14 research outputs found

    ИНТЕЛЛЕКТУАЛЬНЫЙ числовым программным ДЛЯ MIMD-компьютер

    Get PDF
    For most scientific and engineering problems simulated on computers the solving of problems of the computational mathematics with approximately given initial data constitutes an intermediate or a final stage. Basic problems of the computational mathematics include the investigating and solving of linear algebraic systems, evaluating of eigenvalues and eigenvectors of matrices, the solving of systems of non-linear equations, numerical integration of initial- value problems for systems of ordinary differential equations.Для більшості наукових та інженерних задач моделювання на ЕОМ рішення задач обчислювальної математики з наближено заданими вихідними даними складає проміжний або остаточний етап. Основні проблеми обчислювальної математики відносяться дослідження і рішення лінійних алгебраїчних систем оцінки власних значень і власних векторів матриць, рішення систем нелінійних рівнянь, чисельного інтегрування початково задач для систем звичайних диференціальних рівнянь.Для большинства научных и инженерных задач моделирования на ЭВМ решение задач вычислительной математики с приближенно заданным исходным данным составляет промежуточный или окончательный этап. Основные проблемы вычислительной математики относятся исследования и решения линейных алгебраических систем оценки собственных значений и собственных векторов матриц, решение систем нелинейных уравнений, численного интегрирования начально задач для систем обыкновенных дифференциальных уравнений

    On Improving Generalization of CNN-Based Image Classification with Delineation Maps Using the CORF Push-Pull Inhibition Operator

    Get PDF
    Deployed image classification pipelines are typically dependent on the images captured in real-world environments. This means that images might be affected by different sources of perturbations (e.g. sensor noise in low-light environments). The main challenge arises by the fact that image quality directly impacts the reliability and consistency of classification tasks. This challenge has, hence, attracted wide interest within the computer vision communities. We propose a transformation step that attempts to enhance the generalization ability of CNN models in the presence of unseen noise in the test set. Concretely, the delineation maps of given images are determined using the CORF push-pull inhibition operator. Such an operation transforms an input image into a space that is more robust to noise before being processed by a CNN. We evaluated our approach on the Fashion MNIST data set with an AlexNet model. It turned out that the proposed CORF-augmented pipeline achieved comparable results on noise-free images to those of a conventional AlexNet classification model without CORF delineation maps, but it consistently achieved significantly superior performance on test images perturbed with different levels of Gaussian and uniform noise

    Video foreground extraction for mobile camera platforms

    Get PDF
    Foreground object detection is a fundamental task in computer vision with many applications in areas such as object tracking, event identification, and behavior analysis. Most conventional foreground object detection methods work only in a stable illumination environments using fixed cameras. In real-world applications, however, it is often the case that the algorithm needs to operate under the following challenging conditions: drastic lighting changes, object shape complexity, moving cameras, low frame capture rates, and low resolution images. This thesis presents four novel approaches for foreground object detection on real-world datasets using cameras deployed on moving vehicles.The first problem addresses passenger detection and tracking tasks for public transport buses investigating the problem of changing illumination conditions and low frame capture rates. Our approach integrates a stable SIFT (Scale Invariant Feature Transform) background seat modelling method with a human shape model into a weighted Bayesian framework to detect passengers. To deal with the problem of tracking multiple targets, we employ the Reversible Jump Monte Carlo Markov Chain tracking algorithm. Using the SVM classifier, the appearance transformation models capture changes in the appearance of the foreground objects across two consecutives frames under low frame rate conditions. In the second problem, we present a system for pedestrian detection involving scenes captured by a mobile bus surveillance system. It integrates scene localization, foreground-background separation, and pedestrian detection modules into a unified detection framework. The scene localization module performs a two stage clustering of the video data.In the first stage, SIFT Homography is applied to cluster frames in terms of their structural similarity, and the second stage further clusters these aligned frames according to consistency in illumination. This produces clusters of images that are differential in viewpoint and lighting. A kernel density estimation (KDE) technique for colour and gradient is then used to construct background models for each image cluster, which is further used to detect candidate foreground pixels. Finally, using a hierarchical template matching approach, pedestrians can be detected.In addition to the second problem, we present three direct pedestrian detection methods that extend the HOG (Histogram of Oriented Gradient) techniques (Dalal and Triggs, 2005) and provide a comparative evaluation of these approaches. The three approaches include: a) a new histogram feature, that is formed by the weighted sum of both the gradient magnitude and the filter responses from a set of elongated Gaussian filters (Leung and Malik, 2001) corresponding to the quantised orientation, which we refer to as the Histogram of Oriented Gradient Banks (HOGB) approach; b) the codebook based HOG feature with branch-and-bound (efficient subwindow search) algorithm (Lampert et al., 2008) and; c) the codebook based HOGB approach.In the third problem, a unified framework that combines 3D and 2D background modelling is proposed to detect scene changes using a camera mounted on a moving vehicle. The 3D scene is first reconstructed from a set of videos taken at different times. The 3D background modelling identifies inconsistent scene structures as foreground objects. For the 2D approach, foreground objects are detected using the spatio-temporal MRF algorithm. Finally, the 3D and 2D results are combined using morphological operations.The significance of these research is that it provides basic frameworks for automatic large-scale mobile surveillance applications and facilitates many higher-level applications such as object tracking and behaviour analysis

    Image and Video Forensics

    Get PDF
    Nowadays, images and videos have become the main modalities of information being exchanged in everyday life, and their pervasiveness has led the image forensics community to question their reliability, integrity, confidentiality, and security. Multimedia contents are generated in many different ways through the use of consumer electronics and high-quality digital imaging devices, such as smartphones, digital cameras, tablets, and wearable and IoT devices. The ever-increasing convenience of image acquisition has facilitated instant distribution and sharing of digital images on digital social platforms, determining a great amount of exchange data. Moreover, the pervasiveness of powerful image editing tools has allowed the manipulation of digital images for malicious or criminal ends, up to the creation of synthesized images and videos with the use of deep learning techniques. In response to these threats, the multimedia forensics community has produced major research efforts regarding the identification of the source and the detection of manipulation. In all cases (e.g., forensic investigations, fake news debunking, information warfare, and cyberattacks) where images and videos serve as critical evidence, forensic technologies that help to determine the origin, authenticity, and integrity of multimedia content can become essential tools. This book aims to collect a diverse and complementary set of articles that demonstrate new developments and applications in image and video forensics to tackle new and serious challenges to ensure media authenticity

    Shape variation modelling, analysis and statistical control for assembly system with compliant parts

    Get PDF
    Modern competitive market demands frequent change in product variety, increased production volume and shorten product/process change over time. These market requirements point towards development of key enabling technologies (KETs) to shorten product and process development cycle, improved production quality and reduced time-to-launch. One of the critical prerequisite to develop the aforementioned KETs is efficient and accurate modelling of product and process dimensional errors. It is especially critical for assembly processes with compliant parts as used in automotive body, appliance or wing and fuselage assemblies. Currently, the assembly process is designed under the assumption of ideal (nominal) products and then check by using variation simulation analysis (VSA). However, the VSA simulations are oversimplified as they are unable to accurately model or predict the effects of geometric and dimensional variations of compliant parts, as well as variations of key characteristics related to fixturing and joining process. This results in product failures and/or reduced quality due to un-modelled interactions in assembly process. Therefore, modelling and prediction of the geometric shape errors of complex sheet metal parts are of tremendous importance for many industrial applications. Further, as production yield and product quality are determined for production volume of real parts, thus not only shape errors but also shape variation model is required for robust assembly system development. Currently, parts shape variation can be measured during production by using recently introduced non-contact gauges which are fast, in-line and can capture entire part surface information. However, current applications of non-contact scanners are limited to single part inspection or reverse engineering applications and cannot be used for monitoring and statistical process control of shape variation. Further, the product shape variation can be reduced through appropriate assembly fixture design. Current approaches for assembly fixture design seldom consider shape variation of production parts during assembly process which result in poor quality and yield. To address the aforementioned challenges, this thesis proposes the following two enablers focused on modelling of shape errors and shape variation of compliant parts applicable during assembly process design phase as well as production phase: (i) modelling and characterisation of shape errors of individual compliant part with capabilities to quantify fabrication errors at part level; and (ii) modelling and characterisation of shape variation of a batch of compliant parts with capabilities to quantify the shape variation at production level. The first enabler focuses on shape errors modelling and characterisation which includes developing a functional data analysis model for identification and characterisation of real part shape errors that can link design (CAD model) with manufacturing (shape errors). A new functional data analysis model, named Geometric Modal Analysis (GMA), is proposed to extract dominant shape error xixmodes from the fabricated part measurement data. This model is used to decompose shape errors of 3D sheet metal part into orthogonal shape error modes which can be used for product and process interactions. Further, the enabler can be used for statistical process control to monitor shape quality; fabrication process mapping and diagnosis; geometric dimensioning and tolerancing simulation with free form shape errors; or compact storage of shape information. The second enabler aims to model and characterise shape variation of a batch of compliant parts by extending the GMA approach. The developed functional model called Statistical Geometric Modal Analysis (SGMA) represents the statistical shape variation through modal characteristics and quantifies shape variation of a batch of sheet metal parts a single or a few composite parts. The composite part(s) represent major error modes induced by the production process. The SGMA model, further, can be utilised for assembly fixture optimisation, tolerance analysis and synthesis. Further, these two enablers can be applied for monitoring and reduction of shape variation from assembly process by developing: (a) efficient statistical process control technique (based on enabler ‘i’) to monitor part shape variation utilising the surface information captured using non-contact scanners; and (b) efficient assembly fixture layout optimisation technique (based on enabler ‘ii’) to obtain improved quality products considering shape variation of production parts. Therefore, this thesis proposes the following two applications: The first application focuses on statistical process control of part shape variation using surface data captured by in-process or off-line scanners as Cloud-of-Points (CoPs). The methodology involves obtaining reduced set of statistically uncorrelated and independent variables from CoPs (utilising GMA method) which are then used to develop integrated single bivariate T2-Q monitoring chart. The joint probability density estimation using non-parametric Kernel Density Estimator (KDE) has enhanced sensitivity to detect part shape variation. The control chart helps speedy detection of part shape errors including global or local shape defects. The second application determines optimal fixture layout considering production batch of compliant sheet metal parts. Fixtures control the position and orientation of parts in an assembly process and thus significantly contribute to process capability that determines production yield and product quality. A new approach is proposed to improve the probability of joining feasibility index by determining an N-2-1 fixture layout optimised for a production batch. The SGMA method has been utilised for fixture layout optimisation considering a batch of compliant sheet metal parts. All the above developed methodologies have been validated and verified with industrial case studies of automotive sheet metal door assembly process. Further, they are compared with state-of-the-art methodologies to highlight the boarder impact of the research work to meet the increasing market requirements such as improved in-line quality and increased productivity

    Compression of 3D models with NURBS

    Get PDF
    With recent progress in computing, algorithmics and telecommunications, 3D models are increasingly used in various multimedia applications. Examples include visualization, gaming, entertainment and virtual reality. In the multimedia domain 3D models have been traditionally represented as polygonal meshes. This piecewise planar representation can be thought of as the analogy of bitmap images for 3D surfaces. As bitmap images, they enjoy great flexibility and are particularly well suited to describing information captured from the real world, through, for instance, scanning processes. They suffer, however, from the same shortcomings, namely limited resolution and large storage size. The compression of polygonal meshes has been a very active field of research in the last decade and rather efficient compression algorithms have been proposed in the literature that greatly mitigate the high storage costs. However, such a low level description of a 3D shape has a bounded performance. More efficient compression should be reachable through the use of higher level primitives. This idea has been explored to a great extent in the context of model based coding of visual information. In such an approach, when compressing the visual information a higher level representation (e.g., 3D model of a talking head) is obtained through analysis methods. This can be seen as an inverse projection problem. Once this task is fullled, the resulting parameters of the model are coded instead of the original information. It is believed that if the analysis module is efficient enough, the total cost of coding (in a rate distortion sense) will be greatly reduced. The relatively poor performance and high complexity of currently available analysis methods (except for specific cases where a priori knowledge about the nature of the objects is available), has refrained a large deployment of coding techniques based on such an approach. Progress in computer graphics has however changed this situation. In fact, nowadays, an increasing number of pictures, video and 3D content are generated by synthesis processing rather than coming from a capture device such as a camera or a scanner. This means that the underlying model in the synthesis stage can be used for their efficient coding without the need for a complex analysis module. In other words it would be a mistake to attempt to compress a low level description (e.g., a polygonal mesh) when a higher level one is available from the synthesis process (e.g., a parametric surface). This is, however, what is usually done in the multimedia domain, where higher level 3D model descriptions are converted to polygonal meshes, if anything by the lack of standard coded formats for the former. On a parallel but related path, the way we consume audio-visual information is changing. As opposed to recent past and a large part of today's applications, interactivity is becoming a key element in the way we consume information. In the context of interest in this dissertation, this means that when coding visual information (an image or a video for instance), previously obvious considerations such as decision on sampling parameters are not so obvious anymore. In fact, as in an interactive environment the effective display resolution can be controlled by the user through zooming, there is no clear optimal setting for the sampling period. This means that because of interactivity, the representation used to code the scene should allow the display of objects in a variety of resolutions, and ideally up to infinity. One way to resolve this problem would be by extensive over-sampling. But this approach is unrealistic and too expensive to implement in many situations. The alternative would be to use a resolution independent representation. In the realm of 3D modeling, such representations are usually available when the models are created by an artist on a computer. The scope of this dissertation is precisely the compression of 3D models in higher level forms. The direct coding in such a form should yield improved rate-distortion performance while providing a large degree of resolution independence. There has not been, so far, any major attempt to efficiently compress these representations, such as parametric surfaces. This thesis proposes a solution to overcome this gap. A variety of higher level 3D representations exist, of which parametric surfaces are a popular choice among designers. Within parametric surfaces, Non-Uniform Rational B-Splines (NURBS) enjoy great popularity as a wide range of NURBS based modeling tools are readily available. Recently, NURBS has been included in the Virtual Reality Modeling Language (VRML) and its next generation descendant eXtensible 3D (X3D). The nice properties of NURBS and their widespread use has lead us to choose them as the form we use for the coded representation. The primary goal of this dissertation is the definition of a system for coding 3D NURBS models with guaranteed distortion. The basis of the system is entropy coded differential pulse coded modulation (DPCM). In the case of NURBS, guaranteeing the distortion is not trivial, as some of its parameters (e.g., knots) have a complicated influence on the overall surface distortion. To this end, a detailed distortion analysis is performed. In particular, previously unknown relations between the distortion of knots and the resulting surface distortion are demonstrated. Compression efficiency is pursued at every stage and simple yet efficient entropy coder realizations are defined. The special case of degenerate and closed surfaces with duplicate control points is addressed and an efficient yet simple coding is proposed to compress the duplicate relationships. Encoder aspects are also analyzed. Optimal predictors are found that perform well across a wide class of models. Simplification techniques are also considered for improved compression efficiency at negligible distortion cost. Transmission over error prone channels is also considered and an error resilient extension defined. The data stream is partitioned by independently coding small groups of surfaces and inserting the necessary resynchronization markers. Simple strategies for achieving the desired level of protection are proposed. The same extension also serves the purpose of random access and on-the-fly reordering of the data stream

    A geometrically resilient robust image watermarking scheme using deformable multi-scale transform

    No full text
    corecore