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Abstract

Novel reconfigurable System-on-Chip (SoC) devices offer combining software with
application-specific hardware accelerators to speed up applications. However, by
mixing user software and user hardware, principal programming abstractions and
system-software commodities are usually lost, since hardware accelerators (1) do
not have execution context—it is typically the programmer who is supposed to
provide it, for each accelerator, (2) do not have virtual memory abstraction—it is
again programmer who shall communicate data from user software space to user
hardware, even if it is usually burdensome (or sometimes impossible!), (3) cannot
invoke system services (e.g., to allocate memory, open files, communicate), and (4)
are not easily portable—they depend mostly on system-level interfacing, although
they logically belong to the application level.

We introduce a unified Operating System (OS) process for codesigned reconfig-
urable applications that provides (1) unified memory abstraction for software and
hardware application parts, (2) execution transfers from software to hardware and
vice versa, thus enabling hardware accelerators to use systems services and callback
other software and hardware functions, and (3) multithreaded execution of multi-
ple software and hardware threads. The unified OS process ensures portability of
codesigned applications, by providing standardised means of interfacing.

Having just-another abstraction layer usually affects performance: we show that
the runtime optimisations in the system layer supporting the unified OS process can
minimise the performance loss and even outperform typical approaches. The unified
OS process also fosters unrestricted automated synthesis of software to hardware,
thus allowing unlimited migration of application components. We demonstrate the
advantages of the unified OS process in practice, for Linux systems running on Xil-
inx Virtex-II Pro and Altera Excalibur reconfigurable devices.

Keywords: HW/SW Codesign, Hardware Accelerators, OS Support, Virtual Mem-
ory, Execution Context for Codesigned Applications, Reconfigurable Computing.
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Résumé

Les systèmes intégrés sur puce (“Systems-on-Chip”) reconfigurables offrent la pos-
sibilité d’accélérer des applications en combinant du logiciel avec des accélérateurs
spécifiques implémentés en matériel. Cependant, la combinaison du logiciel utilisa-
teur avec le matériel utilisateur ne permet plus de bénéficier des abstractions prin-
cipales de programmation et des facilités d’utilisation du système d’exploitation.
En effet, les accélérateurs d’applications implémentés en matériel : (1) n’ont pas
de contexte d’exécution (c’est au programmeur d’assurer ce contexte pour chaque
accélérateur) ; (2) ne peuvent pas profiter de la mémoire virtuelle (c’est à nouveau le
programmeur qui doit transférer les données depuis l’espace de mémoire utilisateur
à l’espace de mémoire matériel, même si c’est pénible voire même impossible, selon
les cas!) ; (3) ne peuvent pas appeler les services du système d’exploitation; et (4)
ne sont pas facilement portable (ils dépendent des interfaces du système, même s’ils
appartiennent sémantiquement au niveau d’application).

Pour les applications conçues en logiciel et en matériel reconfigurable, nous pro-
posons un concept de processus du système d’exploitation unifié. Ce concept per-
met : (1) l’abstraction de mémoire unifiant les parties de l’application logicielles
et matérielles ; (2) les transferts d’exécution du logiciel vers le matériel et vice-
versa, afin que les accélérateurs matériels puissent appeler les services systèmes et
d’autres fonctions logicielles ou matérielles ; et (3) l’exécution de plusieurs processus
légers (“multithreaded execution”) en logiciel et en matériel. De plus, l’utilisation
du processus du système d’exploitation unifié assure la portabilité des applications
conçues partiellement en logiciel et en matériel, offrant ainsi des moyens standard
d’interfaçage.

En général, le fait d’introduire une nouvelle couche d’abstraction influence sig-
nificativement la performance des applications: contrairement à cette attente, nous
montrons que les optimisations en cours d’exécution effectuées dans la couche du
système contenant le processus unifié permettent de minimiser la perte de perfor-
mance et même, dans certain cas, de dépasser les approches typiques. De plus, le
processus unifié rend possible la synthèse automatique et sans restriction du logiciel
jusqu’au matériel ; c’est-à-dire, il est possible de migrer sans restriction les com-
posants de l’application du logiciel vers le matériel ou inversement. Nous démontrons
par des cas pratiques les avantages du processus unifié mentionnés ci-dessus sur un
système Linux s’exécutant sur deux plateformes reconfigurables.

Les mots-clés: Accélérateurs en Matériel, Contexte d’Exécution des Applications
Conçues en Logiciel et en Matériel, Ordinateurs Reconfigurable.
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Chapter 1
Introduction

‘The time has come,’ the Walrus said,
‘To talk of many things:
Of shoes—and ships—and sealing-wax—
Of cabbages—and kings—
And why the sea is boiling hot—
And whether pigs have wings.’

—Lewis Carroll, Through the Lookinglass

THIS thesis shows that an Operating System (OS) providing a unified process con-
text for running codesigned hardware and software applications can (1) simplify

software and hardware interfacing, (2) support advanced programming paradigms,
and (3) enable runtime optimisations and unrestricted automated synthesis; all these
benefits can be achieved for an affordable cost. In this introduction, we first recall
major abstractions that system software provides to software-only user applications;
then, we introduce our contribution, through the discussion on the lack of such ab-
stractions for codesigned applications; finally, we present the organisation of the
thesis.

1.1 User Applications and OS Processes

User applications are rarely run bare on the underlying system hardware. An ab-
straction layer created through system software provides the execution environment,
eases programming, increases portability, improves security, and releases application
programmers from managing and sharing system hardware resources (i.e., proces-
sors, memories, mass storage devices, input/output peripherals) [110, 116]. Such
abstraction is to date either missing or incomplete for codesigned hardware and
software applications. This thesis proposes a solution providing the unified and
complete abstraction for codesigned applications.

A process (or a task) is one of the basic concepts in the OS design: it represents an
instance of a running user program [12, 116, 117]. Multiple processes can coexist and
run in a computer system at the same time; they can share physical resources based
on the OS services but still be screened from each other. Figure 1.1 shows several

1



2 1. INTRODUCTION

system and user processes (software-only) running upon a Unix-like OS [13]. In the
figure, we distinguish the following categories: system hardware, system software,
and user software.

User Process
System
Process

User Process...

U
se

r 
Le

ve
l

K
er

ne
l L

ev
el

Process
Control

System Call Interface

Memory
Management

File System &
Device Drivers

Hardware Control/Interrupt Dispatch

Kernel

User SoftwareSystem Software

Hardware Resources (CPUs, memories, mass storage, I/O)

System Hardware

Figure 1.1: User software and system software running on system hardware. System
software completely screens user software from system hardware.

System hardware represents hardware components of a computer system. The
system hardware may comprise different resource types: computational resources
(Central Processing Units—CPUs), memory resources (including mass storage de-
vices), communication resources (human-computer interfaces, network interfaces),
etc.

System software is responsible for controlling, integrating, and managing the
individual hardware components of a computer system [126]. It runs on a CPU
either as a kernel (i.e., software layer wrapping hardware components of the sys-
tem [110, 116], running in a privileged mode of the CPU execution [4, 81, 105, 107])
or as a system process (running in an unprivileged mode of the CPU execution).

User software represents a user application, written and compiled by computer
system users; it always runs on the CPU in user mode of execution; its use of system
resources is restricted and managed by system software. The user software runs
in the abstract context of an OS process and uses hardware resources exclusively
through system services. The OS system call interface completely hides interfacing
particularities and protects the system hardware from end users.

While running within the context of a process, user applications benefit from
the virtual memory abstraction. Thanks to the system software support, any user
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program has an illusion of having the whole machine for itself: the process con-
text comprises its own memory address space and the machine state. Wherever
the code and data physically reside, user applications see the image of the linear
address space; there is no notion of the physical memory capacity and organisa-
tion. Beside standardising the runtime environment, the OS process provides user
applications with dynamic memory management facilities, through stack and heap
mechanisms [104].

The benefits of user programs using system services are multiple: (1) parallelism
even on uniprocessor systems—if a process is blocked in a system call waiting on
an event, other processes can use the CPU for computation, (2) portability across
different platforms—if architecturally different computer systems support the same
system call interface, one should be able to port simply application code just by
recompiling, (3) abstracted access to hardware—there is no need to know particu-
lar characteristics of hardware devices, (4) optimised resource sharing—the system
software can optimise the resource usage based on the process behaviour. Although
the overall performance of the system shown in Figure 1.1 is often suboptimal, the
benefits of the abstraction are overwhelming.

1.2 Codesigned Applications
in Software-centric Systems

We call codesigned hardware and software applications the applications that have
some of their parts running on CPUs and the rest running in specialised hardware
(i.e., hardware specifically designed to speed up and parallelise the execution of
performance demanding tasks). Codesigned applications blend two models of com-
putation [38]: (1) temporal computation (scarce hardware resources such as ALUs,
shifters, multipliers are reused in time by the instruction sequence being executed);
(2) spatial computation (where abundant hardware resources are wired and deployed
in space—silicon area—to fit more closely the nature of the application, thus max-
imising the processing parallelism). Standard processors (especially those intended
for embedded applications—typically smaller and slower than cutting-edge CPUs
but more power efficient) are often extended with application-specific hardware ac-
celerators [51, 58, 128] to achieve performance goals and meet power constraints.
The approach becomes widely used, especially with recent developments in design-
ing versatile Systems-on-Chip (SoC), the market growth of consumer appliances,
and Field Programmable Gate Arrays (FPGAs) [3, 130] coming of age.

By extending the CPU with the application-specific hardware, codesigned ap-
plications consist of heterogeneous code: (a) the software part consisting of CPU
instructions—typically generated by a compiler from a specification (program) writ-
ten in a high-level programming language, and (b) the hardware part consisting of
hardwired logic or FPGA configuration [38, 133]—typically generated by a synthe-
siser from a specification (description) written in a Hardware Description Language
(HDL). Figure 1.2 shows a heterogeneous-code user program executing within the
context of an OS process. The process executes on the CPU and, at one point
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Figure 1.2: Memory space of mixed software and hardware process. Hardware acceler-
ator does not belong to the context of the software process: it neither shares memory
abstraction with software nor it uses standardised means of execution transfers.

in time, transfers the execution to the hardware accelerator; when the accelerator
finishes the computation, it returns back the control to the software part. The
hardware part of the code does not belong to the process context; there is neither
virtual memory support, nor standardised means of hardware invocation—software
programmers and hardware designers have to solve the interfacing for a particular
architecture they use. This thesis addresses the problem of user hardware missing
the abstractions that are already available to user software.

User hardware—application specific hardware accelerators running on behalf of
user software—is semantically linked to a particular user application, since software
and hardware parts of the application exhibit jointly some specified functionality
and operate on the same data. We may think of FPGAs as a system-level resource
available for implementing both user hardware (the FPGA is a computational re-
source for application-specific accelerators programmed with configuration in place
of the ISA—Instruction Set Architecture—code) and system hardware (the FPGA
is a control-building resource for system devices such as peripheral controllers).

The Y-chart in Figure 1.3 shows the different levels of abstraction—provided
and managed by the OS—visible to software and hardware parts of a traditional
codesigned application running in a software-centric system. User software does not
recognise user hardware as its peer. Abstraction levels (such as virtual memory and
system-service interface) typically available to user software do not exist for user
hardware.

The missing abstraction imposes limits on: (1) interfacing hardware and software
parts of codesigned applications—while writing user software and while designing
user hardware, software programmers and hardware designers have to be aware of
specific interfacing details; (2) available programming paradigms—advanced pro-
gramming concepts such as multithreading assume unified memory space and sys-
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Figure 1.3: Levels of abstraction for traditional codesigned applications in a software-
centric system. User hardware misses system abstractions available to user software.

tem-enforced memory consistency; (3) portability of codesigned applications across
different platforms—it is burdensome for programmers to preserve their hardware-
agnostic, high-level programming approaches, and it is challenging for hardware
designers to write accelerators that can run across different platforms, without any
change in the HDL code; (4) user hardware ability to use results of system services—
if there is no memory abstraction present, this is either cumbersome or even im-
possible (as an example, we can think of dynamic memory allocation). The thesis
proposes a solution to remove the imposed limits.

1.3 Seamless Interfacing of Software and Hardware

Our goal is to provide the missing abstractions for user hardware and bring user
software and user hardware to the same conceptual level. We propose a unified pro-
cess context for heterogeneous-code programs (consisting of user software and user
hardware) to achieve transparent software and hardware interfacing and their seam-
less integration. In this way, by delegating platform-specific tasks to a system-level
virtualisation layer, we also increase the portability of codesigned applications. The
virtualisation layer provides unified memory abstraction for software and hardware
processes and hides platform details from users as much as general-purpose com-
puters do. It consists of an OS extension relying on a system hardware extension
that provides (1) unified virtual memory, (2) execution transfers from software to
hardware and vice versa (such that user hardware becomes able to callback software
and use system services), and (3) multithreaded execution, for user software and
hardware accelerators running within the same OS process. The presence of the
virtualisation layer brings platform-agnostic interfacing and enables (1) dynamic
optimisations of codesigned applications, and (2) unrestricted automated synthesis
from high-level programming languages.
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Figure 1.4: User software and user hardware as peers in a proposed system supporting
codesigned applications. User hardware can run together with user software in the same
execution context.

In contrast to Figure 1.3, Figure 1.4 shows the unified abstraction levels that we
introduce visible by both user software and user hardware components of codesigned
applications. We delegate the system specific tasks to the OS, which makes possi-
ble to extend the incomplete or missing abstraction layers from Figure 1.3 to the
full boxes in Figure 1.4. The extended abstraction minimises the programmer and
designer efforts, when interfacing user software and user hardware of codesigned ap-
plications. It also enables simultaneous execution of user hardware and user software
within the same OS process. Although the introduction of an additional abstraction
usually brings overheads, we show how its presence can be turned into additional
advantages. More importantly, the advantages are achieved without any user inter-
vention. Similar things happen in an OS, where system software screens the user
from a number of runtime optimisations [12, 117].

1.4 Thesis Organisation

Our contribution, starting from a simple idea of unifying the execution context for
software and hardware parts of codesigned applications, provides the first general
evaluation of this concept in practice—on real reconfigurable systems. We show
that—even with the overheads of our mixed software-and-hardware approach—
having unified memory for user software and user hardware is beneficial, in the
terms of simplified hardware design and software programming, while the advanta-
geous performance of spatial execution is only moderately affected. When building
future systems for codesigned applications, designers can immediately rely on our
results and our overhead analysis.

In Chapter 2, we illustrate problems of hardware and software interfacing to
motivate our contribution. In Chapter 3, we present the state-of-the-art and discuss
related hardware and software interfacing approaches, already-proposed OS-based
extensions for reconfigurable applications, and existing portability solutions that in-
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what where

unified memory Chapter 4
execution transfers Chapter 6

multithreading Chapter 7

Table 1.1: Our principal contributions and the corresponding chapters.

crease platform independence for codesigned applications. In the following chapters,
we discuss different aspects of our contribution.

Table 1.1 summarises our principal contributions, by showing what we add (the
first column) to form unified OS processes for running codesigned applications and
where we describe (the second column) the corresponding implementation. Our
contribution (marked in Table 1.1 by the numbers of the corresponding chapters—
Chapter 4, 6, and 7) provides to OS processes running codesigned applications the
abstractions, services, and programming paradigms already available to software-
only processes.

We show an implementation of the unified virtual memory for mixed software
and hardware processes in Chapter 4; there, we also explain the extensions of our im-
plementation that enable dynamic, runtime optimisations to improve performance
transparently to the end user—the virtual memory abstraction we propose not only
introduces overheads but also brings additional advantages. We introduce a perfor-
mance metric for heterogeneous computing in Chapter 5; afterwards, we perform
experimental measurements on reconfigurable SoC platforms to show and discuss
advantages and limited overheads of our unified memory scheme. In Chapter 6, we
introduce the OS extensions supporting user hardware callbacks to user software—
hardware becomes capable of invoking system calls directly; then, we show how these
extensions, together with the unified memory abstraction, enable unrestricted auto-
mated synthesis of hardware accelerators from high-level programming languages.
Having unified memory abstraction between software and hardware is essential for
supporting multithreaded programming paradigm. In Chapter 7, we extend the
virtualisation layer to support multithreading for codesigned applications. Finally,
we conclude the thesis in Chapter 8 and give directions for future work.
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Chapter 2
Missing Abstractions
for Codesigned Applications

Wovon man nicht sprechen kann, darüber muß man schweigen.

What we cannot speak of, we must pass over in silence.
—Ludwig Wittgenstein, Tractatus Logico-Philosophicus

IN this chapter, we motivate the introduction of a unified process context for
running codesigned applications by showing hardware and software interfacing

problems in the case of typical existing architectures. The unified process abstrac-
tion that we introduce releases software programmers and hardware designers from
interfacing problems. We discuss the system requirements to support this abstrac-
tion.

2.1 Process Model of Computation

An OS process—in most of its implementations—provides to a user program run-
ning within its context a model of computation based on the random-access ma-
chine [102]—an abstract machine definition from theoretical computer science. The
model features a CPU (with separate control and processing units) interconnected
to a random-access memory (as shown in Figure 2.1). The CPU executes a program
(a sequence of instructions) and operates on data. The program and the data are
all stored in the random-access memory. The computation performed by the CPU
from Figure 2.1—in its simplest implementation—is purely temporal [38]: hard-
ware resources (such as ALUs) are reused in time by the instruction sequence being
executed.

As Figure 2.1 shows, the process model provides a unique, virtual memory
address space. The architectural improvements of the physical underlying ma-
chine (such as memory hierarchy, multiple issue, pipelined and out-of-order exe-
cution [56]) are typically hidden from ordinary users; at most, only system soft-
ware and compilers—especially in the case of VLIW machines [41]—are concerned.
A memory manager component of the system software (e.g., the Virtual Memory

9
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Processing
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Figure 2.1: Process model of computation: a stored-program computer. The control
unit fetches and executes the program stored in the random access memory. The program
operates on data also stored in the same memory.

Manager—VMM—of the OS) provides the virtual memory abstraction, no matter
what is the organisation of the underlying physical memory.

Figure 2.2 depicts the temporal computation machine from Figure 2.1 extended
with a spatial computation engine—an application-specific hardware accelerator. In
contrast to the CPU from Figure 2.1, we can notice the following differences: (1)
the hardware accelerator employs custom processing units (Data-Flow processing
Units—DFUs) deployed in space and tailored to fit as much as possible a specific
application data-flow; (2) there is no centralised register file in the hardware ac-
celerator but the data local to the computation are stored in distributed registers
corresponding to the data-flow; (3) the number and the size of memory ports are
custom to the application; (4) there is no centralised control, it is rather distributed
across the accelerator; (5) the configuration (in the case of reconfigurable hardware
accelerators) or hardwired logic gates (in the case of ASIC hardware accelerators)
determine the behaviour of the accelerator, not the sequence of programming in-
structions.
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Figure 2.2: Blending temporal and spatial ways of computation. The hardware accel-
erator performs application-specific computation. There is no common address space
between software and hardware. Furthermore, there is no standardised way of execution
transfers.
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Although the machine from Figure 2.2 may run a given application faster than
the temporal machine from Figure 2.1, we notice that the virtual memory abstrac-
tion and the neat programming environment have disappeared: (1) user software
and user hardware do not share the memory address space—it is typically on the
application programmer to arrange the communication and data transfers; (2) there
is no standardised way of execution transfer—it is again on the application pro-
grammer to explicitly control the hardware accelerator; (3) system services are only
partially available to user hardware—programmers may use software wrappers to
call system services on behalf of the user hardware. In the following sections, we
illustrate the software programming and hardware design issues for typical existing
architectures running codesigned applications [17, 72, 112].

2.2 Typical Architectures: Accessing Memory

Having disjoint memory address spaces for user software and user hardware exposes
data communication to users; it is the task of software programmers and hardware
designers to arrange memory transfers from software to hardware address spaces and
vice versa. In this section, we show typical arrangements for hardware accelerator
accesses to the memory.

CPU

MMU

Cache

System Bus

Main
Memory

Local
Memory

Hardware
Accelerator

Slave

Master

FPGA or ASIC

Working
Memory

Figure 2.3: Typical hardware accelerator accessing local memory. While user software
has an ideal image of the memory provided by virtual memory mechanisms, user hardware
generates physical addresses of the local memory. It is the task of the programmer to
arrange the communication between user software and user hardware.

Figure 2.3 shows a possible implementation of the machine from Figure 2.2: the
hardware accelerator (user hardware) directly accesses a local on-chip memory to
perform the computation. The user software, running on the CPU, has a perfect,
linear image of the memory provided by the virtual memory manager of the OS [116].
For speeding up the execution, a system hardware unit called Memory Management
Unit (MMU), and often integrated within the CPU [56] supports the translation of
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virtual memory addresses. In contrast to the user software, the user hardware is
directly interfaced to the system hardware and generates physical memory addresses
for fast accesses to the local memory. The programmer controls the accelerator and
accesses its local memory through a memory mapped region (this assumes using the
mmap system call of the OS).

/* Software-only version */

idea block A[n64], B[n64];

...

idea cipher sw (A, B, n64);

...

/* HW accelerator version accessing local memory */

idea block *buff =

mmap(0, sizeof(idea block), LMEM PHYADDR);

...

data chunk = LMEM SIZE / 2; data ptr = 0;

while (data ptr < n64 * sizeof(idea block)) {
memcpy (buf, A + data ptr, data chunk);

IDEA CTRL REG = START;

while(*IDEA STATUS REG != FINISH);

IDEA STATUS REG = INIT;

memcpy (B + data pt, buf + data chunk, data chunk);

data ptr += data chunk;

}
...

(a) (b)

Figure 2.4: Programming for the IDEA cryptography application: software-only ver-
sion (a) and HW accelerator version (b). Software-only case is neat and clean. The
presence of the hardware accelerator demands programmer activities for controlling the
accelerator, partitioning the data, and scheduling data transfers.

If the memory size is limited, the programmer is responsible for partitioning
the data and scheduling the data transfers. Figure 2.4 compares programming of
the IDEA cryptography application [82] for its software-only and codesigned imple-
mentations. The software-only version (in Figure 2.4a) just invokes the encryption
function by passing the pointers to the input and output IDEA blocks. On the other
side, using the hardware accelerator (in Figure 2.4b) demands partitioning the data
to fit the local memory, transferring the data explicitly from the main memory to
the local memory and the other way around, and iterating until the computation
is finished. Although it is not a difficult task, it is quite burdensome and demands
programmer’s knowledge of the hardware memory access pattern. In principle, the
local memory serves as a software managed cache or scratchpad [113].

Figure 2.5 shows another approach with a hardware accelerator capable of initiat-
ing master transactions on the system bus and directly accessing the main memory.
The user software is responsible for controlling the accelerator and passing the phys-
ical addresses of a fixed memory region, previously reserved by the OS. Since user
hardware generates physical addresses of the main memory, an erroneously-designed
or malicious accelerator may cause nondeterministic behaviour and crashes of the
whole system.

With the assumption that a large amount of the physical memory is available
(which may not be always true, especially in the embedded applications), the pro-
gramming is made simpler (as Figure 2.6b shows for an image processing applica-
tion [15]) and closer to the pure software (shown in Figure 2.6a); there is no more
need to partition and copy data iteratively. However, single accesses to the main
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Figure 2.5: Typical hardware accelerator accessing main memory. While user software
has an ideal image of the memory provided by virtual memory mechanisms, user hardware
generates physical addresses of the main memory. It is the task of the programmer and
hardware designer to arrange the communication properly.

memory are rather expensive. To overcome this drawback, the hardware designer
has to manage and implement burst accesses to the main memory, which imposes
creating buffers and local memory management on the hardware side: the program-
mer’s burden from Figure 2.4b has not disappeared but is just shifted to the hardware
designer ; instead of managing the memory in user software, it becomes the task of
user hardware. In the case of applications that exhibit multiple input and output
data streams (as is the case with the contrast enhancement application from Fig-
ure 2.6b—four input images and one output image), the hardware designer would
have to manage the corresponding number of input and output data buffers—filled
and emptied by burst transfers—and synchronise them with the accelerator.

Our contribution liberates software programmers and hardware designers from
burdensome memory transfers. We delegate the memory interfacing tasks to system
software and system hardware. Chapter 4 explains a novel system architecture
providing unified memory abstraction for user software and user hardware.

Performance Analysis. Figure 2.7 sketches possible execution timelines of
the two presented typical approaches for a given application. The overall Execution
Time (ET ) of the approach with the local memory is the sum of the Copy Time
(CT ) and pure Hardware execution Time (HT ). The overall execution time (ET )
of the approach with the main memory consists of hardware executions interleaved
(or partially overlapped if bursts are supported) with master memory accesses. If
we assume identical computation cores of the hardware accelerators, the pure hard-
ware execution time is the same: the overall performance figure depends on the
effectiveness of memory transfers.

It is debatable which of the two approaches is better. A programmer responsible
for data transfers to the local memory can overlap computation with data transfers
(by dividing the local memory in two halves—the first processed by the hardware and
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/* Software-only version */

unsigned char outimg[imgsize],

inpimg[4][imgsize];

...

contrast enhancement sw

(outimg, inpimg, winsize, imgsize);

...

/* HW accelerator version

accessing main memory */

unsigned char *resimg =

mmap(0, imgsize, RES PHYADDR);

unsigned char *inpimg[i] =

mmap(0, winsize,INPi PHYADDR);

...

memcpy (inpimg[i], cam out[frame i], winsize);

CONTRAST CTRL REG = START;

while(*CONTRAST STATUS REG != FINISH);

CONTRAST STATUS REG = INIT;

memcpy (outimg, resimg, winsize);

...

(a) (b)

Figure 2.6: Programming for the contrast enhancement application: software-only
version (a) and HW accelerator version (b). Software-only case is neat and clean.
The presence of the hardware accelerator demands controlling the accelerator and using
mmap() system call.

the second used for copying) or use a DMA (although this would mean descending
from the user-level to system programming) to speed up the process. A hardware
designer responsible for memory accesses to the main memory can use burst accesses
and hardware-managed buffers to improve the performance. Whichever of the two
approaches an application architect chooses, the memory management tasks, which
are normally delegated to the system, burden the user-level software and hardware:
pushing the management of the memory hierarchy from the programmer toward the
virtual memory manager and the cache controller is the analogous assignment of
the general computer architecture.

2.3 Typical Architectures: Callbacks to Software

There are some cases in which hardware accelerators may want to call back software.
For example, hardware may request software to invoke a system call, service an
exception, demand an external computation, display the accelerator status, or send
a message to some other application part (Chapter 6 shows callbacks to software
required for mapping high-level languages to hardware).

Programmers and designers wanting to support hardware callbacks to software
encounter two principal difficulties: (1) writing additional code to service callbacks
is necessary, and (2) parameter passing conventions are not standardised but rather
chosen in an ad-hoc manner. The additional obstacle is the lack of the unified
memory between software and hardware: if there is no memory abstraction present,
some software return values can be completely useless to hardware (we can take
malloc() function as an example).

While the runtime environment implements a calling sequence—the sequence of
instructions and data arrangements necessary to perform a function call [2]—for
software-only applications (usually through stack management), no such arrange-
ment exists for codesigned applications; the programmer has to write the code that
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Figure 2.7: Execution timelines of typical hardware accelerators. The execution time
of the typical hardware accelerator accessing local memory consists of memory transfer
intervals (in user software) and hardware execution intervals (in user hardware). The
execution time of the typical hardware accelerator accessing main memory consists of
interleaved short memory-access intervals (using system bus transactions) and hardware-
executions intervals. If one assumes the same computation cores, summing up hardware
intervals for both accelerators gives the same amount of time spent in hardware execu-
tion. What matters to the overall performance is the effectiveness of memory accesses.

supports parameter exchange and hardware callbacks to software. Figure 2.8 shows
an example code servicing multiple callback requests generated by a hardware ac-
celerator. After launching the accelerator, the program loops until the FINISH

signal arrives. Depending on a callback identification (FPCOMP_ID for a floating
point computation, MSEND_ID for sending a message) received from the hardware,
the programmer prepares invocation parameters and calls the appropriate software
function. Once the function returns, the programmer passes the return value—
supposedly non-void—to the accelerator and resumes its execution. The nonexis-
tent memory abstraction brings additional complexity (similarly to what Figure 2.4b
shows) to the code.

Our contribution shifts the parameter passing and function invocation tasks
from the user to the system. With the execution transfers supported by the OS
and assuming a unified memory abstraction, hardware accelerators become capa-
ble of using any system service or function from the standard library. Chapter 6
demonstrates how an OS can provide transparent execution transfers for hardware
accelerators invoking software functions, be it system services or library calls.

2.4 Typical Architectures: Multithreading

The lack of unified memory and system-level support for codesigned applications
narrows available programming paradigms. For example, running multithreaded
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/* Typical HW accelerator calling back software */

...

HWACC CTRL REG = START;

while (*HWACC STATUS REG != FINISH) {
switch(*HWACC CBACK ID) {

case FPCOMP ID: ...

fpcomp (p1,p2); ...

HWACC CTRL REG = RESUME;

break;

case MSEND ID: ...

msend (p1)); ...

HWACC CTRL REG = RESUME;

break;

...

default:

... printf ("Unknown callback ID."); ...

break;

}
}
...

Figure 2.8: Servicing hardware accelerator callbacks to software. The programmer
has to examine the callback identifier and, then, to dispatch the execution toward the
corresponding function.

codesigned applications (in software-centric systems) demands additional activities
on the programmer side to perform memory transfers and enforce memory consis-
tency.

Figure 2.9a shows a simple program computing the sum of two vectors, using
a POSIX-like [88] thread management. In the master thread, the programmer de-
clares the vector pointers and the identifier of the slave thread function, initialises
the vectors, and creates the slave thread by invoking the thread creation function
(thread create). Thread creation is similar to a function call, except that the caller
and the callee continue their execution simultaneously (from the programmer’s per-
spective) and perform their work in parallel. After doing some work simultaneously,
the master eventually synchronises with the slave through the join primitive (i.e., it
waits until the slave returns). The two threads share the virtual memory address
space and they use the same memory pointers. Once the computation is finished,
the master thread can immediately access the results through its pointer to the
result vector C.

The fact that the threads share the same virtual memory address space (as
Figure 2.10a indicates) is one of the crucial concepts of multithreading: the threads
share the same memory, while having separate execution stacks.

We suppose now that the designer decides to move the vector-addition slave
thread to hardware execution. Similarly to what we have seen in Section 2.2, with-
out system-level support for threads executed in hardware, the programmer needs
to take explicit care of the communication between the application software and
hardware components. The master thread is unchanged, while a wrapper thread is
now needed in order to control and transfer data to the hardware accelerator which
is now responsible for the computation (Figure 2.9b shows a solution for integration
of the hardware accelerator, using a software wrapper thread). The wrapper thread
initialises the accelerator, copies data to the accelerator local memory, and launches
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/* Master Thread */

void main () {
int *A, *B, *C;

int n;

int thr id;

...

read (A, n);

read (B, n);

thr id = thread create

(add vect, A, B, C, n);

do some work meanwhile();

thread join (thr id);

...

}

/* Slave Thread */

void add vect (int *A, int *B, int *C, int n) {
int i;

for(i = 0; i < n; i++)

C[i] = A[i] + B[i];

}
}

/* Master Thread */

void main () {
int *A, *B, *C;

int n;

int thr id;

...

read (A, n);

read (B, n);

thr id = thread create(add vectors, A, B, C, n);

do some work meanwhile();

thread join (thr id);

...

}

/* Wrapper Thread */

void add vect (int *A, int *B, int *C, int n) {
int d chunk = BUF SIZE / 3;

int *d ptr = 0;

/* initialise accelerator */

write(HWACC CTRL, INIT);

while (d ptr < n) {
copy (A + d ptr, BUF BASE, d chunk);

copy (B + d ptr, BUF BASE + d chunk, d chunk);

/* launch accelerator */

write (HWACC CTRL, ADD VECT);

while () {
if (read(HWACC STATUS) == FINISHED) {

copy (BUF BASE + 2*d chunk,

C + d ptr, d chunk);

break;

} else {
do some work meanwhile();

}
}
d ptr += d chunk;

} ...

}

(a) (b)

Figure 2.9: Multithreaded code for software-only (a) and hardware accelerator version
(b) of codesigned application. In the software-only case, the threads use the same
memory pointers. In the codesigned case, the programmer has to write a wrapper.

the computation. Since the input data does not necessarily fit to the local memory
of the accelerator, the wrapper iteratively copies data back and forth, until all the
data are processed. The hardware accelerator and the software threads do not share
the same memory address space (as Figure 2.10b shows).

For a codesigned application with multiple threads in hardware, the programmer
has to create a wrapper thread per hardware accelerator. Changing the HDL code
of a hardware accelerator and its memory access pattern may require changes in the
wrapper thread—the interfacing details burden software programmers and hardware
designers.

Our contribution enables wrapper-free and access-pattern-independent multi-
threaded execution of user software and user hardware. Chapter 7 presents the
system-level extensions to enforce memory consistency and support synchronisation,
thus enabling multithreaded programming paradigm for codesigned applications.
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Figure 2.10: Multithreading memory perspective for software-only (a) and hardware
accelerator (b) version of the codesigned application. In the software-only case, the
threads share the same memory. In the case with the hardware accelerator, software and
hardware address spaces are separate.

2.5 Unified Process Context for Codesigned Applications

To overcome the interfacing burdens and to enable user hardware invoking system
services and software functions, we propose a system-supported, unified process
context for machines that combine temporal and spatial models of computation (as
Figure 2.11 shows). Having unified processes for codesigned applications simplifies
the interfacing, memory communication, and execution transfers between user soft-
ware and user hardware, thus allowing seamless integration of software and hardware
application parts. The introduced high-level abstraction does not mean abandon-
ing the performance benefits of application-specific execution and custom-memory
architectures (as we will show later in this thesis).

HW Accelerator

Virtual Memory
(Program, Configuration, and Data)

SysCall

...

Memory Processing Control DFU Data Flow processing Unit CU Control (or Configuration) Unit

Configuration
Unit

SysCall System Call Interface

Registers Registers Registers

CU CU

Registers Registers

CU

DFU DFU DFU

DFU DFU

Control
Unit

Register
File

ALU

CPU

Figure 2.11: A heterogeneous-code unified-memory computer. The CPU executes the
ISA code and performs temporal computation; the hardware accelerator performs spatial
computation. Both share unified memory abstraction (where program, configuration,
and data are stored) and use the system support for execution transfers between software
and hardware application parts.
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We propose making hardware accelerators capable of (1) accessing virtual mem-
ory and sharing the address space with software to enable transparent memory
communication and screen user software and user hardware from the interfacing
details, and (2) implementing a common calling sequence with software to support
transparent execution transfers and user hardware callbacks to user software.

CPU

MMU

Cache

System Bus

Main
Memory

Slave or
Master/Slave

Master

FPGA or ASIC

WMU

Local Memory

Hardware
Accelerator

Working
Memory

Figure 2.12: Hardware accelerator capable of accessing virtual memory of user process
through user hardWare memory Management Unit (WMU), in a similar way as user
software does through MMUs.

Figure 2.12 shows an architecture that allows an application-specific hardware
accelerator to run in the process context of their peer software. Not only the unified
process can simplify hardware and software interfacing but it can allow hardware
accelerators to benefit—transparently and without any need for user intervention—
from spatial and temporal locality of memory accesses (a well-known and largely-
exploited concept from general-purpose computing).

Assuming the system-level support for unified processes, programming such a
system is straightforward. In the programming presented in Figure 2.13, whatever
the size of the data to process, the programmer can just pass the data pointers
(A and B) and the number of blocks to encrypt (n64) to the hardware accelerator.
There is no need to partition the data and schedule the transfers, as was the case
for the typical approach shown in Figure 2.4b. It is the responsibility of system
software and system hardware, as it is the case in the general-purpose computing
systems.

On the hardware side, having the virtual memory abstraction allows the hard-
ware designer to write HDL code independent of the memory size and location. It
is the task of the system to ensure that the requested data is brought to the local
memory acting as a cache. There is no need for either burst accesses or explicit
buffering. The action is completely invisible for the hardware designer and, again,
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/* Virtual memory-enabled hardware version */

idea block A[n64], B[n64];

...

idea cipher hw (A, B, n64);

...

Figure 2.13: Programming for the IDEA cryptography application with a virtual-
memory-enabled hardware accelerator. The accelerator is capable of accessing the data
to process through the virtual memory pointers to the user address space.

it is on the system to perform it transparently. In a similar manner, the memory
hierarchy in general-purpose systems is managed transparently to the end user (e.g.,
cache block transfers and virtual address translations).

Figure 2.14 compares excerpts of a VHDL-like code for both the typical and
the virtual-memory-enabled IDEA hardware accelerators. While writing the code
for the typical hardware accelerator, the hardware designer has to (1) use physical
addresses of the local memory, (2) be aware of the memory size, and (3) arrange
the memory partitioning in accordance with the programmer. The code is inher-
ently platform dependent. While writing the code for the virtual-memory-enabled
hardware accelerator, the hardware designer does not care about these tasks. The
accelerator generates virtual memory addresses and the system provides translation
and synchronisation: the user code becomes portable.

-- Initialisation

-- with platform-dependent addresses

ptr a <= LMEM BASE;

ptr b <= LMEM BASE + LMEM SIZE/2;

-- Computation

cycle 1:

-- partition of A[]

LMEM PHYADDR <= ptr a;

LMEM ACCESS <= ’1’;

LMEM WR <= ’0’;

cycle 2:

reg a <= DATAIN;

cycle 3:

reg b := IDEA (reg a);

-- an element in a partition of B[]

LMEM PHYADDR <= ptr b;

DATAOUT <= reg b;

LMEM ACCESS <= ’1’;

LMEM WR <= ’1’;

ptr {a,b} <= ptr {a,b} + 1;

if (ptr b = LMEM BASE + LMEM SIZE) then

-- finished for a data chunk

partial finish ;

else

cycle 1 ;

end if;

-- Initialisation with runtime-dependent

-- virtual memory pointers

ptr a <= A;

ptr b <= B;

i := 0;

-- Computation

cycle 1:

-- object A[]

VMEM VIRTADDR <= ptr a;

VMEM ACCESS <= ’1’;

VMEM WR <= ’0’;

cycle 2:

reg a <= DATAIN;

cycle 3:

reg b := IDEA (reg a);

-- any element in B[]

VMEM VIRTADDR <= ptr b;

DATAOUT <= reg b;

VMEM ACCESS <= ’1’;

VMEM WR <= ’1’;

ptr {a,b},i <= ptr {a,b},i + 1;

if (i = n64) then

-- finished for the entire vectors

finish ;

else

cycle 1 ;

end if;

(a) (b)

Figure 2.14: Platform-dependent (a) and portable (b) VHDL-like code of the hardware
accelerator. The platform dependent code reflects the limited size of the local memory
and uses physical memory addresses. The portable code uses virtual memory addresses
with no notion where the data actually reside.
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System Requirements. To achieve our goal of having unified process context
for codesigned applications, we need (1) system hardware support for user hardware
invocation, virtual address translation, and memory coherence enforcement, and (2)
system software support for steering these activities and enabling the interopera-
tion with user software. In general-purpose computer systems, memory management
units (MMUs) and cache controllers [33, 56] represent the system hardware respon-
sible for virtual address translation and transparent and coherent memory hierarchy.
The OS kernel, in turn, represents the system software responsible for managing the
hardware and for providing the process model of computation to user software. It is
the responsibility of system designers to decide how to partition—between system
software and system hardware—the task of providing the process and memory ab-
stractions. Researchers have explored different approaches [95], many of them being
demonstrated in practice [1, 16, 74].

We choose a mixed software and hardware scheme that employs (1) a hardware
translation engine (the user hardWare memory Management Unit—WMU—from
Figure 2.12) and (2) an OS extension. The scheme slightly trades off performance
for applicability to a wide range of reconfigurable SoCs; there are no hardware
requirements regarding the system-bus capability to support memory coherence.
Our approach is not limited to reconfigurable SoCs, although we primarily target
these devices in our case studies. Following the state-of-the-art (in Chapter 3),
we present details of our architecture, and demonstrate its prevailing benefits and
limited drawbacks in Chapters 4, 5, 6, and 7. We also show that performance is not
significantly affected, despite the inherent overhead of our scheme.
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Chapter 3
State of the Art

Grâce à l’art, au lieu de voir un seul monde, le nôtre, nous le voyons se multiplier et
autant qu’il y a d’artistes originaux, autant nous avons de mondes à notre
disposition, plus différents les uns des autres que ceux qui roulent dans l’infini, et
bien des siècles après qu’est éteint le foyer dont il émanait, qu’il s’appelât
Rembrandt ou Ver Meer, nous envoient encore leur rayon spécial.

—Marcel Proust, Le Temps Retrouvé

BOTH research and industry have tackled a large number of issues from hardware
and software codesign, bus wrappers and memory subsystems for embedded

computing, programming paradigms and OS-support for reconfigurable computing,
and general hardware and software interfacing. In this chapter, we present the
state-of-the-art and distinguish our contribution from related works.

We first show in Section 3.1 how our research relates to industry standardisation
efforts for providing IP-level design reuse and portability, and to research on memory
wrappers and memory subsystems for embedded computing. Then, in Section 3.2,
we compare our work to major approaches of reconfigurable computing for extending
standard CPUs with application-specific hardware accelerators. In the same section
we also discuss related work on parallel programming paradigms for reconfigurable
computing, and we present the status of the research on OSs for reconfigurable
computing. In Section 3.3, we show existing approaches also offering portable and
seamless interfacing between software and hardware. Section 3.4 presents related
work that motivated our user-transparent dynamic optimisation technique. Finally,
Section 3.5 compares existing work on high-level synthesis with our unrestricted
automated approach.

3.1 Memory Wrappers and Subsystems

The increasing need for IP-reuse and component-based system design motivates
abundant industrial and research activities regarding memory abstractions and com-
munication interfaces. On the industry side, many standardisation efforts have fa-
cilitated interconnecting IP blocks that come from different sources. For example,
AMBA [8] and CoreConnect [59] are some well-known industry standards for on-
chip bus interconnections. Going one step further, the Virtual Component Interface

23
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(VCI) is a standard [71] that separates bus-specific interfacing logic from the internal
functionality of IP blocks; in this way, it hides the details of the underlying bus in-
terface from the IP designer. On the research side, many researchers have addressed
memory wrappers and transparent bus interconnections. For example, Lyonnard et
al. [78] and Gharsalli et al. [49] propose automatic generation of application-specific
interfaces and memory wrappers for IP designs. Similarly, Lee and Bergmann [69]
introduce an interfacing layer that automates connecting IP designs to a wide va-
riety of interface architectures. The main originality of our idea, with respect to
the standardisation efforts and wrapper-related works, is not in the abstraction of
the memory interface details (signals, protocols, etc.) between generic producers
and consumers, but in the dynamic allocation of the interfacing memory, buffer, or
communication ports between a processor and a hardware accelerator—that is the
implication of the OS in the process.

Extensive literature exists on the design and allocation of application-specific
memory systems, typically for ASIC end SoC designs (e.g., Catthoor et al. [28]
discuss methodologies for custom memory management, while Panda, Dutt, and
Nicolau [91] survey different memory issues for SoCs). In most cases, the existing
approaches are compiler-based static techniques consisting of (1) design methodolo-
gies for customising the ASIC memory hierarchy for specific applications and (2)
software transformations to exploit better a given memory hierarchy. The latter
techniques are independent from the actual interface we handle, and their proficient
use can enhance the design of hardware accelerators, including virtual-memory-
enabled ones. In contrast to well-established static techniques, a few works have
a dynamic flavour. For example, the work of Leeman et al. [70] on refining dy-
namic memory management for embedded systems is fully complementary to our
approach. Since our system layer—providing the unified memory for software and
hardware—is dynamic in its nature, one could consider using Leeman’s methodology
to improve the dynamic behaviour of our memory allocation process.

In the area of memory systems for reconfigurable computing, Herz et al. [57]
have studied the generation of optimal access patterns for coprocessors within SoC
architectures; their focus is not in abstraction from architectural details and porta-
bility, as it is the case in this thesis. Although we only use simple access patterns for
validation, hardware designers can use any access pattern in conjunction with the
unified memory. In this way, their address generation techniques are complementary
to our work.

3.2 Reconfigurable Computing

In this section, we first relate our architecture with two major architectural ap-
proaches in reconfigurable computing that blend temporal and spatial computation.
Then, we compare our approach to parallel execution in reconfigurable SoCs with
recent developments in multithreading for reconfigurable applications. Finally, we
survey existing OS extensions—complementary to ours—that address system soft-
ware support for reconfigurable applications.
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Figure 3.1: Specialised CPU extended with Reconfigurable Functional Unit (RFU).
The RFU implements a special instruction built by collapsing multiple ISA instructions
into the complex one.

3.2.1 Reconfigurable Accelerator Integration

Two of the most common approaches that mix temporal computation within a CPU
and spatial computation within reconfigurable hardware are: (1) fine-grained, spe-
cialising the CPU data-path with an application-specific reconfigurable functional
unit (RFU in Figure 3.1); and (2) coarse-grained, specialising the application exe-
cution off the CPU, with an application-specific reconfigurable accelerator (acting
like a coprocessor in Figure 3.2).

Past research has demonstrated the feasibility of extending a CPU data-path
with a reconfigurable functional unit (e.g., [10, 98, 132]). The approach is also
well-known and studied in the ASIC world [58]. Such extensions demand creating
new ISA instructions for the given CPU. Apart from the need for automation when
creating the new instructions, using the extensions effectively requires some compiler
modifications (as, for example, Ye et al. [132] demonstrate). Our research does not
address this approach, as we rather target reconfigurable SoCs with nonextensible
CPU cores.

Closer to our concerns are systems adopting the coarse-grained approach—with
hardware accelerators acting like coprocessors. We have shown in Section 2.5 our
target model of computation mixing temporal and spatial computation. Other re-
searchers have also considered using hardware accelerators acting like coprocessors
(e.g., Hauser and Wawrzynek [55] propose GARP—a MIPS processor with a re-
configurable coprocessor; Budiu et al. [23] introduce ASH—a coprocessor-based im-
plementation of spatial computation; Vassiliadis et al. [118] present MOLEN—a
polymorphic processor incorporating general-purpose and custom computing). In
contrast to our work, system-level management of memory hierarchy is out of their
concerns. For example, Budiu et al. [23] put aside maintaining a coherent view of
memory and the OS integration, and rather investigate compilation and synthesis
issues. Callahan, Hauser, and Wawrzynek [25], like Vassiliadis et al. [118], mostly
rely on resolving the interfacing through compiler technology. In contrast, we solve
the interfacing at the system level—no need for compiler customisation—by provid-
ing to user hardware the same abstractions that user software already has. None of
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Figure 3.2: CPU used in tandem with coprocessor-like reconfigurable accelerator. The
accelerator is loosely coupled with the CPU. It implements a special function or a critical-
code section at the coarse-grained level.

these authors addresses the integration of user software and user hardware within
an OS process as we do.

3.2.2 Parallel Execution

Numerous research groups have investigated models of parallel execution for re-
configurable computing systems [51]. For example, Brebner et al. [22] propose a
hardware-centric parallel programming model targeting mainly the design of net-
working applications. Closer to ours is the work of Andrews et al. [5, 6]. They have
suggested a hybrid SW/HW architecture that enables a multithreaded programming
model called hthreads (Figure 3.3 shows components of a system using hthreads).
Beside the platform-independent compilation, the same authors concentrate on ef-
ficient implementation in hardware of primitives for thread synchronisation and
scheduling. As Figure 3.3 illustrates, there are special hardware units for man-
agement (Thread Manager, Thread Scheduler, and CBIS—CPU Bypass Interrupt
Scheduler) and synchronisation (Mutexes and Conditional Variables), but there is
no virtual memory support (hardware threads generate physical addresses of Shared
Memory from Figure 3.3). In contrast to the described approach, our unified OS
process provides a multithreaded programming paradigm with a common virtual
memory for software and hardware threads: the programming paradigm it offers is
exactly the same as in the software-only case.

Nollet et al. [89] have proposed another model for parallel execution in reconfig-
urable SoCs. They introduce at the OS level a Hardware Abstraction Layer (HAL)
responsible for communication between software and hardware (e.g., in Figure 3.4,
the communication between the software task P2 and the hardware task PC goes
through the HAL). Like our virtualisation layer in the OS, the HAL consists of
software and hardware components. Unlike our unified OS process, their solu-
tion assumes a specific communication scheme based on message passing. On the
hardware side, tasks generate no memory addresses but send messages through a
message-passing interface; on the software side, tasks rely on the message-passing
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Figure 3.3: System using hthreads for codesigned applications. The system hardware
provides mechanisms to speed up thread synchronisation (Mutexes and Conditional Vari-
ables) and management (Thread Manager, Thread Scheduler and CBIS). There is no
virtual memory support.

Application Programming Interface (API). Our scheme is more general and assumes
no specific API but allows both user software and user hardware—being within the
context of the same OS process—to access and share any location of practically-
unlimited virtual memory.

P1 PN

P2 P3

ISP

PC

PB

PA

HAL

Communication API

Operating System for Reconfigurable Systems (OS4RS)

...

Figure 3.4: Inter-task communication in the OS4RS system. Software and hardware
tasks rely on a message passing API to communicate. The communication API and
the Hardware Abstraction Layer represent the system layer components (implemented
in software and hardware) responsible for interfacing.

The Cell processor [42, 94], proposed by an industrial alliance [54, 65], pro-
vides high-performance parallel processing on a single chip, with a high-level of
flexibility and configurability. For example, the processor can dynamically link its
coarse-grained processing units to form a temporary pipeline tailored for a partic-
ular application. Figure 3.5 shows the basic architecture of the Cell processor. It
contains the main host processor (a 64-bit version of the PowerPC processor) and
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eight Synergistic Processing Elements (SPEs) for power-efficient (typical superscalar
issues are delegated to software) and high-performance computing. The distinction
between general-purpose (PPE) and special computation blocks (SPEs), together
with their deployment and bus-based interconnection, relates the architecture of
the Cell processor with the architecture of our system—a general-purpose CPU
supporting execution of multiple application-specific hardware accelerators.

LS
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...

Element Interconnect Bus (EIB)
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Figure 3.5: Block diagram of the Cell processor. The processor consists of Power
Processing Element (PPE—based on a PowerPC processor) interconnected with eight
Synergistic Processing Elements (SPEs). The SPEs access their own local address space
(local stores), not belonging to the system address space. Local address space is untrans-
lated, unguarded, and noncoherent. The software has to manage local stores explicitly
by programming the Memory Flow Controllers (MFCs). The MFCs can access the local
stores or the system (off-chip) memory to reach the required data.

Each SPE [42] is a four-way SIMD processor [44] programmed in C or C++
that consists of a processing unit (SXU in Figure 3.5), local memory (named local
store), and the Memory Flow Controller (MFC). In contrast to our architecture,
the local memories of SPEs are out of the system address space, addressable only
by their local SPE or MFC; the software is entirely responsible for the local mem-
ory management (by programming the appropriate MFCs). The approach trades
programming simplicity for achieving better performance. In our case, we delegate
transfer activities to the system level and provide the unified address space for all
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accelerators. We also address improving performance of memory transfers, but in
a user transparent fashion (the end user is completely screened), through runtime
optimisations such as prefetching.

3.2.3 Managing FPGA Resources

Different research groups have recognised the significance of managing FPGA real
estate. Reconfigurable logic is a computational resource that codesigned applica-
tions can use for accelerating their execution. A resource manager determines how
the applications running at the same time use the reconfigurable resource. It also
makes sure to load an accelerator configuration in the reconfigurable logic before
a particular application refers to it. In his work on a virtual hardware OS, Breb-
ner [20, 21] defines swappable logic units and proposes delegating their management
to an OS. The ultimate goal is to screen the end user from the problems introduced
by the finite amount of available reconfigurable logic. Accordingly, Dales [34] has
shown another example of reconfigurable hardware virtualisation. His proposal de-
scribes an architecture relying on the OS to share dynamically the reconfigurable
logic among applications. In his case, the OS supports mapping from the virtual
to the physical resource. The type of virtualisation we introduce addresses the
interfacing between the CPU and the reconfigurable accelerators rather than the
reconfigurable lattice itself.

Dynamic partitioning of the reconfigurable logic and configuration scheduling
are advanced tasks of the resource manager. Walder and Platzner [123] have in-
vestigated online scheduling for block-partitioned reconfigurable devices. Similarly,
Caspi et al. [26] have examined dynamic scheduling for a stream-oriented computa-
tion model. Finally, Fu and Compton [45] have proposed, for a computation model
closest to ours, extending an OS with support for scheduling and runtime bind-
ing of computation kernels implemented in reconfigurable hardware. In our case, we
build the execution environment for reconfigurable hardware accelerators within the
unified OS process, and we do not address partitioning and scheduling. Although,
for the moment, we assume that the configuration of the FPGA does not change
during application lifetime, our future OS extensions may incorporate sophisticated
algorithms proposed by the related work. The existing approaches presented in this
section are orthogonal and complementary to our work—future systems may have
to implement both.

3.3 Hardware and Software Interfacing

Typical solutions [72, 84, 112] for hardware accelerator interfacing with software
expose the communication to the programmer through a limited-size interface mem-
ory mapped to the user space. For example, Leong et al. [72] use a memory slot
interface for communication between the CPU and the hardware accelerator. On
the other side, our approach completely liberates the programmer of communica-
tion details, since the OS does memory transfers implicitly hiding them from the
end user. Caspi et al. [26, 27] and Nollet et al. [89] introduce more sophisticated
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Figure 3.6: Data streaming manager (DSM) for portable codesign. The DSM hides
platform details from both software and hardware. It provides stream-oriented ports for
communication.

interfacing schemes—providing also parallel execution—than the typical existing
solutions offer: (1) Caspi et al. suggest a stream-based programming paradigm for
using multiple hardware nodes logically organised in a data flow; (2) Nollet et al.
propose a task communication scheme based on message passing (already discussed
in Section 3.2.2). These approaches simplify the communication with hardware
accelerators but, assuming a specific API, they are less general than our approach.

An industrial solution from Celoxica [30, 114] offers software API (based on the
C language) and hardware API (based on the Handel-C language) supported by an
intermediate system layer called Data Streaming Manager (DSM from Figure 3.6).
The DSM provides platform-independent and stream-oriented communication be-
tween software and hardware. The approach demands using API-specific data types
(the DSM buffers) and communication primitives (the DSM port read and write op-
erations). The data transfers are exposed to the programmer and the coprocessor
memory accesses are limited to the sequential access pattern. In our approach,
the coprocessor hardware can generate any pattern of virtual memory addresses.
Furthermore, our virtual-memory scheme completely screens the programmer from
data transfers. It is the ultimate role of the unified OS process to provide this
transparency.

A research by Mukherjee et al. [86, 87] related to general-purpose computing
introduces coherent network interfaces—peripherals capable of accessing the main
memory through a cache that supports a cache-coherence protocol (as Figure 3.7
shows). Their goal is to improve performance of application-specific communica-
tion and to simplify programming. Having shared memory—enforced by a cache-
coherence protocol—between the CPU and the network interface avoids the need
for explicit data transfers, even if fast transfer mechanisms (e.g., Blumrich et al. [18]
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Figure 3.7: Network interface with cache on memory bus. This configuration provides
improved performance and simplified programming. The memory bus supports cache
coherence.

and Markatos and Katevenis [80] have developed mechanisms to use DMAs from
user programs) are available at the user level. Mukherjee and Hill [87] plead—
similarly to what we do for hardware accelerators—in favour of considering network
interfaces as standard equipment, not as peripheral add-ons. We extend their ap-
proach, by proposing a general scheme that distinguishes user hardware (having
explicit semantic links with a particular user application) from system hardware
(such as mass storage, network interfaces, reconfigurable logic, being implicitly avail-
able to all user applications). Our approach also eliminates restrictions regarding
virtual-to-physical address translation that the work by Mukherjee et al. assumes.
For example, they assume that the operating system allocates pages containing
network-interface data structures in physically contiguous memory; on the contrary,
our approach has no such restrictions.

Continuing the research on coherent network interfaces, Schoinas and Hill [103]
have investigated address translation mechanisms in network interfaces. They find
that network interfaces need not have hardware lookup structures, as software
schemes are sufficient. However, in our approach we have no specific hardware
accelerator a priori in mind; thus, we decide to use hardware lookup structures
(e.g., the WMU we have shown in Section 2.5 does the translation locally within a
TLB equivalent) to cover general cases. Later on in this thesis we show that the
cost is affordable. Having hardware accelerators with caches on the CPU mem-
ory bus—as is the case with the coherent network interfaces—would definitely be
beneficial; our mixed software and hardware approach introduced in Chapter 4 in-
curs larger overhead because of the page-level granularity (we analyse the overhead
in Section 5.2); nevertheless, we have chosen such an approach since it is easily
applicable to reconfigurable SoCs currently available on the market.
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3.4 Prefetching Techniques

We employ a dynamic prefetching technique (explained in Section 4.4) in the system
abstraction layer supporting unified memory for user software and user hardware.
The technique is motivated by extensive related work on prefetching. In this section,
we mention just few principal researches on prefetching that is applied, or could be
applied, to our approach.

Hardware and software prefetching techniques were originally developed for cache
memories to support different memory access patterns. Jouppi [63] has introduced
stream buffers, as an extension of tag-based prefetching, for simple but effective
prefetching for sequential memory accesses. Following Jouppi’s work, Palacharla
and Kessler [90] have proposed several enhancements for stream buffers. Other
techniques exist that cover nonsequential memory accesses (e.g., Roth, Moshovos,
and Sohi [99] address recursive techniques that can fit pointer-chasing memory ac-
cesses, while Solihin, Lee, and Torrellas [109] show correlation-based prefetching for
user-level threads). In the field of reconfigurable computing, Lange and Koch [66]
have used hardware prefetching techniques for configurable processors.

Apart from caching, researchers have used prefetching techniques for efficient
virtual memory management. For example, Saulsbury, Dahlgren, and Stenström
have relied on a hardware technique to speculatively preload the TLB and avoid
page faults. Similarly, Bala, Kaashoek, and Weihl [14] have investigated a software
technique to prefetch virtual memory pages for user applications.

The prefetching technique that we use within our unified OS process is in
its essence a dynamic software technique with limited hardware support. It is
motivated—but not limited to—by Jouppi’s stream buffers. We have implemented
the dynamic prefetching in such a way that future extensions of our architecture can
easily apply the techniques mentioned in this section. The strongest point of our
dynamic prefetching is the transparency: neither user software nor user hardware
are aware of its presence, the optimisation is completely done at the system level.

3.5 High-level Language Synthesis

A considerable amount of research on synthesis is available in the hardware and soft-
ware codesign literature [37]. We limit the comparison of our unrestricted synthesis
approach only to published results on high-level language synthesis; closer to our
case study shown in Section 6.3, we also consider existing approaches of high-level
synthesis for virtual machines.

Hardware synthesis from high-level programming languages, especially for di-
alects of C and C++, has been a challenging topic for a long time [36, 40]. For
synthesising hardware from languages related to C and C++, researchers, as well
as the industry, have adopted two major approaches: (1) extending the original
language [29, 46, 53, 131] and making it closer to hardware description languages
(e.g., adding language constructs such as concurrency, reactivity, variable bitwidth,
special data types); and (2) restricting the original language [47, 92, 106, 108] to ease
the mapping to the register transfer level (e.g., excluding language constructs such as
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Figure 3.8: Compiler for Application-Specific Hardware (CASH). Using a Static Single
Assignment (SSA) form and an asynchronous back end producing Verilog code, the
compiler synthesises application-specific accelerators from the input C code.

pointers, dynamic allocation, function calls, and recursion). Having our unified OS
process with unified virtual memory and execution transfers, there is no restriction
on the input code; practically, a synthesis flow based on our unified OS process can
treat any high-level language construct. We do not consider special hardware de-
scription languages originating from standard programming languages; we suppose
that the synthesiser is capable of extracting enough parallelism from the original
code; nevertheless, if the programmer decides to write explicitly-parallel code (e.g.,
using a multithreaded programming paradigm), a synthesis flow based on the unified
OS process with multithreading support (we present the multithreading extension
to the unified process in Chapter 7) will be able to handle it as well.

In their research on spatial computation, Budiu et al. [23] use a computation
model closest to ours. Assuming an asynchronous coprocessor-based model with a
monolithic memory shared with the CPU, they develop a compiler flow for gener-
ating application-specific hardware from C-program kernels. On average, the Me-
diabench applications [68] run slower on hardware generated by their flow than on
a superscalar machine [24]. However, they report significant power savings (up to
three orders of magnitude). Figure 3.8 shows their CASH (Compiler for Application-
Specific Hardware) synthesis flow. The flow uses Suif [127] as a front-end to trans-
form the input C program into a control-flow graph. The next pass of the flow
converts the control-flow graph to an extended SSA (Static Single Assignment) in-
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termediate representation (Pegasus in Figure 3.8). After the final optimisations, the
back-end produces the Verilog output for an asynchronous circuit corresponding to
the input C code. Although Budiu et al. ease the translation of C into hardware
by assuming a memory hierarchy like in general-purpose systems, the circuits gen-
erated by CASH cannot handle system calls. In our case, such limitation does not
exist. The unified OS process allows user hardware to invoke system services (as
Section 6.2 shows).

We also consider research on automated synthesis of memory subsystems to be
related to our work. For example, Wutack et al. [129] use a compile-time analysis
to generate distributed memory structures with custom memory managers. On the
contrary, our solution is a general-purpose and a centralised one: memory manage-
ment is performed by the OS at runtime and the virtual memory space is unique for
all accelerators. This, however, does not exclude possible future implementations of
our system with distributed management of the virtual memory.

The unified OS process enables synthesis of high-level language concepts like
memory allocation, function calls, and recursion [122]. We implement a synthesis
flow for virtual machines as a case study. Researchers have used software [115] and
hardware [67, 73] approaches to accelerate code execution in virtual machines. In
the case of Java Virtual Machines (JVMs), industrial solutions exist that support
limited or complete subset of JVM instructions (Java bytecode) directly in hard-
ware [73] (e.g., PicoJava from Sun, Jazelle from ARM, or DeCaf from Aurora VLSI).
The approach improves execution times of Java programs, but it is highly depen-
dent on the used JVM. Other authors have addressed the optimisation problem at
a higher level, by implementing Java methods in reconfigurable hardware [43, 67].
However, these solutions are usually dependent on the underlying reconfigurable
platform and the used JVM. In contrast to both approaches, our solution relies
on the unified OS process for codesigned applications that provides portability and
seamless interfacing of reconfigurable accelerators (critical Java bytecode methods
migrated to hardware). Our approach can be used with any JVM which conforms
to the Java platform standard. Moreover, our extension to the JVM execution en-
vironment allows running of these accelerators without any modification of either
compiled Java bytecode or Java source.



Chapter 4
Virtual Memory
for Hardware Accelerators

And now for something completely different.
—The Announcer, Monthy Python’s Flying Circus

Play it again, Sam.
—Rick Blaine (what he never said), Casablanca

IN this chapter, we show which system software and system hardware extensions
are necessary to provide unified virtual memory for codesigned applications. As

already mentioned in Chapter 2, we choose a mixed software-and-hardware approach
that enables hardware accelerators sharing the virtual memory with user software.
We present our architecture (Section 4.1) and we explain its basic components (sys-
tem hardware in Section 4.2 and system software in Section 4.3). In Section 4.4,
we show simple extensions to our architecture that support system-level runtime
optimisations for codesigned applications.

4.1 System Architecture

Our approach primarily relies on system software and system hardware extensions.
Figure 4.1 shows the system support required by user software and user hard-
ware for cohabiting within the same user process. The Memory Management Unit
(MMU) translates memory addresses generated by the user software—executed on
the CPU—from virtual addresses to physical addresses of the main memory. The
Virtual Memory Manager (VMM) of the OS manages and controls the translation.

We add an MMU equivalent (the WMU introduced in Chapter 2) as a system
hardware support for the translation of virtual memory addresses generated by
the user hardware—executed on the hardware accelerator. We also extend the OS
with a virtual memory manager for hardware accelerators (Virtual Memory for user
hardWare—VMW—manager in Figure 4.1). It manages the translation done by
the WMU (similarly as the VMM does with the MMU) and provides a system call
interface between software and hardware.
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Figure 4.1: Support architecture for unified memory abstraction at the application
level. The OS provides the memory abstraction and manages the translation done by
the MMU and the WMU.

It is worth noticing that the system bus interconnecting the CPU and the hard-
ware accelerator does not have any support for memory coherence (for the sake of
simplicity, Figure 4.1 does not show the real memory hierarchy of the CPU—the
caching is, of course, present). We completely rely on the OS to perform this task;
although this fact may affect system performance (as discussed in the analysis in
Section 5.2), the approach is applicable to a wide range of reconfigurable SoCs.
Furthermore, the experimental results (in Section 5.3) show that the introduced
overhead is acceptable.

4.2 Hardware Interface to Virtual Memory

The WMU translates virtual addresses generated by user hardware to physical ad-
dresses of an on-chip, local memory, acting as a software managed cache (shown in
Figure 4.1). Apart the translation, the WMU decouples the design of application-
specific hardware accelerators from the host platform: it defines a standardised hard-
ware interface for the virtual memory-enabled hardware accelerators. The WMU
also supports parameter exchange between software and hardware, and provides a
way for user hardware to call back software and invoke system calls (as we demon-
strate in Chapter 6).

The WMU—being a platform specific component, as its interfacing depends
on the system bus specification of a particular platform and its implementation
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Figure 4.2: WMU structure and WMU interface to user hardware, local memory,
and system. The WMU contains a Translation Lookaside Buffer (TLB), an exchange
register file (XCHNG RegFile), status (SR), control (CR), and address (AR) registers,
and a block for speculative prefetching (Prefetch Support). The WMU interface toward
the accelerator does not change across different platforms. The interface toward the
rest of the system is platform-specific.

depends on the underlying FPGA architecture—has to be ported once per target
platform. For the moment, we assume having only one WMU per application. We
explore possibilities of having multiple WMUs in Chapter 7. Multiple hardware
accelerators could use the WMU (by reconfiguring the FPGA), but only one at a
time.

Figure 4.2 shows the structure of the WMU with its interfaces toward the hard-
ware accelerator and toward the rest of the system. A virtual memory-enabled
hardware accelerator is interconnected to the WMU. The interface consists of vir-
tual address lines (hwacc_vaddr), data lines (hwacc_din and hwacc_dout), and
control lines (hwacc_control). Platform-specific signals connect the WMU with
the rest of the system. The presence of the Translation Lookaside Buffer (TLB)
inside the WMU emphasises its similarity with a conventional MMU [56]. The TLB
translates the upper part of the address—its most significant bits—issued by the
accelerator to a physical page number of the local memory. The WMU can support
multiple operation modes, i.e., different local memory sizes, page sizes, and number
of pages of the memory. Limitations of the FPGA technology (e.g., lower clock
rates than full-custom integrated circuits having the same feature size) and the de-
sign methodologies different than in the case of ASICs (e.g., inserting intermediate
registers between logic levels facilitates simpler routing and achieving higher clock
frequencies) impact the performance of our TLB design. The TLB does the trans-
lation in multiple cycles. Appendix A gives more details about the WMU interface
showing which signals the hardware designer has to implement when designing a
WMU-compliant hardware accelerator.

Apart from the usual control and status registers (CR, SR), the WMU contains an
exchange register file (for parameter passing between software and hardware, and
vice versa), prefetching support logic (discussed in Section 4.4), and the address
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register (AR) containing the most recent address coming from the accelerator. The
WMU translates virtual addresses requested by the accelerator (similarly as the
MMU does for the user application running on the CPU) to physical addresses of
the local memory divided into pages. If the hardware accelerator tries accessing a
page not present in the local memory, the WMU generates an interrupt and requests
the OS service. On this event, the hardware accelerator is stalled (as the CPU may
be stalled on a cache miss). While the accelerator is stalled, the VMW manager
(1) reads the address register to find out the address that generated the fault, (2)
transfers the corresponding page from the main memory and updates the TLB state
in the WMU, and (3) resumes the accelerator. The optional presence of a DMA in
the system can speed up the memory transfer and relieve the CPU from copying.
Appendix A explains the parameter exchange protocol from the hardware side—
the hardware designer has to follow the protocol for getting the correct invocation
parameters from software. On the other side, Appendix B gives more details on the
parameter exchange protocol from the software programmer viewpoint.

Having the HDL ports of virtual memory-enabled hardware accelerators prede-
fined by the WMU hardware interface (shown in Figure 4.2), the hardware designer
writes the accelerator HDL-code (1) to fetch the function parameters (e.g., point-
ers, data sizes, constants), (2) to access data using virtual memory addresses and
perform the computation, and (3) to return back to the software. Such HDL code
of the accelerator [121] (1) does not embody any detail related to the memory in-
terfacing, (2) has no limit on the size of the data to process, (3) is not concerned
about physical data location. Appendix D shows design-related details of several
virtual memory-enabled hardware accelerators.

4.3 OS Extensions for Virtual Memory

The VMW manager provides two functionalities: (1) a system call to transfer the
execution from user software to user hardware; (2) management functions to respond
to WMU requests. The system call provided to programmers is called sys_hwacc.
It passes data pointers or other parameters to the hardware, initialises the WMU,
launches the accelerator, and puts the calling process in sleep mode. The accelerator
processes the data with no concerns about their location in memory—translation of
generated addresses is performed by the WMU and the VMW manager. Figure 4.3
shows the system call in practice, on the example of the IDEA cryptography applica-
tion. Calling this function is to all practical purposes identical to the pure software
version (shown in Figure 2.4) and fully agnostic of system-related details. The OS
provides transparent dynamic allocation of memory resources (i.e., the shared local
memory) between the processor and the accelerator: now the programmer can avoid
explicit data movements.

The local memory is logically organised in pages, as in typical virtual memory
systems. The data accessed by the hardware are mapped to these pages. The OS
keeps track of the occupied pages and the corresponding objects. Not necessarily all
of the objects processed by the coprocessor reside in the local memory at the same
time. At every point in time, the memory access pattern of the accelerator deter-
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/* Virtual memory-enabled accelerator version */

void idea cipher cp (IDEA block *A, IDEA block *B, int n64) {
param.params no = 3;

param.flags = 0;

param.p[0] = A;

param.p[1] = B;

param.p[2] = n64;

sys hwacc (IDEA HW, &param);

}

Figure 4.3: Calling the IDEA hardware accelerator through the sys hwacc system call.
The programmer initialises the parameter passing structure and invokes the system call.
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Figure 4.4: Basic VMW interrupt handler. Receiving a back-to-user interrupt, the
manager prepares the execution transfer back to user software (either for an accelerator
completion or for a software callback). For a fault interrupt, the manager transfers the
missing page to the local memory.

mines the occupation of the local memory pages. The accelerator can address any
word of the user address space (including stack and heap dynamic memory regions).
However, through memory protection policies, the OS prevents the accelerator from
accessing forbidden memory regions (such as regions containing software code).

Figure 4.4 shows the basic architecture of the VMW interrupt handler. When an
interrupt arrives from the WMU, the manager checks the status register to distin-
guish the two possible requests: (1) page fault—the hardware attempted an access
to an address not currently in the local memory; (2) back to user—the hardware
requests the transfer of the execution back to software.

Page Fault. Since the requested page is not in the local memory, the OS has to
rearrange the current memory mapping, in order to resolve the fault. It may happen
that all pages of the local memory are already in use. In this case, the VMW manager
selects a page for eviction (different replacement policies are possible). The manager
ensures that the user memory reflects correctly the state of the local memory; if the
page selected for eviction is dirty, its contents are copied back to the user-space
memory and the page is anew allocated for the missing data; the missing data page
is scheduled for transfer; the manager part called Fetcher copies the missing data
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from the user-space memory and updates the WMU state; afterward, the OS allows
the WMU to restart the translation and lets the accelerator exit from the stalled
state and continue the execution.

One shall notice a possible overhead—Section 5.2 discusses it further—that may
appear for write faults because of page-level granularity of the local memory. The
overhead is likely to appear for hardware accelerators with stream-based memory
accesses. On a write fault (i.e., the accelerator tries writing to an address not present
in the local memory), the OS has to transfer the whole page to the local memory,
even if future memory accesses of the accelerator may thoroughly overwrite its con-
tents (i.e., write to each single word of the page). This would mean that the time
spent on transferring the page from the main memory may be wasted, just allocating
the page in the local memory—without copying the page for a write fault—could
suffice; however, such a speculative act would require in-advance knowledge that the
accelerator never reads from the page.

Back to User. If such a request arrives from the WMU, the VMW man-
ager checks if the end of the accelerator operation is reported (“Finish?” check
in Figure 4.4). If true, the manager transfers back the execution to user software,
immediately after the sys_hwacc system call in the original program (e.g., it would
be the function return in Figure 4.3). On the contrary, if the arrived request is for
a software callback (i.e., the hardware accelerator invokes a system call or a soft-
ware function), the manager transfers the execution to the corresponding function,
which is out of the normal program execution flow. In Chapter 6, we present how
the VMW manager enables the execution transfer. In both cases, before transfer-
ring the execution back to software, the VMW manager copies back to the user
space all dirty pages currently residing in the local memory. This is a conservative
approach—assuming that the callback function might need any page from the lo-
cal memory–which is not necessarily the most efficient one. A possible optimisation
could delay the transfer of a page to the moment when the callback function accesses
the page.

4.4 Dynamic Optimisations in Abstraction Layer

The involvement of system software in execution steering simplifies hardware and
software interfacing and unloads software programmers and hardware designers from
the burdens of the typical approaches. The presence of the runtime steering in
the system software also allows dynamic optimisations that can improve the per-
formance, in a manner completely transparent for users, without any change in
application source code.

In this section, we present the basic motivation for applying OS-based prefetch
techniques. Afterward, we discuss the details of hardware and software require-
ments to implement a prefetching system for virtual-memory-enabled hardware ac-
celerators. We show the benefits of our approach and showcase several examples of
codesigned applications through experiments in Chapter 5.
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Figure 4.5: Execution timeline of virtual-memory-enabled hardware accelerator (a)
without and (b) with prefetching. Without prefetching, the VMW manager is idle
during the hardware execution, waiting for a memory fault to happen. With prefetching,
the VMW manager is active during the hardware execution, trying to anticipate future
memory accesses and to eliminate memory faults.

4.4.1 Motivation

The OS is not only limited to providing resource sharing and transparent interfacing;
it can survey the execution of the accelerator, optimise communication, and even
adapt the interface dynamically. The VMW manager makes such improvements
possible without any change in the code of the codesigned application. Although
it is intuitively expected that the additional abstraction layer brings overheads, we
show in this thesis that it can also lower execution time by taking advantage of run-
time information. The dynamic optimisations showcase the strength of delegating
the interfacing tasks to the OS.

As opposed to the simple execution model shown in Figure 4.5a, where the main
processor is idle during the hardware accelerator busy time, we explore the scenario
where the idle time is invested into anticipating and supporting future accelerator
execution. With simple hardware support, the OS can predict accelerator memory
accesses, schedule prefetches, and thus decrease memory communication latency.
While the accelerator is running and the VMW manager is idle, the OS scheduler
is free to invoke any available process for execution.

Instead of being idle, the VMW manager could—with a lightweight hardware
support in the WMU to detect hardware memory access patterns—survey the ex-
ecution of the accelerator and anticipate its future requests, thus minimising the
number of page faults. Figure 4.5b shows hardware execution time overlapped with
the VMW page transfers. With some execution-related information obtained from
the WMU, the VMW manager could predict future memory accesses of the accelera-
tor and prefetch virtual memory pages to the local memory accordingly. In the case
of correct predictions, the hardware generates no faults: the OS activity completely
hides the memory communication latency without any action on the user side.
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Figure 4.6: Page access detection in the WMU. On a hit in the Content Addressable
Memory (CAM), 1-hot bit lines will set the corresponding bit in the Access Indicator
Register (AIR). If the mask (Access Monitor Register—AMR) allows the access, the
WMU raises an interrupt. By reading the AIR register, the OS can determine which
pages the accelerator has accessed.

4.4.2 Hardware and Software Extensions

We introduce a simple extension—two 32-bit registers and few tens of logic gates—
to the WMU that supports the detection of a page access. Figure 4.6 contains
the internal organisation of the WMU related to address translation. The VMW
sets the appropriate bits of the Access Monitor Register (AMR), indicating to the
WMU which page accesses to report (Table A.1 from Appendix A shows how many
pages the WMU typically supports). If there is a match in the Content Addressable
Memory (CAM), the 1-hot bit lines are used to set a bit—corresponding to the
accessed page—in the Access Indicator Register (AIR). If the mask in the AMR
allows (i.e., the VMW manager requests monitoring the access event), the WMU
will report the page access by raising an access interrupt. While the access interrupt
is being handled, there is no need to stop the accelerator; the VMW manager and
the accelerator can run in parallel. The OS actions need not be limited to this
simple access detection mechanism. A more sophisticated but still reasonably simple
hardware can be employed in order to support detection of more complex memory
access patterns.

We extend the VMW manager and its interrupt handler (shown in Figure 4.4) to
support the prediction of future memory accesses and speculative prefetching (Fig-
ure 4.7 shows the extensions). The three main design components of the extended
VMW manager [120] are: (1) initialisation and interrupt handling; (2) prediction of
future accesses (Predictor); (3) fetching of pages from main memory (Fetcher). For
a fault interrupt, after scheduling a transfer of a fault page, the OS invokes the pre-
dictor module which predicts future accesses and schedules their transfers. For an
access interrupt, the OS again invokes the predictor module to validate or confute
its past predictions, and schedule future transfers. The predictor uses a simple but
effective—in the case of stream-based memory accesses—prefetching policy [120]
based on the previous work on stream-buffers for cache memories [63, 90].

The Predictor. It attempts to guess future memory accesses and to schedule
page transfers. The only input parameters to the predictor are fault addresses and
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Figure 4.7: Extended VMW manager for speculative transfers. Predictor schedules
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access-based (a stream access confirmed). Both initiate speculatively prefetching a new
page.

accessed-page numbers—there is no information about the state of the hardware
accelerator. The approach is similar to classic prefetching techniques where no in-
formation is available about the instructions issued by the main processor [90] but
only the addresses on the bus. A simple predictor assumes that for each fault a new
stream is detected; thus, it requires a stream buffer allocation (i.e., a circular buffer
built of a pair of local memory pages, as Figure 4.8 illustrates) and it schedules
a speculative prefetch for the virtual page following the missing one. By setting
appropriately the AMR, it ensures that the WMU hardware shall report the first
access to the speculatively-loaded page. When the WMU reports the access, the
interrupt handler invokes the predictor again and, with this information confirming
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the speculation, further prefetches are scheduled in the same fashion. Each specula-
tive prefetch is designated to its corresponding stream buffer. While the accelerator
accesses the active page (A in Figure 4.8), the VMW prefetches the speculative one
(S in Figure 4.8). Ideally, for a correctly-guessed memory access stream and good
timing of the prefetching, only one fault per stream should appear: the prefetching
should prevent all other faults to appear.

Although for the moment we use a simple, software-managed and hardware-
supported, stream-buffer-based technique [63, 90] that handles efficiently stream-
based memory accesses, other techniques that cover nonsequential memory accesses
(e.g., recursive [99], and correlation-based techniques [109]) could also be applied,
with appropriate extensions in the system software (the VMW manager) and system
hardware (the WMU). More importantly, the presented technique is completely
transparent to the user. On the experimental results presented in Chapter 5, we
show the effectiveness of the prefetching technique.



Chapter 5
Unified Memory
Performance and Overheads

Mrki Vuče, podigni brkove,
Da ti vidju toke na prsima,
Da prebrojim zrna od pušakah
Kolika ti toke izlomǐse!

O scowling Vuk, lift your moustache for me
and let me see the breastplates on your chest,
that I may count holes from rifle bullets,
see how many of them broke up your plates!

—Njegoš, The Mountain Wreath

THIS chapter introduces a performance metric for spatial computation which
we use for performance and overhead analysis of existing approaches and our

unified memory scheme. Later on, we use the definition of the performance point-
ers for experimental measurements. The measurements demonstrate the viability
of our approach by showing (1) performance improvements the approach provides
compared to the software-only applications and (2) limited overheads the approach
introduces compared to the existing approaches. The dynamic optimisations in the
system abstraction layer facilitate an additional performance improvement—it is
achieved without any user intervention on the application code.

5.1 Performance Metric for Heterogeneous Computing

Performance analysis of codesigned applications requires having a common metric.
The metrics used for standard processors [50, 56, 83] are just partially applicable
to codesigned applications. Such applications have heterogeneous code consisting of
user software and user hardware—the existing metrics are only applicable to software
parts of codesigned applications. We assume for the moment that the application
execution is sequential—user hardware and user software of a given application do
not execute in parallel—and, later, we release this restriction in Chapter 7.

We do not address here the problem of how to partition the original application.
We assume that the designer has already made the choice of critical code sections

45
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to be mapped to hardware in a way to maximise the overall performance. That is
why, if not otherwise stated, we primarily consider the speedup of the critical code
section (refer to Section E.3 for an example). In general-purpose systems with a
single CPU, we can use the following performance equation for the overall execution
time (ET ) of a software-only critical section [56]:

ETSW = IC × CPI × TCPU , (5.1)

where IC stands for overall instruction count for the software code, CPI is an av-
erage cycles per instruction for the code execution, and TCPU is the clock cycle time
of the CPU (i.e., the CPU clock period). The three parameters of Equation 5.1
are subject to architectural, organisational, and implementation decisions of a CPU
architect. They are interdependent: IC depends on ISA and compiler technology,
CPI on CPU organisation and memory architecture, and TCPU on hardware tech-
nology and CPU organisation.

Recalling the qualitative discussion from Section 2.2, an expression for the overall
execution time of the hardware accelerator1 is

ETHW =
n∑

i=1

HTi +
m∑

i=1

CTi = HT + CT , (5.2)

where CT is the total memory copy time, and HT is the total hardware execution
time. In the general case, the number of hardware execution intervals (n) and copy
intervals (m) are different. Equation 5.2 is convenient for the hardware accelerator
where we can easily separate the time spent for memory transfers and the time
spent in hardware execution (e.g., typical hardware accelerators with local memory
from Figure 2.3 and Figure 2.4b). In Equation 5.2, we neglect the time spent
on the software side to manage the memory transfers, calculate buffer addresses,
and iterate until the computation is over. The experimental results show (as we
present in Section 5.3 of this chapter) that the management time is negligible for
the accelerators with simple memory access patterns.

The CPI parameter (from Equation 5.1) in the case of software gives an insight
regarding the CPU architecture and organisation. There is no equivalent param-
eter in Equation 5.2. To build a performance equation for hardware accelerators
with the form equivalent to Equation 5.1, we introduce a new metric for spatial
computation. We suppose the hardware designer implements the accelerator by
parallelising the original software code of the critical section, thus preserving the
complexity of the critical section and without changing the size of the problem [31].
In this case, the total number of cycles for the accelerator execution depends on
the problem size—the number of data to be processed. This is not immediately
visible from Equation 5.2. Neither can the equation show the effectiveness of the
performed parallelisation: what is the number of data processed per cycle, how does
it relate to the execution support and memory hierarchy? Therefore, we introduce
another metric for spatial and data-flow computation that we base on Cycles Per
Datum (CPD) in place of Cycles Per Instruction (CPI) used for CPUs. The CPD

1We assume that the time for the execution transfers from software to hardware is negligible.
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metric represents the average number of cycles spent by a hardware accelerator for
processing the unit datum (a datum of the unit size; in our discussion, we consider
it a 32-bit memory word). Using the CPD metric, the overall execution time of the
hardware accelerator is

ETHW = DC × CPD × THW , (5.3)

where DC is the data count to be processed (i.e., the problem size) by the hardware
accelerator, expressed in the number of memory words, and THW represents the
hardware clock period—in the general case, THW is different from TCPU . The DC
parameter is not affected by the VLSI (or FPGA) implementation of the critical
section, be it semelective or multilective [101, 102] (i.e., no matter whether the
accelerator reads a particular input data from the local memory only once, which
means it is semelective, or multiple times, which means it is multilective, what
counts is the problem size); however, where the semelectivity and multilectivity of
the accelerator implementation matter is the CPD parameter. We show examples
of analytically calculating CPD from control-flow graphs and an example of its use
in Appendix E.

Apart from convenient speedup estimation, the CPD metric gives an insight
to the accelerator internal organisation: is the execution pipelined or not, what is
the cost (and influence on performance) of memory accesses, what is the number
of memory ports? We can draw parallels between CPI and CPD: (1) a computer
architect strives to get both close to one; (2) having CPI or CPD smaller than one
indicates the presence of multiple issue or multiple memory ports, respectively; (3)
both indicate the presence and efficiency of pipelining.

Similarly to an approach for general-purpose systems used for studying the effects
of memory hierarchies [56], we write Equation 5.3 in a form that clearly separates
the pure hardware execution from the execution support (Section E.2 gives more
details on the separation):

ETHW = DC × (CPDHW + CPDmemory) × THW , (5.4)

where CPDHW is the CPD value for the hardware accelerator assuming the ideal
memory hierarchy (i.e., memory accesses introduce no stalls) and CPDmemory rep-
resents the overhead incurred by the memory transfers. In the following section,
we apply the same equation for calculating the overhead of virtual-memory-enabled
hardware accelerators.

5.2 Overhead Analysis

In Equation 5.2, we have expressed the overall execution time (ETHW ) of a hardware
accelerator. The time components HT and CT stand for pure hardware-execution
time and copy time. In Equation 5.4, we have developed another form of the per-
formance equation; its factors CPDHW and CPDmemory designate cycles per datum
for pure hardware-execution (assuming ideal memory) and for the memory access
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Figure 5.1: The operating system (OS) activities related to the hardware accelerator
execution (User HW). The VMW manager of the OS sleeps (STi time) during the
hardware execution (HTi time). The hardware stalls on a memory fault and waits for
the OS service. After some response time (RTi), the VMW manager reacts on the
interrupt event. It manages the translation data structures (MTi time) and copies the
required page to the local memory (CTi time). After some additional management, it
resumes the hardware execution.

overhead (the price of managing—either in software or hardware—the memory hi-
erarchy).

Based on Equations 5.2 and 5.4, we can express the execution time of virtual-
memory-enabled hardware accelerators. Compared to the typical existing appro-
aches, there are several sources of overhead in our scheme. The first one is related
to the virtual address translation (limitations of the FPGA technology and design
methodologies different than in the case of ASICs result in a TLB which performs
the translation in multiple clock cycles, i.e., 4–6 in our implementations). Thus, the
Hardware execution Time (HT ) of virtual-memory-enabled accelerators is longer
than in the case of accessing the memory by physical addressing:

HTvirtual = t × HTtypical, (5.5)

where t > 1 is the translation overhead. It would be practically one, if the WMUs
were implemented in ASIC, as a standard part of reconfigurable SoCs.

Figure 5.1 shows different time components during the execution of a virtual-
memory-enabled hardware accelerator. The VMW manager in the OS manages
translation data structures (Management Time—MTi) and copies pages from/to
the user memory (Copy Time—CTi). When finished copying, it updates the data
structures MTi), invokes the kernel scheduler, and sleeps (Sleep Time—STi). The
hardware accelerator executes (Hardware Time—HTi) until it finishes or tries ac-
cessing a page not present in the local memory. In both cases, it waits for the OS
action. The OS responds after some time (Response Time—RTi).

Having the OS responsible for the translation management brings MT and RT
(the sums of corresponding MTi and RTi, respectively) as inherent overheads to
the performance equation. Sleep Time (ST = HTvirtual + RT ) represents the time
of the OS idleness, with respect to its actions on behalf of the accelerator. If we
assume the same data transfer technique employed for a virtual-memory-enabled
accelerator and the corresponding typical one, the overall execution time (ET ) of
the virtual-memory-enabled accelerator is

ETvirtual = t × HTtypical + RT︸ ︷︷ ︸
Sleep time (ST )

+ c × CTtypical + MT, (5.6)
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where c > 1 is the page-level granularity overhead (discussed later in this section).
Another way to express the execution time, using the CPD metric is

ETvirtual = DC × (CPDvirtual + CPDvmemory) × THW

= DC × CPDvirtual × THW︸ ︷︷ ︸
t×HTtypical

+ DC × CPDvmemory × THW︸ ︷︷ ︸
c×CTtypical+MT+RT

, (5.7)

from where we can write:

CPDvirtual = t × CPDtypical , (5.8)

and

CPDvmemory =

(
c +

MT + RT

CTtypical

)
× CPDmemory , (5.9)

to express explicitly the overheads of our approach.

Thinking in the spirit of Equation E.4 from Section E.2, one can notice that the
proposed approach increases the miss rate (by having pages typically smaller than
data partition sizes specified explicitly by the programmer) and the miss penalty (by
incurring the response time, the management time, and the page-level granularity).

Figure 5.2 explains the overhead of the page-level granularity. In contrast to
typical approaches, not necessarily all of the transferred data are used by the accel-
erator (in the extreme case, as Section 4.3 illustrates for write faults, it may happen
that the accelerator reads none of the transferred data). If we assume that an image
is layered in the memory row by row and the size of the processing window is smaller
than size of the image, going from the row i to the row i + 1 of the window means
skipping a certain number of outer pixels. However, having no information of the
exact size of the data to be processed, the VMW has to transfer these pixels along
with the rest of the page to the local memory. The effect is well-known and studied
in the OS and cache related research [60, 93]. To tackle different application require-
ments, our WMU implementation and the VMW manager support different number
of pages and sizes of the local memory (refer to Appendix A and Appendix B).

Despite the incurred overhead, the involvement of system software in execu-
tion steering simplifies hardware and software interfacing and releases software pro-
grammers and hardware designers from the burdens of the typical approaches. As
Section 4.4 shows, the runtime steering in the system software allows dynamic op-
timisations that can improve the performance, in a manner completely transparent
for end users, without any change in application source code.

Figure 5.3 shows details of the OS prefetching activities during the execution
of a virtual-memory-enabled accelerator. If predictions are correct, the accelerator
execution is uninterrupted. In comparison to Figure 5.1, Sleep time (ST ) is shorter
because of the speculative activities of the VMW manager. Furthermore, Copy time
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Figure 5.2: Memory layout of an image. Processing a window region smaller than the
image size imposes the copying overhead because of the page granularity.

(CT ) is overlapped with the hardware execution time (HT ): the prefetching can
hide memory-to-memory copy latency.

Although Equation 5.6 suggests that shorter ST implies faster overall execution,
masking HTtypical out of the equation is not intuitively comprehensible. On the con-
trary, Equation 5.7 featuring the CPD metric sheds more light to the positive effects
of prefetching: we use the same hardware accelerator (with the same CPDvirtual)
as in the case without prefetching, but the runtime optimisation makes the memory
system more efficient (prefetching can improve CPDvmemory), lowering the influence
of the inherent overheads (such as page-level granularity). We show the benefits of
our approach and apply the developed metric through experiments in Section 5.3.

CT1

Exec - HT1

MT1MT1 MT2

RT1

MT2

Exec - HT2

CT2 MT3

RT2

MT3CT3
ST2

MT4

RT3

MT4CT4
ST3

Exec - HT3 ...

...OS

User HW

Figure 5.3: The operating system (OS) activities related to the hardware accelerator
execution (User HW). Instead of sleeping, the VMW can fetch in advance pages that
may be used by the accelerator.
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5.3 Experimental Results

We have implemented two different VMW systems—based on Altera (Excalibur se-
ries, EPXA1 device [3], with a 133MHz ARM processor) and Xilinx (Virtex-II Pro
series, XC2VP30 device [130], with a 300MHz PowerPC processor) reconfigurable
devices—with several applications running on them. In this section we present the
results for the IDEA cryptography application [82] and the ADPCM voice decoder
application [68]. Both applications exercise sequential memory accesses (with one
input and one output data stream) within their critical code sections. Chapter 6 and
Chapter 7 give additional examples, also showing measurement results for applica-
tions with different access patterns, such as processing a window within an image
(recall Figure 5.2).

The IDEA algorithm consists of eight rounds of the core transformation followed
by the output transformation. When designing the coprocessor, the eight rounds can
be “unrolled” a certain number of times, depending on the available reconfigurable
logic resources. The computation of a round contains four multiplications, four
additions, and several XOR operations. The output transformation consists of two
multiplications and two additions. The algorithm exhibits parallelism exploitable
by hardware implementation. The ADPCM decoder is simpler and exhibits less
parallelism. It produces four times more data than it consumes—one input page
produces four output pages.

We have developed the VMW manager as a Linux kernel module and ported it
to both platforms. The WMU is designed in VHDL to be synthesised onto FPGA
together with a hardware accelerator. Because of the limitations of the FPGA
technology, the virtual-to-physical address translation is performed in multiple cy-
cles (4–6 cycles depending on the implementation). We give more details on the
reconfigurable platforms we used in Appendix C.

5.3.1 Typical Data Sizes

Figure 5.4 and 5.5 show execution times of the IDEA and ADPCM applications (run-
ning on the Altera-based board) for typical input data sizes. The VMW-based ver-
sions (with and without prefetching) of the applications achieve significant speedup
(especially with prefetching) compared to the software cases, while the overhead is
limited compared to the typical accelerators (in the category of accelerators access-
ing the local memory, as discussed in Section 2.2).

We measure three components (discussed in Section 5.1) for the typical accelera-
tor: (1) CTtypical, time to copy the exact amount of data for processing; (2) HTtypical,
time to perform the computation in hardware; and (3) MTtypical, time to update
the pointers and iterate until completion—the experiments show that MTtypical is
negligible for typical hardware accelerators. Also, we measure three components
(discussed in Section 5.2) for the virtual-memory-enabled accelerators: (1) CT ; (2)
ST ; and (3) MT . ST consists of the hardware time for executing a virtual-memory-
enabled accelerator plus the OS response time (RT ). The OS response time is not
present when programming the typical accelerator like in Figure 2.4b; the software
part of the application is busy waiting for the accelerator to finish; the program
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Figure 5.5: ADPCM decoder execution times for different input data sizes. The figure
compares the performance of a pure software with hardware-accelerated versions of the
ADPCM decoder.

The cost of managing higher abstraction (represented by MT ) goes up to 15% of
the total execution time, which is acceptable. Current inefficient implementation of
the WMU in FPGA (represented by the difference between HTtypical and HTvirtual)
results in about 20% longer execution in the VMW case (t ≈ 1.2). Fortunately,
this overhead can be reduced by implementing the WMU as a standard VLSI part
on a SoC (exactly as it is the case with the MMUs) or by pipelining the WMU
translation. The copy overhead c expressed in Equation 5.6 causes the difference
between copy times of the typical and virtual-memory-enabled accelerator.

A significant amount of time is spent in copying to/from the local memory, to
which compulsory misses contribute a considerable part and would be unavoidable
even if no virtualisation was applied. In the cases with no prefetching, for both
IDEA and ADPCM virtual-memory-enabled accelerators, when the data set size
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grows, capacity misses appear (e.g., from 1024 blocks onwards in the case of IDEA).
Additional time is spent in the OS for management, but the speedup is only moder-
ately affected. Besides capacity misses, the ADPCM decoder also exhibits conflict
misses: the simple policy used by the VMW manager for page replacement can-
not handle its specific memory access pattern (prefetching eliminates these conflict
misses—observing Figure 5.5 shows that the copy times are lower with prefetching).

Figures 5.4 and 5.5 also show that a dynamic optimisation like prefetching short-
ens execution times and increases the obtained speedup. Prefetching reduces the
number of page faults by allowing processor and accelerator execution to overlap.
Although running at the same speed, in the prefetching case, the ADPCM decode
accelerator finishes its task almost twice as fast compared to the nonprefetching case.
As Figure 5.3 indicates, the sleep time decreases because of the VMW manager that
now handles access requests in parallel with the accelerator execution. Counterin-
tuitively, the management time slightly decreases: the number of fault-originated
interrupts is dramatically lower (e.g., in Figure 5.11, in the case of 32KB input data
size it goes down from 48 to only 2). Meanwhile, multiple access-originated inter-
rupts (generated as Figure 4.6 explains) may appear within a relatively short time
interval (e.g., two streams usually cross the page boundary at about the same time)
and the VMW manager services them at the same cost. This is not the case for the
faults. For a fault to appear, the previous fault needs to be already serviced.

Another remark related to the ADPCM decoder is the following: since the VMW
manager in the nonprefetching case uses a simple FIFO policy for page eviction, it
may happen that a page still being used gets evicted; this will cause an additional
fault and, consequently, the manager will need to transfer the page from the main
memory once again, before the accelerator continues the execution. On the other
hand, the prefetching approach with stream-buffer allocation is less sensitive to the
applied page eviction policy because the VMW manager allocates distinct stream-
buffers for input and output streams.

We stress once more that the experiments are performed by simply changing
the input data size, without any need to modify either the application code, or
the accelerator design. In particular, no modifications are needed even for datasets
which cannot be stored at once in the physically available local memory: the VMW
manager takes care of partitioning and copying transparently in such case.

CPD Discussion. From the measurements and from Equation 5.7, we can
determine CPDvirtual and CPDvmemory. For example, for the IDEA hardware ac-
celerator we find CPDvirtual = 24.4 and CPDvmemory = 14.5. The overall CPD
is CPDvirtual + CPDvmemory = 38.9, from where we remark a significant impact
of the CPDvmemory parameter to the performance (the equivalent of almost 15 cy-
cles per datum is spent in memory related operations). On the other hand, the
CPDvirtual parameter obtained from the measurements closely corresponds to ana-
lytically computed value (the calculation in Appendix E gives CPDvirtual = 24.7).
The prefetching in the system layer supporting unified memory significantly im-
proves the memory related overhead giving CPDvmemory = 0.9 and CPD = 25.3.

The virtual-memory-enabled accelerator suffers from slow translation of virtual
memory addresses, because of the current WMU implementation in FPGA (it needs
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4–6 cycles for translating a memory address present in the local memory). We can
use the CPD metric to estimate the accelerator performance with the ideal WMU
(one cycle per successful translation). In this case (as Section E.1 shows), the CPD
number for the accelerator is CPDvirtual = 18.6. The memory access pattern of
the accelerator does not change, since we do not alter the memory interface. Thus,
we have the same CPD number for the memory overhead CPDvmemory = 14.5. If
we assume DC = 16384 (meaning 8192 input IDEA blocks read through a 32-bit
memory port) and THW = 42ns (for the accelerator running at 24MHz), we can
write the performance equation for the IDEA accelerator with the ideal WMU and
without prefetching:

ETimproved = DC × (CPDvirtual + CPDvmemory) × THW

= 16384 × (18.7 + 14.5) × 42ns

≈ 22.7ms, (5.10)

or, for the accelerator with prefetching:

ETpref.improved = DC × (CPDvirtual + CPDvmemory) × THW

= 16384 × (18.7 + 0.9) × 42ns

≈ 13.4ms, (5.11)

which would be even faster than the appropriate typical accelerator. Of course, a
software programmer and a hardware designer of the typical accelerator could ar-
range prefetching by hand modifications of the code—thus introducing additional
design complexity—to achieve superior performance. The point here is that the
virtual-memory-enabled hardware accelerator can achieve the performance improve-
ment without any effort on the side of the programmer and hardware designer.

Similarly to the previous estimation, we can use the CPD metric for estimat-
ing execution times of an improved version of the IDEA accelerator (the available
space in the Altera device limits the performance of the current implementation;
we can improve the accelerator by assuming its implementation on a bigger device,
thus exploiting more aggressively the available parallelism) with CPDvirtual = 8
(one of the examples from Section E.1 shows the CPD calculation for the IDEA
accelerator with completely unrolled computation). Since the memory access pat-
tern of the improved accelerator does not change, we can again use Equation 5.7
(having values for CPDvirtual = 8 and CPDvmemory = 14.5) to obtain the execu-
tion time ETimproved ≈ 15.5ms of the improved accelerator without prefetching.
Also, we can estimate (with CPDvirtual = 8 and CPDvmemory = 0.9) the execution
time ETpref.improved ≈ 6.1ms of the improved accelerator with prefetching. The
introduced CPD metric proved a convenient mean for estimation and comparison
between different implementations of functionally-equivalent hardware accelerators.
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5.3.2 Small Input Data

Although not likely in practice, using the accelerated applications with small in-
put data sizes gives us better insight about the overhead of the page-level memory
granularity. While the typical solution always copies the exact amount of data to
process, the virtualisation layer always copies entire local memory pages. Figure 5.6
compares speedups (for the Altera-based board) of the typical and VMW-based
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Figure 5.6: Speedup (relative to pure SW) for small input data sizes.

IDEA accelerators, in the case of small input data sizes. While the typical accelera-
tor achieves speedups quite early, the VMW-based solution lags behind. The typical
solution has no overhead of copying entire pages into the local memory.

Figure 5.7 and 5.8 explain the sources of the overhead. The execution times of the
typical IDEA accelerator with no virtualisation present for input data sizes relative
to a 2KB page can be seen in Figure 5.7. Again, the three time-components—their
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Figure 5.7: Typical accelerator execution times compared to pure software for small
input data sizes. The programmer transfers exactly the required amount of data to/from
the local memory—Copy Time (CT) grows linearly, but rather slowly, with the input data
size.

corresponding lines in Figure 5.7 graphically stacked starting from CT—contribute
to the overall execution time of the typical hardware accelerator. Copy time and
hardware time grow linearly with the input data size, while the management time
is negligible.
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Figure 5.8: VMW-based accelerator execution times compared to pure software for
small input data sizes. The VMW manager always transfers pages—Copy Time (CT)
is constant except for a short-interval drop caused by landing of the input and output
data onto the same page.

Figure 5.8 shows the execution times of the VMW-based IDEA accelerator for
input data sizes relative to a 2KB page. The three time components—also graphi-
cally stacked—contribute to the overall execution time (as Figure 5.1 shows). The
copy overhead degrades performance of the VMW-based solution: the size of data
to process is much smaller than the size of local memory pages (2KB per page in this
experiment). In the particular case, only for input data sizes of 0.05 or larger, the
VMW-based accelerator becomes faster than the software implementation. Copy
time is constant (except for a short-interval drop), and management time is larger
than in the typical accelerator case. The drop of copy time appears because of the
fact that the two objects—memory for the input and output data that is allocated
by malloc on the heap—do not necessarily occupy consecutive memory regions. If
they happen to be in the same page (as it is the case for input data sizes between
0.06 and 0.13) the copy time is shorter.

5.3.3 Different Number of Memory Pages

Having multiple WMU operation modes allows the VMW to fit accelerators with
different memory access patterns. Except for some extreme values, changing the
WMU operating modes does not influence performance dramatically (as Figure 5.9
and Figure 5.10 show for the ADPCM application and the IDEA application, re-
spectively, running on the Altera-based board).

As expected, MT increases with the number of pages (larger data structures are
managed), while CT is almost constant except for the thrashing effect (the pages are
just swapped in and out) and for the ADPCM decoder (its memory behaviour and
the simple allocation policy trigger conflict misses which require some additional
transfers).

Increasing the number of pages (i.e., the fixed-size local memory is divided into
smaller pages) for the same input data size increases the number of faults (Faults
NP in Figure 5.11). However, prefetching in the VMW keeps the number of faults
(Faults P) low and constant (except for having only two VMW pages, when memory
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Figure 5.10: IDEA execution times for different number of local memory pages (the
input size is 8192 IDEA blocks).

thrashing appears—also visible in Figures 5.9 and 5.10). For smaller page sizes
(i.e., local memory contains more pages), manage and copy time intervals become
comparable to the hardware execution intervals: late faults—less costly than regular
ones—appear (a fault is “late” when the WMU reports a fault while the missing
page is already being prefetched by the VMW).

5.3.4 Area Overhead

Table 5.1 shows the complexity of the WMU in terms of occupied FPGA resources
(logic cells and memory blocks), for the Altera Excalibur device (EPXA1). The
overhead does not include cost of the local memory (recall Figure 4.2 in Section 4.2)
as this memory is necessary even without virtualisation with the WMU. Although
the Altera device that we use is the smallest in its family, the WMU area overhead
is acceptable (not more than one fifth of the EPXA1 resources are used). The area
overhead would be practically null, if the WMU were implemented in ASIC, as it is
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Figure 5.11: ADPCM decoder faults with (P) and without (NP) prefetching.

Block Number Device WMU Fraction
Type of Units Occupancy IDEA ADPCM
LC 576 14% 16% 48%

MEM 5 19% 45% 83%

Table 5.1: WMU area overhead. Usage of FPGA resources (i.e., logic cells—LC, and
memory blocks—MEM) are shown for the Altera EPXA1 device (in number of units
and percentage of the device occupancy). The IDEA and ADPCM columns show what
fraction of the overall accelerator designs (virtual-memory-enabled) is occupied by the
WMU.

the case with MMUs. Furthermore, having the WMU implemented in ASIC would
decrease the execution time.

5.3.5 Results Summary

Figure 5.12 shows execution times for the IDEA application running on two dif-
ferent platforms (the Altera-based with Excalibur EPXA1 device, and the Xilinx-
based with Virtex-II Pro XC2VP30 device). Our intention is not to compare the
platforms, but to emphasize that running the experiments on a different platform
implies only porting the WMU hardware and the VMW software, and does not re-
quire any changes to the accelerator HDL nor to the application C code. VMW-based
applications can achieve significant performance advantage over the pure software,
in spite of the introduced virtualisation. The overhead can be reduced, especially
with the address translation done in VLSI (as it is done for MMUs). Dynamic
optimisations can offer additional speedups with no change on the application side.

In the case of the Xilinx platform, both VMW-based accelerators (without and
with prefetching) of the IDEA encryption algorithm run faster than the typical accel-
erator accessing local memory. In spite of highly-optimised C-library functions—and
their kernel equivalents—for memory copy operations (on which the typical solution
relies), using PowerPC for data transfers over the system bus (refer to Appendix C
for platform details) showed to be inefficient. For this reason, the VMW manager
employs—transparently to the end user—a controller for Direct Memory Accesses
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Figure 5.12: Two different platforms (Altera Excalibur-based and Xilinx Virtex-II Pro-
based) run the same application. Results are shown for pure software (ARM, PowerPC),
typical hardware accelerators accessing local memory (Altera, Xilinx), and VMW-based
accelerators, with no prefetching (Altera-NP, Xilinx-NP) and with prefetching (Altera-P,
Xilinx-P) in the VMW.

(DMA) (as Figure 4.2 in Section 4.2 shows). On the other side, the typical solution
has no such support, thus, it directly suffers from the performance drawback. Of
course, the programmer of the typical solution could also use the DMA controller to
improve the performance but, this would require descending to the level of system
programming (e.g., to add the appropriate support in the kernel) or using some of
the existing solutions for user-level DMA (e.g., [80]. In the case of VMW-based
applications, on the contrary, the application-level programmer can always stick to
the simpler programming interface defined by the VMW manager and, at the same
time, benefit from the system-level support for improved performance.

In the following chapters, we present the VMW and WMU extensions (1) sup-
porting transparent execution transfers and hardware callbacks to software (in Chap-
ter 6) and (2) enabling multithreaded execution of user software and user hardware
within the unified OS process (in Chapter 7). In both chapters, we perform and
show results of additional experiments with cryptography and image processing ap-
plications, thus demonstrating unrestricted synthesis of hardware and multithreaded
execution of codesigned applications.
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Chapter 6
System Support
for Execution Transfers

If you wish to make an apple pie from scratch, you must first create the universe.
—Carl Sagan, Cosmos

THE common virtual address space for user software and user hardware simplifies
the interfacing and supports advanced programming paradigms for codesigned

applications. Another essential part of the unified OS process is the support for exe-
cution transfers from user software to user hardware and vice-versa. In this chapter,
we delegate the execution transfer task to the system. Having system software and
system hardware responsible for the execution transfers furthermore simplifies the
software and hardware interfacing. All together with the unified memory for user
software and user hardware, it fosters unconstrained partitioning and software-to-
hardware code migration. We demonstrate how the unified OS process enables
unrestricted automated synthesis of high-level programming languages to hardware.

6.1 Callbacks to Software

We have discussed in Section 2.3, how programmers may use software wrappers to
call back software and system services on behalf of user hardware. Our unified mem-
ory abstraction (introduced in Section 2.5 and implemented in Chapter 4) allows user
hardware to use return results of system calls and standard-library functions. This
would be either burdensome or even impossible without common virtual-memory
address space.

Figure 6.1 and Figure 6.2 illustrate how a hardware accelerator can call back
software, even for sophisticated functions such as heap memory allocation. When
the accelerator calls back the software, the wrapper invokes the appropriate function
and returns the virtual memory pointer back to the accelerator. Execution of the
hardware accelerator is then resumed. When resumed, the accelerator can use the
pointer to the allocated memory without any obstacle: using the pointer to access
the memory initiates the transfer of the accessed data to the local memory of the
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retval = malloc(size)
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Figure 6.1: Memory allocation callback. Since hardware accelerators have unified
memory image with software, using the malloc result is straightforward.

accelerator; were there no unified memory abstraction, such callback would not be
possible.

/* excerpt of a virtualisation library function */

...

struct cp param param; /* parameter exchange structure */

...

sys hwacc (HW ACC, &params); /* accelerator start */

...

while (!params.hwret) { /* wait for callback */

switch(params.cback) { /* choose function to call */

case 1: ... break;

case 2: ... params.retval = malloc (params.p[0]);

sys hwacc (HW ACC RESUME,&params); /* accelerator resume */

... break;

case n:

}
}

Figure 6.2: Supporting malloc callback for hardware accelerators. The library function
receives the callback to hardware and based on the callback identifier calls the appropriate
software function. Once the function returns, it passes the result to the accelerator and
resumes its execution.

Although, in this way, hardware accelerators can practically call any software
function (memory side effects are handled through the VMW manager enforcing
the memory consistency), if there is no automation present in the design flow, it is
still on the programmer to write wrappers and handle the execution transfer to the
called function (including parameter passing). We move these activities to system
software and release the programmer from writing callback wrappers. We explain
the system support within the VMW manager for transparent transfer executions
in the following section.

6.2 Kernel Mediation for Callbacks

The invocation of hardware accelerators goes through the sys hwacc system call
provided by the VMW manager. We extend the VMW manager to support the
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execution transfer in both directions (i.e., we also support user hardware calling back
user software). The execution transfer goes through the OS kernel. We implement
the Application Binary Interface (ABI) for the particular host CPU within the
VMW manager. An ABI [9, 125, 134] defines the calling convention (i.e., calling
sequence—how function arguments are passed to callees and how return values are
retrieved by callers) at the binary machine-instruction level for a CPU family. The
ABI also describes execution transfers from applications to the OS or to libraries.
It is different from an Application Programming Interface (API). While an API
guarantees the source code portability by defining the interface between source code
and the OS and libraries, an ABI guaranties integrating the object code (compiled
source) without changes on systems using a compatible ABI. A high-level language
compiler (more precisely its back-end) implements the ABI for a particular platform.

Calling the sys hwacc system call from a C program ensures, after compilation,
compliance to the target ABI. To achieve seamless integration of software and hard-
ware, we also delegate such responsibility to hardware; calling back software from
a hardware accelerator requires hardware designers (or a synthesiser—a compiler
equivalent on the hardware side) to follow the given ABI. The same would be the
case if we had a programmer writing parts of the application code in assembler; in-
tegrating assembly routines with a high-level language program demands following
the ABI rules. Writing the hardware accelerator code in a hardware description lan-
guage is equivalent to writing in an assembler. If a synthesiser is used, the designer
delegates the ABI interfacing tasks to the automated generation of ABI interfaces.
Having the unified memory between software and hardware allows the designer or
the synthesiser to use the user-space stack for calling sequence and parameter pass-
ing. As it is the practice with CPUs [56] to avoid using the stack (for invoking
functions with small number of parameters) by using general purpose registers or
registers windows, we design the WMU with an exchange register file (as Figure 4.2
shows). We give more details on using the register file for parameter passing in
Appendices A and B.

Apart from hardware accelerators complying to the ABI interface when calling
back software, we need the VMW manager involvement in the execution transfer:
a hardware accelerator cannot just jump in the user software or system call code
directly; the VMW manager performs this task instead. We use a mechanism similar
to UNIX signal handling [76, 117] to implement the task of execution transfer from
hardware to software. Figure 6.3 shows the sequence of the events to call back
software from hardware.

At the system-call entry, the CPU switches the execution mode from the user
mode to a privileged one. This also means changing the memory address space—
user-space memory is no more directly accessible by the kernel, but only through
few special memory-access functions [12, 19]. Changing the memory address space
imposes using a different stack when running in the kernel mode; each process has a
user stack and a kernel stack for user-space and kernel-space executions, respectively.
The first frame allocated on the kernel stack contains the state of all CPU registers
visible to the programmer. In this way, before returning from the system call, the
kernel can recover the original CPU state.
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Figure 6.3: Kernel mediation for hardware accelerators calling back software. The
kernel uses a mechanism similar to UNIX signal handling to fake the regular control-
flow of the program and jump onto a callback function. For this purpose, the kernel
manipulates the user space stack. It puts the recovery code (trampoline) and the
callback address (return addr3) on the user stack to provoke invoking the callback
function transparently to the end user.

After invoking the sys hwacc system call (action ©1 in Figure 6.3), the top of the
user stack contains the return address pointing to the normal program flow (the main
function in Figure 6.3). The VMW manager of the kernel transfers the execution to
the user hardware (action ©2 in Figure 6.3). User hardware starts the execution and
performs the requested computation. When a user hardware callback to software
arrives (action ©3 in Figure 6.3), the user software is blocked on the sys hwacc
system call. The VMW manager prepares the execution transfer back to software:
(a) it copies to the user stack a kernel frame containing the user state of the CPU at
the sys hwacc system call entry; (b) it puts trampoline code [104] on the user stack
and, on the top, the return address pointing to it; (c) it allocates a user frame with
parameters (received from the user hardware) to the callback function (cbackfn())
and puts on the top of the stack the pointer—return address—to the function code.
After the preparations are over, the VMW manager returns from the system call,
changing the execution mode from kernel to user (action ©4 in Figure 6.3); the CPU
jumps to the return address found on the top of the user stack—the callback function
(out of the normal program flow) is launched. When completing its execution, the
callback function returns to the caller; it lands on the return address at the top of
the stack pointing to the trampoline code. The trampoline code provides a mean
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to resume the kernel execution of the VMW manager by calling a special system
call sys resume. The callback function returns to the trampoline code which, in
turn, resumes the kernel execution (action ©5 in Figure 6.3). The VMW manager
is again in charge; it first copies the kernel frame back to the kernel stack (action
©6 in Figure 6.3); then, the VMW manager passes the return value of the callback
function and resumes the execution of the user hardware (action ©7 in Figure 6.3).
In this way, the transparent callback sequence is over and the user hardware can
continue its computation.

The accelerator execution continues toward the next callback to software or the
final completion and return from the sys hwacc call (to the regular return address—
labeled with L1 in Figure 6.3—in the program flow). The programmer does not
need any more to write wrapper code supporting the callbacks (in contrast to Fig-
ure 2.8 and Figure 6.2): it is now the responsibility of the VMW manager. The
unified OS process for codesigned applications now becomes complete having the
support for virtual memory abstraction and arbitrary execution transfers between
heterogeneous application parts. Section 6.3 showcases how the unified OS process
enables the unrestricted automated synthesis of hardware accelerators from high-
level programming languages.

Some Implications. Having virtual-memory-enabled hardware accelerators
and the execution transfers supported by the system, we can imagine hardware-
centric applications (i.e., applications with its main execution thread in user hard-
ware going back to software just for the system and library calls). Such applications
largely use the hardwired logic and sparsely the CPU——at least at the user level.
There could be many possible applications. One could imagine a video monitoring
system with a video encoding engine and a detector, implemented completely in
hardware but connected to a standard computer: a particular event triggers record-
ing; in turn, the accelerator opens a regular file through the appropriate system call
to save the recording. Remembering Figure 1.4 from the introductory chapter, our
extensions have made such a system true: user hardware and user software are now
peers, any of them can dominate in codesigned applications.

6.3 Enabling Unrestricted Automated Synthesis

Abstract language constructs and concepts bring major difficulties for synthesis
of program parts written in high-level programming languages to hardware. Our
goal is to attain unconstrained application partitioning and to be able to synthesise
hardware without any restriction on the input program (unrestricted synthesis). The
major problems are the following: (1) in a general case, memory access behaviour
of a program is not known at synthesis time, thus, it is impossible to schedule
memory transfers—servicing the accelerator accesses—in advance; (2) not all parts
of the program can be efficiently implemented in hardware. In case a program part
to be synthesised to hardware uses an aliased pointer [11], allocates memory on
the heap, calls another function, or happens to call itself recursively, its mapping
becomes more complex. Either additional analyses are required (e.g., either aliasing
analysis [100] or memory partitioning [106]), or the synthesis is to be abandoned.
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Figure 6.4: Handling memory transfers for hardware accelerators: explicit programmer-
scheduled (a) and transparent accelerator-initiated memory transfers (b). Programmer-
initiated memory transfers require explicit knowledge on the memory access pattern of
the accelerator. In the case where the accelerator initiates memory transfers, there is no
such requirement.

The unified OS process for codesigned applications enables unrestricted auto-
mated synthesis from high-level programming languages. The system layer responsi-
ble for providing seamless interfacing and execution transfers fosters mobility of user
code, be it from software to hardware or vice-versa. We apply our approach [119]
within a virtual execution environment, such as Java Virtual Machine (JVM), to
show the synthesis-related advantages of the unified OS process.

The abstraction provided by the unified OS process offers a solution to the
previously-stated synthesis problems. Our primary concern is to support the un-
restricted synthesis and not to explore the challenges of doing it efficiently—it is
a well-known research area [35]. As Chapter 4 shows, the VMW manager allows
dynamic handling of hardware-accelerator memory accesses. Whatever is the mem-
ory access pattern of the user hardware, the manager will ensure that the correct
nonstale data is available to the accelerator. In contrast to the typical architectures
where the programmer explicitly transfers the data to be processed, the VMW per-
forms transparent accelerator-initiated handling of memory accesses (as Figure 6.4
shows) at runtime. Whatever is the memory access pattern, neither programmers
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nor hardware designers need to know anything about. Beside arbitrary memory
accesses, in Section 6.2 we have shown how the VMW manager handles execution
transfers and hardware callbacks to arbitrary software functions. Synthesised accel-
erators running in the unified OS process immediately benefit from dynamic optimi-
sations in the system software and system hardware (as Section 4.4 and Section 5.3
demonstrate).

6.3.1 Synthesis Flow

The unified OS process facilitates unrestricted automated synthesis [39, 122]. Shar-
ing the same virtual memory, dynamically handling accelerator memory accesses,
and having a standardised possibility to callback software enables synthesis of any
Java bytecode method to reconfigurable hardware. Even sophisticated high-level
language concepts such as object creation (recall the malloc example in Section 6.1),
method invocation, and recursion, can be initiated by hardware and handled by the
JVM. The presence of the VMW manager makes software to hardware migration
easier. The migration could even happen dynamically, at runtime. Then, however,
logic synthesis and place and route runtime become a major challenge [79]—these
issues are beyond the scope of this thesis.

Java Bytecode
Configuration File

Graph creator:
CFG, DFG,
Sequencing

Binding &
Scheduling

Code
Generator

VHDL
resources

Compilation

EDA Synthesiser
Place & Route

Synthesis (Vendor Specific)

XML Descriptor File
FPGA Config File

Results

Resource Interconnection
Finite State Machine

Figure 6.5: Automated unrestricted synthesis flow. The flow consists of typical high-
level synthesis passes and the FPGA back end. An intermediate output of the compilation
part is the VHDL description of the input Java method. The final outputs are the FPGA
configuration file and the XML file containing the information on loading the modified
Java class.

Figure 6.5 shows our basic synthesis flow (named Compilation in the figure) [39].
Its inputs are Java bytecode of critical methods and a compiler configuration file.
The flow consists of typical high-level synthesis phases [35] such as: (1) sequencing
graph construction; (2) resource binding and operation scheduling; (3) code con-
struction. The generated VHDL code describes the interconnections between the
resources and the finite state machines resulting from the scheduling step. An EDA
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synthesis tool and the FPGA-vendor back end produce the bitstream file. An addi-
tional output of the flow is the XML descriptor file—specifying which methods are
mapped to the FPGA.

6.3.2 Virtual Machine Integration

We run a JVM within our unified OS process to support transparent interfacing
of software and hardware and to enable invoking the accelerators generated by our
synthesis flow. Using the JNI interface [62] is a typical and JVM-independent way
to extend the JVM. The JNI defines, for a class, a native library (e.g., written in C)
that implements some methods of the class. We use an extended class loader and a
JNI-based native library to call hardware accelerators from the Java bytecode.

Figure 6.6 shows the whole path from Java to hardware execution. An XML

Java Bytecode XML Descriptor File FPGA Configuration

Class Loader

Patched
Java Bytecode

Java Bridge
Class

Java Native
Bridge

JVM JNI

VMW

HW Method
Accelerator

Figure 6.6: Steps involved in the execution of an accelerator from Java program. The
class loader patches the original Java bytecode and inserts calls to the Java bridge class.
The bridge class invokes a native function that relies on the VMW manager to launch
the accelerator.

descriptor file and FPGA bitstream configuration accompany the Java bytecode of
the application. The XML file defines which methods are to be executed in hard-
ware and where the corresponding FPGA configurations reside. At class-invocation
time, the class loader changes the Java bytecode of the application by replacing
accelerated methods with calls to the corresponding native methods in the Java
bridge class. Calling a native method, at execution time, invokes its native im-
plementation through the JNI interface. The native implementation launches the
hardware accelerator through the VMW manager. The described approach (1) is
completely invisible for the programmer, (2) does not require changes in the original
Java bytecode, and (3) does not depend on the used JVM.

Java Bridge Class. Our class loader constructs the Java bridge class dynami-
cally at class-invocation time. It adds to the bridge class a native method prototype
for each method to be accelerated in hardware. We use a predefined name (VMWrun
in Figure 6.7) for all accelerated methods and we rely on the JVM capability to han-
dle overloaded methods (same name but different number and type of arguments).

Java Native Bridge. The JVM links through JNI any native method of the
bridge class to the same function in the native library. The application programmer
is unaware of the existence of native methods (most Java system classes implement
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/* IDEAEngine Java class */

void encrypt (

byte[] data in,

byte[] data out,

int[] key

)

/* Bridge Java class */

void VMWrun (

int methodId,

byte[] data in,

byte[] data out,

int[] key

)

/* Bridge native library */

void VMWrun (

int methodId,

...) {
sys hwacc (HW ACC, &param);

}

(a) (b) (c)

Figure 6.7: Invoking hardware accelerators from a Java application: the original method
(a) is replaced with the call to a bridge class (b) which calls the native library (c) starting
the accelerator.

their methods as native) and hardware accelerators. The native bridge code is
responsible for (1) configuring the FPGA for the first use of an accelerator, (2)
invoking the accelerator through sys hwacc call, and (3) defining possible hardware-
callback functions.

Parameter passing. The native implementation must handle different accel-
erators, neither their parameter type nor their number is known at compile time.
After using the method identifier to read the number of parameters and their types
from the XML descriptor file, it retrieves the parameters thanks to the variable
arguments feature of C.

Accessing JVM objects. The native implementation has to interpret correctly
the type of parameters received from the JVM. If necessary, conversions are done
using an appropriate JNI function. For example, obtaining a native pointer for an
object reference—there are no pointers in Java—requires calling the JNI function.
This discipline also maintains memory consistency, since the garbage collector does
not move the acquired objects until their release.

Accelerator Callback. To perform a callback, an accelerator uses the execu-
tion transfer sequence of the VMW (described in Section 6.2) to call the appropriate
function of the JNI interface. The callback feature allows performing high level op-
erations (e.g., object allocation, synchronisation, virtual method invocation) that
require support of the JVM. This is essential when it comes to unrestricted auto-
mated synthesis from Java bytecode to hardware. Even if calling back software may
be costly, the feature supports constructing hyperblocks [25] and allows mapping
larger code sections from software to hardware. The expectation is that the call-
backs are not so frequent in computation-intensive methods. When applicable, our
flow also uses method inlining, to avoid unnecessary callbacks.

6.3.3 Experiments

The measurement results refer to the development board based on the Altera Excal-
ibur device (refer to Appendix C). Kaffe [64], an open source virtual machine, runs
in the JiT (Just-in-Time compilation) mode on top of a unified GNU/Linux process
for codesigned applications. We do not measure the time for FPGA configuration;
although this time may be significant when compared to a single program execution,
we assume the accelerated program is run multiple times for a longer period of time;
in this case the configuration time becomes irrelevant.
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Synthesis Results. Figure 6.8 shows the execution time for two accelerators
synthesised (using the flow shown in Figure 6.5 and described in detail in [39]) di-
rectly from the critical Java bytecode methods of two Java applications (the IDEA
cryptography and the ADPCM voice decoding application). The execution times
are compared to pure Java bytecode executed in the JiT-enabled JVM, pure SW
compiled to the machine binary code, and a handwritten virtual-memory-based ac-
celerator. The current synthesis flow lacks some common optimisation passes to
improve performance and exploit hardware parallelism. On the other side, relying
on the unified OS process, it can map arbitrary Java bytecode to hardware. Al-
though not as fast as handwritten, the synthesised accelerators provide performance
improvements, in comparison to the JVM with JiT. Furthermore, the performance
improvement comes for free since there is neither programmer nor designer interven-
tion: the synthesis flow produces the FPGA configuration and the XML descriptor
file automatically.
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Figure 6.8: Execution times of synthesised IDEA and ADPCM accelerators compared
to Java, C, and handwritten accelerators. Although the handwritten accelerators show
superior performance, the synthesised accelerators offer automated improvements of pure
Java execution.

The complexity of the synthesised accelerators is comparable to the complexity
of the handwritten ones. For example, the synthesised IDEA accelerator occupies
slightly more reconfigurable logic than the handwritten IDEA (4100 logic cells com-
pared to 3600). Nevertheless, the logic in the handwritten accelerator is used more
efficiently, as the performance figures indicate. Additional compiler passes should
address improving the logic efficiency and the overall performance.

Overhead Measurement. In Figure 6.9, we show the overhead of invoking
the IDEA accelerator for small input data sizes (one IDEA block equals 8 bytes)—
execution time of the pure Java version against the execution time of the accelerated
version. We measure several time components of the accelerator execution time. The
first is the overhead introduced by the Java bridge and its native library (parsing
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the XML descriptor file and creating bridge class dynamically). Two thirds of the
overhead are coming from the XML configuration file reading; by optimising this
operation, the overhead could potentially go below 200µs. The other observable
time components relate to the VMW interface (recall Manage time, Copy time,
Hardware time from Section 5.2). The sum of the manage time and the copy time
is constant, since for any data input size in the graph, only one page of memory
is used (the page size is 2KB). Only the hardware time, which is real computation
time, is affected by input size.
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Figure 6.9: Invocation overhead for small data sizes. IDEA encryption of 8 bytes
to 64 bytes (one to eight 64-bit blocks) of input data. The Java bridge overhead is
considerable.

For the two first data input sizes (8 bytes and 16 bytes), the time is almost the
same. In fact, this is due to the way that the IDEA accelerator works (as the graphs
from Appendix E clarify): it has a three-stage pipeline that encrypts 3 blocks at a
time; thus, the time required to compute 1, 2, or 3 blocks (8, 16, or 24 bytes) is
more or less the same. Since the core computation is performed three times, one
can see a difference for encryption of 8 blocks.

For 64 bytes (8 blocks), the accelerator version becomes faster than pure Java
software, despite the introduced overhead. The same behaviour, with a different
break-even point, is expected for other applications having similar memory access
patterns. If we recall that the overhead could be reduced (since the current im-
plementation is not optimal), the break-even point can move toward even smaller
datasets. What is more important, the total overhead (750µs) becomes negligi-
ble for typical input data sizes, especially when one recalls the benefits it brings:
transparent and platform-independent acceleration of Java programs.



72 6. SYSTEM SUPPORT FOR EXECUTION TRANSFERS

6.3.4 Summary

The WMU system hardware and the VMW system software enable mapping any
virtual machine code to hardware and support portability of codesigned applica-
tions. Running a JVM and Java applications within the unified OS process allows
transparent use of hardware accelerators to programmers—no change is required in
the application software. Our unrestricted synthesis flow for JVM platforms [39, 61]
allows handling high-level language concepts such as object creation and method
invocation. Further improvements of the flow shall employ typical synthesis optimi-
sations and exploit better the available hardware parallelism.



Chapter 7
Transparent Software and Hardware
Multithreading

As soon as you perceive an object, you draw a line between it and the rest of the
world; you divide the world, artificially, into parts, and you thereby miss the Way.

—Douglas Hofstadter, Gödel, Escher, Bach

IN this chapter we discuss the extension of our unified OS process for codesigned
applications to support multithreaded execution of user software and user hard-

ware. Programmers use threads to exploit application parallelism without the cost
of having multiple processes communicating to each other. Creating threads costs
less than creating processes; multiple threads within a user process share the same
memory address space and some per-process OS data structures. Using threads can
be fruitful even in uniprocessor systems; before blocking in a system call, a thread
can create another thread that continues the execution; thus, the process does not
yield the CPU to another process.

Having unified memory abstraction between user software and user hardware is
essential for supporting multithreaded programming paradigms. In the following
sections, we present the extensions to our baseline system shown in Chapter 4 to
support multithreaded execution. Figure 7.1 shows the architecture we are target-
ing for multithreading. Our implementation provides an initial infrastructure for
simultaneous execution of multiple virtual-memory-enabled hardware accelerators
but, it is not necessarily the most efficient one. Our goal—in the first place we are
targeting reconfigurable SoCs—is to show feasibility of the unified OS process ex-
tensions to support multithreading; for addressing efficiency, scalability, and future
improvements, the extensive existing literature [95] in this field should be used.

7.1 Extending a Multithreaded Programming Paradigm

In this section, we build a multithreaded programming paradigm for codesigned
applications based on the standard multithreaded programming model—POSIX
threads [88]. Relying on the POSIX thread library and the OS support for inter-
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Figure 7.1: Multithreaded virtual-memory-enabled hardware accelerators. Software
and hardware threads run in the context of the unified OS process. Each accelerator
executes a hardware thread. Software threads execute on the CPU.

thread communication and synchronisation, software-only POSIX threads execute
within the context of a common OS process.

With virtual-memory-enabled hardware accelerators, there is no need for wrap-
per threads (as we needed them in Section 2.4). Similarly to what we do in the
case of having a single hardware accelerator, we delegate the accelerator control
and data transfers to the operating system. Once again, we keep the programmer
interface to hardware clean and elegant. The software and hardware threads share
the same virtual memory address space, and the operating system manages virtual
to physical memory address translation for both software and hardware threads.

OS
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(a) Standard Multithreading (b) Including Hardware Accelerators (c) Extended Multithreading
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Figure 7.2: Standard (a), wrapper-based (b), and extended multithreading of user
software and user hardware. A multithreading library and OS services support standard
multithreading (a). Such support does not cover including hardware accelerators in mul-
tithreaded applications (b). Our extensions provide a unified OS process for codesigned
applications capable of mixed software-and-hardware multithreading (c).

Figure 7.2 summarises our motivation and illustrates the multithreading of user
software and user hardware within an OS process. In standard multithreading (Fig-
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ure 7.2a), simultaneous execution of software threads is provided by an abstraction
layer usually consisting of thread libraries (e.g., POSIX threads) supported by OS
services. Nevertheless, the existing abstraction layers (Figure 7.2b) do not sup-
port integrating hardware accelerators with software, and wrapper threads (as Fig-
ure 2.9b in Section 2.4 shows) are typically used to perform accelerator control and
data transfers. If the layer is extended (Figure 7.2c) to support hardware threads
(i.e., to enable communication, synchronisation and sharing of virtual memory ad-
dress space), programming is improved and brought to the level of software-only
applications: programmers and hardware designers can seamlessly integrate soft-
ware and hardware application parts. In the following section we explain how the
system layer can provide the multithreaded programming paradigm for codesigned
applications.

7.2 Support for Extended Multithreading

To achieve the transparent multithreading of user software and user hardware within
an OS process (as presented in Figure 7.1), we need to extend (1) the existing
WMU for supporting the coherence of the WMU local memories, and (2) the VMW
manager for steering multiple WMUs and ensuring memory consistency.

7.2.1 WMU Extensions

Having multiple virtual-memory-enabled hardware accelerators that run in parallel
accessing their local memories may violate data integrity. To enable the hardware
accelerators to share the coherent memory and to enforce strict memory consistency,
we extend the basic WMUs with a simple, invalidation-based, mixed hardware-and-
software coherency protocol [95].

Figure 7.3 shows multiple WMUs connected to an internal, custom coherence
bus, separated from the system one. An arbiter accessible and controllable by the
OS through the system bus is also connected to the coherence bus. Each WMU
keeps track of states for the pages residing in the local memory and snoops on the
coherence bus (the protocol diagram is shown in Figure 7.4). Bus-incoming stimuli,
OS events, or hardware accelerator actions (written in italics in Figure 7.4) initiate
state transitions. Either the OS or the WMUs are responsible for the transitions. A
state transition for a particular WMU is sometimes followed by a bus action—this
is the outcome (written in boldface) of the transition. The Copy In and Write
Back actions happen on the system bus: (1) Copy In means that a missing page is
brought to the local memory either from the main memory or from the local memory
of another hardware accelerator; (2) Write Back means that a dirty page is copied
back to the main memory. The Invalidate action happens on the consistency bus.
Prior to writing to a shared page, the originating WMU sends Invalidate stimulus
to other WMUs sharing the page.

The protocol divides the responsibility for the actions between software (OS) and
hardware (WMU). Prior to a write access to a shared page, the originating WMU
has first to obtain access to the bus from the arbiter. After informing other WMUs
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Figure 7.3: Memory coherence support for multiple hardware accelerators. Beside
their connections to the system bus, the local memories, and hardware accelerators, the
WMUs are connected to a memory coherence bus. The WMUs take special care of
shared pages. A hardware accelerator writing to a shared page stimulates its WMU to
perform an invalidation transaction on the coherence bus. On the other side, snooping
activities on the coherence bus initiate invalidation of locally-stored shared pages written
by another hardware accelerator. The arbiter provides to WMUs the serialised access to
the bus.

sharing the page to invalidate it, it changes the internal state of the page TLB entry
to exclusive. Read accesses to a shared page need no arbitration, but require bus
snooping before the data is sent to the accelerator. Read and write accesses to an
exclusive or modified page need no activity on the coherency snooping bus.

The only transitions managed by the hardware are: (1) from Shared to Invalid;
(2) from Shared to Modified; and (3) from Exclusive to Modified (the transition
does not incur any snoopy-bus activity). The OS manages the rest of the tran-
sitions from Figure 7.4. The OS-prevailing management for page-level coherency
can definitely have negative performance impacts, but in the absence of heavy data
sharing may be sufficient [74]. The bus arbiter is also managed by the OS. It pro-
vides a way to block the snooping bus, during a critical OS activity regarding the
memory consistency. In addition to memory coherence, the WMU interface pro-
vides atomic test-and-set operations—hardware accelerators can use such accesses
for synchronisation purposes.

7.2.2 VMW Manager Extensions

In the case of multiple hardware accelerators executing in parallel, the manager
keeps track of all their translation data structures, manages the translation, and
ensures the memory consistency. Figures 7.5 and 7.6 show all transitions from
Figure 7.4 that the OS performs. As it services multiple WMUs, the OS can be a
potential bottleneck. A distributed VMW manager could be a possible solution, if
large scalability is needed. For the moment, we have used only applications with
few hardware accelerators and the centralised VMW is sufficient.

Recalling Figure 4.4 from Chapter 4, Figure 7.5 extends the control branch of
the interrupt handler designated to handle memory page faults (the branch named
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Figure 7.4: State diagram for page-level memory coherence protocol. Based on stimuli
coming from the coherence bus, OS events, or hardware accelerator actions, the WMU
and the VMW manager (mixed software-and-hardware approach) perform state transi-
tions. Bus actions (Invalidate on the coherence bus done by the WMU; Copy In and
Write Back on the system bus done by the OS) follow some of the transitions.

Handle Fault in Figure 4.4). On a page fault, the manager checks if the page is not
already present in any local memory (as Figure 7.5 shows). If the page is not found
in any other WMU, the manager copies it from the main memory and sets the state
of the TLB entry to Exclusive. If, on the contrary, some other WMU has the page
(which the manager can determine from its internal data structures), the manager
chooses a TLB entry containing the page and checks in its corresponding WMU
if the page is shared. Before copying in the shared page, the manager blocks the
coherency bus to disable undesirable transitions from Shared to Modified. After
the copying is over, it sets the TLB entry of the copied page to Shared and unblocks
the bus. If another WMU has the page in the Exclusive state, before copying the
shared page, the manager has to put on hold the WMU currently containing the
page. After the copying is over, it sets the TLB entry to the Shared state, transitions
the TLB entry state of the source WMU to Shared, and resumes the source WMU
immediately afterward. The VMW manager takes similar actions if the page is
Modified, except that it also copies it back to the main memory.

When evicting a page, the VMW manager performs the actions shown in Fig-
ure 7.6—evicting a page is more complex in the VMW manager for multithreaded
accelerators than in the basic one (shown in Figure 4.4). At the beginning, it saves
the current state of the page TLB entry. Then it invalidates the entry thus disabling
further references to the page. If the saved state shows the page was modified, it
writes it back to the main memory. There is no need to change states of any other
WMU, since only one WMU can have the page in the Modified state. On the
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Figure 7.5: VMW manager actions on a memory fault of a multithreaded accelerator.
In contrast to the basic VMW manager, there are multiple checks to be done.

contrary, if the page is in some other state than Modified, some additional checks
are required (as Figure 7.6 shows) for performing possible state transitions in other
WMUs.

Another feature of the VMW manager enables consistent memory between user
hardware and user software (since they can execute in parallel). If user software
tries accessing a page currently present in one of the local memories, the OS blocks
the process and puts it on a wait queue. Writing back the modified page and
invalidating the appropriate TLB entry initiates the wake up of all sleeping software
threads waiting on the page. Although costly (especially because false sharing at
the page-level granularity can easily degrade performance), the approach ensures
basic memory consistency for applications with no heavy memory sharing. The
solution is in favour of user hardware. To overcome this, the VMW also provides
relaxed models that avoid blocking but expose the synchronisation tasks to the
programmer [52].
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Figure 7.6: VMW manager actions on evicting a page from the local memory. The
fact that the page may be shared complicates the procedure. Evicting a shared pages
may require changing the state of other WMUs containing the page.

7.3 Multithreading Case Study

Having a large amount of reconfigurable logic allows unloading the main processor
and executing multiple hardware accelerators in parallel. However, in our approach,
beside running software threads, the CPU is responsible for the execution support of
hardware threads (through the VMW activities). Thus, having too many hardware
accelerators would make the CPU become a bottleneck: our approach is limited but
it trades off scalability for applicability to wide range of reconfigurable SoCs—there
is no need for a CPU and system bus memory coherence support in the original
system. Nevertheless, in our case studies we use applications with just few WMUs.
The CPU involvement is moderate while the performance improvement achieved is
significant. The scalability could be improved by applying some of existing decen-
tralised schemes [95] or by delegating more responsibilities to system hardware and,
in this way, discharging the CPU.

We use a multithreaded image processing application to demonstrate our virtual
memory manager supporting simultaneous execution of multiple hardware acceler-
ators. The application threads are organised in a producer/consumer chain, as it
is shown in Figure 7.7. This allows the contrast and edge detection accelerators to
work in parallel, on different image windows slid in time. Their synchronisation is
achieved by the use of semaphores. We compare the results obtained for the code-
signed application with a multithreaded, software-only version of the application.
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Figure 7.7: Producer/consumer chain of threads for edge detection.

7.3.1 Multithreaded Execution

Figure 7.8 and Figure 7.9 show executions times of two image processing hardware
accelerators (contrast enhancement and edge detection [112]) processing a window
(region of interest) within an image (as Figure 5.2 shows). Both accelerators are
designed and run on the Xilinx ML310 platform (refer to Appendix C for more
details about the platform). We show their design and implementation details in
Appendix D. To study their characteristics, we first consider the accelerators run-
ning separately. Later on, we put them together in the multithreaded application
illustrated in Figure 7.7. The typical codesigned applications use hardware ac-
celerators directly accessing the main memory (as explained in Figure 2.5 and in
Figure 2.6b). In the case of virtual-memory-based hardware accelerators, we use
the local memory of 64KB organised into 8 pages (the bar in the middle for all
processing window sizes) or 16 pages (two leftmost bars for all processing window
sizes). The OS module uses DMA to transfer the pages to the local memory. In
this way, the end user benefits from the improved performance but is completely
screened of the enhanced system-level support.

The typical accelerator in Figure 7.8 does not implement burst accesses to the
memory which affects its performance. Despite the page-level granularity overhead,
the virtual-memory-enabled accelerators outperform the typical solution. More im-
portantly, the benefit comes for free for the hardware designer: there is no need to
implement and manage memory transfer bursts.

The typical accelerator in Figure 7.9 implements burst accesses to the memory
and local caching of the transferred data. It is significantly faster than the virtual-
memory-enabled accelerator for the smallest window size but, for larger window
sizes, the two approaches get close performance figures; yet, the WMU memory
interface is much simpler (no burst and no pipelining support). It is a simpler way
for a designer (thanks to shifting the interfacing and data transfer burden to the
system level) to get results comparable with typical approaches.

We put the contrast enhancement and edge detection engines together in the mul-
tithreaded application from Figure 7.7, consisting of one software and two hardware
threads. We use the multithreaded image processing application to demonstrate our
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Figure 7.8: Execution times of contrast-enhancement application implemented in pure
software, typical hardware, and virtual memory-enabled hardware.

virtual memory manager supporting simultaneous execution of multiple hardware
accelerators. We set up the application threads (shown in Figure 7.7) in a produc-
er/consumer chain that allows the contrast and edge detection accelerators to work
in parallel, on different image windows slid in time. We compare the results ob-
tained for software-only version of the application and the codesigned applications
with typical or virtual-memory-enabled accelerators.

Apart from the significant performance improvement obtained by the multi-
threaded codesigned version (visible in Figure 7.10), we stress the programming
simplicity of our approach: our threads operate on images stored on the heap; we
pass to our hardware memory pointers obtained by the malloc() function call; there
is no need for software wrappers responsible for memory transfers. One can notice
that the codesigned application with multithreading support can process more than
50 image windows per second with a large safety margin—there is space left for
other applications to run in the system simultaneously.

Our approach outperforms the typical solution and, even more remarkably, this
benefit comes along with our simple and transparent design paradigm. On the other
side, the typical solution could have achieved better performance, but with much
more effort invested on the programmer and designer side. In our case, we delegate
interfacing burdens to the system layer and, thus, preserve simplicity of interfacing;
yet, our approach achieves better performance with less design efforts. The execution
time of the typical solution is dominated by slower contrast-detection accelerator
and, the lack of local memories also degrades the performance by increasing the
bus contention. Our virtualisation layer hides from designers relatively complex
design issues of burst accesses and local memory management (either in software or
hardware) and, still, may offer better performance.
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Figure 7.9: Execution times of edge-detection application implemented in pure soft-
ware, typical hardware, and virtual memory-enabled hardware.

7.3.2 Multiple Memory Ports

The VMW manager capable of handling multiple local memories and WMUs offers
another design possibility. In place of having multithreaded hardware accelerators,
the hardware designer can use several WMU interfaces to open multiple memory
ports for a single hardware accelerator. In this section, we analyse such a possibility
for the contrast engine using the CPD metric.

Figure 7.11 shows the contrast enhancement engine with four input and one
output ports. For the image size of 512× 512 pixels, the engine (Appendix D shows
its internal design blocks) operates on four processing windows (contained by the
four input images) to produce one output window (contained by the output image).
Once started, the engine first samples four input subwindows to set up the internal
thresholds. At this phase, it only reads from the inputs without writing anything
to the output. In the second phase, the engine enhances the contrast of the input
windows and writes the results to the output window. Notably, there are four input
and one output data streams in this phase.

We consider the two phases as two separate accelerators and write the following
performance equation:

ETHW = DC1 × (CPDvirtual1 + CPDvmemory1) × THW

+DC2 × (CPDvirtual2 + CPDvmemory2) × THW , (7.1)

where DC{1,2}, CPDvirtual{1,2}, and CPDvmemory{1,2} represent the parameters DC,
CPDvirtual , and CPDvmemory of the phases one and two respectively (recall Sec-
tion 5.2). As Figure 7.8 shows, the execution time for a processing window of
320×240 pixels (inherently to the algorithm implemented by the engine, this deter-
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mines the sampling subwindow of 160×80 pixels1) is ETHW = 12.245ms. The CPD
values for the accelerator phases are (from Appendix E) CPDvirtual1 = 4.5 and
CPDvirtual2 = 5.625. Regarding the memory hierarchy overhead (CPDvmemory),
we take an assumption that CPDvmemory1 = 2 · CPDvmemory2 (Equation 5.9 can
show—based on measurement results from Figure 7.8—that the introduced error
is less than 15%). With this assumtion, and with THW = 10ns, we find out the
memory overheads CPDvirtual1 = 15.61 and CPDvirtual2 = 7.805.

The hardware designer can use multiple memory ports for the contrast enhance-
ment engine, as Figure 7.11 shows. The CPD metric provides a quick estimation of
the possible benefit. With four input and one output ports the corresponding CPDs
would be smaller (CPDvirtual1 = 2.25 and CPDvirtual2 = 2.625, refer to Appendix E
for details) than the original ones and could offer faster execution. However, the
clock period (THW ) might also become slower, because the synchronisation logic
between the memory ports becomes more complex. To estimate the final impact of
having multiple ports to the memory, the designer can use Equation 7.1 with new
CPDvirtual1 and CPDvirtual2 values, assuming that CPDvmemory1 and CPDvmemory2

remain the same (a pessimistic assumption, since multiple local memories eliminate
possible contentions between input and output data streams, thus, making the mem-
ory overhead smaller). For example, for a 10% longer clock period, Equation 7.1

1The sizes of the processing window and the sampling window define DC1 = (320×240×4)/4 =
76800 words and DC2 = (160× 80× 4)/4 = 12800 words, having in mind that there are four input
streams and the memory word contains four pixels.
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Figure 7.11: Contrast enhancement engine with multiple memory ports. The accelera-
tor uses four WMU interfaces for its input ports and one WMU interface for the output
port. The VMW manager handles them as if they were ports of multithreaded hardware
accelerators.

gives the estimation for the execution time of the contrast engine (with four input
and one output ports) ETHW = 10.697ms. The designer can use the estimation
(the execution time improvement from 12.245ms to 10.697ms) for deciding whether
or not it justifies undertaking more complex design efforts.

For the purpose of another comparison, the designer may use the CPD metric
for estimating how much a faster WMU translation could improve the performance.
Assuming one cycle per accelerator access through the improved WMU, the CPDs
would be CPDvirtual1 = 2 and CPDvirtual2 = 2.375. Preserving the original memory
hierarchy (with only one memory port) but having the faster translation would
result in the overall execution time ETHW = 9.51ms. The CPD metric can be a
convenient way for the hardware designer to estimate performance before taking
design decisions.



Chapter 8
Conclusions

A Elbereth Gilthoniel,
Silivren penna mı́riel
O menel aglar elenath!
Na-chaered palan-d́ıriel
O galadhremmin ennorath,
Fanuilos, le linnathon
Nef aear, śı nef aearon!

O! Elbereth who lit the stars
From glittering crystal slanting falls with light like jewels
From heaven on high the glory of the starry host.
To lands remote I have looked afar,
And now to thee, Fanuilos, bright spirit clothed in ever-white,
I here will sing Beyond the Sea, beyond the wide and sundering Sea.

—Tolkien, The Hymn to Elbereth

THE message of this thesis regarding application-specific hardware accelerators
(i.e., user hardware, semantically belonging to a particular user application)

and their integration within codesigned applications is: To simplify the interfacing
between software and hardware and to make any programming paradigm feasible,
one shall provide user hardware with system-level abstractions (e.g., virtual memory,
system calls) and execution support (e.g., memory-hierarchy management, execution
transfers) already available to user software; in comparison to existing approaches,
our solution is a general one—there is no limitation on the memory access patterns
of hardware accelerators.

Delegating the execution steering of hardware accelerators to the system level
exposes to the user level only their pure functionality. The separation of user-
level from system-level tasks fosters system-level runtime optimisations performed
transparently to the end users. It also eases software-to-hardware migrations and
enables unrestricted automated hardware synthesis from high-level programming
languages. In addition, codesigned applications become portable across different
platforms.

Approaching to the principal concepts of general-purpose computing may seem
to be compromising the performance and efficiency potential of spatial computa-
tion. Notwithstanding such expectations, most of the concepts—when applied to
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application-specific hardware—rather become simpler and less costly than in the
general-purpose case. For example, having a virtual memory hierarchy per accel-
erator avoids unwanted effects of cache pollution and frequent context-switches.
Furthermore, memory access patterns of hardware accelerators are less general and
more predictable in comparison to the general-purpose case: the size and the man-
agement policy of the memory hierarchy can be adapted to a particular application
for lower cost and better performance.

What follows in this passage is a recommendation for future architects and de-
signers of codesigned applications. When combining two different models of com-
putation (such as temporal computation of a CPU and spatial computation of an
application-specific hardware accelerator, both being addressed in this thesis), one
should find a common background for the two different worlds: we have chosen the
virtual memory abstraction and the execution context of an OS process for this pur-
pose. The next step would be to implement the appropriate support for the common
abstraction in the system software and system hardware—not directly visible to the
application programmer. In our case, we have shown an implementation (especially
applicable to reconfigurable SoCs) of the system software and system hardware that
provides the unified process context for codesigned applications. When designing
hardware accelerators or when automating this task (by developing a synthesiser),
one should apply existing (or establish, if nonexistent) conventions regarding the
chosen programming paradigm. In such a way, as presented in this thesis, we follow
the API and ABI rules of the host OS and the host CPU to have host-compliant hard-
ware accelerators. Finally, following these guidelines (as the thesis demonstrates)
gets software programmers and hardware designers to the seamless interfacing of
software and hardware components of codesigned applications.

8.1 Obtained Results

For a chosen, process-based, multithreading computation model, we have proposed
extensions to system software and system hardware to support unified OS processes
for heterogeneous-code applications. In experiments performed on two different re-
configurable SoCs running GNU/Linux, we have demonstrated the viability of our
approach. Our architecture (1) provides a straightforward programming paradigm—
programmers are completely screened from interfacing-related memory transfers, (2)
makes codesigned applications completely portable—recompiling and resynthesis-
ing is sufficient, and (3) enables advanced and yet simple runtime optimisations—
without any change in either application software or coprocessor hardware—and
unrestricted automated synthesis.

To quantify the overhead incurred by the system-level support for unified mem-
ory abstraction, we have introduced a metric for application-specific hardware accel-
erators and applied it to our particular implementation. To measure overall benefits
and check the overhead, we have tested the approach by porting and running sev-
eral applications with application-specific coprocessors of different complexity. The
results show the overhead for unified memory abstraction is generally limited. The
hardware accelerators achieve significant speedups compared to software-only ex-



8.2. IMPLICATIONS 87

ecution. While our approach provides simpler interfacing, software programming,
and hardware design, compared to typical existing solutions, the speedups achieved
by the two approaches remain comparable.

System-level runtime optimisations can improve performance transparently to
the end user. To demonstrate a possible runtime optimisation, we have imple-
mented a stream-based memory prefetch technique within the VMW manager (with
a simple hardware support in the WMU). A significant execution time improvement
is demonstrated, without any change in either application software or coprocessor
hardware.

We have also shown a basic implementation of an unrestricted synthesis flow. Al-
though at an early stage and without typical optimisation passes, our flow produces
accelerators that can speedup high-level language code without any restrictions on
the language constructions.

8.2 Implications

Designing the execution support and memory hierarchy for standard CPUs is a
complex task—the challenge is to achieve performance and cost goals for all appli-
cations. On the contrary, designing the execution support and memory hierarchy
for application-specific hardware accelerators (especially having the reconfigurable
hardware available) is simpler—to support the unified OS process, we keep the high
abstractions from general-purpose computing but simplify the system hardware and
system software. For example, opening more memory ports with smaller local mem-
ories can be more performance-efficient than investing in a single and large local
memory with complex management policies.

Having virtual-memory-enabled hardware accelerators and the execution trans-
fers supported by the system, we can imagine hardware-centric applications (i.e.,
applications with its main execution thread in user hardware going back to software
just for the system and library calls). In such a scenario, the CPU becomes respon-
sible for execution support and memory hierarchy management, running mostly on
behalf of the user hardware (e.g., executing the VMW manager actions and system
or library calls invoked by the accelerator).

Within a unified OS process, user hardware gains the access to static and dy-
namic data (residing either on the stack or on the heap) of its software counterpart.
The unified memory simplifies preserving constructions of high-level programming
languages when mapping the application code from software to hardware. Any
scope policy (e.g., either static or dynamic scope) can be implemented through the
shared stack, any memory-allocation policy can be implemented through the shared
heap. Supporting the code mobility and enabling unrestricted software-to-hardware
migration opens the way toward future dynamic adaptive systems, capable of im-
plementing runtime (Just-in-Time) synthesis and reconfiguration.
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8.3 Future Research Directions

The thesis opens new research directions (1) in configurable memory hierarchies for
application-specific hardware accelerators and (2) in automatic high-level synthesis
from high-level programming languages.

Here we mention the differences between application-specific and general-purpose
virtual memory systems that future research may exploit. In the software-only case,
system architects design MMUs and memory hierarchies for the most general appli-
cation mix—multiple and diverse software tasks share the MMU and the memory
hierarchy in the time-multiplexed manner. In the case of virtual-memory-enabled
hardware accelerators, one can assume that a hardware accelerator owns the WMU
and the memory hierarchy during the application lifetime—considerably longer pe-
riod than between two context switches on a standard CPU. This fact allows (1)
designing the WMU which is less-costly than standard MMUs, and (2) employing
the WMU reconfigurability to tailor the translation and the memory hierarchy closer
to the application needs. The second point is especially challenging and implies the
appropriate support from novel OS features to adapt the WMU and memory hierar-
chy dynamically, at runtime. For example, in our experiments, we support different
sizes of the local memories accessed by hardware accelerators; also, the WMUs
support different sizes of virtual memory pages; however, for the moment, our OS
extension does not adapt the memory automatically; it is a subject of future work.

Having a configurable memory hierarchy supported by the OS not only allows
runtime customisation of the virtual memory for hardware accelerators, but also
supports OS-conducted tailoring of the application-specific coherence hardware. The
challenge of sharing efficiently the unified memory by multiple hardware threads
offers another research possibility toward application-specific coherence protocols
for codesigned reconfigurable applications.

Regarding the high-level synthesis (i.e., mapping to hardware from programs
written in common high-level programming languages), unified memory abstraction
for software and hardware significantly simplifies the automatic synthesis of high-
level programming languages to hardware. Mapping to hardware constructs such
as memory allocation, object creation, pointer-based accesses, and function calls,
is rather difficult (or sometimes impossible) without the unified process concept.
Our initial results allow the synthesis community to investigate unrestricted code
migration from software to hardware, even dynamically at runtime (which is the
biggest future challenge).

Apart from showing the viability of the unified process concept, the research
work presented in this thesis calls forth immediate extensions and improvements.
The analyses (qualitative and quantitative) presented in the thesis have shown the
overheads of the applied scheme. One of the first tasks of future efforts shall be to
tackle the overheads and try minimising their effects.

Although we do not address management of reconfigurable hardware and its re-
configuration in this thesis, we recommend the integration of the presented interface
management with the resource management (addressed in the related work) to build
a full-fledged OS extensions for codesigned reconfigurable applications. With appro-
priate extensions in binary file formats (such as Executable and Linkable Format—
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ELF) and the OS support, an application loader could automatically reconfigure an
FPGA resource preparing the user hardware at the application start-time. Further
on, an FPGA-aware dynamic linker could reconfigure, if needed, the FPGA fabric
at runtime. The challenge is to find efficient solutions for task partitioning and
configuration scheduling, and to hide performance drawbacks incurred by FPGA
configuration times.

The dynamic prefetching in the system layer responsible for the unified memory
abstraction between user software and user hardware has demonstrated significant
performance improvements. As the currently employed technique handles stream-
based memory accesses, future runtime optimisations may address other memory
access patterns (e.g., pointer chasing) with appropriate extensions in the system
software (the VMW manager) and system hardware (the WMU). The dynamic
nature of these techniques may allow the VMW manager to follow the performance
and select at runtime the best prefetching policy for a given hardware accelerator.
Dynamic optimisation techniques are not limited to prefetching: other techniques
may include adapting the memory hierarchy for a particular application, in-advance
hardware reconfiguration, and optimising the execution transfers from software to
hardware and vice versa.

To enable and foster the widespread presence and use of reconfigurable comput-
ing, future work shall address integrating compilers and synthesisers into a single
compilation tool. Starting from a program written in a high-level programming
language, the tool shall try to exploit the available parallelism and generate HDL
descriptions of hardware accelerators complying to the host processor ABIs. With
the unified OS process supporting stack frames and calling sequences, treating any
high-level language and generating its runtime support code (in both software and
hardware) shall be feasible. Finally, having widely-accepted programming languages
compiled by tools with no synthesis and partitioning restrictions would offer ben-
efits of spatial computation in application-specific hardware to a large number of
general-purpose computer users.
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Appendix A
WMU Interface

THE WMU defines the hardware interface of virtual-memory-enabled hardware
accelerators. It decouples the accelerator design from the host platform. The

WMU is a platform-specific element ported once per reconfigurable SoC; different
applications on the same platform reuse the same WMU. In this appendix, we
explain the WMU interface toward hardware accelerators.

A.1 Hardware Interface

The WMU provides hardware support for translation of the virtual addresses gener-
ated by the accelerator. If possible, the WMU translates virtual addresses demanded
by the coprocessor (similarly as the MMU does for the user application running on
the main processor) to real addresses of the local memory region. Otherwise, the
WMU generates an interrupt to request the OS handling, while the hardware accel-
erator is stalled.

To foster the accelerator reuse and portability across different platforms, we ac-
cept a common interface between the WMU and the accelerator. We standardise
the interface for both platforms that we use. Should we use another platform in the
future, the basic WMU interface would not change. Figure A.1 shows how a virtual-
memory-enabled hardware accelerator is interconnected to the WMU. The standard
interface consists of virtual address lines (hwacc_vaddr), data lines (hwacc_din and
hwacc_dout), byte enable lines (hwacc_be) and control lines. The control signals
between the accelerator and the WMU are the following: (1) hwacc_start, the
accelerator start signal, issued by the WMU once a user initiates the execution
transfer; (2) hwacc_access, the accelerator access signal, indicates that there is
an access currently performed by the accelerator; (3) hwacc_wr, the accelerator
write signal, indicates that the access is a write; (4) hwacc_tlbhit, the translation
hit signal, indicates that an address translation is successful—in order to proceed
with a memory access, the accelerator should first wait for this signal to appear;
(5) hwacc_fin, the accelerator completion signal, indicates to the WMU that the
accelerator has finished its operation. The WMU is connected to the host plat-
form through platform-specific signals (e.g., the physical address lines of the local
memory).
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--

-- hardware accelerator ports complying to the WMU interface

--

entity hwacc edge is

generic (

HWACC DATA WIDTH : positive := 64;

HWACC ADDR WIDTH : positive := 32

);

port(

hwacc din : in std logic vector (HWACC DATA WIDTH-1 downto 0);

hwacc dout : out std logic vector (HWACC DATA WIDTH-1 downto 0);

hwacc addr : out std logic vector (HWACC ADDR WIDTH-1 downto 0);

hwacc be : out std logic vector (HWACC DATA WIDTH/8-1 downto 0);

hwacc access : out std logic;

hwacc xchange : out std logic;

hwacc wr : out std logic;

hwacc inv : out std logic;

hwacc fin : out std logic;

hwacc start : in std logic;

hwacc tlbhit : in std logic;

hwacc clk : in std logic;

hwacc reset : in std logic

);

end entity hwacc edge;

Figure A.1: The VHDL code of the WMU interface for hardware accelerators. Con-
necting a virtual-memory-enabled hardware accelerator to the WMU interface requires
using the ports shown in the figure.

A.2 Parameter Exchange

The WMU contains a register file that the VMW manager uses for parameter ex-
change between user software and user hardware. The register file is of the limited
size (current WMU implementations have eight 32-bit registers used for this pur-
pose); if invoking the hardware accelerator needs more parameters, either the user
stack or any other region in the main memory can be used for this purpose—this
poses no problem since the hardware accelerator is capable of accessing the virtual
memory address space. Having the register file in the WMU makes the parameter
exchange faster—in most cases there is no need to access the memory.

Figure A.2 shows the timing diagram for the parameter exchange. When the
user program launches the sys_hwacc system call, the VMW writes a start bit in
the WMU control register, which, in turn, starts the execution of the accelerator
by asserting the hwacc_start signal. This indicates that the accelerator shall start
reading the input parameters by generating the exchange register file addresses.
During this phase, the accelerator asserts the hwacc_xchange signal, meaning that
the addresses on the address lines are intended for the register file. The usage
of the registers is the following: (1) the register at the address 0x0000 holds the
number of accelerator parameters (nparam); (2) the register at the address 0x0001

contains control flags (flags) which are optional; (3) the rest of the registers (the
addresses from 0x0002 to 0x0007) store the parameters used to invoke the acceler-
ator (param[0-2] in this particular case). In the case of more than six parameters,
the register at the address 0x0007 is a pointer to the memory region (or the stack)
where the accelerator can find the remaining parameters. Appendix B shows the
usage of the parameter exchange structure in software.
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clk

hwacc_xchange

hwacc_din

hwacc_start

hwacc_vaddr
0x0000 0x0001 0x0002 0x0003 0x0004

nparam flags param[0] param[1] param[2]

hwacc_access

0x0004

Figure A.2: Timing diagram showing the accelerator start up. The WMU sets the
hwacc start signal which starts the accelerator. The accelerator generates accesses
in the exchange mode (the hwacc xchange is asserted), reading parameters from the
exchange register file. Afterward, the accelerator starts normal operation, accessing the
virtual memory (the hwacc access signal is one).

Once the initialisation is over, the accelerator starts normal operation and ac-
cesses the virtual memory. During the memory accesses, the accelerator sets the
hwacc_access signal to one, puts the valid address, and waits for the reception of
the hwacc_tlbhit signal. Receiving the signal means that the translations is over
and the requested data is available at the data input lines. Figure C.3 shows an
example of such access.

Figure A.3 shows the timing diagram for the accelerator completion. After fin-
ishing the computation, the accelerator returns back to software. If the accelerator
produced a return value (we use the C language semantics), it returns it back to
software through the exchange register file of the WMU. Before signalising the com-
pletion (by asserting the signals hwacc_fin and hwacc_access), the accelerator
writes the return value and the return code to the WMU. The return code is nec-
essary for the VMW manager to distinguish the situation when a normal returns
appears from the hardware callback to software. If the value stored by the accelera-
tor at the address 0x0001 of the register file differs from the return code, the VMW
manager uses it for invoking the appropriate software function. The rest of the
registers (from address 0x0002 to address 0x0007) are at the accelerator disposal
for passing parameters to software.

The completion of the accelerator operation raises an interrupt handled by the
VMW manager. Acknowledging the interrupt resets the interrupt bit of the WMU
status registers. Then, the VMW manager clears the start bit in the WMU control
register, which, in turn, puts the hwacc_start signal to zero. The accelerator uses
the change of this signal (if there is no callback to software pending) to go to its
initial state. In this way, it is ready for future invocations.
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clk
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hwacc_access

0x0001 0x0000

hwacc_fin

hwacc_wr

wmu_interrupt

Figure A.3: Timing diagram showing the accelerator completion. The accelerator uses
the hwacc xchange and hwacc wr signal to signalise writing to the exchange register.
It writes the return indication (retcode and the return value retval, and signalises
the completion to the WMU (through the hwacc access and hwacc fin signals). This
raises an interrupt handled by the VMW manager.

A.3 Internal Structure

The VMW manager manages the local memory (similarly as the VMM does with
the main memory), which is divided into pages to allow multiple virtual mappings
to the user memory.

The WMU matches the upper part of the coprocessor address (most significant
bits) to the patterns representing virtual page numbers stored in the translation
table. It can support multiple operation modes, i.e., different page sizes and the
number of pages. Possible operation modes for a WMU using the local memory of
16KB (12 bits needed for 32-bit word physical addressing) are shown in Table A.1.
The optimal number of pages depends on the characteristics of coprocessor’s memory
access pattern.

How a 32-bit virtual address is translated to the corresponding physical address
is shown in Figure A.4. The operation mode determines how many bits of the
virtual address represent the virtual page number and how many of them represent
the page offset. A simple shifter to the right selects how many bits are given to
the WMU as a match pattern. The number of TLB entries in the WMU and the
bitwidth of its contents correspond to the number of pages for the current operation
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Number of pages Page size VirtPage bits PhyPage bits Offset bits

2 8KB 21 1 11
4 4KB 22 2 10
8 2KB 23 3 9
16 1KB 24 4 8
32 0.5KB 25 5 7

Table A.1: WMU operation modes. Different number of local memory pages are
supported by the WMU.

TLB

MatchPattern

MatchTranslation

VirtPage No Offset

Shift Right

Concat

OpMode

Physical Address

Virtual Address

PhyPage No Offset

Figure A.4: WMU address translation and multiple operation modes. The WMU forms
the appropriate physical address depending on the current operation mode.

mode. At the WMU exit, a concatenator forms the correct physical address. The
current operation mode determines how many of the match translation and offset
bits are needed to form an address for the 4K words local memory. The OS controls
the WMU and could adapt its operation mode to application requirements, even
during application runtime.
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Appendix B
VMW System Call

THE VMW manager is responsible for the translation process and memory
transfers. Besides, it also defines the programming interface for using virtual-

memory-enabled hardware accelerators. The interface consists of a system call that
performs the execution transfer from user software to user hardware and passes the
necessary parameters. It also provides some auxiliary functions that we use for the
measurement and control purposes. In this appendix, we show the programming
interface and give the details of its use, and we explain the invocation of hardware
accelerators from software.

B.1 VMW Programming

We extend the host OS with a system call sys_hwacc that is responsible for the
interface between use software and user hardware. In our particular implementation,
the VMW manager is an OS module loadable at runtime. Once the it is loaded and
linked to the kernel, the module hooks the sys_hwacc call into the dispatch table
for system services. Further on, the programmer can use it for configuring and
accessing hardware accelerators.

Before invoking a hardware accelerator, the programmer has to make sure that
the FPGA contains the accelerator. In our work we do not address possibilities of
dynamic reconfiguration. We just provide means for configuring the FPGA before
the particular codesigned application is run. In the case of the Altera device (dis-
cussed in Appendix C), we create a special device with the appropriate support in
the OS. Copying a bitstream file (the file containing the configuration bits for the
programmable logic—it is the outcome of the Altera design tools) to the special de-
vice reconfigures the chip and puts the required hardware accelerator in place. This
enabled further references to the accelerator through the sys_hwacc call. Although
the Xilinx device (also explained in Appendix C) should support partial runtime
reconfiguration, the design flow could not produce designs for reconfiguration (this
flaw in the design tools has been corrected in the latest version of the tools). Thus,
in the Xilinx case, we had to configure the system (with all required hardware accel-
erators, WMUs, and local memories) statically, at start up time, before launching
the operating system.
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Figure B.1 shows an example of invoking a hardware accelerator through the
sys_hwacc system call. The function contains preparatory steps such as setting
up the parameter passing structure. The programmer sets the number of param-
eters (p.u.nparam), than the parameters received by invoking the library function
(p.param[0-3]). The flags field of the structure (p.v.flags) is set up to define
the operation mode of the WMU (VMW_MODE_P8 macro specifies the operation mode

/* include necessary definitions */

#include<vmw.h>

/* callback functions */

int cbackfun1 ();

int cbackfun2 ();

/* library function for calling a hardware accelerator */

int hwacc call (int *A, int *B, int *C, int size) {
/* the parameter passing structure */

struct param p;

/* the structure for execution reports */

struct report r;

/* the array for function pointers */

unsigned int funptr[2];

/* set up the parameters */

p.u.nparam = 4; /* the number of parameters */

p.param[0] = A; /* input vector pointer */

p.param[1] = B; /* input vector pointer */

p.param[2] = C; /* output vector pointer */

p.param[3] = size; /* data size */

/* setting up the operation mode and announcing callbacks */

p.v.flags = VMW MODE P8 | VMW CBACK F2;

/* preparing callbacks */

funptr[0] = (unsigned int) cbackfun1;

funptr[1] = (unsigned int) cbackfun2;

p.param[5] = funptr;

/* invoking hardware accelerator */

if (sys hwacc (HWACC ID, VMW START, &p) != 0) {
printf("Cannot start. Exiting.");

exit(0);

}
/* collecting execution reports */

if (sys hwacc (HWACC ID, VMW REPORT, &r) != 0) {
printf("Warning. Cannot get the report.");

}
/* print execution reports, etc. */

...

}

Figure B.1: Invoking a hardware accelerator through the system call interface. The
parameter passing structure contains the pointers and sizes of the data to be processed.
Function pointers for callbacks to software are also passed to the VMW. The VMW
manager collects execution time and other statistics and returns it through the report
structure.

with the local memory divided into eight pages). Another parameter to the flags
(VMW_CBACK_F2) indicates that the hardware accelerator may callback up to two soft-
ware function. In the presence of callbacks, the sixth parameter (p.param[5]) is
used to pass the array of callback function pointers. After finishing the preparatory
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steps, the sys_hwacc call invokes the VMW manager that writes the parameters to
the WMU exchange registers (explained in more detail in Section B.2 ) of the se-
lected hardware accelerator and starts the execution of the accelerator by setting the
appropriate bit in the control register of the WMU. When the accelerator finishes
its execution, the sys_hwacc returns and the programmer can collect the report
data through another call to the sys_hwacc. All the steps in the library function
are rather straightforward and can be easily generated in automated fashion.

B.2 Parameter Exchange

The VMW manager receives the parameter exchange structure from the user space
from the sys_hwacc system call. Figure B.2 shows the C language definition of the
structure. The structure corresponds to the physical layout of the exchange register
in the WMU(there are eight 32-bit registers in the exchange register file). The
manager reads the nparam field of the union u and then copies available parameters
from the param[] array to the appropriate registers in the exchange register file of
the WMU. By reading the flags field of the union v, the manager determines the
required operation mode of the WMU (the default one is the local memory divided
in eight pages) and writes it to the control register of the WMU. If the flags field
shows the presence of callbacks, the VMW manager gets the appropriate number of
function pointers (jump addresses) from the user space. After passing all necessary
parameters, the VMW manager launches the execution of the accelerator, by setting
the start bit in the WMU control register.

typedef struct {
union {

unsigned int nparam; /* number of parameters */

unsigned int cpuretval; /* CPU return value */

} u;

union {
unsigned int flags; /* flags and hints */

unsigned int cbackid; /* call back function id */

unsigned int cpretval; /* CP return value */

} v;

unsigned int param[6]; /* parameters array */

} struct param;

Figure B.2: The parameter exchange structure. Apart from the invocation parameters,
the structure contains control information exchanged in both direction. The structure
corresponds to the registers of the WMU exchange register file.

When the VMW manager receives an interrupt from the WMU indicating the
execution transfer back to user software (recall Figure 4.4 in Section 4.3), it first
examines the WMU exchange register corresponding to the cbackid field of the
union v. If it finds there the retcode code (which we mentioned in Section+A.2),
the accelerator has terminated its execution and the VMW manager performs the
execution transfer back to the sys_hwacc caller. The return value from the acceler-
ator (cpuretval from the union u) is passed back to the caller. If it finds no return
code, the value read from the register is treated as the identifier (cbackid) of the
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callback request. The manager performs the execution transfer from user hardware
to user software (as explained in Section 6.2), and passes possible parameters for
invoking the callback software function. It determines the number of parameters
by reading the WMU register corresponding to the nparam field of the u union and
reads the parameters from the exchange register file (the registers corresponding
to the param[] array of the exchange structure). Finally, the cbackid determines
which function pointer the VMW manager shall use for setting up the jump address
on the user stack (recall Figure 6.3). When the callback function finishes, the tram-
poline on the user stack returns back the execution to the VMW manager. The
manager copies the return value received from the callback function to the WMU
exchange register file and resumes the execution of the hardware accelerator. The
accelerator, in turn, reads the return value through the parameter exchange protocol
(discussed in Appendix A) and continues the execution until another callback or the
final completion.



Appendix C
Reconfigurable SoC Platforms

WE have implemented the VMW system on two different reconfigurable SoCs
coming from major FPGA vendors. We use an in-house-made board (called

RokEPXA and shown in Figure C.1) based on an Altera Excalibur device [3], and
the ML310 board based on a Xilinx Virtex-II Pro device [130]. We have designed the
WMU in VHDL to be synthesised onto FPGA together with a hardware accelerator.
We have developed the VMW manager as a Linux kernel module and ported it
to both platforms. The VMW manager can support prefetching (as explained in
Chapter 4). The following sections explain in more detail the two platforms.

C.1 Altera Excalibur Platform

Figure C.1 shows the RokEPXA board (designed by Gaudin [48]) that we used
for our experiments. The main components of the board are the Altera Excalibur
EPXA1 device [3], 64MB of SDRAM memory at 266MHz, 8MB of FLASH mem-
ory, Ethernet module, serial and USB ports, and various expansion and debugging
ports. The development and cross compiling platform (on a standard workstation)
is connected to the board over serial and network interfaces.

The Excalibur EPXA1 device we use is the smallest device in its family (e.g.,
EPXA4 and EPXA10 devices from the same family offer more programmable logic
and larger on-chip memories). Figure C.2 shows a simplified scheme of the inter-
nal organisation of the EPXA1 device. It consists of a fixed ASIC part, called
Embedded Processor Stripe in Altera’s terminology, and of a programmable part
called PLD—standing for Programmable Logic Device. The stripe contains the
ARM922T processor with a cache and memory management unit. The processor
runs at 133MHz. Other major components of the stripe are: (1) 32KB of single-
port on-chip SRAM memory; (2) 16KB of dual-port on-chip SRAM memory also
accessible by the programmable logic; (3) SDRAM controller; (4) JTAG interface
for debugging. Internal on-chip peripherals are connected with the CPU over two
AMBA buses for high-speed peripherals (AHB1 and AHB2 [8]). The main CPU
can configure the PLD at runtime through a PLD configuration controller. In con-
trast to Xilinx Virtex-II Pro devices, partial configuration of the PLD device is
not possible—the whole device has to be configured at once. However, most of the
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Figure C.1: RokEPXA board. The board is based on Excalibur reconfigurable SoC
containing ARM processor and reconfigurable logic.

peripherals necessary for the normal system functioning are already present in the
embedded processor stripe (which is not the case in Xilinx devices), thus, albeit the
limitation, the reconfiguration process is made simpler.

We have designed and synthesised the WMU within the PLD device of the
EPXA1 chip. Figure C.2 shows the WMU integration within the EPXA1. Since
the dual-port on-chip SRAM is accessible by both the stripe and the PLD, we have
chosen it for the local memory of the virtual-memory-enabled hardware accelerator.
The VMW manager running on the ARM processor transfers the pages between the
main memory and the dual-port memory using the AMBA bus. Hardware accel-
erators access the dual-port memory through the WMU using the WMU-interface
protocol (shown in Appendix A). Depending on the WMU operation mode, the
memory is logically organised in 2–32 pages with respective page sizes 8–0.5KB (the
total size is therefore 16KB). The WMU part of the PLD design is fixed, designing a
new hardware accelerators assumes just changing the HW ACC block in the design.
The WMU is connected to the rest of the platform over the slave AMBA interface.
Through this interface the VMW manager accesses the WMU and manages the
translation.

Because of the limitations of the FPGA technology, the translation is performed
in multiple cycles: if we assume no translation faults, four cycles are needed from the
moment when the accelerator generates an access to the moment when the data is
read or written (Figure C.3). The performance drop caused by multiple translation
cycles can be overcome by pipelining. Although we had to implement the WMU in
FPGA for these experiments, WMUs should, in principle, be implemented as ASIC
cores, in the same way as MMUs are.
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Figure C.2: WMU integration within Altera Excalibur EPXA1 device. The ASIC part
of the device (Stripe) contains the ARM processor, on-chip memories, and peripherals.
The reconfigurable part of the device (PLD) is used for the WMU and the application-
specific hardware accelerator. A 16KB dual-port memory accessible by Stripe and PLD
is used for the local memory of the accelerator.

The board is running GNU/Linux OS read from the FLASH memory at boot
time. It uses the 64MB of the main memory for the working memory and the root
file system. We originally developed the VMW manager for the Altera platform;
however, it is easily portable to other platforms by adapting few configuration files.
The manager is a loadable kernel module that can be added to the kernel at run
time. The Linux kernel version the VMW relies on is 2.6 [75]. For reconfiguring the
PLD we use a special character device supported by the module. In this way, one
can configure the PLD by just issuing the following shell command: “cp bitstreamfile
/dev/pld”. Similarly, a program can do the same by invoking the appropriate system
calls.
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Figure C.3: The accelerator read access. The accelerator initiates the data transfer
and waits for the confirmation signal. The Data is ready on the fourth rising edge of
the clock.

C.2 Xilinx Virtex-II Pro Platform

The ML310 board [130] from Xilinx that we also used for our experiments is an ad-
vanced evaluation board containing the Xilinx Virtex-II Pro device XC2VP30. The
board is equipped with 256MB of DDR RAM, 512 MB of CompactFlash memory,
four PCI expansion slots, RS232 and USB serial interfaces, two IDE connectors,
JTAG debugging interface, etc. Figure C.4 shows the ML310 evaluation board.

The XC2VP30 device contains two PowerPC 405 processors surrounded by
FPGA logic (30000 logic cells). Except the two CPUs, the device has no other
ASIC cores, meaning that the designer has to implement system peripheral devices
(e.g., DDR RAM controller, UART, interrupt controller) in FPGA. The PowerPC
processors can run at frequencies up to 300MHz. On-chip processor buses (PLB,
OPB, and OCM [59]) and DDR RAM memory can run at the frequency of 100MHz.

Figure C.5 shows the architecture used for our experiments on the ML310 Xil-
inx evaluation board—in our experiments we use only one of the two PowerPC
processors available. The CPU is connected to the Processor Local Bus (PLB). The
external RAM controller is also connected to the same bus. Slower peripherals,
such as UART and interrupt controller, are connected to the On-chip Peripheral
Bus (OPB). We have connected the WMU to the same bus. The CPU controls
the slower peripherals, such as UART, WMU and interrupt controller, through the
PLB2OPB bridge. We use multiple on-chip memory blocks (BRAMs) to form the
local memory of hardware accelerators (VMW Memory in Figure C.5). A BRAM
block is a dual-port memory of configurable size. To simplify the design, we have
originally connected the local memory to the OPB bus. This, however, has given
unsatisfactory performance results. Our next step was to connect the local memory
to the PLB bus, closer to the CPU and the memory. Nevertheless, this has neither
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Figure C.4: ML310 board. The board is based on Virtex-II Pro reconfigurable SoC
containing two PowerPC processors surrounded by FPGA logic.

improved performance. Unexpectedly, albeit the difference in running frequencies,
the transfer times of the Altera Excalibur device were shorter than the correspond-
ing Virtex-II Pro times. We have investigated the corresponding low-level kernel
routines used by the VMW manager in both cases (ARM and PowerPC implemen-
tations of the Linux kernel). We found both implementations were assembler-based
and highly optimised. Only when we excluded the PowerPC from the page transfer
path and employed a DMA on the local memory side (as Figure C.5 shows), we have
managed to get satisfactory performance results (Section 5.3.5 shows difference in
copy times between the Altera and the Xilinx platforms). In the system configura-
tion used for the experiments, the VMW manager just initiates data transfers from
the main memory to the VMW memory (and vice versa); then, it is on the DMA
to perform the task.

There is another peculiarity regarding our WMU implementation on Xilinx Vir-
tex devices. We use LookUp Tables (LUTs) configured as shift registers (as recom-
mended in a Xilinx Application Note—XAPP201 [130]) to implement the Content
Addressable Memory (CAM) of the TLB. The implementation results in a CAM
spending one cycle per pattern match. However, in the management phase, when
a pattern is to be written in the CAM, one cycle per pattern bit is necessary. For
example, writing a 24 bit pattern requires 24 cycles. As the management access ap-
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Figure C.5: WMU integration within Xilinx Virtex-II Pro XC2VP30 device. The Pow-
erPC core is connected to the rest of the system through the PLB bus. The WMU
is managed by the OS through the OPB bus. The virtual-memory-enabled hardware
accelerators access the local memory built out of BRAM blocks. A DMA controller
connected to the PLB bus performs memory transfers between the local memory and
the main memory. The OS initiates the transfers, after receiving the WMU requests.

pears once per page fault, the performance drawback of did not show to be critical.
Since the reconfigurable SoC device of the ML310 board is significantly larger

than in the RokEPXA case, we have extended the original VMW manager to sup-
port multiple, multithreaded hardware accelerators. Figure C.6 shows the system
architecture for multithreading. One WMU per hardware accelerator is present.
Having large amounts of reconfigurable logic available, we could afford sizes of the
local memory from 16–64KB. In such a system, we have also envisioned the use of
the partial reconfiguration interface (through the HWICAP peripheral connected to
the OPB bus). Unfortunately, the immaturity of the design tools did not allow us to
accomplish the partial reconfiguration; it is the task of the future efforts, especially
now when the design tools have evolved.
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Figure C.6: Xilinx Virtex-II Pro XC2VP30 platform for multithreading. Multiple WMUs
connect user hardware accelerators to the rest of the system. The user reconfigures the
accelerators through the HWICAP peripheral.



108 C. RECONFIGURABLE SOC PLATFORMS



Appendix D
Applications

IN this appendix, we show design details of a couple of hardware accelerators that
we used in our experiments. We show the design of the IDEA cryptography ac-

celerator and the design of the contrast enhancement engine for image processing.
In both cases, we have taken already existing accelerators designed in synthesisable
VHDL [17, 111, 124, 32]) and adapted them for our virtual memory interface. The
original IDEA accelerator encrypts the data stored in local memory, while the orig-
inal contrast engine directly accesses the main memory. In this way, the original
accelerators represent two typical architectures (accessing local memory and main
memory) described in Section 2.2. The experiments we performed with the virtual-
memory-enabled accelerators have shown in practice the advantages of using our
virtualisation layer. It simplifies the hardware interfacing and software program-
ming, and allows porting applications from one platform to another without any
change in the application code.

D.1 IDEA Accelerator Design

We have used the reference IDEA code [82] design together with a previous design
in synthesisable VHDL [17] as the basis for designing the virtual-memory-enabled
IDEA accelerator. The IDEA algorithm consists of eight rounds of the core trans-
formation followed by the output transformation. When designing the accelerator,
the eight rounds can be “unrolled” a certain number of times, depending on the
available reconfigurable logic resources. The computation of a round contains four
multiplications, four additions, and several XOR operations. The output transfor-
mation consists of two multiplications and two additions. The algorithm exhibits
parallelism exploitable by hardware implementation.

Figure D.1 shows the design blocks of the original IDEA accelerator without
VMW (a typical accelerator accessing local memory). There are four principal
design blocks of the accelerator. The IDEA Core and the IDEA CTRL blocks
represent the algorithm core and its controller. The Memory CTRL and Init CTRL
blocks provide actual communication to the core. IDEA Core and Memory CTRL
are synchronised using the stall signal: the core is stalled until Memory CTRL is
ready to read/write the data.
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Figure D.1: Typical IDEA accelerator accessing local memory. The accelerator is
interfaced directly to local memory. It generates physical memory addresses to access
the data.

The IDEA core implements the eight computation rounds of the algorithm and
the output transformation. The core performs the computation rounds iteratively—
the rounds are not “unrolled” because of the limited FPGA space (we have originally
targeted the Altera EPXA1 device, which is rather small in terms of available logic
cells). The original pipeline depth of the IDEA round implementation [17] is five
stages. The output transformation has only one stage. To obtain a smaller design,
we have changed the available design of the IDEA core [121]. The multipliers and
adders in the IDEA round pipeline are used in a time-multiplexed manner to lower
their number (two multipliers and two adders).
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Figure D.2: Virtual-memory-enabled IDEA accelerator. The accelerator is interfaced
through a standardised WMU interface and generates no physical addresses.
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Figure D.2 shows the virtual-memory-enabled version of the IDEA accelerator.
It consists of the same four design blocks as in the typical accelerator case, but
with the memory access unit and the initialisation unit changed to comply with the
WMU interface. One can notice that the IDEA-specific blocks are unmodified and,
although slightly different, both Memory CTRL and Init CTRL must be present in
one form or another—the main difference is that they now generate virtual addresses
and not the physical addresses of the local memory. To avoid performance penalties
because of the relatively complex core design compared to the interface components,
the core blocks belong to a different clock domain (clk1’s period is an integral
fraction of clk2’s). Synchronisation is again achieved using the stall signal (the
core blocks until the memory request is fulfilled; afterward, it can continue the
execution).

Once the WMU starts the accelerator with hwacc_START, Init CTRL takes con-
trol. It reads initialisation parameters through the WMU and passes them to the
IDEA CTRL block (params). After passing all parameters, it gives the interface ac-
cess to the memory controller (the init signal that controls the multiplexers allows
Memory CTRL access to the WMU interface) and starts IDEA CTRL (start).
IDEA CTRL controls the computation of IDEA Core and generates memory re-
quests to Memory CTRL (rd_req, wr_req). Memory CTRL in its turn stalls
(stall) the core unless it is ready to respond to the requests. For each request,
it generates the appropriate WMU interface signals (hwacc_access, hwacc_wr,
hwacc_vaddr, hwacc_dout), waits for the hit acknowledgment arriving from the
TLB. (hwacc_tlbhit), and eventually reads the input data lines (hwacc_din).
When the computation is finished, IDEA CTRL passes the control back to INIT
CTRL (fin), which informs the WMU about the successful completion, writes the
return code and return value (recall Appendix A) to the exchange register file, and
finishes the accelerator computation (hwacc_fin).

After synthesis for the Altera Excalibur device and the Xilinx Virtex-II Pro de-
vice, the complex IDEA accelerator core runs on lower frequency (6MHz—Altera,
25MHz—Xilinx) than the WMU and the IDEA memory subsystem (24MHz—Altera,
100MHz—Xilinx). For improving the processing throughput, the core of the IDEA
accelerator is pipelined. However, due to the limited FPGA resources of the EPXA1
device, only three 64-bit blocks can be encrypted at a time. With larger FPGAs
(such as EPXA10 from Altera or XC2VP30 from Xilinx) additional parallelism could
be exploited. Nevertheless, we decide to use the single IDEA accelerator design that
can fit both target device.

D.2 Contrast Engine Design

Starting from image-processing engines (developed by Stechele et al. [111, 124, 32])
that access the system main memory, we have built virtual-memory-enabled accel-
erators for the contrast enhancement and edge detection applications. The main
intention of the original designers was to build a reconfigurable system for driver
assistance applications. In this context, the system uses different hardware accel-
erators for processing camera-captured frames in different driving conditions [111].
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In this section, we show the original design of the contrast enhancement engine and
of its virtual-memory-enabled version.
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Figure D.3: Typical contrast enhancement accelerator accessing main memory. The
accelerator is interfaced to the system bus and generates physical addresses of the main
memory.

Figure D.3 shows the design of the contrast engine accessing the main mem-
ory. The accelerator is connected directly to the PLB (Processor Local Bus) bus
through an interface wrapper (PLB IPIF block generated by Xilinx design tools).
The memory arbiter provides means for the host processor to access the configura-
tion registers, and for the accelerator to access the memory via the system bus. The
address counter generates addresses of the image processing windows. The task of
the transport blocks (Transport In and Transport Out in the figure) is to initiate
memory read and write accesses. Since the PLB bus width for data is 64 bits, each
bus transaction (the accelerator uses single transfers only and it does not implement
bursts) reads or writes 8 pixels at once. The averaging and scaling blocks perform
the actual computation (i.e., contrast enhancement).

For starting the engine, the programmer has to write explicitly the engine pa-
rameters to the configuration registers. The registers are memory mapped to the
user address space, as well as the input and output images (recall Figure 2.6 in
Section 2.2). The input parameters define the size of the processing window and its
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origin relative to the whole image (as Figure 5.2 illustrates). Once the computation
has started, the engine first samples a subwindow (its size is 6 times smaller than
the processing window) to determine the internal thresholds for the main process-
ing. Then, it performs the contrast enhancement by reading four input windows
and writing the output window in the result image. At the end, the accelerator
generates an interrupt and waits for the software to acknowledge it. The program-
mer restarts the operation for processing another frame. The OS has to reserve
the memory regions accessed by the accelerator at the system boot time. Process-
ing another window would require copying to/from the reserved memory regions
or reserving more memory from the OS. The programming is much simplified for
the virtual-memory-enabled accelerators, where passing pointers to the dynamic
memory containing the images is sufficient.
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WMULocal
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Figure D.4: Virtual-memory-enabled contrast enhancement accelerator. The accelera-
tor is interfaced to the local memory through the WMU. It accesses virtual memory of
the user address space.

Figure D.4 shows the virtual-memory-enabled version of the contrast enhance-
ment engine. Instead of using the Xilinx interface, the accelerator connects to the
system through the WMU interface toward the local memory. We have changed
the original memory arbiter and added the initialisation controller. The rest of the
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accelerator is practically unchanged. When the programmer starts the accelerator
through the sys_hwacc system call, the engine reads the initialisation parameters
through the WMU exchange registers and writes them to the configuration registers.
Then, it launches the computation. The transport blocks now use virtual memory
addresses to access the local memory through the WMU interface. There are no
explicit transfers over the system bus initiated by the accelerator. It is completely
hidden by the WMU interfaces, thus, platform-independent.

After synthesis of the accelerator (and the surrounding interfacing and system
support blocks—discussed in Appendix C), the engine could run at the frequency of
100MHz on the Xilinx Virtex-II Pro device. The virtual-memory-enabled accelera-
tors are connected to the local memory of 64KB. The spare reconfigurable logic of
the device allows adding another accelerator to the system (with its own WMU in-
terface and the local memory). We have used such system for running multithreaded
experiments, with the contrast enhancement and edge detection accelerators running
simultaneously in the reconfigurable hardware.



Appendix E
CPD Calculation

CHAPTER 5 introduces the CPD metric for heterogeneous code computers. In
this appendix, we show how one can calculate the CPD value for simple control-

flow (or data-flow) graphs representing the computation done by hardware accelera-
tors. We also present an example of using the CPD metric to estimate the speedup
achievable by a hardware accelerator in comparison with the software execution of
a critical section.

E.1 CPD from Control-Flow Graphs

Figure E.1a shows a graph representing the IDEA hardware accelerator that we use
in our experiments (the node weights for this particular example are related to the
Altera-based reconfigurable platform). Coloured nodes represent memory operations
and the white nodes stand for computation. Node weights define how many cycles
it takes to complete the execution of the corresponding operation. The solid-line
edges represent data dependencies, while the dashed-line edges represent the control
dependencies. The sum of weights across a cycle built of control edges expresses the
number of iterations for a control loop. In our discussion we show only simple graphs
of the accelerators that we used in practice. We do not show graphs containing
memory nodes that have computation nodes as its predecessors and successors at
the same time—these graphs would require more complex computation of the CPD.

The memory accesses in this case are 32 bits wide (there is only one memory
port available). For reading or writing an IDEA block the accelerator needs two
memory accesses (IDEA blocks are 64 bits wide). The graph represents this fact
with two read and two write nodes—the accelerator has to perform them in sequence.
The computation consists of IDEA rounds (repeated eight times) and the output
transformation. Executing the accelerator for a single input block requires (4 +
4) + (12 · 8 + 4) + (4 + 4) = 116 cycles. The design of the accelerator permits
preforming pipelined computation (in the main computation core—the IDEA round)
on three IDEA blocks at the same time. Assuming the ideal memory port (i.e.,
each memory access is fulfilled in four cycles) and the pipelined execution of three
IDEA blocks at a time, we find the CPD for the accelerator to be CPDIDEA =
((4 + 4) · 3 + (12 · 8 + 4) + (4 + 4) · 3)/(3 · 2) = 24.67.
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Figure E.1: Control-flow graph of the IDEA hardware accelerator for the original (a)
and unrolled (b) version of the accelerator. Weights of the nodes represent the number of
cycles. Memory reads and writes take multiple cycles because of the WMU translation
overhead. The back-going edge represents a control loop that iterates eight times.
Unrolling the computation eliminates the control loop.

If the designer had more FPGA area available, she could unroll the control
loop and further exploit the available parallelism. Figure E.1b shows the unrolled
version of the original iterative accelerator. Each node represent a pipeline stage
of the computation. However, the single memory port is the limiting factor for
this accelerator. Again, assuming that there are no memory stalls, the CPD of the
modified accelerator is CPDIDEA = ((4 + 4) · 25 + (4 + 4) · 25)/(25 · 2) = 8. Having
separate input and output ports in this case would provide the CPDIDEA = 4.

For using the CPD values calculated as in the previous examples as correct
(with a limited error), one has to ensure that the number of data to be processed
(DC from Section 5.1) is much larger than the CPD value (DC � CPD). If this
assumption does not hold, the effects of an unfilled pipeline influence the correctness
of the result. For example, processing four IDEA blocks (DC = 8, in 32-bit words)
by the accelerator with the pipeline capacity of three IDEA blocks (the one shown
in Figure E.1a) takes in reality ((4 + 4) · 3 + (12 · 8 + 4) + (4 + 4) · 3)) + ((4 +
4) + (12 · 8 + 4) + (4 + 4)) = 148 + 116 = 264 cycles, while using the CPD gives
DC × CPDIDEA = 8 · 24.67 = 197.36 cycles, i.e., about 34% error.

Contrast Enhancement Engine. Figure E.2 shows the data-flow graphs for
the two phases of the contrast enhancement hardware accelerator (presented in
Section D.2). The graphs contain no explicit control-flow dependencies. As dis-
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cussed in Appendix D, the computation of contrast enhancement consists of two
phases. The phases are not pipelined. Assuming one memory port (64-bits wide in
the implementation on the Xilinx device) and no memory stalls, we find CPD1 =
((6+6+6+6)+12)/(4·2) = 4.5 and CPD2 = ((6+6+6+6)+15+6)/(4·2) = 5.625.
In the case with each input and output port having its own memory port we have
CPD1 = (6 + 12)/(4 · 2) = 2.25 and CPD2 = (6 + 15 + 6)/(4 · 2) = 2.625
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Figure E.2: In the first phase (a), the accelerator samples input subwindows and
produces no output. In the second phase (b), the accelerator performs the contrast
enhancement and produces the output window. Memory operations go through the
WMU and take 6 cycles in this case (the WMU implementation on the Xilinx device).

E.2 Hardware Execution Time

The overall execution time of a hardware accelerator consists of the time spent in
software activities to support the interfacing and of the time spent in hardware
execution:

ETHW = IC ′ × CPI ′ × TCPU + CCHW × THW , (E.1)

where CCHW is the total number of cycles (cycle count of hardware clock periods
THW —in the general case, THW is different from TCPU) needed by the accelerator to
perform its computation. We use IC ′ and CPI ′ in the above equation to emphasise
their difference from the corresponding quantities of Equation 5.1 (Section 5.1).

While Equation 5.1 implicitly accounts (through CPI) for time spent in system
hardware activities (such as branch prediction, instruction and data caching, mul-
tiple issue [44, 56]) to support the software-only execution, Equation E.1 explicitly
shows (through IC ′ × CPI ′ × TCPU) the time spent —recalling the discussion in
Section 2.2—in burdensome software activities (such as partitioning data, schedul-
ing memory transfers) to support the interfacing. On the other side, Equation E.1
implicitly accounts (through CCHW ) for the time spent in cumbersome hardware
activities (such as managing buffers and burst accesses). In contrast to the sys-
tem activities accounted in ETSW , the execution support activities in ETHW are
delegated to the user (i.e., the software programmer and the hardware designer).



118 E. CPD CALCULATION

Section 5.1 proposes a metric that clearly separates execution-support and pure-
execution activities of hardware accelerators.

The CPI parameter gives an insight regarding the CPU architecture and or-
ganisation, which is not the case with the CCHW figure. We can notice that there
is no instruction count for the hardware part of Equation E.1—there is only one
instruction (i.e., the hardware accelerator itself), which does not change over the
execution of the application.

We use the CPD metric to derive another way of expressing the overall execution
time of the hardware accelerator1:

ETHW = HT + CT

= DC × CPDHW × THW + CCmem.stalls × THW , (E.2)

where CPDHW is the CPD value for the hardware accelerator assuming the ideal
memory hierarchy (i.e., the memory accesses introduce no stalls) and, CCmem.stalls is
the number of cycles (cycle count) that the accelerator has to wait for the software
or hardware action or, in other words2:

CCmem.stalls = Nmiss × Pmiss , (E.3)

with Nmiss being the number of times the accelerator has to wait for the transfers
to the local memory, and Pmiss being the cost or penalty in cycles of such event. We
shall notice that Pmiss represents, in fact, the cycles spent in software for copying,
or in hardware for accessing the main memory and filling local buffers with burst
accesses. We further develop Equation E.2 to obtain

ETHW = DC × CPDHW × THW + Nmiss × Pmiss × THW

= DC ×
(
CPDHW +

Nmiss

DC
× Pmiss

)
× THW

= DC × (CPDHW + Rmiss × Pmiss) × THW

= DC × (CPDHW + CPDmemory) × THW , (E.4)

where Rmiss is the miss rate, and CPDmemory represents overhead incurred by the
memory transfers from the main memory to the local memory and vice versa or by
the direct accesses to the main memory (with and without bursts, as Section 2.2
discusses).

The form of Equation E.4 is convenient for the hardware accelerators where we
cannot easily separate the CT and HT components, but we can measure or calculate
Rmiss and Pmiss .

1We assume again that the management time is negligible, as well as execution transfers between
software and hardware.

2A simplifying assumption here is that all memory transfers have the same cost, which holds
for the accelerators with simple memory access patterns.
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E.3 Critical Section Speedup

If we extend our general-purpose system with a hardware accelerator implementing
the critical code section and running within the codesigned application, the speedup
achieved by the hardware accelerator is

Speedupcriticalsection =
ETSW

ETHW
, (E.5)

where ETHW is the overall execution time of the accelerator.
A designer (or an automated design flow) who decides to move a critical section

from software to hardware may want to estimate the potential benefit first. In such
situation, the CPD metric provides the means for the comparison. Here we show
an example of its use. Recalling discussion from Chapter 5, for the speedup of the
critical section (moved from software to hardware execution), we can write:

Speedupcriticalsection =
IC × CPI × TCPU

DC × CPDHW × THW

=
DC × IC×CPI

DC
× TCPU

DC × CPDHW × THW

=
CPDSW × TCPU

CPDHW × THW

(E.6)

if we assume the same word size for software and hardware, when accessing the
data from memory. For instance, if we take an example of a code section originally
executed to process 2048 words on a single-issue pipelined CPU (running at 300MHz,
thus TCPU = 3.33ns), with IC = 20000 and CPI = 1.05, we find CPDSW =
(20000×1.05)/2048 = 10.25. On the other side, we have the corresponding hardware
accelerator (accessing local memory as Figure 2.3 shows and running in FPGA
at 100MHz, thus THW = 10ns) operating on the same data, with CPDHW =
1.2. The CPD value close to 1 indicates a heavily-pipelined implementation of the
accelerator, capable of processing one datum per cycle (assuming ideal accesses to
the local memory that always take one cycle per access). In reality, the difference
of 0.2 from the ideal CPD value accounts for an average number of cycles spent
for hardware accelerator stalls and software activities to transfer the data from the
main memory to the local memory—the average access time to the local memory in
practice is not equal to one cycle.

In this particular example, moving the critical section to hardware would achieve
therefore a speedup of:

Speedup =
10.25 × 3.33ns

1.2 × 10ns
= 2.84 (E.7)
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Appendix F
MPEG4 Hardware Reference

THE Moving Picture Experts Group (MPEG) is a working group of the Inter-
national Standardisation Organisation (ISO) responsible for the development

of international standards for compression, decompression, processing, and coded
representation of moving pictures, audio and their combination [85]. A common
way of describing outcoming MPEG standards is to use a reference code written
in a high-level programming language (typically C programming language). One
of the activities of the MPEG—within an ad-hoc group assigned to this task—is
to develop a reference hardware description of the MPEG-4 algorithms written in
the VHDL hardware-description language. Historically, designers would develop
hardware accelerators for MPEG starting from the reference C code; having the
reference description of the standard in VHDL would shortcut the design path from
the software reference description to the accelerator hardware.

The reference hardware description group has developed a framework for plat-
form-independent hardware accelerators called Virtual Sockets [97, 96]. One of the
ongoing activities of the group is to integrate our concept of unified virtual memory
for software and hardware into the existing framework [77]. The integration (1)
will allow user IPs to be completely unaware of physical location of the accessed
data and (2) there will be no need for the software programmer to do the explicit
data transfers between the main memory and the IPs. In this appendix, we briefly
show the existing MPEG-4 framework for reference hardware design and present
the application of our unified virtual memory to it.

F.1 Virtual Socket Framework

The University of Calgary [97] has developed Virtual Socket framework for the
Wildcard II reconfigurable PC card (shown in Figure F.1) from Annapolis Micro
Systems [7]. The Wildcard II is an extension card for portable or wearable comput-
ers. It contains a Virtex-II device (X2CV3000) from Xilinx [130], external SDRAM
(64MB) and SRAM (2MB) memory, analog-to-digital converter, a multi-channel
DMA controller, and digital input/output ports. The reconfigurable device intended
for accelerating applications is connected to the host computer over the PC Card
bus (former PCMCIA interface).
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Figure F.1: Wildcard II reconfigurable PC Card from Annapolis Micro Systems. The
card contains a Xilinx Virtex-II device, PC interfacing logic, and on-card memories.

Figure F.2 shows Virtual Socket framework. The framework provides platform-
independent connections (virtual sockets) to multiple user IPs (hardware modules
implementing some MPEG functionality). Each socket allows user IPs to access four
different on-chip (within the Xilinx Virtex-II device, registers and BRAM space) and
on-card (SDRAM and SRAM off the Virtex-II device) memory spaces. Regarding
on-chip memories, Virtual Socket assigns to each IP its own memory slot. It is the
task of the programmer to control explicitly the IPs and copy the data from software
to hardware. For example, if the data to be processed by the IP is larger than the
available memory in the corresponding slot, the programmer has to partition the
data and schedule the transfers.

F.2 Virtual Memory Extension

The ongoing extensions of Virtual Socket framework have the goal to adapt the
existing framework and provide the virtual memory abstraction and shared address
space for user software and hardware IPs. The burdensome task of data movements
is delegated to the system layer, thus, releasing the programmer. The virtual mem-
ory extension mode is optional, meaning that MPEG hardware designers can decide
whether or not to use the extension. Since the unified memory abstraction facilitates
hardware and software interfacing and partitioning, an appealing possibility for the
designers is to use the virtual memory extension at the early stages of the module
design. During this phase, the system-level layer would provide memory-access pro-
filing for a given hardware module. Later on, the obtained profile would be used
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Figure F.2: Virtual Socket framework. The HW Interface Controller allows user IP
blocks to access four different memory address spaces. The programmer explicitly trans-
fers data from the host computer to these memories.

to tailor the system layer and optimise the memory transfers, thus minimising the
virtual memory overhead.

Figure F.3 shows the integration of the WMU within the existing framework.
One of the design tasks was to keep the IP interface as close as possible to the original
Virtual Socket. To integrate the WMU, we have added an additional signal to the
original interface. The signal called Virt_mem_access (asserted by an IP accessing
the virtual memory) extends the interface and controls a switch box (shown in
Figure F.3). During a virtual-memory access of the IP, the switch detours memory
read or write addresses and related control signals to the hardware translation unit—
the WMU; in turn, for a successful translation, the WMU generates the physical page
number and passes it to the hardware interface controller of the original framework;
finally, the controller performs the memory operation and returns the data from/to
the IP block. In the case of an unsuccessful translation, the WMU generates an
interrupt and the system software resolves its cause. For the moment, the WMU
translates virtual memory accesses only to the BRAM address space. There is no
slot limitation from the original framework.

The LAD bus connects the WMU directly to the host platform. Through the
interface, the VMW manager can access the control register, the status register,
and the address registers of the WMU. In the case of an access fault, the address
register contains the IP-generated address causing the interrupt. The VMW software
is supposed to check this address, copy the requested data in the BRAM space of
the Virtual Socket platform, and update the TLB through the LAD bus. The
virtualisation layer screens the programmer and the hardware designer of these
events.

The WMU generates another signal (Phys_page_num, an additional port of the
Hardware Interface Controller) acting as an input to the Hardware Interface Con-
troller. The signal indicates the number of the page in the BRAM space where the
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Figure F.3: WMU integration within the Virtual Socket framework. The WMU trans-
lates virtual memory addresses to the physical addresses of the BRAM address space.
The programmer does not need any more to transfer the IP data explicitly.

requested data are found. The memory access protocol is slightly different than the
original one [97] and relies on the few additional signals [77].
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hardware. Internship project, École Polytechnique Fédérale de Lausanne
(EPFL), September 2005.

[53] Thorsten Grötker, Stan Liao, Grant Martin, and Stuart Swan. System Design
with SystemC. Kluwer Academic Publishers, Norwell, Mass., 2002.

[54] Tom R. Halfhill. New patent reveals Cell secrets. Microprocessor Report,
3 January 2005.

[55] John R. Hauser and John Wawrzynek. Garp: A MIPS processor with a recon-
figurable coprocessor. In Proceedings of the 5th IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 12–21, Napa Valley, Calif.,
April 1997.

[56] John L. Hennessy and David A. Patterson. Computer Architecture: A Quan-
titative Approach. Morgan Kaufmann, San Mateo, Calif., third edition, 2002.

[57] Michael Herz, Reiner Hartenstein, Miguel Miranda, Erik Brockmeyer, and
Francky Catthoor. Memory addressing organisation for stream-based recon-
figurable computing. In Proceedings of the 9th IEEE International Conference
on Electronics, Circuits and Systems, Dubrovnik, Croatia, September 2002.

[58] Paolo Ienne and Rainer Leupers, editors. Customizable Embedded Processors:
Design Technologies & Applications. Systems on Silicon Series. Morgan Kauf-
mann, San Mateo, Calif., 2006.



130 BIBLIOGRAPHY

[59] International Business Machines, Inc. The CoreConnect Bus Architecture,
2006. [Online; accessed via http://www-306.ibm.com/chips/techlib/techlib.

nsf/productfamilies/CoreConnect Bus Architecture/ on 7th September
2006].

[60] Ayal Itzkovitz and Assaf Schuster. Distributed shared memory: Bridging the
granularity gap. In Proceedings of the 1st Workshop on Software Distributed
Shared Memory (WSDSM’99), Rhodes, Greece, June 1999.

[61] Cédric Jeannaret. Synthesising Java bytecode to hardware. Semester project,
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Linköping, Sweden, March 2006.

[125] Wikipedia. Application binary interface — Wikipedia, the free encyclopedia,
2006. [Online; accessed on 30th April 2006].

[126] Wikipedia. System software — Wikipedia, the free encyclopedia, 2006. [On-
line; accessed on 10th April 2006].

[127] R. Wilson, C. French, C. Wilson, J. Amarasinghe, J. Anderson, S. Tjiang, S.-
W. Liao, M. Tseng, Hall, M. Lam, and J. Hennessy. SUIF: An infrastructure
for research on parallelizing and optimizing compilers. SIGPLAN Notices,
29:31–37, December 1994.

[128] Wayne Wolf. Computers as Components: Principles of Embedded Computer
Systems Design. Morgan Kaufmann, San Mateo, Calif., 2001.

[129] Sven Wuytack, Julio L. da Silva Jr., Francky Catthoor, Gjalt de Jong, and
Chantal Ykman-Couvreur. Memory management for embedded network appli-
cations. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, CAD-18(5):533–44, May 1999.

[130] Xilinx Inc. Virtex-II Pro and Virtex-II Pro X User Guide, March 2005. [On-
line; accessed via http://direct.xilinx.com/bvdocs/userguides/ug012.pdf

on 10th December 2005].

[131] A. Yamada, K. Nishida, R. Sakurai, A. Kay, and T. Nomura, T.and Kambe.
Hardware synthesis with the Bach system. In Proceedings of the IEEE Interna-
tional Symposium on Circuits and Systems, volume 6, pages 366–69, Orlando,
Fla., May–June 1999.



136 BIBLIOGRAPHY

[132] Zhi Alex Ye, Andreas Moshovos, Scott Hauck, and Prithviraj Banerjee. CHI-
MAERA: A high-performance architecture with a tightly-coupled reconfig-
urable functional unit. In Proceedings of the 27th Annual International Sym-
posium on Computer Architecture, pages 225–35, Vancouver, June 2000.

[133] Albert Y. Zomaya, editor. Handbook of Nature-Inspired and Innovative Com-
puting: Integrating Classical Models with Emerging Technologies. Springer,
Berlin, 2006.

[134] Steve. Zucker and Kari Karhi. System V application binary interface: Pow-
erPC processor supplement. Technical Report 802-3334-10, Sun Microsystems,
Inc., Mountain View, Calif., September 1995.



Curriculum Vitae

VULETIĆ MILJAN
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• Miljan Vuletić, Ludovic Righetti, Laura Pozzi, and Paolo Ienne. Operating system support
for interface virtualisation of reconfigurable coprocessors. In Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition (DATE 04), Paris, February
2004.
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Flynn. Per window switching of window characteristics: wave-pipelining vs. classical design.
In IEEE TCCA Newsletter, September 1997.



142 Curriculum Vitae



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




