
Approaches to parallel performance
prediction

Fred Howell

Doctor of Philosophy
University of Edinburgh

1996

Abstract

Designing parallel programs is both interesting and difficult. The reason for using

a parallel machine is to obtain better performance, but the programmer will have

little idea of the performance of a program at design time, and will only find out

by actually running it. Design decisions have to be be made by guesswork alone.

This thesis explores an alternative by providing data sheets describing the

performance of parallel building blocks, and then seeing how they may be used

in practice.

The simplest way of using the data sheets is based on a graphing and equation

plotting tool. More detailed design information is available from a "reverse"

profiling technique which adapts standard profiling to generate predictions rather

than measurements. The ultimate method for prediction is based on discrete

event simulation, which allows modelling of all programs but is the most complex

to use.

The methods are compared, and their suitability for different design problems

is discussed.

Acknowledgements

Thanks to my supervisor Roland Ibbett for his enthusiasm; to Professor Aspinall

of UMIST for asking the awkward question which sparked this work. Thanks to

Gordon Smith and Lyndon Clarke of the Edinburgh Parallel Computing Centre

for providing CHIMP and MPI source code for the simulator. Particular thanks

to my office mates Marcus Marr and Cristina Boeres for providing coffee.

Table of Contents

Chapter 1 	Introduction 	 1

1.1 	Parallel program design techniques 1

1.1.1 The null method 2

1.1.2 Post-hoc analysis 2

1.1.3 Higher level techniques 2

1.1.4 PRAM 2

1.1.5 BSP 3

1.1.6 LogP 3

1.1.7 Scalability analysis tools 4

1.1.8 Queueing model techniques 4

1.1.9 Petri-net techniques 5

1.1.10 Process algebras5

1.1.11 Parallel software engineering5

1.1.12 Hardware engineering6

1.1.13 Real time systems6

1.1.14 Direct execution simulation 7

1.1.15 Benchmaps 7

1.1.16 Post mortem 8

1.1.17 Sequential code analysis techniques 8

1.2 	Thesis overview 8

Chapter 2 Experimental Approach 11
2.1 	The test suite: the Cowichan problems 11

2.1.1 mandel: 	Mandeibrot Set 12

2.1.2 randmat: 	Random matrix generation13

2.1.3 half: 	Two-dimensional shuffle 13

2.1.4 life: 	The game of life 13

2.1.5 thresh: 	Histogram thresholding 14

2.1.6 outer: 	Outer product 14

1

2.1.7 	elastic: 	Elastic net simulation16

2.1.8 	invperc: 	Invasion percolation17

2.1.9 	product: 	Vector/matrix product 17

2.1.10 	sor: 	Successive over-relaxation 17

2.1.11 	gauss: 	Gaussian elimination 18

2.1.12 	norm: 	Point normalisation18

2.1.13 	winnow: 	Weighted point selection19

2.1.14 	vecdiff: 	Vector difference 19

2.2 Techniques used in the MPI implementation 19

2.2.1 	Distributed data structures 19

2.2.2 	File I/O 20

2.2.3 	Graphics 20

2.2.4 	Problems with using MPI 21

2.3 Measuring performance21

2.4 Comparing single run predictions with measurements 22
2.4,1 	A. trace comparison utility 23

2.5 Multiple 	runs 26

2.5.1 	mkgraph: a utility to generate graphs 27
2.5.2 	cmpgraph: a utility to compare graphs 27

2.6 Conclusion 28

Chapter 3 The Performance Characterisation of MPI Functions 29

3.1 Introduction 29

3.2 Presenting performance information31

3.2.1 	Interpolation from measurements 31
3.2.2 	Best fit equations 31

3.2.3 	Categorisation of functions into "buckets" 33
3.3 Measuring MPI performance33

3.4 Pitfalls 38

3.5 Data sheet generation38

3.5.1 	Curve fitting39

3.5.2 	Implementation of the surface fit routine 39

3.5.3 	Units and Significant Figures 40

3.5.4 	Output formats 40

3.5.5 	A simple calculating utility42

3.6 Example data sheets 43

3.7 Conclusion 43

2

Chapter 4 Simple Performance Estimates of the Cowichan Prob-

lems 46
4.1 	The models ...,.. 46

4.1.1 An example: the mandeibrot set47

4.2 	Using data sheet models 50

4,3 	Modelling the Cowichan problems 51

4.3.1 Mandelbrot set generation (mandel)52

4.3.2 Random matrix generation (randmat)54

4.3.3 Perfect shuffle (half) 	, 57

4.3.4 The game of life (life)59

4.3.5 Image thresholding (thresh)61

4.3.6 Outer product (outer) 63

4.3.7 Elastic net simulation (elastic) 65

4.3.8 Invasion percolation (invperc) 66

4.3.9 Vector product (product) 69

4.3.10 Successive over-relaxation (sor) 69

4.3.11 Gaussian elimination (gauss) 70

4.3.12 Point normalisation (norm)72

4.3.13 Weighted point selection (winnow)74

4.3.14 Vector difference (vecdiff) 76

4.4 	Conclusion 	 78

Chapter 5 	Reverse Profiling 80
5.1 Introduction 80

5.2 The technique in detail 81

5.3 Estimating the computation delays 84

5.4 Results 85

5.4.1 	Mandeibrot set generation (mandel)86

5.4.2 	Elastic net simulation (elastic) 88

5.4.3 	Outer product (outer) 93

5.4.4 	Image threshholding (thresh) 96

5.4.5 	The game of life (life)97

5.4.6 	Weighted point selection (winnow)102

5.5 Conclusions 103

Chapter 6 A Simulation Tool for MPI Performance Prediction 107

	

6.1 	Introduction107

	

6.2 	The HASE simulator108

6.2.1 	Overall operation 108

6.2.2 	Internal design of HASE 109

6.2.3 	Hierarchy 111

6.2.4 	Parameter types111

6.2.5 	Templates 112

6.2.6 	Output approaches 112

6.3 Using HASE at different abstraction levels 114

6.3.1 	Low level models 114

6.3.2 	High level models 115

6.3.3 	Cycle counting 120

6.3.4 	Single stepping 121

6.4 Using HASE with MPI performance models 122

6.4.1 	Implementation 122

6.4.2 	Implications of a threaded model 123

6.4.3 	The performance model 124

6.4.4 	A FORTRAN linkage model 124

6.4.5 	Speed of SIM++/MPI vs LAM/MPI 125

6.5 Examples 127

6.5.1 	Cowichan problems 127

6.5.2 	Non-deterministic example127

6.6 Conclusion 128

Chapter 7 	Conclusion 131
7,1 	Prediction as part of design? 133

7.2 	Further work 134

7.2.1 	Data sheets 134

7.2.2 	Combining reverse profiling and simulation134

7.2.3 	Improving compute time prediction 134

7.3 	Overall conclusion135

Bibliography 	 136

Appendix A An overview of MPI 	 142

Appendix B An example data sheet 	 143

Appendix C Papers 	 144

Chapter 1

Introduction

This thesis documents usable techniques for designing parallel programs with a

priori knowledge of their run time. It asks whether the guesswork can be taken

out of the design process and replaced with engineering decisions based on firm

data.

There is currently a gulf between the sophisticated performance analysis tech-

niques developed by the academic community and the techniques which are used

in practice.

Because of this, the approach taken in this thesis deliberately focusses on the

low level parallel programming tools actually used, in the hope that it will have

an immediate practical benefit to developers. Higher level techniques can build

on this foundation later.

The contribution of this work to the subject is both in the form of useful tools

for characterising and predicting performance and in showing that post-mortem

techniques may be supplemented by ante-natal design.

This introduction reviews performance analysis techniques described in the

literature and outlines the approaches investigated in the thesis.

1.1 Parallel program design techniques

The two extremes in the art of performance analysis are PRAM style complexity

theory and post mortem tracing.

In practice, programmers usually concentrate on writing programs with a clear

structure and worry about the performance afterwards. This is not because they

don't care about the performance, but because it takes too long to work it out.

Performance is not the only design aim of a parallel system, and may not even

be the the most important. However it is the one which differentiaties parallel

from sequential software development.

1

Various techniques for performance analysis are outlined below, including com-

putation models, high level models, mathematical models, software and hardware

engineering, real time systems development, simulation, micro-benchmarking and

sequential techniques.

1.1.1 The null method

This is the common approach for developing parallel programs. If a performance

analysis is done, it is an afterthought.

1.1.2 Post-hoc analysis

Many papers have been written about the performance of a program on an archi-

tecture. A good example is Singh and Hennessey's paper on an ocean modelling

program [33]. These specific examples are interesting, but shed little light on how

one is supposed to go about developing a different program on another architec-

ture.

1.1.3 Higher level techniques

One approach is to restrict programs to using high level operations which have

been implemented efficiently (e.g. algorithmic skeletons [9] and the parallel util-

ities library at the Edinburgh Parallel Computing Centre (EPCC) [8]). This has

considerable appeal as it frees programmers from such low level concerns as per-

formance. However the techniques are not sufficiently well advanced to be applied

to all problems and are still an area of active research.

1.1.4 PRAM

Parallel algorithm researchers are concerned with predicting the asymptotic com-

plexity of algorithms, where the quality of an algorithm may be expressed in big

O notation (e.g. an O(log N) algorithm is "better" than an 0(N2) one). This ap-

proach provides a clean, simple method of comparing algorithms, but has several

major drawbacks.

The first is that the computational model is idealised and will therefore not

(necessarily) have much relevance to actual implementations of algorithms. Work

in progress to make the models more complex and realistic (such as the HPRAMs,

other PRAMS) tends to make the model harder to use and hence less useful. The

other approach, redesigning parallel computers to implement the models more

effectively is fairly revolutionary and hence not likely to happen unless there

2

is overwhelming evidence in favour of programs being easier to design using a

PRAM-based model. Interestingly, PRAM-advocates insist that a major defi-

ciency of implicit parallelism through (say) dataflow or functional languages is

that performance prediction becomes trickier.

The second drawback is that the basis for comparison (asymptotic complexity)

is only valid for an infinite data size or number of processors. In practice, the

constant factors may be more important for machine/program sizes of interest.

1.1.5 BSP

An interesting approach, proposed by Valiant [60] provides a computational model

consisting of a sequence of parallel supersteps within which local computation

is performed and communication requests are posted. Between each superstep

is a global barrier operation after which all posted requests are guaranteed to

complete.

Restricting synchronisation to global barrier operations (and the programming

style to SPMD) simplifies the general performance prediction problem to one

of estimating the maximum superstep computation time and the time for the

global reorganisation of data at each superstep. The performance of a machine

is characterised by three values determined experimentally: s is the speed of

computation of a process in flops, 1 is the synchronisation latency cost in units of

s and g is the number of flops per word required for all processors to communicate

a message simultaneously. Hill, Crumpton and Burgess [22] present interesting

results using an implementation of BSP (BSP1ib) on an IBM SP/2 and ethernet,

comparing simplistic pencil and paper modelling with results from a profiling

version of the library.

1.1.6 LogP

An attempt to create a more realistic model based on actual machine paramet-

ers rather than an abstract ideal is LogP [10]. The parameters are L, an upper

bound on the latency suffered by a word sent from one module to another, o, the

overhead during which a processor is occupied sending or receiving a message,

g, the minimum time interval between successive message transmissions of recep-

tions, and P the number of processors [10]. The authors note that "Such a model

must strike a balance between detail and simplicity in order to reveal important

bottlenecks without making analysis of interesting problems intractable."

The parameters can be estimated using a simple benchmark routine. They

provide a simple pipeline model for point to point communications. Costs for

3

collective communications may be expressed in terms of the point to point costs,

but this is not incorporated directly in the model.

Another modelling notation is R/n'/2 developed by Hockney and Jesshope,

originally for vector performance. R is the maximum rate of transfer (for infinite

message sizes) and n112 is the message size which achieves half of this rate. This

has some advantages over

startup-time + message-size * time-per-byte

in indicating the "break-even" point for message sizes in a usable way. Num-

rich [52] gives these values for point-point communication on the Cray T31) net-

work.

1.1.7 Scalability analysis tools

The NASA AIMS/MK toolset [44] extracts a program execution graph from a run

of a program and uses this to feed into a discrete event simulator. Sarukkai/Mehra

offer abstract interpretation techniques for generating complexity estimates [55].

Dunlop et al [1] looked at estimating the workload on the floating point unit and

the different parts of the memory hierarchy given Fortran source code, and used

this estimate for predictions.

Another top level approach described by Driscoll [12] looks at the total time

spent in communication and computation throughout the program, using a vari-

ant of Amdahl's law to predict speedups. Gustafson [18] looked at the case of

problem size scaling with machine sizes.

1.1.8 Queueing model techniques

Queueing theory is a well developed mathematical technique for analysing steady

state performance of queueing networks. King [36] describes the application of

queueing theory to computer systems. Analytical solutions exist for simple net-

works but more realistic networks must be simulated. The basic parameters of a

queueing model (arrival rate, queue sizes etc.) may correspond directly to design

parameters.

Queueing models have been used for prediction. Liang and Tripathi [37] used

a simple queueing model to analyse fork/join program graphs. Mak and Lung-

strom [39] developed queueing models of architecture and program for their pre-

dictions.

11

1.1.9 Petri-net techniques

Petri nets [47] have been used for modelling behavioural aspects of concurrent

systems, particularly detecting the presence of deadlocks. Standard Petri nets do

not incorporate the notion of time, so timed and stochastic extensions are typically

used for modelling performance of systems. The problem with these more complex

varieties of Petri nets is that they make mathematical analysis more difficult, and

the state space becomes too large to search. Even with standard Petri nets,

the graphical models rapidly become incomprehensible. Hartleb [19] looked at

stochastic graph techniques for parallel program performance. Graph nodes were

deterministic, or used a random distribution. Reduction techniques were used for

simplifying models. Wabnig [30] derived a Petri net model of the communications

network from first principles and used this for performance studies.

1.1.10 Process algebras

Process algebras (CCS [41], CSP [25]) incorporate better support for modelling

hierarchy than Petri nets, and are amenable to analysis using state space searching

techniques.

Timed variants such as TCCS [42] may be used for proving properties such as

"state X occurs before state Y", but are not so concerned with actual run times.

PEPA [24] allows for stochastic state transitions, with standard techniques used

to analyse the resultant Markov chains.

If delays are deterministic rather than probabilistic, then process algebras give

no more insight than simulation.

1.1.11 Parallel software engineering

Traditional software engineering techniques (Yourdon, Mellor, etc) generate a

large amount of concurrency in the initial "structured analysis" phase, which

they subsequently remove to produce a sequential structured design. They have

nothing to say about the problems of a parallel implementation.

Attempts to develop software engineering techniques for parallel systems such

as PARSE [32] have focussed on extending datafiow techniques and defining their

semantics more rigorously, but have no advice on how to build in efficiency. They

are also geared towards distributed systems (a few distinct processes communic-

ating) rather than parallel systems (many identical processes communicating).

5

1.1.12 Hardware engineering

Concurrency comes naturally to hardware engineers as electronic components all

run in parallel. Timing issues are often central to the design, so predicted timing

diagrams are drawn up early in the design.

Design tools are used to a far greater extent than in the software community,

with graphical tools such as schematic editors, language based tools such as VHDL

and Verilog simulators, state machine designers etc etc.

Unfortunately hardware is not software so hardware design techniques cannot

be directly applied to engineering of parallel software.

The important differences are

software components are never specified as rigorously as hardware compon-

ents.

interactions between software components are less restricted.

a software component may be orders of magnitude more complex than a

hardware component.

Software gives the engineer infinite rope to play with, whereas hardware is

always bounded by physical constraints like pin count and chip area, so by ne-

cessity hardware components are better defined than software ones. Attempting

to restrict software to use a controlled interface is one of the aims of software

engineering, but the temptation is always there to bypass the restrictions and use

a "quick and dirty" technique. Doing this in a hardware design is of course also

possible, but much less common. Having to cast ideas into the stone of a circuit

board encourages cleaner designs than does the free form of software.

1.1.13 Real time systems

The area of real time systems covers similar timing issues to that of parallel

programming, but a poor design may be fatal rather than just inefficient. The

emphasis is on predictability rather than on absolute performance; an implement-

ation must guarantee that a deadline is met.

The Flex language [35] inserts #pragma comments with the expected timing

equation for each section of code. The MAXT approach [49] attempts to calcu-

late the maximum execution time of programs using software annotations and an

extra compilation step. The restrictions of this method are that compile time pre-

dictions of loop counts are not always possible and also recursion is not handled.

Park and Shaw [46] present a timing schema approach which benchmarks the per-

formance of a generalised assembler code on an architecture (with instructions

such as mov, add, mul etc.) and then parses high level source code in terms of

these instructions.

1.1.14 Direct execution simulation

Direct execution simulators allow detailed modelling of hardware and tweaking

of all kinds of parameters. Indeed Brewer [5] recommends using simulation as a

development platform in preference to running on a machine, based on experience

with the Proteus simulator [4] of shared memory software on the CM-5 machine.

The network parameters are fed in using a network model such as that described

in [2] or by doing a detailed hop by hop simulation.

One possible criticism of this approach for software development is that the

models take too long to construct and verify, and it is no easier than running on

the actual machine. Since the models are hidden from the programmer (behind

the mystique of the simulator), it is another post-mortem like approach, the only

difference being that the actual machine is not used.

The advantage of this detailed approach is that network contention and other

such issues may be modelled as accurately as desired.

An example of simulation applied to message passing software is PS [3], a dir-

ect execution simulator for PVM based on the Ptolemy simulation system [6]. It

uses a complex model of an ethernet interface for its communications subsystem,

and has been used for PVM applications running on a small number of worksta-

tions across a network. Pouzet [48] described a simulation tool for Transputer

applications.

Fahringer [13] developed a system for guiding compiler optimisation as part of

the Vienna Fortran Compilation System. The system statically computes a small

set of parameters which characterise the overall behaviour of a parallel Fortran

application.

1.1.15 Benchmaps

At the boundary between simulation and analytical techniques less work has been

done. Benchmaps were developed by Toledo [59, 58] for prediction of data parallel

programs. His technique relies on benchmarking the operations of a data parallel

language (NESL), fitting a linear equation to the data, and applying the model

to a running program. The memory hierarchy is modelled in a simple way with

different cost models applying depending on whether or not the data is likely to fit

7

inside the cache. He reported errors of about 33% in predictions of performance

on Sun workstations and the CM-5. Cache conflicts in the SGI Indigo workstation

meant that his method would only predict performance to within a factor of about

15. Saavedra developed a micro benchmark approach to characterise the low level

performance of the KSR1 memory system [53].

1.1.16 Post mortem

If performance analysis is done at all by programmers at the moment, they are

most likely to use one of the post mortem trace analysis tools. Examples include

Paragraph [20], Pablo [50], Vispad [26], the Upshot tool included with MPICH [43]

and XMTV included with the LAM implementation of MPI [7].

They work by instrumenting a program with tracing commands, and gener-

ating a trace file with time stamps.

Post mortem techniques measure one run of the performance on one machine

(and say nothing about the performance on other machines, or with different data

sizes).

1.1.17 Sequential code analysis techniques

Tools exist for optimisting code on sequential machines, such as prof, gprof, the

SPARCworks analyzer etc. These measure figures such as the number of times

each function is called and the percentage of time spent in each. MacDonald [38]

describes methods for analytical predictions of sequential code execution times.

1.2 Thesis overview

The methods described in this thesis are based on the standard message passing

model MPI [15]. Message passing was selected for two reasons; it is more stand-

ardised than shared memory and its explicit parallel nature cries out for a design

technique.

The performance of the interface is characterised by a routine which generates

datasheets for each MPI function. This characterisation of the primitives is per-

formed in the same spirit as Toledo's benchmapping approach for data parallel

programs [59]. The characterisation takes the form of an equation for each MPI

function, along with graphs displaying the data from which the equation was de-

rived. Chapter 3 describes the routines used to characterise the performance of

parallel building blocks and generate the data sheets. (figure 1.1).

RO

r Performance
I 	 ______________ Data

Characterisation 	 Sheets
(Chapter 3)

Figure 1.1: Performance predictions are based on automatically generated data-
sheets for an architecture.

These data sheets may be used as they are for initial design. A simple cal-

culating utility for evaluating the equations for given parameters was written to

help with this.

Pencil and paper analysis becomes tedious and time consuming for all but the

simplest program, so three computer aided techniques with increasing levels of

sophistication were developed to help use the data sheets for practical develop-

ment. Figure 1.2 gives an overview.

The first technique uses the data sheet results with a graphing package for

rapid evaluations of the scalability of programs. This approach is presented in

chapter 4. This allows experimentation at an early stage into the top level beha-

viour of algorithms.

A finer grain approach is presented in chapter 5. This uses the standard

profiling mechanism of MPI to insert timings evaluated from the data sheets,

a technique which is as easy to use as normal profiling. This allows automatic

calculation of the expected timing diagrams, and copes with data dependent

timings, something which compile time analysis techniques cannot handle. The

results are compared with timing diagrams produced from standard profiles to

assess the accuracy which can be expected from the approach. A similar approach

applied to the simpler BSP model was described by Hill et al [22].

Chapter 6 investigates a simulation tool which extends the approach above to

handle non deterministic programs as well as deterministic ones. It also permits

inclusion of detailed hardware models in addition to the data sheet models.

Chapter 2 describes the experimental techniques used to evaluate the various

approaches. A suite of problems requiring a variety of parallel implementation

strategies was chosen to test the ease of use and accuracy of the design techniques.

These strands are drawn together in the conclusion (chapter 7) which evaluates

the techniques and presents plans for future development.

.11

Data
Program

Sheets 	 being

developed

Graphing 	 Reverse 	 Simulation
Package 	 Profiling 	 Tool

(Chapter 4) 	 (Chapter 5) 	 (Chapter 6)

I Detailed
ScaIabi1ity 	 I

I Timing
Graphs 	 I

Diagrams

Figure 1.2: Three techniques for using the datasheets to help design programs.

10

Chapter 2

Experimental Approach

To evaluate the efficacy of the design techniques, a suite of parallel problems

was chosen and coded in MPI. The suite of problems is described in section 2.1.

Other MPI benchmarks are now available, organised by the PARKBENCH com-

mittee [21].

In his paper on performance prediction of data parallel programs, Toledo [59]

stated that:

"We believe that the most important open question in performance

prediction today is how to assess and verify the accuracy of perform-

ance models. Without the means to assure the accuracy of models it

is difficult to put them in production use."

Section 2.3 describes the profiling technique used to extract actual timings

from runs on parallel machines. Section 2.4 describes how detailed comparis-

ons of predicted and actual trace files are performed. Section 2.5 describes the

techniques used for comparing actual and predicted scalability.

Assessing how easy the design techniques are to use is more subjective than as-

sessing accuracy. A subjective comparison based on experiences using the design

techniques is therefore given in the final chapter.

2.1 The test suite: the Cowichan problems

The Cowichan problems 1 were set by Wilson [61] to assess the usability of parallel

programming systems. The suite consists of fourteen problems intended to be

implemented in parallel. Some of the problems such as the vector difference

routine vecdiff are simple to code for a parallel machine. Others such as invasion

percolation invperc present more difficulties.

1 "Cowichan" is a place name on the NW coast of N. America

11

The problems were set to provide an objective basis for comparing how easy

different parallel programming systems are to use; the intention was that differ-

ent groups would code the problems using their preferred tools (shared memory,

threads, HPF, MPI etc.) and record the time required to write the parallel

versions and the problems faced. A comparison of the problems encountered in

porting the problems would enable the usability of MPI, threads, shared memory,

HPF etc. to be comDared.

A sequential version of all the problems was coded by Wilson in ANSI C,

and this was used as the reference implementation for checking that the parallel

versions produced the correct results.

The MPI version of the problems was written by Howell and Marr using C++.

The Cowichan problems are specified fully in [61], but brief descriptions of

the problems are included below, along with notes on the MPI implementation.

Appendix A includes a brief summary of MPI.

2.1.1 mandel: Mandeibrot Set

This module computes the mandelbrot set as a matrix of integers (figure 2.1).

Each point of the set may be computed independently so it is a simple routine to

parallelise. In the MPI implementation, each process is allocated an equal slice

of the set to work on.

Figure 2.1: The output from mandel.

12

2.1.2 randxnat: Random matrix generation

This module generates a matrix of pseudo random integers, with a given random

number seed (figure 2.2). The aspect of this problem which complicates the

parallel implementation is that each successive point in the matrix is computed

from the previous one;

r 1 = (r * a + b)modulo232

i.e. there is a sequential dependency. The output must be repeatable and in-

dependent of the number of processes; starting each process with the same seed

leads to a distinctly non-random striped effect.

The parallel version solves this problem by computing the initial seeds for all

processes using an order log(N) algorithm. After this, all may continue independ-

ently to compute their area of the matrix.

Figure 2.2: The output from randmat.

2.1.3 half: Two-dimensional shuffle

This module shuffles the values of a matrix along both the rows and the columns.

Figure 2.3 shows the algorithm applied to the Mandelbrot set. It exercises the

communications facilities of MPI.

2.1.4 life: The game of life

This module simulates the evolution of Conway's game of life, a 2D cellular auto-

maton. Figure 2.4 shows the algorithm applied to boolean matrix generated by

13

Figure 2.3: The output from half.

thresholding a random matrix. The routine uses nearest neighbour communica-

tions to calculate the number of neighbours each point has. Global synchronisa-

tion is also necessary to keep all processes in step.

Figure 2.4: The output from life.

2.1.5 thresh: Histogram thresholding

This module performs histogram thresholding on an image. It constructs a binary

image from all the pixels of an integer image with an intensity in the top p% of all

pixels. This requires a global reduction to find the highest valued pixel, followed

by a local histogram computation. The histograms are then merged (by summing

across all processors), the threshold is computed and applied to the image in

parallel. Figure 2.5 shows the results of thresh applied to a random matrix (the

output of 2.1.2).

2.1.6 outer: Outer product

This module takes a vector of point coordinates and forms a dense symmetric

diagonally dominant matrix of the distance of each point from every other point,

14

Figure 2.5: The output from histogram thresholding a random matrix.

and a vector of the distance from each point to the origin. Figure 2.6 shows a

sample output matrix.

Figure 2.6: The output from the outer product module.

The vector generation is simple; each process has a copy of all points and works

on its local section of the distributed vector. The matrix generation is nastier.

The simplest solution has each process computing the sections of both the upper

and lower triangles with a global reduction (implemented with MPI_Allreduce)

to get the diagonal. This does twice as much calculation as necessary (as the

upper triangle is a mirror copy of the lower), so an alternative would be to load

balance one of the triangles then copy that triangle onto the other. Both were

implemented for comparison.

The decision of whether to load balance and copy the triangles or to do twice

the computation requires a performance specification of the MPI routines. The

15

triangle copy is difficult to implement in MPI, requiring complex data types and

a new operation: MPLAlltoallvi.

2.1.7 elastic: Elastic net simulation

This module solves the travelling salesman problem using the elastic net al-

gorithm. The algorithm deforms an elastic circular loop towards the city loc-

ations, using an algorithm for the "force" exerted on the elastic by each city and

for the elastic force keeping the loop together. Multiple iterations are run, de-

forming the loop until all cities are connected. Figure 2.7 shows the first iterations

of the algorithm, with the circular ring being stretched towards the cities.

.• ,, 	

. 	 S

•

	

< 	 *
•

gBF, .

.• • 	
*

•

* 	. • 	.

. •

Figure 2.7: In the first steps of the elastic net simulation a circular ring is stretched
towards the cities.

The vector of city locations is fixed so it is copied to all processes. The vector

of points on the loop is distributed evenly, with neighbour communications. In

MPI this boundary communications step is not trivial as there is a special case

when fewer than three points of the elastic loop are stored on a process. The

boundary exchange was implemented as the sequence send, send, recv, recv

which may deadlock given limited buffer space but is simple. This is reasonable

as the buffer space requirement is only for four real numbers. The alternative

16

would be for the odd numbered processes to send and the even numbered ones to

receive, then vice-versa.

2.1.8 invperc: Invasion percolation

Invasion percolation simulates the displacement of one fluid by another in frac-

tured rock. The input is a matrix of integers representing rock densities. In each

iteration, all neighbours of all filled cells are examined, and the one with least

resistance (i.e. lowest density) is filled. The output is a fractal shape such as that

shown in figure 2.8, where the white dots show the filled locations.

Figure 2.8: The output from invasion percolation run on the random matrix
produced by randniat.

This is an awkward problem to parallelise. The initial implementation is not
expected to give a speedup. It uses a distributed queue, where each process stores

elements of the queue which lie on the local slice of the matrix. The enqueue and
dequeue operations are called by all processes but operate on only one at a time.

The algorithm is inherently sequential and the only possible speedup would be

from the shorter queue insert times.

2.1.9 product: Vector/matrix product

This module performs the product of a real matrix with a real vector, returning

a real vector. The parallel version distributes the rows of the matrix and copies

the entire vector to all processes. Each process then computes its local section of

the results vector.

2.1.10 sor: Successive over-relaxation

This module solves a system of linear equations using the successive over-relaxation

iterative technique. The parallel version evenly distributes the rows of the mat-

17

rix and result vector. At each iteration step each element of the result vector is

"relaxed" towards the correct solution by applying a factor computed from the

error in the current value. Each process then obtains a local copy of the entire

updated result vector for the next iteration. This continues until the solution is

within a defined tolerance, or the maximum number of iterations is reached.

2.1.11 gauss: Gaussian elimination

This module performs Gaussian elimination to solve a set of linear equations.

The output is a real vector containing the solution. In the parallel version each

process computes its local pivot. A global communication step then selects which

pivot element to use.

2.1.12 norm: Point normalisation

The problem is to normalise a vector of point coordinates to lie in the unit square.

Figure 2.9 shows example output.

Figure 2.9: The output from norm.

The point vector is distributed evenly. A global reduce is required to determine

extremities, followed by a scaling of the local data.

The global reduction needs to find the maximum and minimum point locations

for the scaling. There is a choice of four MPI_Allreduces (minx, maxx, miny,
maxy), or a single MPI_Allreduce with a user defined reduction operation. The

former was selected for simplicity although the latter is likely to be faster.

!1J

2.1.13 winnow: Weighted point selection

This module converts a matrix of integer values into a vector of points. A boolean

mask matrix is used to select values from the integer matrix. These values are

sorted, and the row/column coordinate of every Nth is added to a point vector

which is returned. The sequential implementation is straightforward, using loop

indices to select particular items of data. With distributed data structures in

MPI however it is extremely awkward, requiring extensive use of user constructed

datatypes to perform the strided redistribution of data. Each process sends and

receives different amounts and types of data to/from all the others.

2.1.14 vecdiff: Vector difference

This module returns the maximum difference between corresponding elements of

two real vectors. Local differences are computed first, and a global operation

returns the overall maximum.

2.2 Techniques used in the MPI implementation

The following notes describe the fundamental parallel data structures and I/O

techniques used in the MPI implementation of the Cowichan routines.

2.2.1 Distributed data structures

Matrices and vectors are often distributed evenly across the processes to balance

the workload. The standard method of distributing and gathering data in MPI

uses the collective communications functions. The example below shows how a

matrix distributed across processes may be gathered so that each process has a

copy of the entire matrix.

mt local_matrix[localnrows] [ncols];

mt global_matrix[nrows] Encols];

mt *counts = /* number of elements on each process */;

mt *displs = 1* global offset of 1st element on each process *1;

MPI_Allgatherv (

local-matrix, localnrows*ncols, MPI_INT,

global-matrix, counts, displs, MPI_INT,

MPI-COMM-WORLD);

To allow such redistribution of data, each process must maintain the arrays

Counts and dispis to store the number of elements on each process and the

displacement from the start of an array. The arrays are combined into a class to

simplify use of collective operations:—

Class distribution {

mt *COUfltS

mt *displs;

public:

II Methods to generate useful distributions.

}

The inheritance facility of C++ allows a "distributed vector" or "distributed

matrix" to be defined by deriving from both class distribution and class
vector<Type>:—

class vector_d<Type> : public vector_t<Type>, distribution {

public:

II Extra methods peculiar to distributed vectors

}

Extra methods can then be added to allow global access to distributed data

structures, hiding the local offset calculations. These distributed structures may

be passed as function arguments and the counts and displs arrays are available

for calling the MPI collective routines.

2.2.2 File I/O

Parallel file I/O is not a standard part of MPI, although all parallel programs

will require some I/O. The solution adopted for the Cowichan problems was to

perform standard I/O from the root process alone, and to scatter or gather the

data to all processes as appropriate. This leads to a heavy I/O cost for each

module, as there is a sequential phase before and after the computation which is

not shortened as more processes are added. This I/O phase was quantified for

the performance evaluations, but the main focus of comparisons was the parallel

sections of code, since it is anticipated that truly parallel I/O routines will become

the norm eventually.

2.2.3 Graphics

An X windows graphics display was written using the facilities of the MPI im-

plementation on workstations (LAM). The facilities are primitive, offering basic

20

pixel and area routines but suffice for the production of some interesting pictures

such as those illustrating this chapter.

2.2.4 Problems with using MPI

The most painful aspect of using MPI is the datatype definition. The facilities

provided for constructing user defined datatypes are powerful but awkward to

use. To define a simple struct of a float and an lilt takes about 10 lines of

code and provides plenty of scope for mistakes.

The least pleasant aspect of message passing is the extra code required for

computing offsets into distributed data structures. More code is also needed to

handle special cases such as how a neighbour exchange should work with less than

three elements on a process.

2.3 Measuring performance

To compare predicted with actual timings, a reliable method for obtaining the

actual timings was needed. The approach involved a mixture of automatic pro-

filing (for the times of the MPI functions) and user profiling (for the times of the

different application phases).

The automatic profiling was accomplished using the MPI profiling library.

The user profiling was done using some simple macros:

time_set(MPI_WtimeO);

II Input

time_mark(' 'input'')

II Broadcast arguments

time_mark(' 'arg broadcast'');

II Compute results

time_mark(' 'compute'');

II Write output

time_mark(' 'output'');

time_total (MPI_WtimeQ);

time_trace(' 'test'');

These produce a trace file for each run. A separate tool was written to perform

successive runs with a range of data sizes and number of processes and to collect

the results.

21

Timing results from a single run may be displayed using the timing diagram

tool from the HASE simulation environment [31] described in chapter 6. This

shows a zoomable timing diagram with bars for each of the process states.

2.4 	Comparing single run predictions with meas-
urements

The obvious way to check the accuracy of the prediction is to time an actual run

and compare it with the predicted total time, e.g. (the numbers in the following

tables are for illustration only).

Predicted time Measured time Ratio
1.23 1 	2.46 2.0

It is possible that this method could indicate that a prediction is perfect

whereas in fact a gross overestimate for one part of the time may be serendipit-

ously compensated for by an underestimate for another part. To gain a deeper

perspective into the accuracy thus requires looking at more detail than the total

run time.

At the next level of detail, the measured/estimated times for phases of the
application may be compared.

Phase Predicted time Measured time Ratio
Load 1 3 3.0
Bcast 0.3 0.3 1.0
Computel 3 1 0.3
Compute2 2 2.4 1.2
Gather 7 3.5 0.5
Wr Results 0.32 0.35 1.1
Total 14.6 10.2 0.7

This gives more detail on where the technique is over or underestimating the

time. However, even this amount of detail is not sufficient to evaluate whether

the technique could be gainfully applied to developing a new application, and it is

necessary to look at a finer level of detail to check that the models of the building

blocks of an application are applicable.

At this level the possibility of measurements interfering with the system

emerges and the quantity of data starts to explode as the comparison is between

tracefiles of predicted and actual execution. Each iteration of each loop is included

in the trace. There is too much data to display in a table and it is difficult to

Wd

provide any meaningful comparison. Displaying both traces as timing diagrams

gives a visual comparison but extracting numbers is more difficult.

To illustrate the problem, part of a sample trace file from Upshot's ALOG

format [7] is given below. On each line, the first number is the event type (e.g.

1 = start broadcast); this is followed by the process number and three zeros (left

for expansion). The last number on a line is the time stamp, and this is followed

by the name of the event.

1 1 0 0 0 680407 start broadcast

2 1 0 0 0 682514 end broadcast

7 1 0 0 0 682693 Start Sync

1 3 0 0 0 682774 start broadcast

2 3 0 0 0 683227 end broadcast

7 3 0 0 0 683322 Start Sync

2 0 0 0 0 687328 end broadcast

7 0 0 0 0 687417 Start Sync

8 0 0 0 0 690727 End Sync

3 0 0 0 0 690796 start compute

8 2 0 0 0 692187 End Sync

3 2 0 0 0 692361 start compute

8 1 0 0 0 695886 End Sync

The problem would be somewhat simplified if the predicted and measured

tracefiles differed only in the values of their timestamps, but the asynchronous

nature of parallel systems means that the ordering of tracefiles often varies. All the

Cowichan routines were written to use deterministic patterns of communications

which enables traces to be compared using the utility described below.

2.4.1 A trace comparison utility

To address the problem of comparing predicted and measured executions, a trace

comparison utility was written in C++. Figure 2.10 illustrates the technique.

The utility is used from the Unix command line:

cmptrace <infileA> <infileB> <outfile>

The input format is trace files in SIM++ format [56]:-

$type s

State COMPUTE SEND RECV REDUCE BARRIER BCAST GATHER \

23

Measurement
	

Prediction

pOat 0.00: COMPUTE 	 p0 at 0.00: COMPUTE
p0 at 1.23 BARRIER 	 p0 at 0.78: BARRIER
p0 at 1.34: COMPUTE 	 p0 at 1.02: COMPUTE
p0 at 3.80: WAIT 	 p0 at 2.30: WAIT:

p0 at 4.00: DONE
	 p0 at 3.00: DONE

cmptrace

A

p0 COMPUTE: 1.23 0.78 0.63

p0 BARRIER :0.110.242.18

p0 COMPUTE: 2.46 1.28 0.52

p0 WAIT: 0.20 0.70 3.50

Fi

p0 COMPUTE: 3.69 2.06 0.56

pO BARRIER: 0.Il 0.24 2.18

p0 WAIT: 0.20 0-70 3.50 COMPUTE: 3.69 2.06 0.56

BARRIER :0.110.242.18

WAIT :0.200.703.50

Figure 2.10: The trace comparison utility cmptrace.

24

ALLGATHER ALLREDUCE COMMSPLIT DONE

$bars

p[O] State

pCi] State

$events

u:p[0] at 0.0:

u:pCO] at 1.0:

u:p[0] at 2.0:

u:pIO] at 3.0:

u:pIO] at 4.0:

u:p[0] at 5.0:

u:p[i] at 0.0:

u:p[l] at 1.0:

u:p[1] at 2.0:

u:p[l] at 3.0:

u:p[1] at 4.0:

u:p[1] at 5.0:

II

P BARRIER

P REDUCE

P COMPUTE

P BARRIER

P REDUCE

P COMPUTE

P BARRIER

P REDUCE

P COMPUTE

P BARRIER

P REDUCE

P COMPUTE

There are several output formats, with varying levels of detail. The first (A
in the diagram) is a line by line comparison of all the events in the trace file. It
has one line for each line in the input trace files, so may be very large.

pLO] BARRIER <tl> <t2> <t2/tl> <trclineno>

pLO] REDUCE <tl> <t2> <t2/tl> <trclineno>

pLO] COMPUTE <tl> <t2> <t2/tl> <trclineno>

p[O] BARRIER <tl> <t2> <t2/tl> <trclineno>

p[O] REDUCE <tl> <t2> <t2/tl> <trclineno>

pLO] COMPUTE <tl> <t2> <t2/tl> <trclineno>

II

pCi] BARRIER <tl> <t2> <t2/tl> <trclineno>

p111 REDUCE <tl> <t2> <t2/tl> <trclineno>

pCi] COMPUTE <tl> <t2> <t2/tl> <trclineno>

pCi] BARRIER <tl> <t2> <t2/tl> <trclineno>

pCi] REDUCE <tl> <t2> <t2/tl> <trclineno>

pCi] COMPUTE <tl> <t2> <t2/tl> <trclineno>

II 	..

The next output format (B) collates totals for each process in each state:

25

p[O] BARRIER <ti> <t2> <t2/tl>
plO] REDUCE <ti> <t2> <t2/tl>

plO] COMPUTE <ti> <t2> <t2/tl>
ph] BARRIER <ti> <t2> <t2/tl>
phi] REDUCE <ti> <t2> <t2/tl>
phi] COMPUTE <ti> <t2> <t2/tl>

and the last summary format (C) gives totals for the states across all processes:

BARRIER <ti> <t2> <t2/tl>
REDUCE 	<ti> <t2> <t2/tl>
COMPUTE <ti> <t2> <t2/tl>

The trace comparison utility uses the SIM++ trace format but could be ex-
tended to use other formats such as ALOG or Pablo.

The utility enables detailed comparisons of prediction techniques with actual

measurements, and helps to pinpoint the failings (and successes) of the prediction
techniques. It may also be used to compare the detailed performance of runs of the
same program on different machines. Another use is determining the repeatability
of measurements by comparing successive runs on the same machine.

Only one timing (predicted or measured) is given for each phase even though
in a MIMD system each process will finish a phase at a different time. The time
for a phase is taken to be the maximum time taken by all processors in the group.

2.5 Multiple runs

The designer of a parallel program may be designing for a fixed machine and
problem size, in which case a performance prediction technique which provides a
single number for the run time would suffice. However it is more likely that the
design will have to encompass a range of machine and/or problem sizes leading
to 2D graphs or 3D surfaces.

In addition, each sample point on the surface will be taken from a distribution
(since delays will vary statistically), so the comparison must be between two 3D
probability distributions.

Experiments to measure how performance varies with different data and ma-
chine sizes were controlled using an experimentor routine written using Pen.

Comparison routines were written to compare two graphs, returning a third
graph giving the ratio of the first two.

26

Another approach would be to fit curves to both sets of data and compare

the coefficients. However this would involve guessing the form of the equations,

which may well be very complicated (and possibly non-linear).

The following subsections describe two utilities developed for displaying and

comparing 3D surfaces obtained from multiple run experiments.

2.5.1 mkgraph: a utility to generate graphs

mkgraph is a utility for generating 3D surfaces. It is used from the Unix command

line:

mkgraph <infile> <outfile>

The input format is:

* <nprocsl> <ndatal>

<phase1naie> <time>

<phas e2naine> <time>

<totalname> <time>

<nprocs2> <ndata2>

<phase iname> <time>

<phase2name> <time>

<totalnaine> <time>

etc

As output it generates a separate data file for each phase which includes the

speedup from the single processor time. It also produces GNUplot script files for

displaying the data as a 3D surface.

2.5.2 cmpgraph: a utility to compare graphs

A utility for comparing two 3D surfaces was developed, cmpgraph. The utility is

used from the Unix command line:

cmpgraph <infileA> <infileB> <outfile>

The format of the two inputs is the same as for mkgraph. The utility computes

the ratio of the two input surfaces, and generates the data files and 3D GNUplot

scripts for displaying them.

27

2.6 Conclusion

This chapter has described the suite of real MPI programs used for evaluating the

design techiques described in later chapters. It is difficult to assess the accuracy

of a prediction. The ultimate comparison is between predicted and measured

trace files, so a tool was developed to perform this detailed line by line compar-

ison (section 2.4.1). Scalability comparisons are also important, and tools were

developed for controlling multiple runs (section 2.5) and for comparing the timing

results (section 2.5.2).

Chapter 3

The Performance
Characterisation of MPI

Functions

It is unusual for detailed performance information to be available to a parallel

programmer setting out to design a program. This is rather a serious omis-

sion, since the point of using a parallel machine is to obtain better performance,

and without performance information it is hard to make design tradeoffs. This

chapter presents a method for characterising an MPI implementation which pro-

duces approximate equations for the behaviour of each function. The result is an

automatically generated LATEX datasheet for the MPI implementation. A sum-

mary file suitable for computer aided performance prediction is also produced by

the routines.

3.1 Introduction

A programmer sitting down to design a program for a parallel machine with (say)

an MPI manual will encounter design choices with precious few design guidelines.

For example, if the program makes extensive use of triangular matrices, is it

worth redistributing the data to balance the computation load? Or would the

cost of redistribution outweigh the benefits of balanced load and make it faster

to suffer the imbalance? The answers to such questions, of course, depend on the

relative costs of computation and communication which in turn depend on the

architecture. Many attempts at characterising architectures have been made and

abstract "bridging models" have been proposed to simplify life for programmers.

Examples include PRAM (shared memory, communication is free) and LogP. As

Foster notes [16], they are not especially applicable to program writing. None of

the models will tell a programmer that (say) an MPLBarrier() executes instant-

29

aneously while an MPI_Bcast() requires O(N*P) time on the chosen machine.

What would be useful in practice is a table giving the performance of each

MPI_ function as an equation with the amount of data and number of processes

as parameters. Any such equation is bound to be a simplification, so information

about the accuracy of such estimates should also be included. It is not obvious

what form the equations should take. There is a compromise between accuracy

and usability; an equation such as:

\ t = 0.15644 + (NP rocs)22345 * 1.23456 + 'N data) 1.0017

may describe the behaviour of a function accurately but would be cumbersome

to use in practice.

The best set of design rules would assign simple costs (like 1, N, 0) to opera-

tions enabling rapid paper calculations to resolve design choices like the triangular

matrix dilemma above. The most familiar model following this path is the PRAM

which assigns zero to the communications cost. Unfortunately such simple design

rules are unlikely to describe reality so something more complex is needed. It

is interesting to reflect that such informal design rules govern programmers at

present, as in "I'll use an asynchronous send here since it will be 'much quicker'

than a standard send"; "better not put a barrier in this loop as it will dominate

the time".

Simple latency and bandwidth measurements are frequently quoted for ma-

chines, for example Nog and Kotz [45]. Ciula [34] compared latency and bandwith

for workstations connected by ATM, FDDI, FCS and ALLNODE switches. These

were point to point measurements between two machines:

Latency (us) Bandwidth (MB/s)
Network PVM 	MPI PVM 	MPI
ATM 677 702 9.2 9.2
FDDI 913 1115 6.4 7.8
FCS 944 1253 6.4 6.9
ALLNODE 546 546 3.7 4.3

Actually making use of this information is difficult. It shows the cost of boun-

cing a message from point to point, but not the delay the sender undergoes before

the next instruction. It also provides no clue as to the performance of collect-

ive communications or to the performance of a set of point to point operations

performed concurrently (as in for example a boundary exchange).

The rest of this chapter describes MPI characterisation routines aimed at

providing more concrete information to guide designers. Section 3.2 discusses

30

alternative ways of presenting performance information. Section 3.3 describes

how the communications functions are timed. Section 3.4 discusses some of the

problems inherent in timing communications on parallel machines. Section 3.5

explains how the data sheets are generated, with some sample extracts given in

section 3.6; finally section 3.7 concludes.

3.2 Presenting performance information

Three ways of presenting the performance information for MPI functions were

considered; interpolating directly from measurements, using a curve fitting tech-

nique, and categorising functions into a few simple buckets (such as "quick" and

"slow"). A curve fitting technique was chosen as it provides a balance between

simplicity and accuracy.

3.2.1 Interpolation from measurements

If enough data values were to be measured for the required architecture, then the

performance for a particular function could be read from a table (or extrapolated

from adjacent timings). This would be cumbersome without a computer tool to

help, but could be approximated by referring to a graph of measurements.

3.2.2 Best fit equations

Curve fitting techniques exist to fit an equation to a set of measurements. The

best form of the equation is not obvious; the aim is a simple and accurate equation.

A simple form was tried initially, with three coefficients:

t == c_coeff + Nprocs * p_coeff + Ndata * d_coeff

This plane didn't fit the curved surface of many of the collective routines (see

figure 3.1) so an extra term pd_coeff was introduced:

t = c_coeff + Nprocs * p_coeff + Ndata * d_coeff + pd_coeff * Nprocs * Ndata

This improved many of the fits (at the cost of making the equation more

complex), but was not sufficient for functions whose time grew with log(Nprocs),

so an extra term was introduced:

t = c_coeff+Nprocs *p_coeff+Ndata *d_coeff+pd -co eff*Npro *Ndata +logp_coeff*log (Nprocs)

This made the fits better (by eye), but some functions had a dependency on

109(N08) * Ndata, so yet another term was added.

31

flme
6

5

4

3

2

0

-1
8

500 1

1500 2000 2POO
Message size (no 	

4000

No of processes

Ihome/fred/timing/testfalltoall
Best fit fit -----

Figure 3.1: Example measured times for MPI_Alltoall 0 with fitted plane.

By this stage the equations gave reasonable fits in all cases measured (on

Sun networks and the T31)) but the equation was too complex to allow quick

estimates.

Another approach, suggested by Marr [40], was that rather than have one form

of equation for all functions, it might be better to try many different, simpler,

equations and see which fits best. The equations for the time of an operation

in terms of the number of processes in the group p and the message size d take

the form of a constant factor, a "startup parameter" dependent on the number

of processors, and a "data dependent" factor dependent on the message size and

the number of processors:-

t(p, d) = ccoeff-+- scoeff* startupfn(p) + d_coeff* datafn(p,d)

Ip
startupfn(p) = one of log(p)

datafn(p,d) = one of
pd
ld
p2 d

Thus a total of 12 curve fits are performed using every combination of the

startup and data functions and the best fit is selected. These functions were

chosen as they provide reasonable fits for all cases thus far encountered. This

approach gives simple functions with three parameters, e.g.

t = 14 + 123 * log(Nprocs) + 1.2 * Ndata * log(Nprocs)

32

There is an issue of the number of significant figures which should be quoted.

An estimate of the standard error of the parameters may be made if the error

of the measurements is known, and this can be used to give expected minimum

and maximum times (Lmin and Lmax equations). This standard error may be

used to guide the accuracy of quoted figures. An alternative, justified because it

makes quick rough-and-ready calculations easier, is to round the coefficients to

the nearest order of magnitude, so the above equation becomes:

t = 10 + 100 * log(Nprocs) + 1 * Ndata * log(Nprocs)

An attractive way to do this is to use the logarithm of the time (in jts) rounded

to the nearest integer. This gives buckets at 1s, 10is, lOOps, lms, lUrns etc.

which allows quick and simple performance estimates to be done, accurate to

within an order of magnitude.

3.2.3 Categorisation of functions into "buckets"

Functions could be placed into one of two categories - "Quick" ones and "Slow"

ones, with some threshold used to differentate between the two (say lOOps). This

has the advantage of being very simple to use but lacks the subtlety required.

3.3 Measuring MPI performance

Characterising the behaviour of the MPI functions is straightforward in principle;

measure the time to complete N calls and take the average. The parameters of

interest are the number of processors and the size of the messages.

To time an operation (e.g. MPLBcastO), a short function is written:-

void time_Bcast(int nuinelems, mt iter, double &time)

{

mt *buffer = new int[numelems];

MPI-Barrier(comm);

double el = MPI_WtimeO;

II Operation to time

MPI_Bcast(buffer, nuinelems, MPI_INT, 0, comm);

time = MPI_Wtime() - el;

33

time = getmax(time);

delete buffer;

}

The MPI_Wtime() function is used to time the operation. The processes are

synchronised beforehand using an MPI_Barrier. This is not perfect, as some pro-

cesses may return from the barrier before others, so an alternative synchronisation

technique has also been used which first determines the clock skew between dif-

ferent processes' MPI_Wtime 0 values, then busy waits until the timer reaches an

agreed value. This provides synchronisation to a resolution of the short time

required to read the timer, but just using MPLBarrier is more convenient in
practice.

The time is measured from this synchronisation point until the last process

has returned. The getmax() function uses an MPI_Reduce across all processes to

determine this maximum delay and the resolution of the timer is reported from

the MPLWtick() function.

The parameters are the size of the message and the number of processes in the

current communication group comm. These are varied across the range of values

of interest on the machine, and each timing is repeated to produce a 3D set of

measured times of the operation on the machine.

A separate time_. . . routine is needed for each MPI function. The routine:-

void time-routine(
op_fn op.

char *fname,

mt vary_nprocs,

mt vary_nelems

);

calls the basic operation timing function, varying the number of processors and

data size. Timings are repeated niters times to obtain the minimum, maximum

and median values at each data point. (The median is used in place of the mean

as it is less susceptible to outlying points).

Operations fall into four classes -

. point to point routines (vary data size),

. collective routines (vary data size and number of processors),

barrier-type routines (vary number of processors) and

34

. local operations (vary nothing).

For blocking point to point operations, the time for the send or receive to

complete is taken, where both sender and receiver have been synchronised with a

barrier beforehand. It is also necessary to measure the receive time of a message

which has already arrived. This is obtained by delaying the call to MPIJtecv by

more than the expected time to transmit the message. In figure 3.3 Tsend is the

time the sender is delayed; Trecv is the time the receiver is delayed when the

send and receive start at the same time. Trecvmin is the best possible receive

time, where the message send was deliberately started in advance in order to hide

the network latency. With these values, it is possible to calculate the expected

delays of any send/receive combination.

For the non-blocking operations, two times are recorded; the time to post the

send or receive and the time for the subsequent MPI_Wait 0 to complete. An-

other figure which is useful is the time for which useful work may be performed

before calling MPI_Wait without imposing any extra delay. This is measured by
using MPI_Test to poll the request. Figure 3.4 shows the times measured for non

blocking point to point routines. Tisendi is the time to post an asynchronous

send. Tisend2 is the time for the asynchronous send to complete. Tisendover-
lap is the amount of time available for hiding computation between posting the

send and it completing. Similarly Tirecvl is the time to post a receive, Tirecv2
is the time for it to complete and Tirecvoverlap is the amount of useful work
which can be hidden.

These point to point measurements are taken using just two processes on a

quiet machine. They do not take message contention into account. To incorporate

message contention, variants of the point to point measurements are also taken

where half of the processes send to the other half. This leads to more pessimistic

estimates of point to point communication times. A random permutation is used

to select which pairs of processes communicate. It would also be possible to take

measurements of particular point to point patterns such as neighbour exchanges

on meshes. The random pattern was chosen in preference to this as it acts as a

likely average time for such communications.

Collective operations will take different times for the different processes in-

volved (figure 3.2), but to make the problem tractable the time measured is the

time between the first process starting and the last process finishing. Some oper-

ations have more parameters than just the number of processes in the group and

the data size. For MPI_Commsplit, there is a choice of parameters to measure,

since a group may be split in any fashion according to the key. The one measured

35

here is the time to split a group of size N into two. For MPI_Reduce, the time

for the reduction function ought to be part of the equation but initially only the

standard addition operation is used.

Process number:
0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 	11

ITmin

Tmax

Operation taking randomly distributed times

Operation star

Operation time increases with process number

Figure 3.2: Possible discrepencies between collective timings made on different
processes.

Detailed characterisation of the performance of subgroups was not carried out,

as all of the test routines just made use of the global group of all processes

MPI_COMM_WORLD. However, characterising the performance of these subgroups

would be an interesting extension as it would quantify the benefits which could be

expected from exploiting the (hopefully) faster performance of smaller, logically

independent groups of processes.

One simple way of incorporating this into the measurements would be to

repeat each collective measurement for a group of size P with an equivalent

measurement using two groups each of size P/2 concurrently. The way in which

the group is split is likely to have an effect on the performance, so it would

be necessary to perform the obvious splits (randomly selected, first and second

half, alternate). This would only give information for splitting a group into two.

Repeat measurements would be needed for four, eight etc., giving a large amount

of information in the datasheet.

Characterising the general case, where different subgroups perform entirely

different operations, is difficult and in practice it would probably be simplest to

use the models of the supergroup instead. Further work would be required to

devise a usable general model for independent subgroups.

36

process A 	 process B

Time

MPI_BarrierQ; 	 MPI_BarrierO;

Tsend
	

A MPI_RecvO; -

noxt_instro;
	 Trecv

V

next_instrO;

MPI_BarrierQ; 	 MPI_BarrierO;

MPI_SendO; A Ts end
	

delay_for_TrecvQ;

next_instro;

4MPIiRecv();
Trecvmin

Figure 3.3: Times measured for blocking point-point operations.

process A process B

Time
MPLRequest req; MR—Request req;
MPI_Barriero; MPI_BarrierO;

MPI_Isend(..., &req)-__f__ req);A Tisendi TirecvlA MPf_Irecv(..., &req);

MPI_Wait(&req, MPI 	&req, ...);
Tisend2

Tirecv2

next instro;

next instrO;

MPI_BarrierO;

Tisend2
A do_useful_worko;

MPI_Wait(&req, ..);

next_instrO;

MPlBarrierO;

Tirecvl MPI_Irecv(..., &req);

do_usefuLworkg;
Tisendoverlap 	

Tirecvoverlap 	 Tirecv2

MPI_Wait(&req,

next_instrO;

MPI_Isend(..., &req); ¶ Tisendi

Figure 3.4: Times measured for non-blocking point-point operations.

37

3.4 Pitfalls

The timings have to be run when no other users are loading the system. These

can seriously affect the results, by several orders of magnitude. This also affects

the validity of predictions made using the performance models of the building

blocks, since they will be unreliable on a loaded system.

There will also be variability on an unloaded system caused by interrupts,

disk accesses not taking a uniform time and virtual memory paging. This may

be incorporated into the measurements by repeating each timing and noting the

spread.

On some machines, the time for message passing operations may vary by orders

of magnitude depending on where the message happens to be in the memory

hierarchy. This is a very hard variation to estimate in practice, since it depends

on where the compiler puts data, the exact sizes of the various levels of caches,

the buses between caches, the main memory system organisation and access time,

and whether the data in the message has been recently accessed.

Rather than attempt to solve the Sisyphan problem, a decision was made to

use freshly allocated memory for all timings of the routines. Since newly allocated

memory will not have been read from by the timing program, it will reside in main

memory rather than cache. Thus all MPI time measurements given are for the

case where the data has not been cached, and may be more pessimistic than is

observed in actual programs.

It would be possible to repeat all measurements for the case where the mes-

sages are cached, increasing the complexity of the data sheets. The question then

arises: how will the user know which model to use? Without performing a full

system simulation, it is very difficult to tell.

3.5 Data sheet generation

The generated data sheets give a page for each MPI function measured. Examples

are given in section 3.6 below. Each page has the sections:

Operation

Full timing graph

Fitted curve

In addition, there are summary tables at the start. The source code for the

routines is given in [17]; the sections below describe how data sheets are generated.

3.5.1 Curve fitting

To obtain an equation summarising the performance of each function from the

measured data, a linear least squares technique is used. The result is a curve

for point to point operations and a surface for collective routines. As explained

above, the form of the equation to fit is:

t = c_coeff + s_coeff * [start-mode] + d_coeff * [data-mode]

where start-mode is one of (nprocs, log(nprocs), nprocs') and data-mode is

one of (ndata, ndata * nprocs, ndata * log(nprocs), ndata * nprocs').

The least squares curve fit is run using all combinations of start-mode and

data-mode to see which fits best (i.e. has the smallest chi-squared value).

The "goodness of fit" parameter Q is also recorded to give an indication of

how accurately the equation fits the measured data. The standard error of each

parameter yields equations giving the maximum and minimum expected times.

This should only be used as a rough guide, as there is no guarantee (or even

likelihood) that the measured data conforms to a normal distribution. However,

it is useful to have at least some indication of expected confidence intervals.

3.5.2 Implementation of the surface fit routine

The input to the curve fitting routine is a set of measurements giving the group

size, the data size, the average time and an estimate of the error of each meas-

urement. The results are the coefficients of the equation, with estimates of the

errors for each coefficient, e.g.

Tbcast(PS) = (100 ± 10) + (6 + 0.8) x nprocs + (0.04 + 0.002) x nprocs x ndata

To perform the curve fit, it is convenient to write the equations in matrix form

and then apply a matrix solver to obtain the coefficients:

M
y(x) = 	akXk(x)

k=1

where x is the vector of input parameters (nprocs, ndata) and X1 (x), ..., XM (x)

are the functions of x.

The merit function (x2) is

N

x2 = 	
[Yi - >Izi akXk(x)]

cT i=1

39

From the design matrix the normal equations may be derived. These are

solved using Gauss-Jordan elimination to give the vector of coefficients, the chi-

squared value and the vector of coefficient variances.

This process is repeated for all possible combinations of the Xk functions and

the combination which yields the lowest chi-squared value is chosen.

3.5.3 Units and Significant Figures

The simplest unit of time is absolute time for a specific architecture. Unless

there are real time constraints, however, it is more useful to know a time relative

to the time to perform arithmetic (or memory access) operations. The times

could be given in processor cycles, but this wouldn't mean that much because

of the memory hierarchy. Hence times are given in milliseconds or microseconds

(depending on a compile time flag).

The appropriate number of significant figures to quote in the datasheet is de-

batable. One extreme is to round all coefficients to the nearest order of magnitude.

This makes rough and ready estimates of a function's speed very straightforward.

The other extreme is to use as many figures as are justifiable given the stand-

ard errors of the coefficients. The solution chosen was to let the user choose the

number of significant figures at compile time.

3.5.4 Output formats

The datasheet generation is performed by two routines;

rawtiming is an MPI program which gathers the data, and

dsheet performs the curve fitting and generates the latex document.

The split into a data gathering program and a data analysis routine makes

performing several analyses on the same data more convenient than if the two

routines were combined. Figure 3.5 shows the connections between the routines.

3.5.4.1 Output from rawtiming

For each operation measured, two data files are produced; one for large mes-

sage sizes and one for small message sizes. The reason for separating small and

large message sizes is that there is often a nonlinearity in the performance curve.

Performing separate fits for small and large messages makes for more accurate

equations. The threshold between small and large messages may be varied; by

default it is set at 32 integers, or what may reasonably be regarded as parameters

lul

(routine to time MPI routines)

Timing files
	

List of data files
(* data I) 	 (filelist.lst)

generate data sheets)

Figure 3.5: Datasheet generation routines.

41

rather than a block of data. For example, the two data files for the ailgather
operation are called:

aligather . data_i

aligather. data_s

The format of the data files is

2 32 0.000138214 0.0000045

2 64 0.000146659 0.0000043

2 128 0.00016432 0.0000041

2 256 0.000201307 0.0000035

2 512 0.000270488 0.0000065

432 etc

with the columns storing the number of processes, the message size, the me-

dian time taken and an estimate of the measurement error.

The file filelist . 1st is also generated; it stores the parameters, date on

which the measurements were taken, and a list of the routines which were meas-

ured. It is used by the dsheet program to generate the datasheet.

3.5.4.2 Output from dsheet

The dsheet program turns the raw data into a latex file datasheet .tex along

with a set of GNUplot scripts for displaying the measured data and the approx-

imated curve fits. It expects the file filelist . 1st and all the raw data files to
be in the current working directory.

3.5.5 A simple calculating utility

As an alternative to using the datasheets by hand, a simple tool was developed

to evaluate the equations for a given operation, data and group size.

The routine reads in the results of dsheet and presents a simple command
line interface. A sample session is:

[balnagowan] fwh: timecaic summary. 1st

Simple utility for estimating the time of MPI

functions based on the suinmary.ls-t file produced by

42

rawtiming.

Enter <name> <groupsize> <datasize>

>

> bcast 16 1000

* t = (0.000106549 +1- 1.23071e-05) +

* 	(6.35065e-06 ±1- 7.83058e-07)*nprocs +

* 	(4.39693e-08 +1- 1 .75882e-09)*nprocs*ndata

Times (s): min=0.00086141 avg=0.000911668 max0.000961926

>

> alitoall 16 1000

t = (1.41845e-05 +1- 4.80534e-07) +

* 	(4.61065e-05 +1- 2.9256e-06)*nprocs +

* 	(2.44134e-07 	8.85081e-09)*nprocs*ndata

Times (s): min=0.00444749 avg=0.00465803 max=0.00486857

3.6 Example data sheets

Table 3.1 shows an excerpt from the summary part of a data sheet (for the Cray

T3D); a detailed page is shown in figure 3.6. A complete data sheet document is

included in appendix B.

3.7 Conclusion

This chapter has presented a routine for characterising the performance of MPI

functions. The approach is a compromise between usability and accuracy. The

aim has been to allow design for specific architectures based on measured data

rather than guesswork. Computer based design tools using this data, as an al-

ternative to pencil and paper, are the subject of the next three chapters.

43

aligather

eligether (small meg dcc) --
Beet in (()

Tmax

I.!

10 -------- --
15

Message size (no of 40~a)25

30

15 Nootprocesses

eligether (Ie:msgeize

:i::

Time (seconds)
0.045 -
0.04

0.035
0.03

0.025
0.02

0.0 15
0.01

k
-O 1-- 1—,-.

esses
4000

T 	 - f (50±20)+(40±1)xieprocs+(1±0.9)xndaa 	 if ndala <= 32
olioothnr(p2) - 	(4 ± 20) + (40 ± 3) x niprocs + (0.3 ± 0.009) x nprocs x ndata if ndaa > 32

19

Figure 3.6: A page from an automatically generated MPI data sheet.

MPI Function Expected time (us) Goodness of fit (Q)
send 70+ 3 x d 0.61

ssend 100+ 2 x d 0.84
rsend 70+ 3 x d 0.6

isendi 70+ 3 x d 0.47
isend2 20 + 0 x d 0.93

isendoverlap 3+ 0 x d 0.97
recv 70+ 5 x d 0.46

recvmin 50+ 3 x d 0.43
irecvl 30+ 0.4 x d 0.96
irecv2 60+ 3 x d 0.57

irecvoverlap 0.5+ 1 x d 0.043
sendrecv 100 + 5 x d 0.57
pingpong 200 + 8 x d 0.52

alItoall 10 + 50 x p + 0.2 x p x d 1
gather 80 + 8 x p + 0.07 x p x d 1

aligather 4 + 40 x p + 0.3 x p x d 1
reduce 200 + 10 x p + 0.6 x log(p) x d 1

alireduce 300 + 20 x p + 0.9 x log(p) x d 1
- 	bcast 100+ 6 x p + 0.04xpxd 1

Table 3.1: Summary table for Small messages (32 integers or less). p is the
number of processors in the group and d is the message size (number of integers)

45

Chapter 4

Simple Performance Estimates of
the Cowichan Problems

The data sheets described in the previous chapter may be used as they are for

manual estimates of performance and scalability. However this becomes imprac-

tical for all but the smallest programs, so this chapter looks at a way of feeding

the datasheets into an equation and graph plotting program. This study was

performed to investigate when such a minimalist approach to modelling may be

applied.

Section 4.1 describes the basics of the approach; section 4.2 shows how data

sheet results are integrated; section 4.3 describes the models of the Cowichan

problems and section 4.4 discusses the results.

4.1 The models

Simple performance models of the MPI Cowichan suite were constructed using

the GNUplot package. GNUplot turned out to be a powerful tool, providing

functional composition to express hierarchy, as well as providing graphs.

The aim of this work was extremely rapid construction of models with gross

assumptions to see how valuable such an approach can be, contrasted to more

accurate (and time consuming) modelling.

In the simplest version, computation and communications costs were denoted

by parameters Teompute and Tcomms (in section 4.2 the single communications para-

meter is replaced by the set of equations from a data sheet). Collective operations

were modelled using simple combinations of the parameters, e.g.

109(N08) * Tcomms * Ndata

The computation and communication performance parameters for all models

are specified in a GNUplot script file:

tcomnis = 10.0

tcompute = 1.0

tbcast(p,d) = tcomins*d*log(p)

tallreduce(p,d) = tcornnis*d*log(p)

talltoall(p,d) = tcomms*d*log(p)

talltoallv(p,d) = tcomnis*d*log(p)

talltoallvi(p,d) = tcomnis*d*p

tallgather(p,d) = tcomins*d*log(p)

tallgatherv(p,d) = tcomins*d*log(p)

This gives the expected time for the communications functions MPI_Bcast,
MPI_Alltoall etc. in terms of the data size d and the number of processors p.

The parameters tconims and tcompute give the expected times in microseconds

to send an integer or perform a computation step.

Individual models include these top level parameters.

4.1.1 An example: the mandeibrot set

The model for the mandeibrot set example appears as:

model of mandel performance

tmandelcalc 	= tcompute * 8 * maxmandeliter

tmandel(p) 	= ncols * (nrows/p) * tmandelcalc

tmandelcalc is the time required to compute a single pixel of the set, given

here as eight compute steps per iteration multiplied by the maximum number of

iterations. tmandel (p) is the estimated time to compute the set on p processors

where each processor has an equal slice of the matrix to work on (i.e. a slice of

size ncols * (nrows/p)).

Because these equations are included in a script file for GNUplot, a graph

(figure 4.1) may be produced with the line:

plot tmandel(x)

This just models the computation to be done, but the communication must

also be accounted for. This leads to a model such as:

model of mandel performance (2)

tbroadcast(p) 	= tbcast(p,8)

tgatherresults (p) = tgather(p,ncols*nrows/p)

tmandelcalc 	= tcompute * 8 * maxmandeliter

47

2.Se+07

2e+07

tmandel(x)

158+07

0

E

le+07

5e+06

0
50 	 100 	 150 	 200 	 250

Number of Processors

Figure 4.1: Simple plot of expected mandeibrot performance.

tmandelcomp(p) 	= ncols * (nrows/p) * tmandelcalc
tmandel(p) 	= tbroadcast(p) + tmandelcomp(p) + tgatherresults(p)

The components are shown in figure 4.2, with tcoinxn set to 1000.

2.5e+07

tmandel x -
tgatherresults s
tmandelcomp x

tbroadcast 0- ----------

2e+07

1.5e+07

0

E

le+07
I-.

5e+06

50 	 100 	 150 	 200 	 250
Number of Processors

Figure 4.2: Time plot of expected mandeibrot performance with communications
added.

Speedup curves may also be plotted (figure 4.3):

plot tmandel(1) / tmandel(x)

Figure 4.4 shows the speedup curve with the compute times stepped from 1.0

to 100.0 and the communications time left at 1000.0.

48

250

200

Ideal

150

0

0.
C')

100

50

0
50 	 100 	 150 	 200 	 250

Number of Processors

Figure 4.3: Speedup plot of expected mandeibrot performance with communica-
tions.

Speedup

Spe

250

200

150

100

50

0

100
10

lIe

250

Figure 4.4: Speedup plot: tcompute varied from 1 to 100.

All of these graphs may be produced extremely rapidly from a basic model

of a parallel program. Given particular values of tcompute and tcomxns it is

straightforward to determine whether a particular algorithm will scale well on a

parallel machine. The difficulty is knowing what values to use for tcompute and
tcomrns for an architecture. The simplistic estimates of collective performance

used above are not very believable, so a method using models derived from data

sheets is described in the next section.

4.2 Using data sheet models

The MPI datasheet generator described in chapter 3 produces a set of equations

characterising the MPI communications performance.

The measured model for the Cray T3D is shown below (times are in micro-

seconds; p is the number of processors in the group and d is the message size).

Cray T3D model

talltoall(p,d) = 40*p + 0.3*p*d

tallsend(p,d) 	= 40 + O.l*p + 0.1*d

tgather(p,d) 	= 200*log(p) + 0.0009*p*p*d

tallgather(p,d) = 40*p + 0.3*p*d

treduce(p,d) 	= 300 + 2*p + 0.6*log(p)*d

tallreduce(p,d) = 300 + 6*p + 1*log(p)*d

tbcast(p,d) 	= 100 + 	+ 0.2*log(p) *d

tbarrier(p) 	= 40

For comparison, the model for a network of 8 Sun SPARCstation 5 worksta-

tions connected using ethernet is:

Network of Workstations model

talltoall(p,d) = 2000 + 4000*p*p + 2*p*p*d

tallsend(d) 	= 2000 + 1*d

tgather(p,d) 	= 30000*log(p) + 4*log(p)*d

tallgather(p,d) = 8000*p + 4*p*p*d

treduce(p,d) 	= 20000*log(p) + 6*log(p)*d

tallreduce(p,d) = 10000 + 500*p*p + 2*d*p*p

tbcast(p,d) 	= 2000 + 700*p*p + 1*p*d

tbarrier(p) 	= 9000*p

This may be incorporated into the performance models for programs, effect-

ively instantiating measured values for tcomm. Figure 4.5 shows the expected

50

speedups using the Cray model for communications and varying tcompute from
0.01 to 1.0. Note that a slowdown is expected at low values of tcompute; fig-

ure 4.6 shows that the minimum time occurs at 70 processors. Figure 4.7 shows

the expected speedup using the network of workstations performance model.

Speedup -

Speedup

90 -
80
0-

80
70
60
50
40
30
20
10
0

50

Number at Processors 	100

0
0.09

.1

0.08
0.07

° Tcompute(us)
0.06

0.03
0.02

0.01

Figure 4.5: Speedup plot generated using datasheet model for Cray T31) per-
formance.

12000

10000

8000

o

6000
6

E

4000

tmandel(o,.01
tgatherresults(x

tmandelcomp(o,0.01......
tbroadcast(o

2000

0
40 	50 	60 	70 	80 	90 	100 	110 	120

Number of Processors

Figure 4.6: Closeup of figure 4.5 at tcompute=0.Olus.

4.3 Modelling the Cowichan problems

This section describes models of all the Cowichan problems detailing what design

information may be gleaned from using this design technique. The models are

51

Speedup -

Spe

4

3.5

3

2.5

2

1.5

0.5
0.1

.09

(us)

8

Figure 4.7: Speedup plot generated using datasheet model for Network of Work-
stations performance.

presented in GNUplot equation format, with an equation for the time of each

phase of the program in terms of the number of processors p and the data size d.

4.3.1 Mandeibrot set generation (mandel)

Each of the points in the mandeibrot set may be computed independently, which

makes this an "embarrassingly parallel" problem. The only difficulty for perform-

ance prediction is that the computation at any point is unpredictable, with any

number of iterations in the central computation loop between 1 and the max-

imum number of iterations MAX_MANDEL_ITERS. The black regions inside the set

require large amounts of computation, those far from the set require very little.

The model given below includes the parameters p (the number of processors), d

(number of rows in the matrix) and c (the compute step time, set at ins)-

* model of mandel performance

tmandelcalc(c) 	= c * 8 * maxmandeljter

tmandelcomp(p,d,c) = d * (d/p) * tmandelcalc(c)

tmandel(p,d,c) 	= tmandelcomp(p,d,c) + tbarrier(p)

Figure 4.8 shows the measured and predicted speedup on a network of work-

stations. The shapes of the curves match very closely; the predicted slowdown

with small data sizes does actually occur, and the best speedup occurs at eight

processors. Using sixteen processors yields no additional speedup as expected.

Figure 4.9 shows the measured and predicted times which also match up well.

52

measured -e

--
predicted

Spe

7

6

5

4

3

2

0

150

lents

10

Figure 4.8: Mandel measured and predicted speedup on a network of worksta-
tions.

Ti

1.5

0.5

0

150

lents

Figure 4.9: Mandel measured and predicted times on a network of workstations.

0-1

On the Cray T3D, with the compute time step left at ins the measured and

predicted times are shown in figure 4.10, with the speedup in figure 4.11. The

speedup prediction is overly optimistic at low data sizes and overly pessimistic

for high data sizes. The reason for this was determined by looking at the detailed

timing diagrams. The matrix is distributed by entire rows. A 20 x 20 matrix size

only makes use of 20 out of the available 32 processors, leaving the other 12 idle.

This quantisation effect was not included into the simple model, resulting in the

overly optimistic prediction. The second discrepancy was caused by missing an

initial startup computation cost from the model - the time to allocate the memory

for the matrix. This data dependent startup cost actually improves speedup with

larger data sizes, since it has more impact on the single processor timing than on

the multiple processor timing. This discrepancy was not apparent for the network

of workstations comparison because communications time was dominant in that

case.

Tii

1.5

0.5

0

150

nents

3U

Figure 4.10: Mandel measured and predicted times on the Cray T31).

4.3.2 Random matrix generation (randmat)

The matrix is divided equally among the processors and each computes the ran-

dom numbers within its section. The overhead with respect to the sequential

algorithm is that the initial seed must be computed for each process before it

can start generating. This initial seed calculation requires a time proportional

ell

measured -e---
predicted

Spe
20

15

10

5

0

150

nents

30

Figure 4.11: Mandel measured and predicted speedup on the Cray T31).

to the logarithm of the number of matrix elements, so takes slightly longer for

processors at the bottom of the matrix than for those at the top.

model of randmat performance

tjrandom(i,p,d,c) = log(i*d*dlp) * c * 8

trandmat(p,d,c) 	= c * d * d/p * 10

ttotal(p,d,c) 	= tjrandom(p,p,d,c) + trandniat(p,d,c) + tbarrier(p)

Figure 4.12 shows the measured and predicted speedup on a network of work-

stations. All the important aspects of the performance are predicted correctly;

the slowdown above four processors with the maximum data size, and the slow-

down with more than one processor at the minimum data size. Figure 4.13 shows

the measured and predicted times. For small data sizes, the time is dominated

by the barrier time. The computation time has been consistently underestimated

by a factor of two.

On the Cray, figure 4.14 shows the times (on a logarithmic axis). The pre-

diction is an underestimate for small numbers of data elements but converges for

larger matrix sizes, indicating that a constant overhead of the order of 500us has

been left out of the model.

55

Tim

0.45
0.4

0.35
0.3

0.25
0.2

0.15
0.1

0.05
0

'ime -e--
me

150

ements

measured -+—
oredieted

Spe

4
3.5

3
2.5

2
1.5

0.5
0

150

ements

lb

Figure 4.12: Randmat measured and predicted speedup on a network of worksta-
tions.

Th

Figure 4.13: Randmat measured and predicted times on a network of worksta-
tions.

56

rrcd time -e----
ime

ements

150

30

Figure 4.14: Randmat measured and predicted times on the T3D.

4.3.3 Perfect shuffle (half)

This module is heavy on communications as half of the matrix must be sent at

each shuffle step. The model takes into account the time to build the complex

MPI message data type required to complete the shuffle with one communications

call.

model of half performance

tcomputedtypes(p,d,c) = d * (d/p) * c * 2

tlocalshuffle(p,d,c) = d * (dip) * c * 3

ttotal(p,d,c) 	= tcomputedtypes(p,d,c) + \

talltoallvi(p, (dip)/p) + \

tlocalshuffle (p , d, c)

Figure 4.15 shows the measured and predicted speedup on a network of work-

stations. The prediction has yielded the useful information that a maximum

speedup of two can be expected across eight processors. Figure 4.16 shows the

measured and predicted times. These agree for all but the one point at the

maximum number of processors and data.

57

measured -+--
predicted

Spe

2.5

2

1.5

0.5

0

El

150

ements

8

Figure 4.15: Shuffle (Half) measured and predicted speedup on a network of
workstations.

measured time -e--
predicted time

Tim
2.5

2

1.5

0.5

0

150

ments

8

Figure 4.16: Shuffle (Half) measured and predicted times on a network of work-
stations.

4.3.4 The game of life (life)

This has a boundary swap followed by the local computation. The boundary

swap consists of two sends followed by two receives.

model of life performance

tboundaryswap(d) 	= 2*tsend(d) + 2*trecv(d)

tliferow(d,c) 	= c * d

tsublife(p,d,c) 	= (dip) * tliferow(d,c) + \

d * (dip) * c

titer(p,d,c) 	= tboundaryswap(d) + tsublife(p,d,c)

ttotal(p,d,c) 	= nlifeiters * titer(p,d,c) + tbarrier(p)

Figure 4.17 shows the measured and predicted times on a network of worksta-

tions. As predicted, the times are dominated by communications, so no speedup

is obtained. Figure 4.18 shows the measured and predicted speedups.

measured time -e---
predicted time

0.2

0.15

0.1

0.05

0
150

ments

lb

Figure 4.17: Life measured and predicted times on a network of workstations.

On the Cray, the measured and predicted times are shown in figure 4.19. The

predictions are good for small numbers of processors, but out by a factor of three

for 32 processors, because of quantization effects.

59

measured •-e--
ted

150

ments

UP

0.5

10

Figure 4.18: Life measured and predicted speedup on a network of workstations.

0.(

ime -.--
me

150

sments

tju

Figure 4.19: Life measured and predicted times on the T3D.

39

4.3.5 Image thresholding (thresh)

This model includes the local and global histogram computations time, the time

to compute the threshold value and the time to generate the mask image.

model of thresh performance

tglobalminmax (p. d, c)

tlocalhist(p,d, c)

tglobalhist (p)

tthresh(p, c)

tmask(p,d,c)

= d * (d/p) * c + tallreduce(p,1)

c*d*d/p

= tallreduce(p. maxval)

= c * fraction * maxval

= C * d * d/p

ttotal(p,d,c) 	= tglobalminmax(p,d,c) + tlocalhist(p,d,c) +\

tglobalhist(p) + tthresh(p,c) + tmask(p,d,c) +\

tbarrier (p)

Figure 4.20 shows the predicted and measured times for a network of worksta-

tions, and figure 4.21 shows the predicted and measured speedups. This applica-

tion shows an expected and measured slowdown on networks of workstations.

measured time -e--
predicted time

Time (s)

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

150

lents

IL]

Figure 4.20: Thresh measured and predicted times on a network of workstations.

Figure 4.22 shows the measured and predicted times on the T3D. The times

are underestimated by a factor of two; figure 4.23 shows that the speedup has

been reasonably estimated.

61

1.5
Spe

0.5

0

a

150

nents

'Li]

Figure 4.21: Thresh measured and predicted speedups on a network of worksta-
tions.

0

0.c

150

ients

Figure 4.22: Thresh measured and predicted times on the T3D.

62

measured -e---
predicted

Spe
20

15

10

5

0

150

rients

30

Figure 4.23: Thresh measured and predicted speedups on the T3D.

4.3.6 Outer product (outer)

This is interesting because of the possibility of cutting down the amount of com-

putation by communicating results from the lower diagonal of the matrix to the

upper diagonal.

tdist(c) 	 = 50*c

tmklocal(p,d) 	= tallgatherv(p,d)

tcreate(p,d,c) 	= d * tdist(c)

tfillmatrix(p,d,c) 	= d * (d / p) * tdist(c)

tdiagfill(p,d,c) 	= d * tdist(c)

ttotal(p,d,c) = tmklocal(p,npoints/p) + tcreate(p,d,c) +\

tfillmatrix(p,d,c) + tallreduce(p,1) +\

tdiagfill(p,d,c) + tbarrier(p)

Figure 4.24 compares predicted and measured speedups on the T31), with the

compute time parameter varied from 0.05us to 0.5us. The general shape of the

speedup curve is not changed by the order of magnitude change in compute time,

indicating that on the T3D the algorithm is not dominated by communications.

On the network of workstations, the times are shown in figure 4.25. The time

is out by at most a factor of three. Figure 4.26 shows how sensitive this algorithm

is to the compute step value; at O.lus the speedup prediction is accurate; at ins

the prediction is optimistic.

63

IN

rrcri time -0---
me

?ments

150

measured -+---
predicted (Tcompute=0.5us)

predicted (Tcompute=0.05us)

Speedup
30 -

25

	

20 	 -----

	

15 	 -

	

10 	 - ----.-,
-

'5-
5

	

0

	

----.,':--- 	- 	----------------'.

150

10 	
15 	

100

Number of Processors
20 	

25 	
50 	

No of data elements

30

Figure 4.24: Outer measured and predicted speedups on the T3D.

0

Figure 4.25: Outer measured and predicted times on a network of workstations.

measured -0--
predicted (Tcompute = lus)

predicted (Tcompute = 0.1 us)

Spe
6

5

4

3

2

0

150

ements

'

Figure 4.26: Outer measured and predicted speedups on a network of worksta-
tions.

4.3.7 Elastic net simulation (elastic)

This is a complex algorithm and the model reflects this. The parameters are

the number of iterations and the number of cities. The total time is made up of

the time required to copy all the city locations to all processes (tmklocal), an

initialisation step tinit and the time for all the iterations. Each iteration involves

a nearest neighbour exchange (tneigh), the time to compute the influence of all

the cities on the net tcity and the time to apply the resultant force to update

the net tmove.

nnet(d) 	= d * 2.5

ncities(d) 	= d

tmklocal(p,d) 	= tallgather(p,d / p)

tinit(p,d,c) 	= c*(d + nnet(d)/p)

tneigh(p,d,c) 	= (nnet(d)Ip)*c + 2*tsend(1) + 2*trecv(1)

tmove(p,d,c) 	= c * (nnet(d) / p)

tcity(p,d,c) 	= nnet(d) * c + \

ncities(d) * (\

c * (d * nnet(d)/p) +\

talireduce (p, 1) +\

c * nnet(d)/p \

65

)

titer(p,d,c) 	= tneigh(p,d) + tcity(p,d) + tmove(p,d)

ttotal(p,d,c,i) = tmklocal(p,d) + tinit(p,d) + i*titer(p,d) +\

tbarrier (p)

On the network of workstations, the times are shown in figure 4.27. The

prediction is very good apart from the figures for two workstations. The measured

figures for these were investigated by examining the timing diagrams. The culprit

was found to be a random network delay which was delaying the inner loop

communication by over 2 seconds, an occasional hazard of using a shared ethernet.

The prediction is so good for all other points because the time is totally dominated

by communications which are well predicted.

measured time -4----
predicted time

ft

150

ements

10

Figure 4.27: Elastic measured and predicted times on a network of workstations.

On the Cray, the initial prediction was not so good. Figure 4.28 shows that

the prediction using the standard value of 0.5us for the compute step value led

to a factor of 10 over-estimate in overall times. A value of 0.05us produced an

accurate fit, indicating that this problem uses small enough data sizes to fit into

the cache, leading to the order of magnitude better than expected performance.

4.3.8 Invasion percolation (invperc)

In the model, titer is the individual iteration time, tenqueue is the time needed

to add a point to the local queue, tglobalhead is the time to determine the

Me

measured time -e--
predicted time (Tcompute = 0.5us)

predicted time (Tcompute = 0.05us) -----

(S)

10 [.

0.1

0.01 	 150

100

10 	 No of data elements
15

	

	 50 20
Number of Processors~25 	

30

Figure 4.28: Elastic measured and predicted times on the Cray T3D.

overall head of the queue. The possible speedup comes from having a smaller

queue insertion time on a parallel machine.

model of invperc performance

maxqlen(d) 	= d*d * fraction;

qlen(p,d) 	= maxqlen(d) / (p*lO);

tglobalhead(p) 	= tallreduce(p,4)

tenqueue(p,d,c) 	= c * qlen(p,d) * 4;

titer(p,d,c) 	= tglobalhead(p) + tenqueue(p,d,c);

ttotal(p,d,c) 	= titer(p,d,c) * maxqlen(d);

Figure 4.29 shows the measured and predicted speedups on the Cray T3D.

The amount of speedup available is very sensitive to the compute step time; the

initial estimate was a factor of four overly optimistic for large data sizes. This

error was caused by having to guess the average queue length in the model; the

times for this program are highly data dependent. Using a lower value for the

compute time (0.05us) produced the lower bound curve in the figure.

Figure 4.30 shows the corresponding speedup curves for a network of work-

stations. The severe slowdown for this application is correctly predicted.

67

measured -e--
predicted (Tcompute = 05us)
redicted (Icompute = 0.05us)

10

150

100

0.1 ' 	' 	

No of data elements
15

Number of

Figure 4.29: Invasion percolation measured and predicted speedups on the Cray
T3D.

0

red -e--
us)

150

sments

lb

Figure 4.30: Invasion percolation measured and predicted speedups on a network
of workstations.

4.3.9 Vector product (product)

The algorithm for the vector-matrix product first ensures that each process has

its own copy of the entire vector, then each process may continue independently.

model of product performance

tmklocal(p,d) = tallgatherv(p, (dip))

tcalc(p,d,c) = d * (d/p) * 2 * c

ttotal(p,d,c) = tmklocal(p,d*2.5) + tcalc(p,d*2.5,c) + tbarrier(p)

Figure 4.31 shows the measured and predicted times on a network of work-

stations. The times are dominated by communications for this problem, so

adding more processors slows things down. The predictions are within a factor of

two throughout; this discrepancy was tracked down to an underestimate in the

ailgather times caused by the curve fit in the MPI model. The corresponding

times for the Cray T31) are shown in figure 4.32. This is a very good fit, with

times dominated by computation.

measured time ----
predicted time (Tcompute = lus)

0

150

ements

IN

Figure 4.31: Vector product measured and predicted times on a network of work-
stations.

4.3.10 Successive over-relaxation (sor)

This is an iterative algorithm, so it is not possible to predict the convergence rate.

It is however possible to put upper bounds on the convergence (i.e. sormaxiters).

ime -e--
us)

0

0.c

0.0c
150

ements

Figure 4.32: Vector product measured and predicted times on the Cray T3D.

model of SOR performance

tmklocal(p,d) = tallgatherv(p,d)

titer(p,d,c) = (d/p) * (

d* c * 2+

C * 8) +

tmklocal(p,d/p) +

talireduce (p, 1)

ttotal(p,d,c) = tmklocal(p,d*2.5/p) * 2 +

sormaxiters * titer(p,d*2.5,c)

Figure 4.33 shows the measured and predicted times on the Cray T31), a very

good fit. The fit for network of workstations is less good (figure 4.34) as the

underlying model for collective performance is less predictable. However it does

provide the useful design information that no speedup is expected.

4.3.11 Gaussian elimination (gauss)

The matrix to solve is distributed blockwise by row. The algorithm used to

implement Gaussian elimination involves a single pass through the rows of the

matrix in which all processes participate. The process which stores the current

row then computes a pivot and broadcasts it. All processes apply this pivot row

to their local section of the matrix. Figure 4.37 illustrates the performance model.

70

rod time -•e----
us)

ements

150

JU

Figure 4.33: SOR measured and predicted times on the Cray T3D.

measured time -e---
predicted time (Tcompute = lus)

EF

150

ements

I1]

Figure 4.34: SOR measured and predicted times on a network of workstations.

71

model of gauss performance

tcopy(d,c) 	 = d*c

tpivotcompute(d,c,i) = (d-i) * 2 * c + 4 * c

ttransform(p,d,c) 	= d * (d/p) * c * 5

tgauss(p,d,c) 	= d * (tpivotcompute(d,c,d/2) +

tbcast(p,d) +

ttransform(p,d,c))

ttotal(p,d,c) 	= tcopy(d*2.5,c) + tgauss(p,d*2.5,c)

Figure 4.35 shows the measured and predicted speedups on the Cray T3D.

The actual speedup is worse than expected because the compute times were over-

estimated by a factor of five. The compute times were also overestimated on the

network of workstations (figure 4.36).

measured -a--
predicted (Tcompute = 0.5us)

Spe
35

30

25

20

15

10

5

0

150

sments

30

Figure 4.35: Gauss measured and predicted speedups on the Cray T3D.

4.3.12 Point normalisation (norm)

The parallel implementation of point normalisation involves a global reduction

followed by independent computation phases. For design purposes it is necessary

to know if the time for the global reduction swamps the total time for computa-

tion.

model of norm performance

72

measured •-e--
predicted (Tcompute = lus)

us)

ements

150

II

Figure 4.36: Gauss measured and predicted speedups on a network of worksta-
tions.

1

2

IIINo

____ 	S.. ____ I____ 	•SS

4 - ,
II

ENVR

Titer -
Tpivo1pute

 repeated x
p1 .local_nrows()

repeated x
p2.Iocalnrows()

repeated x
pnprocs.Iocal_nrows()

Tbcast

Ttransform

Figure 4.37: The Gauss performance model.

73

0

measured time -e.---
me

sments

150

tlocalredptvector(d, c)

tglobredptvector(p ,d, c)

tnorm(p,d,c)

ttotal(p,d,c)

=d*c

= tlocalredptvector(dip,c) + \

4*tallreduce(p, 1)

= (d/p) * 8 * c

= tglobredptvector(p,d,c) +

tnorm(p,d,c) + tbarrier(p)

Figure 4.38 shows the predicted and measured times on a network of worksta-

tions. The algorithm runs more slowly as more processors are added, as predicted.

However the actual times for the single processor runs are faster than predicted.

This is because no communication calls are actually made, but the simple model

doesn't include this special case. The prediction for the Cray T3D is a consistent

factor of two pessimistic (figure 4.39), apart from the single processor case. This

is because the model for the alireduce time (which dominates) is not accurate

for the very small amounts of data used here.

Figure 4.38: Point normalisation predicted and measured times on a network of
workstations.

4.3.13 Weighted point selection (winnow)

model of winnow performance

maxpts(p,d) 	= d * d * maskpercent

minpts(p,d) 	= maxpts(p,d) / p

74

me -0---
me 	-

0-c

0.0(

150

ements

zJU

Figure 4.39: Point normalisation predicted and measured times on the Cray T3D.

localpoints(p,d,unevenness) = unevenness 	* maxpts(p,d) +

(1-unevenness)* minpts(p,d)

stride = 4

tbuildlocal(p,d,c) 	= c * (d/p) * maskpercent * 5

tmininaxtot(p) 	= 3 * tallreduce(p. 1)

tpivotcompute(p,d,c) = 3 * p * c +

localpoints(p,d,c) * 3 * tcompute

tbuffercompute(p,c) = 2 * p * C

tlocalsort(d,c) 	= d * log(d) * C *4

tpackstrided(p,d,c) = c * 2 * d

ttotal(p,d,c,e) = tbuildlocal(p,d,c) +

tminmaxtot (p) +

tpivotcompute(p,d,c) +

talltoall(p,1) +

tbuffercompute(p,d,c) +

talltoallv(p, localpoints(p,d,e))+

tlocalsort(localpoints(p,d,e),c) +

tallgather(p,l) +

tpackstrided(p, localpoints(p) / stride,c)

75

This routine includes many phases and is too complex to make computing

the time by hand a sensible proposition, so GNUplot is useful as a quick tool for

"what if" calculations. The function MPI_Alltoallv performs the redistribution

in which each process sends and receives a different amount of data to/from all

the others. A parameter of "unevenness" would ideally be used to work out how

long the collective redistribution operation will take. The extremes of this para-

meter are 0.0 (equal distribution) and 1.0 (all in one processor). A mathematical

definition is given below:- We have N elements distributed amongst P processors.

Ideally there would be NIP in each. Actually there are N(i : 0..P - 1).

Deviation Di = Abs(N -
N

P-i
E Di = 0 (for equal distribution)

2N(1 - 1/P) (for all elements in one processor)

EP-1 Di
Unevenness

2N(1 - 1/P)

As a simplification, the maximum number of elements stored in any one pro-

cessor was taken as the parameter to determine the expected time of talltoallv.

Figure 4.40 shows the measured and predicted times on the Cray T31). The

unevenness parameter was varied from 0 to 0.1; perfect data distribution led to an

over optimistic prediction and 10% unevenness was about right. 100% unevenness

creates no speedup. This illustrates the sensitivity of this algorithm to the data

distribution.

On the network of workstations, the algorithm produces a slowdown (fig-

ure 4.41), and this is expected even with perfect distribution.

4.3.14 Vector difference (vecdiff)

This program computes the maximum element by element difference between two

vectors. The vectors are distributed evenly across the processors; each computes

the maximum difference between the local elements, and then there is a global

reduction to determine the overall maximum difference.

Thus this problem is a balance between the computation time and the reduc-

tion time. The crossover point is located where the time for the local maximum

computation is equal to the time for the allreduce operation.

model of vecdiff performance

76

measured time -e--
predicted time (0% unevenness)

predicted time (10% unevenness)

(s) 	

predictef time (100/ unevenness)

0.1

0.01

0.001
150

100
No of data elements

15 	
20 	 50

Number of Processors

Figure 4.40: Winnow measured and predicted times on the Cray T3D.

measured time -e--
predicted time (0% unevenness)

predicted time (10% unevenness)

150

ements

Th

Figure 4.41: Winnow measured and predicted times on a network of workstations.

77

tlocalmax(p,d,c) = c * (d*2.5 I p)

tglobalmax(p) 	= tallreduce(p, 2)

ttotal(p,d,c) 	= tlocalmax(p,d,c) + tglobalmax(p) + tbarrier(p)

Figure 4.42 compares measured and predicted times on a network of worksta-

tions. The times are accurately predicted for all but the single processor case, for

which the communications operations take less time than the models predict. On

the Cray (figure 4.43), the prediction is a factor of two pessimistic. This is be-

cause the talireduce operation is a factor of two faster than the model predicts

for small message sizes.

measured time -e--
nrdk.td f l-

0

0.1

150

ements

15

Figure 4.42: Vecdiff measured and predicted times on a network of workstations.

4.4 Conclusion

A graphing package is a very powerful and simple tool for performance prediction

when used with data sheet performance models. The importance of perform-

ance modelling was highlighted by the number of slowdowns obtained with the

Cowichan problems on networks of workstations.

Scalability plots are straightforward to generate, as are plots varying para-

meters across a wide range to check that the design performs as intended.

The best predictions were for the programs dominated either by the commu-

nications or by the computation. Programs spending equal times computing and

communicating are very sensitive to minor changes, so are hard to predict.

0.(

0.0(

me -e

me

150

ements

3U

Figure 4.43: Vecdiff measured and predicted times on the Cray T31).

The restrictions of the technique are that it requires the bounds on loop iter-

ations to be fixed at design time and the fact that data dependencies are difficult

to include. As the models for programs are generated by hand, there is a danger

that seemingly unimportant phases of the algorithm will be left out, leading to

overly optimistic predictions.

These restrictions are removed by the reverse profiling technique described in

the next chapter.

79

Chapter 5

Reverse Profiling

Simple performance estimates such as those in the previous chapter are good for

giving an overall picture of expected speedup for simple algorithms. However, the

estimates are less valuable when processes are not all doing the same thing at the

same time and when there are data dependent communications. A method for

including these complexities is presented in this chapter. It is based on profiling,

the well established technique for measuring how much time is spent in each part

of a program.

5.1 Introduction

Reverse profiling [27] applies the MPI performance model for an architecture to a

user's program to generate an estimate of the run time on that architecture. The

model is generated automatically by the routines described in chapter 3. It uses

the MPI profiling interface to intercept the user's calls to MPI functions and to

calculate the expected delay before returning control to the MPI routine to do

the actual work. In this way it is possible to estimate the expected run time of

a program on any architecture using a workstation as the development platform.

For example, a Cray T31) model may be used on MPI on a single workstation

(or vice-versa). The technique is a simplified form of discrete event simulation.

It provides quick results in the majority of cases (and will perform most of the

calculations for the more complex ones).

Reverse profiling is easier to use than simulation techniques (to which it bears

a resemblance), but it may only be applied to a subset of all parallel programs.

The big advantage is that it may be applied simply by linking with the standard

profiling library of the message passing interface. It involves each process keeping

track of its own simulation time and updating it whenever an MPI function is

called. This means a normal trace file can be generated. A model of any machine

may be used, and any MPI implementation can be used as the development

environment.

Because it does not involve full simulation, it may not be gainfully applied to

non-deterministic routines, for example those employing dynamic load balancing.

However, the performance model will provide the key design data for such routines

(such as the minimum and maximum message times). For non-deterministic pro-

grams the method must be combined with pencil and paper calculations, or with

times measured from the target machine. Non-deterministic programs are likely

to strain simulators and profilers too, since a minor miscalculation of delay may

affect the outcome. A large proportion of useful parallel programs are determ-

inistic. Reverse profiling is a simple usable technique aimed at the majority of

programs.

Running a reverse profiled MPI program produces a trace file which may be

displayed as a timing diagram. Repeated runs may be used to produce graphs

showing how performance varies with the problem size and number of processors

in the machine. The machine model is supplied at run time as an environment

variable pointing to a file produced by the MPI characterisation routines.

Section 5.2 describes the technique in detail; section 5.3 describes various

ways of estimating computation delays, section 5.4 presents results obtained from

applying reverse profiling to some of the Cowichan problems and section 5.5

concludes.

5.2 The technique in detail

The MPI interface provides a simple profiling interface; all the MPI_ functions are

also accessable with the prefix PMPI_. Profiling (or reverse profiling) code may be

added by writing substitute MPI_ functions which perform the necessary (reverse)

profiling task and call the PMPI_ function to do the actual work. The linker

ensures that the appropriate functions are called. The compilation commands to

compile a normal MPI program, to compile with a profiler and to compile with

the reverse profiler are:-

cc prog.c -impi

cc prog.c -iprof -lpmpi -impi

cc prog.c -lrevprof -lpmpi -impi

Each process has a variable (named the-time) to store its current simulation

time. The profiled versions of the MPI functions update the-time according to

the performance equation for that function and write lines to the trace file.

For point-to-point communications the receiver needs to know the time the

sender started sending the message in order to work out when it should arrive

(figure 5.1). The minimum delay at the receiving end occurs when the message

has been posted by the sender well in advance and the message has only to be

copied from a system buffer. If the send starts at the same time as the recv, the

receiver will suffer an additional wait time for the message to arrive. This will be

worse if the sender starts after the receive does.

These delays may be estimated from several measured parameters (determined

by the routines described in chapter 3):

Tsend Time for MPI_Send to complete.

Treev Time for MPI_Recv to complete if started at the same time as the corres-

ponding MPLSend.

Trecvmin Minimum time for MPI_Recv if the message has already arrived.

The total delay at the receiver is given by:

Trecvmin + Twait

Trecvend = max(Trecv tart + 	Tsendstart + T76)

061

Twait Trecvend - Trecvstart - Trecvmin

Sender

Trecv

Receiver

Trecv start 	Trecv_end

Figure 5.1: Times involved in point-point delay calculation.

For collective operations involving synchronisation (i.e. the majority of them),

each process must know the start time of every other.

Thus a point-point reverse profile function looks like:

mt MPI_Send(data, dest, ...)

{

II Send the-time to the destination

PMPI_Send(the_time, dest, . .

the-time += /* computed delay for the message *1;

II Perform the actual send

PMPI_Send(data, dest, ...);

}

mt MPI_Recv(...)

{

II Recv the sender's start time

II Compute the recv delay the-time

II function of C the-time, sender-start, message size)

}

and a collective operation:-

it MPI_Barrier()

{

II MPI_Allgather to get each process's the-time

/7 Set local the-time to the latest of all the-times

II Plus the computed delay for the barrier.

This works as long as two conditions are met:

MPI_Recv is not allowed wildcarded receives. This is because there are two

receives (one for the sender time, one for the actual data) which couldn't

be guaranteed to come from the same source. This problem is related to

the non-determinism issue raised earlier.

Collective operations imply synchronisation.

A trace file is generated which may be displayed with a timing diagram tool.

Each process generates a separate trace file (p0 . trace, p1 . trace, etc). Re-

peated runs may be combined to produce scalability graphs.

rib]
[•1I1

5.3 Estimating the computation delays

The reverse profiling technique has so far accounted for the communication costs

quite happily, but the times for user code have not been accounted for. Even

without considering compute times, useful results may be obtained since the

amount of time spent in idle "wait" states can be measured from the timing

diagram and the communications structure of the code is clearly visible. None of

the techniques thus far encountered for estimating computation times are entirely

satisfactory.

Several options for including computation are:

Fix it at 0. This is the dual of the PRAM model which sets the computation

cost at 1 and makes communication cost 0.

Let the user estimate it (in units of seconds, or number of memory accesses,

arithmetic operations, etc.)

Cycle count the assembly code.

Measure the times on the fly.

Measure the important times with a profiler off line.

Arguments may be made for all the above approaches. They make different

tradeoffs between accuracy and ease of use.

Option 1, ignoring computation altogether, yields graphs showing the total

communication time for an algorithm on a machine, which may be useful in itself

as it shows how computation time must scale in order to make use of the machine.

Option 2 is surprisingly useful. The programmer adds calls to a "compute(N)"

macro which adds N "time steps" to the local simulated time, where a "time

step" is the time taken to perform an arithmetic operation. This time is highly

variable because of the influence of the memory hierarchy, but may be bracketed

between likely limits (e.g. between 1 and 10 microseconds). This time step can

be given as a parameter to the reverse profiler, so one may check how a design

fares when given minimum expected compute step time and maximum expected

communications time (the worst case for parallel algorithm scalability). Saavedra-

Barrera [54] describes characterisation routines for measuring the performance

of different classes of operations in Fortran and if such figures were generally

available for sequential code it would make parallel design easier.

Cycle counting of assembler code (option 3) is the preferred choice of parallel

machine simulators. This technique has been shown to yield very accurate time

estimates [4]. It involves an extra compilation stage, with the assembly code

for the application being interpreted and augmented by a routine which inserts

instructions to update a global cycle count after each basic block. Since the num-

ber of cache misses may lead to an order of magnitude variation in the execution

time, a cache model is required for such simulators. This technique also requires

augmented versions of all libraries used.

Experience using the Proteus augment tool indicated that though the tech-

nique works, it is too time consuming and awkward for quick estimates of compute

time. It is also a "black box" approach and it it hard to know how reliable the

estimates will be.

Option 4, measuring the compute times on the fly, is tricky on a multi-tasking

system. Some multi-threading libraries provide "virtual timers" which only meas-

ure compute time consumed by the current thread, but these are not generally

available. In any case, the compute times would have to be scaled for the target

architecture.

The final option, profiling important subroutines on the target system and

feeding the numbers back into the reverse profiler yields the most believable num-

bers, but requires the most effort on the part of the parallel program developer.

5.4 Results

Reverse profiling scores over the simpler technique presented in chapter 4 wherever

there are data dependencies, since these are hard to incorporate into a purely

analytical model. To test the suitability of reverse profiling for developing real

programs, the technique was applied to a selection of the Cowichan problems.

The results are presented below.

The trace output from a single run is a timing diagram showing how much time

each process spends communicating and computing. This diagram is compared

directly with a measured timing diagram; this is the ultimate test of a performance

prediction. If a technique can generate an accurate timing diagram then it has

solved the prediction problem. In practice there will be discrepencies between

predicted and measured diagrams.

Comparing speedup curves is a more forgiving method of testing a prediction

- even if the prediction is several orders of magnitude out in absolute terms it

may produce a similar speedup curve to that measured.

The comparisons below focus on timing diagrams since they provide the ulti-

mate check. The problem with timing diagrams is that they include a very large

IN

amount of information, so sample extracts are presented to illustrate specific as-

pects of the predictions.

In the diagrams the light shade represents computation and the dark stripes

are communication steps. A bar is given for each processor (p[0] , p[l] , . .

The bottom bar ("All") shows the overall phase. On screen the different com-

munication operations are distinguishable by different colours. The two vertical

measuring lines 0 and X allow time intervals to be measured and displayed.

The sections below illustrate the reverse profiling process using examples from

the Cowichan problems described in chapter 2.

5.4.1 Mandeibrot set generation (mandel)

This is an example with data dependent amounts of work to perform. In the

simple technique of the previous chapter, an upper bound on the quantity of work

had to be estimated (the maximum number of iterations). Reverse profiling bases

timing calculations on the actual data used. This means that detailed timing

diagrams can be generated, showing the expected behaviour of each processor

individually, rather than the broad brush single equation for overall time used

previously.

Figure 5.2 shows the predicted timing diagram produced using reverse profiling

for the Mandeibrot set problem on eight SPARCstation 5 workstations connected

using Ethernet, with a matrix size of 160x160. The computation times are largest

for processors 3 and 4 which compute the points inside the set, and all processors

have to wait for these to complete before the problem is done. The overall time is

estimated at 0.71s of which 71ms is spent in the initial barrier synchronisation,

10% of the total. Figure 5.4 shows the measured timing diagram. The meas-

ured diagram is less regular than the prediction as processors are imperfectly

synchronised, leading to the staggered effect of the diagram. The total measured

time is 0.23s, a factor of 3 better than predicted, because the computation was

overestimated. The initial barrier takes 78ms, close to the expected 71ms.

The predicted diagram for 8 processors of the Cray T31) is shown in figure 5.3.

The time is expected to be determined by the maximum computation time; the

initial barrier time is now insignificantly small, much less than the smallest com-

pute time. This was confirmed by the measurement (figure 5.5), but again the

absolute values of the computation time were overestimated, in this case by a

factor of five.

0.1 	0.2 	0.3

J

plo] 	 U
P111 1

._AW
U -
U •

PIS] 	 U -

All 	
U ------

All 	 U

O time: 0.8903

Xtirne: 0.1801

XtoO: 0.7102

Figure 5.2: The mandel routine: predicted timing diagram for 8 workstations.

0 time: 0.6406

Xtirne: 	0

XtoO: 0.6406

0

-4 	 —

Figure 5.3: The mandel routine: predicted timing diagram for 8 processors on
the Cray T3D.

Pb]

P151

All

0 time: 0.3406

Xtirne: 0.1081

XtoO: 0.2324

Figure 5.4: The mandel routine: measured timing diagram for 8 workstations.

P1.01
P111
p[2J
p[3J 	 I
p[4] 	 --'

P151 	 .---

All 	 I

Otirne: 	0.131 	I I I I l I I I I I ' '
Xtirne: 0.006748 	 0.1

XtoO: 0.1242

Figure 5.5: The mandel routine: measured timing diagram for 8 processors on
the Cray T3D.

5.4.2 Elastic net simulation (elastic)

This example presents a quantitative comparison between timing diagrams pro-

duced by successive profiling runs, and between forward and reverse profiles. It

also illustrates how I/O models may be incorporated into the reverse profile.

No two runs on a machine will take exactly the same time. The variation

between runs on a machine provides a bound on the accuracy which can be

expected from a prediction.

Table 5.1 compares the results of two runs of the elastic routine. The meas-

urements were taken on 2 processors of the T3D, and the input parameter size was

128. The ratio of times varied from 0.53 for BUSY to 1.25 for ALLGATHER,

a factor of 2 variation in measured times.

Phase Profi (s) Prof2 (s) Ratio (prof2/profl)
SEND 0.004571 0.004605 1.007365
RECV 0.367272 0.357369 0.973037
BARRIER 0.242121 0.183040 0.755984
BUSY 3.949576 2.121767 0.537214
BCAST 0.002806 0.003097 1.103726
ALLGATHER 0.004120 0.005161 1.252807
GATHER 0.249811 0.218897 0.876252
ALLREDUCE 22.954994 18.272695 0.796023

Table 5.1: Two profiles of elastic compared.

Table 5.2 shows the results of comparing forward and reverse profiles of

elastic.

9 SEND, BUSY, ALLREDUCE and GATHER are within a factor of 3.

. BARRIER and BCAST are out by 1000.

. ALLGATHER and RECV are out by 10.

The big errors occur where there is synchronisation. The times shown are

the total times spent in each phase across all processors - so if one processor

is delayed by t seconds the time for the next synchronisation operation will be

extended by Nt seconds. This causes major proportional errors, particularly for

synchronisation operations which execute quickly (such as the barrier). The effect

of these errors in absolute terms is less significant, since the program is delayed

by the t rather than the Nt.

Phase Prof (s) Revprof (s) Ratio (Revprof/prof)
SEND 0.018175 0.031034 1.707511
RECV 0.165123 0.020715 0.125453
BARRIER 0.262404 0.000517 0.001971
BUSY 23.825751 41.324430 1.734444
BCAST 0.225873 0.000402 0.001780
ALLGATHER 0.003093 0.000290 0.093749
GATHER 0.000258 0.000293 1.133884
ALLREDUCE 3.274713 1.311991 0.400643

Table 5.2: Forward vs Reverse profiles of elastic.

To determine the causes of these errors in more detail, it is necessary to

examine the timing diagrams.

Figure 5.6 shows the measured and predicted timing diagrams alongside. For

this experiment, there is an overall error of 50%. Figure 5.7 shows a detail from the

inner loop, which consists of long BUSY phases ended with an ALLREDUCE.

The BUSY phases are overestimated by about 60%, and the ALLREDUCE

is taking longer on process 1 than process 0 (whereas the prediction is for them

to take the same time). Table 5.3 shows the overall times for alireduce for each

processor. The explanation for this apparently major discrepancy in the alireduce

prediction (taking 4 times longer than predicted on processor 1) is the variation

in compute times between the two processors. Figure 5.8 shows one iteration of

the inner loop. The busy time of processor 0 is 1900us, 300us greater than the

busy time of processor 1 (1600ns). Because the subsequent alireduce implies a

synchronisation, and because this discrepancy between the compute times of 0

and 1 was not predicted, the 300us is added onto processor l's alireduce time.

There is no easy way to measure the proportion of the alireduce time spent waiting

for synchronisation and the proportion actually performing the alireduce (since

the synchronisation is integral to the algorithm used to implement the alireduce

and not a separate operation).

Figure 5.9 shows the alireduce discrepancy in more detail. The measured time

of 116us for the allreduce on processor 0 is close to the 102us predicted time; the

large discrepancy is caused by processor 1 finishing its computation phase before

processor 0.

Processor Phase Prof (s) Revprof (s) Ratio (Revprof/prof)

p101
P111

ALLREDUCE
ALLREDUCE

0.763569
2.511144

0.655996
0.655996

0.859118
0.261234

Table 5.3: Total times for ALLREDUCE for each processor.

tdia -

p[0]

p[1j

p[0]

III II
P111 1

O time: 	13.86 I

Xtime: 	21.29 0 	2 	4 	6 8 	10 	12 	14 	16 	18 	20

OtoX: 	7.433

Zoom 1n Zoom OutJ Reloadj 	QuitJ

BUSY
DONE

BCASTj
ALLGATHER

Figure 5.6: Measured (top) and predicted (bottom) timing diagrams for elastic
- top level.

Figure 5.10 illustrates the measured time taken for the following line:

if (rank==0)

printf("[%d] elastic_t iteration %d\n", net.rank, iter);

Output is costly, taking 3ms in this case. Only processor 0 performs the output,

but both processors are delayed as there is a subsequent send/recv exchange of

data. This appears on the diagram as an extended recv period.

This can be incorporated into the reverse profile as well - even a small amount

of I/O has an effect. This may be done by changing the above line to:

all

p[O]

0 time: 6.744

Xtime: 6.743

XtoO: 0.0001163

P[01

p[l]

P[01

Pill

0 time: 	6.79
Xtime: 6.823 	 62
OtoX: 0.03299 	4 	 4

Figure 5.7: Measured (top) and predicted (bottom) timing diagrams for elastic
- detail inside inner loop.

P101

P111

0 time: 	6.953

Xtime: 	6.951

XtoO: 0.001866

6.95

Figure 5.8: Measured timing diagram for elastic - one inner loop iteration.

Figure 5.9: Measured (top) and predicted (bottom) timing diagrams for elastic
- the alireduce.

if (rank==0) {

printfC'[%d] elastic_t iteration %d\n", net.rank, iter);

compute (3000);

}

The equivalent extract from the timing diagram is shown in figure 5.11.

Figure 5.10: Measured time for printf 0 in each outer loop.

p[0J

P111

Otlme: 	11.61

Xtlme: 	11.61
	

11.6 	 11.61
OtoX: 0.003015
	 777777

Figure 5.11: Predicted time for printf 0 in each outer loop.

Figure 5.12 shows the initial measured and predicted timing diagram for 4

processors.

p[OJ itintiti 	I tU L 	t 	II 	Ut 	I

P111 !Ht1 	11 	I III 	II I 	II 	I 	I1lI III 	I 	III
 ll I 	I 	liii 	IlI
 khi J 	I ii ii II I I Li It1LLU II

p101 IL11 kIIk$IJIIIkL1I
P111 II 	I JI 	i 	II 	I I if HEl

 II 	IILIIIIII kiii1
 II 	1Ff 	11111 1 fF1 iriri i

time: 	7.143 	1 111111111 1111111111 1 111111111 1111111111 1111111111 1111111111 111111111] 11111111111111111111111111111 111111111111111111

	

Xtime: 11.5 	0 1 2 3 4 5 6 7 8 9 10 11

OtoX: 4.359

Figure 5.12: Measured and predicted times for elastic with 4 processors.

Figure 5.13 shows that the reason the predicted time is about 50% too long is

that the compute phases have been overestimated; the shorter alireduce com-

munications phases have been accurately predicted. The distribution of the times

ED

actually taken for alireduce is shown in figure 5.14. This is concentrated at 150us

with outliers scattered at higher delays. Figure 5.15 shows the distribution for

busy times, with the peak at 800us. Figure 5.16 shows the distribution of the

ratios of predicted to measured performance; the bulk of data is clustered from

1.8 to 2 indicating that compute times are being overestimated by a factor of 2.

P[01

P111

I
I

P[21 I U
P131 I S
P101 I
P111 I I

 I I
ctirie: 	4.519 I 	I 	I I 	I 	I 	I 	I 	

I 	
I 	I 	I I 	I 	I 	I 	I 	I 	I 	I

Xtime: 	4.52 4.518 4.519 4.52 4.521

OtoX: 	0.001589 17,77 - 7

Figure 5.13: Measured and predicted times for elastic with 4 processors.

This example has shown that a prediction cannot be expected to produce a

result within a factor of two, since there is a factor of two variation in successive

runs. Predictions of synchronisation times are likely to be over optimistic, since

prior variations across processors build up and are incorporated into the total

measured synchronisation time. I/O has to be incorporated into models; even a

simple printf reporting status takes milliseconds and could decimate available

speedups.

5.4.3 Outer product (outer)

The example illustrated below is part of the outer routine. It illustrates the

effect of varying the compute step time on the performance predictions and shows

speedup graphs generated using reverse profiling.

outer is given a set of N points and computes the distance of each point

from every other point. These distances are stored in a N x N matrix. Since

the distance from point A to point B is the same as from B to A, the matrix

is symmetric about its diagonal. For N points, N2 /2 distance computations are

needed.

93

0.16

0.14

0.12

0.1

ALLREDUCE distribution

>

0.08
EL

0.06

0.04

0.02

0 	 !IIIIIIIIIIIIIIIIIII]IIIlIIIIIIIIIIII II,!.. IlIlIllullIll!; I!III,!I!!!,,.!,.,,!!,,!I, IIII!IIIIIII IIII,II,,,IIj II 	 I

0.0001 	 0.00015 0.0Q02 	 0.00025 	 0.0003
Time (seconds)

Figure 5.14: The measured distribution of alireduce times during elastic with 4
processors.

0.45

0.4

0.35

0.3

	

' 	0.25
Ca

	

EL 	0.2

0.15

0.1

0.05

busy4.out

01 	 I 	 I! 	I. 	I,IIIIIIIIIIIII,. 	.1 	 I,. 	 I 	 I 	 I 	 I

0.0005 0.0006 0.0007 0.0008 0.0009 0.001 0.0011 0.0012 0.0013 0.0014 0.0015
Time (seconds)

Figure 5.15: The measured distribution of compute times during elastic with 4
processors.

0.35

0.3

0.25

0.2

.0 (a

.0
0
°- 	0.15

0.1

0.05

0
0

Ratio of predicted to measured BUSY time

0.2 	0.4 	0.6 	0.8 	1 	1.2 	1.4 	1.6 	1.8 	2
Ratio

Figure 5.16: Distribution of the ratio of predicted to measured compute times.

In practice it is easier to perform N2 distance computations than to perform

half the computations and redistribute the matrix. Figure 5.17 shows the two

possible distributions and figure 5.18 illustrates what the triangular redistribu-

tion would involve. Performing a triangular copy for a distributed matrix is not

trivial using MPI. The MPI standard gives an elegant example of the use of

datatypes to perform such copies where an entire matrix is stored on a single

processor. However, coding such a copy using MPI_Alltoallv is not possible

since MPLAlltoallv requires all elements to have the same datatype. The ele-

ments in this case are irregularly shaped areas on the matrix. What is required is

MPI_Alltoallvi, with a separate datatype constructed for each of the irregularly

shaped areas. This is not part of the standard, so this approach was not taken.

Equal numbers of rows
	

Equal numbers of elements
allocated to each processor

	
to compute (areas equal)

Figure 5.17: outer : possible distributions

Figure 5.19 shows the measured and predicted speedups, which correspond

95

Performing the copy from the lower
diagonal of the matrix to the upper diagonal.

Figure 5.18: outer : performing the triangular matrix copy

reasonably with a compute step set between 0.ius and ins. Figure 5.20 shows

that with a compute step as fast as iOns the algorithm would yield minimal

speedup as communication time would dominate.

measured speedup
predicted speedup speedup (Tcompute = 0lus) -+--

predicted speedup (Tcompute = lus) -0

Speedup

20

10

30

20
20

30 	

1

 , 15 No of processes
50

No of data elements 60
80

Figure 5.19: outer : predicted and measured speedups on the Cray T3D

5.4.4 Image threshholding (thresh)

Figures 5.21 and 5.22 show the predictions and measurements of the computa-

tion phase with 32 processors. The prediction is overestimated by a factor of 2

(73ms predicted, 36ms actual). It is also interesting to note that the durations

of operations vary more in the measurements than the predictions. This is be-

cause collective operations are predicted to complete when all processors have

completed them - but the measurements determine the exact return time (which

will be different for each processor).

Eli

Speedup

3

2.5

2

1.5

0.5

0

20

30

asses

predicted speedup (Tcompute = 1 Ons) -0-.—

80

Figure 5.20: outer : predicted speedup with Tcompute10ns

This simplification was made to make predictions tractable. The performance

equation for alireduce (the collective operation which is causing the variation

in this case) returns a single expected time for the alireduce across all processors.

In practice, because of the algorithm used to implement the alireduce, some pro-

cessors return more quickly than others, and this results in the ragged edge on

the timing diagram.

The effect of this on the accuracy of predictions is not major in practice,

since the discrepencies are compensated for on the next synchronisation. Those

processors finishing first just have longer to wait at the next barrier.

5.4.5 The game of life (life)

The examples above use the average values to predict communications times.

However the communications models of chapter 3 include more detail. This ex-

ample shows how the expected minimum and maximum communications times

may be used. It also illustrates the consequences of including network contention

in the point to point communications models.

Figure 5.23 shows the predicted timing diagram for the game of life on two

processors. Computation dwarfs the communication steps (the vertical lines on

the diagram).

On 32 processors, the communication has started to make an impact (fig-

ure 5.24), taking 255us out of a total of 1300us for each life iteration (20% of

the total; figures were measured from the timing diagram.) For 2 processors,

97

nFll
fliul

fF71
nF 1 07
nFdl

IS
IN

monom 	-1W*3RKM2H53NfflWV'W'

nFS1 OWN IN _____
fF1 XM2 go MINES=
nI71 IN ______

FRi ME
Fql

nFlfll =
nFlll MIM ME
nFl7l in
nF1i
nFl4l
nFl5il
nF1I1 M-0 SO Boom=
nFl7l INS IS
nF1R1 on SO Room=
nF1R1 MON IS
nF7fli
nF2ll
nI771 SEA Off,
nF7m

go

fF741
nF7S1 WS no MONSOON!
n1791 IMF SO MINES=
nF771
nF7R1

in SO

nF21
ME NO

nLqfll
an
ME IMENSEEN

nF3l] ME
All

0 time: 	0.1781

Xtime: 	0.1708

Xto 0: 0.007297 	1-4

Figure 5.21: The thresh routine; predicted timing diagram for 32 processors.

nil.,
nFl]
n 191
n Fi
n14]
n FS1
n F1
n171
n Fifi
n ii
nFlAl
n Fill
n1121
nFl1
nFldl
nF1S1
nil Al
nFl7l
nF1R1
nill
ni7fll
n 1911
nF921
nF911
nF7d1
nF7Sl
n1711
n1771
nF7Rl
n F2ffl
nFn1

All

0 time: 	0.6427 ' 	I 	'
Xtime: 0.6391 	 0.64

Xto 0: 0.003645 	iTTTT TTT

Figure 5.22: The thresh routine; measured timing diagram for 32 processors.

p[OJ

p[1J

Figure 5.23: The life routine; predicted timing diagram for 2 processors.

communications was taking 255us out of a total of 16900us for each life iteration

(1.5%).

	

— 	— 	— 	— 	— 	— 	—
.Ini 	 — 	 — 	 — 	 — 	 — 	 — 	 —

	

— 	 — 	 — 	 — 	 — 	 — 	 a

	

— 	— 	— 	— 	— 	— 	—

	

— 	— 	— 	— 	— 	— 	—

..r.nl

	

— 	— 	— 	— 	— 	— 	—

	

— 	— 	— 	— 	— 	— 	—

Figure 5.24: The life routine; predicted timing diagram for 32 processors.

On 32 processors however, the reading and writing of files is expected to

dominate, with the computation burst of activity taking only 7% of the time.

Figure 5.25 shows the central computation band.

11 1

.ra1
rn1

..ro1
-'.ini
.Tl 11 	 — — —
_rl .,l
.%rl ni
.-.rl ci .r1 rl

rfll 1

..1C1 	 --

..rqol
I")01
rnnl

Ii

Otline: 0.1927 	1 1 ' 	' 	
I I I I I I I 1 I 1 I I 1 I 1 I I I I

Xtime: 0.1665 	0 	 0.1 	 02 	 03

Xto 0: 0.02616 	H---... 	 _I

Figure 5.25: The life routine; predicted timing diagram for 32 processors (top
level).

Comparing with measurements, figures 5.26 and 5.27 show the expected and

actual times for the computation phase of life with 32 processors. Visually they

are similar; the actual total time for the phase is 19.5ms and it was predicted at

26ms.

Table 5.4 compares the total send and receive times spent by all processors.

Send is underestimated by a factor of 2.4 and Recv is overestimated by 35%. This

send error is a concern and is a result of characterising the performance of a send

on an uncongested network.

Replacing the send predictions with a characterisation based on a congested

network (timing the send when one half of the processors are sending to the other

100

...rll —

r.al
.rci
.r-71 rol
.rn1
.r111
.'F1)1

—,
..r131
.t1A1 .'r11

r1-71
.r1 o1
.r1 n1 -, .r)n1

rnni
St11 rlml .r,'1 -

..P)O1 Mnl

.rorct

All

0 time: 0.1928

Xtime: 	0.1668

XtoO: 0.02596

0.17 	 0.18 	 0.19

Mi

Figure 5.26: The life routine; predicted timing diagram for 32 processors (com-
putation phase).

.srll U 	U U 	• I U II 	I U I 	U U U U I U 	U • I
FIVI I I 	I I I 	I I I 	II I I I I I 	I I I

• • • • • • • • • • • • • •
..FA1
.1c1 i,• I 	I I 	I I I I 	I II U I U I • II 	I It II

I 	U I 	I II I II 	I I I 	I I I U U U 	I U
II 	U

U

I

Fol

I 	I
I 	I

I
I

I
I

U 	It
U 	I

•
I

I 	I
I 	II

I
I

U
I

I
I

II
I

II 	II
I I

I
I

.rn1 I II 	I II 	I II II I 	II II U 	
II

• I I II 	I I I
.FI(1 ••I II 	I U 	I I I II 	I I I 	I II I II U 	II
.r111

F1 131
II 	I

•
U 	II

II
I
I

II
II

II 	U
I 	I

U
I

II
I 	II

U
I

I
I

UI
I

•
I

U 	II
I 	U

I
I

U
I

..rloI I,I I 	I I 	II I U I 	I I II 	• U • U I I 	• I

.r1dI1 I 	I I 	Il I I I 	II I II 	II II I U U U 	I I U 	4

.rici U II 	I I 	I I U I 	I I II 	I II I I I 	U I I

.rin1 -I,U I 	U II 	I I II U 	II U I 	I II I II II I 	U I U

.sr1-71 .rlo,
I

.1
I

II 	I
I 	I
II 	I

I
U

II
I

I 	I
I 	I

I
II

U 	II
I 	U

•
U

U
I

U
II

U
I

II 	•
II 	I

U
I
I

U
..F1 n1 ¶I,I I 	I II 	I I I II 	I I I 	I I II I U U 	U S U 	II
.%Innl ¶I II 	I I 	U I I I 	I I U 	I I I I I I 	I I I

1 	I II 	I I I I 	I I U 	U U U U I U 	U S U 	V
..1•I)1 .,U II 	I II 	I I I II 	I II I 	II I I I I I 	U U I

II 	I II 	I II I I 	I I 	II I I I II I 	U I •
.fA1 II 	I I 	I I I I 	I II I 	II I I I II 	I I I

I
I

II 	I
II 	I

I 	I
I 	I

I
I I

II 	I
II 	I

I
II

I 	I
I 	II

I
I I

I
I

II
I

I 	U
II 	•

If
II

I
U

.Fq01
IJ
I,I

II 	U
I 	I

U 	I
I 	I

I
II

I
I

I 	I
I 	U

I
I

I 	I
I 	U

I
I
I
I

U
I
I
I

II 	II
U 	I

I
Ii

II
•

..rnnl YIII I 	I II 	I I I I 	I II U • I II U U 	U U I

.r.,n1 II 	I I 	I I I I 	I I I 	II I I I I I 	I I I

.r., 	•i ,I I 	I I 	I I II It 	I I I 	II U I I I I 	I I Url
44111-IIJ :;I U 	I I 	I I II U 	I I II 	I U I II I 	I I I

)titiie: 0.69112

Xtime: 0.6746 	 0.68 	 0.69

XtoO: 0.01953 	1"1 	 11

Figure 5.27: The life routine; measured timing diagram for 32 processors (com-
putation phase).

Phase Prof (s) Revprof (s) Ratio (Revprof/prof)
SEND
RECV

0.118

0.085

0.049

0.114

0.41

1.34

Table 5.4: Forward vs Reverse profiles of life : using simple send prediction.

101

half) yields more accurate times (table 5.5):

Phase Prof (s) Revprof (s) Ratio (Revprof/pro
SEND
RECV

0.118
0.085

0.084
0.109

0.71
1.29

Table 5.5: Forward vs Reverse profiles of life : using congested send prediction.

The equations for MPI performance give confidence intervals on the paramet-

ers, so predictions are possible based on both minimum and maximum expected

communications times. Figure 5.28 shows the computation phase of life using

the maximum and minimum expected communications delays. The maximum

total time for the phase is 28.lms, the minimum 25.7ms. Each communication

step in the inner loop has a maximum expected time of 363us and a minimum

of 244us. Figure 5.29 shows the variation in the time for a single neighbour ex-

change communications step. The actual measured time of each communications

step is 360us, within the predicted range.

These results were obtained by setting the environment variable:

export REVPROFMODE=MIN

export REVPR0FMODEMAX

or export REVPROFMODE=AVG

before running the program.

Bracketing the computation time is also important; this may be done by

using different values of the tcompute computation step time (set within the

MPI characterisation file).

For example, improving computation performance by a factor of 10 leads to

the profile in figure 5.30. The computation phase time is now 8.2ms (down from

26.9ms before), i.e. a factor of 3 improvement in algorithm performance can

be expected from a factor of 10 improvement in processor performance. At this

computation rate, communications takes 75% of the time of each life iteration.

Going the other way, slowing the computation time down by a factor of 10

yields a total computation phase time of 213ms. Communications only occupies

3% of the time.

5.4.6 Weighted point selection (winnow)

The input for the test of winnow (weighted point selection) was the Mandelbrot

set. The predicted timing diagram for the first phase of computation is shown in

figure 5.31. The load is not balanced; the input Mandelbrot set has high values

102

0.17 	 0.18 	 0.19

Figure 5.28: The life routine; predicted timing diagram for 32 processors using
maximum (top) and minimum (bottom) expected communications times.

concentrated in the centre, so a disproportionate amount of computation is done

by the central processors.

Figures 5.32 and 5.33 show the predicted and measured times for the top level

of winnow computation. The measurement is twice as fast as the prediction. This

error is due to the computation running approximately twice the expected speed;

the predictions of communication times are within expected limits. The extreme

imbalance of the load, with processor zero executing a very long computation

step and holding up the rest of the processors is highlighted by the prediction.

5.5 Conclusions

This chapter has illustrated the application of reverse profiling with examples

drawn from the Cowichan problems. Communications dominated programs are

predictable to within a factor of two, and programs dominated by computation

to a factor of ten. This is not as accurate as simulation techniques presented in

the literature, but is sufficient to answer the question: "will this application run

faster or slower on a parallel machine?".

The important features of the technique are:

103

0.177

Figure 5.29: The life routine; predicted timing diagram for 32 processors (de-
tail). The top half shows the maximum expected time for a communication step,
the bottom half shows the minimum expected time.

.ri1 a - • • - - a. - • a - - • -
rni
V31 -

- - - - - - • - a - • - • - a - - - - - • • - - - - - - -
nFA1 q.,I 	- • - - - - - - • - - - - - - - - - - rcl - - - - - - - - - - - - - - • a - - - • a. - - - - - - - - - - - - - - - -- - - - • a - - - - - a. -
..rnl - - - - - - a • - - - - - - -
.,rinl .-•; - - - • - - - E - - - • - M - M- a a
nrinl t(! a a - a a - a - a a a a a a - a a a a

M 0 M a a - M M a - M M - M• • a 	•
_rIAI - a a
.r11 . a - - - a a. - a - - - • a a • a

a a - - a - - a a a - - a a • a a - a.
.r1-71 a a - - a a a a • a - - a a a a a a a
nr1O1 -.r1 a a a - a a a - a a - a - a a - a - a 1.
.r1ci1 -a a - a a a a - a a a - • a a a aaa a

MAI
sr')ll a

•
a
- -
a a

a - - a a a
a

a - - - a - a a • a - - - a - a - a a a a - a - a a a
fl a a a - - a a a a - - a a a - • a a a a

nfr)01 -, - a - - a - a a a a - - a a a a a a
..rnnl

.r 	1 1 a MW a a - - - a a a - a - • a a a a a a ap

0 time: 0.0276 I
I

I I I I

Xtime: 0.0194 0.02

MOO: 0.008198 	I-.J J 	 -

Figure 5.30: The life routine; predicted timing diagram for 32 processors, with
computation speeded up by a factor of 10, communications left the same speed.

104

..r11

.r.11
-'U

I-il
ro1

..rnl

.,rlA1

.,r11l

.,rl nj

.,rl 01

...IIA1
--

.11 71

..11Q1

.,iinl

—'a 	 -
—

-"-'U

-'U

o time: 	0.3395 	'

Xtime: 0.3333

Xto 0: 0.006208

Figure 5.31: The winnow routine: predicted timing diagram for 32 processors.
The first stages of computation have the appearance of the edge of the Mandeibrot
set.

All

0 time: 0.4966

Xtime: 0.3328

XtoO: 0.1638

0.4

Figure 5.32: The winnow routine: predicted top level timing diagram for 32
processors.

105

.,.rll

V3 I - — — — — —
..SrOI —
SFfl.I -. 	— —
.ris1 -. 	- -

U
.F1A1 -, 	S
.r1 c1

-,
.r1.71 -. 	S
.r1 o1 - 	U
.r1n1 .

U
.ri1 - — — — — —
.r,o1 — —
.F11
All J 	 II-

0 time: 1.23

Xtime: 1.159

XtoO: 0.07105

Figure 5.33: The winnow routine: measured top level timing diagram for 32
processors.

. It is as easy to use as normal profiling

. Predictions for any target architecture may be made on the development

platform

. Predictions are based on actual data distributions

. Data dependent communications may be included

Expected timing diagrams are produced, showing graphically where most

time is spent

Non deterministic communications are not supported

Reverse profiling offers a very quick and easy method of performance predic-

tion for MPI programs. Unlike simulation techniques it builds directly upon the

full and complete MPI libraries available now. It does not attempt to handle

non-determinism but this is the area in which existing profilers and simulators

produce the least believable results. It works with any MPI implementation

which provides the standard profiling interface, so predictions may be performed

in parallel.

The next chapter investigates the use of a discrete event simulation tool for

performance prediction, to plug the non deterministic gap.

12

106

Chapter 6

A Simulation Tool for MPI
Performance Prediction

Reverse profiling exhibits many of the characteristics of simulation in that each

process maintains its own simulation clock. However it sidesteps the synchron-

isation problems of parallel simulation by requiring that all communications are

deterministic. This means that programs using wildcarded receives (i.e. "receive

the first message to arrive from any other process") cannot be handled accurately

using reverse profiling; reverse profiling will select the first (in real time) message

to arrive rather than the first (in simulation time) to arrive.

Discrete event simulation is needed to handle this non deterministic case prop-

erly. Indeed simulation has been suggested as a cost effective method for devel-

oping and debugging parallel programs. Models may be as complex as desired to

incorporate the detailed behaviour of the hardware.

This chapter describes a simulation tool for MPI performance prediction. The

tool has a standard MPI interface so programs may be moved from the simulation

development platform onto the final machine with minimal effort. A comparison

with actual results is presented and the ease of use of this approach is discussed.

6.1 Introduction

The point of using simulation for development (rather than developing on the par-

allel machine itself) is that it provides a stable repeatable environment. Brooks [14]

highlighted the importance of having a simulator available during the develop-

ment of a new machine, mentioning that the important thing was not that the

simulator should be a perfect representation of the real machine, but that if there

were bugs at least they would be the same bugs each time the program is run.

Brewer [5] discusses the advantages and disadvantages of simulation for parallel

107

program development.

The problems with simulation are speed, accuracy and the time spent de-

veloping models. Speed may be compromised for accuracy (or vice-versa) by

developing more or less detailed models. The time spent developing models is

a real issue; the standard approach (in, for example the WWT [51], Proteus [4]

and PS [3]) is to develop a network model of the architecture based on hardware

design documents and then to refine this until predicted and measured times for

a suite of programs fall into line.

The work in this chapter is based on the HASE simulation tool described in

section 6.2. HASE was developed to allow modelling at any level of abstraction,

from high level algorithm simulations to detailed hardware. Section 6.3 uses mod-

els at the different levels for MPI performance prediction, to assess their ease of

use. Section 6.4 links HASE with the MPI performance models of chapter 3. This

produces similar predictions to reverse profiling, but can handle non determin-

istic cases as well as deterministic ones. Section 6.5 presents some example graphs

obtained using the tool and section 6.6 draws conclusions from this investigation.

The interesting question addressed in this chapter is: What is the place of

simulation in the development lifecycle?

6.2 The HASE simulator

The Hierarchical Architecture Simulation Environment (HASE) was developed

as a tool for modelling and simulating computer architectures at any level of

abstraction. Different models at varying abstraction levels were constructed to

investigate the ways in which simulation may be applied to performance predic-

tion. The design of this tool is outlined in the sections below, and more details

may be found in the references [31], [28] and [29].

6.2.1 Overall operation

HASE allows designers to explore architectural designs at different levels of ab-

straction through a graphical interface based on X-Windows/Motif. The results of

the simulation can be seen through animation of the design drawings. The HASE

tool acts as a graphical front end to SIM++ [56], a discrete event simulation ex-

tension of C++. SIM++ is used to describe the behaviour of basic components of

a simulation. It provides a sim_entity class from which user components may be

derived. Entities notionally run in parallel and may schedule messages to other

entities using SIM++ library functions. The user can link icons corresponding

Wl

to entities together on screen and HASE produces the SIM++ initialisation code

necessary for simulating the network. New components can be constructed by

linking together standard components. Each component can be simulated at any

level of abstraction. A register transfer level simulation will produce the most

accurate simulation results; behavioural level simulations run more swiftly. The

tool allows different parts of the simulation to run at different abstraction levels,

so the user can 'zoom in' to specific parts of the design to simulate that at a low

abstraction level and run the rest of the design at a high level of abstraction. Fig-

ure 6.1 shows how the parts of the system fit together. Entities are selected from

a library, and joined together to form a network. To run a simulation, HASE

generates the SIM++ code for the simulation, which is compiled using Jade's

SIM++ compiler. The simulation executable reads parameters generated by the

HASE user interface, and produces a trace file of the execution which can be used

for animation and statistics within the HASE tool.

6.2.2 Internal design of HASE

Each project built using HASE has its own directory for storing the SIM++ code.

This directory may be used for building and running the simulation outwith the

HASE environment using command line tools like make, giving the full flexibility

of the SIM++ programming language. Alternatively the simulation process may

be controlled from the HASE front end. HASE itself was written using C++,

and a project is represented within HASE by four main classes; the entity, the

parameter, the link and the port.

Entity. This object stores a single component (or 'entity' in SIM++ ter-

minology). The SIM++ code defining the behaviour is held in a file which

has the same name as the entity. Within the object are stored details of the

entity's ports and parameters. In addition, it holds the name of the bitmap

file used for display and animation.

Parameter. An entity may have many parameters. Details of these are

stored within HASE along with instructions for their animation.

Port. An entity sends messages to other entities via 'ports'. A port has

a name, an icon and position relative to the entity's icon. The simulation

code for an entity is written using sends and receives to and from these ports

rather than directly to and from other entities. This constraint means that

reusable components may be constructed with a defined interface.

109

SIM++ Source Code

EWA I !"'EMEN1,11, "" = I = ~
SIM++
Compiler

Parameters
File 	 V

Executable
Simulation

Program 	 File
Memory Files

SIM++)

Run Time 	 Trace
System 	 File

Figure 6.1: The top level design of HASE.

110

Link. This holds a link between two ports, drawn as a line on the screen.

The object includes mechanisms for animating packets sent between entities.

6.2.3 Hierarchy

A subdivided entity may be defined in terms of a network of lower level compon-

ents. Sometimes this is purely to make the design more manageable on screen,

with the simulation still being performed using the low level components. It

is also possible to provide simulation code for this higher level component and

choose to use this one object rather than the low level network in order to obtain

faster simulation time and less detailed results.

This choice of simulation level may be made at run time and is made by

toggling a switch associated with the object. The external interface of the high

level component is defined to be the same as that of the lower level network. This

allows the simulation level of each object in the simulation to be set independently.

Figure 6.2 illustrates two subdivided components connected by their external

ports.

Possible Connections

Figure 6.2: Two subdivided entities are connected by their external ports.

6.2.4 Parameter types

HASE parameters are the crucial link between the simulation code and the an-

imation. They form the internal representation of each entity's state and include

integers, floats, enums, structs and arrays. Once a parameter has been defined for

an entity within HASE, that parameter is available to the simulation code as a

normal C++ variable. The initial value of the parameter may be set using a Motif

dialog and changes in the parameter's value may be recorded in the trace file at

simulation run time, ready to be picked up by the animator. Array variables are

111

File 	Edit 	Parameters 	Build 	Results 	 Help

Editing Project 	DLX

SECTION 	REGISTER
FILE

WIRPNOS 	EXECUTE 	CE 	F*87-1

--

Figure 6.3: The HASE user interface.

initialised at run time by reading in a text file. This process is powerful enough

to allow streams of instructions (for example consisting of COMPUTE <time>, SEND

<proc#>, RECV <proc#>) to be parsed and read in to a component's memory.

6.2.5 Templates

Templates for building common structures such as arrays and meshes of com-

ponents are included. The user can slot any component into the template, set

the dimensions and all the required components and links are produced. Current

templates include a linear array, a 21) mesh, an omega network and a 31) torus.

6.2.6 Output approaches

Simulations are renowned for producing vast quantities of raw data; transferring

this into useful information is no trivial task. The result of a single simulation run

is a trace file with timestamps showing when all changes in state and messages

occurred. HASE includes two visualisation tools to make sense of this information;

an animator and a timing diagram display. The hierarchy is used to control the

amount of information displayed on the timing diagram and logic-analyser style

measurements can be taken. Figure 6.4 shows an example display. The trace file

format has three sections. The first defines the data types, the second the bars

and the last the events, with time stamps. An example is :—

$types

State SEND RECV WAIT BUSY

112

Phase mit Input Calc Output

$bars

p[O] State

pEl] State

All Phase

$event s

u:p[0] at 0.1234 : P ALLREDUCE

u:p[1] at 0.1254 : P SEND

viOl
vrll -
URA

uIUi -
r401

Li
urla
uro

vrfl

Ltril

ur11
uk1
uIE.,1

OI l II 	II 	II 	II 	II 	Ii 	Ii

lime: 	0 0 	 ODX OL 	 A.AAA

icto: 	ooi

Zuoiii C.

Fr•Jl]

l4IHRll-R
lllY

Figure 6.4: A timing diagram display.

The animator uses the trace information to show messages passing between

entities as well as state changes on screen. Used in conjunction, the timing

diagram and the animator show in detail what is actually going on during a

simulation run, which is very useful when developing models.

For very low level debugging purposes it is sometimes necessary to resort to

looking at the trace file itself. Once a model has been developed, it is natural

to stretch it with heavy workloads. This can rapidly generate unmanageably

large trace files, so there is a mechanism in HASE for controlling how much trace

information is produced. For the largest runs it is usual to garner a small number

of statistical measures from the model. These measures are taken using classes

provided in SIM++ for histograms, counts and accumulated averages.

113

Repeated runs are required to investigate how a model behaves using a range

of parameters [23]. These runs are controlled by a Perl script and graphs are

produced using the GNUplot program.

6.3 Using HASE at different abstraction levels

With a simulation environment such as HASE there are no restrictions on the

amount of detail which may be incorporated into a model. It is theoretically

possible to simulate every piece of hardware and software of the target machine

and obtain an exact prediction of the performance. In practice the simulation

run times would be prohibitive and it would take a too long to build a complete

simulation model. So an intermediate level must be found.

Section 6.3.1 describes work done interfacing MPI to low level network simu-

lation models. Section 6.3.2 investigates the opposite approach - treating the par-

allel program as the simulation model. Section 6.3.3 describes how cycle counting

may be used for accurate estimates of computation delays. Tools for debugging at

the source code level are essential for making complex parallel programs (and sim-

ulations) work, so section 6.3.4 describes the facility for single stepping through

simulation and MPI source code.

6.3.1 Low level models

To check how useful low level modelling can be for MPI performance prediction,

the MPI interface functions were written to link with multilevel graphical models

of the hardware. In addition to the performance results for the software this

approach also analyses the behaviour of the underlying hardware.

Hardware models of meshes, tori, fat trees and buses were constructed with

HASE. The same MPI/SIM++ interface links user code to the simulation so

realistic workloads (using actual programs) may be run.

An example application was the low level implementation of an MPLAllreduce

with the operation of addition. The same routine was run on the different archi-

tectural models and the results animated. The animations could be run simultan-

eously on screen so that the architectures could be compared for this application.

For this "proof of concept" experiment, the switching delays were set at 1 unit

per hop and timing diagrams of the hardware and software performance were

produced.

Figure 6.5 shows two different tree structures being run concurrently. The

same MPI application is running on each simulation, but they take different

114

run times because of the different networks. The numbers below the processors

show the intermediate values of computations. Figures 6.6 and 6.7 show the

timing diagrams for the binary tree and the fat tree respectively. The fat tree

network completes the algorithm in approximately half the time of the binary

tree. Figures 6.8, 6.9 and 6.10 show the displays for a 3D torus network, a

2D torus network and an omega network respectively. Only the routing model

distinguishes the models; the same MPI code runs on all structures.

6.3.2 High level models

Many graphical CAD and CASE tools have been proposed to attack the complex-

ity of parallel programming. Few are used in practice. This is partly practical -

most tools have been built as university research projects rather than as commer-

cial applications, but also because the tools do not scale beyond toy applications.

Some simple experiments were run using HASE as a graphical CASE tool to

see if the features designed for hardware animation could be applied to software

animation.

For example, figure 6.11 shows a simulation of a task farm at the process

level (implemented with point to point links). The number of workers may be

varied and effects such as starvation may be observed. Such models are useful

for illustrating certain effects (such as starvation) and exploring the limits of

algorithms. However it is not clear that such modelling is applicable to "everyday"

program design, where the aim is to have simple regular structures, and use

collective communications in preference to the more fiddly point to point methods.

Contrasts may be drawn with parallel software engineering techniques; for

example PARSE [32] uses a similar notation to that used for the task farm (i.e.

processes in bubbles with named and typed ports for communication). The earlier

datafiow diagram techniques of Yourdon and DeMarco for sequential software

design are also similar.

However all these are notations rather than simulation systems, and their end

product is a set of diagrams on paper rather than a working model.

Their model of communicating processes is eminently suited to small scale

distributed systems, with several different types of independent processes com-

municating. It is less applicable to a parallel program written as a sequence of

operations on distributed data structures (the diagram reduces to a single circle,

or a set of identical circles, and yields little information).

115

File Edit Parameters Build Results 	 Help

Editing Project : fattree

Z 	10 6 	6 10 Z6 Il 34 16 4Z ZZ 50 Z6 56

Figure 6.5: A graphical representation of two architectures; a binary tree (top)
and a fat tree (bottom).

116

bt.bt-DIJ:State
bt.bt-p1State
bt.bt-p2:State
bLbt-3:State
bt.bt-ø4:State
bt.bt-o5:State
bt.bt-p6:State
bt.bt-p7State
bt.bt-p8:State
bt.bt-p9:State
bt.bt-p10State
bt.bt-pll:State
bt.bt-p12: State
bt.bt-13:State
bLbt-14: State
bt.bt-p15:State

o time:46.0

Xtime:0.0

Xto 0:16.0

0.0 	10.0 	20.0 	30.0 	40.0

Figure 6.6: A timing diagram showing the detailed behaviour of a binary tree
implementing an alireduce communications operation.

tt,ft-pO:State RE M
ft.ft-pl:State - - U
ft,ft-p2:State
ft.ft-p3:State
ft,ft-p4:State
ft.Ft-p5:State
ft,ft-pS:State
t,ct-p7:State

ft.ft-p8:State - -
ft.ft-p9:State
ft.Ft-plO:State
ft,Ft-pll:State
ft,Ft-p12:State PI M
ft.Ft-p13:State FM
ft.Ft-p14:State
ft.Ft-p15:State =0= I -

tiine:2.7 	 I I 	I I 	I I I I I 	I I I I I 	I 	I 	I 	I 	I I 	I I I I I I I 	I I I I I I

Xtime:0.0 	 0.0 	10.0 	20.0 	30.0 	40.0

Xto 0:20.7 	 14

Figure 6.7: A timing diagram showing the detailed behaviour of a fat tree imple-
menting an alireduce communications operation.

117

Figure 6.8: A HASE simulation of a 3d torus.

Figure 6.9: A HASE simulation of a 2d torus.

118

Figure 6.10: A HASE simulation of an omega network.

119

Ilokts=5

(Th 	I/WR WK UH':
HRM(R/ 	 ROUTER 	I ,.L ROUTER r............L ROUTER !.I

i I 	U

- t 	-
I 	 I I i 	I
I 	 I I I

I : AWL
II'IORIER1 t4ORHER' [WURHERI

:
I
I 	 I

I 	 I

(

	

RS

I

i 	I

I

I

I 	I
I

I 	 I
I 	 I
I

I
I
I

I
I
I

1/RS
SCREEN

RS '(RS'\I
ROUTER ROUTER ROUTER

-.----, '•-'---- ,.-,

Figure 6.11: A task farm.

6.3.3 Cycle counting

In addition to simulating the performance of the MPI functions it is necessary to

determine the speed of the computation. There are various methods of doing this;

estimating from the source code, letting the user guess delays, full instruction set

simulation or cycle counting. This last option involves processing the assembler

and adding instructions to update a cycle count to each basic block. This can

give accurate results [4] at the cost of slowing down execution by a factor of two.

To investigate the applicability of cycle counting, the code augmenter from

Proteus was used to add cycle counting to SIM++ simulations.

Some modifications to the Proteus augmenter were required for Solaris, but

it worked effectively. To be realistic all code must be augmented (including

standard I/O and maths libraries) which is a systems administration burden

since libraries like libc . a, libm. a must be recompiled from source (which is not

always available). The augmenter must also support the target architecture for

realistic results.

In conclusion, cycle counting does work, but requires a fair amount of effort

(and access to the source code of all libraries used).

A simpler alternative is just to time the intervals between communications

and scale the times up or down by the amount the target processor is slower or

faster than the development processor. This is made tricky in a multi threaded

implementation as there is usually only one clock which will measure the wall clock

120

time spent while other threads are running so the times become meaningless.

6.3.4 Single stepping

A major criticism of parallel tuning tools is that there is poor linkage between the

displays and the original source code (no such facility appears in the ParaGraph

tool for example). Such features have been incorporated into recent tools such

as the IBM RP/2 system. The feature was added to HASE to highlight the

source line of each object to allow single stepping. Figure 6.12 demonstrates this

highlighting for two of the MPI processes running on a torus network.

II Send value to previous process.

(void *)&value, sizeot(value))) c 0)

II Read value from next process.

Figure 6.12: Source line highlighting.

This has proved useful for SIM++ code development and also for demonstrat-

ing simple MPI algorithms. Such debugging may be added to a simulator without

affecting the behaviour (unlike a profiler).

121

6.4 Using HASE with MPI performance models

This section describes the use of HASE with the MPI performance models of

chapter 3. This technique required a re-implementation of the MPI functions

written using the simulation primitives. User code is linked with the simulation

code, and the simulation runs concurrently with the user's application to produce

a predicted trace file.

The technique produces the same results as reverse profiling for deterministic

applications. But since the simulator keeps track of global simulation time, non-

deterministic applications may also be handled correctly.

6.4.1 Implementation

The simulator is based on SIM++ [56] which extends C++ to include lightweight

processes and events. The unit of concurrency is a parallel "object" which maps

to the MPI model neatly. SIM++ provides a more powerful parallel programming

model than MPI since shared variables are allowed in addition to message passing.

It also incorporates the notion of time to schedule the objects.

Each MPI process is allocated a separate object and each runs in parallel, MPI

function calls are intercepted by methods local to the object and are implemented

in terms of the SIM++ primitives:

void sim_schedule(..

void sim_wait(sim_event &ev);

void sim_hold(sim_time delay);

Thus there is a class process which looks like:

class process : public sim_entity {

public:

mt MPI_Send(...);
mt MPI_Recv(...):
mt MPI-Barrier(...);

void bodyO;

}

The bodyO method performs the actual work.

void process: :bodyO

{

122

II The user's main() routine goes here

II All MPI calls are intercepted either

II by local methods or by global functions MPI_Init

The simulated versions of MPI routines are implemented using SIM++. For

example the implementation of MPI-Send(. .) uses a sim_schedule(...) to

send the message, along with a sim_hold(... to delay for the expected delay.

MPI_Recv (...) is implemented using sim_wait (...).

The collective MPI routines are implemented using the point to point func-

tions, with the delays calculated using the collective models rather than the con-

stituent point to point models.

6.4.2 Implications of a threaded model

There are several implications of a threaded model as opposed to the usual pro-

cess model for MPI (although the MPI standard [15] does not specify the process

execution model and does mention the possibility of a shared memory implement-

ation). The main difference is the treatment of global variables; these are private

in a process based implementation and shared with SIM++. Private variables

can be included in a SIM++ implementation by making them members of the

class.

To summarise; care must he taken with global variables when moving code

from a process based MPI to a threads based MPI.

There is also an issue when using C code with SIM++. Most of the MPI calls

are implemented using methods of the process object to which C code does not

have access. This problem has been solved for SIM++ by defining C wrapper

functions which call the SIM++ version for the current object. For example:

mt MPI_Send(...)

{

return current_process->MPI_Send(...);

}

The final issue concerns the main() function itself. This has to be renamed

as mpi_niain() in order to link correctly.

Thus, with minor modifications, any C or C++ MPI code may be run on the

prototype SIM++ run time system. A production simulation environment could

negate the need for even the minor changes.

123

6.4.3 The performance model

The time delays are calculated according to a model derived from the routines of

chapter 3. Thus the times could also be calculated by hand using the published

table of the model. This is important, as simulation is intended to be one of the
development tools rather than a utopian solution, so it is essential that the logic

which arrived at timings may be checked by hand. (rather than a "black box"

simulator mysteriously generating times which can't be checked without delving

into its dark recesses).

6.4.4 A FORTRAN linkage model

Emphasis has been placed on linking C and C++ so far. However most scientific

users use FORTRAN, so it would be beneficial if a development method could

support FORTRAN as well as C users.

At first sight the problem appears straightforward; compile the Fortran routines

separately and link them with SIM++. However there are several obstacles. The

route from Fortran to C is well trodden, but that between Fortran and SIM++

is less well known. The main differences are

Arrays; C orders them row major in memory whereas in Fortran they are

column major.

. Function arguments; in C they are passed by value, whereas in Fortran they

are passed by reference.

Naming; Fortran functions are preceded with an underscore.

Globals; This is a more serious issue with Fortran than with C as global

variables cannot be moved into the class to make them inaccessible to other

processes.

Static variables; This is a serious problem with Fortran. Local variables are

the equivalent to static variables in C. This means that multiple threads

calling a function will update the same instantiation of a variable rather than

independent copies which understandably causes havoc. Short of replacing

all static variables with dynamic ones (or with function parameters which

are actually local) there is no way around this problem. Note that this also

make recursion awkward in Fortran.

There is also the same issue of calling the C++ methods as there was from C, so

the route from Fortran to SIM++ goes via a C function.

124

An alternative approach would be to use a language translator (such as f2c).

However this makes the compilation phase slower so is undesirable.

To test the Fortran route, some of the Genesis benchmark suite codes [57]

were linked to the SIM++ implementation of MPI. These included the FFT1

and the QCD1 codes. The task was fairly time consuming as the codes had first

to be moved from PARMACS to MPI, but could be done. The big problem was

the storage class of local function variables in Fortran (they are declared static);

in other words if several threads call the same Fortran function they each update

the same copies of the local variables.

No simple solution to this was found. Fortran could not be made to marry well

with a threaded C++ simulator without excessive source code modifications and

attention was shifted to concentrate on C/C++ development instead. Fortran

has been targetted with a parallel simulator in the LAPSE project [11] which

uses separate processes on an Intel message passing library rather than separate

threads. Reverse profiling also works happily with Fortran.

6.4.5 Speed of SIM++/MPI vs LAM/MPI

An experiment was conducted to compare the run time of MPI programs compiled

with a standard distribution of MPI (LAM) and the same program running on

top of SIM++.

The program for the test was a simple pingpong:

/* ping pong *1
mt b;
for (mt j=O; j<1000; j++) {

if ((rank&1)==O) {

MPI_Send(&raiik1MPI_INT,rank+1,100,MPI_COMM_WORLD);

MPI_Recv(&b,1,MPLJNT,rank+1,100,MPI_CDMM_WORLD,&st);

}

else {

MPI_Recv(&b,1,MPL.JNT,rank-1,100,MPI_COMM_WORLD,&st);

MPI_Send(&rank,1,MPI_INT,rank-1,100,MPI_COMM_WORLD);

}

II

with each process bouncing messages to and from its neighbour. This was

run on a single workstation with from 2 to 32 processes. Each measurement

is the average of three repeated runs; timings were taken from the same Sun

125

Sparcstation; no compiler flags were switched on; timings were taken using the

Unix time command. LAM version 5.2 and SIM++ version 3.10 were used.
250

LAMIMPI
Sim*+/MPI -t, -

200

4f 	150

0 p
100

50

0 .

2 	4 	8 	 16 	 32
Number of MPI processes

Figure 6.13: Pingpong run times on LAM/MPI and Sim++/MPI

4

3.5

3

2.5

2

1.5

0.5

Ratio of Lam time to Sum** time -a--

0 	 5 	 10 	15 	20 	25 	30 	35
Number of MPI processes

Figure 6.14: Ratio of LAM/MPI to Sim++/MPI run time

The results are shown in (figure 6.13). The SIM++ implementation of MPI

is 2 to 3 times faster than LAM (figure 6.14), even though the simulation has

the overhead of calculating the expected times for each communication. The

reason for the apparently anomalous result of the simulation being faster than

the real thing lies in the underlying implementations of LAM and Sim±±. LAM

gives a separate Unix process to each MPI process, whereas in Sim++ lightweight

threads are used instead. The overheads of Unix process context switching are

more than enough to counteract the extra burden of computing times in Sim++.

126

Compute intensive programs are another story. Sim++ is sequential, so the

simulation time grows linearly with the number of processors simulated.

6.5 Examples

6.5.1 Cowichan problems

All the Cowichan problems were written to use deterministic patterns of commu-

nication, so the predictions obtained using the simulation tool were identical to

those produced using reverse profiling (but were more difficult to obtain).

For example, figure 6.15 shows a predicted timing diagram for the mandel

routine on eight processors of the Cray T31), which may be compared to the

reverse profiling measurements and predictions of section 5.4.1. This example

required source code modifications to link it with the simulator, and took 77s to

run on a workstation.

P101
P111
P[2]

P151
PIG]
p[7]

IT-

o time: 0.6407 	I 	' 	'
Xtime: 	0 	 0

Xto 0: 0.6407

Figure 6.15: 6.15: Predicted timing diagram for the mandel routine for 8 processors on
the Cray T31)

Rather than port the rest of the Cowichan problems to the simulator and

repeat the same predictions as the previous chapter, a non-deterministic example

was constructed.

6.5.2 Non-deterministic example

Some parallel programs employ dynamic load balancing techniques to attempt to

keep all processors busy and obtain the maximum speedup. However, the efficacy

of such techniques is strongly dependent on the overheads introduced, and it may

be better in practice to use a static data distribution and suffer a load imbalance

than to incur these overheads.

127

Dynamic load balancing is the situation where reverse profiling yields little

useful information and it requires a simulator to predict the behaviour.

The standard dynamic load balancing technique is the task farm where "work-

er" processes are allocated packets of work by a "farmer" process and feed their

results to a "sink" process. The technique becomes unstuck if the workers are

not kept busy, so it is crucial to know the order of magnitude of the overheads.

A generic task farm was constructed in MPI, with the workers taking randomly

distributed times to complete tasks. This was run on the simulator with the

communications models of the Cray T31) and the network of workstations, and the

predicted timing diagrams are shown in figures 6.16 and 6.18. The measurements

are in figures 6.17 and 6.19. The predictions and measurements for the Cray yield

the same information; the communications are taking a significant proportion

(between 15% and 30%) of each worker's time, and this is worsened by contention

at the farmer (process 0), especially at the start of the algorithm when all workers

are demanding packets from the farmer at approximately the same time.

The predictions and measurements for the network of workstations indicate

that the problem is totally dominated by communications overheads which are

over an order of magnitude greater than the packet computation time.

P101 	 0111110MMEMINNE
p[ll
P[21 	 • I 	II
P131 	 - I 	U
P[41 	 I 	 'I
PIS] 	 I 	I
P161 	 I
p[7J 	 - 	II

I 	I 0 time: 0.004071

Xtime: 0.0000 	0

Xto 0: 0.004071

Figure 6.16: Predicted timing diagram of non-deterministic application for Cray
T3D.

6.6 Conclusion

An environment for developing MPI programs on a simulator has been presen-

ted. The level of detail of the simulation model may be varied between detailed

hardware models and simple equations of the MPI routine performance derived

from a benchmark routine.

The SIM++ implementation of the MPI functions runs faster than the stand-

ard workstation version. This result is a good counter to the argument that

128

01110=11IMMMIE

I I 	I
I U I 	 II I 	m 	I 	 I

I 	U 	I 	I

0 time: 0.00393

Xtime: 0.0000 0

XtoO: 0.00393

Figure 6.17: Measured timing diagram of non-deterministic application on Cray
T3D.

p101 	 1
pill 	

IllIllIllIluIll 	.I

DO
D[31
p14] 	 —

p[7]

0 time: 0.1841

Xtime: 0.0000 	0 	 0.1

X to 0 0.1841 	1T

Figure 6.18: Predicted timing diagram of non-deterministic application for net-
work of workstations.

plot 	 •iiIiI 111111111
P111
P[21

F31
p141 	 —
p[51 	 - — —
p161
p[7] 	 — 	 —

Otime: 0.1136 	I I I I I I

Xtime: 	0 	0
	

0.1

XtoO: 0.1136

Figure 6.19: Measured timing diagram of non-deterministic application on net-
work of workstations.

129

simulation is too slow to use. However, it is a sequential simulator so the run

time grows with the total amount of computing to be done across all simulated

processors.

The problems with using a simulator for program development are practical

rather than theoretical. The main problems are maintaining a separate imple-

mentation of MPI (written in terms of the simulation primitives), and the fact

that it requires slightly more effort to run code on the simulator than to run it

on a standard MPI development platform. This means that for all but complex

non-deterministic problems the reverse profiling technique is more appropriate.

130

Chapter 7

Conclusion

Several methods for attacking the central problem of designing explicitly parallel

programs have been presented.

The techniques have focussed on solving the low level aspects of parallel pro-

gram design rather than in creating higher level abstractions. This is because the

low level problems have not been solved adequately and higher level programming

models are all built on the low primitives. The message passing model of MPI

was used.

The main difficulty is developing a technique which is simple enough to use at

the initial stages of design yet is accurate enough to provide meaningful guidance.

The main competition for any tool for parallel program design is not so much

an alternative tool, rather the current situation where performance is left as a

"tuning" task to be done after the event. Is it so bad that this aspect is left to

tuning? Is design important? In some ways the answer is no. Since software is

(superficially) easy to change, why not just build a program one way, test it then

make design changes afterwards? In other ways, the fact that the performance

characteristics of the primitives are not given means that the program designer

is forced to make decisions which affect the performance with nothing other than

guesswork and intuition for guidance. It is like designing a circuit with no data

sheets.

So the initial phase of work was to provide "data sheets" for programmers

(chapter 3). These may be used to provide concrete data to help with pencil and

paper calculations at the initial stages of design. Alone, these may be sufficient

for many people. A characterisation program generates the sheets automatically

for an MPI implementation. It times all the MPI functions using a range of data

and machine sizes, then fits a curve to the data. The aim of the data sheets is

to describe the delays as seen by the programmer and not to characterise the

hardware performance. Thus the time for an MPI-Send is quoted as the time

131

a process is delayed by calling MPI-Send (and not the time for the message to

arrive). Sheets have been generated for a network of workstations, the Cray T31)

and the IBM SP2.

How can the information in the data sheets be best used? This was addressed

in chapter 4 which used the raw data from such simple models along with a

graphing package to produce scalability plots from equations. This is a very

quick method for obtaining rough estimates. The method produces useful graphs

showing how much (if any) speedup is expected. The shapes of the expected

speedup curves are very similar to those measured on the Cray T31) and a network

of workstations. It is easy to see the effects of varying input parameters on a

program's overall performance; for example computation time is only predictable

to an order of magnitude so speedup curves at both ends of the compute time

range can be produced. The restrictions of the technique are that the models are

generated by hand, and it is hard to incorporate data dependent communications.

For more complicated patterns of communication, or where more detail is

needed, the reverse profiling technique of chapter 5 provides performance pre-

diction using the MPI profiling interface. This applies the data sheet model to

programs in the development stage to produce timing diagrams for a single run

or scalability graphs for multiple runs. The attraction of this technique is its ease

of use. Predictions may be obtained as part of normal development. It is most

appropriate for producing timing diagrams showing the detailed behaviour of a

single run. Cacheing effects mean that compute time may only be estimated to

a factor of ten, but communications time is predicted to a factor of two. The

program's exact data dependent communications patterns are incorporated into

the expected timing diagram, as long as there are no non-deterministic receives.

Non-deterministic programs may be handled using discrete event simulation.

Chapter 6 described a version of this approach. It is a direct execution simulator

which uses the running application to drive the simulator kernel. It generates

predicted timing diagrams, and because it maintains strict ordering of simulation

events it is able to handle non-determinism correctly. The simulator implements

low level message passing two to three times faster than implementations of MPI

on a single workstation. Because it is a sequential simulator, however, the time

to simulate a program running on a parallel machine grows with the number of

processors simulated. The MPI data sheets provide the communications model

used by the simulator. In addition to these models, simulation allows more de-

tailed models of network architectures to be specified, and some experiments were

conducted using graphical techniques to keep the models visible. The cycle count-

132

ing technique was also used to obtain more accurate estimates of compute times.

However it was found to be too cumbersome for widespread use. The simulation

approach provides the most detailed results and similar techniques have been

suggested by others for parallel program development. However it is too detailed

for most developers and it requires a re-implementation of the message passing

interface rather than simply building on top of an existing one.

7.1 Prediction as part of design?

In the introduction, it was stated that the ideal was to move away from post-

mortem techniques for performance analysis towards incorporating performance

into the design stage. From a design point of view, it is better to obtain evalu-

ations of proposed solutions at an early stage of development rather then when

coding is completed. The lightweight pencil and paper and graphing techniques

may be applied without having to realise the design as a concrete implementation,

so fit naturally into the early stages of design to help choose between alternative

strategies. The more sophisticated techniques of reverse profiling and simulation

both rely on complete programs, or sections of programs, in order to generate

more accurate predictions. Thus they are appropriate later in the design cycle for

selecting between different key algorithms or determining whether how a program

will run on a possibly unavailable machine.

The increase in level of detail of the approaches ties in naturally with top down

design, since an appropriate prediction technique may be used at each stage of

refinement. At the simplest level, overall estimated timings for application phases

may be used. The few phases expected to take the majority of the time may be

analysed using a more detailed method. For all the MPI programs developed, the

application phases were separated with some form of global communication or

synchronisation, so the total time could be calculated by summing the component

phase times. This separation of phases (into input, compute and output stages

for example) was done in order to obtain correct behaviour of the programs, but

also made modular prediction of performance simpler. The BSP model uses the

same approach throughout to simplify predictions.

133

7.2 Further work

7.2.1 Data sheets

Parallel programmers are not given sufficient information at design time to design

effective parallel programs. The MPI data sheets presented in chapter 3 go some

way towards rectifying this situation for message passing, but similar measure-

ments should be available for other programming models.

The design of the MPI data sheets themselves could be improved, possibly

expanding the summary section at the start to include sample times for "common"

data and machine sizes in order to save having to plug values into an equation.

The current data sheet generator could be expanded to characterise I/O times in

addition to the communications functions. It could also characterise a range of

computation operations to improve estimates of computation times.

Such data sheets should be a standard part of parallel library documentation.

7.2.2 Combining reverse profiling and simulation

The reverse profiler could be extended by including a parallel simulation engine

such as that used in Lapse [11]. This would combine the ease of use of reverse

profiling with the ability to handle non-deterministic routines.

7.2.3 Improving compute time prediction

The compiler, processor pipelining and memory hierarchy all conspire to make

compute time unpredictable at design time. The only foolproof methods are

measurement and full simulation but neither is convenient to do at design time.

Intermediate techniques based on cycle counting of assembler code or interpret-

ation of compiler parse trees are too tied to particular implementations to be

generally applicable, and in any case are prone to order of magnitude errors.

So it is only practical to predict compute times to within an order of mag-

nitude. The techniques of this thesis left the basic compute time step as a para-

meter to allow early experimentation to check how sensitive an algorithm is to

such compute time variations. In practice, many of the algorithms run on the

Cray and the network of workstations produced remarkably little change in expec-

ted speedup. They were either communications dominated to an extent that only

minimal speedups were available, or computation dominated, giving reasonable

speedups across the compute time range. It was only for algorithms with roughly

equal computation and communications times that getting the computation step

right was essential.

134

7.3 Overall conclusion

This thesis has presented three approaches to performance prediction; each has its

merits. The best technique to use is the simplest one possible. The information

in the data sheets along with a calculator (or pen) may well be enough for simple

programs. The graphing package is not much more difficult to use for estimates of

speedups. For producing timing diagrams showing the way in which complex data

dependent communications will work in practice, reverse profiling is as simple to

use as standard profiling. Simulation is overkill at the early stages of design, but

is appropriate for non-deterministic applications, or for investigating the effects

of a program on a network.

135

Bibliography

A.Dunlop, E.Hernandez, O.Naim, T.Hey, and D.Nicole. A Toolkit for Op-

timising Parallel Performance. In HPCN International Conference Milan,

number 919 in LNCS, pages 548-553. Springer-Verlag, May 1995.

A. Agarwal. Limits on interconnection network performance. IEEE Trans.

on Par. & Dist. Sys., 2(4), October 1991.

R. Aversa, A. Mazzeo, N. Mazzocca, and U. Villano. The PS Project: devel-

opment of a simulator of PVM applications for Heterogeneous and Network

Computing. In Innes Jelly and Ian Gorton, editors, Software Engineering

for Parallel and Distributed Systems Proceedings of the First IFIP TC10

International Workshop on Parallel and Distributed Software Engineering.

IFIP, Chapman and Hall, March 1996.

E.A. Brewer, C.N. Dellarocas, A. Colbrook, and W.E. Weihl. PRO-

TEUS: A high performance parallel-architecture simulator. Technical Re-

port MIT/LCS/TR-516, MIT Laboratory for Computer Science, September

1991.

E.A. Brewer and W.E. Weihl. Developing parallel applications using high-

performance simulation. In Proceedings of 1993 Workshop on Parallel and

Distributed Debugging. San Diego, CA, 1993.

J. Buck, S. Ha, E. Lee, and D. Messerschmitt. Ptolemy: a framework for

simulating and prototyping heterogenous systems. mt. Journal of Comp.

Sim., August 1992.

G.D. Burns, R.B. Daoud, and J.R. Vaigl. LAM: An Open Cluster Environ-

ment for MPI. In Supercomputing Symposium '94, Toronto, Canada, June

1994.

L.J. Clarke. PUL concepts I. Technical Report EPCC-KTP-PUL-CONC-I,

Edinburgh Parallel Computing Centre, University of Edinburgh, 1991.

136

M.I. Cole. Algorithmic Skeletons: Structured Management of Parallel Com-

putation. Pitman & MIT Press, 1989.

D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, R. Sub-

ramonian, and T. von Eicken, LogP: Towards a realistic model of parallel

computation. In Proceedings of the Fourth ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming. San Diego, CA, May 1993.

P.M. Dickens, P. Heidelberger, and D.M. Nicol, A distributed memory

LAPSE: Parallel simulation of message-passing programs. Technical Re-

port NAS1-19480, NASA Langley Research Center, Hampton, VA 23681,

December 1993.

M.A. Driscoll and W.R. Daasch. Accurate predictions of parallel program

execution time. Journal of Parallel and Distributed Computing, 25(1), Feb-

ruary 1995.

T. Fahringer and H.P. Zima. A static parameter based performance predic-

tion tool for parallel programs. In Proceedings of the 7th ACM International

Conference on Supercomputing, July 1993.

F.Brooks. The mythical man-month. Addison-Wesley, 1975.

Message Passing Interface Forum. MPI: A Message Passing Interface. Tech-

nical report, University of Tennessee, June 1995.

I. Foster. Designing and Building Parallel Programs, chapter 3. Addison-

Wesley, 1994. Available online at http://www.mcs.anl.gov/dbpp/.

F.W. Howell. MPI Data Sheet Generation Routines.

http: //www.dcs .ed.ac.uk/home/fwh/perfchar,1996.

J.L. Gustafson. Reevaluating Amdahl's Law. Communications of the ACM,

31(5):532-533, May 1988.

F. Hartleb. Graph models for Performance Evaluation of Parallel Programs.

In A.Bode and M.Dal Cm, editor, Parallel Computer Architectures: Theory,

Hardware, Software, Applications, number 732 in LNCS. Springer-Verlag,

1993.

M.T. Heath and J.A. Etheridge. Visualizing the performance of parallel

programs. IEEE Software, pages 29-39, Sept 1991.

137

T. Hey, J. Dongarra, and R. Hockney, PARKBENCH: Parallel kernels and

benchmarks. available at http://www.net1ib.org/parkbench/htm1/, 1996.

J.M.D. Hill, P.I. Crumpton, and D.A. Burgess. Theory, practice and a tool for

bsp performance prediction. Technical Report TR-4-96, Oxford University

Programming Research Group, Feb 1996.

J. Hillston. A tool to enhance model exploitation. Technical Report CSR-

20-92, Dept. of Computer Science, University of Edinburgh, 1992.

J. Hiliston. PEPA: Performance Enhanced Process Algebra. Technical Re-

port CSR-24-93, Department of Computer Science, University of Edinburgh,

March 1993.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

A. Hondroudakis and R. Procter. The design of a tool for parallel program

performance analysis and tuning. In Proceedings of IFIP WG10.3 Working

Conference on Programming Environments for Massively Parallel Distributed

Systems. IFIP, April 1994.

F.W. Howell, Reverse profiling. In Innes Jelly and Ian Gorton, editors,

Software Engineering for Parallel and Distributed Systems : Proceedings of

the First IFIP TC10 International Workshop on Parallel and Distributed

Software Engineering, pages 244-255. IFIP, Chapman and Hall, March 1996.

F.W. Howell and R.N. Ibbett. STATE-OF-THE-ART IN PERFORMANCE

MODELLING AND SIMULATION Modelling and Simulation of Advanced

Computer Systems: Techniques, Tools and Tutorials, edited by Kallol Bag-

chi, chapter 1:Hierarchical Architecture Simulation Environment, pages 1-

18. Gordon and Breach, 1996.

F.W. Howell, R. Williams, and R.N. Ibbett. Hierarchical Architecture Design

and Simulation Environment. In MASCOTS '9: Proceedings of the 2nd

International Workshop on Modeling, Analysis and Simulation of Computer

and Telecommunications Systems, January 1994.

H.Wabnig, G.Haring, D.Kranzmuller, and J.Volkert. Communication Pat-

tern Based Performance Prediction on the nCUBE-2 multiprocessor System.

In CONPAR, pages 41-52, Linz, Austria, Sept 1994. Springer-Verlag.

R.N. Ibbett, P.E. Heywood, and F.W. Howell. HASE: A Flexible Toolset for

Computer Architects. The Computer Journal, 38(10):755-764, 1995.

138

I.E. Jelly and I. Gorton, The PARSE project. In Innes Jelly and Ian Gor-

ton, editors, Software Engineering for Parallel and Distributed Systems

Proceedings of the First IFIP TC10 International Workshop on Parallel and

Distributed Software Engineering, pages 271-276. IFIP, Chapman and Hall,

March 1996.

J.P.Singh and J.L.Hennessy. Finding and exploiting parallelism in an ocean

simulation program: experience, results and implications. Journal of parallel

and distributed computing, 15:27-48, 1992.

K. Ciula. PVM and MPI benchmarks on the LACE cluster.

http://www.lerc.nasa.gov/WWW/ACCL/PARALLEL/benchmark.html,1995.

K.B. Kenny and K. Lin. Building flexible real-time systems using the flex

language. IEEE Computer, 24(5):70-78, May 1991.

P.J.B King. Computer and Communication Systems Performance Modelling.

Prentice-Hall, 1990.

De-Ron Liang and S.K. Tripathi. Performance prediction of parallel compu-

tation. In Proc 8th IPPS, pages 625-629. CS Press, 1994.

N. MacDonald. Predicting execution times of sequential scientific kernels.

In Christoph W. Kessler, editor, Automatic Parallelization, pages 32-44.

Vieweg, 1994.

V. Mak and S. Lundstrom. Predicting performance of parallel computations.

IEEE trans. on par. & distr. sys., 1(3), July 1990.

M. Marr. Equations for describing MPI run times. (private communication),

April 1995.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

F.M. Moller. A temporal calculus of communicating systems. Technical

Report ECS-LFCS-89-104, Univ. of Edinburgh Dept. of Computer Science,

1989.

MPICH - A Portable Implementation of MPI.

http: //www .mcs.ani.gov/Projects/mpi/mpich/, 1996.

NASA AMES Research Center. AIMS: An Automated Instrumentation and

Monitoring System.

http://www.nas.nasa.gov/NAS/Tools/Projects/AIMS/,1995.

139

S. Nog and D. Kotz. Performance Comparison of TCP/IP and MPI on

FDDI, Fast Ethernet and Ethernet. Technical Report PCS-TR95-273,

Department of Computer Science, Dartmouth College, Hanover, NH,

November 1995. Available at

http: //www. cs . dartmouth. edu/reports/abstracts/PCS-TR95-273 . html.

C.Y. Park and A.C. Shaw. Experiments with a program timing tool based

on source-level timing schema. IEEE Computer, 24(5):48-57, May 1990.

J.L. Peterson, Petri-net theory and the modelling of systems. Prentice Hall,

1981.

P.Pouzet, J.Paris, and V.Jorrand. Parallel Application Design: The Simu-

lation Approach with HASTE. In WGentzsch and VHarms, editors, High

Performance Computing and Networking II: Networking and Tools, number

797 in LNCS, pages 379-393. Springer-Verlag, April 1994.

P. Puschner and C.H. Koza. Calculating the maximum execution time of

real-time programs. J. Real-Time Systems, 1(2):159-176, 1989.

D.A. Reed, R.A. Aydt, R.J. Noe, P.C. Roth, K.A. Shields, B. Schwartz,

and Luis F. Tavera. Scalable Performance Analysis: The Pablo Perform-

ance Analysis Environment. In Anthony Skjellum, editor, Proceedings of the

Scalable Parallel Libraries Conference. IEEE Computer Society, 1993.

S.K. Reinhardt and M.D. Hill et al. The Wisconsin Wind Tunnel: Virtual

prototyping of parallel computers. In Proc. 1993 ACM SIGMETRICS Con-

ference, May 1993.

R.W.Numrich, P.L.Springer, and J.C.Peterson. Measurement of Communic-

ation Rates on the Cray T31) Interprocessor Network. In W.Gentzsch and

V.Harms, editors, High Performance Computing and Networking II: Net-

working and Tools, number 797 in LNCS, pages 150-157. Springer-Verlag,

April 1994.

R.H. Saavedra, R.S. Gaines, and M.J. Carlton. Micro benchmark analysis of

the KSR1. In Supercomputing '93, Portland, Oregon, 1993.

R.H. Saavedra-Barrera, A.J. Smith, and E. Miya. Machine characterisation

based on an abstract high-level language machine. IEEE Trans. on Comp.,

38(12):1659-1679, December 1989.

140

S.R. Sarukkai. Scalability analysis tools for SPMD message-passing parallel

programs. In MASCOTS '9: Proceedings of the 2nd International Workshop

on Modeling, Analysis and Simulation of Computer and Telecommunications

Systems, January 1994.

SIM+#- v3.8 Reference Manual, 1991.

Southampton Novel Architecture Research Centre. The GENESIS Distrib-

uted Memory Benchmark Suite 2.2, 1993.

Sivan Toledo. Quantitative Performance Modelling of Scientific Computa-

tions and Creating Locality in Numerical Algorithms. PhD thesis, Massachu-

setts Institute of Technology, 1995. Also available as Technical Report MIT-

LCS-TR-656.

Sivan Toledo. Performance prediction with benchmaps. In Proceedings of

the 10th International Parallel Processing Symposium, Honolulu, Hawaii,

pages 479-484, Los Alamitos, California, April 1996. IEEE, IEEE Computer

Society Press.

L.G. Valliant. A bridging model for parallel computation. Communications

of the ACM, 33(8):103-111, 1990.

Gregory V. Wilson. Assessing the Usability of Parallel Programming Sys-

tems: The Cowichan Problems. In Proceedings of the IFIP Working Confer-

ence on Programming Environments for Massively Parallel Distributed Sys-

tems. Birkhäuser Verlag AG, April 1994.

141

Appendix A

An overview of MPI

This appendix gives a brief overview of the MPI functions referred to in the thesis.

For a full description see [15].

MPI-Barrier Performs a barrier synchronisation amongst a group of processes.

MPLBcast Broadcasts data from the root node to all processes in the group.

MPI-Reduce Reduces a set of data items held on separate processes down to

a single value on the root process. The operation for the reduction can

be summation, minimum /maximum, or provided as a function by the pro-

grammer.

MPLAllreduce As reduce, but the answer is returned to all processes rather

than just the root.

MPI-Scatter Scatters data from the root process to all processes in the group.

MPI-Gather Gathers data from all processes to the root process.

MPLAllgather Gathers data from all processes to all processes.

MPLA11toa11 Each process sends and receives distinct data to/from every other

process in the group.

MPI-Send Sends a message from one process to another.

MPLRecv Receives a message from another process.

MPI_Wtime Returns the current local timer value, in seconds.

MPI_Wtick Returns the resolution of MPI_Wtime.

MPI-Comm-split Partitions a group of processes into a set of smaller groups.

142

An example data sheet

This appendix gives an MPI data sheet generated on the Cray T3D by the routine

described in chapter 3.

143

Datasheets for MPI on Cray T3D

Rawtiming Routine

Timings made : Fri Jul 5 17:28:40 1996

Run time parameters

Iterations 3
Elements from 1 to 8192

with log multiplier 2
Data type mt (8 bytes)
Processes 128

Timer resolution 0.0066js

Small messages (32 integers or less)

MPI Function Time (ps) Goodness of fit (Q)
send 30+ 0 x ndata 0.94

ssend 80+ 0.5 x ndata 1
rsend 30+ 0.1 x ndata 1

isendi 30+ 0.2 x ndata 1
isend2 10+ 0 x ndata 0.9

isendoverlap 3+ 0 x ndata 0.74
recv 60+ 0.7 x ndata 0.97

recvmin 30+ 0.9 x ndata 0.77
irecvl 30+ 0 x ndata 1
irecv2 40+ 0 x ndata 0.065

irecvoverlap 0.6+ 0.02 x ndata 1
sendrecv 90+ 1 x ndata 0.97
pingpong 100+ 1 x ndata 0.99

alitoall 40+ 50 x nprocs + 2 x ndata 1
ailsend 40+ 0.05 x nprocs + 0.09 x ndata 1
gather 70+ 10 x nprocs + 0.7 x ndata 1

allgather 40+ 40 x nprocs + 1 x ndata 1
reduce 300+ 3 x nprocs + 2 x ndata 1

allreduce 300+ 6 x nprocs + 2 x log(nprocs) x ndata 1
bcast 200+ 2 x nprocs + 0.6 x ndata 1

Large messages (32 integers or more)

MPI Function Time (,us) Goodness of fit (c)
send 30+ 0.09 x ndata 0.98

ssend 100+ 0,1 x ndata 0.98
rsend 30+ 0.09 x ndata 0.98

isendi 30+ 0.09 x ndata 0.98
isend2 10+ 0.001 x ndata 0.78

isendoverlap 3+ 0.0002 x ndata 0.93
recv 60+ 0.5 x ndata 1

recvmin 30+ 0.4 x ndata 1
irecvl 40+ 0 X ndata 0.44
irecv2 5+ 0.5 x ndata 0.87

irecvoverlap 0.5+ 0.005 x ndata 3e - 05
sendrecv 90+ 0.6 x ndata 1
pingpong 100+ 1 x ndata 1

ailtoall 0+ 40 x nprocs + 0.3 x nprocs x ndata 1
allsend 40+ 0.1 x nprocs + 0.1 x ndata 1
gather 0 + 200 x log(nprocs) + 0.0009 x nprocs2 x ndata 2

ailgather 0 + 40 x nprocs + 0.3 x nprocs x ndata 1
reduce 300 + 2 x nprocs + 0.6 x log(nprocs) x ndata 1

alireduce 300 + 6 x nprocs + 1 x log(nprocs) x ndata 1
- bcast 100 + 2 x nprocs + 0.2 x log(nprocs) x ndata 1

Barrier type routines

MPI Function I 	Time (os) Goodness of fit (Q)
barrier 1 10 + 	8 x log(nprocs) 1

Notes on using this datasheet

This section explains how to use the information in the datasheet. In general the
times are given in terms of the delays seen by a process between calling an MN
function and it returning.

Measurements

The parameters used for the timing run are given in the first table. Each measure-
ment was repeated iterations times. The mean and significance were estimated
from these measurements, and both mean and significance were used by the curve
fitting routines. This explains some oddities in the curve fits, since some points are
regarded as more significant than others. Message and process sizes are given. The
resolution of the timer reported by MPI _Wt ick 0 is shown. Minimum and maximum
values on the curve fit parameters are included in the detailed data sheets.

send, ssend, rsend

The time the sender takes to execute an MPI.SendQ, MPLSsendO, MPL..RsendQ.
given that the matching receive was started at the same time as the send.

isendi, isend2, isendoverlap

Asynchronous sends are measured with three times; isendi is the time to post the
send; isend2 is the time spent waiting for the send to complete; isendoverlap
is the amount of time available for hiding computation between between posting
the send and the send completing. (without extending the total time for the send
beyond isendl+isend2).

recv

The time the receiver takes to execute an MPIJtecvO. (given that the matching
send was started at the same time).

recvmin

The minimum time the receiver takes to execute an MPIJtecvQ. (if the send was
started at least 2 recv times before the receive starts).

irecvl, irecv2, irecvoverlap

Asynchronous recvs are measured with three times; irecvl is the time to post the
recv; irecv2 is the time spent waiting for the recv to complete (given that a match-
ing send was started concurrently with the irecv); irevoverlap is the amount of
time available for hiding computation between between posting the recv and the recv
completing. (without extending the total time for the recv beyond irecvl+irecv2).

pingpong

The round trip time to bounce a message between two processes (using standard
sends and recvs).

Collective communications

The times for collective communications are measured as the maximum time to
execute the function across all processes, assuming the processes are synchronised
beforehand. The message size parameter for collective calls is the same as that
given in the MPI function call.

4

send (small
Best fit (Q_079Y7904)

send

4.5e-05

4e-05

3.5e-05

3e05

2.5e-05

2e-05

1.5e-05

1 e-05
0

0.001

0.0009

0.0008

0.0007

.;. 0.0006
0

0.0005

P 0.0004

0.0003

0.0002

0.0001

n

5 	10 	15 	20 	25 	30 	35
Message size (no of ints)

send (large msci size) -.--
Best fit (Q=0.915376)

.4mm -
Tmax

0 	1000 	2000 	3000 	4000 	5000 	6000 	7000 	8000 	9000
Message size (no of ints)

Ts 	
- (30±4)+(O±0.3) x ndczta 	ifndata <= 32

end(/1S) -
	(30 ± 5) + (0.09 ± 0.02) x ndata if ndata> 32

5

ssend

) 	5 	10 	15 	20 	25 	30 	35
Message size (no of lnts)

ssend(large msq size) -0--
Best fit (Q=O.7887) -----

TpIh -----

0.0012

0.001

0.0008

.E 0.0006
I-

0.0004

0.0002

U
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Message size (no of its)

- 	(80±1O)+(0.5±1) xndata 	if ndata <= 32 f T3send(I.LS) - j (100 d 20) + (0.1 ± 0.03) x ndata if ndata > 32

0.00015

0.00014

0.00013

0.00012

0.00011

0.0001

ge-OS

8e-05

7e-05

6e-05

5e-05

0.0014

6

rsend (large msg size) -0--

Best fit (Q=0.g8318)

rsend

5e-05

4.5e-05

40-05

3.5e-05

3e-05

2.5e-05

rsend (small msg ise) -e--
Best fit (Q=Q.941446)

Tmin
Tmax

- 0 	5 	10 	15 	20 	25 	30 	35
Message size (no of ints)

0.001

0.0009

0.0008

0.0007

0.0006

0.0005

F 0.0004

0.0003

0.0002

0.0001

A

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Message size (no of its)

f (30 ± 4) + (0.1 ± 0.3) x ndata 	if ndata <= 32
Trsend(/IS) -- 	(30 ± 5) + (0.09 ± 0.02) x ndata if ndata> 32

7

isendi

5e-05

4.5e-05

4e-05

i
3e-05

2.5e-05

2e-05

I 5 n

isendi (small msg 	-- Size) -4

Best fit (Q=0.99045)

lmax-'-

0 	5 	10 	15 	20 	25 	30 	35
Message size (no of ints)

0.001
isendi

t
a

Q
 0msi9e

-Best 	2
-
-
'0
-
-
--
- -

0.0009
.-Tmax

0.0008

0.0007

0.0006

0.0005

0.0004

0.0003

0.0002

0.0001

(1
0 	1000 	2000 	3000 	4000 	5000 	6000 	7000 	8000 	9000

Message size (no of ints)

1 (30 5) + (0.2 ± 0.3) x ndata 	if ndata <= 32
Tisendl(PS)

= 1 (30 ± 5) + (0.09 ± 0.02) x ndata if ndata > 32

isend2

1.4e-05

1.2e-05

le-05

I806

6e-06

4e-06

2e-06

C'

isend2 -4---
Best

T Tmax

0 	 5 	10 	15 	20 	25 	30 	35
Message size (no of its)

2.8e-05

2.6e-05

2.4e-05

2.2e-05

2e-05

I
l 1.6e-05

1.4e-05

1.2e-05

1 e-05

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Message size (no of its)

I (10±2)+(0±0.1)xndata 	if ndata <= 32
Tisend2(/1S)

= 1 (10 ± 2) + (0.001 ± 0.0006) x ndaicz if ndata> 32

isend2 (large msg size) -.--
Best fit (Q=0.71S33)

Tmjn

-.-- 	Tmax -------

9

isendoverlap

Best _07%549~
Trnin -----

dove ap st sm

::

2e-06

1.Se-06•

le-06

5e-07 	 II 	 I I

0 	 5 	 10 	 15 	20 	25 	30 	 35
Message size (no of ints)

5.5e-06
isendoverlap(large msg.a1.e) -e--

Best fit (O=cL98232)
Tn -----

Tmax

4.5e-06

E 3.5e-06

2e-06 	
I 	 I 	 I 	 I 	 I 	 I 	 I

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Message size (no of ints)

- f (3±0.5)+ (0±0.03) x ndata 	if ndata <= 32
Tisendover1aptps)

-) (3 ± 0.3) + (0.0002 ± 0.0001) x ndata if ndata > 32

10

recv

0.00012

0.00011

0.0001

9e-05

8e-05

7e-05

6e-05

5e-05

recv(smallrnsgstIe) -e--
Best fit (Q0c728S4)

Tniin
- 	Tmax

II
0 	5 	10 	15 	20 	25 	30 	35

Message size (no of ints)
0.005

0.0045

0.004

0.0035

0.003

0.0025

0.002

0.0015

0.001

0.0005

A

0 	1000 	2000 	3000 	4000 	5000 	6000 	7000 	8000 	9000
Message size (no of its)

- f (60 ± 10) + (0.7 ± 0.8) x ndata 	if ndata <= 32
Trecv - j (60 ± 20) + (0.5 ± 0.08) x ndata if ndata > 32

recv 	ms S 	-0--
Best fit (O

(Iarqe
=0.992

ize)
g7)

,Tmin
Z z Tmax

-V

11

recvmin

9e-05

8e-05

7e-05

J

5e05

4e-05

3e-05

2e-05
0

0.004

0.0035

0.003

0.0025

J 0.002

0.0015

0.001

0.0005

n

recvn,in (large msg size) -0--
Best fit (O=0.99569)

..'Tmin

0 '

/ 	-:-
V 	.7

7 --
/,-

/

5 	10 	15 	20 	25 	30 	35
Message size (no of ints)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Message size (no of ints)

- f (30 6) + (0.9 ± 0.6) x ndata 	if ndata < 32
Trecvmin(p) - 	(30 ± 10) + (0.4 ± 0.06) x ndata if ndata > 32

12

irecvl

7e-05

6e-05

5e-05

4e-05

j
2e-05

1 e-05

0

-le-05

-2e-05 L
0

0.0002

0.00018

0.00016

0.00014

.000012

0.0001

8e-05

6e-05

4e-05

2e-05

Ii

5 	10 	15 	20 	25 	30 	35
Message size (no of ints)

ireevi (Iarqe msq size) -0--
Best fit (0=0.444985)

1mm......
Tmax

0 	1000 	2000 	3000 	4000 	5000 	6000 	7000 	8000 	9000
Message size (no of ints)

	

- f (30±8)+(0±1) x ndata 	if ndata 	32
T1recvlIj.L8) -) (40 ± 8) + (0 ± 0.002) x ndata if ndata> 32

13

irecv2

6e-05

5e-05

4e-05

I

2e-05

1 e05

0

-le-05
0

0.005

0.0045

0.004

0.0035

0.003

0.0025

0.002

0.0015

0.001

0.0005

n

5 	10 	15 	20 	25 	30
	

35
Message size (no of ints)

irecv2 (large rnsg sizej -0--
Best fit (Q=.868C) -----

Tn)ax

7

7-:

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Message size (no of ints)

T 	- f (40 ± 7) + (0 ± 0.5) x ndata 	if ndata <= 32
irecv2tP) - 	(5 ± 10) + (0.5 ± 0.07) x ndata if ndczta> 32

14

i recvoverla p

2.5e-06

2e-06

1.5e-06

le-06

5e-07

0

-5e-07
0

0.0009

0.0008

0.0007

0.0006

c 0.0005

0.0004
F-

0.0003 0.0003

0.0002

0.0001

0
0 	1000 	2000 	3000 	4000 	5000 	6000 	7000 	8000 	9000

Message size (no of its)

- 1 (0.6 ± 0.4) + (0.02 ± 0.03) x ndaa 	if ndaia <= 32
Tirecvovermap(jts) - • (0.5 ± 0.5) + (0.005 ± 0.002) x ndata if ndczta> 32

5 	10 	15 	20 	25 	30 	35
Message size (no of ints)

15

6e-05

0.006

) 	5 	10 	15 	20 	25 	30 	35
Message size (no of ints)

0.00(

0.00C

0.00C

0.0c

8e-

send recv

0.005

0.004

J 0.003

0.002

0.001

seidrecv (large msq size) -.--
Best fit (Q=O.99665) -----

Tn
,-Tmax

7

A

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Message size (no of ints)

I (90 ± 10) + (1 ± 1) x ndata 	if ndata <= 32
Tsendrecv (/.L$) = 	

(90 ± 20) + (0.6 ± 0.09) x ndata if ndata> 32

16

pingpong

0.00026

0.00024

0.00022

0.0002

J

0.00018

0.00016

0.00014

0.00012

0.0001
0

0.01

0.009

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

5 	10 	15 	20 	25 	30
	

35
Message size (no of ints)

pingpong (large msg sté) -e--
Best fit (Q=O 99983)

Tmin
/ Tmax

--.

-- / 	- - -

/

V

/ -

0 	1000 	2000 	3000 	4000 	5000 	6000 	7000 	8000 	9000
Message size (no of ints)

- I (100±20)+(1±2) x ndata 	if ndata <= 32
Tpingpong(ps)

- j (100 ± 40) + (1 ± 0.2) x ndata if ndata> 32

17

20 	40 	60 	80 	100 	120 	140
No of processes

7e-05

6e-05

5e-05

U,

4e-05

3e-05

205

1 e-05
0

barrier

Tbarr ier (/1S) = (10 ± 3) + (8 ± 0.8) x log(nprocs)

18

Time (t

0.007
0.006
0.005
0.004
0.003
0.002
0.001

0

ailtoall (small msg size) -.--
Best fit (0=1)

mm------
flax

)sses

ailtoall

Ju

alitoall (large msg size) -.-
Best fit (0=1)

Tmin
Tmax

Time (seconds)

0.5 -
0.45

.5-
0.45
0.4

0.35
0.3

0.25
02

0.15
0.1

0.05
0

100

1000 200 	 50 No of processes

Message size (no

- f (40 ± 20)+ (50 ± 0.7) xnprocs+ (2±1) x ndata 	 if ndata <= 32
T3 , O0 : (ps) - 	(0 ± 20) + (40 ± 1) x nproes + (0.3 ± 0.005) x nprocs x ndata if ndata > 32

19

alisend

ailsend (small msg size) -.--

Time (i
9e-05

8e-05

7e-05

6e-05

5e-05

4e-05

30-05

2e-05

min
flax 	--

sses

ailsend (large msg size) -.-
Best fit (Q=1)

Tmin
Tmax - -------

Time (seconds)

0.0009
0.0008
0.0007
0.0006
0.0005
0.0004
0.0003
0.0002
0.0001

0

100

1000 200 	 50 No of processes

Message size 	

OiOO

(no

7000

Talt send(IJS) - { (
40 ± 1) + (0.05 ± 0.01) x nprocs + (0.09 ± 0.05) x ndata if ndata <= 32

- 	(40 ± 1) + (0.1 ± 0.02) x nproes + (0.1 ± 0.002) x ndata 	if ndata > 32

20

0.002

0.0015

0.001

0.0005

0

Time (-

gather (small rsgsIze) -.-

mm------
nax-

sses

gather

gather (large msg size -0--
Best fit (Q=2.02886

Tmin
Tmax

T4econds)

0.1

0.05

100

1000 	 _"50 No of processes

Message size (no

her
(jis) - { (70 ± 8) + (10 ± 0.2) x nvrocs + (0.7:± 0.5) x ndata 	 if ndata <=

Tgat- 	(0 ± 20) + (200 ± 7) x log(nprocs) + (0.0009 ± le - 05) x nprocs2 x ndata if ndata > 32

-

21

Time (t
0.007

0.006

0.005

0.004

0.003

0.002

0.001

0

allgather (small msg size) -e--
Rt fit

mm
nax --

'sses

ailgather

ailgather (large nmg size) -.--
Best fit (0=1) -----

Trnin
Tmax

Time (seconds)

0.5 -
0.45

.5-
0.45
0.4

0.35
0.3

0.25
0.2

0.15
0.1

0.05
0

100

1000 20(5?,00 	 No of processes

Message size (no

- 1 (40 ± 10) + (40 ± 0.6) x nprocs + (1 ± 0.9) x ndata 	 if ndata <= 32
Taiigat her 	-) (0 ± 20) + (40 ± 1) x nprocs + (0.3 ± 0.005) x nprocs x ndata if ndata> 32

22

0.0008
0.0007
0.0006
0.0005
0.0004
0.0003
0.0002
0.0001

Time (

reduce (small msg size) -.--
Best fit (Q--1)

mn
nax --------

axes

reduce

reduce (large msg size) Q=1) -.---
Best fit (-----

Tmin
Tmax -

Tsseconds)

0.025

0.02

0.015

0.01

0.005

0

100

1000 2000 00 	 ,50 No of processes

Message size (no

Treduce (/JS)
- { (300 ± 9) + (3 ± 0.1) x nprocs + (2 ± 0.5) x ndata 	 if ndata <= 32
- 	(300 ± 10) + (2 ± 0.2) x nprocs + (0.6 ± 0.01) x log(nprocs) x ndata if ndata> 32

23

allreduce

allreduce (small msg size)
Best fit fit (0=1)

1mm -----

Time (

0.0015

0.001

0.0005

allreduce (large msg size -e---
Best fit (Q=1

Tmin
Tmax

Time (s
0.045
0.04

0.035
0.03

0.025
0.02

0.015
0.01

0.005
0

?sses

. 	 8000

Tallreduce 	
= { (

300 ± 10) + (6 ± 0.2) x nproes + (2 ± 0.2) x log(nprocs) x ndata 	if ndata <= 32
(300 ± 20) + (6 ± 0.3) x nproes + (1 ± 0.01) x log(nprocs) x ndata if ndata> 32

24

0.0005
0.00045
0.0004

0.00035
0.0003

0.00025
0.0002

0.00015
0.0001
5e-05

Time (-

bcast (small msg size) -4--
P$ fit (fl=1)

mm......
flax----

sses

bcast

0.015 - .015-

bcast (large meg size) -.--
Best fit (0=1) -----

Tmin
Tmax ------

TimeTime

sses

- 	 8000

Tbcas t(I.LS)
- { (200 ± 6) + (2 ± 0.08) x nprocs + (0.6 ± 0.3) x ndata 	 if ndata <= 32

- 	(100 ± 7) + (2 ± 0.1) x nprocs + (0.2 ± 0.004) x log(nproes) x ndata if ndata> 32

25

Appendix C

Papers

Copies of the papers related to the work in this thesis are included in this ap-

pendix. The references are:

F.W. Howell. Reverse Profiling. In I. Jelly and I. Gorton, editors, Software

Engineering for Parallel and Distributed Systems : Proceedings of the First

IFIP TC10 International Workshop on Parallel and Distributed Software

Engineering. IFIP, Chapman and Hall, March 1996.

F.W. Howell, R. Williams, and R.N. Ibbett, 	Hierarchical Architecture

Design and Simulation Environment. In MASCOTS '94: Proceedings

of the 2nd International Workshop on Modeling, Analysis and Simulation

of Computer and Telecommunications Systems, January 1994.

R.N. Ibbett, P.E. Heywood, and F.W. Howell. HASE: A Flexible Toolset for

Computer Architects. The Computer Journal, 38(10):755-764, 1995.

F.W. Howell and R.N. Ibbett. STATE-OF-THE-ART IN PERFORMANCE

MODELLING AND SIMULATION Modelling and Simulation of Advanced

Computer Systems: Techniques, Tools and Tutorials, edited by Kallol Bag-

chi, chapter 1:Hierarchical Architecture Simulation Environment,

pages 1-18. Gordon and Breach, 1996.

IM

Reverse profiling

F. W. Howell
University of Edinburgh
Department of Computer Science, J. C.M.B, The King's Buildings,
Mayfield Road, Edinburgh, EH9 3JZ, Scotland.
Telephone: +4 131 650 5141. email: fwhcQdcs ed. ac.uk

Abstract
This paper addresses the problem of designing parallel message passing programs with a
reasonable idea of how well they will actually perform before they are run.

Models with very few parameters (e.g. LogP, PRAM) sacrifice accuracy to simplify
design. By contrast, simulation techniques provide a good degree of accuracy by incor-
porating sophisticated architectural models, but present a "black box" to the user. This
paper suggests a compromise between the two extremes, using an automatically generated
model with a large number of parameters (a separate equation for each MPI function)
which is presented to the user rather than being hidden within a black box. The profil-
ing interface of MPI may be used "in reverse" to insert (rather than measure) expected
timings from the model.

Keywords
MPI, profiling, performance prediction

1 INTRODUCTION

Programming parallel machines is somewhat of a black art as it is hard to know how well
a program will run on a machine before actually running it.

The ideal model for designing parallel programs would be both simple to use and
accurate in its predictions. However such a model doesn't yet exist, the simple models
which are usable do not predict what actually happens reliably and the models which are
fairly accurate (such as the simulation techniques) are both too cumbersome for general
use and also present an opaque "black box" view of an architecture whose mysterious
inner workings are not exposed. This leads to a development approach similar to the post
mortem profiling technique used on actual machines.

The real challenge is to develop an approach which yields useful design information
without requiring too much effort on the part of the programmer; if the method is too
involved and complex then the programmer won't use it and will revert to post mortem
tuning.

The technique of "reverse profiling" addresses some of these problems. There are two
strands to the approach:

The model is automatically generated by running an "MPI characterisation" routine on
an architecture, rather than being crafted from in-depth knowledge of the architecture.
The model is made available to the programmer for constructing quick pencil/paper
analyses of performance
Since performing these calculations becomes tedious, especially when evaluating per-
formance on a range of machines and problem sizes, a method is included for auto-
matically computing these delays using the profiling interface of MPI. Rather than use
profiling to extract timing data from a run of a program, "reverse profiling" inserts

estimated times.

The performance model consists of separate equations for each MPI function giving the
average, minimum and maximum times for a given number of processors and message size.
These equations are generated automatically by an MPI program which times each MPI
function with a range of message and group sizes, then fits an appropriate equation to
the data. Running this on an architecture produces a J1TEXdocument with the equations
for each function and graphs of the timing data used to generate the equations. This
"datasheet" may be used by the programmer for quick estimates of the time an MPI
function will take. A summary file is also produced for the reverse profiling.

The equations given in the model may be used for analytical performance predictions of
a program, possibly in conjunction with a spreadsheet or graphing package to experiment
with alternative designs at an early stage.

Alternatively the evaluations may be done by the computer using reverse profiling.
This involves linking in an extra library, in exactly the same way as a normal profiling
interface is linked. The reverse profiling library intercepts each call to an MPI function
in the program, uses the appropriate equation to estimate the time the function would
take and generates a trace file in a similar manner to a standard profiler. It then calls the
normal MPI function to actually perform the communication.

The next section describes related techniques for performance prediction; section 3
describes the routines for generating the model of MPI performance and section 4 details
reverse profiling. This is followed by an example and conclusion.

2 OTHER TECHNIQUES

Many approaches have been suggested to tackle the problem of performance prediction;
the two ends of the spectrum are simple models like LogP (Culler, 1993) and detailed
simulation (Brewer, 1993). Foster (1994) provides an interesting description of parallel
design techniques. Driscoll (1995) uses an approach based on an extension of Amdahl's
law to look at the performance of a program in terms of equations describing the sequential
and parallel sections, a higher level view of performance prediction than the approach of
this paper.

Getting closer to the source code level, Sarukkai (1994) addresses the problem of scalab-
ility analysis, using the SAGE/SIGMA toolkit to derive a program graph which is analysed
to produce a complexity model. Wabnig (1995) also represents the program by a directed
graph and the hardware by a processor graph, noting that these graphs get very large for
real programs.

LAPSE (Dickens 1993) uses a parallel simulation technique for performance predictions

of message passing programs on the Intel Paragon. It uses a simple delay model for point
to point communications and provides its own versions of the collective calls written in
terms of these.

Reverse profiling is intended as a practical quick approach for the many programmers
relying on post mortem techniques at present. It scores over other approaches in providing
models directly based on the parallel primitives the programmer sees and in being as
straightforward to use as standard profiling. It is not a revolutionary approach; rather a
step towards the ideal of pre-natal design rather than post-mortem analysis of parallel
programs

3 GENERATING THE MODEL

It would be useful if performance models for MPI were supplied along with the librar-
ies, but this is not the case, so they need to be generated. A model for point to point
communication is not sufficient as much use is made of collective communication calls in
MPI, such as MPLBcast, MPLAlltoall, MPLReduce, MPI-Barrier etc. These all have
different performance characteristics which are not adequately described by simple point
to point models such as LogP. Parallel benchmarks tend to be directed towards comparing
machines rather than providing design data for programmers.

Nupairoj (1995) describes an approach to benchmarking the MPI collective communic-
ations which attempts to work out how the structure of the underlying implementation of
the collective MPI functions in order to derive reasonable performance models. In contrast
the technique described below simply provides equations to describe the delays seen by a
programmer calling each MPI function. A characterisation run only needs to be performed
once for each architecture of interest to generate the required model.

3.1 Measuring performance of MPI building blocks

Characterising the performance of the MPI functions is straightforward in principle; meas-
ure the time to complete N calls and take the average. The parameters of interest are the
number of processors and the size of the messages.

To time an operation (e.g. MPLBcast 0), a short function is written:-

void time_Bcast(int numelems, double &time)

{
mt *buffer = new int[nuinelems];
MPI-Barrier(comm);
double el = MPI_WtimeQ;

MPI_Bcast(buffer, numelems, MPI_INT, 0, comm);

time = ?4P1_Wtiine() - el;

time = getmax(time);
delete buffer;

}

The MPI_Wtime() function is used to time the operation. The processes are synchronised
beforehand using an MPI-Barrier. This is not perfect, as some processes may return from
the barrier before others, so an alternative synchronisation technique has also been used
which first determines the clock skew between different processes' MPI_WtimeO values,
then busy waits until the timer reaches an agreed value. This provides synchronisation to
a resolution of the short time required to read the timer, but just using MPI-Barrier is
more convenient in practice.

The time is measured from this synchronisation point until the last process has re-
turned. The getmax() function uses an MPI-Reduce across all processes to determine this
maximum delay.

The parameters are the size of the message and the number of processes in the current
communication group comm. These are varied across the range of values of interest on
the machine, and each timing is repeated to produce a 3D set of measured times of the
operation on the machine.

A surface is then fitted to this data using a least squares technique. It is not known
beforehand what form the equation should take. There may be a constant start up cost
with a linear data dependent factor for the message to be transferred across the network;
or a data dependent startup (corresponding to an initial copy of the message into an
internal buffer) with a data independent transfer cost (in a shared memory machine);
the time may grow linearly with the number of processors, or with the logarithm of the
number of processors for tree based algorithms; there may well be a network contention
factor which predominates with large messages. The list of possible factors is endless and
varies from machine to machine and from MPI function to MPI function.

Determining all the physical machine and algorithm parameters is not the aim of this
approach. The aim is a descriptive equation which is simple enough to use and which
provides confidence intervals to indicate the goodness of the fit. No claim is made that
the parameters correspond directly to anything in real life; the only claim is that they fit
the measured data to a given degree of accuracy.

In order to obtain this elusive compromise between a simple equation and an accurate
fit, a brute force approach is taken performing a range of different curve fits and selecting
and the best. The equations for the time of an operation in terms of the number of
processes in the group p and the message size d take the form of a constant factor, a
"startup parameter" dependent on the number of processors, and a "data dependent"
factor dependent on the message size and the number of processors:-

t(p, d) = ccoeff + s_coeff * startupfn(p) + d_coeff * datafn(p,d)

I p
startupfn(p) = one of log(p)

d

datafn(p,d) = one of
pd

{

log(p)d
p2 d

Thus a total of 12 curve fits are performed using every combination of the startup and

data functions. These functions were chosen as they provide reasonable fits for all cases
thus far encountered. It was originally hoped to provide an adequate fit using one or two
coefficients but this wasn't sufficient for the collective calls.

A fit is performed to determine the three coefficients using all combinations of the two
functions and the one with the minimum chi-squared value is selected. Estimates of the
standard error of each coefficient are also produced. These yield equations giving the
maximum and minimum expected times. This should only be used as a rough guide, as
there is no guarantee (or even likelihood) that the measured data conforms to a normal
distribution. However, it is useful to have at least some indication of expected confidence
intervals.

An example equation for MPLAllreduce is:-

Tallreduce(I.tS) =
{ (

50 + 30) + (200 + 10) x log(p) + (4 ± 1) x d 	if d <= 32
(300±30)+(20±2) x p + (0.9 ± 0.03) x log(p) x d if d>32

Separate equations are given for "small" and "large" messages as the shape of the fit
often differs.

3.2 Output formats

The model is intended to be available for programmers to have an idea of the delay imposed
by each MPI function. Because of this, one of the output formats is an automatically
generated LiTEXdocument listing the equations and giving graphs of both the raw data
and the fitted surfaces. Figure 1 gives an example page from a datasheet. The other output
format is a summary file for computer based tools (such as the reverse profiler) to read.

4 REVERSE PROFILING

Reverse profiling is a technique which applies the MPI performance model for an archi-
tecture to a user's program to generate an estimate of the run time on that architecture.
It uses the MPI profiling interface to intercept the user's calls to MPI functions and cal-
culate the expected delay before returning control to the MPI routine to do the actual
work.

Each process keeps track of its own simulation time and updates it whenever an MPI
function is called. This means a normal trace file can be generated. A model of any machine
may be used, and any MPI implementation can be used as the development environment.
For example, workstation implementation of MPI may be used with a Cray T31) model
to generate predictions of performance on the parallel machine.

Because it does not involve full simulation, it can't be applied to non-deterministic
routines, for example those employing dynamic load balancing. However, the performance
model will provide the key design data for such routines (such as the minimum and
maximum message times). For non-deterministic programs the method must be combined
with pencil and paper calculations, or with times measured from the target machine. Note
that non-deterministic programs are likely to strain simulators and profilers too, since a
minor miscalculation of delay may affect the outcome. A large proportion of useful parallel

ma.
0.04

0.0
0.03

0.0
0.02

0.0
0.01

0.0
0.00

30

'000$

0$00

ailgather

.gath.r .a1oJI 005 0Z0 -0--
B..lrn(Q1

lain

30
20

15 Noofp- 10

26 	30

(50 ± 20) + (40 ± 1) x nprocs + (1 ± 0.0) x ndata 	 if ndata <= 32
0 	- 	(4 ± 20) + (40 ± 3) x nprocs + (0.3 ± 0.009) x nprocs x ndala if ndatu> 32

19

Figure 1 A page from an automatically generated MPI data sheet.

programs are deterministic. Reverse profiling is a simple usable technique aimed at the
majority of programs.

4.1 Results generated using reverse profiling

Running a reverse profiled MPI program produces a trace file which may be displayed as a
timing diagram. Repeated runs may be used to produce graphs showing how performance
varies with the problem size and number of processors in the machine. The machine model
is supplied at run time as an environment variable pointing to a file produced by the MPI
characterisation routines.

4.2 The technique in detail

MPI (MPI Forum, 1995) provides a simple profiling interface; all the MPI_ functions are
also accessible with the prefix PMPI_. Profiling (or reverse profiling) code may be added
by writing substitute MPI_ functions which perform the necessary (reverse) profiling task
and call the PMPI_ function to do the actual work. The linker ensures that the appropriate
functions are called. The compilation commands to compile a normal MPI program, to
compile with a profiler and to compile with the reverse profiler are:-

cc prog.c -impi
cc prog.c -iprof -lpmpi -lmpi
cc prog.c -lrevprof -lpmpi -lmpi

Each process has a double the-time variable to store its current simulation time. The
profiled versions of the MPI functions update the-time according to the performance
equation for that function and write lines to the trace file.

For point-to-point communications the receiver needs to know the time the sender
started sending the message in order to work out when it should arrive. The minimum
delay at the receiving end occurs when the message has been posted by the sender well in
advance and the message has only to be copied from a system buffer. If the send starts

at the same time as the recv, there will receiver will suffer an additional wait time for
the message to arrive. This will be worse if the sender starts after the receive does.

For collective operations involving synchronisation (i.e. the majority of them), each
process must know the start time of every other. Thus a point-point reverse profile function
looks like:

mt MPI-Send(data, dest, ...)
{

II Send the-time to the destination
PMPI_Send(the_time, dest, ...);
the-time + /* computed delay for the message *1;

// Perform the actual send
PMPI_Send(data, dest, ...);

P.

mt MPI_Recv(...)

{
II Recv the sender's start time
II Compute the recv delay the-time
II function of C the_time, sender-start, message size)

}

and a collective operation:—

it MPI_Ba.rrier()
{

II MPI_Allgather to get each process's the-time
II Set local the-time to the latest of all the-times
II Plus the computed delay for the barrier.

}

This works as long as two conditions are met:

MPLRecv is not allowed wildcarded receives. This is because there are two receives (one
for the sender time, one for the actual data) which couldn't be guaranteed to come from
the same source. This problem is related to the non-determinism issue raised earlier.
A solution would be to tag the timestamp onto the main body of the message, or to
do a wildcarded receive for the first message, work out where it came from, and do a
receive from there.
Collective operations imply synchronisation.

At present a trace file is generated which may be displayed with the HASE timing
diagram tool (Howell, 1994). Additional tracing (e.g. source code line numbers) could be
added if necessary. Each process generates a separate trace file (p<rank> . trace), and

repeated runs may be combined to produce scalability graphs.

4.3 Estimating the computation delays

The reverse profiling technique has accounted for the communication costs quite happily,
but the times for user code have not been accounted for. Even without considering com-
pute times, useful results may be obtained since the amount of time spent in idle "wait"
states can be measured from the timing diagram and the communications structure of the
code is clearly visible. None of the techniques thus far encountered by the author for this
purpose are entirely satisfactory. In practice a combination of the following techniques
for estimating computation time are used, with option 2 yielding the preferred tradeoff
between hassle and accuracy:-

Fix it at 0. This is the mirror of the PRAM model which sets the computation cost at
1 and makes communication cost 0!
Let the user estimate it (in units of seconds, or number of memory accesses, arithmetic

operations, etc).
Cycle count the assembly code.
Measure the times on the fly. This is only appropriate when developing on the target
platform and not multitasking or multithreading on a single processor.

5. Measure the important times with a profiler off line.

Option 1, ignoring computation altogether, yields graphs showing the total communic-
ation time for an algorithm on a machine, which may be useful in itself as it shows how
computation time must fall in order to make use of the machine. Option 2 is surprisingly
useful. The programmer adds calls to a "compute (N)" macro which adds N "time steps"
to the local simulated time, where a "time step" is the time taken to perform an arithmetic
operation. This time is highly variable because of the influence of the memory hierarchy,
but may be bracketed between likely limits (e.g. between 1 and 10 microseconds). This
time step can be given as a parameter to the reverse profiler, so one may check how a design
fares when given minimum expected compute step time and maximum expected commu-
nications time (the worst case for parallel algorithm scalability). Saavedra-Barrera (1989)
describes characterisation routines for measuring the performance of different classes of
operations in Fortran and if such figures were generally available for sequential code it
would make parallel design easier.

Cycle counting of assembler code (option 3) is the preferred choice of the simulators.
This technique has been shown to yield very accurate time estimates (Brewer, 1991).
It involves an extra compilation stage, with the assembly code for the application being
interpreted and augmented by a routine which inserts instructions to update a global cycle
count after each basic block. Since the number of cache misses may lead to an order of
magnitude variation in the execution time, a cache model is required for such simulators.
This technique also requires augmented versions of all libraries used.

Experience using the Proteus augment tool indicated that though the technique works,
it is too time consuming and awkward for quick estimates of compute time. It is also a
"black box" approach and it it hard to know how reliable the estimates will be.

Option 4, measuring the compute times on the fly, is tricky on a multi-tasking system.
Some multi-threading libraries provide "virtual timers" which only measure compute time
consumed by the current thread, but these are not generally available. In any case, the
compute times would have to be scaled for the target architecture.

The final option, profiling important subroutines on the target system and feeding the
numbers back into the reverse profiler yields the most believable numbers.

5 EXAMPLE

This section illustrates results obtained by using reverse profiling with the outer routine
from the Cowichan suite of problems (Wilson, 1994).

outer is given a set of N (x, y) coordinates and computes the distance of each point
from every other point. These distances are stored in a N x N matrix. Since the distance
from point A to point B is the same as from B to A, the matrix is symmetric about its
diagonal. For N points, N2/2 - N distance computations are needed. The diagonal values
of the matrix are all set to N times the maximum off-diagonal value. The routine also
generates a real vector of distances of each point from the origin.

The MPI implementation of the routine generates the matrix and vector as distributed
data structures, with an equal number of rows on each processor. Each process calls
MPLAllgather to take a local copy of the input points. It then computes the local section

of the vector and the matrix, performs an MPLAllreduce to determine the maximum
distance across the matrix and fills the local section of the diagonal.

process 0

2

3

Equal numbers of rows
allocated to each processor

Figure 2 outer matrix distribution across 4 processors

Each process computes the distances for all the matrix positions below the diagonal as
well as those above it, thus doing twice the amount of work necessary, but not requiring
any extra communication.

The routine is thus very simple, yet it is not trivial to work out how fast it will run on
a range of problem and machine sizes.

A characterisation of the EPCC's implementation of MPI on the Cray T31) was gener-
ated using the routines described above. The outer routine was linked with the reverse
profiling library on a workstation running the LAM implementation of MPI. The routine
was then run on the workstation varying the number of processes and data sizes to obtain
predictions of how it would perform on the T3D.

In the code, an example of one "compute step" is:

matrix[r - matrix.local_displO] [c] = d;

i.e. it is an extremely crude estimate of the time. A reasonable estimate of the time that
this would take on the 150MHz DEC Alpha processors used in the Cray is hard to make
without a detailed knowledge of the cache, compiler optimisations, pipelines and main
memory latency. A direct execution simulator would work with the assembly code which
enables the effect of compiler optimisations to be measured, but still leaves the pipelines
and memory hierarchy to be modelled (which is possible, but not convenient).

The time for a basic compute step was left as a parameter and varied from lOOn.s up to
lus to see the effects on speedup, estimating that the line of code above (which includes a
function call, a subtraction, two array indexing operations and a store to memory) would
take between 15 and 150 cycles on a processor with a 6.6ns cycle time.

Figure 3 shows the measured and predicted speedups, which correspond reasonably
with a compute step set between 0.1us and lus.

For this example reverse profiling gives a reasonable prediction of the speedup as long
as the compute time can be estimated. It also allows "what if" experiments on a design
to see how it can be expected to behave.

St

30

20
sses

80

measured speedup
predicted speedup speedup (Tcompute = 0.lus)

predicted speedup speedup (Tcompute = lus) -B --

Figure 3 outer : predicted and measured speedups on the Cray T3D

6 CONCLUSIONS

Reverse profiling offers a very quick and easy method of performance prediction for MPI
programs. Unlike simulation techniques it builds directly upon the full and complete MPI
libraries available now. It doesn't attempt to handle non-determinism but this is the
area in which existing profilers and simulators produce the least believable results. It
works with any MPI implementation which provides the standard profiling interface, so
predictions may be performed in parallel.

It is intended to complement rather than replace analytical approaches; making the
model available to programmers allows pencil and paper analysis where appropriate.

The most important next stage is to obtain feedback from users to judge whether the
current balance between simplicity and accuracy is appropriate. Work is also currently in
progress investigating whether a similar technique could be applied to a shared memory

programming model.

7 ACKNOWLEDGEMENTS

Thanks to Marcus Marr for suggestions on the MPI characterisation routines and also to
the anonymous reviewers for their detailed and constructive comments.

REFERENCES

Brewer, E.A., Dellarocas C.N., Colbrook, A. and Weihl, W.E. (1991) PROTEUS: A high
performance parallel-architecture simulator. Technical Report MIT/LCS/TR-5 16, MIT
Laboratory for Computer Science.

Brewer, E.A. and Weihi, W.E. (1993) Developing parallel applications using high-
performance simulation. In Proceedings of 1993 Workshop on Parallel and Distributed

Debugging. San Diego, CA.
Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K., Santos, E., Subramonian, R.

and von Eicken, T. (1993) LogP: Towards a realistic model of parallel computation. In
Proceedings of the Fourth ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming. San Diego, CA, May 1993.
Dickens, P.M., Heidelberger, P. and Nicol, D.M. (1993) A distributed memory LAPSE:

Parallel simulation of message-passing programs. Technical Report NAS1-19480, NASA
Langley Research Center, Hampton, VA 23681.

Driscoll, M.A. and Daasch, W.R. (1995) Accurate predictions of parallel program execu-
tion time. Journal of Parallel and Distributed Computing, 25(1).

Message Passing Interface Forum (1995) MPI: A Message Passing Interface. Technical
report, University of Tennessee.

Foster, I. (1994) Designing and Building Parallel Programs, chapter 3. Addison-Wesley.

Available online at http://www.mcs.anl.gov/dbpp/.
Howell, F.W., Williams, R. and Ibbett, R.N. (1994) Hierarchical Architecture Design

and Simulation Environment. In MASCOTS '94: Proceedings of the 2nd International
Workshop on Modeling, Analysis and Simulation of Computer and Telecommunications
Systems.

Nupairoj, N. and Ni, L.M. (1995) Benchmarking of multicast communication services.
Technical Report MSU-CPS-ACS- 103, Michigan State University.

Saavedra-Barrera, R.H., Smith, A.J. and Miya, E. (1989) Machine characterisation based
on an abstract high-level language machine. IEEE Trans. on Comp., 38(12), 1659-1679.

Sarukkai, S.R. (1994) Scalability analysis tools for SPMD message-passing parallel pro-

grams. In MASCOTS '94: Proceedings of the 2nd International Workshop on Modeling,
Analysis and Simulation of Computer and Telecommunications Systems.

Wabnig, H. and Haring, G. (1995) Performance prediction of parallel systems with scalable
specifications - methodology and case study. Performance Evaluation Review, 22(2).

Wilson, G.V. (1994) Assessing the Usability of Parallel Programming Systems: The
Cowichan Problems. In Proceedings of the IFIP Working Conference on Programming
Environments for Massively Parallel Distributed Systems. Birkhäuser Verlag AG, April

1994.

8 BIOGRAPHY

Fred Howell received his BSc and MEng degrees in Microelectronic Systems Engineering
from the University of Manchester Institute of Science and Technology in 1992. He is
currently a PhD student at the University of Edinburgh Department of Computer Science
where his research interests include the design of parallel hardware and software. He has
been funded by EPSRC and by Digital (Scotland) Ltd.

Hierarchical Architecture Design and Simulation Environment

F.W. Howell, R. Williams, R.N. Ibbett
Dept of Computer Science
University of Edinburgh

Edinburgh, Scotland, EH9 3JZ
email: fwh@dcs.ed-ac.uk

Abstract

The Hierarchical Architecture Design and Simula-
tion Environment (HASE) is a tool for modelling and
simulating computer architectures.

Using HASE, designers can create and explore
architectural designs at different levels of abstrac-
tion through a graphical interface based on
Windows/Motif and can view the results of the sim-
ulation through animation of the design drawings.

1 The Motivation

Advanced simulation tools are available for low
level electronic design, such as Spice for analogue
circuits, and VLSI layout tools. However, tools for
rapid prototyping of architectural ideas are few and
far between. Simulation languages (such as SIMULA,
SIMSCRIPT, DEMOS etc) can be used to model com-
puter architectures, but the user has to be an expert
on simulation. This is also the problem of general pur-
pose simulation tools (e.g. SES/Workbench), where
icons represent 'queues', 'servers' etc., and the link
between a queueing model of an architecture and the
architecture itself is not immediately apparent to the
engineer not fluent in queueing theory.

Conventional languages (C, C++, occam) are of-
ten used to construct simulators, but this approach
involves starting from scratch for each new project.
User interface aspects are often neglected as the tool
will be thrown away with the next architecture. This
is very wasteful, as many aspects of computers are
constant between different architectures. The object
oriented approach offers a solution. Standard com-
ponents (such as memories, microprocessors and inter-
connection networks) can be held in a library. They
can be constructed and linked together graphically on
screen to create a simulation of an architecture, in
much the same way that standard components can be

wired together in a semi-custom VLSI tool. The dif-
ference is that the simulation is not fixed to low level
wires and chip pins, but is free to choose the appro-
priate abstraction level.

HASE addresses one of the four "Grand Challenges
in Computer Architecture" identified by the Purdue
Workshop on Grand Challenges in Computer Archi-
tecture for the Support of High Performance Comput-
ing [1]:

to develop sufficient infrastructure to al-
low rapid prototyping of hardware ideas and
the associated software in a way that permits
realistic evaluation.

Any tool which attempts to bridge the hard-
ware/software gap must provide models which are as
understandable to the compiler writers working on in-
struction scheduling as they are to the computer en-
gineers. Hierarchy is a fundamental concept in man-
aging complexity for both hardware and software, so
the simulation tool should be hierarchical to allow de-
tailed simulations in areas of interest, and higher levels
for the other parts of the architecture. This also helps
to balance accuracy with fast simulation time. Com-
puter engineering is concerned with cost as much as
performance, so simulation models should be able to
incorporate cost and other factors such as power con-
sumption.

Complexity of parallel systems has led to the de-
velopment of "performance tuning" as a step in paral-
lel program development. However, we believe that
such "post-mortem" analysis is too late, and that
"pre-natal" parallel program design based on a sim-
ulation modelling tool is a better solution. The "right
first time" approach of VLSI design (and Total Qual-
ity Management) should be extended to cover parallel
software.

Some simulation tools employ "direct execution"
to evaluate performance of parallel programs on par-
allel architectures (e.g. 	MIT/Proteus [11], Stan-

ford/Tango [12], WWT [131). This is an excellent
approach for obtaining fast, realistic simulations if the
processor you're running the simulation on is very sim-
ilar to the processor used in the parallel machine - but
we believe that this assumption is sometimes too re-
strictive and a hierarchical tool can find wider applic-
ation.

2 The Tool

The HASE tool is based on SIM++, a discrete event
simulation language built as an extension to C++.
SIM++ is used to describe the behaviour of basic com-
ponents of a simulation. The user can link together
these components on screen, and HASE produces the
SIM++ initialisation code necessary for simulating the
network. New components can be constructed by link-
ing together standard components. Each component
can be simulated at any level of abstraction. A re-
gister transfer level simulation will produce the most
accurate simulation results; behavioural level simula-
tions run more swiftly. The tool allows different parts
of the simulation to run at different abstraction levels,
so the user can 'zoom in' to specific parts of the design
to simulate that at a low abstraction level, and run the
rest of the design at a high level of abstraction.

HASE is more flexible than many parallel architec-
ture simulators, and can model any parallel system,
not just a restricted variety of MIMD/SIMD machines.
The use of SIM++ allows high performance distrib-
uted simulation on networks, using a Timewarp al-
gorithm based on Virtual Time [10], [5]. The hierarchy
also aids development of fast simulations, as typically
only some of the components need to be simulated at
a low level. The object-oriented simulation language
makes it easy to construct reusable components, and
a library tool lets users share components with each
other.

Once a simulation has been constructed, users need
the answers to many performance questions quickly.
HASE incorporates automatic graphical results ana-
lysis, and the hierarchy is used to get detailed or global
performance summaries. The design can be anim-
ated at any level, with the state of each component
changing on screen, and data packets moving down
links. This can highlight bottlenecks, and is an excel-
lent presentation aid. Design is an iterative process,
so once changes have been made the simulation can
be run again rapidly. A hierarchical timing diagram
display of the states of each component can also be
displayed, and logic-analyser style measurements can

be taken. There are also facilities for overall perform-
ance statistics such as total cost, average performance,
and power dissipation.

W. apwatl~

Ed1Ing frojct S

j6I1.I. 	I
PC..

--

J1Gtob.1I

IDelet. 	I

Anrn,lor Conirol E)COM memory.M.lorJ

I

lT1.r. 	I
ISt.titi 	I

I01,p1 	I
Ti,a

SAOWSU BOlD 1 2 3
901FODI 500 3 4 5
IClc'C*€0134

56
SILL Ii 6 5
OII011T997

Sp,d F0IVDF.F456
T501LSU OHIO. 4 5 6

St_. TSDTLX 660567
ODESU ADO) 4 5 6

Ol,POH M-9. TADDESU So 	6 7
LB 105 3 4 50

Figure 1: The HASE user interface.

HASE incorporates significant support for simulat-
ing single processors. Once a new assembly code has
been defined, a parser is automatically linked in with
the simulation, so that "instruction interpreting" ob-
jects can be written very easily. All "memory objects"
are initialised at simulation run time with the appro-
priate program, fully parsed. These programs can be
edited on screen, and whilst the simulation is running,
the currently executing instruction can be highlighted.
At higher levels, the overhead of interpreting instruc-
tions can be too great, so programs can be modelled
as delays interspersed with communications events.
Again parsers for the higher level language (for ex-
ample consisting of COMPUTE <time>, SEND <proc#>,
FtECV <proc#>) can be generated automatically.

Simulation is particularly useful for parallel com-
puters. Replication is a key feature of parallel sys-
tems, so HASE includes templates for the common
structures. The user can slot any component into
the template (including hierarchical components), and
HASE does the rest. Current templates include a un-

ear array, a 2D mesh, and an omega network (figure 2).
More multistage networks and general k-ary n-cubes
are under development. All have their size as a para-
meter, which can be set by moving a slider widget.
Connections between neighbouring processors can be
specified.

Figure 2: A HASE omega network.

In addition to simulating architectures, HASE can
be applied to simulating parallel algorithms. The
graphical interface and results analysis built into
HASE can be used to visualise and evaluate parallel
algorithms. Work has been done on process simulation
for message passing systems, based on the Edinburgh
Parallel Computer Centre (EPCC) CHIMP interface
for portable message passing algorithms [9]. Work has
also been done on routing algorithms for meshes and
on evaluating multiprocessor WAN routers and LAN
bridges [3].

3 Applications

3.1 DEC Alpha 21064 AXP micropro-
cessor

ment of instructions through the functional units,
blocking and exceptions (figure 1).

kt the next level up, the instruction level. This
provides a working 'instruction interpretting' sim-
ulation, with times for each instruction in clock
cycles extracted from data sheets.

At the PMS level. Instructions are no longer
interpreted - instead times for each process are
modelled by delays, with measurements of total
instruction counts, cache/main memory refer-
ences, and I/O.

3.2 DEC Alpha-PC AXP

This demonstrates the use of HASE to evaluate
complete systems. Cost /performance charts can be
obtained. Note that the processor in this full system
simulation is the one produced above, illustrating the
reuse of components. A different processor can be sub-
stituted (e.g. Pentium) for performance comparisons.

3.3 Parallel Systems

This illustrates the HASE facilities for simulating
parallel architectures. Processors and interconnection
networks can be swapped in and out and performance
of the resulting system can be measured.

Various direct and indirect networks are used to
connect the processing elements. These include omega
and mesh structures. The effects of varying processor
and interconnect performance on parallel algorithms
can be measured.

3.4 Parallel Software

IsPkrts=3

we IIM

RUM ORHER

1. At the detailed pipeline level, showing the move- 	 Figure 3: A task farm.

[6] T. Heywood & S. Ranka "A Practical Hier-
archical Model of Parallel Computation I: The
Model", Journal of Parallel and Distributed Com-
puting, 16, pp. 212-232, 1992.

At the next level up are the applications. The
demonstration shows the use of nested algorithmic
skeletons [8] for developing parallel code.

4 HASE development

HASE has been developed by the Computer Sys-
tems Group at Edinburgh University. An advanced
prototype using DEMOS was developed, and most of
the ideas were tested on a multi level simulation of
the Motorola 88110 microprocessor [2]. Recent work
has converted HASE to the language SIM++ to allow
faster simulations on networks of workstations. The
current version of HASE runs on a Sun SPARCstation
with X-windows and makes use of the commercial sim-
ulation language SIM++.

Currently work is in progress to include provision
for evaluation of architectural support for PRAM and
HPRAM computational models [6], and to evaluate
process mapping strategies. Several PhD and MSc
projects are using HASE as a simulation support tool.
There are plans to make HASE freely available to the
academic community.

References

H.J. Siegel, S. Abraham, et al "Report of the
Purdue Workshop on Grand Challenges in Com-
puter Architecture for the Support of High Per-
formance Computing", Journal of Parallel and
Distributed Computing, 16, pp. 199-211, 1992,

A.R. Robertson & R.N. Ibbett "Simulation
of the MC88000 Microprocessor System on a
Transputer Network", Lecture Notes in Com-
puter Science, Distributed Memory Computing,
2nd European Conference, EDMCC2, April 1991,
Springer-Verlag.

J.S. Westerman "Parallel Processing for a Com-
munications Node", M.Sc Dissertation, Univ. of
Edinburgh Dept. of Computer Science, Septem-
ber 1993

J. Birtwistle "DEMOS: Discrete Event Modelling
On Simula", Prentice-Hall, 1985

D.R. Jefferson "Virtual Time" ACM Transac-
tions on Programming, 7(3),(July 1985) pp404-
425.

"A Workbench for Computer Architects", IEEE
Design & Test of Computers, Feb, 1988.

M.I. Cole "Algorithmic Skeletons: Structured
Management of Parallel Computation", Pitman
& MIT Press, 1989.

J.G. Mills, Lyndon J. Clarke, Arthur S. Trew
"CHIMP Concepts", Technical Report EPCC-
KTP-CHIMP-CONC, Edinburgh Parallel Com-
puting Centre, April 1991.

Jade Simulations Inc. "SIM++ v3.8 Reference
Manual".

E.A. Brewer, C.N. Dellarocas, A.Colbrook,
W.E.Weihl "PROTEUS: A High Performance
Parallel-Architecture Simulator", Technical Re-
port MIT/LCS/TR-516, MIT Laboratory for
Computer Science, September 1991

Helen Davis, Stephen R. Goldschmidt, and John
Hennessy. "Multiprocessor Simulation and Tra-
cing Using Tango", Proc. 1991 ICPP, August
1991

S.K. Reinhardt, M.D. Hill et al. "The Wiscon-
sin Wind Tunnel: Virtual Prototyping of Paral-
lel Computers", Proc. 1993 ACM SIGMETRICS
Conference, May 1993

HASE: A Flexible Toolset for Computer
Architects

R. N. IBBETT, P. E. HEYWOOD AND F. W. HOWELL

Computer Svsienis Group Department of Computer Science, Urn versitv of Edinburgh,

Edinburgh EH9 3JZ UK

HASE is a Hierarchical computer Architecture design and Simulation Environment (HASE) which
allows for the rapid development and exploration of computer architectures at multiple levels of
abstraction, encompassing both hardware and software. The components of a computer system lend
themselves naturally to being modelled as objects, so HASE has been implemented in an object-oriented
language. Within HASE there are graphical entity design and edit facilities, entity library creation and
retrieval mechanisms, an animator, and statistical analysis and experimentation tools for deriving system
performance metrics. HASE uses an object-oriented database management system (ObjectStore) to
make the design objects and the entity library persistent. For each architecture model HASE allows many
experiments with varying parameters to be performed. The database facilities provided through HASE
manage not only the results of each experiment, but also their relationship to the state of the architecture
model that produced these results, including all input and output parameters and their values during the
experiment. This paper describes the design of HASE, some of the varied projects which have used it, and

the future direction of the system.

Received Juli 26, 1995, accepted November 8, 1995

1. INTRODUCTION

The Purdue Workshop on Grand Challenges in Com-
puter Architecture for the Support of High Performance
Computing [1] identified four 'Grand Challenge Pro-
blems in Computer Architecture'. HASE, the Hierarch-
ical computer Architecture design and Simulation
Environment developed at the University of Edinburgh,
is a tool which addresses the fourth of these: 'to develop
sufficient infrastructure to allow rapid prototyping of
hardware ideas and the associated software in a way that
permits realistic evaluation'. Sophisticated VLSI design
tools have been in existence for a number of years but it is
only recently that attention has been focused on
providing higher level simulation and animation tools
for computer architects. Thus the HASE project has
aimed to address two major problem areas: high level
simulation and visualization of computer architectures,
and simulation of parallel systems.

The hierarchical nature of computer architecture and
design has been well understood for many years, e.g. Bell
and Newell's PMS. ISP and RTL levels [2]. HASE allows
the designer to move freely between these levels and to
select the appropriate simulation level for different parts
of the system in order to strike a balance between
simulation accuracy and processing time. To meet all the
aims for the environment, however, attention also had to
be focused in the area between the domain of hardware
simulators and general purpose simulation packages.
Hardware simulators are typically inappropriate for
dealing with software layers and general purpose
simulation packages are not normally designed with
hardware in mind. The usual approach to this problem is

to write project-specific simulators in a language such as
C + +. This provides a high degree of flexibility, but also
an amount of wheel re-invention.

Many commercial CAD tools are moving progres-
sively towards higher levels of abstraction, and the use of
hardware description languages such as VHDL and
Verilog for hardware system simulation is becoming
widespread. Since much effort has been invested in
developing these toolsets it would be convenient to
extend them to higher levels of simulation. However,
most are not particularly suited to this task at present. In
[3], for example, external C routines were written to
compensate for VHDL's deficiencies in this respect.

Specialized tools include Ptolemy [4] at Berkeley which
defines a framework for simulating and prototyping
heterogeneous systems, and work at the University of
Florida has involved simulating microprocessor-based
parallel computers using processor libraries [5]. At
UMIST the SES/workbench [6], a general queuing
model tool, has been adapted to simulate the ARM
processor [7]. At the Illinois Institute of Technology
Chicago a prototype version of MIES [8] has been
developed to visualize Register Transfer Level descrip-
tions and a newer version is currently being implemented
in an object oriented programming language.

At the same time, there has also been interest in
developing mathematical formulations for modelling
discrete event systems, most notably Zeigler's DEVS
formalism [9] together with its primarily non-graphical
implementation, DEVS-Scheme.

The ideas for HASE grew from a simulator built for an
MC88000 system [10], written in occam and run on a
Meiko Computing Surface at the Edinburgh Parallel

THE COMPUTER JOURNAL. VOL. 38, No. 10, 1995

756 	 R. N. IBBETT, P. E. HEYWOOD AND F. W. HOWELL

Computing Centre. However, since the components of a
computer can be treated very naturally as objects, HASE
itself has been developed using object oriented simula-
tion languages, the first prototype [11] using DEMOS
[12] and the current version Sim + + [13]. Sim + + is
essentially a superset of C + + which includes a set of
library routines to provide for process oriented discrete
event simulation and a run time system for multi-
threading many objects in parallel and keeping track of
simulation time.

In the same vein, HASE now also uses an object-
oriented database management system, ObjectStore [14].
The environment includes a design editor and object
libraries appropriate to each level of abstraction in the
hierarchy, plus instrumentation facilities to assist in the
validation of the model. HASE also provides model
exploitation facilities based on [15] and [16] allowing
performance measurements to be derived from simula-
tion runs. The system can thus be set up to return event
traces and statistics which provide information at the
PMS level, for example, about synchronization, com-
munication and memory latencies.

The user interface to HASE is via an X-Windows!
Motif graphical interface. Many complex systems of
interacting components can be more easily understood as
a picture rather than as words. In computer architecture
the dynamic behaviour of systems is frequently of interest
and HASE allows users to view the results of simulation
runs through animation of the design window.

The first sections of this paper present an overview of
HASE, the database organization and the HASE
libraries. Then follows a description of the design of a
system within HASE including test software to execute
on the model architecture. This is followed by a
description of the Sim + + code generated by HASE,
and of the way a simulation is run. Later sections
describe the various ways to view the results of a
simulation, gather statistics and perform experimenta-
tion on the model architecture. Finally we present some
of the projects which have used HASE and consider
possible future developments.

2. OVERVIEW OF HASE

Figure 1 shows an overview of the HASE system. The
core of each project undertaken using HASE is the
Architecture Description. In the case of a multiprocessor,
for example, this description consists of a collection of
Processor, Memory and Interconnection Network enti-
ties. Each entity is a multi-faceted object having an
instance name, an icon (usually a bitmap), a textual
description, a list of its parameters, a list of ports and a
pointer to its Sim + + simulation code. The design phase
of a project involves selecting the appropriate entities
from a library, or alternatively creating them, and linking
them together to form the required system. Each entity's
behaviour is described in the corresponding Sim + +
method (the body). Once the design is complete the

Entity Library 	 Program Description

El

IA

Architecture 	 Source of
Description 	 test program

a)Assembler

b) Direct
Execution

Metrics

ANIMATOR

tin

FIGURE 1. Overview of the HASE system.

description is compiled to produce the simulation code
for that system.

To run a simulation, it is necessary to provide
appropriate inputs. Thus test programs for the archi-
tecture can be written (in assembler, or any HLL with a
compiler for the chosen processor), and the architecture,
along with its program, can then be simulated. The
output from the simulation run can then be used to
animate the design, and thus provide visual feedback
data to the designer, or to obtain performance metrics.

3. DATABASE ORGANIZATION

HASE includes an object-oriented database manage-
ment system based on ObjectStore in order to allow all
architecture design projects and the entity libraries to be
maintained persistently. A major advantage of this
approach is that in addition to its purely repository
functionality, ObjectStore can also be used to manage
the relationships and connectivity between objects.
Furthermore, the use of object-oriented database tech-
nology provides the opportunity to exploit advanced
transaction processing capabilities, such as nested
transactions and rollback, and tor facilitate the explora-
tion of alternative paths while fine-tuning a model.

The database management system also allows versions
of simulation models and experiments to be maintained
so that an experimental program can proceed on an
existing version of the model while subsequent versions

THE COMPUTER JOURNAL, VOL. 38, No. 10, 1995

HASE: A FLEXIBLE TOOLSET FOR COMPUTER ARCHITECTS 	 757

are under development. By integrating a C + +-based
object-oriented database management system with the
existing HASE environment, most of the problems
associated with impedance mismatch have been avoided.
All HASE environment utilities are C + + based and all
relevant classes are coherent throughout the environment.

Figure 2 shows how the databases are organized. The
user startup file contains environment variable defini-
tions for the default library databases and the user
specific project directory containing subdirectories for all
individual projects. Each user can have a number of
project databases, each holding a number of projects,
and a number of personal entity libraries in addition to
having access to the public HASE entity library.

A project in HASE is interpreted to be the set of all
entities, ports, links, parameters, etc., comprising the
simulation model, together with their associated Sim + +
code, bitmaps, etc., and the set of all experiments
performed on the model. For each architecture model,
a set of experiments may also be stored. Experiments
typically involve changing the value of one of the
parameters of a component of the architecture and
running the same simulation for each parameter value.
The database supports this experimentation facility by
storing not only the results of each experiment, but also

their relationship to the state of the architecture model
that produced the results, including all input and output
parameters and their values during the experiment.

4. LIBRARIES

Libraries in HASE are repositories for entities, the basic
components of the Architecture Description. Each
modular, reusable entity can be archived to a library
for shared or later use or retrieved from a library for
inclusion in an architectural model. The storage of pre-
designed (and pre-tested) entities in the library means
that HASE offers a reliable and convenient method for
rapid prototyping.

The HASE Entity Library is a global read-only
library, selected from possibly many shared libraries
containing related entities. As a means of initially
populating and supplementing this library for a specific
site, entities from all projects migrate to a temporary
holding area where the site database administrator
determines which entities merit inclusion into a parti-
cular HASE Entity Library. The User Entity Library is a
user's personal catalogue of entities. The number of
libraries is virtually limitless, with the library in use
defined as the most recently selected library.

user startup file ------------------------------ 1
pathnames to databases 	 I I

Sim++ code tiles

event traces

User entity library 1

	

ri
HASE entity library

FIGURE 2. HASE database organization.

THE COMPUTER JOURNAL, VOL. 38, No. 10, 1995

pathnames to subdirectories 	
I

project database 2

project database 1

project 1 version 3 l

project 1 version 2 	 I

project 1 version 1 	 experiment 2

experiment 1 	
L: design = entity tree of 	_

entities 	 inputs
ports 	 parameter settings
links 	 simulation levels
parameter 	 outputs/metrics

event list

r----------

project 2 version 1

experiment 1 	
I I design = entity tree of

entities 	 inputs
ports 	 parameter settings
links 	 simulation levels
parameters 	 outputs/metrics

event list

758 	 R. N. IBBETT, P. E. HEY WOOD AND F. W. HOWELL

The design of a HASE Entity Library corresponds to
the different levels of abstraction for the archived
entities, e.g. PMS or RTL. An entity's hierarchy can be
easily perused from within the library and can be included
in the architectural model at various levels. The utilities
are flexible enough to allow the user to map to other
decomposition methodologies when creating the User
Entity Library.

5. DESIGN

The basic constituent of the project is the Architecture
Description which is a collection of entities with ports for
data transmission across links to other entities or levels
of decomposition. The architecture can be designed
either top down by subdividing an entity into its
constituent components or bottom up by grouping a set
of components into a compound component. An
example of a compound entity is a multiprocessor
array, for which several different templates are available
as library components. Currently available are one-
dimensional array templates, several two-dimensional
array templates with differing (pre-defined) indexing
schemes, a three-dimensional torus and an Omega
Network which can be instantiated for simulation at
any hierarchical level. Indeed any entity can in principle
be simulated at any specified hierarchical level. Figure 3

shows an example design window taken from an M.Sc.
project [17] which has modelled the Stanford DASH
architecture and its cache coherency protocols [18].

The DASH architecture consists of sets of processing
nodes, grouped together in clusters of four and
connected together via a common bus. Each node
consists of an R3000 processor with a primary and
secondary cache. As well as connecting the nodes
together, the bus also provides access to memory which
is shared between the processors and which forms part of
the global address space of the system as a whole.
Clusters are themselves connected together by a dual
interconnection network. Figure 3 shows a four-cluster
network in which the bold interconnection lines repre-
sent the request (?) and response (=) networks. The
system is modelled as a three-level entity hierarchy. On
the left of the figure two clusters are shown represented at
the highest level, while the lower right hand cluster has
been expanded to show the middle level (the dotted lines
around a cluster of entities indicates expansion from a
higher-level entity). The top right cluster has been further
expanded to show the lowest level design of two of the
nodes and also the lowest level design of the Directory
Control logic, the subentities of which are responsible for
ensuring inter-cluster cache coherence.

The HASE Architecture Description created in the
design window describes the physical composition of the

rQ han

File 	Library 	Design 	Parameters 	Build 	Results Statistics Help

Database: /dlsk/homelaiamollmw/mydbsfllnaill.dbs
Experiment: flnall7

MIPS

!ii1JEl CACHEh1111IIIiiII -4J--. Qi

F

i1EIIIIi' 7. TC-Q P(CHC Q3 	S'I— JI

-
.s

C

.7

9

mXC

.7

-

T, E100
[iig1 iL ODE

[j

FZE11

Ell-

oco

FIGURE 3. An example architecture in the HASE design window.

THE COMPUTER JOURNAL, VOL. 38, No. 10, 1995

HASE: A FLEXIBLE TOOLSET FOR COMPUTER ARCHITECTS 	 759

architecture. The behavioural aspectsof the architecture
are described by the corresponding Sim + + body
methods. Sim + + is essentially C + + with functions
to communicate events between entities. These events are
sent to and received from ports which are the entity's link
with the rest of the simulation. Entities may also have a
variable number of parameters, which can be strings,
integers, floating point numbers, enumerated types,
structures, ranges, instructions or arrays.

To simulate a multi-processor system (say), the first
task is to create an Architecture Description for it. The
required entities (processors, memories, interconnection
networks) are selected from a library, from a pre-defined
HASE template or are custom designed. All entities can
be further customized or modified from within HASE,
including, but not limited to, additional subdivision
(decomposition), grouping, and adding parameters. The
required ports, including the link parameter are also
added. The link parameter represents the data packet,
message, instruction, etc., to be transmitted to/from the
port over the link.

An entity may be defined at several different abstrac-
tion levels. The external interface (the set of ports) at
each level must be identical, but at the lower level the
entity may be composed of a set of interconnected 'sub-
entities'. The abstraction level to be used for each entity
is chosen at simulation time. Particular entities may be
simulated at a lower level while leaving the rest at a
higher level.

The entities are linked together to create the system to
be simulated and each entity's behaviour is described in
the Sim + + body method.

Global parameters can be defined for the system to be
modelled. As the term implies, global parameters are
accessible to all entities, for instance, the dimensions of a
compound entity array.

The evaluation of an architecture normally involves

the execution of test programs. An interface between
simulations and a 'software level' is also needed for
parallel programming or for investigating computational
models. Several different approaches can be used within
HASE; interpreting assembler, execution driven simula-
tion, and interpreting a simple higher level language.

5.1. Instruction sets

One of the uses of HASE parameters is to store
instruction sets. Instructions are typically divided into
several different 'classes', such as load/store instructions,
ALU operations, branches, etc. To deal with the
resulting variety of instruction formats, HASE provides
a special type of parameter, TlnstrParam. For example,
in
struct Tlnstr {
TIClass iclass;
union {
char Name [20]
Tmem_format infield;
Tbra_format ffield;
Topr_format of ield;
Tfopr_format ffield;
mt Word;

};

the instruction class, iclass, is an enumerated type that
indicates the type of the operands. The appropriate
operand format (one of Name, infield, bfield, ofield,
ffield, Word) is used. The simulation code can then access
the parsed instruction by checking the instruction class
and referring to the elements of the relevant field. HASE
can automatically produce a parser to load in data types
which have been defined, e.g. to initialize a memory.

Higher level instruction formats can also be defined as
HASE TlnstrParam parameters. For example, a simple

if (stopping == 0) switch (Instr.OpCode)

.1:
case COMPUTE:

sim_hold(Instr.time, ev);
break;

case SEND:
send_DATAPKT(TO-NET, ''TO_NET'', Instr.Pkt);
sim_hold(SendTime, ev); 	/* 'ev' = 'event' */
break;

case RECV:
sim_wait(ev
SIM_GET(DataPacket ,pkt ,ev);
sim_hold(RecvTime, ev);
break;

case STOP:
stopping = 1;
printf('/.s executed STOP instruction\n", sim_nanie());
break;

}
FIGURE 4. Sim + + switch statement.

THE COMPUTER JOURNAL, VOL. 38, No. 10, 1995

760 	 R. N. IBBETT, P. E. HEYWOOD AND F. W. HOWELL

$class_decls
// Headers for extra functions
int MPI_Send(void *, 	 /* data buffer */

int, 	 /* number of data elements */
MPI_Datatype, 	/* type of each data element */
int, 	 /* destination of message */
int, 	 /* message tag */
MPI_Comzn); 	 /* communicator */

int MPI_Recv(...

/1 Any other function calls in the interface
$class_def s

II Implementation of the extra functions
$body

#include ''theactualcode.c''

FIGURE 5. Message passing interface code.

language might have compute, send, receive and stop
constructs. These could be stored in memory and
interpreted by a simple processor entity.

The simulation code can perform a sit'itch statement
on this field to determine the format of the commands.
The Sim + + code segment in Figure 4 illustrates this last
point.

Externally created code can be linked in with a HASE
simulation. This enables the functionality of test
programs on the simulated architecture to be used.
Typically an interface is defined for the HASE object so
the simulation can trap the desired function calls.
Example applications include message passing interfaces
and low level I/O on a simple computer system.

The basic form of the interface is as shown in Figure 5.
In this example, the file theactua/code.c is standard MN
code making use of the functions. 'MPL_Send' and
'MPIRecv'. In the simulation, these call the member
functions which can be implemented in terms of the
Sim + + primitives. In this way, standard code may be
linked in with the simulation and can be used as a
realistic workload.

Other ways of implementing this are possible, such as
making the functions globally linked in rather than
making them methods of the Sim + + object. It is even
possible to link in Fortran 77 functions.

6. CODE GENERATION

Sim + + breaks down the simulation into an initializa-
tion and an execution phase. For inclusion in the code
pertaining to both phases, HASE generates a Sim + +
header file called (ProjectNarne.h. For the initialization
phase, HASE generates the Sim + + initialization file
init.c; for the execution phase, it generates the Sim + +
entity constructors and bodies.

The behavioural specification for each entity at any
given level of simulation is provided by the user in the
(entitvName) s/rn files. From these files and the Archi-
tecture Description HASE generates the Sim + + code
required for the simulation. HASE also generates the
makefile for compiling and linking the various component
files.

The Sim + + body method. Each entity in the model
architecture needs a Sim + + body method for the
specified level of simulation. If the entity is a
compound entity, the default simulation level can be
toggled. It is necessary for HASE to know at which
level of decomposition the simulation will occur.
HASE will then use the Architecture Description and
the corresponding set of (entityNarne) .sirn files to
generate the appropriate Sim + + code. The body can
be constructed and edited off-line (external to HASE),
or within the Design Window Edit Body function.
The project header file. HASE generates a Sim + +
header file for the Sim + + program ((Project Natne).h)
which contains parameter and event declarations,
global constants, entity initialization structures, class
definitions and declarations.
The initialization file. HASE generates the Sim + +
initialization file for the Sim + + program, called
mite, which contains the instances of the entities and
allocates and initializes global data. The auxiliary
functions for writing states to the trace file also reside
in this file.
The Sim + + code. HASE generates the (EniityNarne.c
file for each type of entity in the Architecture Descrip-
tion based on information extracted from the entities
themselves and the user defined (entitvNarne).sirn files.
The SMakefile. The Sim + + makefile SMakefile used
to compile and link the Sim + + code is also generated
by HASE.

Dependency lists and compilation directives are
constructed for mite, the additional global functions
file global_ fns.c (if it exists), and all (entitvNanie).c files.
The link directive to form the executable is also written
to SMakefile.

7. SIMULATION

Running a simulation involves the execution of the
Sim + + program produced by HASE in conjunction
with the user specified (em' itvNarne) s/rn files.

Menu options under Build (Figure 3) within HASE
trigger the generation of Sim + + code, compilation,

THE COMPUTER JOURNAL, VOL. 38, No. 10, 1995

HASE: A FLEXIBLE TOOLSET FOR COMPUTER ARCHITECTS 	 761

execution of the simulation and reading of the trace
file.

A debug version of the simulation may also be
compiled. This version of the code includes a simple
routine which inserts commands to trace the current line
number into the entiiyName).sim file prior to compila-
tion. Selecting this option pops up a window displaying
the entityName).sim file. This allows the program
execution to be viewed alongside the animation.

8. DISPLAYING THE RESULTS

HASE provides two tools for viewing the results of a
single simulation execution, an Animator and a Timing
Diagram. Both assist in verifying the validity of the
Architecture Description.

The Animator uses the event sequence held in an event
trace file produced during a simulation run (normally the
most recent) to provide the user with a visual display of
activity in the system. It allows the data flowing between
components to be visualized in a variety of ways, e.g.
through moving icons showing individual instructions
flowing down the stages of a pipeline or changes to the
contents of a register bank when an instruction is
executed. The important benefit of the animator is that
it lets the user check that the model produces correct
results. It is also useful as a presentation aid.

Animation is produced automatically from the simula-
tion model with no need for the user to write explicit
animation code. The simulation primitives for sending
messages between components generate the trace infor-
mation needed by the animator. It is also possible to
animate a component's icon by providing different
bitmaps for the different states. If a component has a

.0

Time

9 	Display Messages

PLAY REWIND STOP

FIGURE 6. The animation controller.

thepc.CPU:otate
thepc .BC8CHE :9totc
thepc ,HBUS :state
thepc.DRAM:otate
thepc.HBUS:state 	 . IUIUILIUU

thepc . S VGA to te
thepc .SCSI :state
thepc .[TII[RNET :sta
thepc .LOCAL :state
thepc.[ISA:tate 	 -

OtIrie:1790l.5 	 FilijI 11111 	jIl IllIllIjIlIll 11111111

Xtlme:16512.3 	 17000.0 18000.0 19000.0 20000

XtoO:12892 	F

IZoom ni 	 Zoom Outj
,..cYfl_QUOY

ElsaState:
EISA_1011 U

EISA_BUSVU

FIGURE 7. Example of a timing diagram.

state defined by the enumerated parameter BUSY,
ROUTING, IDLE, animation is achieved by providing
X bitmap files BUS Y.btrn, ROUTING.btm, IDLE.bt,n.
Any number of a component's state variables may be
displayed in this way. Variables may be 'dragged' onto
the screen display using the component editor (or
alternatively they may be left out of the animation
altogether). Enumerated variables can be displayed
either as the text value, or using bitmaps. The values of
integer and string parameters are displayed as a text
label. These values are updated whenever the user's
simulation code calls the built-in function dump_stateQ.

Manipulation of the animation of the architecture is
handled through an Animation Controller (Figure 6)
where time, speed and message display are handled as
well as the standard 'tape' functions of PLAY,
REWIND and STOP.

The Timing Diagram display (Figure 7) shows how the
states of the currently displayed entities vary over the
course of the simulation run. Only the enumerated
parameters of each entity are regarded as the state.
Different colours/patterns are allocated for each different
state. Devotees of project management will recognize the
display as a Gantt chart. Time measurements may be
taken with two measuring bars, 0 and X and marked
regions can be expanded to show finer detail.

There are additional single run Data Collection
Utilities available through Sim + + that are not currently
integrated with HASE, but still available to the user for
manual inclusion in the simulation code.

9. METRICS

In general, the behaviour and validity of the project
model are verified by single run results and the
performance of the model is observed for subsequent
tuning through experimentation with the model.

An experiment comprises repeated simulation runs
varying input parameter values to produce output
parameters from which performance statistics and
other metrics may be gathered. General facilities are

THE COMPUTER JOURNAL, VOL. 38, No. 10, 1995

762 	 R. N. IBBETT, P. E. HEYWOOD AND F. W. HOWELL

provided for monitoring the values of particular state
variables but more complex metrics may be obtained by
explicitly writing Sim + + code.

Within the HASE environment the architect of the
model defines the set of input parameters and also
specifies a number of output parameters that could be
monitored during the experiment. Users of the model can
then determine which input parameters to assign values
to in order to make certain observations regarding the
performance of the model. The set of input or free
parameters is a subset of the parameters of the model,
chosen as being either external stimuli or interesting
variable factors. The set of output parameters is the
results obtained after applying the input parameters to
the model. From the set of input parameters, single, sets
of or a range of values can be specified.

The experimenter must decide what kind of statistical
analysis should be performed on the partial results and
view the final results to observe the performance of the
model for the defined experimental state. HASE includes
facilities for selection from a set of statistical functions
and input of the confidence coefficient, interval width
and maximum number of iterations. HASE also allows
for and manages multiple experiments per model.

10. PROJECTS USING HASE

10.1. The ALAMO project

The ALAMO project (Algorithms, Architectures &
Models of Computation: Simulation Experiments in
Parallel Systems Design) aims to address the first of the
Purdue Grand Challenges [1], to identify one "universal"
or a small number of "fundamental" models of parallel
computation that serve as a natural basis for program-
ming languages and that facilitate high performance
hardware implementations'. The project involves an
investigation of the use of the H-PRAM model of
computation [14] as a bridging model for parallel
computation, i.e. an interaction platform for parallel
software and hardware, via simulation. Algorithmic
skeletons are written in an H-PRAM notation, compiled
on to simulation models of parallel architectures created
in HASE, and the performance metrics of various
hardware architectures investigated. The goal is to
determine the properties of cost-effective (cheapest
possible) systems based on scalable architectures to
provide efficient support of the H-PRAM model.

10.2. Parallel performance prediction

As an approach to satisfying the need for appropriate
tools for developing concurrent applications for multi-
processors, HASE has been applied to parallel program
development based on the MPI message passing inter-
face. The ease of interfacing software layers to simula-
tion models has made it straightforward to link actual
code to models of an architecture. This approach to
software development has also been investigated else-

where using Proteus [20] and the WWT [21]. The
advantages of using a simulation model for software
development include repeatability, availability, variety,
removal of l-leisenbugs, ease of visualization and
generality. At the design stage of parallel software it is
better to have a simple method which is reasonably
accurate than an accurate one which is unusable.
Because of this, models have been calibrated using an
MPI characterization routine which measures the
performance of all MPI operations on an architecture.
The focus has been on obtaining a quick first-cut design
rather than on developing perfect models.

An interesting spin-off benefit of this project is that
because Sim + + uses simple co-routines rather than
Unix processes, the performance of a parallel MPI
program running under HASE can be three to four times
better than the same program running under a standard
MPI distribution on the same workstation. The absolute
improvement depends on the amount of context switch-
ing the program causes (since the context switch time for
co-routines is faster than for processes).

10.3. An on-line teaching system for computer
architecture

This project has produced a demonstration to aid
students in the understanding of computer architecture.
The demonstration involves playing back a pre-run
simulation of the DLX architecture [22] which both
animates the diagram of the architecture and displays a
sequence of text windows which explain what is
happening in the simulation. The simulation deals with
hazards, multicycle operations, scoreboarding, etc.
There is also a facility to enable students to create and
animate their own programs.

11. CONCLUSIONS AND FUTURE
DIRECTIONS

This paper has described a flexible environment for
computer architects which has the following character-
istics:

Hierarchy: each part of a system can be both designed
and simulated at the appropriate abstraction level.
Flexibility: no system can anticipate all the needs of
potential application areas; HASE has therefore been
designed to be as flexible as the most common
alternative—writing a simulation from scratch in a
programming language.
Software support: a simulation in HASE may involve
both the hardware and software aspects of the systems
under investigation i.e. HASE facilitates software/
hardware codes/ga [23]; this is possible because soft-
ware libraries can be linked into a simulation rnodcl.
Component reuse: a major aim has been to make it
easy to construct components which can be used in
many different projects.
Graphics interface: The X-Windows/Motif graphical

THE COMPUTER JOURNAL, 	UL. 38, No. 10. 1995

HASE: A FLEXIBLE TOOLSET FOR COMPUTER ARCHITECTS 	 763

interface allows the user to view the results of
simulation runs through animation of the design
drawings.

HASE has already been used for a number of projects
and users have commented on the relative ease with
which they have been able to create their architectures.
Further projects are in progress or are about to start.
These include an extension of the on-line teaching system
for computer architecture, simulation of a sparse vector
processor and investigations of cache performance.
Work on multiprocessor systems will include investiga-
tions of multiprefix algorithms and dynamic routing
algorithms on mesh interconnection networks, and the
evaluation of multiprocessor interconnection networks.
In this project each of the different networks under
investigation will be instantiated in a testbed consisting
of a set of processor and/or memory components
attached to the network. The processors will be relatively
simple models, limited to generating network activity.
The output from the various simulation runs will be used
to visualize the effects of hotspots, for example, and to
produce overall performance measures such as through-
put and latency.

A number of possibilities for expanding the capabil-
ities of HASE are also being considered. These include
the incorporation of VHDL definitions and formal
specifications as additional facets of HASE entities,
and the incorporation of a flexible compiling system to
allow experimentation with new instruction sets on
meaningful example programs. In its simplest form
such a compiler would offer modular flexibility in its
back-end for generating code targetted at a pre-defined
set of instruction sets. The ultimate in flexibility would be
a compiler capable of compiling to an arbitrary
instruction set, given the specification of that instruction
set. Tools to support experimental compilation at some
point on the spectrum between these two extremes will be
investigated as part of related compiler research cur-
rently being undertaken at Edinburgh.

As well as providing a powerful tool for architecture
research, HASE is also proving to be a valuable testbed
for new ideas in modelling support environments. So far
this work has concentrated on adding features to allow
experiments involving replicated runs, and thus the
exploration of parameter spaces, to be automated [24].
This is proving attractive in increasing the productivity
of users, removing the need to repeat runs and collect
results manually.

Further use of HASE is required before its run-time
performance can be fully assessed, but it seems likely that
improvements will be needed. One technique which is
already being explored involves exploitation of concur-
rency mechanisms in the database to deliver results from
multiple runs in parallel from a network of work-stations
[25]. This should increase the speed of the system and
allow more extensive simulations of more detailed
models to be undertaken.

ACKNOWLEDGEMENTS

HASE is being developed as part of the ALAMO project
supported by the UK EPSRC under grant GR/J43295.
The authors would like to thank a number of colleagues,
specially Paul Coe, Rob Pooley, Peter Thanisch, Nigel

Topham and Lawrence Williams, who have provided
constructive comments and input to this paper, and also
all the students who have used HASE throughout its
development for their comments and contributions.
F.W.H. has been supported by an EPSRC Postgraduate
Studentship.

REFERENCES

Siegel. H. J., Abraham, S. et al. (1992) Report of the
Purdue Workshop on Grand Challenges in Computer
Architecture for the Support of High Performance
Computing. J. Parallel and Distributed Comput., 16,
199-211.
Bell, C. G. and Newell, A. (1971) Computer Structures.-
Readings

tructures:
Readings and Examples. McGraw-Hill, New York.
McHenry, J. T. and Midkiff, S. F. (1994) VHDL
modelling for the performance evaluation of multi-
computer networks. In Proc. MASCOTS-94. IEEE
Computer Society Press, New York.
Buck J, Ha, S., Lee, E. A. and Messerschmitt, D. G.
(1992) 'Ptolemy: a framework for simulating prototyping
heterogeneous systems. mt. J. Comp. Sim., 155-182.
George, A. D. (1993) Simulating microprocessor-based
parallel computers using processor libraries. Simulation,
60,129-134.
Sheehan, K. and Esslinger, M. (1989) The SES/sim
Modelling Language, Society for Computer Simulation,
San Diego, CA.
Evans, D. G. and Morris, D. (1992) Applying modelling to
computer systems. In Proc. IFIP 'CODES Workshop',
Munich
Nestor, J. A. (1993) Visual register-transfer description of
VLSI microarchitectures. IEEE Trans. VLSI, 1, 72-76.
Zeigler. B. P. (1990) Object-Oriented Simulation with
Hierarchical. Modular Models. Academic Press, San
Diego CA.
Robertson, A. R. and Ibbett, R. N. (1991) Simulation of
the MC88000 Microprocessor System on a Transputer
Network. In Proc. EDMCC2. Springer-Verlag, Berlin.
Robertson, A. R. and Ibbett, R. N. (1994) HASE: a
flexible high performance architecture simulator. In Proc.
HICSS-27, Hawaii.
Birtwistle. G. M. (1985) Demos: Discrete Event Modelling
On Simula. Prentice-Hall, Englewood Cliffs, NJ.
Sim + + User Manual (1992) Jade Simulations Interna-
tional Corp., Calgary, Canada.
ObjectStore Release 3.0 User Guide (1993) Object Design
Incorporated, Burlington, MA.
Hillston, J. E. (1992) A tool to enhance model explor-
ation. In Proc. Sixth mt. Conf. on Modelling Techniques
and Tools for Computer Performance Evaluation,
Edinburgh.
Pooley, R. J. (1991) The integrated modelling support
environment a new generation of performance modelling
tools. In Computer Performance Evaluation Modelling
Techniques and Tools. Elsevier Science Publishers,
Amsterdam.
Williams, L. M. (1995) Simulating DASH in HASE, M.Sc.
Dissertation, Department of Computer Science, Univer-
sity of Edinburgh.
Lenoski, D. E., Laudon, J., Joe, T., et al. (1992) The

THE COMPUTER JOURNAL, VOL. 38, No. 10, 1995

764 	 R. N. IBHETT, P. E. HEYWOOD AND F. W. HOWELL

DASH prototype: implementation and performance. In
Proc. 19th lot. Symp. on Computer Architecture, Queens-
land, Australia.
Heywood, T. and Ranka, S. (1992) A practical hierarch-
ical model of parallel computation I: the model. J. Parallel
and Distributed Comput., 16, 212-232.
Brewer, E. A. and Weihl, W. E. (1993) Developing parallel
applications using high-performance simulation. In Proc.
IEEE Workshop on Parallel and Distributed Debugging,
San Diego, CA.
Burger, D. C. and Wood. D. A. (1995) Accuracy vs.
performance in parallel simulation of Interconnection
Networks. In Proc. ACM/IEEE lot. Parallel Processing
S.vmp. (IPPS), Santa Barbara, CA.
Hennessy, J. and Patterson, D. (1990) Computer Archi-

tecture, A Quantitative Approach. Morgan Kaufmann,
San Mateo, CA.
Razenblit, J. and Buchenreider, K. (eds) (1995) Codesign:
Computer-aided software/hardware engineering. IEEE
Press, New York
Heywood, P.E., Pooley, R. J. and Thanisch, P. (1995)
Object-oriented database technology for simulation
experiments. In Proc. Second United Kingdom Simulation
Society Conf., North Berwick.
Heywood, P.E., MacKechnie, G., Pooley, R. J. and
Thanisch P. (1995) Object-oriented database technology
applied to distributed simulation. In Proc. EUROSIM
Congr., Vienna..
Lomow, G., Cleary. J. et al. (1988) A performance study
of time warp. Distributed Sim., 19, 50-55.

THE COMPUTER JOURNAL, VOL. 38, No. 10, 1995

CHAPTER 1

HIERARCHICAL ARCHITECTURE
SIMULATION ENVIRONMENT

F.W. Howell and R.N. Ibbett

1.1. INTRODUCTION

The Hierarchical Architecture Simulation Environment (HASE) is a tool for
modelling and simulating computer architectures. Using HASE, designers
can create and explore architectural designs at different levels of abstraction
through a graphical interface based on X-Windows/Motif and can view the
results of the simulation through animation of the design drawings. This
chapter describes the design and animation facilities of HASE, compares
it with other simulation systems and concludes with suggestions for future
tools based on several years' experience using HASE within the University
of Edinburgh department of computer science.

1.1.1. The Motivation

Advanced simulation tools are available for low level electronic design, such
as Spice for analogue circuits, and VLSI layout tools. However, tools for
rapid prototyping of architectural ideas are less well established. Simulation
languages can be used to model computer architectures, but the user has to
be an expert on simulation. This is also the problem of general purpose
simulation tools (e.g. SES/Workbench), where icons represent 'queues',
'servers' etc., and the link between a queueing model of an architecture and
the architecture itself is not immediately apparent to the engineer not fluent
in queueing theory.

1

2 	 F.W.HOWELL & R.N.IBBE1T

Conventional languages (C, C++) are often used to construct simulators,
but this approach involves starting from scratch for each new project. User
interface aspects are often neglected as the tool will be thrown away with
the next architecture. This is very wasteful, as many aspects of computers
are constant between different architectures. The object oriented approach
offers a solution. Standard components (such as memories, microprocessors
and interconnection networks) can be held in a library. They can be con-
structed and linked together graphically on screen to create a simulation
of an architecture, in much the same way that standard components can
be wired together in a semi-custom VLSI tool. The difference is that the
simulation is not fixed to low level wires and chip pins, but is free to choose
the appropriate abstraction level.

HASE was designed to provide the flexibility of a raw programming
language with the user interface advantages of a graphical tool.

1.2. DESIGN OF HASE

1.2.1. Overall operation

The HASE tool acts as a graphical front end to SIM++', a discrete event sim-
ulation extension of C++. SIM++ is used to describe the behaviour of basic
components of a simulation. It provides a sim_entity class from which
user components may be derived. Entities run in parallel and may schedule
messages to other entities using SIM++ library functions. The user can
link icons corresponding to entities together on screen and HASE produces
the SIM++ initialisation code necessary for simulating the network, New
components can be constructed by linking together standard components.
Each component can be simulated at any level of abstraction. A register
transfer level simulation will produce the most accurate simulation results;
behavioural level simulations run more swiftly. The tool allows different
parts of the simulation to run at different abstraction levels, so the user can
'zoom in' to specific parts of the design to simulate that at a low abstraction
level and run the rest of the design at a high level of abstraction. Figure 1.1
shows how the parts of the system fit together.

1.2.2. Internal design of Hase

Each project built using HASE has its own directory for storing the SIM++
code. This directory may be used for building and running the simulation

HASE

Lib

Network

'4 HASE

SIM++ Source Code

SIM++
Compiler

Parameters
File

Executable
Simulation

Program 	 File
Memory Files

SIM++
Run Time 	J Trace
System) 	File

Figure 1.1. The top level design of HASE.

4 	 EW,HO WELL & R.N.IBBETF

outwith the HASE environment using command line tools like make, giving
the full flexibility of the SIM++ prograniming language. Alternatively the
simulation process may be controlled from the HASE front end. HASE
itself was written using C++, and a project is represented within HASE by
four main classes; the entity, the parameter, the link and the port.

Entity. This object stores a single component (or 'entity' in SIM++
terminology). The SIM++ code defining the behaviour is held in a file
which has the same name as the entity. Within the object are stored
details of the entity's ports and parameters. In addition, it holds the
name of the bitmap file used for display and animation.

Parameter. An entity may have many parameters. Details of these
are stored within HASE along with instructions for their animation.

Port. An entity sends messages to other entities via 'ports'. A
port has a name, an icon and position relative to the entity's icon. The
simulation code for an entity is written using sends and receives to and
from these ports rather than directly to and from other entities. This
constraint on SIM++ (which allows direct communication between
any entities in the simulation) means that reusable components may
be constructed with a defined interface.

Link. This holds a link between two ports, drawn as a line on the
screen. The object includes mechanisms for animating packets sent
between entities.

1.2.3. Hierarchy

A subdivided entity may be defined in terms of a network of lower level
components. Sometimes this is purely to make the design more manageable
on screen, with the simulation still being performed using the low level
components. It is also possible to provide simulation code for this higher
level component and choose to use this one object rather than the low level
network in order to obtain faster simulation time and less detailed results.

This choice of simulation level may be made at run time and is made by
toggling a switch associated with the object. The external interface of the
high level component is defined to be the same as that of the lower level
network. This allows the simulation level of each object in the simulation
to be set independently. Figure 1.2 illustrates two subdivided components
connected by their external ports.

SUBDIVIDED
COMPONENT

HASE

Figure 1.2. Two subdivided entities are connected by their external ports.

File 	Edit 	Peremetrrs 	Build 	Results 	 Help

Editing Project: DLX

CWRa PC-8
FILE

Figure 1.3. The HASE user interface.

6 	 F.W.HO WELL & R.N.IBBETI'

1.2.4. Parameter Types

HASE parameters are the crucial link between the simulation code and the
animation. They form the internal representation of each entity's state and
include integers, floats, enums, structs and arrays. Once a parameter has
been defined for an entity within HASE, that parameter is available to the
simulation code as a normal C++ variable. The initial value of the parameter
may be set using a Motif dialog and changes in the parameter's value may be
recorded in the trace file at simulation run time, ready to be picked up by the
animator (see section 1.4.1. for more details). Array variables are initialised
at run time by reading in a text file. This process is powerful enough to
allow streams of instructions (for example consisting of COMPUTE <time>,
SEND <proc#>, RECV <proc#>) to be parsed and read in to a component's
memory.

1.2.5. Templates

Templates for building common structures such as arrays and meshes of
components are included. The user can slot any component into the template,
set the dimensions and all the required components and links are produced.
Current templates include a linear array, a 2D mesh, an omega network and
a 3D torus.

1.2.6. Output Approaches

Simulations are renowned for producing vast quantities of raw data: trans-
ferring this into useful information is no trivial task. The result of a single
simulation run is a trace file with timestamps showing when all changes
in state and messages occurred. HASE includes two visualisation tools to
make sense of this information: an animator (see section 1.4.) and a timing
diagram display. The hierarchy is used to control the amount of information
displayed on the timing diagram and logic-analyser style measurements can
be taken.

Used in conjunction, these two tools show in detail what is actually going
on during a simulation run, which is very useful when developing models.
For very low level debugging purposes it is sometimes necessary to resort to
looking at the trace file itself. Once a model has been developed, it is natural
to stretch it with heavy workloads. This can rapidly generate unmanageably
large trace files, so there is a mechanism in Hase for controlling how much
trace information is produced (section 1.4.1.). For the largest runs it is usual

HASE 	 7

to garner a small number of statistical measures from the model. These
measures are taken using classes provided in SIM++ for histograms, counts
and accumulated averages.

Repeated runs are required to investigate how a model behaves using a
range of parameters2. These runs are typically controlled by a Perl script
and graphs produced using the GNUplot program.

1.2.7. Recycling Simulation Objects

One of the major benefits ascribed to object oriented techniques is that
software components may be reused by others instead of being recreated
from scratch.

This ideal has nearly been attained by hardware simulation systems;
hardware components have well defined inputs and outputs so designs may
be constructed by gluing together off-the-shelf components. The ideal is
only "nearly" attained in this case as effort is still required to package
components for others to use, so a certain amount of reinvention still occurs.

The situation isn't so rosy with object oriented software. This is partly
because software is inherently more flexible than hardware. It becomes more
difficult to define interfaces between objects when they aren't constrained to
N physical wires, but may instead be composed of data types, interdependent
methods, global variables and so on. It requires a significant investment in
time and effort to document and prepare objects so others may use them'. As
a result, few objects are generally shared between people, and most people
only reuse code they have written themselves.

It was an early design aim of the Hase system to encourage object re-use
as much as possible. This has met with some success in practice (but not
as much as was hoped for). The interface to most Hase objects is by typed
messages to ports, which makes reuse of objects simpler than the general
C++ case (but not quite as straightforward as low level hardware models).
Objects which play by these rules may be included in a project with no
problems. However Hase does not enforce this model; it is possible for
objects to use SIM++ techniques to communicate using global variables or
to bypass the ports. This makes it more complicated to simply slot such
an object into a project. Practicalities such as proper documentation being
provided for objects also affect reuse.

The Hase library system has been designed to address these issues.
Rather than storing a set of components, it stores a set of projects each
of which includes a list of components, the parameter and message type

8 	 F.W.HOWELL & R.N.IBBETF

declarations and the global variables.

1.2.8. Object Oriented Databases

There has been substantial commercial and academic interest in object ori-
ented databases recently. One common type of object oriented database is
an extension to an object oriented language (such as C++) which provides
for persistence of the objects. This approach is advertised as being suitable
for storing the complex objects common in CAD systems, and providing
desirable facilities such as version control and checkpointing of designs.

To investigate this approach to managing designs, Hase objects were
made persistent by using the ObjectS tore4 database system. The experience
was not without its problems. All HASE source files had to be prepro-
cessed by the ObjectStore compiler before seeing the C++ compiler, which
lengthened compile times. General run time performance became sluggish
as all standard C++ pointers were replaced with persistent pointers, which
could potentially result in a disk access. Any changes to class definitions
made all previous database files unreadable (unless they were processed
using a command line tool). Substantial source code modifications were
required to be compatible with ObjectStore assumptions, and more modific-
ations were later needed to obtain reasonable performance.

The conclusion from this experiment with object oriented databases is
that the technology isn't yet mature enough for this type of CAD system.
The general idea of allowing persistent objects within a language (without
requiring I/O code) is a good one to be greeted with enthusiasm; in practice,
however, adding an object oriented database requires much more effort than
it would take just to write I/O code.

1.2.9. Limitations of graphical simulation systems

Die hard hackers sneer at graphical tools in general since they may never be
as flexible as a programming language. This lack of flexibility is indeed a
problem with entirely graphical tools which construct models at all levels by
joining icons. At the lowest level of design, a description in a programming
language is often best. However, there are also limitations with entirely
textual descriptions; hardware and software designers usually use pictures
to explain a system in terms of its subsystems. A compromise is therefore
in order.

HASE is an inherently graphical system; if no pictures are needed, then
there is little point in using it. However it does not impose a graphical

HASE 	 9

approach to the specification of individual objects. These are described in
SIM++ and the full power of SIM++ is available to the programmer.

This compromise is finely balanced and it typically changes during the
life cycle of a simulation project. Initially when the design is fluid, animation
and graphics are very important for communicating ideas between research-
ers. Later, when the design solidifies, the important aspect is simulation run
times for collecting experimental data.

1.3. OTHER APPROACHES

1.3.1. VHDL

VHDL has become established as the standard hardware simulation lan-
guage. It enjoys support from all major EDA companies and provides for
simulation at levels from behavioural down to gate level. This section com-
pares the VHDL approach with using a C++ based simulation language for
simulating hardware systems.

1.3.1.1. Why use anything other than VHDL? High level simulations
incorporating software are usually written in C or C++ since these are the
languages used by programmers. It is possible to link code from different
languages, but the process is never entirely painless as interface routines
have to be written to convert between the different data formats. The ideal is
to use one language throughout. McHenry6 uses VHDL for high level system
modelling, and Swam y7 describes object-oriented extensions to VHDL to
make it more suited to system modelling.

VHDL incorporates very powerful features for modelling hardware;
there are explicit constructs for wires signals and detailed timing inform-
ation may be included. It's possible to detect glitches and other low level
hardware problems.

At the software level, good support is also included for concurrent pro-
cesses; e.g.

architecture behavioural of component is

signal w 	bit 	'0';
begin
prod: process is
begin

W <= 1;

10
	

F.W.HOWELL & R.N.IBBETT

wait for 10 ns;
w <= 0;
wait for 10 ns;

end;
proc2: process is
begin
wait until w = '01 ;

end;
end behavioural;

Concurrent processes may be included within the description of a com-
ponent. In SIM++, the unit of concurrency is the entity object. These
entities communicate by sending and receiving events, which may contain
data objects themselves. There is no concept of a wire as there is in VHDL,
and no concept of a hierarchy of components (all entities are equal and may
send messages to any other entity). The hierarchy is imposed on SIM++ by
the Hase concept of ports. Programming in SIM++ is akin to programming
a message passing parallel program.

The primary advantage of C++ based simulation languages (such as
SIM++) over VHDL for system simulation is that linking to software libraries
is significantly more straightforward. Basing communication upon messages
passed between components rather than upon asserting signals allows a
higher level view of the system, with the ability to send a data object at any
abstraction level. VHDL on the other hand has much better tool support and
standardisation than the various C++ simulation systems and includes direct
support for modelling low level wire behaviour.

1.3.2. SIMULA / DEMOS

Another popular simulation approach is based on SIMULA and the discrete
event package built on top of it (DEMOS). The original version of HASE
was based on DEMOS5; the switch to SIM++ was motivated by the higher
performance of C++ and the desire to interface to existing C and C++ libraries
of code. Interaction between objects is based on shared resources which may
have several operations defined, such as wait, coopt (a synchronisation).

1.3.3. Ptolemy

The Ptolemy project at Berkeley is a wide ranging simulation effort with a
focus on signal processing 8. It is a framework encompassing many different

HASE 	 11

simulation styles, including a discrete event domain. The package includes
support for animations written manually using the TclJTk toolkit.

1.3.4. Commercial Tools

Several commercial tools are available for network modelling and general
system simulation, an example being BoNeS9. These tools present a slicker
and more complete interface than research prototypes like HASE, but as
their source code isn't freely available they are less suited to playing with
new ideas and adding new features.

1.4. ANIMATION

Watch the cogs and pistons of a steam engine for a while and you get a feel
for the workings of the machine. This is trickier with electronic systems;
although they are many times more complex than the steam engine, they just
appear to sit and work their magic without effort (bar the odd flashing light
and smoldering component).

An animation of a simulation model can generate a similar intuitive
feel for how an electronic machine works. This often suggests 'obvious'
improvements and highlights design flaws which may be concealed by a flat
diagram or descriptive paragraph. It is also fun to watch a complex design
coming alive on screen and behaving as intended (or, as is more likely, not
behaving exactly as intended).

The main reason that animation isn't usually an integral part of the design
process is the amount of effort involved in building one. The problem with
creating an animation separate from the main design is that changes to the
design have to be made to the animation code as well. This makes the
animation diverge from the actual design and become unusable.

Hase addresses this by making animation an integral part of design.
Simple animations are generated automatically, based on the state changes
of components and the messages which are passed between them. More
complex animations may be customised to include GIF colour icons.

1.4.1. The Approach

Animation is based on the changes in value of a component's parameters.
These may be dragged onto the screen using the component editor (fig-
ure 1.4); once this has been done, any time that parameter's value changes

12
	

F,W.HOWELL & R.N.IBBETF

it appears on the display.

J
Lomponeni Ic
Description I A source of random packetsl

El 	 El

fPorts 	I
!I3ody 	I
IState 	I 	 *13-0

IDithap 	I
	 Sts-0

ILibrary 	I
[ompü

jUpdate 	I

Figure 1.4. The component editor allows the state variables of an object to be dragged

onto the display for animation.

The way a parameter is shown may be varied. Value just shows the
value in screen (e.g. 123 for integers, 1. 234 for floats, BUSY for enums).
Name+Value shows the variable name as well (e.g. curr_state = BUSY).

Enumerated parameters may be displayed as icons instead of text; the
icons are read in from bitmap files with the same name as the state (e.g.
BUSY . btm or IDLE. gif). This is a simple but powerful technique for state
animations; by simply providing the bitmaps for the corresponding states
a customised animation is generated. These bitmaps may be displayed
alongside the entity, or alternatively may be used to set the entity's bitmap.

struct parameters are displayed by drawing a box around the constituent
elements (each of which may be displayed as above).

Thus far attention has been focussed on animating single parameters;
any number of a component's parameters may be dragged onto the screen to
be shown during animation, or they may be left hidden. It is also possible to
define array parameters. The contents of these may be displayed on screen
in a list box with a scroll bar and any updates or reads from the array are
highlighted during the animation. Such updates are written to the trace
using the MEMREAD 0 and MEM_UPDATE 0 macros in the SIM++ code. This
technique has proved useful for displaying register contents and instruction
buffers.

HASE 	 13

A simulation is not solely composed of state changes; there are also the
messages sent between components. These messages may contain any form
of data or handshake signal. The basic icon for a "message" may take any
of the forms of static state parameters outlined above. This icon is animated
by moving it down a link from one entity to another. The requisite line in
the trace file is generated by the send_DATA() function in the SIM++ code,
and the animation of the message is performed at the time the message is
sent. Note that this is not necessarily the same as the time the message is
acted upon by the receiving entity, as every SIM++ message is queued until
the receiver is ready for it.

Pkts=12

flits=12

a- 	- =
Pkts=1

Rits=4

êo
Figure 1.5. Changes in a components state may be displayed on screen.

To show how the simulation code relates to the animation, figure 1.5
shows a src object connected to a queue and the following fragment shows
part of the corresponding SIM++ code.

II excerpt from src.sim
Pkts++;
Flits++;
if (ok_to_send)
state=SRC_OK;

else
state=SRC_BLOCKED;

dump-state(;
DataPkt d(123);
sim_hold(1,234);
send_DATAPKT (out, d ,0.0);
sim_wait(ev);

An example shows the format of the trace file which is generated on
running the simulation and read in by the animator:-

14 	 EW.HOWELL & R,N.IBBETI'

II example trace file generated at run time
u:src0 	at 0.000: p SRC-BLOCKED 12 123
u:queue0 at 0.000: p FULL-6
u:srcl 	at 0.000: P SRC-OK 1 4
u:queuel at 0.000: P FULL-1
u:src0 	at 1.234: S out 123

Sometimes protocols require several messages to be exchanged between
entities; in these cases it would be messy to animate all the acknowledge
packets, so it is possible to send messages without generating any trace
information. For large scale simulations, it is also often useful to avoid
animating messages altogether and just show the state changes, so the "trace
level" may be set to control which types of trace information are generated.
The levels are:

comments and line numbers T
message sends 2
memory updates 3
state changes 4
summary 5

Table 1.1. The levels of trace generation.

Setting the trace level to 4 (say) includes state updates and summary
information in the trace, but not messages, memory updates or comments.

1.4.2. An example

Figure 1.6 shows an animation of a crossbar interconnection network with
input and output queues. When the inputs block the icon is highlighted; it
is possible to see the individual flits moving down the links and the queues
grow and shrink dynamically.

1.5. APPLICATIONS

Architectural simulation work using the DEMOS prototype version of HAS
is detailed in5. In 1992 work began on the current SIM-H-/Motif version
which has been used in many MSc and final year honours projects, including
simulation of multiprocessor WAN bridger/routers, simulation of the DLX
processor and simulation of the DASH multiprocessor' 0. More details of

HASE
	

15

--------------- -€

go _ --------------

o- -------------- H3

go

Figure 1.6. An interconnection network with input and output queues demonstrates the

HASE animation facilities.

16 	 F.W.HOWELL & R.N.IBBETL'

projects using Hase are given in". Currently the main focus is on simulating
multiprocessor interconnection networks and parallel MPI software. Many
of the projects have involved linking simulation code to substantial existing
libraries of C or C++ routines.

1.6. CONCLUSIONS

1.6.1. Important Messages

Animation has proved to be the most appealing feature of the Hase tool.
The way in which it is incorporated into the design process allows swift
construction of animation models and encourages communication and de-
bate between designers. These advantages couldn't be obtained with an
animation tool separated from the main design environment as there would
be a problem maintaining consistency between the animation model and the
one used for simulation.

The combination of an efficient threaded C++ with messages to commu-
nicate between objects is a powerful and intuitive programming model for
software and hardware systems. It has also been useful that Hase imposes
no restrictions on using SIM++ features.

The final message is that no simulation system will encompass all the
needs of all projects. Many of the Hase features were included by students
"extending" Hase to cope with the particular requirements of their project
and this has proved the ultimate in flexibility, and a major advantage of
having the source code and design available (which wouldn't be the case
with commercial tools).

1.6.2. Future of the approach

New directions for the tool currently being investigated are closer tie-ins with
an object oriented version of VHDL (to strengthen the links with hardware).
VHDL itself is an attractive language for modelling hardware, but needs
the addition of messages to model systems at a higher level. For software
systems, it is very convenient to use a C/C++ like language since this makes
it easy to include existing libraries of software.

Use of a parallel simulation language has been considered since the start
of the Hase project and SIM++ originally had a timewarp version, but in pro-
jects to date the bottleneck hasn't been the simulation run time of individual
runs, but rather the time to construct simulations. The lengthy simulations

HASE 	 17

have been successive runs with different parameters which have been run
simultaneously on different workstations. We are currently experimenting
with our own implementation of SIM++ to run on the Cray T31) to map out
the performance of a model over a large area of the input parameter space
in parallel.

REFERENCES

JADE INC. Sim++ User Manual, (Jade Simulations International Corp.,
Calgary, Canada, 1992).

J. HILLSTON, A Tool To Enhance Model Exploitation, Technical Re-
port CSR-20-92, Dept. of Computer Science, University of Edinburgh,
1992.

B. STROUSTRUP, The C++ Programming Language (Addison-
Wesley, 1991), 382-384.

OBJECT DESIGN INC. ObjectStore Release 3.0 User Guide, (Object
Design Incorporated, Burlington, MA, 1993).

A.R. ROBERTSON and R.N. IBBETT', "HASE: A Flexible High Per-
formance Architecture Simulator", in Proc HICSS-27 (IEEE, Hawaii,
1994).

J.T. McHENRY and S.F.MIDKIFF, "VHDL Modeling for the Perform-
ance Evaluation of Multicomputer Networks", in Proc MASCOTS-94,
(IEEE Computer Society Press, New York, 1994).

7, S. SWAMY, A. MOLIN and B. COVNOT, "00-VHDL: Object-
Oriented Extensions to VHDL", IEEE Computer, 28:10, 18-26 (1995).

J. BUCK, S. HA, E.A. LEE and D.G. MESSERSCI{MITT, "Ptolemy:
A Framework for Simulating and Prototyping Heterogeneous Systems",
Int. J. Comp. Sim., 4,155-182 (1994).

S.J. SCHAFFER and W.W. LaRUE, "BONeS DESIGNER: A Graph-
ical Environment for Discrete-Event Modelling and Simulation", in
Proc MASCOTS-94, (IEEE Computer Society Press, New York, 1994).

EW.HOWELL & R.N.IBBETF

L.M. WILLIAMS, Simulating DASH in HASE, (MSc Dissertation, De-
partment of Computer Science, University of Edinburgh, 1995).

R.N. IBBETT, P.E. HEYWOOD and F.W. HOWELL, "HASE:
A Flexible Toolset for Computer Architects", to appear in
The Computer Journal, (1996).

