
 Eindhoven University of Technology

MASTER

Investigating frameworks for integration and orchestration
a case study on a microbrewery digital twin

Lee, Ander

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/e4b1c87e-9a50-40fa-84e7-d069f0b2b440

Investigating frameworks for
integration and orchestration—a case
study on a microbrewery digital twin

Master Thesis

Ander Lee
1539302

Department of Mathematics and Computer Science
Software Engineering and Technology Cluster

Supervisor:
dr.ir. Loek Cleophas

Mentor:
ir. David Manrique Negrin

Committee:
dr.ir. Ion Barosan

dr.ir. Jeroen Keiren

Version 5.1.5

Eindhoven, October 2022

Abstract

Digital twins (DTs) are beneficial to the management of complex product life cycles because they
can offer insights from both physical and virtual worlds. In order to reach its full potential, a
DT often incorporates a broad range of models and toolsets. The integration and orchestration
of these components pose a challenge to the DT developer. In this project, we develop a case
study of a microbrewery DT and investigate frameworks that enable integration and orchestration
techniques in order to simplify the design process for the trend of growing count of models in DTs.

A DT is the composite of elements from five dimensions, namely physical entities, virtual
entities, services, data, and the interconnections between them. In a closed-loop, the virtual
entities collect data from the physical entities, apply the data analysis services, and eventually
optimize the physical entities.

As DTs become increasingly complex, diverse tools and heterogeneous models inevitably must
be brought together in order to cover all aspects of the systems. From there, the challenges
in integration and orchestration arise. In short, integration concerns the encapsulation and the
interface between virtual entity models. On the other hand, orchestration addresses the problem
of execution sequences.

This study set out to investigate frameworks that embody techniques for integration and
orchestration. The purpose was to identify good practices which could be reused in DT devel-
opments. A microbrewery DT was built as a case study. For now, it supports two services,
namely Production Prediction and Production Control. We selected and applied three frame-
works of distinctive styles to demonstrate the services. They were TwinOps—inspired by the
DevOps principle; ThingsBoard—an open source platform based on the Internet of Things (IoT)
and Service-Orientated Architecture (SOA); and finally Ptolemy II—based on an actor-oriented
architecture which aims at experimentation in cyber-physical systems (CPS). We consider these
three frameworks for their wide variety of uses, and presumed suitability for DTs.

The results indicate that a distributed framework architecture, such as TwinOps and Things-
Board, enables a high degree of modularity and configuration which supports integration of diverse
components. The extensive configuration options also contribute to a higher automation level for
orchestration, as initial setup is paid off by automated processing during operations. In contrast,
in a monolithic framework like Ptolemy II, the core functionalities have been unified in a self-
contained package rather than assembled from a series of deployable modules or pipeline stages.
As a result, it can benefit from smaller communication overhead in integration, which suggests
better system timeliness. However, the same tight coupling characteristic may also restrict the
flexibility of the orchestration.

Our findings highlight possible techniques for integration and orchestration. The comparison
of the frameworks should be of guidance to developers considering extending a framework that
suits their DT use cases.

ii

Acknowledgement

My special thanks go to my mentor David Manrique Negrin for his contributions to the project.
He was the main supplier of the apparatuses for the brewery as well as the chemistry models. In
addition, David has offered insightful advice on the design of the experiments, and the writing of
this thesis.

I also want express my gratitude to my supervisor Loek Cleophas. He has monitored my
progress and patiently reminded me to focus on the big picture throughout.

Finally, I am immensely grateful for my friends and family who have been an unfailing source
of encouragement and reassurance.

iii

Contents

Contents iv

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Context . 2
1.2 Domain overview . 2
1.3 Challenges . 4
1.4 Problem definition . 5
1.5 Project Scope . 6
1.6 Research questions . 6
1.7 Report structure . 6

2 Background 7
2.1 State of the art . 7

2.1.1 Monitoring . 7
2.1.2 Modelling . 8
2.1.3 Controlling . 8

2.2 Related work . 8
2.2.1 Integration . 8
2.2.2 Orchestration . 10
2.2.3 DT in bioprocessing . 13

2.3 Summary . 14

3 Methodology and Design 15
3.1 Architecture of the microbrewery DT . 15
3.2 System context description . 17
3.3 Requirements identification . 18
3.4 Use case description . 20
3.5 Selected frameworks . 22

3.5.1 TwinOps . 22
3.5.2 ThingsBoard . 23
3.5.3 Ptolemy II . 23

4 Implementation 25
4.1 Production Prediction (S1) demonstrations . 25

4.1.1 S1 in TwinOps . 25
4.1.2 S1 in ThingsBoard . 27
4.1.3 S1 in Ptolemy II . 28

4.2 Production Control (S2) demonstrations . 29
4.2.1 S2 in TwinOps . 29

iv

CONTENTS

4.2.2 S2 in ThingsBoard . 30
4.2.3 S2 in Ptolemy II . 31

5 Evaluation and Discussion 32
5.1 S1 KPIs evaluation . 32
5.2 S2 KPIs evaluation . 35
5.3 Summary of framework comparison . 37

6 Conclusion and Future work 38
6.1 Conclusion . 38
6.2 Future work . 40

Bibliography 42

Appendix A DT workflow in bioprocessing domains 47

Appendix B Microbrewery physical workbench 49

Appendix C Kafka primer 51

Appendix D FMI revisit 52

Appendix E Human-in-the-loop control scheme 53

v

List of Figures

1.1 Classification of digital twin . 3
1.2 5D view of DT model . 4
1.3 Integration (right) and orchestration (left) . 5

2.1 FMI for model exchange (left), and FMI for co-simulation (right) 9
2.2 SysML diagram taxonomy . 11
2.3 DevOps concept portrayed by the infinite loop . 11
2.4 TwinOps forward and feedback loop . 12
2.5 MoCs relationship . 13

3.1 5D view of the microbrewery DT . 15
3.2 Services of microbrewery DT in different product lifecycle phases 16
3.3 System context of the brewery DT . 17
3.4 Errors that can be detected by ontology checking 19
3.5 Use cases for S1 scenario . 21
3.6 Use cases for S2 scenario . 21
3.7 TwinOps workflow . 22
3.8 ThingsBoard workflow . 23
3.9 Meta model of Ptolemy II . 24

4.1 TwinOps implementation workflow for S1 . 25
4.2 The SSP file rendered in OMEdit . 26
4.3 The CI (left) and CD (right) jobs and their outputs 26
4.4 S1 entity management in ThingsBoard . 27
4.5 S1 rule chain in ThingsbBoard . 28
4.6 A snapshot of the real-time dashboard in ThingsBoard for the heat transfer model 28
4.7 Ptolemy II design for S1 . 29
4.8 The internal implementation of FMU Proxy . 29
4.9 The SSP layout of S2 . 30
4.10 S2 rule chain in ThingsBoard . 30
4.11 Integration of S2 to the root rule chain . 30
4.12 A snapshot of S2 real-time dashboard . 31
4.13 The encapsulation of S2 . 31
4.14 S2 design in Ptolemy II . 31

5.1 S1 KPI2: updating delay . 33
5.2 S2 KPI2: latency . 36

A.1 The five-step implementation . 47

B.1 The fermenter before (left) and after (right) being filled up with wort. 49
B.2 More devices at the workbench . 50
B.3 Network topology of the workbench . 50

vi

LIST OF FIGURES

C.1 An example Kafka architecture . 51

D.1 Incorrect function calling sequence by Ptolemy II 52

E.1 The client interface . 53
E.2 The original S2 (top) and the human-in-the-loop control scheme (bottom) 53
E.3 Water circuit setup . 54

vii

List of Tables

3.1 Highlighted characteristics of integration and orchestration 18
3.2 S1 requirements . 19
3.3 S1 KPIs . 20
3.4 S2 requirements . 20
3.5 S2 KPIs . 20

5.1 S1 KPI1 comparison . 33
5.2 TwinOps initial configurations overview . 35
5.3 ThingsBoard initial configurations overview . 35
5.4 Framework comparison . 37

6.1 S3 requirements . 40
6.2 S4 requirements . 40
6.3 S3 KPIs . 41
6.4 S4 KPIs . 41

viii

Chapter 1

Introduction

The first chapter introduces the context and the main concepts of a digital twin (DT), followed by
describing the current challenges associated with integration and orchestration of models in a DT.
This leads to the motivation for constructing a microbrewery case study in order to investigate
frameworks for integration and orchestration.

The DT concept was first introduced by Grieves in 2002 [1]. He referred to it as a concept for
Product Lifecycle Management (PLM). The concept asserts that systems are dual in nature, that
is, a system has a physical side and a virtual side. The premise of the model is that the two sides
are bound together via a bidirectional data link.

The association to PLM is that a DT is a dynamic system that adapts to specific stages in
the product’s lifecycle. The stage changes made in either space are promptly translated to the
subsequent outcomes in the other space. For example, the physical product may deliver data
about itself or the environment to the virtual space. On the other end, the developer could tune
the design on the virtual side, resulting in calibration of the physical product. This bidirectional
relationship in DTs makes a clear distinction from simulations, which are frequently confused
with DTs. In short, we consider that DTs go a step further by using simulations and analyses to
influence the outcomes in physical space.

After Grieves’ proposal of using DTs for PLM, the early adopters were from the aerospace
sectors such as NASA and US Air Force [1]. The lifecycle of an aircraft normally lasts several
decades [2]. Taking a single snapshot, an aircraft is a complex composition of multi-disciplinary
outputs. For instance, the jet engine is a mechanical system; the fuel system is largely based
on chemical reactions; and the communication equipment is the result of electrical and computer
designs. The aerospace industry has shown the utility of DTs regarding products with a broad
development scale. As time passed, many more industries quickly caught up with the trend of
multi-disciplinary and long-term product lifecycle. Production factories these days use dedicated
software to analyze the efficiency of operations and optimize them on-the-go [3]. Hospitals also
use digital assets to aid experiments on drugs and patients [4]. As a result, the study of DT
development becomes more and more important.

The number and variety of DTs continue to expand these days. In the physical space, this
is attributed to advancements—alongside reduction of costs—in wireless sensor networks. In the
virtual space, more sophisticated modeling methods are appearing; especially, there has been a
rapid progress in big-data models and artificial intelligence models [5]. Under this premise we
notice a problem of how to manage all the available components together in a DT in order to
support the product lifecycle. To have heterogeneous tools cooperating we need integration and
orchestration. These two notions include aspects as focused as data format conversion, as well
as bigger considerations like inter-model scheduling. We want to investigate what are the key
characteristics for integration and orchestration.

Identifying the integration and orchestration techniques is merely the first step to improve a
DT development process. Applied separately, individual techniques can hardly reduce the com-
plexity of the process on their own. They need to be arranged in a coherent order and be governed

1

CHAPTER 1. INTRODUCTION

together by operating principles. This is why we need to experiment with different frameworks
for integration and orchestration in this project. A framework, simply speaking, embodies these
techniques and consolidates them into a certain workflow pattern, laying out a guideline for a de-
veloper to follow. Adopting a framework when constructing DTs also ensures good practices could
be reproduced consistently, as it encourages common resource utilization, for instance, through
templates or libraries. Alternatively, workflow stages could also be established in the framework
as discussed in the later chapters.

An end goal of a DT is to support services in a product lifecycle. In this project we want to
search for what approaches, offered by the frameworks, have the potential to enable accomplishing
this goal. We choose a microbrewery as the case study, the core services we will focus on are
related to the production yield aspect of the beer. A key process of a brewery is fermentation,
which typically spans two weeks. The process has various variables that could be monitored by
sensors, such as the alcoholic content and the temperature. Moreover, the conditions of the process
are relatively mild, i.e., low temperature, medium high pressure, which allows easy observations.
The fermentation process is a well studied phenomenon, making it straightforward to construct
and evaluate. Taken together, these conditions within the case study give us great flexibility to
test the different frameworks.

1.1 Context

As claimed by market analysts [6, 7], the emerging trend of Industry 4.0 is characterized by
widespread digitalization. Hence DTs are becoming more widely adopted as industry moves toward
a digital transformation which sets out to improve the transfer of information across the value
chain. This will allow stakeholders to share knowledge about the designs, conditions, and logistics
of their products and operations through digital artifacts. By facilitating the virtual mock-up of
the real product, one can overcome the temporal and spatial limitations of experimenting in the
physical world, thus greatly reducing the overall cost.

The concept of DT is often discussed together with the model-driven system engineering
(MDSE) paradigm [8]. In MDSE, a complex system is treated holistically. It is described in
terms of the interaction between systems, or better known as “system of systems” [9]. The sys-
tem architecture is represented as models in order to support requirements, design, analysis and
verification activities throughout the lifecycle. The use of modelling exploits recurring design pat-
terns, hence helping to drive a consistent specification without significantly increasing costs as the
system depth—the total number of abstraction layers—extends. It is found in many studies that
DTs which follow MDSE have the potential to bring the following benefits [10–15]:

� Reduced maintenance costs during a system’s lifecycle.

� Reduced errors and inconsistencies across multiple iterations.

� Improved multi-disciplinary collaboration, i.e., engineers from different job functions are able
to quickly grasp the high-level overview of the design.

1.2 Domain overview

In this section we first discuss the DT classification. After that, we provide an overview a five-
dimensional view of DT which helps us to assess the individual components and their interactions.

Classification

Although the term “digital twin” has been mentioned in much literature, such studies seldomly
share the same definition [16]. In some studies the definition centers on to multi-scale simulations
working together [17]. In other studies it is defined as a high fidelity digital replica of the physical
asset [18]. In order to find a definition that fits our case study, and to keep the later discussions

2

CHAPTER 1. INTRODUCTION

consistent, we will adopt the classification proposed by Kritzinger et al. [19]. According to the
classification, ‘digital twin’ can be roughly divided in three categories based on the level of data
integration between the physical assets and their virtual counterpart (illustrated in Figure 1.1):

Physical
plant

Models

monitor

control/adjust

sensors

actuators

Biomanufacturing
infrastructures

Digital plant

Digital model

Digital shadow

Digital twin

Figure 1.1: Classification of digital twin

� Digital model: The virtual space does not involve data exchange with the physical space
in an automated fashion. Hence the changes in one part have no direct effect on the other
unless updates are performed manually.

� Digital shadow: There exists an automated one-way data communication from the physical
object to the virtual one.

� Digital twin: Bi-directional data exchange between the physical space and the virtual space
is automated. Changes made in the physical space will be reflected in the virtual space and
vice versa.

In a manufacturing plant setting, data delivered from the physical world to the virtual world
is used for monitoring. The reverse direction amounts to the adjustments of actuators. It is
important to note that adjusting an actuator in a DT often has a different connotation with the
traditional control scheme. In an old-fashioned control style, the computed value is sent to the
actuator as a direct activation of certain operations; whereas in a DT, the computed values more
likely belong to the parameter set of a complex controlling model that influence the actuators in
more nuances, such as adjusting the weighting factors.

A fully automated DT might be unfeasible in certain domains. In particular, for the bio-
chemical domain, Udugama et al. [20,21] recognize that human interventions are still necessary in
many scenarios. In practice, it is often the case that DTs deliver the suggestions to the operator
through a human machine interface (HMI) first; and the operator can act on the available data.
This concept is called human-in-the-loop, and is demonstrated in [22] for an athlete DT, where
the coach manages the fitness plan for the athlete based on the reports given by the DT. Since this
project concerns a microbrewery which also lies in the bio-chemical domain, the relaxed definition
of DT is considered relevant.

Another variant of DT workflow which specifically targets the bioprocessing theme is introduced
in [21]. One might find the alternative relevant if the DT includes a multitude of static and dynamic
chemical processes. More details can be found in Appendix A.

3

CHAPTER 1. INTRODUCTION

Dimension

This section introduces a DT model by Tao et al. [23], focusing on the interconnections between
different parts. They propose a five-dimensional view of DT model shown in Figure 1.2. Each
dimension is described as follows:

3

Services

Virtual
entity

Physical
entity

Data

Connections

Figure 1.2: 5D view of DT model

� Physical entity (PE): A collection of sensors and equipment working collaboratively to
collect real-time data for the intended services, meanwhile receiving control orders from the
virtual world.

� Virtual entity (VE): A digital mirror, which contains models simulating the physical coun-
terpart with high fidelity. Calibration strategies are generated through comparing the models
with entities to support models’ evolution.

� Services: Provides various services to support the management and control of PEs as well
as the operation and evolution of VEs. Services are usually requested by the users to fulfill
certain functionalities.

� Data: A shared storage consisting of the raw data from PEs, VEs, and services. It may also
be responsible for merging data from various sources to a fused format.

� Connections: The connections for all four of the above-mentioned dimensions. Relevant
concepts include communication protocols, access ports, etc.

As we can see the five elements form separate dimensions, yet it has to be ensured that they can
inter-operate correctly and effectively. A main goal of integration and orchestration is to address
this issue. In particular, the interoperability among VEs is what we will concentrate most on in
this project, for the reason explained in the following section.

1.3 Challenges

This section describes the difficulty of managing multiple models in a DT. We give explanations of
why the solutions available in commercial platforms are insufficient. Hence it motivates us to look
for frameworks that address the challenges. We also acknowledge that generalizing the approaches
is equally important as solving for the specific microbrewery case study.

As DTs become increasingly powerful and used for complex systems, diverse tools and hetero-
geneous models inevitably must be used to cover all aspects for DT constructions. In this step,
the challenges in integration and orchestration arise. The terms integration and orchestration can
be understood as:

� Integration couples different models by encapsulating their properties and operations, fol-
lowed by interfacing the abstract representations with a proper communication method.

4

CHAPTER 1. INTRODUCTION

� Orchestration dictates models’ execution schedule and arranges the event queue for the
events of a particular execution.

Commercial platforms like Simulink [24] or CATIA [25] tackle the issue by expanding their
ecosystem with proprietary plugins and extensions so the users can rely less on external imple-
mentations. Although these platforms still have some third-party tool support—often by means
of imports—they are not promoted as common practice, and the users are more likely encouraged
to use the built-in toolbox for better reliability. In the work of van den Brand et al. [26], a sim-
ilar observation is mentioned, stating that many commercial frameworks support integration and
orchestration only to a selective modeling toolset. Therefore, we need to find a framework that
extends the support to more models.

The research on an open framework that incorporates integration and orchestration as fixtures
in the design workflow remains scarce. As the number of models and their interactions increases,
the complexity of control and data flows will grow significantly. Adopting a framework allows
the integration and orchestration to scale proportionally, and be replicated consistently. This
ultimately contributes to streamlining of DT developments.

Another study produced by Negrin et al. [27] investigated the integration and orchestration
concerning an autonomous truck at a distribution center. This study signifies the importance
of considering the specific DT’s purpose and use case context, while extracting the universal
properties of integration and orchestration which can be applied in other domains.

1.4 Problem definition

Figure 1.3 illustrates the main ideas which are covered by integration and orchestration respect-
ively. On the right side, it shows that integration comprises two aspects, namely encapsulation
and interface. Encapsulation refers to the abstraction of a model, as well as discerning the relevant
inputs and outputs from the rest of internal operations of the model. The common notion of a
“black box” system is a form of encapsulation. This allows the interaction with other models to
take place without redundancy while still retaining all necessary information. The interface, on
the other hand, is responsible for building a bridge of communication agreed by the involving mod-
els, such that the correctness—both numerical and semantic—of data can be reliably maintained.
A common way of interfacing is by using an established protocol, so all data transmissions will
adhere to a fixed set of rules.

1

Model
A

Model
B2

Model
C

interface
time

info
Model

A

Model
B

encapsulation

order

Figure 1.3: Integration (right) and orchestration (left)

On the left side, the concept of orchestration is shown. It encompasses two parts: (1) The
scheduling relation between different models; in the figure it is represented by arrow shapes. The
numbering in the arrows indicates the execution order. The difference in execution time incurred
is represented by length variety of the arrow shapes. Furthermore, different information types may

5

CHAPTER 1. INTRODUCTION

also be transferred from one model to another, whether it is a single trigger, or a stream of data,
etc. The widths of the arrow shapes are used to highlight such discrepancy. (2) The handling of
events, that is, the policy to control how event instances are accessed in the event queue [28]. In
here the events refers to internal events of a particular execution.

While (1) looks at individual model as an abstraction, (2) focuses on the task sequence within
the model in order to ensure a deterministic outcome. A situation that might require event
handling, is when several models are scheduled to execute concurrently, their respective events
might arrive and leave in different order.

1.5 Project Scope

This is an exploratory project of the possible frameworks for integration and orchestration tech-
niques, supported by the implementation of the microbrewery DT as case study.

The fermentation process models in the DT are given, they are developed by tutor Manrique
Negrin, a hobby brewer and a chemist by training. Hence the details of these models or simulation
algorithms are not within the scope. A comparative study of the three selected frameworks—
detailed in Chapter 3—will be conducted in parallel to the DT services development. Despite the
considered use case being influenced by a bio-chemical theme, we strive to maintain universality
in the analysis, such that the findings can be applied in other domains as well.

Functional and system level testing of the DT are also part of the implementation scope in
order to evaluate the performance outcomes.

1.6 Research questions

Given the premises, in this study an attempt is made to answer the following research questions:

� RQ1: What are the key ingredients for integration and orchestration of models in different
services for a microbrewery DT?

� RQ2: How can these ingredients be generalized to benefit other application domains?

� RQ3: In what circumstances do the selected frameworks best fit these ingredients?

Collectively, the answers to these research questions will lead to expanding our knowledge of:
What are considered good practices for the integration and orchestration of DT models?

1.7 Report structure

The rest of this report is structured as follows:

� Chapter 2 presents the state of the art regarding the technologies that constitute a DT.
We will also examine a number of related works which address the topic of integration and
orchestration.

� Chapter 3 describes the high-level architecture of the design process. The proposed ser-
vices as well as their requirements and KPIs will be elicited. We will discuss the selected
frameworks for integration and orchestration.

� Chapter 4 describes the workflow of individual frameworks, from initial setup to resultant
implementation.

� Chapter 5 explains and compares the results between the frameworks, then summarizes the
findings.

� Chapter 6 uses the findings to answers the research questions, and discusses future work.

6

Chapter 2

Background

This chapter first covers the state of the art in DT technologies in Section 2.1, specifically the three
major aspects of monitoring, modelling, and controlling. Although these aspects do not directly
address the integration and orchestration topics, however, since they are the core parts of a DT
(as explained in Section 1.2), the DT services will certainly rely on them to achieve the intended
outcomes. We reckon it is important to be informed about the state of the art in each aspect, so
that when building a DT we can take this state of the art into account—including its effects on
integration and orchestration.

In Section 2.2 the discussion will shift toward the available integration and orchestration ap-
proaches, and how they have been used under the context of bioprocessing DTs.

2.1 State of the art

We review the latest developments of monitoring, modelling, and controlling respectively. Natur-
ally, the DT services are built upon these aspects, implying the frameworks for integration and
orchestration have to accommodate them in order to ensure the services running well.

2.1.1 Monitoring

In DT development, the monitoring of the physical world is normally performed using sensors.
Clusters of sensing nodes may work collaboratively as enabled by Internet of Things (IoT) tech-
nologies.

Hard sensors normally refer to the electronic instruments that detect and collect measure-
ments directly from their vicinity, for instance, a thermostat or pressure gauge. More advanced
instruments like spectroscopies—based on the interaction of electromagnetic waves and molecular
bonds to measure biomass—are gaining ground [29]. By virtue of their computing capability of
properties that are obscured or out of reach to human perceptions, these sort of advanced sensors
can be placed in harsh environments such as an agitated bioreactor to provide process data while
maintaining non-invasive to the system. In general, high accuracy and low latency are advisable
for generating reliable online data.

Soft sensors are the inferential sensing technology that estimate process variables that can-
not be directly measured, by combining data collected from hard sensors into equations and a
mathematical model. Based on the techniques, they can be categorized roughly to two classes,
namely model-driven or data-driven [21]. Model-driven soft sensors are built upon first principles
models, which rely on in-depth knowledge of the target process, and that implies higher degree
of complexity. The advantage of a model-driven approach is that it has a solid foundation based
on physical laws and theories, and that allows an easier generalization of the process provided the
user also possesses sufficient know-how of the field [30]. Alternatively, data-driven sensors are fed
massive data quantities in order to generate predictions. Common approaches include black-box

7

CHAPTER 2. BACKGROUND

models such as MultiVariate Data Analysis (MVDA), a form of statistical model that processes
multiple variables simultaneously and eventually aims to decrease the dimensionality. Another
data-driven approach that is rapidly gaining popularity is Artificial Neural Networks (ANN),
thank to the wide availability of hardware support like Graphical Processing Units (GPUs), and
software library support such as TensorFlow [31], and PyTorch [32].

2.1.2 Modelling

Rather similar to the classifications of soft sensors described above, modeling approaches can be
sorted by their level of abstraction [33,34]. At the higher level, techniques like first principles and
mechanistic models in biochemical domains; or Computer-Aided Design (CAD) and topological
models used in mechanical domains [35] are considered knowledge-based, i.e., more demanding in
domain expertise, hence requiring less online data to construct. In contrast, at a lower level of
abstraction, Artificial Intelligence (AI) related techniques rely more heavily on empirical data.

The step for merging the monitored data into the model states is known as data assimilation.
Recursive parameter estimation is an approach for data assimilation. It refers to taking old
estimates (old model parameters) obtained from fitting one set of data points to generate new
estimates when new data points (new observations) are added to the original data set [36]. Another
technique within the same category is extended Kalman filter, which is broadly used to perform
state estimation [37,38].

Although the models used in this project are given, it is still useful to have an understanding of
what modelling techniques are used these days, because different techniques consume and generate
different forms of data that may require different treatments of integration and orchestration.

2.1.3 Controlling

We can consider controlling as the last piece in DTs that “closes the loop” between the virtual
world and and the physical world. Proportional–Integral–Derivative (PID) controllers have been
used in industrial control for decades. Their popularity can be attributed the robustness and
simplicity in a wide range of industrial settings [39]. On the other hand, the advancement of high
volume data acquisition enables growing adoption of model predictive control (MPC), which goes
beyond merely a reactive mechanism as PID, also taking into account the contextual knowledge
of the underlying complex process. Hong et al. [40] examine the advantage of a hybrid scheme
that combines adaptive model-based feedback with direct PID control for optimizing startup,
changeover, and shutdown. The study also discusses functionally partitioning components to
improve flexibility and reduce operation cost for constructing hybrid models.

In the control service which will be introduced in Chapter 3, we use the PID approach for its
simplicity as a proof-of-concept. Nonetheless, as the microbrewery DT will continue to expand
and mature, we do not rule out the possibility of migrating to the MPC approach in the future.

2.2 Related work

This section first introduces the recent progress in integration and orchestration approaches. They
serve as the references for the designs to consider when choosing the frameworks in Chapter 3. Real
case studies of DT will also be described in order to show how the integration and orchestration
approaches could improve DT operations.

2.2.1 Integration

Integration is a key step of models’ communication and execution. In a production plant context,
communication infrastructures commonly comprise the following aspects [29]:

� A supervisory control and data acquisition (SCADA) system that handles the interfacing of
monitor and control operations. Its components include remote terminal units (RTU) for

8

CHAPTER 2. BACKGROUND

processing commands; programmable logic controllers (PLC) for processing control signals;
HMI for aiding the operator in various actions.

� Data standards such as XML, JSON that deliver string-value pairs of the monitoring/con-
trolling variables. It may also contain information about the computational pipeline of the
process.

� Communication protocol stacks that address each Open Systems Interconnection (OSI) layer.
Common patterns such as client/server in TCP/IP, or publish–subscribe in Message Queuing
Telemetry Transport (MQTT) are well documented in IoT literature.

It is important that the above infrastructures are classified and understood well, because in our
DT construction they will become the underlying elements supporting the services to communicate
information. In Chapter 3 and 4, some of the above notions will reoccur sporadically.

Apart from the generic infrastructures, we further introduce two open source standards that
target specifically the integration in modelling, namely Computer-Aided Process Engineering
(CAPE)-OPEN [41], and Functional Mock-up Interface (FMI) [42,43].

Figure 2.1: FMI for model exchange (left), and FMI for co-simulation (right) [44]

In short, CAPE-OPEN is a standard of a component-based approach to process simulation [45],
especially addressing the chemical manufacturing domain. The standard can be seen as having two
parts. The first is Process Modelling Components (PMC), they represent functionally separated
building blocks such as thermodynamic and physical properties engines, or numerical solvers that
compute highly nonlinear equations which arise from the flowsheet. The second one, Process
Modelling Environment (PME), is essentially a flowsheet—a common diagram used by chemical
engineers to indicate the flow of plant processes and equipments—that utilizes services from PMCs,
and is supposed to handle the related connections seamlessly. CAPE-OPEN compliant simulations
made by different vendors are able to maintain consistent interoperability without “glue code” or
other manually coded wrappers.

While CAPE-OPEN primarily pertains to the chemical industry, FMI is applicable to more
general Cyber-Physical Systems (CPS). FMI handles the interfacing of functional mock-up units
(FMU), which is the encapsulation of a model in XML format. The XML schema could con-
tain model variables, time-step information, etc. The APIs of the FMI and the specifications of
the FMU depend on the choice of interface types. There are currently three types, which are
model exchange, co-simulation, and scheduled execution. Since the third type is relatively new—
introduced in FMI 3.0—it has not been fully supported by many development environments, thus
we will focus on the first two types. They are described as follows (see also Figure 2.1):

9

CHAPTER 2. BACKGROUND

� Model Exchange: exposes a numerical algorithm (e.g. ODE) to an external solver of an
importer (the simulation environment). Using this solver, the FMU is evaluated at a specific
time instant.

� Co-Simulation: implements not only the model algorithm, but also the required solution
method. The data exchange between FMUs is restricted to discrete communication points,
thus the co-simulation algorithm (serving as the master algorithm) is shielded from how
individual FMUs advance time internally.

In brief, CAPE-OPEN targets a specialized domain, in this case, the bio-chemistry production.
FMI is more generic such that it addresses to a wider range of models. Both approaches are
valuable to the DT developer as different DT services may include a narrow set of model domains,
or they could utilize models from considerably diverse disciplines.

2.2.2 Orchestration

This subsection covers four distinctive approaching styles for orchestration:

� General-purpose modeling language.

� Development-and-Operations (DevOps).

� Service-orientated architecture (SOA).

� Actor-orientated model.

The styles are deliberately chosen because they originate from different software domains.
We welcome the diversity because it helps to find out what strategies are suitable for further
developing as a framework for our DT. A general-purpose modeling language such as Systems
Modeling Language (SysML) [46] is crucial for system engineers to convey designs. The DevOps
paradigm is based on the increasing demands of rapid software production by business enterprises.
SOA is adopted broadly in cloud computing and IoT applications. Finally, an actor-orientated
model like Ptolemy II [47] is inspired by the proliferation of CPSes which is followed by the desire
for an experimentation platform.

General-purpose modeling language

As general-purpose modeling language, Unified Modeling Language (UML) and SysML are two
of the more well-known ones. In fact, SysML is a dialect of UML targeting especially MDSE
applications, which makes it more relevant under the DT context. SysML—and UML, to a vast
extent—emphasizes in providing rich static and dynamic behavioral information in the form of
diagrams. To gain an idea of how SysML can describe interactions of a complex system, we
summarize its taxonomy in Figure 2.2.

The structure (static) diagrams can represent the system structures in varying degrees of trans-
parency, for instance, Block Definition (black-box), Internal Block (white-box), or Requirement
(declarative). The behavior (dynamic) diagrams represent the interactions of internal parts. For
example, Activity Diagram describes the flow and the decisions of the component processes. Se-
quence Diagram extends the precision further by describing the sequence of the processes and
what data they propagate in each step.

The various diagram types in SysML enable the inclusion of system descriptions on different
abstraction levels, so throughout all stages of the developmental cycle, the stakeholders—likely
from various disciplines—can understand relevant diagrams without much efforts. However, one
aspect SysML does not concentrate on is the ability to coordinate with external toolsets, especially
if they do not adhere to the modeling language syntax in the first place. One who wishes to
establish a “live link” to SysML modelling environment from the outside will often find themselves
working considerably on a conversion layer. Due to this reason, we incline not to consider it in
the framework selection of this project.

10

CHAPTER 2. BACKGROUND

OMG SysMLTM , Version 1.0 11

SysML stereotypes define new modeling constructs by extending existing UML 2 constructs with new properties and
constraints. SysML diagram extensions define new diagram notations that supplement diagram notations reused from
UML 2. SysML model libraries describe specialized model elements that are available for reuse. Additional non-
normative extensions are included in Annex C: Non-normative Extensions.

The SysML user model is created by instantiating the metaclasses and applying the stereotypes specified in the SysML
profile and subclassing the model elements in the SysML model library. Chapter 17, “Profiles & Model Libraries”
describes how profiles and model libraries are applied and how they can be used to further extend SysML.

4.4 SysML Diagrams
The SysML diagram taxonomy is shown in Figure 4.4. The concrete syntax (notation) for the diagrams along with the
corresponding specification of the UML extensions is described in Parts II - IV of this specification. The Diagrams Annex
(Annex A) describes generalized features of diagrams, such as their frames and headings.

Figure 4.4 - SysML Diagram Taxonomy

SysML Diagram

Structure
Diagram

Behavior
Diagram

Use Case
Diagram

Activity
Diagram

Internal Block
Diagram

Block Definition
Diagram

Sequence
Diagram

State Machine
Diagram

Parametric
Diagram

Requirement
Diagram

Modified from UML 2

New diagram type

Package Diagram

Same as UML 2

Figure 2.2: SysML diagram taxonomy [48]

SysML is a modelling language, not a framework per se. Yet there exists a number of platforms
which utilize SysML to accomplish modelling and design activities, including the orchestration of
models within the platform environment; one of them is IBM Rhapsody [49]. This kind of plat-
form inherits the previously mentioned disadvantages of SysML, i.e., cumbersome to incorporate
external toolsets that do not adhere to the SysML syntax. However, we find the diagram ap-
proach in SysML keeps the execution workflow of the components very well organized. This is an
attractive property for orchestration that we would like to have in our DT too.

DevOps

DevOps practice has received much attention, attributing to its emphasis on fast provisioning of
business processes [50]. The core idea is that the development and operation are merged into one
continuous loop of forward delivery and feedback (see Figure 2.3), often referred collectively as
continuous integration and continuous deployment (CI/CD).

OpsDev

Code Plan

Build
Test

Venus has a beautiful
name but it’s hot

Despite being red,
Mars is a cold place

Saturn is composed
mostly of hydrogen

It’s the farthest
planet from the Sun

Deploy
Operate

MonitorRelease

Venus has a beautiful
name but it’s hot

Saturn is composed
mostly of hydrogen

It’s the farthest
planet from the Sun

Mercury is the closest
planet from the Sun

Infinity Loop infographics

Figure 2.3: DevOps concept portrayed by the infinite loop

Hugues et al. [51] borrows this idea and proposes a DT variant of DevOps called TwinOps.
In TwinOps, the “Dev” part transcends to DT model integration and target code generation;
and the “Ops” part is overloaded with data collection and analysis in DTs. As illustrated in
Figure 2.4, the black arrows are the code generation forwarded to various targets, and the orange
arrows represent the data analytic feedback. In the work of Hugues, the exemplified case study
of a building monitoring system utilizes the technology stack consisting of AADL, LNT, C, FMI,
and Azure to build a pipeline. The AADL toolchain is responsible for specifying the modeling
architecture as well as requirements. The LNT target enables model-checking. The C/FMI target
supports modeling and simulation of the virtual entity. Finally the C/Azure target leverages a
containerized cloud system to deploy execution command on the physical entity.

11

CHAPTER 2. BACKGROUND

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Jerome Hugues, Anton Hristosov, John J. Hudak, and Joe Yankel

formal languages for simulation and model-checking like LNT [11].
Such multiplicity in targets allow for diverse means to evaluate the
system:

(1) LNT supports executing functional C code embedded in a
formal model of the system, and state-space exploration for
safety or liveness properties.

(2) C allows for direct execution on the target, using devices dri-
vers or a mock-up of the device implemented as a Functional
Mock-up Unit [7].

We discuss these scenarios in the next section.

7 SYSTEM EXECUTION AND ANALYSIS AT
RUN TIME

In the previous section, we illustrated how code generation can
support multiple targets. They extend the model-level analysis with
more precise evaluation:

Figure 4: TwinOps Feedback Loop

7.1 From System Execution . . .
The LNT target enables model-checking capabilities, weaving an
abstract model of the environment and the execution platform
with actual functional code. This allows for a systematic evaluation
of the functional side of the system but may be limited to some
platform-specific aspects: error in sensors, timing issues, etc.

The C/FMI target with device mock-ups leverage the FMI stan-
dard to build a simulated environment using a Modelica model to
capture the physical environment. For our sensor demo, we used a
first-principles model of the sensor device and the generation of
temperature and pressure from a meteorological simulation. Using
FMI allows us to define specific use scenarios by adjusting physical
variables; while evaluating the actual execution on the target.

The C/Azure target with execution on the target platform allows
for the execution of the system and its monitoring. We generated
specific monitoring probes. These probes collect all data and send
them on the cloud to an Azure IoT Digital Twin of the system.
The Digital Twin is a representation of the system in terms of its
state properties, telemetry events, commands, components, and
relationships. It is a data stream that can be queried.

7.2 . . .To System Analytics
All targets are ultimately combined to improve the system through
data analytics: The LNT or C/FMI targets use data collected from

the C/Azure to replay specific execution traces. Since all targets
share the same code base, they are various representations of the
same system at various levels of fidelity.

Finally, the same data can lead to model improvements. For in-
stance, timing traces can be compared to theoretical time budgets
used for latency or scheduling analyses, sensor biases can lead to
a different mitigation policy, for instance, to force specific recali-
bration. Hence, such a comparison between execution traces and
the initial model can inform updates of the system to improve its
accuracy.

The combination of model transformation and code generation;
and the automated integration of monitoring probes support the
feedback loop prescribed by DevOps philosophy: the capability to
monitor the system at "Ops-time" to inform updates during "Dev-
time" (figure 4).

8 INTEGRATION AS A DEVOPS CI/CD
PIPELINE

In the previous sections, we have presented a mapping of modeling,
model transformation, and code generation activities to a notional
DevOps pipeline. We integrated these steps in a Continuous Inte-
gration/Continuous Delivery pipeline using the GitLab platform.
This pipeline supports all steps that could be automated: model
transformation or code generation, compilation, testing activities,
containerization, and deployment on targets.

Code generation
and compilation

Containerization
Deploy through

Azure

Figure 5: TwinOps Deployment

To facilitate deployment, we build a docker container that hosts
the binary along with its dependencies and stores it in a container
registry. This supports a reproducible runtime environment across
multiple targets. The final step in our pipeline is the deployment of
the container on the target. We leverage the Azure IoT capability
to send a request to all targets to update and execute the latest
released version in the container registry.

The configuration of the GitLab pipeline is currently a manual
process. Future work will involve linking GitLab configuration to a
model that configures the CI/CD pipeline and the set of deployment
targets in a uniform way.

9 CONCLUSION
The development of Cyber-Physical Systems is facing multiple hur-
dles: functional correctness, but also adaptation between the soft-
ware, the hardware platform, and its environment. This is impacting
significantly the Validation and Verification of project development.
We claim new strategies leveraging advances in MBE can provide
significant benefits.

In this paper, we have introduced TwinOps, a process that com-
bines the modeling semantics of MBE with the automation and
process advocated by DevOps, and the coupling aspects in Digi-
tal Twins to improve the engineering of Cyber-Physical Systems.

Figure 2.4: TwinOps forward and feedback loop [51]

It is worth to note that under the DevOps presumption, the orchestration is implicit in
TwinOps. The orchestration is embedded in the CI/CD pipeline for which the user takes the
responsibility to configure the steps for transporting and transforming the model states.

TwinOps will be taken as a framework to be investigated further in Chapter 3.

SOA

As cloud services continue to gain popularity, there is a number of studies [52–54] that look into
constructing DTs in line with SOA. In this approach, it regards either the VE models or the
services in DTs as independent microservices. The VEs are often deployed as containers, and
orchestrated by off-the-shelf applications such as Kubernetes [55], for example, Kubernetes could
use DNS for service discovery and exploits network traffic controls for scaling. This view of DTs
provides the benefits of rapid deployment, as well as auto monitoring, scaling, and load balancing
among other features which are found in commercial cloud services.

As the number of entities introduced to the existing microservices pool continues growing,
we can establish a machine-to-machine (M2M) network. An M2M network is characterized by
localized—in the sense of not requiring a powerful computing node from another distant network—
exchanges of data and services among the entities. It is contrary to the old-fashioned approach
where only one central mainframe responsible for all services. This feature is considered attractive
under the DT orchestration context, since DT models are also logically separated; can exchange
data and contribute to the services.

SOA will be the basis of the ThingsBoard framework which we choose to investigate further
in this project. More will be discussed in Chapter 3.

Actor-orientated model

An actor-orientated model as used by the Ptolemy II framework coordinates actors in various
models of computation (MoC) while maintaining strong semantics of each individual model [28].
The term “actor” refers to a self-contained component in the system that can interface with other
components, comparable to the “object” in object-oriented programming (OOP). The main dif-
ference is while OOP objects interface through “methods”, the actors interface primarily through
“ports”. The notion of MoC refers to an abstract collection of rules that govern the interaction
between components in a design. It is analogous to the “laws of physic” that are used to de-
scribe a given system. Figure 2.5 shows1 a summary of the relationship between MoCs, which are
represented as “domains” in Ptolemy II.

We will consider Ptolemy II as one of the frameworks to be investigated further in Chapter 3.
Below is a list of some MoCs that we consider more applicable to the DT contexts of manufacturing
and production plant:

1In the figure, the meanings of the colors were never specified in the original source

12

CHAPTER 2. BACKGROUND
1.8. OVERVIEW OF DOMAINS AND DIRECTORS

Figure 1.6: Summary of the relationship between models of computation. The
ones with bold outlines are covered in detail in this Book.

1.8 Overview of Domains and Directors

In Ptolemy II an implementation of a model of computation is called a domain.7 In this
section, we briefly describe domains that have been realized in Ptolemy II. This is not a
complete list; the intent is to show the diversity of the models of computation under study.
These and other domains are described in subsequent chapters in more detail. Figure 1.6
summarizes the relationships between these domains.

All of the domains discussed here ensure determinism unless the model explicitly spec-
ifies nondeterministic behavior. That is, nondeterminism, if desired, must be explicitly
built into the models; it does not arise accidentally from weak semantics in the model-
ing framework. A domain is said to be determinate if the signals sent between actors —

7The term “domain” comes from a fanciful notion in astrophysics, that there are regions of the universe
with different sets of laws of physics. A model of computation represents the “laws of physics” of the
submodel it governs.

24 Ptolemaeus, System Design

Figure 2.5: MoCs relationship [28]. The nodes with thick edges are currently supported by the
latest Ptolemy II version. Bold arrows indicate primary associations. Dotted arrows denote
alternative associations with either timed or untimed mode.

� Process network (PN) [56] : scheduling for concurrent distributed processes. It has a benefit
of determinacy as long as there is a unique solution to the balance equations of the nodes
within the network.

� Finite state machine (FSM): captures control-dominated behaviors.

� Discrete event (DE): suited for modelling the behaviors of complex systems over time, e.g.,
queuing systems.

� Continuous time: essential for solving ODEs.

2.2.3 DT in bioprocessing

In this subsection a number of case studies will be reviewed. They all share the common theme of
bioprocess production, which is also shared by the microbrewery DT in our case. We will briefly
discuss the integration and orchestration techniques used by these studies.

A study of enzyme production [57] proposes a model-based strategy to maximize the final fill
of a fed-batch process. The study demonstrates a multi-layer approach for orchestration. The
cascaded layers are separated by a supervisory layer and a regulatory layer. The supervisory layer
implements a mechanistic model that calculates the required start fill. This is the model-based
batch planning for initial conditions. The model’s parameters are re-fitted using a least squares
approach. As for the regulatory layer, the calculated feed rate is adjusted by a PID controller.
The results show that orchestrating an additional layer makes the final yield more predictable,
which in turn makes the downstream resource allocation easier to manage.

Lopez et al. [58] propose a DT of ethanol fermentation. The researchers use a data-driven soft
sensor that takes the online spectroscopy measurements to compute the glucose concentration—
referred as process variable (PV)—in real-time. PV is then used as the input to a PID algorithm
in order to generate a final control signal—referred as manipulated variable (MV)— that adjusts
the feed rate of the controlled pump. The PV-MV transformation in this example showcases how
monitoring models and controlling models can be integrated.

In their manufacturing platform for antibodies, Feidl et al. [59] manage to build a process-wide
control with a SCADA system. The system collects unit-relevant data streams from each process
unit, then converts to a centralized data storage, which contextualizes and adds a timestamp to
each data point, in which the data is transformed to process-relevant. Afterward, the SCADA

13

CHAPTER 2. BACKGROUND

system is able to send newly determined setpoints to the respective local control units. Hence, an
automated end-to-end integration of the supervisory control with the data acquisition system is
achieved.

Eppinger and colleagues from Siemens [60] design a DT for ketchup production. The control
objectives are evaluated by a set of Key Performance Indicators (KPI). The DT firstly obtains the
model parameters from historical data through a machine learning based analysis. A hybrid model
that combines an equation-driven model and a data-driven model is then developed before being
applied a model order reduction process, such that it can be made compatible with the real-time
hard sensors. Once the reduced model is generated, the soft sensors—referred as virtual sensors—
can be synthesized and be used to predict the KPIs. Finally, given all available information, the
agent of the reinforcement learning algorithm executes actions toward the physical plant and tunes
itself with respect to target KPIs by using feedbacks. This study explains a method to orchestrate
hybrid models under time critical constraints.

2.3 Summary

In Section 2.1 we surveyed the recent development of DTs regarding monitoring, modelling, and
controlling. They are not directly within the topics of integration and orchestration, but the
information will be helpful in choosing technologies for our DT building blocks. Besides, some
properties of integration and orchestration in fact arise under the influences of these aspects, as
they are arguably the backbone of all DT services.

In Section 2.2, we described the approaches for integration, the approaches for orchestration,
and multiple DT case studies in the bioprocessing domain, in that order. For integration standards,
we presented CAPE-OPEN and FMI, the former targets bio-chemistry applications, while the
latter is more general. For orchestration strategies, we reviewed four distinctive styles but decided
only three are suitable for our DT. The SysML approach, despite its excellence at propagating
system-level descriptions, lacks the features for collaborating with external toolsets.

14

Chapter 3

Methodology and Design

We have highlighted the close relationship between DTs and MDSE in Section 1.1, hence we
choose to adopt the steps in MDSE methodology to present our DT system design. Our steps are
as follows:

1. Describe the system context

2. Identify the requirements

3. Describe the use cases

4. Select the frameworks

Before proceeding to the steps, it is worth to show an overview of the DT architecture.

3.1 Architecture of the microbrewery DT

PEs

Fermenter
Sensors
Actuators

VEs

Chemical kinetics
Thermal dynamics
Heat transfer
Control model

Data

Monitoring data
Control signals
Model states
Reaction parameters
Heat transfer parameters

Services

Production prediction
Production control
What-if scenario
Predictive maintenance

Connections: managed
by the frameworks

Figure 3.1: 5D view of the microbrewery DT

15

CHAPTER 3. METHODOLOGY AND DESIGN

The high level architecture is described using the 5D view (see also Section 1.2), illustrated in
Figure 3.1.

� PEs: The fermenter (also known as bioreactor) is the vessel that holds the wort—the liquid
extracted from the mashing process during the brewing of beer. The sensors monitor the
temperatures—both inside the fermenter and from the environment, the ambient humidity,
and the gravity in the fermenter. The actuator is a water pump that can influence the
temperature in the system. Appendix B provides further details of the workbench setup.

� VEs: The chemical kinetics model is a dynamic model that computes alcohol and yeast
concentrations. The thermal dynamics model calculates the amount of heat being generated
in the system. The heat transfer model predicts the future wort temperature. Finally the
control model produces commands for the actuator in order to alter the temperature to a
target value.

� Services:

– Production prediction (S1): predict the properties of end-product and whether its
quantity and quality will meet the demand based on the given materials and resources.

– Production control (S2): organize the production schedules and regulate the process
such that the utilization of resources is optimized.

– What-if scenarios (S3): create a hypothetical situation and predict its effect on the
production in order to generate variants of the production schedule.

– Predictive maintenance (S4): use the data stream from the plant and physical-
based modelling to generate a prognosis of the remaining lifetime of plant components.

In order to assess the services and understand the key actors and stakeholders, it is important
to recognize their respective phases in the lifecycle. Figure 3.2 shows a four-phase lifecycle
view [16] from an industrial perspective and where each proposed service belongs in the
cycle.

Design phase Manufacturing
phase

• Production
prediction

• Production
control

Service phase

• What-if scenario
• Predictive

maintenance

Retiring phase

Figure 3.2: Services of microbrewery DT in different product lifecycle phases

The design phase encompasses the designs of product, process, and plant, in increasing order
of scale. The manufacturing phase concerns goods production, and the internal logistical
affairs involved. S1 and S2 primarily concern the questions of production quantity as well
as the strategies to optimize the quantity. Therefore, they are considered to be in the
manufacturing phase. The service phase includes external logistics, user experiences; the
detection of anomalies, and repairs. S3 and S4 fall under this category. In the retiring phase,
decommissioning of the product is dealt with. Valuable data and parts can be obtained from
this recycling action so as to improve the future lifecycles.

Due to the stringent timeline, we only implement S1 and S2 in this project, reason being that
they are considered essential for the brewery operations, and also because S3 and S4 are, to
a considerable extent, based upon the functionalities of the first two services. Nevertheless,
we discuss some preliminary designs of S3 and S4 in the Future work section (Section 6.2).

16

CHAPTER 3. METHODOLOGY AND DESIGN

� Data: The monitoring data are directed from the PEs, and the control signals are directed
toward the PE. In the VE space, the reaction parameters depend on the chosen beer fla-
vor. The heat transfer parameters are the static function of the physical attributes of the
fermenter. The remaining data from the VEs are generally denoted as model states.

� Connections: They are managed in different fashions by the selected frameworks. More
about them will discussed in the later Section 3.5 and Chapter 4.

3.2 System context description

Using SysML syntax, the system context is described in Figure 3.3 below. The physical compon-
ents, such as Fermenter, Sensors, and WaterPump are given as the parts of project context.

� DigitalBrewery is the representation of the microbrewery DT. It makes associations with
the other blocks which represent the components of the DT.

� PredictionSystem and ControlSystem are the embodiments of the VE models and the
corresponding services.

� DataManagement corresponds to the components that manage the storage and the trans-
ferring of data.

� I&O Framework corresponds to the selected integration and orchestration framework in
this project.

��������	
	�������� ���������������������������
���������������

��������������������� ����������	�������
����������	��	��
����� ������� �!	��������

�������"#$%�������
&'(() &'(() &'&'&'(()

&'&'

Figure 3.3: System context of the brewery DT. The PE components are denoted in green. The
blocks in red color encompass the services and the process models in VEs. The yellow block
represents the integration and orchestration framework.

17

CHAPTER 3. METHODOLOGY AND DESIGN

3.3 Requirements identification

Derivation rationale

First we highlight a collection of characteristics aligning with the integration and orchestration
theme. This collection is gathered based on the high frequency of occurrences found across the
literature of bioprocessing DTs. The findings are elicited in Table 3.1. Later in this section, these
characteristics will become the basis for deriving the requirements of the DT services.

ID Integration

I1 Configurability of parameters and time advancement

I2 Automated code/data generation for integration

I3 Data exchange consistency

I4 Modularity

I5 Ontology checking

Orchestration

O1 Control workflow and execution sequence

O2 Managing mixed fidelity/granularity

Table 3.1: Highlighted characteristics of integration and orchestration

I1 can be further broken down to two parts. First is the adjustability of initialization of the
subsystems. As Tolksdorf et al. [61] point out, upon the convergence of sub-models into one
flowsheet, process engineers often face the challenge of guessing sensible initial values as the sub-
models no longer are transparent to them, and a poor guess can easily lead to underperforming
models. Therefore, it is argued that the accessibility to critical parameters throughout the whole
process is essential to integration. The second part is related to the importance of time step
management. In [62], the researchers experiment with varying execution step-sizes for a vehicle
DT, showing that to a certain degree, distributed components can be ran with different clock
rates and still produce matching results. The ability to parameterize time advancement extends
flexibility in the platform under design.

I2 refers to the required automation to combine models in order to reduce human errors. As
chemical process optimizations are rarely accomplished by one single program, manually inter-
facing multiple simulation packages becomes impractical as soon as the system grows large [63].
A systematic method to generate “glue code’ including data adaptation is an ideal solution. In
practice, we tend to consider a hybrid scheme with varying levels of automation as realistic, as
full automation could be too difficult to achieve.

I3 suggests in the case when a variable is transferred from one model to another, it shall retain
its structure and its dependency relation with other objects. An important implication of this
property occurs when several solvers are working on shared data. If information about algebraic
dependencies between outputs and inputs is supplied, the importing tool is able to detect and
handle algebraic loops automatically [43].

In I4 the modularity property implies not only the plug-and-play accessibility of the models,
but also the support for templates—static reuse of resources—and instances—dynamic reuse of
resources. Actor-oriented design orthogonalizes component definition and component composition,
allowing them to be considered independently [64]. It promotes modularity which in turn reduces
the associated design costs.

I5 considers ontologies. An ontology is the explicit organization of constituent concepts and the
relations between those concepts. More specifically, an ontology can help to express the intended
use of a model. In [28], it is indicated that errors may arise from ontology inconsistencies, as
illustrated in Figure 3.4.

18

CHAPTER 3. METHODOLOGY AND DESIGN
15. ONTOLOGIES

Figure 15.1: An illustration of some of the sorts of errors that can be caught by
an ontology system.

errors, where a component gives the level of mid tank to a component that assumes
it is seeing the level of the aft tank. And it has a transposition error, where a level
and a flow are exchanged.

Such modeling errors are extremely easy to make and can have devastating consequences.
This chapter gives an overview of how to construct ontologies and use them to prevent
such errors.

15.1 Creating and Using Ontologies

The ontologies package provides an analysis that can be run on top of an existing model,
so the first step is to create a Ptolemy II model on which we can run our analysis. In
this section, we use a rather trivial model and a rather trivial ontology to illustrate the
mechanics of construction of an ontology and the use of a solver. We will then illustrate
a less trivial ontology that is practical and useful for catching certain kinds of modeling
errors.

Ptolemaeus, System Design 535

Figure 3.4: Errors that can be detected by ontology checking [28]

O1 reinforces the importance of effective scheduling. One of the key factors that influences
the workflow between models is coupling [65], that is, how tightly are models intertwined with
one another. A loose coupling relation generally requires less complex schedules. One may use
strategies such as using an external framework to de-couple a pair of inherently coupled models.
Other considerations, such as atomicity, might be required should there be concurrent processes.

O2 concerns time synchronization and convergence across different models. For instance,
merging discrete and continuous time granularities by techniques of sampling and quantization;
another example, signaling between time and untimed models. In the case of FMI, an event instant
may be driven by a predefined time event or at the transition of state event indicators [43]. This is
to allow numerical robustness, and is a part of the FMI feature which is known as “hybrid ODE”.

The mixed fidelity of data implies varying levels of accuracy in which models’ data to quantify
the system. This property is often correlated to the computational intensity used by the models.
The discrepancy may be solved by data manipulation techniques such as interpolating missing
data or sampling out redundant data.

Production Prediction (S1) Requirements

The requirements for Production Prediction service are shown in Table 3.2. The rightmost column
indicates the relevant integration and orchestration characteristics.

In addition to requirements, we elicit a set of KPIs in Table 3.3, whose purpose is to verify the
effectiveness of the DT regarding how it satisfies the requirements. In principle, each KPI should
be a measurable metric that reflects a certain aspect of system performance or non-functional
quality. The KPIs are defined in relation to the specific requirements they address.

Requirements

ID Requirement description Derived from

R1 The model state variables shall be validated with real-time empir-
ical data.

I3, I5, O2

R2 The operator shall be able to configure the initial model parameters
and the model execution scheme.

I1

R3 The model states shall update automatically based on the latest
real-time data.

I2, I3, O1

R4 The model may be queried for its past states in order to optimize
its present parameters.

I1, I4, O1

Table 3.2: S1 requirements

19

CHAPTER 3. METHODOLOGY AND DESIGN

KPIs

ID Name Description Verifies

KPI1 Level of auto-
mation

What are the manual steps required to support the
automation of the validation workflow.

R1, R4

KPI2 Updating delay How long does it take to perform model state updates. R3

KPI3 Data history What is the amount of historical data that is available
for performing predictions.

R4

KPI4 Modifiability What configuration options are accessible for model
executions and initial values after startup

R2

Table 3.3: S1 KPIs

Production Control (S2) Requirements

Table 3.4 and Table 3.5 shows the requirements and KPIs respectively for the Production Control
service.

Requirements

ID Requirement description Derived from

R1 Model optimization may be triggered on the detected disturbance,
time, or plant-wide performance.

I5, O1, O2

R2 Controller calibration may be triggered on time, or state variables
deviation.

I2, I5, O1, O2

R3 Service shall ensure that the calibrations comply with the control-
ler’s desired operating range.

I1, I5, O1

Table 3.4: S2 requirements

KPIs

ID Name Description Verifies

KPI1 Traceability How accessible is the information which concerns the
control-induced transitory behaviors.

R3

KPI2 Latency What is the response time of actuator triggering. R1, R2

Table 3.5: S2 KPIs

3.4 Use case description

This section covers the use case description for S1 and S2.
Figure 3.5 illustrates the use case diagram for the PredictionSystem. This is corresponding

to S1, Production Prediction service.

� In the InitiateFramework use case, Operator accesses the user interface and configures
the framework in order to start up the DT.

� Integrate manages the data from different sources. It includes MergeData which merges
data of the sensors and the model states.

� Orchestrate manages the scheduling among the models, as well as the validation and
updates of the model states.

20

CHAPTER 3. METHODOLOGY AND DESIGN���������	
���� ������������������������	
�������������	������������	����� �������������	����

�	�������������� �	�������
����������� ������	����	�

�	����
��� ��������!�������� "�#��	�$ "�	�%���$"�	�%���$

"�	�%���$
"�	�%���$"�	�%���$ "�	�%���$ "�	�%���$

"�	�%���$
"�#��	�$

Figure 3.5: Use cases for S1 scenario

� ComputePrediction includes all the calculations in order to generate a prediction value.
It includes three use cases that correspond to the VE models of the same name.

Figure 3.6 illustrates the use case diagram for the ControlSystem. This is corresponding to
S2, Production Control service. ���������	�
�

�
�
��
����������������
���
����
	���

������
���
����

��
���������	�
� ��
�����
�����
�
���������
���� ��
����

!
"�
��#
!������
#!������
#

!
"�
��#
Figure 3.6: Use cases for S2 scenario

� InitiateFramework, Integrate, and Orchestrate use cases have the same behaviors as
in the S1 scenario.

� SplitData splits the raw data of control to the right destinations in DataManagement,
with the necessary formatting modifications.

� GenerateCommand uses the control model in VE to generate the control signals to the
WaterPump.

21

CHAPTER 3. METHODOLOGY AND DESIGN

3.5 Selected frameworks

This section covers the architecture and workflow of three frameworks, namely, TwinOps, Things-
board, and Ptolemy II. They are intended for applying integration and orchestration techniques.

These three frameworks are chosen to reflect on the broad spectrum of the software techno-
logy sectors, and to highlight the similarity and difference of approaches under the DT context.
TwinOps inherits the CI/CD paradigm from DevOps which aims to eliminate the boundary of de-
velopments and operations in order to accelerate the software delivery. We argue that this concept
can improve the delivery of DT services as well. Thingsboard has its root in the IoT field, which
has always regarded the connectivity between “things” as its core focus. We think this focus can
also benefit the connectivity of DT entities. Ptolemy II provides an experimentation platform for
CPSes. The management of cyber-objects and physical objects in Ptolemy II is highly applicable
to the orchestration and integration of DTs.

3.5.1 TwinOps

The workflow of TwinOps stresses automated transformations, starting at the models in VEs, all
the way to the programs running in the PEs. This is also referred as Model-to-Code-to-Target
CI/CD in the original paper [51]. For the feedback direction, the execution traces from PEs are
used to validate and update the models, hence closing the pipeline loop. Figure 3.7 illustrates:

Model editor CI/CD engine Container repository

Targets

Trigger Build

Deploy

Update

Figure 3.7: TwinOps workflow

� Model editor: responsible for building models, drawing the ports topology, and configuring
the initial states.

� CI/CD engine: integrating the models committed by the previous pipeline stage; validat-
ing the models with real-world data; building the containerized image upon passing of all
integration tests.

� Container repository: a hub which stores numerous iterations of models’ artifacts—such
as the generated code—for the targets. This allows the targets to use the latest codes or
rollback to previous versions. It is presumed that the targets in DTs run on diverse platforms
(e.g., x86, x64, or ARM), hence the container infrastructure helps to distribute the artifacts
efficiently.

� Targets: a collection of PEs, which can pull the updated program from the repository, as
well as produce data analytics which are used for the services.

It is important to recognize that the TwinOps framework is not bound to specific technologies
or tools. The DT operator has the liberty to choose the collection of building blocks which fits
best to the use case, as long as this choice is able to fulfill the workflow outlined in Figure 3.7.
The toolset implemented in the microbrewery DT will be described in Subsection 4.1.1.

22

CHAPTER 3. METHODOLOGY AND DESIGN

3.5.2 ThingsBoard

ThingsBoard [66] project supports M2M-style network. Essentially, it is an open-source platform
that enables rapid development, management, and scaling of IoT projects. The key concepts of
ThingsBoard are that the user can provision devices and assets; define relations between them and
build rule chains that handle the event processing across the relations. From these features, we
see the potentials in supporting the integration and orchestration of our DT. Figure 3.8 illustrates
the workflow.

Entity
management Rule engine

Storage

Real-time dashboard

Figure 3.8: ThingsBoard workflow. The arrows represent the direction in which each stage could
make modifications to the other stages

� Entity management: this is the first step where the user should define all the involved
entities and their relations. There are two main entity types. Device entity type refers to
the basic unit that transmit and receive messages. The Asset entity is an abstract type that
can form logical grouping of devices or other assets via relations. Commonly used relations
are “contains”, “manages”, etc.

� Rule engine: refers to the event-based rule chains which are customized by the user. A
rule chain consists of connected rule nodes which represent functions or conditions. There
are built-in node type such as “filter” or “transform”, etc. The user can also define their own
nodes using JavaScript. When a message arrives from the entities the rule engine will produce
the corresponding actions based on the rule chains and the relations which have been given
in the entity management stage. As an example, a “smart building” could impose crowd
traffic monitoring using rule chains to broadcast the readings of the passengers counter—a
device—in one elevator to all the other elevators which the building—an asset—“contains”.

� Storage: ThingsBoard supports in-memory storage itself, or one can use the data the
supported external space, e.g., cloud-based.

� Real-time dashboard: this is related to the user experience and the user interface aspects.
The operator can add widgets in the dashboard to reflect the events happening in the rule
engine in the forms of chart, table or various other visualizations.

There are a couple of underlying services called ThingsBoard Core and ThingsBoard Transports
that basically handle the M2M networking on the platform. They provide communication protocol
stacks and account for maintaining the connectivity states. Consequently, they greatly influence
system performance. Because these two are background processes, they are omitted in the workflow
shown in Figure 3.8.

3.5.3 Ptolemy II

In Subsection 2.2.2 we have briefly described Ptolemy II from the perspective of actor-oriented
model. Here we look at Ptolemy II from the software architecture angle. We aim to utilize it as
a DT framework.

23

CHAPTER 3. METHODOLOGY AND DESIGN

The official documentation [28] presents a meta model that describes the Ptolemy II software
architecture, as seen in Figure 3.9. Below are some important highlights of the figure:

� Every component in a Ptolemy II model is an instance of the NamedObj class. There are
four subclasses of NamedObj. These are Attribute, Entity, Port, and Relation
respectively.

� Relation class represents communication path between the instances of Entity.

� Port class has many-to-many links to Relation, and it also hosts the Receiver interface
that implements methods relating to data communication. Together they can be used to
manage the models integration.

� Implemented by Director, the Executable interface contains methods that orchestrate
the modeling progressions. In other words, the interface coordinates the iterations among
actors based on the rules of the selected MoC.

12. SOFTWARE ARCHITECTURE

instances of Relation, which define the connections between ports. A CompositeEntity
is an Entity that contains instances of Entity and Relation. The resulting hierarchy of a
model is illustrated in Figure 12.4. As described earlier, an actor is an executable entity, as
indicated in Figure 12.2 by the fact that AtomicActor and CompositeActor implement the
Executable interface. A director is an executable instance of the Director class, a subclass

Attribute NamedObj

_attributes : List
_container : NamedObj

attributeList() : List
getAttribute(name : void) : Attribute

Nameable
<<interface>>

getContainer() : NamedObj
getName() : String
setName(name : void) : void

0..1

container

0..*

attributes

Entity

_portList : List

getPort(name : String) : Port
isAtomic() : boolean
isOpaque() : boolean
portList() : List Port

_relationsList : List

link(r : Relation) : void
linkedRelationList() : List

Relation

_linkedPortList : List

linkedPortList() : List

CompositeEntity

_entityList : List

getEntity(name : String) : void
entityList() : List

link0..*

0..* link

0..1

container
0..*

0..1 container

0..*

Executable
<<interface>>

fire() : void
initialize() : void
postfire() : boolean
prefire() : boolean
preinitialize() : void
wrapup() : void

AtomicActor

CompositeActor

Director

container0..1

0..*

IOPort

get(int) : Token
hasRoom(int) : boolean
hasToken(int) : boolean
isInput() : boolean
isOutput() : boolean
send(int,Token)

0..1

container

1

Figure 12.2: A meta model for Ptolemy II. This is a UML class diagram. The
boxes represent classes with the class name, key members, and key methods
shown. The lines with triangular arrowheads represent inheritance. The lines
with diamond ends represent containment.

Ptolemaeus, System Design 425

Figure 3.9: Meta model of Ptolemy II

The abstract syntax are implemented as a collection of Java classes and packages. Ptolemy II
enables the user to interact with these abstract syntax by the mean of a graphical editing interface,
utilizing drag-and-drop actions to accomplish designs.

24

Chapter 4

Implementation

This chapter presents the implementations1 of S1 (Production Prediction) and S2 (Production
Control) mentioned in Chapter 3, using each of the three selected frameworks in order to showcase
the possibilities of integration and orchestration approaches. As explained in Section 3.1, S3 and
S4 are not implemented in this project.

Despite the influence of bio-chemistry theme in our case study, we choose to convert all VE
models to FMUs over the CAPE-OPEN standard for the sake of generalizing the approach so they
can extend to other domains. As FMI is more inclusive to a wider range of models for integration.

4.1 Production Prediction (S1) demonstrations

In S1, the DT collects readings from the three sensor devices of the PE. The scanning period is
set to five minutes; we consider this frequency adequate for monitoring the slow variations of the
process. After merging the monitoring data, the models of the VE will be invoked to compute the
final predicted wort temperature using the given data. Besides, the three chemistry models (see
also Section 3.1) have data dependency to one another.

4.1.1 S1 in TwinOps

Figure 4.1 shows the technologies that compose the building blocks of the TwinOps workflow:

Trigger Build

Deploy

Update

CI/CD engineModel editor Container repository

TargetsData management

Figure 4.1: TwinOps implementation workflow for S1

1This is an open source project. One can find the essential software implementations on our GitLab page at
https://gitlab.tue.nl/20181234/brewery_dt, as well as the overview of equipment in Appendix B.

25

https://gitlab.tue.nl/20181234/brewery_dt

CHAPTER 4. IMPLEMENTATION

For the model editor stage, OMEdit [67] is chosen to achieve the task. It is a graphical editing
tool that allows user to connect individual FMUs to each other, and then export the topology to
the System Structure and Parameterization (SSP) format [68]. SSP is an open standard used to
describe the port connections of a set of FMUs. It was created by the same organization which
initiated the FMI standard, the Modelica Association. It is supported by an increasing number
of major simulation environments which also support FMI. Figure 4.2 shows the layout of our use
case in OMEdit.

Figure 4.2: The SSP file rendered in OMEdit. Due to their different sources of origin, each FMU
has varying supports for simulation modes, such as co-simulation version 2.0 (CS 2.0) or model
exchange (ME). The FMUs also have different numbers of I/O ports. Since the models are designed
to be“future-proof” for subsequent services, this is the reason why many I/O ports appear unused
as they are irrelevant to this specific service

We choose GitHub Actions [69] as our CI/CD engine for its native support for a vast variety
of operating systems and programming frameworks. The operator can configure the pipeline
using YAML—a human-readable data-serialization language that is commonly used for writing
configuration files.

As shown in Figure 4.3, two phases (referred as jobs) are created in the pipeline, the left
job represents CI, and the right job represents CD which will only be invoked if the CI job has
succeeded. In the CI job, the SSP file is validated with the monitoring data which has been
retrieved from a user-created trigger which activates every time new data are detected. The
results will be saved as a GitHub Actions artifact. In the CD job, the task is to build and push
the container image in Docker format [70].

Figure 4.3: The CI (left) and CD (right) jobs and their outputs

The targets for our use case are Raspberry Pi and Windows PC. The former is used as a data
aggregation hub for all the sensor controls, and the latter is where we host our VE models.

One might notice the Kafka [71] block was not originally present in Subsection 3.5.1 as a
workflow stage. The reason being, the update path from the targets to the model editor stage

26

CHAPTER 4. IMPLEMENTATION

could range from simplistic to rather complex, depending on the actual building blocks applied.
In our use case, the targets involve two different platforms—a microprocessor and a PC, leading
us to introduce Kafka as an auxiliary tool to simplify the data management. In the DT context,
models may access and store data in different formats and frequency. We adopt Kafka over the
more traditional database due to its advantages of compartmentalized data queue and its active
data streaming API. One can read more about the principles of Kafka in Appendix C.

4.1.2 S1 in ThingsBoard

Figure 4.4 shows all the device entities (sensors) and the asset entities used in S1. The entities can
be added by the operator manually in ThingsBoard UI, or be provisioned in bulk using CSV file.
If multiple devices share the common settings, then one might consider creating “device profiles”
to improve entity management, like the “Sensors” profile or the “Models” profile shown in the
figure.

The asset named “DT-PE” has a “contain” relation to all devices of the “Sensors” profile. In
other words, “DT-PE” is an amalgamation of devices of the sensor type. The relation defines a
namespace which the rule chain will adhere to.

Figure 4.4: S1 entity management in ThingsBoard. Plaato is the sensor used for collecting
multitude of fermenter statuses; Tilt is a gravity detector; Inkbird is an ambient thermostat.
The asset type TbServiceQueue is auto-generated by the core process to handle network traffics.

Figure 4.5 presents the rule chain, which has three major parts:

� The top branch (red dashed border) is the event-based logic for inter-models procedure
calls. Its primary function is to orchestrate by signaling from the originator model to the
destination model, such that a correct execution sequence could be maintained.

� The bottom branch (green dashed border) is for updating the monitoring data from the
sensors to the model states. The “DT-PE” asset plays an important role here for transform-
ing the local namespace of the sensor data into the global namespace of the DT, such that
the models can use the data without binding to specific sensor devices.

� The nodes in the middle are responsible for recording and saving data with timestamps for
future usage by the real-time dashboard.

As introduced in Subsection 3.5.2, the real-time dashboard offers a wide range of widgets for
the operator to incorporate the human-in-the-loop concept to DT operations. In Figure 4.6 we

27

CHAPTER 4. IMPLEMENTATION

Figure 4.5: S1 rule chain in ThingsbBoard

Figure 4.6: A snapshot of the real-time dashboard in ThingsBoard for the heat transfer model

demonstrate the usage of built-in widgets that visualize the system information. The plot on the
left records the temperatures monitored from the PEs. The middle gauge displays the heat loss
prediction at a given future moment. The alarm widget on the right side notifies the operator
every time the heat transfer model has been updated.

4.1.3 S1 in Ptolemy II

Figure 4.7 displays the overall design of S1. The Discrete Event (DE) Director is used as
the orchestrating instructions are treated as individual “events”. There are two clock sources,
Monitor clock is synchronized against real-world time such that it takes up the task to trigger
the models based on the sensor events of PEs. On the other hand, FMU clock dictates the time
advancement of the FMU models. It is initialized—by Monitor clock—when the monitoring
data are ready, and is terminated when all models have completed simulations—notified via a
dedicated UDP listener. Each FMU Proxy represents a model of the VEs.

Since Ptolemy II does not posses data management actors suitable for our DT, we utilize Kafka
to fetch the monitoring data in order to update the models and to store the computed results.

Although Ptolemy II has built-in support for FMI by its FMUImporter actor, however, from
our experiments we discover it has several weaknesses which lead to undesirable crashes (see

28

CHAPTER 4. IMPLEMENTATION

Figure 4.7: Ptolemy II design for S1

Appendix D for details). As a circumvention, a user defined actor named FMU Proxy is created as
shown in Figure 4.8. The actor serves as a middle-man who forwards the orchestrating instructions
from Ptolemy II to the solver outside of the environment via UDP sockets. Using this approach,
the operator can orchestrate the FMU models as if they are inside the Ptolemy II environment.

Figure 4.8: The internal implementation of FMU Proxy

4.2 Production Control (S2) demonstrations

In S2, the control model generates a command based on the fed data. Then the commands are
sent from the VE to the actuator—a water pump controller—of the PE. Most of the framework
infrastructures are inherited from S1. As more services are introduced, we start to benefit from
the dividends of frameworks in term of a significant reduction in developer’s workload.

An alternative implementation that uses human-in-the-loop control scheme instead of fully
automated decisions can be found in Appendix E. The alternative demonstrates how DTs can be
used to assist the operators in a scenario where human intervention is necessary.

4.2.1 S2 in TwinOps

On top of the existing S1 workflow, the operator can simply add the new model to the SSP file
as in Figure 4.9. After that, a new task needs to be added to the CI/CD pipeline so as to pass
the computed commands to a remote webhook that controls the water pump.

29

CHAPTER 4. IMPLEMENTATION

Figure 4.9: The SSP layout of S2

4.2.2 S2 in ThingsBoard

The control model is provisioned as an entity of the “Models” type just as with the models in S1
previously.

A new rule chain shown in Figure 4.10 is added to support the control service. The top branch
is responsible for triggering the control model, similarly to the way of S1. The bottom branch
takes care of sending the command message to the actuator.

Figure 4.10: S2 rule chain in ThingsBoard

The S2 rule chain is connected to the “root” rule chain of S1 via the “Flow” type nodes (the
purple color nodes in Figure 4.11), so the established data routing paths could be reused.

Figure 4.11: Integration of S2 to the root rule chain

In the real-time dashboard, the computed control signal are superimposed onto the timeseries
chart of the temperatures, as shown in Figure 4.12.

One can notice a pattern in which the “high” (switch on) intervals of the control commands are
followed by the climbing of the internal temperature, and vice versa. This example demonstrates
how the framework can offer analytics that enable the operator to trace and assess the effects of
the control system.

30

CHAPTER 4. IMPLEMENTATION

Figure 4.12: A snapshot of S2 real-time dashboard. The chart displays the room temperature
(green), the fermenter temperature (orange), and the output of the control model (blue).

4.2.3 S2 in Ptolemy II

Shown in Figure 4.13, we utilize the “composite actor” (circled) in Ptolemy II to encapsulate S2
and integrate it to the existing design of S1, more specifically, reusing the clock actors. Using
composite actors improves the overall portability as the operator can attach new services to the
root service (S1).

Figure 4.13: The encapsulation of S2

The internal implementation of S2 is shown in Figure 4.14, where the FMU Proxy is triggered
by the FMU clock—shared by S1—from the outside. Then the computed command is sent to a
remote actuator webhook using the REST client actor.

Figure 4.14: S2 design in Ptolemy II

We conclude the implementations for S1 and S2 here. In the next chapter we will compare
the frameworks’ characteristics, performances, and non-functional properties.

31

Chapter 5

Evaluation and Discussion

In this chapter, we revisit the proposed KPIs of the two services, and evaluate them in regards
to the framework implementations. As explained in Chapter 3, the KPIs are meant to verify the
requirements of the services, so we could confirm the effectiveness of the frameworks. After that,
a summary will be made to compare the frameworks in overall.

5.1 S1 KPIs evaluation

In S1 (Production Prediction), four KPIs are highlighted (see also Table 3.3), namely, level of
automation, updating delay, data history, and modifiability.

KPI1: level of automation

This KPI measures the number of manual steps required in order to support the operations of the
framework. Generally, fewer steps are desired as it indicates the framework has a higher level of
automation. The steps referred here contribute toward the requirement R1—validate the model
states with real-time data.

In practice, the notion of “step” depends on the architecture of individual frameworks and the
use cases. For the purpose of comparison, we have identified four primary actions that occur in
R1: data collection, data integration, model scheduling, and status reporting. The manual steps
contribute to the automation of these actions in runtime. Note that the actions we have identified
here are specific to the microbrewery context. For other use cases, more or fewer actions might
be needed to achieve the outcome.

In TwinOps, the collection of monitoring data is handled automatically by Kafka. The openness
of the SSP format—which defines the connections between models—allows the internal variables of
models to be accessed easily. The core validation process, which includes validating the simulations
against real-world data and reporting the new model states, takes place in the CI/CD pipelines.
The pipelines are configured in the YAML file by the user ahead of executions. This configuration
is the only manual step in the full process cycle. In other words, once the pipelines are pre-
configured, the rest of the process should run automatically.

As an IoT-based framework, ThingsBoard uses application-layer protocols that enhance the
simplicity in data collection, shielding the user from handling low level communications. However,
due to the lack of native model editor supports, the monitoring data and the models are integrated
externally to the platform environment during the running of the system. In consequence, a manual
step is required for interfacing back to the platform after the integration is complete. Because
of that, it poses another disadvantage such that scaling could be hindered as more models are
introduced. The model scheduling and its status reporting are automated using rule chains. The
user is tasked to manually define the entities (e.g., sensors) and their relations (e.g., sensors are
contained by the models) before the beginning of rule chains. In overall, the two manual steps
identified here are interfacing the model editor and entity provisioning.

32

CHAPTER 5. EVALUATION AND DISCUSSION

Ptolemy II comes with an actor type Accessors that supports external communication. In term
of data integration, both the built-in FMUImporter and the FMU proxy—which we opted for—
bear resemblance to a blackbox. It means that accessing the internal model states is difficult to
achieve unless with an external model editor. Hence, facing the same situation as ThingsBoard, the
user has to implement an additional interface. The model scheduling is automatically maintained
by the MoC director and the clock actors. As we mentioned earlier, Ptolemy II lacks a data storage
feature that suites our DT service. Therefore the user has to establish data logging externally,
Kafka has been manually integrated for this task. All things considered, the two manual steps are
interfacing the model editor and interfacing the data manager.

Table 5.1 shows a summary of manual steps in each framework. TwinOps is the most automated
framework, followed by ThingsBoard and Ptolemy II, as both require some patchworks by the
user for different stages of the operation. As we can see, TwinOps enables the user to manage an
extensive range of configuration options prior to runtime, it leads to less inconveniences in term
of making further patchworks in various parts of the system, as in the cases with the other two
frameworks. Additionally, it could also mean less risks for human errors to occur.

TwinOps ThingsBoard Ptolemy II

Manual steps Pipelines configuration (1) Interfacing model
editor. (2) Entity pro-
visioning.

(1) Interfacing model
editor. (2) Interfacing
data manager.

Table 5.1: S1 KPI1 comparison

KPI2: updating delay

We define updating delay as the time between when the framework has collected all required
data and when the updated model states have been computed. Therefore, each updating cycle
begins from the completion of data collection and ends in the completion of new model states
output. We find that one of the main factors influencing this KPI is the communication style
of the orchestration, for instance, whether it relies on external protocols or using in-memory
communication. Another factor is due to the initialization process. For cloud based platforms this
relates to the initiation of the “workers” and to their load balancing algorithm, i.e., the allocation
of computational power. For platforms that are hosted in local premises, loading the required
resources also contributes to delays.

TwinOps ThingsBoard Ptolemy II
0

10

20

30

40

50

60

70

Se
co

nd
s

TwinOps, mean=54.80, std=4.12
ThingsBoard, mean=35.20, std=0.40
Ptolemy II, mean=26.40, std=1.02

Figure 5.1: S1 KPI2: updating delay mean value and standard deviation

Figure 5.1 shows the statistics of five updating cycles presented in a bar chart. We observe
that TwinOps has the highest mean delay time as well as the greatest standard variation. This is

33

CHAPTER 5. EVALUATION AND DISCUSSION

due to the CI/CD engine being hosted in the cloud (as with most popular CI/CD engines in the
market), such that it is subject to a user’s pricing plan, which results in different load balancing
strategies imposed by the cloud server. To keep the measurement consistent, the five updating
cycles all use the same free-tier plan.

In ThingsBoard, the orchestration communication utilizes a combination of remote procedure
call (RPC) and RESTful protocol. Both are high level protocols that suggest more packet overhead.
This results in the moderate delay time we have seen. In most cases, protocol APIs tend to use
buffering techniques to ensure QoS, including mitigation of delay time variance. In ThingsBoard
we have already seen that being imposed by the background process as TbServiceQueue in
Chapter 4.

For Ptolemy II, given that we use the FMU proxy instead of FMUImporter, a communica-
tion overhead is expected. Surprisingly, the mean delay time is the lowest among all the tested
frameworks. There are a few hypotheses to this. Firstly, FMU proxy uses UDP interface for com-
munications, which is a low level connectionless protocol. Therefore it is exempted from delays
incurred by the excessive handshakes often found in connection-oriented or high level protocols.
Secondly, Ptolemy II holds all of its processes together in an unified software package, meaning it
needs few external communications or memory fetching beyond the program scope, in contrast to
the modular architecture of TwinsOps or ThingsBoard.

It is important to acknowledge a limitation of this KPI measurement, which is that since the
frameworks permit quite flexible building block choices for the user, the technologies adopted in
the framework may considerably affect the system timing behaviors. For example, one might use a
CI/CD engine that is not cloud-based and possibly achieve a much lower delay time; or one could
opt for another M2M protocol that is not built-in to ThingsBoard, thus increase or decrease the
overall communication latency. The KPI results presented here should be regarded as a reflection
of our particular microbrewery DT setup, serving as a reference instead of an absolute judgment.

KPI3: data history

Data history concerns the amount of historical data ready to be used for the service. For context,
the data are being used for computing future heat transfer in S1.

In TwinsOp, the user is able to add steps inside the CI pipeline that archive data as artifacts.
On the other hand, in the CD pipeline, as we have discussed, data are containerized as images
and stored in the online repository. ThingsBoard framework provides native data storage that is
integrated with the rule engine, such that the historical model states and events are constantly re-
corded in background. Ptolemy II on its own lacks an efficient data management system. However,
we manage to solve that shortcoming by integrating the Kafka service.

In overall, all three frameworks are able to retain all historical data for the full lifecycle of the
service.

KPI4: modifiablility

This KPI concerns two main aspects: the configuration of model initial values; and the config-
uration workflow of model executions. Our use case reveals that each framework offers varying
degrees of configurability before and after startup, as discussed below.

Due to the modular nature of TwinOps, a user can customize all stages of the framework
workflow, including the control of the model executions. In terms of initial value setting for the
models, it could be accomplished in the SSP file. Table 5.2 summarizes the initial configuration
options accessible by the user. Once all the configuration options are settled, the DT should be
able to operate automatically.

Likewise to TwinOps, the ThingsBoard framework is also highly customizable, such that all
workflow stages can be configured at the beginning. Furthermore, the entity management provides
the option to set initial values and attributes to the model entities. The summary of configuration
options is shown in Table 5.3.

34

CHAPTER 5. EVALUATION AND DISCUSSION

Type SSP YAML Dockerfile

Format .ssp .yml No file extension

Scope models editor CI/CD engine CI/CD engine & container re-
pository

Purpose Define the execution
flow and data depend-
encies between FMUs

Validate the updated
model states

Deploy to the target platforms

Table 5.2: TwinOps initial configurations overview

Type CSV JSON Configuration

Format .csv .json .conf

Scope Entity management Profile & rule chain &
dashboard

ThingsBoard backend services

Purpose Provision entities and
define their relations

Setup device profiles,
rule chains, and dash-
boards

Set parameters to Things-
Board background processes
such as memory allocation,
timeout, etc.

Table 5.3: ThingsBoard initial configurations overview

In contrast, the architecture of the Ptolemy II workflow is relatively monolithic and closed
compared to the other two frameworks. Designing is done in the GUI of the software, where the
operator performs drag-and-drop on the icons representing directors and actors, though there is
the option to import or export the design in XML format. The operator could alter the execution
flow by choosing the MoCs, represented by directors. Although the MoCs account for the timing
progression of models, they do not address the configurations for the data collection before the
model update and the data storage after the model update. It suggests the modifiablility of
Ptolemy II is inadequate to cover the entire workflow for the service. Many actors in Ptolemy II
do not support initialization of model parameters. Therefore, a workaround has to be made by
using input variables. Although it does not affect the functionality, potential confusions may arise
for the downstream user who does not develop the models in first hand.

5.2 S2 KPIs evaluation

In S2 (Production Control), two KPIs (see also Table 3.5) will be evaluated, which are traceab-
ility and latency.

KPI1: traceability

In context, the traceability is concerning how much information is available to the operator which
they can use to evaluate the effects of the DT’s controlling actions.

In TwinOps, the building blocks in each workflow stage are only loosely coupled, they are
each an independently deployable module. As a result, the trace of a model’s behaviors can be
quite scattered. When progressing through stages, the model artifacts, such as connection links,
parameters, and states, tend to undergo format transformations that will lose some explicitness
of the traces. To illustrate, the models topology is visualized in the model editor stage, but in
the CI/CD stage it becomes a part of pipeline instructions that is no longer easily readable by
humans. From the CI/CD stage to the containerizing stage, another transformation occurs as
the pipeline instructions are brought into a container image which requires another service (e.g.

35

CHAPTER 5. EVALUATION AND DISCUSSION

docker) to run. To sum up, the consistency of trace explicitness is often lost during the transfer
of data ownership from one stage to another.

As we have seen in the dashboard demonstration in Section 4.2, the ThingsBoard framework
handles the system traceability very well. It is attributed to the highly integrated operability
between the rule engine, the data storage, and the real-time dashboard. When data ownership
is transferred between them, the framework ensures the data properties, e.g., timestamps, data
types, etc, remain consistent throughout. Therefore, one is able to easily trace an effect back to
its root cause.

In theory, Ptolemy II supports the transfer of data ownership, meaning an actor will gain full
controls of data once receiving from another actor. However, this is more true when two actor
types are alike. When the types are significantly different, such as between a server actor—which
sends and receives internet packets—and a mathematical operation actor, all kinds of errors may
occur. The user has to make sure the conversion is done properly. As more kinds of actors are
adopted to support the growing DT service, it becomes harder to scale up this kind of pairing
conversion. Eventually making the system traces harder to track.

KPI2: latency

This KPI measures the latency between the finishing of model updates and the completion of
the control triggering. It indicates the responsiveness of the framework in dealing with VE-PE
communications. Figure 5.2 shows the statistics of five measurements.

It can be seen that TwinOps has the highest mean and standard variation. It is again due to
the load balancing mechanism managed by the CI/CD host server. ThingsBoard and Ptolemy II
have similar mean latency, but the former clearly has the lower of the two variances.

This KPI suffers the same limitation as S1 KPI2. The timeliness is sensitive to the high
variability of technology choices made by the user. Although we can see a general pattern here
that a centralized system such as Ptolemy II has lower latency than distributed systems like
TwinOps.

Aiming for low mean latency and low variance are two particularly important properties for
a time critical system, even though the microbrewery DT is not one such system. They affect
the bound for worst case execution time (WCET), which is a determining factor in schedulability
analysis, i.e., the computation deciding whether a set of tasks are able to meet the deadline in a
real-time system.

TwinOps ThingsBoard Ptolemy II
0

50

100

150

200

250

300

M
ilis

ec
on

ds

TwinOps, mean=249.00, std=20.00
ThingsBoard, mean=75.40, std=1.02
Ptolemy II, mean=88.00, std=9.98

Figure 5.2: S2 KPI2: latency mean value and standard deviation

36

CHAPTER 5. EVALUATION AND DISCUSSION

5.3 Summary of framework comparison

This section summarizes the most significant findings about the frameworks in terms of integration
and orchestration. Table 5.4 shows a side-by-side comparison. The rows represent the categories
generalized from the KPIs and the requirements to a broader scope; the columns list the three
frameworks. Most categories below have been introduced in the earlier chapters. “Data trans-
formation” covers the ability to transform the data to other forms or formats for the subsequent
stages within the workflow, or for storing in case of future usages. “Traceability”, as explained in
the earlier section, is an aspect of data ownership. We have decided to compare the traceability
instead of the greater scope (ownership), as it is a narrower—more focused—aspect, making it
easier to compare between the considerably different framework styles in this project.

TwinOps ThingsBoard Ptolemy II

Integration

Configurability high high medium

Data transformation high medium medium

Traceability complex simple simple (but ineffi-
cient)

Modularity high medium low

Orchestration

Workflow automation high medium low

Timeliness slow fast fast

Managing diversity good good good (but requires
external add-ons)

Table 5.4: Framework comparison

Regarding the integration aspects, TwinOps is highly configurable and modular, credited to
its multi-stage architecture; its data can be transformed effectively to adapt to different stages of
the workflow. However, the same features make it difficult to conduct explicit ownership transfer
of model artifacts, meaning the methods for data accessing may vary considerably in different
stages. This can hinder the traceability of the DT behaviors. ThingsBoard also has high config-
urability. The components within the framework are more cohesive, resulting in a more consistent
data ownership and medium modular potential. Ptolemy II, being a self-contained software, has
limited—under the DT context—configuration options and limited modularity. Some data trans-
formation can be performed by the actors, although it is often not necessary as the processes
in the workflow are already tightly coupled. The actor-orientated architecture is conducive to a
consistent data ownership although extra patches, such as data format conversions from one actor
type to another, are often needed. That makes the tracing of the system become inefficient.

For the orchestration aspects, TwinOps is able to attain the highest automation; we argue
it is correlating to the extensive preliminary configurations. It is quite slow, because the cloud-
based CI/CD engine focuses on the “continuity” angle instead of the “speed” angle of operation.
ThingsBoard takes advantages of its IoT networking backends, resulting in decent automation and
decent speed. For Ptolemy II, the workflow requires some manual implementations from the user
to automate. It is fast since the framework is relatively more centralized, thus its components
suffer less from communications and synchronizations penalty.

Finally, all three frameworks manage to satisfy all requirements of the DT services, even
though their KPIs show the weaknesses and caveats that the user has to keep in mind of during
the development process. The frameworks are capable of managing diverse types of entities in the
microbrewery DT, presuming the requirement for time criticality is not strict, as is the case with
fermentation processes.

37

Chapter 6

Conclusion and Future work

6.1 Conclusion

This project contributes to the identification of the important aspects of integration and orches-
tration of DT models: (1) We identified the related literature, relevant requirements and KPIs.
(2) We have investigated three distinctive frameworks which we believed suitable for DT develop-
ments and tested them for a microbrewery DT. In consequence, we have obtained findings that
can answer the research questions:

� RQ1: What are the key ingredients for integration and orchestration of models in different
services for a microbrewery DT?

The microbrewery DT concerns a weeks-long bio-chemical process. Many of its process vari-
ables are inferential rather than directly detectable. Taken these characteristics together, the
production prediction service (S1) has to inter-operate several numbers of entities effectively
for a prolonged time frame in order to generate reliable predictions. We argue that a multi-
stage or pipelining architecture can resolve the differences across the entities sufficiently well.
Since it opens up more ways to combine integration and orchestration techniques by allowing
the developer to add or swap individual stages. In this type of design, the emphasis is on the
configurability, and modularity of individual stages. Working with flexible building blocks
alleviates many constraints for the user when integrating distinctive models.

Another implication of early stage configurations is that it correlates with high level of
automation during the operation phases. Our results have shown that extensive initial
setups of the DT system reduce the number of orchestration and integration steps that need
operator interventions later, thus mitigating the chance of human errors.

In the production control service (S2), the operator is most interested in knowing the effect
of the control actions. Therefore, the traceability within the system becomes particularly
important. The traceability is dependent not only on data availability, even more so the
semantics and explicitness of data need to be consistent for the operator to access them
easily afterward. Therefore, the trade-off between the degree of data transformations—for
the purpose of adapting in different systems/hardwares, etc—and data consistency need to
be considered. The trade-off occurs as the data format is transformed in numerous workflow
stages, the means of accessing the data may also change repeatedly. That leads to a higher
chance of improper data retrieval or negligence by the user, which eventually undermines
the data consistency.

Coming back to the research question, the key ingredients are configurability, modularity,
and traceability.

� RQ2: How can these ingredients be generalized to benefit other application domains?

38

CHAPTER 6. CONCLUSION AND FUTURE WORK

Most of the previously mentioned points will still hold in the DTs of other fields, as long
as their development processes are also guided by MDSE and the 5D model. As these two
concepts provide a structured view of a complex system, guiding developers toward the re-
quirements and promoting the usage of recurring ingredients in order to eliminate rework.
Nevertheless, in some circumstances, if a certain DT requires real-time processing within a
very short cycle time, e.g., seconds, then the system timeliness becomes a more important
issue. Our findings indicate that a monolithic orchestrating style has shorter delays than the
distributed counterparts, mainly because it has inherently fewer communication points and
synchronization barriers.

As a result, when creating DTs for a new application domain, one should identify the unique
requirements, and then utilize the MDSE methods and 5D model to incorporate the unique
parts into the known patterns based on the past designs.

� RQ3: In what circumstances do the selected frameworks best fit these ingredients?

From this project we have learned that the choice of frameworks depends highly on the
specific use case. If one’s use case stresses on minimizing manual integration and verification
by humans, then TwinOps will be best suited as its CI/CD paradigm is made for that very
purpose. For the use cases where the models are physically separated on different machines,
ThingsBoard will be a wise choice as it is supported by the underlying IoT network. We
consider Ptolemy II falls short of several crucial integration aspects as a DT framework,
for its lack of data management components and its relatively inflexible user modifiability.
However, it serves as a good experimentation framework for testing orchestrations thanks to
the variety of MoCs it supports. Apart from that, the monolithic architecture of Ptolemy II
allows the fastest overall speed, useful for dealing with time critical applications.

To summarize, in this project we found out the frameworks of distinguishing styles can all
accomplish the requirements of our microbrewery DT services. This is an encouraging finding
because it allows users from different disciplines to choose what is best fit for their use cases and
backgrounds—despite the different shortcomings within the individual framework to be overcame.
We learned that multi-stage frameworks have the benefit of accepting more kinds of integration
and orchestration techniques, but come with the cost of potentially slower system speed, and
more complex system behavior traces, as the data exchanges across stages may be implemented
differently. On the contrary, monolithic frameworks are less flexible with especially the integration
aspects, but they have the advantage of faster system responsiveness. Ultimately, developers may
take these findings as a guidance when designing their own frameworks for DTs of different use
cases.

39

CHAPTER 6. CONCLUSION AND FUTURE WORK

6.2 Future work

For the research on frameworks, we can start looking for extension modules/packages that may
compensate for the weaknesses in each framework, just as we have shown that Kafka was adopted
as a data management tool to support the frameworks that lack it. The immediate focus will
be on the property of time criticality. We are interested in how the framework determines if the
operations can meet the deadlines in a real-time scenario, and how can it be guaranteed. Time
criticality is prioritized because it is a crucial factor for many systems such as automotives that
have safety requirements—unfortunately not the case of a microbrewery.

As for the microbrewery case study, there four services proposed, but only two (S1 and S2)
have been implemented, and they both fall within the manufacturing phase of the product life
cycle. In this phase the main concern is the final production yield.

The other two services, S3 (what-if scenarios) and S4 (predictive maintenance) belong to
the service phase which holds a different kind of objective, especially more focusing on the user-
orientated aspects than the manufacturing phase. Because of that, we predict a new set of chal-
lenges and findings will arise, making them worthy of further investigations. Table 6.1 and 6.2
present the tentative requirements for S3 and S4.

Requirements

ID Requirement description

R1 The scenario-specific data shall be handled separately from the master data.

R2 The scenarios can be added, reset, and removed without affecting the master schedule.

R3 The iterations of scenario may be stored and managed under version control.

Table 6.1: S3 requirements

Requirements

ID Requirement description

R1 Dynamic data acquisition shall be used to update the static attributes in the predictive
model.

R2 Real-time measurements and simulated results shall be used in the retrofitting of the
predictive model.

R3 Data pruning and refining should be done before applying them to the predictive
model

Table 6.2: S4 requirements

In the requirements for S4 we can see a large proportion directs to the data processing aspect
of the predictive model, it is because we plan to adopt a data-driven modelling approach for this
service. It will be unlike the mechanistic models used in S1 to S3, as the data quantity and quality
will have greater influences on the final results.

40

CHAPTER 6. CONCLUSION AND FUTURE WORK

Likewise the KPIs for S3 and S4 are also proposed in Table 6.3 and Table 6.4. Note that these
are still in early stage of design therefore are subject to substantial refinements.

KPIs

ID Name Description Verifies

KPI1 Scalability To what extent are the additional space and time
bounded.

R1, R2, R3

KPI2 Accessibility Are the model instances of the scenarios easily access-
ible to the operator.

R1, R3

KPI3 Modularity Is changeover of the setup for each scenario easily ad-
aptable.

R2

Table 6.3: S3 KPIs

KPIs

ID Name Description Verifies

KPI1 Accuracy What is the error of the predictive model against real-
world measurement.

R1, R2

KPI2 Data sufficiency How missing data may affect the overall performance
of predictive model.

R1, R2

KPI3 Data quality How much volume, variety, and veracity of the data
is lost as the result of transferring and merging.

R3

Table 6.4: S4 KPIs

41

Bibliography

[1] M. W. Grieves, “Virtually intelligent product systems: Digital and physical twins,” Complex
Systems Engineering: Theory and Practice, pp. 175–200, 1 2019. [Online]. Available:
https://arc.aiaa.org/doi/pdf/10.2514/5.9781624105654.0175.0200 1

[2] Boeing, “Key findings on airplane economic life,” 3 2013. [Online]. Available:
https://www.boeing.com/assets/pdf/commercial/aircraft economic life whitepaper.pdf 1

[3] P. Zheng, H. wang, Z. Sang, R. Y. Zhong, Y. Liu, C. Liu, K. Mubarok, S. Yu, and X. Xu,
“Smart manufacturing systems for industry 4.0: Conceptual framework, scenarios, and
future perspectives,” Frontiers of Mechanical Engineering 2018 13:2, vol. 13, pp. 137–150, 1
2018. [Online]. Available: https://link.springer.com/article/10.1007/s11465-018-0499-5 1

[4] H. Kwon, S. An, H.-Y. Lee, W. C. Cha, S. Kim, M. Cho, and H.-J. Kong, “Review of smart
hospital services in real healthcare environments,” Healthcare informatics research, vol. 28,
pp. 3–15, 1 2022. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/35172086 1

[5] Y. Duan, J. S. Edwards, and Y. K. Dwivedi, “Artificial intelligence for decision making in
the era of big data – evolution, challenges and research agenda,” International Journal of
Information Management, vol. 48, pp. 63–71, 10 2019. 1

[6] PwC, “Industry 4.0 - publications.” [Online]. Available: https://www.pwc.nl/en/publicaties/
industrie-4-0.html 2

[7] IBM, “What is a digital twin?” [Online]. Available: https://www.ibm.com/topics/
what-is-a-digital-twin 2

[8] F. Bordeleau, B. Combemale, R. Eramo, M. van den Brand, and M. Wimmer, “Towards
model-driven digital twin engineering: Current opportunities and future challenges,”
Communications in Computer and Information Science, vol. 1262 CCIS, pp. 43–54, 2020.
[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-030-58167-1 4 2

[9] A. Kossiakoff, W. N. Sweet, S. J. Seymour, and S. M. Biemer, Systems engineering principles
and practice. John Wiley & Sons, 2011, vol. 83. 2

[10] S. Boschert and R. Rosen, “Digital twin-the simulation aspect,” Mechatronic Futures:
Challenges and Solutions for Mechatronic Systems and Their Designers, pp. 59–74, 1 2016.
[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-319-32156-1 5 2

[11] M. Macchi, I. Roda, E. Negri, and L. Fumagalli, “Exploring the role of digital twin for asset
lifecycle management,” IFAC-PapersOnLine, vol. 51, pp. 790–795, 1 2018. 2

[12] K. Y. H. Lim, P. Zheng, and C. H. Chen, “A state-of-the-art survey of digital twin:
techniques, engineering product lifecycle management and business innovation perspectives,”
Journal of Intelligent Manufacturing 2019 31:6, vol. 31, pp. 1313–1337, 11 2019. [Online].
Available: https://link.springer.com/article/10.1007/s10845-019-01512-w 2

42

https://arc.aiaa.org/doi/pdf/10.2514/5.9781624105654.0175.0200
https://www.boeing.com/assets/pdf/commercial/aircraft_economic_life_whitepaper.pdf
https://link.springer.com/article/10.1007/s11465-018-0499-5
https://pubmed.ncbi.nlm.nih.gov/35172086
https://www.pwc.nl/en/publicaties/industrie-4-0.html
https://www.pwc.nl/en/publicaties/industrie-4-0.html
https://www.ibm.com/topics/what-is-a-digital-twin
https://www.ibm.com/topics/what-is-a-digital-twin
https://link.springer.com/chapter/10.1007/978-3-030-58167-1_4
https://link.springer.com/chapter/10.1007/978-3-319-32156-1_5
https://link.springer.com/article/10.1007/s10845-019-01512-w

BIBLIOGRAPHY

[13] F. Ansari, S. Nixdorf, and W. Sihn, “Insurability of cyber physical production systems: How
does digital twin improve predictability of failure risk?” IFAC-PapersOnLine, vol. 53, pp.
295–300, 1 2020. 2

[14] H. Cai, J. Zhu, and W. Zhang, “Quality deviation control for aircraft using digital
twin,” Journal of Computing and Information Science in Engineering, vol. 21, 6 2021.
[Online]. Available: https://asmedigitalcollection.asme.org/computingengineering/article/
21/3/031008/1102047/Quality-Deviation-Control-for-Aircraft-Using 2

[15] D. G. Broo, M. Bravo-Haro, and J. Schooling, “Design and implementation of a smart infra-
structure digital twin,” Automation in Construction, vol. 136, p. 104171, 4 2022. 2

[16] M. Liu, S. Fang, H. Dong, and C. Xu, “Review of digital twin about concepts, technologies,
and industrial applications,” Journal of Manufacturing Systems, vol. 58, pp. 346–361, 1 2021.
2, 16

[17] M. Shafto, M. Conroy, R. Doyle, E. Glaessgen, C. Kemp, J. LeMoigne, and L. Wang, “Model-
ing, simulation, information technology and processing roadmap,” National Aeronautics and
Space Administration, vol. 32, pp. 1–38, 2012. 2

[18] M. Schluse, M. Priggemeyer, L. Atorf, and J. Rossmann, “Experimentable digital twins-
streamlining simulation-based systems engineering for industry 4.0,” IEEE Transactions on
Industrial Informatics, vol. 14, pp. 1722–1731, 4 2018. 2

[19] W. Kritzinger, M. Karner, G. Traar, J. Henjes, and W. Sihn, “Digital twin in manufacturing:
A categorical literature review and classification,” IFAC-PapersOnLine, vol. 51, pp. 1016–
1022, 1 2018. 3

[20] I. A. Udugama, C. L. Gargalo, Y. Yamashita, M. A. Taube, A. Palazoglu, B. R. Young, K. V.
Gernaey, M. Kulahci, and C. Bayer, “The role of big data in industrial (bio)chemical process
operations,” Industrial and Engineering Chemistry Research, vol. 59, pp. 15 283–15 297, 8
2020. [Online]. Available: https://pubs.acs.org/doi/full/10.1021/acs.iecr.0c01872 3

[21] I. A. Udugama, P. C. Lopez, C. L. Gargalo, X. Li, C. Bayer, and K. V. Gernaey, “Digital
twin in biomanufacturing: challenges and opportunities towards its implementation,”
Systems Microbiology and Biomanufacturing, vol. 1, pp. 257–274, 2021. [Online]. Available:
https://doi.org/10.1007/s43393-021-00024-0 3, 7, 47

[22] B. R. Barricelli, E. Casiraghi, J. Gliozzo, A. Petrini, and S. Valtolina, “Human digital twin
for fitness management,” IEEE Access, vol. 8, pp. 26 637–26 664, 2020. 3

[23] F. Tao and M. Zhang, “Digital twin shop-floor: A new shop-floor paradigm towards smart
manufacturing,” IEEE Access, vol. 5, pp. 20 418–20 427, 9 2017. 4

[24] Mathworks, “Simulink - simulation and model-based design.” [Online]. Available:
https://nl.mathworks.com/products/simulink.html 5

[25] Dassault Systèmes, “Catia.” [Online]. Available: https://www.3ds.com/products-services/
catia/ 5

[26] M. van den Brand, L. Cleophas, R. Gunasekaran, B. Haverkort, D. A. Negrin, and H. M.
Muctadir, “Models meet data: Challenges to create virtual entities for digital twins,” Com-
panion Proceedings - 24th International Conference on Model-Driven Engineering Languages
and Systems, MODELS-C 2021, pp. 225–228, 2021. 5

[27] D. A. Negrin, L. Cleophas, and M. van den Brand, “Using Ptolemy II as a framework for
virtual entity integration and orchestration in digital twins,” Companion Proceedings - 24th
International Conference on Model-Driven Engineering Languages and Systems, MODELS-C
2021, pp. 233–236, 2021. 5

43

https://asmedigitalcollection.asme.org/computingengineering/article/21/3/031008/1102047/Quality-Deviation-Control-for-Aircraft-Using
https://asmedigitalcollection.asme.org/computingengineering/article/21/3/031008/1102047/Quality-Deviation-Control-for-Aircraft-Using
https://pubs.acs.org/doi/full/10.1021/acs.iecr.0c01872
https://doi.org/10.1007/s43393-021-00024-0
https://nl.mathworks.com/products/simulink.html
https://www.3ds.com/products-services/catia/
https://www.3ds.com/products-services/catia/

BIBLIOGRAPHY

[28] C. Ptolemaeus, System design, modeling, and simulation: using Ptolemy II. Ptolemy.org,
2014, vol. 1. 6, 12, 13, 18, 19, 24

[29] C. L. Gargalo, S. C. de Las Heras, M. N. Jones, I. Udugama, S. S. Mansouri, U. Krühne,
and K. V. Gernaey, “Towards the development of digital twins for the bio-manufacturing
industry,” Advances in biochemical engineering/biotechnology, vol. 176, pp. 1–34, 2020.
[Online]. Available: https://link.springer.com/chapter/10.1007/10 2020 142 7, 8

[30] A. Rasheed, O. San, and T. Kvamsdal, “Digital twin: Values, challenges and enablers from a
modeling perspective,” IEEE Access, vol. 8, pp. 21 980–22 012, 2020. 7

[31] “Tensorflow.” [Online]. Available: https://www.tensorflow.org/ 8

[32] “Pytorch.” [Online]. Available: https://pytorch.org/ 8

[33] H. Narayanan, M. F. Luna, M. von Stosch, M. N. C. Bournazou, G. Polotti,
M. Morbidelli, A. Butté, and M. Sokolov, “Bioprocessing in the digital age: The role of
process models,” Biotechnology Journal, vol. 15, p. 1900172, 1 2020. [Online]. Available:
https://onlinelibrary.wiley.com/doi/full/10.1002/biot.201900172 8

[34] T. Zhou, R. Gani, and K. Sundmacher, “Hybrid data-driven and mechanistic modeling ap-
proaches for multiscale material and process design,” Engineering, vol. 7, pp. 1231–1238, 9
2021. 8

[35] H. Jiang, S. Qin, J. Fu, J. Zhang, and G. Ding, “How to model and implement connections
between physical and virtual models for digital twin application,” Journal of Manufacturing
Systems, vol. 58, pp. 36–51, 1 2021. 8

[36] S. C. Rutan, “Recursive parameter estimation,” Journal of Chemometrics, vol. 4, pp. 103–121,
3 1990. [Online]. Available: https://onlinelibrary.wiley.com/doi/full/10.1002/cem.1180040203
8

[37] R. M. Oisiovici and S. L. Cruz, “State estimation of batch distillation columns using an
extended kalman filter,” Chemical Engineering Science, vol. 55, pp. 4667–4680, 10 2000. 8

[38] D. Krämer and R. King, “On-line monitoring of substrates and biomass using near-infrared
spectroscopy and model-based state estimation for enzyme production by s. cerevisiae,” IFAC-
PapersOnLine, vol. 49, pp. 609–614, 1 2016. 8

[39] “PID theory explained - NI.” [Online]. Available: https://www.ni.com/nl-nl/innovations/
white-papers/06/pid-theory-explained.html 8

[40] M. S. Hong, K. A. Severson, M. Jiang, A. E. Lu, J. C. Love, and R. D. Braatz, “Challenges
and opportunities in biopharmaceutical manufacturing control,” Computers & Chemical En-
gineering, vol. 110, pp. 106–114, 2 2018. 8

[41] “the cape-open laboratories network — expanding process modelling capability through
software interoperability standards.” [Online]. Available: https://www.colan.org/ 9

[42] “Functional mock-up interface.” [Online]. Available: https://fmi-standard.org/ 9

[43] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauss, H. Elmqvist, A. Junghanns,
J. Mauss, M. Monteiro, T. Neidhold, D. Neumerkel, H. Olsson, J.-V. Peetz, and S. Wolf, “The
functional mockup interface for tool independent exchange of simulation models,” Proceedings
from the 8th International Modelica Conference, Technical Univeristy, Dresden, Germany,
vol. 63, pp. 105–114, 6 2011. 9, 18, 19

[44] “Functional mock-up interface specification.” [Online]. Available: https://fmi-standard.org/
docs/3.0-dev/ 9, 52

44

https://link.springer.com/chapter/10.1007/10_2020_142
https://www.tensorflow.org/
https://pytorch.org/
https://onlinelibrary.wiley.com/doi/full/10.1002/biot.201900172
https://onlinelibrary.wiley.com/doi/full/10.1002/cem.1180040203
https://www.ni.com/nl-nl/innovations/white-papers/06/pid-theory-explained.html
https://www.ni.com/nl-nl/innovations/white-papers/06/pid-theory-explained.html
https://www.colan.org/
https://fmi-standard.org/
https://fmi-standard.org/docs/3.0-dev/
https://fmi-standard.org/docs/3.0-dev/

BIBLIOGRAPHY

[45] J. P. Belaud and M. Pons, “Open software architecture for process simulation: The current
status of cape-open standard,” Computer Aided Chemical Engineering, vol. 10, pp. 847–852,
1 2002. 9

[46] “SysML open source project - what is SysML? who created it?” [Online]. Available:
https://sysml.org/ 10

[47] “Ptolemy project home page.” [Online]. Available: https://ptolemy.berkeley.edu/ 10

[48] “OMG system modeling language specification version 1.0.” [Online]. Available: https:
//www.omg.org/spec/SysML/1.0/About-SysML/ 11

[49] IBM, “Engineering systems design rhapsody.” [Online]. Available: https://www.ibm.com/
products/systems-design-rhapsody 11

[50] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “Devops,” IEEE Software, vol. 33, pp.
94–100, 5 2016. 11

[51] J. Hugues, A. Hristosov, J. J. Hudak, and J. Yankel, “TwinOps - DevOps meets
model-based engineering and digital twins for the engineering of CPS,” Proceedings -
23rd ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems, MODELS-C 2020 - Companion Proceedings, p. 668, 10 2020. [Online]. Available:
https://doi.org/10.1145/3417990.3421446 11, 12, 22

[52] D. Preuveneers, W. Joosen, and E. Ilie-Zudor, “Robust digital twin compositions for industry
4.0 smart manufacturing systems,” Proceedings - IEEE International Enterprise Distributed
Object Computing Workshop, EDOCW, vol. 2018-October, pp. 69–78, 11 2018. 12

[53] A. Borghesi, G. D. Modica, P. Bellavista, V. Gowtham, A. Willner, D. Nehls, F. Kintzler,
S. Cejka, S. R. Tisbeni, A. Costantini, M. Galletti, M. Antonacci, and J. C. Ahouangonou,
“Iotwins: Design and implementation of a platform for the management of digital twins in
industrial scenarios,” Proceedings - 21st IEEE/ACM International Symposium on Cluster,
Cloud and Internet Computing, CCGrid 2021, pp. 625–633, 5 2021. 12

[54] M. H. Hung, Y. C. Lin, H. C. Hsiao, C. C. Chen, K. C. Lai, Y. M. Hsieh, H. Tieng, T. H. Tsai,
H. C. Huang, H. C. Yang, and F. T. Cheng, “A novel implementation framework of digital
twins for intelligent manufacturing based on container technology and cloud manufacturing
services,” IEEE Transactions on Automation Science and Engineering, 2022. 12

[55] “Kubernetes.” [Online]. Available: https://kubernetes.io/ 12

[56] S. Tripakis and E. A. Lee, “Fundamental algorithms for system modeling, analysis, and
optimization,” 2014. 13

[57] L. Mears, S. M. Stocks, M. O. Albaek, B. Cassells, G. Sin, and K. V. Gernaey, “A
novel model-based control strategy for aerobic filamentous fungal fed-batch fermentation
processes,” Biotechnology and Bioengineering, vol. 114, pp. 1459–1468, 7 2017. [Online].
Available: https://onlinelibrary.wiley.com/doi/full/10.1002/bit.26274 13

[58] P. C. Lopez, I. A. Udugama, S. T. Thomsen, C. Bayer, H. Junicke, and K. V. Gernaey,
“Promoting the co-utilisation of glucose and xylose in lignocellulosic ethanol fermentations
using a data-driven feed-back controller,” Biotechnology for Biofuels, vol. 13, pp. 1–14,
12 2020. [Online]. Available: https://biotechnologyforbiofuels.biomedcentral.com/articles/
10.1186/s13068-020-01829-2 13

[59] F. Feidl, S. Vogg, M. Wolf, M. Podobnik, C. Ruggeri, N. Ulmer, R. Wälchli,
J. Souquet, H. Broly, A. Butté, and M. Morbidelli, “Process-wide control and
automation of an integrated continuous manufacturing platform for antibodies,”
Biotechnology and Bioengineering, vol. 117, pp. 1367–1380, 5 2020. [Online]. Available:
https://onlinelibrary.wiley.com/doi/full/10.1002/bit.27296 13

45

https://sysml.org/
https://ptolemy.berkeley.edu/
https://www.omg.org/spec/SysML/1.0/About-SysML/
https://www.omg.org/spec/SysML/1.0/About-SysML/
https://www.ibm.com/products/systems-design-rhapsody
https://www.ibm.com/products/systems-design-rhapsody
https://doi.org/10.1145/3417990.3421446
https://kubernetes.io/
https://onlinelibrary.wiley.com/doi/full/10.1002/bit.26274
https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-020-01829-2
https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-020-01829-2
https://onlinelibrary.wiley.com/doi/full/10.1002/bit.27296

BIBLIOGRAPHY

[60] T. Eppinger, G. Longwell, P. Mas, K. Goodheart, U. Badiali, and R. Aglave,
“Increase food production efficiency using the executable digital twin (xdt),” Chemical
Engineering Transactions, vol. 87, pp. 37–42, 7 2021. [Online]. Available: https:
//www.cetjournal.it/index.php/cet/article/view/CET2187007 14

[61] G. Tolksdorf, E. Esche, J. van Baten, and G. Wozny, “Taylor-made modeling
and solution of novel process units by modular cape-open-based flowsheeting,”
Computer Aided Chemical Engineering, vol. 38, pp. 787–792, 2016. [Online]. Available:
http://dx.doi.org/10.1016/B978-0-444-63428-3.50136-3 18

[62] H. Neema, J. Gohl, Z. Lattmann, J. Sztipanovits, G. Karsai, S. Neema, T. Bapty, J. Bat-
teh, H. Tummescheit, and C. Sureshkumar, “Model-based integration platform for fmi co-
simulation and heterogeneous simulations of cyber-physical systems,” Proceedings of the 10th
International Modelica Conference, March 10-12, 2014, Lund, Sweden, vol. 96, pp. 235–245,
3 2014. 18

[63] D. Krone, E. Esche, N. Asprion, M. Skiborowski, and J. U. Repke, “Conceptual design based
on superstructure optimization in gams with accurate thermodynamic models,” Computer
Aided Chemical Engineering, vol. 48, pp. 15–20, 1 2020. 18

[64] E. A. Lee and S. Neuendorffer, “Actor-oriented models for codesign,” Formal
Methods and Models for System Design, pp. 33–56, 2004. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-1-4020-8052-4 2 18

[65] S. Karolius and H. Preisig, “Developing simulation tools for interdisciplinary modelling,”
Proceedings of The 59th Conference on imulation and Modelling (SIMS 59), 26-28 September
2018, Oslo Metropolitan University, Norway, vol. 153, pp. 210–215, 11 2018. 19

[66] ThingsBoard, “ThingsBoard - open-source IoT platform.” [Online]. Available: https:
//thingsboard.io/ 23

[67] OpenModelica, “OMEdit – OpenModelica connection editor.” [Online]. Available:
https://openmodelica.org/doc/OpenModelicaUsersGuide/latest/omedit.html 26

[68] Modelica Association, “System structure and parameterization,” 2019. [Online]. Available:
http://www.opensource.org/licenses/bsd-license.html 26

[69] GitHub, “GitHub Actions documentation.” [Online]. Available: https://docs.github.com/
en/actions 26

[70] Docker Inc, “Docker documentation.” [Online]. Available: https://docs.docker.com/ 26

[71] Apache, “Apache Kafka.” [Online]. Available: https://kafka.apache.org/documentation/ 26,
51

[72] H. Helgers, A. Schmidt, and J. Strube, “Towards autonomous process control—digital twin
for cho cell-based antibody manufacturing using a dynamic metabolic model,” Processes,
vol. 10, 2022. [Online]. Available: https://www.mdpi.com/2227-9717/10/2/316 47

46

https://www.cetjournal.it/index.php/cet/article/view/CET2187007
https://www.cetjournal.it/index.php/cet/article/view/CET2187007
http://dx.doi.org/10.1016/B978-0-444-63428-3.50136-3
https://link.springer.com/chapter/10.1007/978-1-4020-8052-4_2
https://thingsboard.io/
https://thingsboard.io/
https://openmodelica.org/doc/OpenModelicaUsersGuide/latest/omedit.html
http://www.opensource.org/licenses/bsd-license.html
https://docs.github.com/en/actions
https://docs.github.com/en/actions
https://docs.docker.com/
https://kafka.apache.org/documentation/
https://www.mdpi.com/2227-9717/10/2/316

Appendix A

DT workflow in bioprocessing
domains

The 5D model introduced in Section 1.2 provides a reference for entity management in DTs.
Nonetheless, in the field of bioprcessing, there are other aspects at which one often finds important
to inspect. One of them is the maturity of the DT models. For this reason, Udugama et al.
[21] propose a five-step workflow (illustrated in Figure A.1) to implement a DT of bioprocessing
domain. The workflow progresses in increasing order of mathematical complexity and functional
requirements.

Processes 2022, 10, 316 4 of 16

Processes 2022, 10, x FOR PEER REVIEW 3 of 15

Figure 1. Workflow of model validation based on a QbD-oriented approach [37]. In a first step, the
QTPPs are defined. Subsequently, the CQAs are defined and a risk assessment of the influence of
various process parameters on the CQAs is carried out. The risk assessment results in a design space
for the process parameters to be investigated, which can be examined either via experiments or by
means of a rigorous process model. Based on the results, a control strategy is defined, which can be
continuously compared online via PAT with the actual state of the system. Strict implementation of
this strategy allows for continuous process optimization.

In analogy to the experimental development, design-of-experiments (DoE) can also
be used in the model validation. This allows the evaluation of the criticality of the inves-
tigated parameters, and additionally the definition of a design space [38].

The following steps in QbD-based process development deal with the feasibility of a
control strategy [39]. The control strategy lists the critical process parameters and the
CQAs depending on them, which have to be measured continuously in order to achieve
QTTP assurance. Key enabling technologies for continuous monitoring are grouped un-
der the umbrella term process-analytical-technology (PAT). Real time release testing
(RTRT) could be realized based on full QbD-based process development and validated
PAT, eliminating bottlenecks in the production of critical biopharmaceuticals [40]. The
continuous monitoring of process variables by PAT as well as the achieved and docu-
mented process understanding allow the process to be continuously improved based on
new process data [41].

1.2. Model Validation
The feasibility of the continuous monitoring, control, and optimization of the process

described above requires a digital twin of the process. This should be based on the model
used in the process development. The distinction between a predictive process model and
a digital twin is made in the literature on the basis of the model depth and the degree of
information exchange with the physical process. Figure 2 shows the intermediate stages
from a simple steady-state model to a fully fledged digital twin for predictive, model-
based control.

Steady-State Model Dynamic Model Validated Model Digital Shadow Model-Based
Control

Digital Models Digital Twins

0 20 40 60 80 100

0

5

10

15

20

25

C
on

ce
nt

ra
tio

n
(g

/L
)

Time (h)

 Biomass concentration
 Substrate concentration

0 20 40 60 80 100

0

5

10

15

20

25

C
on

ce
nt

ra
tio

n
(g

/L
)

Time (h)

 Biomass concentration
 Substrate concentration

0 20 40 60 80 100

0

5

10

15

20

25 Simulated Biomass (g/L)
 Simulated Substrate (g/L)
 95 % Confidence Interval
 95 % Confidence Interval
 Measured Biomass Conc.
 Measured Substrate Conc.

C
on

ce
nt

ra
tio

n
(g

/L
)

Time (h)

0 20 40 60 80 100

0

5

10

15

20

25

C
on

ce
nt

ra
tio

n
(g

/L
)

Time (h)

 Biomass concentration
 Substrate concentration
 95 % Confidence interval
 95 % Confidence interval

Feed Filtrate Bleed

Human Process
Decisions

0 20 40 60 80 100

0

5

10

15

20

25

C
on

ce
nt

ra
tio

n
(g

/L
)

Time (h)

 Biomass concentration
 Substrate concentration
 95 % Confidence interval
 95 % Confidence interval

Feed Filtrate Bleed

Model Pedictive
Process Control

 Steady-state mass
and energy
balances

 First pass
optimization and
calculation
procedures at
initial design stage

 System behavior
over time

 Identify optimal
operational
conditions

 Scaling up of design
and process control

 Inclusion of more
complex
phenomena, e.g.
feed-back inhibition

 Validation against
process data

 Execution in real-time
based on automated
input through data
link with process

 Closed-loop process
control and on-line
optimization

Parameter
estimates

Parameter
estimates

Process
data for
validation

Real-time
data

Real-time data
& control

Figure 2. Levels of a digital twin, starting from a steady-state-model, over a dynamic model, a
validated model, and a digital shadow to a model-based control [42].

A prerequisite for the use of digital twins in regulated industries in a QbD-based
process is a quantitative and unambiguous validation of the process model [43], as shown
in Figure 3. The procedure for this is described several times in the literature for different
upstream and downstream processes. Here, the specifics of a dynamic metabolic model
for cell cultivation are addressed. First, after defining the model task and application, the
model must be verified. In this case, it must be verified whether the model can reasonably
represent the fundamental processes, such as cell growth, substrate consumption and
product formation. Due to the large number of Monod-based formation and consumption
rates, particular attention must be paid to the correct implementation of stoichiometry. If
the model is plausible according to the assessment of an experienced process engineer, the
sensitivity of the model should be quantified in the next step. For this purpose, DoE can
be used to compare sensitivities from the model prediction with those from the process
development. If the sensitivity is known, a rough design space can be defined, for example
in the form of contour plots, which can also be used for further process optimization. For
use as a digital twin, the model must be accurate and precise. For different states, the
model predictions must match the target variables measured in the process (accuracy). For
robust control, sufficient precision in the prediction is also necessary. The final validation
milestone tests whether the model in the design space under investigation is at least as
precise and accurate as the measurement in the physical process.

Figure A.1: The five-step implementation. This workflow has been adopted in a design of DT for
monoclonal antibodies manufacturing [72].

1. Steady-state model: consisted of a mass and energy balance of the different key com-
pounds in a reaction. These models are mathematical expressions of a process that are not
time-dependent and hence carry no accumulation term.

2. Dynamic model: contains time-based derivative terms on all variables of interest.

47

APPENDIX A. DT WORKFLOW IN BIOPROCESSING DOMAINS

3. Validated model: extends the capabilities of dynamic process models, such that it needs
to be validated against process data obtained from an actual physical process.

4. Digital Shadow: consistent with the definition of Section 1.2; An one-way real-time mon-
itoring model.

5. Digital Twin: consistent with the definition of Section 1.2; A two-way real-time monitoring
and control model.

48

Appendix B

Microbrewery physical workbench

This section presents the workbench setup of the microbrewery DT. All the equipment are settled
in a typical living room. A Raspberry Pi is used for aggregating all sensor data (except for those
come from Airlock, they use a dedicated webhook server which is included as a part of product
supports) before further processing in the DT. Figure B.1 shows the fermenter setup.

Airlock sensor gives
a multitude of
readings, including
bubble, gravity, etc.

Water pipes
for cooling

Tilt sensor
(submerged)
monitors the
temperatures and
gravity inside of
the fermenter.

Figure B.1: The fermenter before (left) and after (right) being filled up with wort.

49

APPENDIX B. MICROBREWERY PHYSICAL WORKBENCH

The other PEs that do not directly attach to the fermenter are installed in the same room,
shown in Figure B.2.

The ambient
sensor measures
room temperature
and humidity

The controller for
the water pump

Figure B.2: More devices at the workbench

Figure B.3 shows the overall network topology of the workbench.

BLE

Airlock
webhook

BLELAN

pump
thermostat

Tilt sensor ambient
sensor

Airlock
sensor

Pump
controller

internet internet

internet

internet

Raspberry Pi Windows PC

Figure B.3: Network topology of the workbench. Airlock sensor has an officially supported cloud
server. The PC can send the control signals to the pump controller via IFTTT, which is a popular
commercial service for home/smart phone automation.

50

Appendix C

Kafka primer

Kafka has been used extensively alongside our frameworks as a data management tool. This section
will briefly introduce the main concepts of Kafka, and the advantages that make it suitable under
DT contexts.

Kafka is considered an event streaming platform [71] that is based on the publish/subscribe
design pattern (illustrated in Figure C.1). It supports three fundamental aspects:

Figure C.1: An example Kafka architecture [71]

� Publish and Subscribe: the “producer” publishes events which can be subscribed by the
“consumer”. The event streams are maintained by the Kafka server such that the producer
and consumer can be agnostic and decoupled to each other.

� Process: referred to the enrichment and transformations of the event data. Processing can
happen in real-time or in retrospect.

� Storage: The event data can be stored for a duration chosen by the user.

What makes Kafka stand out from alternative solutions of similar style (e.g., MQTT) is its
emphasis on durable and persistent messages, which allows data manipulation being done either
when the messages occur or retrospectively. This is important as DTs often deal with both real-
time and historical data in a hybrid fashion. In Kafka the persistent storage can be accessed by
“offset tracking”, a mechanism analogous to the pointer of a data structure.

Another DT aspect Kafka manages to address is the compartmentalization of data semantics
through “topic” assignments. Conventional SQL-based approach depends on active query to data
tables which sits passively in the binary objects. In contrast, Kafka turns the situation in which
the data are proactively partitioned to distinct topics, while the users are ensured that different
data compartments will be independent and readily accessible.

51

Appendix D

FMI revisit

This section explains why the FMUImporter of Ptolemy II has failed to perform the FMUs in
our case study. Our troubleshooting results indicate the root cause is due to the improper calling
sequence of the FMI functions.

It begins with the FMUs used in the microbrewery DT having the property of nonlinear
algebraic loop, that is, when the outputs and inputs of the model have mutual dependencies.
According to the official FMI specification [44], it states that such algebraic loops may be solved
in the Initialization Mode by setting initial values to the involved inputs/outputs, which allows
the solver to iteratively compute them to a convergence—when the interdependent input-output
pair reaches an arbitrarily small difference. Listing D.1 shows the pseudocode of what a valid
calling sequence should look like.

instantiate()
setupExperiment(startTime=startTime, stopTime=stopTime)
enterInitializationMode()
setReal(inputs, values) # setting values to model variables
exitInitializationMode()

Listing D.1: Resolving algebraic loop in the Initialization Mode

However, the internal implementation of FMUImporter does not follow this strictly, as one can
see in Figure D.1, in there the initialization function is terminated before setting the start values.
Consequentially, the output value returns NaN since the FMU could not resolve the algebraic loop.

…

Figure D.1: Incorrect function calling sequence by Ptolemy II

Due to this reason, along with several other limitations of Ptolemy II regarding its supports
for FMI, we decide not to adopt the FMUImporter in the microbrewery DT implementation.

52

Appendix E

Human-in-the-loop control scheme

This section dedicates to showcase the human-in-the-loop concept for S2—Production Control—of
the microbrewery DT. For the context, a water pump is used regulate the fermentation temperature
by circulating the water from a ice-cooled bucket to the fermenter and back, forming a closed
water-cooling circuit.

In the original S2, The models in VEs generate control signals that switch the power of the
water pump in PEs. This operation is fully automated. Alternatively, in the human-in-the-loop
version, the projection of water-cooling heat transfer is informed (via a client terminal as shown in
Figure E.1) to the operator by the models, enabling the operator to make human judgments about
replacing the ice in the bucket in order to alter the effect time of the temperature regulation. The
two control schemes are illustrated Figure E.2.

Figure E.1: The client interface displaying a 30-minute heat predictions of the water-cooling setup

models water pump

operator water bucket

inform

command

replace

water flow

Original S2 version

Human-in-the-loop version

Figure E.2: The original S2 (top) and the human-in-the-loop control scheme (bottom)

The real water circuit setup at the workbench is shown in Figure E.3.

53

APPENDIX E. HUMAN-IN-THE-LOOP CONTROL SCHEME

Water pump

Ice pack

Figure E.3: Water circuit setup

This demonstration describes a proof-of-concept for human-machine integration in a DT, al-
though not being the primary research objective of this study, we recognize its importance for
especially DTs in the bioprocessing domains.

54

	Contents
	List of Figures
	List of Tables
	Introduction
	Context
	Domain overview
	Challenges
	Problem definition
	Project Scope
	Research questions
	Report structure

	Background
	State of the art
	Monitoring
	Modelling
	Controlling

	Related work
	Integration
	Orchestration
	DT in bioprocessing

	Summary

	Methodology and Design
	Architecture of the microbrewery DT
	System context description
	Requirements identification
	Use case description
	Selected frameworks
	TwinOps
	ThingsBoard
	Ptolemy II

	Implementation
	Production Prediction (S1) demonstrations
	S1 in TwinOps
	S1 in ThingsBoard
	S1 in Ptolemy II

	Production Control (S2) demonstrations
	S2 in TwinOps
	S2 in ThingsBoard
	S2 in Ptolemy II

	Evaluation and Discussion
	S1 KPIs evaluation
	S2 KPIs evaluation
	Summary of framework comparison

	Conclusion and Future work
	Conclusion
	Future work

	Bibliography
	Appendix DT workflow in bioprocessing domains
	Appendix Microbrewery physical workbench
	Appendix Kafka primer
	Appendix FMI revisit
	Appendix Human-in-the-loop control scheme

