moreover, all the patterns in the set that are super graphs of p2 can also

be skipped. Unfortunately, these patterns are scattered throughout the pattern list.
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0011 0100 0101 01100000 0001 0010 1010 1100 1101 1110 11110111 1000 1001 1011 END

Figure 4.6: Bypass pointers (dashed arrows) on a linked list of patterns.

Due to the sorted pattern list, we can still efficiently skip the patterns that are super

graphs of p2, which contains additional nodes having higher reverse topologically

sorted order than those in p2. Similar reasoning applies to line 10–11 for p1.

Suppose node i occupies the ith bit from the left (i.e., node 0 is represented as

the leftmost bit). Under such representation, the patterns can be safely skipped with

p are the ones with the same bit sequence up to p’s rightmost “1”. For example, if

p is 0101000, at most 8 patterns can be bypassed whose values range from 0101000

to 0101111. So we can safely jump to the first pattern with bit vector value larger

than 0101111 (this pattern may not be 0110000 because patterns in the set may

not be continuous). In order to make use of this, we add a bypass pointer to

each pattern, pointing to the next pattern that can be skipped to if upScope check

is failed. Figure 4.6 illustrates a list of patterns with their bypass pointers. To

compute the bypass pointers, we traverse the linked list once sequentially while

maintaining a stack. We define bypass value as the largest value that can be

skipped for each pattern (e.g., for 0101000, the bypass value is 0101111). When we

are at pattern p, we pop out all the patterns on the top of the stack whose bypass

value is less than p’s bit vector value and set their bypass pointers to p, and then we

push p onto the stack. At the end of the list, we set the bypass pointers of remaining

patterns on the stack to the END of the linked list.
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Miscellaneous

In coneGen, for two immediate predecessors of node v – v1 and v2, if v1 is pre-

decessor of v2, v1 can be eliminated from all immediate predecessor combinations.

Similar elimination holds when generating downward cone sets along the reverse di-

rection. This elimination is very helpful to reduce combinations in some benchmark

programs.

4.3 Experimental Results

We compare the efficiency of MultiStep algorithm against SingleStep algorithm in

this section. Since designers may have different concerns on connected patterns and

disjoint patterns, we compare both cases separately.

4.3.1 Experimental Setup

Table 4.1 shows the characteristics of the benchmarks used in our experiments.

Benchmarks marked with † are taken from MiBench [31], and § from the internet2.

These benchmarks fall in the encryption and multimedia encoding domains, which

are typically computation oriented and involve very large DFGs. We choose one

frequently executed basic block from each benchmark for the DFG. The regions for

the DFGs are also shown in Table 4.1. For example, the DFG in rijndael consists

of seven regions with 562, 68, 4, 4, 4, 4, 1 nodes, respectively. Note that except for

cjpeg, a large portion of execution time is spent in the chosen basic block for the

benchmarks, which justifies the effort in selecting patterns from these large basic

blocks.

2http://sourceforge.net/projects/libmd5-rfc by L. Peter Deutsch
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Benchmark Domain
BB Size of % of Total
Size Regions Exec. Time

rijndael† Encryption 894 {562, 68, 4, 4, 4, 4, 1} 61%
blowfish† Encryption 334 {133, 120, 2} 46%

cjpeg† Encoding 154 {92, 40, 1, 1, 1} 7%
MD5§ Encryption 943 {667, 1×56} 67%

sha(unroll)† Encryption 1468 {1367, 1} 54%

Table 4.1: Benchmark characteristics. The size of basic block and region are given
in terms of number of nodes (instructions).

The benchmarks are compiled and evaluated under SimpleScalar tool set using

SimpleScalar ported gcc-2.7.2.3 with -O3 optimization [12]. We have run all the

experiments on a 3.0GHz Pentium 4 machine with 1GB memory. The time taken

by the enumeration algorithms is measured using the Pentium time-stamp cycle

counter.

4.3.2 Comparison on Connected Pattern Enumeration

The first two steps of our MultiStep algorithm generate all the feasible connected

patterns. Note that the original SingleStep algorithm enumerates both connected

and disjoint patterns, and therefore it works on the entire DFG as opposed to in-

dividual regions in a DFG. To enumerate connected patterns, we invoke SingleStep

algorithm for each region separately for comparison purpose. Also, for each gener-

ated pattern, we do an additional check to see if it is connected. We perform a depth

first search of the pattern subgraph starting with the most recently added node. If

the depth first search reaches all the nodes, then the pattern is connected. Experi-

mental results indicate that the overhead for this additional check is insignificant.

Table 4.2 shows the results for all the benchmarks under different input/output

constraints. Two algorithms produce the same sets of feasible connected patterns for

each benchmark (under “No. of Feasible Connected Patterns” column). Compared
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Search Search No. of Feasible Time Time
Benchmark IN OUT Space Space Connected SingleStep MultiStep

SingleStep MultiStep Patterns (sec) (sec)

Rijndael

3 1 322218 1926 437 0.339 0.012
3 2 25988184 3450 619 27.10 0.021
3 3 372627758 3744 619 427.2 0.030
4 1 330585 2425 675 0.361 0.015
4 2 33908883 13125 1177 35.35 0.041
4 3 1031215148 63051 1495 1121 0.143
5 1 338948 2885 714 0.357 0.018
5 2 37153534 19989 1680 37.89 0.053
5 3 1597049641 72771 2910 1702 0.202

Blowfish

3 1 32080 823 177 0.024 0.003
3 2 189252 1378 252 0.149 0.004
3 3 344635 1528 252 0.359 0.006
4 1 34419 1163 279 0.026 0.004
4 2 275745 3923 554 0.204 0.008
4 3 743840 4683 704 0.670 0.016
5 1 35120 1527 307 0.026 0.005
5 2 314981 9582 894 0.230 0.014
5 3 1205486 11916 1594 1.000 0.016

Cjpeg

3 1 19782 717 166 0.015 0.001
3 2 891973 970 249 0.541 0.003
3 3 7223032 998 249 4.624 0.003
4 1 21242 1537 306 0.016 0.003
4 2 1476434 2985 511 0.890 0.008
4 3 26641228 3391 633 16.68 0.011
5 1 22321 3789 387 0.017 0.006
5 2 1938275 9221 834 1.168 0.020
5 3 61492729 14118 1191 38.08 0.039

MD5

3 1 795706 3142 606 0.874 0.019
3 2 3349367 4399 948 4.217 0.031
3 3 5761443 4525 979 8.258 0.034
4 1 957428 5584 1200 1.040 0.028
4 2 4133343 7593 2132 5.200 0.045
4 3 8038476 8245 2360 11.38 0.054
5 1 1015344 9156 1613 1.120 0.041
5 2 5367195 11936 3472 6.625 0.062
5 3 11380619 15215 4124 15.90 0.090

Sha(unroll)

3 1 6390037 12029 1222 11.32 0.047
3 2 91239564 17682 2270 211.2 0.105
3 3 355703427 20545 2987 1282 0.147
4 1 7834675 35680 2343 13.83 0.121
4 2 147686544 57246 5019 320.6 0.281
4 3 824924965 81255 7931 2508 0.525
5 1 8994322 90456 3997 15.91 0.297
5 2 208654630 146414 8717 437.1 0.642
5 3 1486041112 321797 16122 4086 1.935

Table 4.2: Comparison of enumeration algorithms – connected patterns
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Figure 4.7: Run time speedup (MultiStep/SingleStep) for connected patterns.

to the size of the regions, the number of feasible connected patterns is quite small.

Therefore, it is possible to apply an optimal selection method, such as the ILP

formulation in Chapter 5, in the later stage for an optimal set of custom instructions.

The “Search Space” columns are the number of patterns subjected to different

constraint checks by the two algorithms. In general, as MultiStep algorithm pro-

duces connected patterns by extending existing ones with neighbors, it is far more

effective in pruning infeasible patterns. The last two columns presents the actual

execution time of the two algorithms. MultiStep algorithm takes at most seconds to

get connected feasible patterns in all cases, while SingleStep algorithm sometimes

require thousands of seconds (e.g., 5-input 3-output cases of Rijndael and Sha).

Run time speedups of MultiStep algorithm over SingleStep is shown in Figure 4.7.

4.3.3 Comparison on All Feasible Pattern Enumeration

The third step of MultiStep algorithm generates all feasible disjoint MIMO pat-

terns. Meanwhile, for the SingleStep algorithm, the overhead of ensuring pattern
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Search Additional No. of Time Time
Benchmark IN OUT Space Combination Feasible SingleStep MultiStep

SingleStep MultiStep Patterns (sec) (sec)

Rijndael

3 1 412567 0 437 0.446 0.012
3 2 33014612 116666 3612 36.99 0.021
3 3 434738397 812455 3612 518.7 1.102
4 1 424929 0 675 0.754 0.015
4 2 44573604 169762 54203 54.85 0.486
4 3 1280116614 13599267 66785 1564 18.54
5 1 437287 0 714 0.475 0.018
5 2 49440953 176534 115434 56.75 0.722
5 3 2095522364 26956483 520993 2296 43.93

Blowfish

3 1 65226 0 177 0.063 0.003
3 2 430665 3354 522 0.547 0.009
3 3 751917 11634 522 2.297 0.018
4 1 70145 0 279 0.168 0.004
4 2 645364 4580 2577 0.769 0.018
4 3 1671412 44452 2937 5.534 0.062
5 1 71550 0 307 0.069 0.005
5 2 746739 4608 4728 1.662 0.027
5 3 2876509 73442 8428 7.498 0.126

Sha(unroll)

3 1 6391404 0 1222 11.41 0.047
3 2 94121024 79072 6172 217.6 0.331
3 3 365542922 515750 9796 1328 1.135
4 1 7836042 0 2343 13.93 0.121
4 2 152320527 116723 38728 331.5 0.704
4 3 866118119 3905462 78566 2616 6.359
5 1 8995689 0 3997 15.91 0.297
5 2 215044666 166911 82022 449.8 1.360
5 3 7577280675 7487850 280809 4312 15.44

Cjpeg

3 1 34715 0 166 0.020 0.001
3 2 2571515 39945 911 1.507 0.037
3 3 37250374 228304 960 22.53 0.192
4 1 37343 0 306 0.022 0.003
4 2 4234944 84718 13590 2.485 0.113
4 3 122703827 4771054 18180 73.35 4.662
5 1 39406 0 387 0.223 0.006
5 2 5571468 116771 37603 3.277 0.210
5 3 271219380 15162301 142348 161.4 17.68

MD5

3 1 996513 0 606 2.632 0.019
3 2 4489507 75841 1255 17.58 0.155
3 3 8210790 118955 1328 37.92 0.247
4 1 1124690 0 1200 3.186 0.028
4 2 7006628 110519 43106 27.36 0.354
4 3 13460076 6703984 46028 60.60 9.745
5 1 1194981 0 1613 4.030 0.041
5 2 9730310 134698 79737 34.27 0.543
5 3 21367000 9921718 119155 90.94 15.38

Table 4.3: Comparison of enumeration algorithms – disjoint patterns
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Figure 4.8: Run time speedup (MultiStep/SingleStep) for all feasible patterns.

connectivity in previous experiments is removed. However, its search space is also

increased because it works on the entire DFG instead of individual regions.

The results are shown with Table 4.3. The “Additional Combination Multi-

Step” is the total number of pattern pairs subject to various checks in the third

step of MultiStep algorithm. When output constraint is 1, no additional combina-

tion is required because the third step is not performed. Each valid node has at

least 1 output, hence a 1-output pattern must also be a connected one. The time

to produce all feasible patterns is compared in the last 2 columns. Due to reasons

discussed in Section 4.2.2, MultiStep is faster than SingleStep by orders of 10X to

1000X. Detailed speedup numbers are shown in Figure 4.8. The “No. of Feasible

Patterns” column is obtained by summing up the total number of connected pat-

terns and disjoint patterns. As can be seen, the number of all the feasible patterns

is far greater than that of connected ones in most cases. For example, the number

of patterns increases 179 times for Rijndael and 120 times for Sha in 5-input, 3-

output cases, respectively. The large number of feasible patterns renders optimal

custom instruction selection methods seemingly infeasible. Heuristics to filter out
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most insignificant subgraphs are then crucial to cut down the search space. For

example, Sun [77] removes patterns with priority values that do not meet a certain

percentage of the best discovered candidate so far. Note however, pruning unvalued

patterns after exhaustive enumeration is not the same as using heuristics for enu-

meration right from the beginning. Exhaustive enumeration provides a complete

set of patterns for reuse and scheduling possibilities, which cannot be provided by

current enumeration heuristics.

4.4 Summary

In this chapter, we have described a scalable algorithm that exhaustively enumer-

ates all feasible candidate patterns for custom instructions under architectural con-

straints. These patterns will be organized in a pattern library according to topology

isomorphism. Because all the feasible patterns are enumerated, all the isomorphic

patterns embedded inside the DFG can be exposed to the pattern selection process,

which is then able to explore better custom instruction reuse. The result is that

fewer custom instructions would be necessary to cover the application for optimized

performance.

Furthermore, the greatly reduced running time of the enumeration process pro-

vides opportunity to explore large DFGs, either from datapath intensive applications

or ones resulting from modern compiler transformations. It makes it possible to in-

tegrate optimal custom instruction selection into state-of-the-art ISEP tool chains

in the early stage of the design.

Finally, input/output and convexity constraints are the most general and mini-

mal constraints on the dataflow subgraphs for CFU implementation. The specialty
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of particular CFU architectures, if any, can further cut down the number of can-

didates for the later custom instruction selection phase. It can be applied in the

enumeration process to further cut down the search space, or directly on the com-

plete set of enumerated subgraphs to obtain the conforming ones.



Chapter 5

Custom Instruction Selection

Look beyond what you see. – Rafiki, in “Lion King 1/2”

The second subproblem of custom instruction identification is custom instruc-

tion selection. Only a subset of the enumerated candidate patterns (subgraphs)

will be selected for custom instructions due to resource constraints on custom in-

structions and custom functional units. Other constraints, such as schedulability

of the custom instruction, or that a base operation should be covered by at most

one custom instruction, also need to be satisfied in order to guarantee proper code

generation. In this chapter, we first define and formulate the custom instruction

selection problem using integer linear programming (ILP) formulation for the max-

imum performance. Based on our custom instruction identification methodology,

we carry out a systematic study to evaluate how different values of various typical

design constraints will impact the system performance. This study is set out to

provide a valuable reference for the design of general extensible processors.

87
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5.1 Custom Instruction Selection

Given the set of candidate subgraphs, we first identify the isomorphic subgraphs

and build the pattern library. A template pattern represents the group of isomor-

phic subgraphs that can be mapped to the same custom instruction or CFU; each

occurrence of the subgraph is an instance of the pattern. The execution frequen-

cies of subgraph instances are different and results in different performance gains.

The selection process attempts to cover each original instruction in the code with

zero/one custom instruction to maximize performance.

5.1.1 Optimal Custom Instruction Selection using ILP

Let us first define the variables. We have N custom instructions defined by C1 . . . Cn.

A custom instruction Ci can have ni different instances occurring in the program

denoted by ci.1 . . . ci.ni
. Each instance has execution frequency given by fi.j. Let Ri

be the area requirement of the custom instruction Ci and Pi be the performance

gain obtained by implementing Ci in hardware as opposed to software (given in

number of clock cycles). Finally, we define binary variables si.j which is equal to 1 if

custom instruction instance ci.j is selected and 0 otherwise. The objective function

maximizes the total performance gain using custom instructions:

max :
N∑

i=1

ni∑
j=1

(Pi × fi.j × si.j)

We optimize the objective function under the constraint that a primitive opera-

tion can be covered by at most one custom instruction instance. If custom instruc-

tion instances ci1.j1 . . . cik.jk
can cover a particular primitive operation, then

si1.j1 + . . .+ sik.jk
≤ 1
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Figure 5.1: Subgraph convexity. (a) A non-convex subgraph, (b) Two interdepen-
dent convex subgraphs, (c) The left subgraph turns non-convex after the right one is
reduced to a custom instruction; consequently the left subgraph cannot be selected.

In order to model the area constraint or the constraint on the total number of

custom instructions, we first define the variable Si. Si is the binary variable which

is equal to 1 if Ci is selected and 0 otherwise. Si is defined in terms of si.j.

Si = 1 if

ni∑
j=1

si.j > 0

= 0 otherwise

However, the above equation is not a linear one. We substitute it with the

following equivalent linear equations.

ni∑
j=1

si.j − U × Si ≤ 0

ni∑
j=1

si.j + 1− Si > 0

where U is a large constant greater than ni.

It is not sufficient to ensure the convexity of each individual subgraph. As shown

with Figure 5.1 (b) and (c), two non-overlapping convex subgraphs interdependent
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on each other cannot be both selected. For each pair of interdependent subgraphs

ci.j and ci′.j′ , then we have

si.j + si′.j′ ≤ 1

Or let ck.l, . . . , cm.n be the set of subgraphs non-overlapping and interdependent

with ci.j, we have

sk.l + . . .+ sm.n = 0 if si.j = 1

= don′t− care otherwise

We linearize it as

sk.l + . . .+ sm.n ≤ U × (1− si.j)

If R is the total area budget for all the CFUs, then

N∑
i=1

(Si ×Ri) ≤ R

Similarly, if M is the constraint on the total number of custom instructions, then

N∑
i=1

Si ≤M

5.1.2 Experiments on the Effects of Custom Instructions

We use the same set of benchmarks used in Chapter 4 as shown in Table 5.1. They

are compiled under SimpleScalar tool set using SimpleScalar ported gcc-2.7.2.3 with

-O3 optimization. The last column shows the number of valid operations within

each of these basic blocks that can be potentially accelerated by custom instructions.

The remaining operations, being invalid ones, account for roughly 20% of the total

operations.
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Benchmark
BB Number of
Size valid nodes

rijndael 894 647
blowfish 334 255

cjpeg 154 135
MD5 943 723

sha(unroll) 1468 1368

Table 5.1: Benchmark characteristics.

We consider only the connected patterns here. For each benchmark, all feasible

connected subgraphs satisfying given number of input/output operands constraints

are enumerated. Then we form the pattern library based on the isomorphism check

algorithm described in [43]. At last, we build the ILP formulation. ILP formula-

tions are solved using ILOG CPLEX (v9.1), which is the leading commercial linear

programming solver, to obtain the optimal custom instructions for these big basic

blocks.

We calculate hardware latency and area for each of the base operations in the

SimpleScalar ISA using Synopsys design tool with a popular cell library. The hard-

ware latency of a custom instruction is approximated as the summation of the hard-

ware latencies of the operations along the critical path of its dataflow graph, and the

area simply as the summation of the hardware area of the constituent operations.

Note that the approximations are actually pessimistic because combined logic can

be optimized for both latency and area. Execution cycles of a custom instruction

is computed by normalizing its latency (rounded up to an integer) against that of a

multiply-accumulate (MAC) operation, which we assume takes exactly one cycle.

To evaluate the effects of custom instructions on system performance, we cal-

culate the percentage of cycle reduction. We use a single-issue, in-order pipelined

architecture with 100% cache hit rate. As many of the recent embedded proces-

sors, such as ARM11 and PowerPc602, are in-order processors, this is an realistic
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Figure 5.2: Potential effect of custom instructions.

assumption. The Reduction is given as:

Reduction% =
Reduced cycles by custom instructions

Original execution cycles of the BB
∗ 100

In the first set of experiment, we investigate the performance potential of custom

instructions under different constraints on the number of input/output operands,

while no constraints on the number of custom instructions and area are imposed.

Figure 5.2 shows that, greater reduction can be achieved with more relaxed con-

straints on the number of operands, where more operations can be packed within

each individual custom instruction. Recall that around 80% operations in these basic

blocks are valid operations. In the extreme case, where all the valid operations are

covered by a single custom instruction which executes in 1 cycle, the limit of the re-

duction will be around 80%. However, this is not possible in practice. Even without

constraints on the number of input/output operands, subgraphs usually cannot grow

too large in the existence of invalid nodes. The growth could be blocked directly or

prevented due to the non-convexity introduced by invalid nodes. Besides, as custom

instructions cannot be interdependent on each other, not all valid operations could

be covered.
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Figure 5.3: Effect of custom instructions.

The numbers on top of each bar in Figure 5.2 show the numbers of custom

instructions (pattern templates) required to achieve the maximum cycle reductions.

As ILP formulation is single objective, while maximizing cycle reduction, it does not

minimize the values of its constraints. Without constraining the number of custom

instructions (or area), the ILP solver simply produces one feasible assignment of

variables that first reaches the optimal objective. Isomorphisms among the sub-

graphs are not fully exploited. Consequently, the numbers of custom instructions

required are quite large (e.g., 68 custom instructions for Cjpeg).

In practice, we do not need to exhaust every single cycle reduction at an un-

necessary cost level. Instead, we are often more interested in exploiting most of

the cycle reduction with minimum number of custom instructions, which we call

effective cycle reduction. To achieve this, we solve the ILP formulations multiple

times by trying different values on the number of custom instructions constraint,

until we find the minimum number that can obtain more than a certain percentage

of the maximum reduction (95% in our case). After that, we increase the number of

custom instructions one at a time, until the additional reduction obtained becomes

less than a certain variance (1% of the maximum reduction in our case). Figure 5.3

shows the results of effective reduction. In general, much less number of custom
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instructions are required to achieve more than 95% of the maximum reduction. For

example, 10 custom instructions instead of 68 yield more than 99% of the maximum

reduction for Cjpeg under 5-input 3-output operands constraint. In some cases, ef-

fective reductions are the same as the maximum reductions. The tightened number

of custom instructions constraint simply enforces the use of isomorphic subgraphs.

5.2 A Study on the Potential of Custom Instruc-

tions

Based on our custom instruction identification methodology, in this section, we in-

vestigate the potential of performance improvement using custom instructions under

relaxed design constraints. We vary the design constraints from very restricted to

very relaxed. This allows us to systematically study the effects of different de-

sign constraints and provides insights on the relative importance of these design

restrictions. These constraints, which come from architectural, cost, and compiler

limitations and affect the choice of custom instructions, are listed as follows:

• Number of Operands: The performance speedup of a custom instruction

typically increases with increasing number of operands. However, it may be

difficult to accommodate large number of operands in the standard format of

the base ISA. Moreover, the number of input and output ports to the register

file has to be proportional to the number of input and output operands required

by an instruction. The cost and energy consumption of a processor increase

significantly with increasing number of register file ports. These considerations

may impose limits on the maximum number of operands.

• Number of custom instructions: The instruction format of the base ISA

may limit the number of custom instructions that can be introduced. For
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example, if the base ISA implements 26 instructions using fixed length 5-bit

opcode, then it can accommodate six new instructions.

• Area: As cost is a major consideration for embedded systems, only a limited

amount to die area is expected to be available for the implementation of the

CFUs.

• Control Flow: Custom instruction identification is typically performed within

basic block boundaries. The assumption is that the compiler cannot exploit

instructions that cross basic block boundaries.

Among these constraints, we are particularly interested in the impact of relaxing

the control flow constraint. By identifying custom instructions across basic blocks,

their true performance potential under modern compiler techniques can be revealed.

Note that we do not consider run-time reconfiguration of CFUs in the study, as the

effect is similar to having no constraints on number of custom instructions and area.

Run-time reconfiguration can only be beneficial when performance improvement of

static configuration is well restricted by the above two constraints.

5.2.1 Crossing the Basic Block Boundaries

Most of the research in candidate pattern identification are based on analyzing the

basic blocks in isolation. The only exception to this is the work by Arnold and

Corporaal [6], which identifies patterns based on the dynamic execution trace of

the program. Dynamic execution trace is the record of the program’s complete run

time execution sequence. As we are interested in identifying the performance poten-

tial of customization, our identification process is also based on dynamic execution

trace. This way we can identify patterns and their frequencies across basic block

boundaries. Using execution trace we can group operations across branches in the
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Figure 5.4: Possible correlations of branches. (a) Left (right) side of the 1st branch
is always followed by the left (right) side of the 2nd one, (b) Left (right) side of the
1st branch is always followed by the right (left) side of the 2nd one.

execution sequence more accurately. This is because certain dynamic behavior can-

not be deduced from profiling of basic block execution counts. Figure 5.4 shows an

example control flow graph where correlation of biased branches cannot be correctly

inferred from only the execution counts. However, Arnold [6] constructs a huge

dataflow graph for the entire trace and builds patterns incrementally by traversing

this graph multiple times. This approach is computationally expensive, thereby lim-

ited to small patterns. Instead we base our study on a compact representation of

the dynamic execution trace called Whole Program Path (WPP) [48], which allows

identification of patterns within and across basic blocks in an efficient manner.

Whole Program Path (WPP)

Larus developed the notion of Whole Program Path (WPP) [48], which captures

the entire execution trace of a program. The storage overhead for the trace is

reduced drastically by employing on-line string compression techniques called SE-

QUITUR [60]. SEQUITUR algorithm represents a finite string σ (the control flow
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Figure 5.5: WPP for basic block sequence 0134601346013460134602356023567 with
execution count annotations.

trace in our case) as a context free grammar whose language is the singleton set {σ}.

The grammar is synthesized on-the-fly with time complexity linear in the length of

the input string. It works by appending symbols from the input string, in order, to

the end of the grammar’s start production. Upon each addition, SEQUITUR adjusts

the grammar to preserve the following two invariants. The first invariant is referred

to as the Diagram Uniqueness property, where a pair of consecutive symbols, called

a diagram, should occur at most once in the rules of the grammar. If adding a

symbol from the input string introduces a recurring diagram, its occurrences will

be replaced with the non-terminal symbol for a rule (possibly already constructed)

with the diagram as its right side. This first invariant constructs the rules and builds

the hierarchy to express the redundancy. The second invariant is referred to as the

Rule Utility property, where all non-terminal symbols of the grammar (except for

the start symbol) must be referred more than once by other rules; otherwise, a rule

will be eliminated. The reference count of a non-terminal symbol may reduce when

its occurrence is replaced by other non-terminal symbols on the higher hierarchy.

The second invariant eliminates the useless rules.

The execution trace of a program can be viewed as a string over an alphabet
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of basic blocks. The grammar produced by SEQUITUR can be represented as a

directed acyclic graph (DAG), called WPP. Figure 5.5 shows an example of WPP.

Each node of the WPP is annotated by the execution count of the sub-DAG rooted

at that node. The leaf nodes of the WPP are the basic blocks; an interior node

represents a sequence of basic blocks appearing in the execution trace. This example

illustrates how the correlations of the two branches in Figure 5.4(a) can be captured

in the WPP (by non-terminal symbols B and C).

During candidate pattern enumeration, we first start with the basic blocks and

identify subgraphs within the basic blocks. To identify subgraphs across basic block

boundaries, we look at frequently occurring interior nodes in the WPP and treat

the sequence of basic block corresponding to that node as the unit for pattern

identification process.

5.2.2 Experimental Setup

Table 5.2 shows the benchmark programs used in this study. All the benchmarks,

except for md5, are from MiBench [31]: a free, representative embedded benchmark

suite. We have selected benchmark programs from all the different categories such as

security, network, telecomm etc. We consider integer-intensive benchmarks here, as

including float-point operations in patterns seldom results in speedup. Table 5.2 also

shows the total number of basic blocks and hot basic blocks for each program. We

define hot basic blocks as the ones whose aggregate contribution exceed 95% of the

total execution time of the program. ISE identification methodology only explores

these hot basic blocks and basic block sequences involving them. Including patterns

from the rest of the basic blocks has negligible effect on performance improvement.

The average size of hot basic blocks varies from very small (2.6 instructions) to very

big (495.7 instructions).
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Benchmark Class Total Hot Avg. Hot
BB BB BB Size

rawcaudio Telecomm 68 22 2.6
rawdaudio Telecomm 66 18 2.6
fft Telecomm 129 24 6.8
sha Security 76 6 17.2
strsearch Office 148 4 6
qsort Automotive 30 26 4.9
bitcnts Automotive 79 13 12.4
basicmath Automotive 94 28 6
patricia Network 203 37 2.8
dijkstra Network 77 6 5
djpeg Consumer 317 96 6.8
rijndael Security 168 7 184.3
blowfish Security 81 13 30.3
sha(unroll) Security 68 3 495.7
cjpeg Consumer 3756 145 7.8
md5 Security 107 39 29.6

Table 5.2: Characteristics of benchmark programs

The execution traces of the programs are generated using Simplescalar tool

set [12] which is a cycle-accurate simulation platform for RISC-like processor archi-

tectures. The benchmarks are compiled by gcc version 2.7.2.3 with -O3 optimization.

We build the Whole Program Path (WPP) from the execution traces using a modi-

fied version of the Sequitur grammar [59]. DFGs for the hot basic blocks and paths

(internal nodes of WPP) are constructed to identify custom instructions within and

spanning across multiple basic blocks. Only connected candidate subgraphs are

enumerated. The ILP formulations for custom instruction selection are solved us-

ing ILOG CPLEX (v9.1). There are cases (a few ones for sha(unroll) and md5)

for which CPLEX cannot return their optimal cycle reductions within 2 hours on a

3Ghz Pentium4 Linux workstation. For these cases, we use the best cycle reductions

CPLEX have achieved with 2 hours running time, which are provable to be at most

5% less than the optimal ones.

Evaluation of latencies and area of custom instructions is the same as that

described in Section 5.1.2. Similarly, under the assumption of a single-issue, in-order
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pipelined architecture with 100% cache hit rate, the percentage of cycle reduction

is given as:

Reduction% =
Reduced cycles by custom instructions

Original execution cycles of the benchmark
∗ 100

5.2.3 Results and Analysis

We describe the findings of the limit study in this section. We first look at the reduc-

tion obtained by limiting the patterns to basic blocks. Later, we explore reduction

achievable with patterns that can cross basic block boundaries.

Operand Constraint

The restriction on number of operands either comes from inherent limitations of the

ISA or the register file design decisions of the base processor. However, sometimes

this is an artificial restriction imposed by the tool that automatically selects the

extensions in order to prune the deign space [67, 30]. The most popular choices are

(1) 2-input, 1-output patterns and (2) multiple-input single-output (MISO) patterns.

We investigate how these choices affect the cycle reduction due to extended ISA.

First, we restrict the patterns to 2-input, 1-output without imposing any other

constraint. The results indicate that for most benchmarks, it is extremely difficult

to find any such pattern. Even for benchmarks for which such patterns exist, the

reduction is insignificant (maximum is around 3.1% for dijkstra). However, we

observe that as memory operations are not allowed within a pattern, we cannot

exploit 2-input, 1-output structures like x = a[i].

Figure 5.6 shows the reduction with MISO and MIMO (multiple-input, multiple-

output) instructions. While we put very relaxed constraints on the number of inputs



CHAPTER 5. CUSTOM INSTRUCTION SELECTION 101

50%

60%
MISO
MIMO(2-out)

20%

30%

40%

50%

R
ed

uc
tio

n

MIMO(2 out)
MIMO(3-out)

0%

10%

ra
w

ca
ud

io

ra
w

da
ud

io fft

sh
a

st
rs

ea
rc

h

qs
or

t

bi
tc

nt
s

ba
si

cm
at

h

pa
tri

ci
a

di
jk

st
ra

dj
pe

g

rij
nd

ae
l

bl
ow

fis
h

cj
pe

g

M
D

5

sh
a(

un
ro

ll)

40%

50%

60%

n

rawcaudio
rawdaudio
fft
sha
strsearch
qsort
bitcnts
basicmath

t i i

0%

10%

20%

30%

R
ed

uc
tio

patricia
dijkstra
djpeg
rijndael
blowfish
cjpeg
md5
sha(unroll)

-10%
2 3 4 5 6 inf

Number of Input

60%
rawcaudio
rawdaudio

20%

30%

40%

50%

R
ed

uc
tio

n

rawdaudio
fft
sha
strsearch
qsort
bitcnts
basicmath
patricia
dijkstra
djpeg
rijndael
blowfish
cjpeg

-10%

0%

10%

2 3 4 5 6 inf

R

Number of Input

jp g
md5
sha(unroll)

Figure 5.6: Comparison of MISO and MIMO.

(10-inputs for the last 5 benchmarks, and infinite for the rest), we study the per-

formance impact of number of outputs by varying it from one to three. For all the

benchmarks, identifying custom instructions beyond three outputs results in little

or no further reduction. Thereby, the reduction for 3-output MIMO instructions can

almost represent the theoretical limit of the reduction obtainable when the patterns

are restricted to basic blocks. Except for strsearch, which has little reduction with

MISO instructions, in average, MIMO achieves 48.9% more cycle reduction than

that by MISO1. We also observe that the majority of the benchmarks achieve the

theoretical reduction with only 2 output operands.

As the number of output operands can be easily restricted to two, we vary the

number of input operands while the number of output operands is set to one or two

(see Figure 5.7) with no other restrictions. As we can see from the figure, 4-input

operands seem most effective to achieve reasonable reductions. We conclude that

even though 2-input, 1-output is quite a restrictive option, 4-input, 2-output can

achieve the marjority of the reductions.

1The number is relative to the reduction of MISO instructions. For example, for cjpeg from
15.1% (MISO) to 23.1% (MIMO 3-out), MIMO achieves 53.1% more reduction than that of MISO.
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Figure 5.7: Effect of Number of Input Operands.

Area constraint

Given the cost conscious nature of embedded systems, a strict chip-area budget

might be imposed for implementation of the custom functional units (CFU). Fig-

ure 5.8 shows the reduction with varying area budget (under very relaxed restriction

on number of input/output operands). The x-axis shows the resource budget in

terms of number of 32-bit fast carry look-ahead adders [40]. For most benchmarks,

the resource requirement is very small — the area required to implement roughly

24 adders. The only exception are djpeg and cjpeg which require area equivalent

to around 200 adders for optimal reduction. In general, resource does not seem to

be an issue for embedded benchmarks.
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Figure 5.9: Effect of constraint on total number of custom instructions.

Total instructions constraint

Some extensible processors impose a limit on the total number of custom instruc-

tions that can be added. To illustrate this concern in the study, we vary the total

number of custom instruction constraint from 1 to 5 for each benchmark. As shown

in Figure 5.9, many benchmarks achieve maximum reduction under 5 instruction

constraint, while the others achieve the majority. Five instruction constraint may

not be good for some programs like djpeg and cjpeg whose datapaths vary a lot,

but effective enough for most others to exploit most of the benefits from custom
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instructions.

Control flow constraint

A common restriction imposed by most of the design automation tools is that the

patterns should be limited to basic blocks. The rationale being that it is hard

for the compiler to exploit patterns that span multiple basic blocks. We study

the performance potential that can be achieved by relaxing this constraint. Note

that as the kernel computation is already included in a few large basic blocks for

rijndael, blowfish, md5 and sha(unroll), there will be little difference exploiting

opportunities across basic blocks. Therefore, we omit these benchmarks in the

comparison here. Also, we must note that as we are using whole program path

to find hot paths consisting of multiple basic blocks, there is no artificial limit on

the number of basic blocks in a path. However, the experiments indicated that for

all the benchmarks opportunities exist only among 2–3 consecutive basic blocks.

The dataflow dependence is quite local and attempting to find patterns across more

basic blocks is not fruitful. However, patterns across 2–3 basic blocks can sometimes

achieve impressive improvement.
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Figure 5.10 shows the effect of relaxing the control flow constraints for both

MISO and MIMO (no area constraint). In general, without the restriction of a

single output operand, MIMO patterns are more flexible, thus can exploit more

opportunities for performance improvement across basic block boundaries. Some

benchmarks (e.g., dijkstra) do not get any improvement by allowing patterns to

cross basic block boundaries. However, for others the relative improvement (relative

to the reduction of MISO and MIMO within basic blocks) ranges from a modest 5%

to as much as 95%.
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Figure 5.11: Reduction across basic blocks under varying area budgets.

50%

60%
sha (within BB)
sha (across BB)

20%

30%

40%

50%

R
ed

uc
tio

n

( )
fft (within BB)
fft (across BB)

0%

10%

20%

4 8 12 16 20 24 28 32 36 40 inf
Resource (# of 32-bit adder)

40%

50%

60%

n

rawcaudio
rawdaudio
fft
sha
stringsearch
qsort
bitcnts
basicmath

10%

20%

30%

R
ed

uc
tio

n patricia
dijkstra
djpeg

0%
2 3 4 5 6 inf

No. of Input

Figure 5.12: Effect of number of input operands under 3 outputs across basic blocks.

One question that may naturally arise is whether the resource consumption
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increases significantly as we cross basic block boundaries. Figure 5.11 shows the

results for two selected benchmarks. In general, under very tight resource budget,

it does not help much to find patterns spanning basic blocks. In general, the total

area budget requirement does not increase much using patterns across basic blocks.

For the similar question about the effect of number of operands, Figure 5.10 shows

that most benchmarks can achieve maximum reduction with 3 outputs. Under the

restriction of 3 outputs, we show in figure 5.12 that usually 4 to 5 inputs will suffice

to obtain near maximum performance.
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Figure 5.13: Contributions of cycle count reduction due to custom instructions across
loop or if branches.

Finally, we look at how compilers can exploit these patterns across basic blocks.

A pattern spans basic blocks with either a loop branch or a conditional non-loop

branch in between. The first case can be exploited through loop unrolling. For

the second case, custom instructions can be identified within modern scheduling

structures of groups of basic blocks such as traces, superblocks and hyperblocks.

Then, the compiler can combine the corresponding instructions from the basic blocks

in question and add fix-up code for the situation where the branch is taken in the

other direction. It can also use predicated execution if available. These techniques

have been further elaborated in Section 2.2.2. Figure 5.13 shows how much these

two cases contribute to the cycle reduction across basic blocks.
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5.3 Summary

Custom instruction selection based on ILP formulation can make good use of isomor-

phic subgraphs which are exposed by exhaustive candidate enumeration. Due to this

benefit, a small set of custom instructions can be selected to cover the application

effectively to achieve near to theoretical performance improvement.

We have also studied the performance potential of extensible processors for a

broad range of embedded applications. Using a compressed execution trace based

methodology, we are able to investigate improvement for the ISE even under ex-

tremely relaxed conditions. The summary of our major findings are:

1. Relaxing control flow constraints can achieve 5–95% relative improvement for

the selected set of benchmarks without major impact on total resource re-

quirement. Most of this improvement can be realized with existing compiler

techniques such as predication and loop unrolling.

2. One can put a reasonable limit on resource and number of custom instructions

without affecting speedup.

3. Restrictions on number of operands (such as allowing only MISO or 2-input,

1-output patterns) can significantly limit the performance. However, 5-input,

3-output patterns achieve close to maximal cycle reduction.



Chapter 6

Improving WCET with Custom

Instructions

The man who invented the first wheel was an idiot. The man who

invented the other three, he was a genius. – Sid Caesar

A large portion of embedded systems are real-time systems. In a real-time

system, a task must meet its deadline for the system to operate properly or handle

critical missions responsively. In order to satisfy real-time constraints (deadlines),

the worst-case execution time (WCET) of a task should be reduced as opposed

to its average-case execution time. However, normal custom instruction selection

techniques based on profiling information aim to improve the average-case execution

time; these techniques may not reduce a task’s WCET. In this chapter, we explore

a novel application of instruction-set extensions to meet tight timing constraints in

real-time embedded systems.

108
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float expint(int n, float x)
{

…
if(x > 1.0) { //Lentz’s algorithm

…
for(i=1; i<=MAXIT; i++) {

a = -i*(nm1+i);
…

}
} else { //Evaluate series

ans = … -log(x)-EULER;
for(i=1; i<=MAXIT; i++) {

…
if( fabs(del)<fabs(ans)*EPS )
…

}
}
return ans;

}

SUBUADDU

MULT

(a)

(b)

(c)

ABS.D

CMP.D

ABS.D

MUL.D

Figure 6.1: An motivating example.

6.1 Motivation

In a real-time system, the input to a scheduler is a set of tasks with their corre-

sponding execution time, period, and deadlines. If there does not exist any feasible

schedule that meets all the deadlines, then the designer is left with two choices. The

first option is to raise the processor’s clock frequency (at the cost of increased power

consumption) or choose a different higher performance processor. Unfortunately, it

may not always be possible to increase the clock frequency further or change the

processor. The second option is to optimize the code so as to reduce the execution

time. Again, the current code may have already been fully optimized. For these

scenarios, one can use custom instructions to reduce the execution time such that

the system can meet hard real-time constraints. The availability of commercially

available processor cores with programmable logic for CFUs [4, 75] makes this quite

a cost-effective solution.

However, the goal of normal custom instruction selection problem is to reduce

the average case execution time (ACET) of the application. These techniques rely

on the execution frequencies of the code fragments through profiling. For real-time
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tasks, on the other hand, custom instructions should reduce the worst case execution

time (WCET). The WCET of a task is defined as its maximum execution time for all

possible inputs. Let us illustrate the difference with an example. Figure 6.1 shows

a code fragment that computes the value of the exponential integral. There are two

candidate patterns — one from each side of a conditional branch. Let us assume

that we can implement only one custom instruction. For reducing the ACET, the

pattern selection will depend on the frequency of execution of these two patterns.

However, this selection may not be beneficial for WCET reduction as the frequently

executed pattern may not contribute to the worst-case execution path. For example,

if the else part of the conditional branch contributes towards the worst case path,

then the pattern on the else part should be selected for WCET reduction.

Moreover, it is not sufficient to use the execution frequencies corresponding to

the WCET path and then employ the traditional custom instruction selection tech-

niques. The WCET path may not remain the same throughout the selection process.

Once we have selected some custom instructions to reduce the current WCET path,

a new path may become the WCET path. Therefore, custom instruction selection

problem for WCET reduction is more challenging compared to ACET reduction.

6.1.1 Related Work to Improve WCET

Compiler techniques to reduce the WCET of a program have started to receive

attention only very recently. Reduction of WCET in [53] is achieved through dual

instruction set ARM processor. Based on WCET path analysis, they consider apply-

ing the full length (32-bit) ARM instruction on the WCET path for faster execution,

whilst the reduced Thumb instruction set on the remaining code to save space and

energy. In [84], the influence of WCET upon different orders of compiler optimiza-

tion techniques is studied through a genetic algorithm approach. [85] presents a code
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positioning method by trying to place basic blocks on WCET paths in continuous

position so as to avoid branch taken penalties on embedded processors. [83] reduces

WCET by applying superblock formation guided by WCET paths. Suhendra et al.

[76] minimizes the WCET by using scratch pad memory, which provides fast access

to data objects that are statically allocated to it hence with fully predictable timing.

Most of these works improve the current WCET path iteratively. They may miss

the global optima as closely competing paths are not considered simultaneously.

Here, we explore the possibility of using instruction-set extensions to improve

the WCET of real-time applications. We propose an ILP formulation for the optimal

solution, followed by heuristics with a more global perspective that selects a pattern

to reduce the WCET across all the paths.

6.2 Problem Formulation

Given an application, all possible feasible computation patterns are identified us-

ing techniques proposed in Chapter 4. Let us assume that we have identified N

candidate pattern templates in a program defined by C1 . . . CN . A template Ci can

have ni different instances occurring in the program denoted by ci.1 . . . ci.ni
. Let Pi

be the performance gain obtained by implementing Ci in hardware as opposed to

software. Ri is the amount of area required to implement the CFU corresponding

to Ci. Suppose we have a constraint on the total number of custom instructions

that can be implemented in the architecture, say M (M < N). Then our goal is

to cover each original instruction in the code with zero/one instances of at most M

custom instructions, such that the WCET of the task is minimized. Similarly, we

may have a constraint that the total amount of area required by the selected custom

instructions should not exceed R.
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A: seq

B: if

C: loop

9

1

2 3 F: loop

5 G: if

7
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6

D: seq

4 E: func log

log(x)

if(x>1.0)1

for loop2

loop body3 for loop5

…7

…8

if(abs…)6

return ans9

T F

T
F

4 …

(a)  CFG (b)  Syntax tree

Figure 6.2: CFG and syntax tree corresponding to the code in Figure 6.1

As we need to improve the WCET, the problem formulation is intrinsically

related to the method used for WCET estimation. We use the Timing Schema

approach to estimate the WCET of a task in this work.

6.2.1 WCET Analysis using Timing Schema

Timing schema is an efficient technique to estimate the WCET of a structured pro-

gram [63]. The structure of the program is represented as a hierarchical syntax

tree with basic blocks as leaf nodes and control structures (i.e., sequences, branches,

and loops) as interior nodes. The entire program is represented at the root of the

syntax tree. Figure 6.2 shows the control flow graph1 and syntax tree corresponding

to the code in Figure 6.1. An interior node corresponding to a conditional branch

(e.g., nodes B and G in Figure 6.2(b)) has at most three children. The first child

is the basic block containing the branch condition. The second and the third chil-

dren represent the code fragments corresponding to taken and non-taken branches

respectively. Loop construct (e.g., nodes C and F) is essentially a sequence node

1We build CFG for optimized assembly code. The figure uses source code for illustration purpose
only.
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except for the first child as the loop entry basic block. Function calls are represented

by leaf nodes (e.g., node E). A separate syntax tree is constructed for each function.

The entire program is represented as a syntax forest.

WCET of a program is estimated by traversing its hierarchical syntax tree in

a bottom-up fashion. First, the execution times of the leaf nodes, i.e., basic blocks

are obtained (e.g., by counting the number of execution cycles for each basic block).

For each interior node V of the syntax tree, this method computes wcet(V ) that

represents the WCET of the code fragment corresponding to V as a function of the

WCETs of its children. These functions are defined by a simple timing schema as

follows:

Basic block: wcet(V ) = constant

Sequence: wcet(V 1;V 2) = wcet(V 1) + wcet(V 2)

Branch: wcet(if V 1 then V 2 else V 3) =

wcet(V 1) + max(wcet(V 2), wcet(V 3))

Loop: wcet(for V 1 loop V 2) =

(n+ 1)× wcet(V 1) + n× wcet(V 2)

where the loop iterates at most n times. The WCET of a function is computed at

the root node of its syntax tree. The WCET of a program is computed at the root

node of its main function. There are other sophisticated schemas [64] for capturing

infeasible paths, unstructured programs as well as timing effects due to cache and

pipeline. However, this simple timing schema suffices to illustrate the concept.

6.3 Optimal Solution Using ILP

We formulate the selection of optimal instruction-set extensions for minimizing the

WCET as an Integer Linear Programming (ILP) problem. The objective function
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minimizes the WCET of the root node of the main function:

minimize : wcetmain

The first part of the ILP formulation defines wcetmain in terms of the WCET of the

basic blocks by using timing schema. The rules of the timing schema can be easily

mapped to a set of linear equations. The second part defines the WCET of the basic

blocks in the presence of custom instructions.

wcetmain depends on the WCET of its children as discussed in Section 6.2.1. Let

V be a non-leaf node in the syntax tree and let V1 . . . Vk be its children. If V is

a sequence node, then following timing schema, we have wcetV =
∑k

i=1wcetVi
. If

V is a conditional branch, then it has at most three children corresponding to the

condition (V1), taken (V2), and non-taken (V3, if any) paths, respectively. Then,

wcetV ≥ wcetV1 + wcetV2

wcetV ≥ wcetV1 + wcetV3

If V is a loop node with loop bound n and two children corresponding to the con-

dition (V 1) and the loop body (V 2), then,

wcetV = (n+ 1)× wcetV1 + n× wcetV2

If node V represents a call to a function func, then

wcetV = wcetfunc

Now, we define the WCET of the leaf nodes (basic blocks) in the presence of

custom instructions. WCET of a basic block depends on the selection of the custom
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instructions and their instances. The variables and their relations are defined much

the same way as those described in Section 5.1.1 in our limit study. Let us define

binary variables si.j (1 ≤ i ≤ N ; 1 ≤ j ≤ ni) corresponding to each of the custom

instruction instances. si,j is equal to 1 if custom instruction instance ci.j is selected

and 0 otherwise. Similarly, we define binary variable Si (1 ≤ i ≤ N) to be equal to

1 if custom instruction template Ci is selected and 0 otherwise. That is,

Si = 1 if

ni∑
j=1

si.j > 0

= 0 otherwise

Let TV be the original execution time of a basic block V without any custom

instruction. Let ca.b . . . ce.f be the custom instruction instances that can possibly

cover instructions of basic block V . Then,

wcetV = TV − (Pa × sa.b + . . .+ Pe × se.f )

Now, similar to Section 5.1.1, we express the various constraints for this opti-

mization problem. First, a base instruction in the program can be covered by at

most one custom instruction instance. If cx.y . . . cw.z cover a base instruction, then

sx.y + . . . + sw.z ≤ 1. Second, to ensure the schedulability of selected instances, for

each pair of interdependent si.j and si′.j′ , we have si.j + si′.j′ ≤ 1. Furthermore, if

M is the constraint on the maximum number of custom instructions allowed, then∑N
i=1 Si ≤ M . Similarly, if R is the total area budget for implementing all custom

instructions, then
∑N

i=1 Si ×Ri ≤ R.
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Algorithm 5: Custom Instruction Selection Heuristic.

Input: P , M : all patterns, number of custom instructions allowed
Output: pat, ins: selected patterns, instances
m := 0; pat := φ; ins := φ;1

while m < M do2

∀p ∈ P compute profit(p);3

Let p ∈ P be the pattern with max profit;4

if profit(p) = 0 then return pat;5

add p to pat;6

remove p from P ;7

add selected instances of p to ins;8

remove all the instances of p, and instances overlapping or9

interdependent with selected instances of p from further consideration;
m := m+ 1; wcet := wcet− profit(p);10

6.4 Heuristic Algorithm

We first describe a greedy heuristic algorithm. Subsequently we improve the heuris-

tic to take care of its limitations.

Algorithm 5 shows the heuristic for selecting custom instructions to improve the

WCET of the program. We iteratively select the pattern that reduces the WCET

most (defined by the profit function). The profit of a pattern is defined as the

reduction in the program’s WCET if the pattern is chosen as custom instruction.

Computing the profit for a pattern p requires first counting the execution cycle

reductions of the basic blocks caused by instances of p and then merging these values

in a bottom-up fashion on the syntax tree according to timing schema rules till we get

the WCET reduction at the root node of main. In case two patterns have the same

profit value, the one with greater ACET reduction2 will be selected. Detailed profit

computation is described later in Section 6.4.1. The algorithm terminates when

either the maximum number of custom instructions allowed in the architecture is

reached (M in Algorithm 5) or no further reduction is possible (line 5).

2ACET reduction is calculated by simply accumulating the production of the reduction cycles
for a pattern instance and its frequency. This dose not require the presence of the syntax tree.
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Notice that the selection of a pattern does not imply selection of all its instances

(line 8). This is because (1) two or more instances of the selected pattern may

overlap among themselves, (2) an instance of the currently selected pattern may

overlap with an instance of a previously selected pattern, and (3) the instance may

be interdependent with a previously selected instance. For the first case, selecting

an optimal non-overlapping subset of the instances is by itself a complex assignment

problem. Here, we select the instances greedily according to the order in which they

appear inside the basic block. An instance will not be selected if it conflicts with

a previously selected instance. The second and third case will not actually happen,

because after the selection of a previously selected pattern instance, all the other

instances that overlap or interdependent with it would have already been removed

in line 9. For a pattern instance, the list of instances overlapping or interdependent

with it can be computed off-line before pattern selection. Note that the first case

needs to be counted when computing the profits of the patterns.

If we have a constraint on total area instead of number of instructions, then we

choose the pattern with the best profit/area ratio (line 4) until we cannot fit any

pattern within the remaining area.

6.4.1 Computing Profits for Patterns

The algorithm needs to re-compute profits for all the unselected patterns at each

iteration. This is because of two reasons. First, the selection of a pattern may

shift the current WCET path and hence the profit values of all the patterns change.

Recall that the profit of a pattern is defined as the reduction in the program’s

WCET if the pattern is chosen as custom instruction. Second, a selected pattern

eliminates certain other overlapping pattern instances from further consideration.

For example, selection of the pattern C1 in Figure 6.4 implies that the instances of
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Figure 6.3: Efficient computation of profit function.

C2, C3 cannot be selected in the future. The eliminated pattern instances cannot

contribute towards reducing the execution time and hence the profit values of the

corresponding patterns should be re-computed. A naive computation of the profits

requires a bottom-up traversal of the entire syntax tree for each pattern. We avoid

this costly computation based on the following optimizations.

1. We can compute profits for all the patterns through a single traversal of the

syntax tree.

2. As all the instances of a pattern are typically localized in the program, selection

of a pattern requires update of only a small portion of the syntax tree.

During the initialization phase, we compute profit values for all the patterns through

a single bottom-up traversal of the syntax tree. We also annotate each node of

the syntax tree with (1) the profit values for all the patterns appearing in the

corresponding code fragment and (2) the WCET of that code fragment. We first

compute the profit values at the leaf nodes (basic block). The computation of profits

at an interior node applies rules similar to timing schema for WCET computation

except for the branch nodes. Let V be a branch node with C, T, F as the children

corresponding to conditional, taken and non-taken paths, respectively. Then profit
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of a pattern p at the branch node V is defined as

profit(p, V ) = wcet(V )− (wcet(C)− profit(p, C))−

max (wcet(T )− profit(p, T ), wcet(F )− profit(p, F ))

The root node is annotated with all the patterns in the program. As the instances

of a pattern are typically localized, number of patterns is quite small for most of the

interior nodes, as shown in Figure 6.3.

Once a pattern is chosen at an iteration, we focus to the leaf nodes (basic blocks)

in which its selected instances appear. In these leaf nodes, we re-compute the profits

for all the unselected patterns which have instances eliminated due to overlapping

or interdependence with the current selected instances. Changes in a leaf node are

propagated towards the root of the syntax tree. At a interior node, the profit values

of all the patterns annotated on it will be reevaluated. The only nodes that need

to be updated in this phase are the nodes that lie on the path from the root to a

modified leaf node. The shaded nodes in Figure 6.3 gives an example of updates

after the selection of pattern p3.

With this optimization, the complexity of the algorithm is bounded by O(M ×

|P | × D × A), where M is the number of patterns to be selected from a library of

|P | patterns, D is the height of the syntax tree and A is the maximum number of

instances of a pattern.

6.4.2 Improving the Heuristic

The greedy heuristic presented in the previous subsection runs pretty fast. Unfor-

tunately, it makes inferior choices in the presence of subsumed patterns. We define

p as a subsumed pattern of q if there exists at least one instance of pattern p that is
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Figure 6.4: Limitation of the heuristic.

fully covered by an instance of q. We call q the subsuming pattern. As the greedy

heuristic chooses the pattern with the maximum profit at each iteration, it typically

favors subsumed patterns. However, this choice may not be globally optimal as the

selection of a subsumed pattern eliminates some of the subsuming pattern instances

from further consideration. For example, in Figure 6.4, suppose the performance

gain of custom instructions C1, C2 and C3 are 1, 2 and 2 cycles, respectively. Also,

all the instances contribute towards the reduction of WCET. The greedy heuristic

will choose C1 and all its instances leading to a total profit of 3 cycles. However,

the optimal solution in this case is one instance of C1, C2, and C3 each for a total

profit of 5 cycles.

We take care of this problem in the improved heuristic shown in Algorithm 6

as follows. Essentially, while the basic heuristic covers the application code with

patterns strictly according to the order of their profit values, the improved heuristic

explores the possibility of reorders in existence of graph subsuming relations. Instead

of simply selecting the pattern with the maximum profit (pattern p in Algorithm 6)

and eliminating all the subsuming patterns’ instances from further consideration, we

also make an alternative choice by selecting a subsuming pattern with the maximum

profit (pattern q). The search then proceeds corresponding to these two choices sep-

arately (lines 6 and 12, respectively). The inputs to the recursive selectPatterns
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Algorithm 6: Improved Custom Instruction Selection Heuristic

selectPatterns(in)
Input: in: partial selection of patterns, instances, and corresponding wcet
Output: complete selection of patterns, instances, and corresponding wcet

if in.m = M then return in;1

Let p ∈ (P − in.pat) be the pattern with max profit;2

if profit(p) = 0 then return in;3

Let ins(p) be the selected instances of pattern p;4

tmp.m := m+ 1; tmp.wcet := in.wcet− profit(p); tmp.pat := in.pat ∪ p;5

tmp.ins := in.ins ∪ ins(p);
choice1 := selectPatterns (tmp);6

if subsuming(p)− in.pat = φ then return choice1;7

Let q ∈ subsuming(p)− in.pat be the pattern with max profit;8

if profit(q) = 0 then return choice1;9

Let ins(q) be the selected instances of pattern q;10

tmp.m := m+ 1; tmp.wcet := in.wcet− profit(q); tmp.pat := in.pat ∪ q;11

tmp.ins := in.ins ∪ ins(q);
choice2 := selectPatterns (tmp);12

if choice1.wcet ≤ choice2.wcet then return choice1;13

else return choice2;

function are the patterns and instances selected so far and the corresponding WCET.

The function returns with the complete selection of up to M patterns. Finally, the

WCET corresponding to the two choices are compared (line 13) and the better one

is selected.

There are two more things to be noted. First, for the recursive selectPatterns

at line 6 (or line 12), because it assumes pattern p (or q) is selected, instances of

other patterns that are overlapping or interdependent with instances of p (or q)

should be excluded. Second, instead of exploring any subsuming case with possibly

little profit, we can impose a threshold, such as a certain percentage of p’s profit,

to the profit of the subsuming subgraph q. Only when q’s profit is greater than

the threshold, the other choice will be explored. This helps to constrain the run

time explosion at some cost of optima, depending on the threshold. However, in our

experiments, we do not impose such a threshold, since all test cases returns quickly

with the improved heuristic. The results show that this simple modification reduces
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Program Source WCET cycles

adpcm† SNU suite 3,365,394
blowfish Mibench 4,847,327
compress† Gothenburg 56,428
crc† SNU suite 42,227
djpeg MediaBench 13,447,397
gsmdec MediaBench 28,163,930
g721dec MediaBench 28,420,193
ndes† FSU suite 47,897
rijndael Mibench 1,835,219
sha Mibench 356,061

Table 6.1: Benchmark Characteristics.

the WCET by an additional 2%–23% for our benchmarks.

6.5 Experimental Evaluation

We select a set of benchmark programs from MediaBench [50], MiBench [31] and

WCET-specific application suite [74] (marked by †). Table 6.1 shows the char-

acteristics of these benchmark programs. We use SimpleScalar tool set [12] for the

experiments. The programs are compiled using gcc 2.7.2.3 targeted for SimpleScalar

with -O3 optimization. Again, we assume a single-issue in-order base processor core

with perfect cache and branch prediction. We have developed a prototype analysis

tool based on timing schema to compute the WCET of a program. We assume that

loop bounds are provided through manual annotation. Experiments for run time of

algorithms time are performed on a Pentium4 1.7Ghz platform with 1GB memory.

Given a binary executable of an application, we first exhaustively enumerate all

possible connected patterns and their instances under certain pre-defined constraints

on the maximum number of input and output operands. The latency and area

values of the instructions are estimated using the same way as in the limit study

(see Section 5.2.2). We do not include floating-point operations, memory accesses,
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and conditional branches in custom instructions as they introduce non-deterministic

behavior.

We use ILOG CPLEX (v9.1) to obtain the optimal solutions for the ILP for-

mulations. lp solve, a popular public domain linear programming solver, fails to

terminate within reasonable time for most problem. We compute WCET reduction

as follows:

Reduction =
Original WCET −Reduced WCET

Original WCET
× 100%

We perform the custom instruction selection under a variety of scenarios in or-

der to stress our heuristic algorithm. The number of patterns and instances has

direct impact on the time required to solve the optimization problem. We control

the number of patterns generated for a benchmark by imposing different constraints

on the number of input and output operands allowed for a pattern. First, we con-

sider a constrained topology that allows at most 2 register inputs, 1 immediate input

and 1 register output for each custom instruction. This is realistic for most mod-

ern processors without major impact on their ISA format and micro-architecture.

Second, we consider a more aggressive relaxed topology that allows at most 4 inputs

(either register or immediate value) and 2 outputs. The relaxed topology results in

significantly more number of patterns and instances compared to the constrained

topology.

Table 6.2 and Table 6.3 show the WCET reduction if we can implement at

most 5 custom instructions under constrained and relaxed topology, respectively.

We confirm that custom instructions can indeed reduce the WCET of a program

significantly and make it easier for a real-time task to meet its deadline. Even with

constrained topology and a limit of only 5 custom instructions, we can still achieve

up to 22% reduction in worst case execution time. Allowing relaxed topology obtains
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Program No. No. WCET Red. Run Time (s)
Pat. Inst. Heur Opt. Heur Opt.

adpcm 51 150 9% 9% 0.002 0.02
blowfish 15 276 16% 16% 0.002 0.02
compress 37 92 2% 2% 0.002 0.01
crc 12 23 15% 15% 0.001 0.01
djpeg 64 485 7% 7% 0.017 0.12
gsmdec 158 2312 21% 22% 0.031 0.10
g721dec 73 180 4% 4% 0.006 0.03
ndes 22 77 10% 10% 0.002 0.12
rijndael 49 2520 16% 16% 0.034 1.25
sha 9 40 12% 12% 0.001 0.01

Table 6.2: WCET Reduction under 5 custom instruction constraint with constrained
topology.

Program No. No. WCET Red. Run Time (s)
Pat. Inst. Heur Opt. Heur Opt.

adpcm 101 258 14% 14% 0.005 0.04
blowfish 56 1221 39% 39% 0.012 11.1
compress 141 248 6% 6% 0.003 0.02
crc 24 39 17% 17% 0.001 0.01
djpeg 226 1056 11% 11% 0.028 0.30
gsmdec 796 6782 26% 26% 0.064 0.28
g721dec 220 392 11% 11% 0.010 0.05
ndes 77 182 17% 18% 0.003 0.03
rijndael 156 9032 39% 39% 0.096 943
sha 47 148 31% 31% 0.002 0.04

Table 6.3: WCET Reduction under 5 custom instruction constraint with relaxed
topology.

further reduction of WCET.

We also note that our improved heuristic (Heur in the Tables) obtains close to

the optimal results at a fraction of the ILP (Opt.) solving time. A comparison of the

Time column in Table 6.2 and Table 6.3 shows that the heuristic is quite scalable

as we increase the problem size; but ILP is not. For example, ILP solution time

increases from 1.25 sec to 943 seconds for the rijndael benchmark as we increase the

number of patterns. In fact, with even more relaxed topology constraint, there are a

few cases that CPLEX ILP solver cannot solve even after 24 hours. The heuristics
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Program WCET Red. Time (s)
Heur Opt. Heur Opt.

adpcm 12% 12% 0.02 0.05
blowfish 41% 42% 0.05 2.70
compress 7% 7% 0.02 0.02
crc 20% 20% 0.01 0.01
djpeg 13% 13% 0.10 8.10
gsmdec 25% 26% 0.25 2.60
g721dec 12% 12% 0.03 0.18
ndes 18% 19% 0.02 0.30
rijndael 40% 40% 0.48 295
sha 37% 37% 0.03 0.02

Table 6.4: WCET Reduction under resource constraint of 20 32-bit full adders with
relaxed topology.

Program WCET Red. Time (s)
Heur Opt. Heur Opt.

adpcm 16% 16% 0.02 0.04
blowfish 42% 42% 0.04 2.11
compress 7% 7% 0.01 0.01
crc 20% 20% 0.01 0.01
djpeg 13% 13% 0.12 0.38
gsmdec 28% 28% 0.32 0.39
g721dec 13% 13% 0.08 0.15
ndes 19% 20% 0.01 0.03
rijndael 40% 40% 0.11 120
sha 37% 37% 0.01 0.04

Table 6.5: WCET Reduction under 10 custom instruction constraint with relaxed
topology.

only takes a few seconds and the result produced is better than the intermediate

result returned by CPLEX after 24 hours.

Table 6.4 and 6.5 show the effectiveness of the heuristic algorithm under resource

constraint and increased number of allowed custom instructions, respectively. As

expected, allowing more custom instructions reduces the WCET further.
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6.6 Summary

We have introduced methodologies for using custom instructions to reduce the worst-

case execution time for real-time embedded systems. Other than increasing the

processor’s clock frequency or changing the software’s algorithm significantly, ISEP

provides another choice to meet timing constraints for real-time tasks.

The heuristic of custom instruction selection is based on pattern reuse, where

the potential of exhaustive enumeration of candidate subgraphs are explored. It

can be easily modified to adapt to normal custom instruction selection problem to

improve the average case execution, by replacing the profit function of a pattern

template with its average case cycle reduction.



Chapter 7

Conclusions

If people never did silly things, nothing intelligent would ever get done.

– Ludwig Wittgenstein

In this thesis, we have presented efficient methodologies for the optimal identifi-

cation of custom instructions. To this end, we exhaustively enumerate all the feasi-

ble subgraphs of relaxed topology, and then select the optimal subset under various

design constraints. Based on exhaustive enumeration, where all the isomorphic sub-

graphs can be exposed, custom instruction selection optimizes the performance by

maximizing the reuse of custom instructions. Both our enumeration algorithms and

selection methodologies are scalable and can be applied to applications with very

large DFGs especially resulting from modern compiler transformations for more in-

struction level parallelism. As a practical application, methodologies of using custom

instruction to improve the worst-case execution time to meet tight timing constraint

of real-time applications are also presented.

We discuss two other possible directions to explore for the software-hardware

partitioning problem of extensible processors in the future. First, while we consider

extensible processors for embedded applications, they are also great candidates for

127
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desktop and other high-end computations under superscalar/VLIW processor model.

In this context, optimal covering of the code with custom instructions may not yield

the best performance improvement. The selection algorithm need to work together

with the instruction scheduler to reduce the critical scheduling paths. Second, there

exists opportunities to cross optimize the CFUs to reduce the combined area such

that more custom instructions can be packed under tight area budget. Side effects

of latency increases for individual custom instructions need to be considered at the

same time in the selection process.

We envision that hardware-software interlaced custom architectures will set the

trend for future computing devices. With maturing automated design techniques,

performance and design flexibility are no longer unachievable at the same time.

The compiler for software design, and the high-level synthesis tools for hardware

design, previously holding two diverse philosophies (compute-in-time and compute-

in-space respectively) will finally merge. Under a unified framework, instruction

level customizable extensible processors would work with function level customizable

components to meet challenging design requirements.
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Appendix A

ISE Tool on Trimaran

To facilitate research on instruction-set extension for advanced processors, we de-

veloped an ISE module based on the Trimaran compiler infrastructure [16, 80]. Tri-

maran front-end is a C compiler equipped with a large suite of machine independent

optimizations. Internal transformations are based on its intermediate representation

graphs called Elcor. The back-end of the compiler performs instruction scheduling,

register allocation, machine dependent optimizations for the state-of-the-art VLIW

architecture. Finally, the executable is simulated with cycle accurate simulator for

performance evaluation and other run-time statistics.

Our ISE module is inserted as an extra phase of the Trimaran back-end right

before instruction scheduling and register allocation. The module is kept as in-

dependent as possible to the rest of the modules in Trimaran so that it can be

used elsewhere with little modification Custom instruction formation before register

allocation ensures that it is not hindered by false data dependencies (a.k.a., write-

after-read and write-after-write dependencies). Figure A.1 shows a case where a

pattern cannot be used as custom instruction due to WAR dependency introduced

by register allocation.
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Figure A.1: Pattern {1, 3} cannot be used without resolving WAR dependency
between node 2 and 3 (caused by reusing register R3).

A.1 Work Flow

The work flow includes the following three steps.

Step 1: ISE generation — ISE enumeration and selection algorithms work together

to identify and select a set of optimized custom instructions;

Step 2: modify the target machine (Mdes in Trimaran) and compiler in order to

support the new ISE;

Step 3: ISE utilization - replace selected custom instructions in the application.

At the end of the 3rd step, the simulator should be able to execute the ISE

enabled version of the given application.

After the ISE generation step, the selected patterns cannot be directly replaced

with corresponding custom instructions. This is because the compiler for the old

architecture does not recognize the new custom instructions and is unable to assign

opcode for them; the simulator also has no idea how to execute them. After mod-

ifying the target machine architecture mainly by inserting descriptions of custom

instructions (format, semantics, various execution requirements and properties), we

recompile the compiler and simulator to reflect the changes. After that, custom
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Figure A.2: Work flow of ISE enabled compilation.

instruction replacement is taken place by the new compiler, followed by instruction

scheduling and register allocation. The produced executable with custom instruc-

tions can now be understood and simulated by the new simulator. A simple run of

the compilation flow is presented in Figure A.2.

In custom instruction replacement, a subgraph of multiple operations is replaced

with the single corresponding custom instruction. We have to take note of two

things here. First, the position of an input register or output register of the custom

instruction must match with that of its topologically equivalent register on the

custom instruction template (from which we defined the format and semantics of

the custom instruction). We use a procedure similar to the isomorphism check

to identify these correspondences and sort the order. Second, we must maintain

the partial order between the custom instruction and other instructions to ensure

correctness of the assembly code. Figure A.3 shows an example how the partial

order can be infringed due to the reduction of multiple operations to a single custom

instruction. As discussed in [22], if a successor (node 3 in Figure A.3) of the custom

instruction comes before the last predecessor of the custom instruction (node 4), the

successor along with any operations dependent on it should be reordered after the

last predecessor. The custom instruction is inserted after its last predecessor.
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Figure A.3: Order of custom instruction insertion. (a) Original operations is topo-
logically ordered correctly (adapted from [22]), (b) The partial order is broken (node
4 and 3) after custom instruction replacement.

A.2 Limitations of the Tool

The current version of the ISE module is at the basic block level. Trimaran infras-

tructure supports various larger structures to exploit more instruction level paral-

lelism for the underlining VLIW architecture, such as trace, superblock and hyper-

block. When the ISE module is applied on trace and superblock level, the operations

of a selected custom instruction must be moved to a single basic block, with patch

code inserted (bookkeeping) to ensure the semantic correctness after code motion.

On hyperblock level with predicated execution support, predicate registers should

be counted for as input/output operands when identifying custom instructions.

Furthermore, due to restrictions of Trimaran instruction format, up to 4-input

and 4-output operands are allowed in a custom instruction. However, this is a

reasonable architectural restriction for processor realization. Our limit study in

Chapter 5 also suggests that going beyond these numbers only provides marginal

benefit. Lastly, only single source file benchmarks are supported currently. Trimaran

compilation is triggered separately on each source file (before the link stage), while

the selection of custom instructions concerning pattern reuse requires a global view

of the whole application.


