
Harnessing Simulated Data with Graphs

Henrique Teles Maia

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2022

© 2022

Henrique Teles Maia

All Rights Reserved

Abstract

Harnessing Simulated Data with Graphs

Henrique Teles Maia

Physically accurate simulations allow for unlimited exploration of arbitrarily crafted environ-

ments. From a scientific perspective, digital representations of the real world are useful because

they make it easy validate ideas. Virtual sandboxes allow observations to be collected at-will,

without intricate setting up for measurements or needing to wait on the manufacturing, shipping,

and assembly of physical resources. Simulation techniques can also be utilized over and over again

to test the problem without expending costly materials or producing any waste. Remarkably, this

freedom to both experiment and generate data becomes even more powerful when considering the

rising adoption of data-driven techniques across engineering disciplines. These are systems that

aggregate over available samples to model behavior, and thus are better informed when exposed

to more data. Naturally, the ability to synthesize limitless data promises to make approaches that

benefit from datasets all the more robust and desirable.

However, the ability to readily and endlessly produce synthetic examples also introduces several

new challenges. Data must be collected in an adaptive format that can capture the complete

diversity of states achievable in arbitrary simulated configurations while too remaining amenable

to downstream applications. The quantity and zoology of observations must also straddle a range

which prevents overfitting but is descriptive enough to produce a robust approach. Pipelines that

naively measure virtual scenarios can easily be overwhelmed by trying to sample an infinite set

of available configurations. Variations observed across multiple dimensions can quickly lead to a

daunting expansion of states, all of which must be processed and solved. These and several other

concerns must first be addressed in order to safely leverage the potential of boundless simulated

data.

In response to these challenges, this thesis proposes to wield graphs in order to instill structure

over digitally captured data, and curb the growth of variables. The paradigm of pairing data with

graphs introduced in this dissertation serves to enforce consistency, localize operators, and crucially

factor out any combinatorial explosion of states. Results demonstrate the effectiveness of this

methodology in three distinct areas, each individually offering unique challenges and practical

constraints, and together showcasing the generality of the approach. Namely, studies observing

state-of-the-art contributions in design for additive manufacturing, side-channel security threats,

and large-scale physics based contact simulations are collectively achieved by harnessing simulated

datasets with graph algorithms.

Table of Contents

Acknowledgments . xvii

Dedication . xix

Preface . 1

Chapter 1: Introduction . 3

1.1 Motivation . 3

1.2 Problem Statement . 4

1.3 Approach . 5

1.4 Methodology . 6

1.5 Contributions . 8

1.5.1 LayerCodes . 8

1.5.2 Neural Snooping . 9

1.5.3 Data-Driven Hair Contact . 11

Chapter 2: Related Work . 13

2.1 Simulating with Datasets and Graphs . 13

2.1.1 Sim-2-Real & Real-2-Sim . 14

2.1.2 Data-Driven Techniques . 15

i

2.1.3 Graph Algorithms . 15

2.2 Learning to Simulate . 16

2.2.1 Representative Examples . 17

2.2.2 Data Generation for Simulated Settings 22

2.2.3 Machine Learning Improving Existing Techniques 26

2.2.4 Beyond Model Reduction and Approximation 29

2.3 Physical Information Embedding . 31

2.3.1 Traditional Embeddings . 31

2.3.2 Experimental Techniques . 32

2.4 Side Channel Neural Extraction . 35

2.4.1 Input-Output Deductions . 36

2.4.2 Digital Side Channels . 36

2.4.3 Physical Side Channels . 36

2.5 Strand Simulation Techniques . 37

2.5.1 Strand Simulation . 37

2.5.2 Approximate Physics . 39

2.5.3 Machine Learning & Simulation . 44

Chapter 3: LayerCode . 47

3.1 Introduction . 47

3.2 Encoding . 52

3.3 Decoding . 57

3.3.1 Image Preprocessing . 58

ii

3.3.2 Graph Construction . 59

3.3.3 Decoding through Graph Traversal . 62

3.3.4 Loop Prevention with Graph Invariants . 63

3.3.5 Early Termination . 65

3.3.6 Extensions . 66

3.3.7 Details on Depth Recovery . 68

3.4 Fabrication . 70

3.4.1 Two-Color Fabrication . 71

3.4.2 Fabrication with Variable Layer Heights 71

3.4.3 Variable Layer Height Implementation . 74

3.4.4 Fabrication with Invisible Near-Infrared Dyes 75

3.4.5 Invisible Near-Infrared Implementation 78

3.4.6 Print-Specific Processing . 80

3.4.7 Discussion on Implementation and Application 81

3.5 Evaluation on Virtual Dataset . 83

3.5.1 Database Construction . 86

3.5.2 Results Statistics . 86

3.6 Limitations & Concluding Remarks . 91

Chapter 4: Can one hear the shape of a neural network?:
Snooping the GPU via Magnetic Side Channel 96

4.1 Introduction . 97

4.2 Technical Background . 100

4.2.1 Neural Networks . 100

iii

4.2.2 GPUs for Deep Neural Networks . 101

4.2.3 Magnetic Signals from GPUs . 101

4.3 Threat Model . 103

4.4 Signal Analysis & Network Reconstruction . 106

4.4.1 Topology Recovery . 106

4.4.2 Hyperparameter Estimation . 108

4.5 Experimental Setup . 110

4.5.1 Hardware Sensors . 110

4.5.2 Dataset Construction . 111

4.5.3 Variations of the Approach . 113

4.6 Results . 115

4.6.1 Accuracy of Network Reconstruction . 115

4.6.2 Accuracy across GPUs . 119

4.6.3 Transfer Attack . 122

4.7 Defenses Against Magnetic Side Channels . 125

4.7.1 Prevention . 126

4.7.2 Jamming . 127

4.8 Ethical Considerations . 129

4.9 Discussion . 129

Chapter 5: Data Driven Hair Contact . 132

5.1 Introduction . 132

5.2 Mapping Strands to Graphs . 136

iv

5.3 Choice of Model . 140

5.3.1 Rod & Contact Model . 141

5.3.2 Feature Design . 141

5.3.3 Dataset Generation . 144

5.4 Network Specification . 148

5.4.1 Training Scheme . 151

5.5 Results . 152

5.5.1 Qualitative Comparisons . 154

5.5.2 Quantitative Comparisons . 158

5.5.3 Quantitative Advancements . 164

5.6 Conclusion . 168

5.6.1 Future Work . 168

5.6.2 Discussion . 169

Chapter 6: Discussion . 170

6.1 Summary . 170

6.2 Contributions . 171

6.3 Limitations . 173

6.4 Future Work . 174

6.5 Conclusion . 176

References . 177

v

List of Figures

3.1 LayerCode tags are deployed in 3D printed objects through two-color printing (a),

variable layer heights (d), and near-infrared steganography (g). In the first case (a),

the LayerCode tag is visible; in the second (d), the tag is less visible; and in the

third (g) it is completely invisible, but still machine-readable. Just like reading a

barcode, we capture an image of each object, and our decoding algorithm processes

the image to create a decoding graph (b, e, h), from which a linear barcode (and

thus the corresponding bit string) is recovered (c, f, i). 48

3.2 Usage scenario. A scene with a LayerCode-tagged object is captured by a conven-

tional camera. Our graph-based algorithm then decodes the embedded information

from the image. 50

3.3 Challenging shapes. LayerCode tags can be embedded in challenging shapes such

as those with holes, thin features, curved surfaces, and branching threads, and can

be decoded successfully. To our knowledge, no previous optical tagging mechanism

can handle these challenging shapes. 52

3.4 Distorted thickness. A sphere is coded with black and white layers of equal

thickness. On the captured image, curvature and perspective cause layers to appear

spatially varying in size. 53

3.5 Encoding scheme. Each pair of layers encodes a single bit. A bitwise 0 or 1 can be

determined by computing the ratio of adjacent layer thicknesses. 55

vi

3.6 Barcode challenges. Simple input shapes (Left) are followed by more challenging

geometry (Right), each suggesting a different approach to decoding. Linear scan

works with simple flat surfaces, but cannot generalize to flat pieces with holes.

These might be decoded by projecting all pixels to one dimension; however, globally

projecting fails to handle curved objects. Instead, locally tracing across layers is

effective, until subsequent layers are too far to trace (e.g., see Figure 3.7-left). Lastly,

our graph-based method can be used to handle highly complex shapes with curve

and holes, and is backwards compatible with all previous challenging shapes. . . . 56

3.7 Layer thickness estimation. (Left) Looking at local pixel regions is not sufficient to

guarantee that neighboring layers can be found. (Right) Computing the shortest path

between neighbors as a vector or traced path will often not measure an accurate layer

thickness. Distances must be projected along the printing direction (or boundary

normal direction). 58

3.8 Graph construction and traversal. (left) We identify individual pixel regions

(A-E) through flood filling. (middle) We create a graph, where each node represents

a pixel region, and two nodes are connected if their regions are adjacent to each

other. Since the layers are added along the printing direction, it makes no sense

to traverse back and forth along the printing direction for decoding—for example,

A→B→C does not produce a valid bit string, while A→B→D is reasonable (right). 61

3.9 Early termination. (left) Holes and fine features leads to a large decoding graph

with many branches. (middle) As a result, a naïve graph traversal unnecessarily

explores too many decoding paths. (right) Early termination allows us to declare a

tag with confidence after processing just a small fraction of the available paths. . . 65

3.10 2.5D image re-synthesis. An object carrying a LayerCode tag also carries depth

information for free. From a single image, we can estimate the object’s 3D coordi-

nates with respect to the camera (middle), which in turn allows us to re-synthesize

images from other viewpoints (right). 67

vii

3.11 Depth recovery. The boundary curves between any two consecutive coding layers

are on a series of parallel planes. The depth of every point of the boundary curves

can be recovered by intersecting a camera ray with the plane that point resides on. 69

3.12 Fabricated pieces carry LayerCode tags made by two-color printing, variable layer

heights, and near-infrared resins. LayerCode tags are successfully embedded and

decoded for shapes with bumpy, shell, curvy, and other complex geometry. 70

3.13 Physical hyperlink. The LayerCode tag embedded in this Zebra-shaped object

reveals shape and related mesh information. 72

3.14 Distinctive highlight distributions. The black layers (orange color) are made of

3D printing layers each with a small height, while the white layers (green color)

have a much larger 3D printing layer height. As a result, the specular highlights in

black layers appear sparser and more granular, while the highlights in white layers

are denser and more uniform. The difference of highlight distributions allows the

decoding algorithm to discern the two types of coding layers by processing a camera

image. 73

3.15 Variable layer heights. A twisted vase is encoded with a variable height LayerCode

(a-d), printed (e), and then decoded (f-h). At the decoding time, a camera image (e)

is converted into grayscale, followed by contrast boosting (f), bilateral filtering (g),

and a Gaussian-mixture-based clustering to binarize the image (h), which is in turn

supplied to the decoding algorithm for graph construction and decoding along paths

(red curve on (h)). 74

3.16 Hardware augmentation of Autodesk Ember. (a) Autodesk Ember has only one

resin tray, and thus cannot support two types of coding layers. We replace the build

plate (b) on its rotational platform with a new CNC-milled plate (c) that support

two trays (d). This hardware augmentation together with its firmware modification

allows us to deploy NIR LayerCode tags in 3D printed objects. 76

viii

3.17 NIR LayerCode tags in sunlight. The NIR LayerCode tags remain invisible in

sunlight (left), but become visible when imaged with a NIR filter in front of the

camera (right). No additional light source is needed. 78

3.18 LayerCode tag and augmented reality. (Left) A fallen angel damages its wing.

However, the LayerCode tag can still be read since it is present on the interior of

the object. Decoding the damaged piece reveals the embedded tag, from which we

know 1) the original 3D model, and 2) its 3D depth and position with respect to the

camera. (Right) These information enable a virtual repair of the angel displayed in

an augmented reality fashion. 82

3.19 The decoding success rate across the entire database of each view direction is

color-mapped on a sphere, whose equator is aligned to the plane perpendicular to

the printing direction. This mapping is unrolled in the Mercator projection, with

representative views of a tagged bust shown (on top) for a few points of interest. . 84

3.25 Successfully decoded shapes. A peek into the diversity of tested shapes within our

database. Each view presented is correctly decoded by our graph-based algorithm.

Shapes with bumpy, shell, thin, curvy, and other challenging properties showcased

here are still subject to encoding and decoding by our LayerCode approach. Three

shapes indicated by the stars are discussed in the main text. 90

3.26 LayerCoded toys. Examples of visible LayerCodes on toy models which, if

manufactured using special Near-Infrared markers and dyes, could be used for IP

protection and counterfeit detection. 92

3.20 A visualization of tagged meshes test in our database. A random cross-section of

shapes found in the dataset, consisting of several thousands of non-expert designs.

This includes a mix of functional pieces, toys, and artistic designs all exhibiting

geometric qualities representative of custom shapes in the wild. 93

ix

3.21 Decoding the dataset from sample views. We plot the distribution of all 4,835

tested shapes with respect to the number of view angles from which they can be

decoded successfully. 99.6% of the shapes can be decoded from at least one sampled

view direction. 94

3.22 Lower bound of h. The decoding becomes challenging if the coding layers are

made too thin. Here we show the smallest baseline layer thickness ℎ still readable

under different views for shapes normalized to 10cm in length along the printing

direction. 94

3.23 Stress test. From left to right, we keep adding holes to the wedge and check if the

resulting shape can hold a readable LayerCode tag. 324 holes of random radii are

added before decoding is no longer possible. Decoding is possible even when the

final wedge is 10.81% of its original volume and has many fine features. 95

3.24 Failure cases. Among the 4,835 shapes, 44 shapes cannot be decoded. Here are

three challenging failed shapes. 95

4.1 Leaked magnetic signal. (left) Our induction sensor captures a magnetic signal

when a CNN is running on the GPU. We observe strong correlation between the

signal and the network steps. Across two steps, the GPU has to synchronize,

resulting in a sharp drop of the signal level (highlighted by the selected red circle).

(right) We can accurately classify the network steps and reconstruct the topology,

as indicated by the labels under the 𝑥-axis. Here we highlight the signal regions

associated with convolutions (conv), batch-norm (BN), Relu non-linear activations

(relu), max-pooling (MP), and adding steps together (add). 102

4.2 Sensing setup. Placement of the magnetic induction sensor on the power cord

works regardless of the GPU model, providing a common weak-spot to enable

current-based magnetic side-channel attacks. 110

4.3 Edit distance performance. Each model’s classification accuracy drops as its

Levenshtein distance from the original model (model A: AlexNet) increases. . . . 117

x

4.4 Distribution of normalized Levenshtein distance on dataset. We plot the distribu-

tion of the normalized Levenshtein distances between the reconstructed and target

networks. This results, corresponding to Table 4.1 in the main text, use signals

collected on Nvidia Titan V. 119

4.5 Distribution of normalized Levenshtein distance across GPUs. An experiment

comparing the distribution of the normalized Levenshtein distances between two

Nvidia GTX-1080 GPUs. One is used for collecting training signals, and the other

is used for testing our side-channel-based reconstruction algorithm. 120

4.6 Hardware signal similarity. Here we plot the resulting signals from the same

network model deployed on two different instances of a Nvidia GTX 1080 (running

on two different computers). In the green dash boxes on the left are the spikes that

we inject on purpose (discussed in §4.5.2) to synchronize the measured signal with

the runtime trace of the GPU operations. 120

4.7 Deceptive steps. Our side channel cannot track dataflow across the network to

distinguish relevant operations (green and blue highlights). Extraneous interspersed

steps (red and orange) can mix in signals to impede topology extraction, trading off

less efficient processing for security. 126

4.8 Classification accuracy in the precense of noise. We simultaneously run additional

immaterial kernels on the GPU while collecting inferences on a target dataset. The

background load is increased until accuracy on the target drops below 50%. 128

5.1 Simulation and graph correspondence. Physical quantities such as dimensions

and material properties specify a simulated strand composed of rods and vertices,

while neural features and embeddings define the attributes of a correlated graph

network. 137

xi

5.2 Primal-graph ambiguities. Mapping rods to edges and vertices to nodes leads

to counter-intuitive graph representations of rod-rod collisions. Left to right, (a)

a contact can introduce a singular contact node that connects the strand vertices

involved, (b) the vertices can be connected directly resulting in redundancies with 4

collision edges representing one contact, or (c) edges in the graph can be connected

by special contact edges. 138

5.3 Dual-graph collision representation. Strands colliding (left) at locations high-

lighted by the blue diamonds can be easily represented by the dual-graph (right)

which maps rods to nodes, vertices to edges, and contacts as inter-strand node-to-

node edge connections. 139

5.4 Adaptive external nodes. An additional node is added to the graph at runtime to

account for collisions with other simulation objects. Scripted nodes (depicted with

inset circle) are flagged in the graph via one-hot encoding. 140

5.5 Dual feature mapping. Elastic rods map to a neural-friendly dual graph representa-

tion by converting simulation edges to GraphNet nodes and connecting them with

graph edges. 142

5.6 Typical training array. Small bundles are seeded at random and undergo a few

seconds of simulated motions. Here 8 clusters of strands operate for under 3 seconds

and are used to infer large grooms with tens of thousands of hairs throughout

prolonged simulations. 146

5.7 DualGraph network processing block. The processing block updates latent

embeddings of nodes and contacts. Nodes are updated first by pooling adjacent

nodes and aggregating incident contacts. Contact edges are updated last by looking

at the updated nodes so that the impulses can be directly computed by decoding

without wasting computation. 150

xii

5.8 Hairball. Recreated grooms achieved by state-of-the-art hair simulations [93] are

simulated at a fraction of the computational cost. Here small 50-strand bundles of

curly hair contact treatment are generalized and extrapolated to 3 thousand longer

wavy hairs. 153

5.9 Quality of contact approximation. Here we find 3 hairballs consisting of 500

strands that are each simulated by different means and captures at the same timestep

after performing a hair-flip. On the left (a) shows the baseline simulation, the center

(b) shows the results of our machine learned contact approximation, and on the right

(c) the relative effect of turning off strand-strand contact handling. 154

5.10 Network results as strands grow. Increasing the number of strands does not impact

the quality of results, so long as the density of strands remains similar to that of the

training set. On the left (a) shows the a 500 strand simulation, the center (b) shows

1000 strands, and on the right (c) 3000 strands are used, all resulting in similar local

and global features. 155

5.11 Stable high-density contact scenarios. Simulations relying on neural inferences

remain stable even at large scales. On the left (a) shows the a 16-thousand strand

simulation, and on the right (b) longer locks can be found in a straightened style. . 156

5.12 Generalization of weights. Weights trained on one hair type are not restricted to

a single style of hair. Here we see that the curly strands used in other examples

can also provide contact resolution for long wavy hair (top-left), thicker curly hair

(top-right), dense wavy hair (bottom-left), and pseudo-straight hair (bottom-right). 157

5.13 Statistical strand bundles. Performance profiles pertaining to constrained veloci-

ties and predicted impulses are collected over eight hairballs. Each contact graph

generated is solved four different ways, with a low, medium, and high number of

baseline solver iterations as well as neural impulse inferences. 159

xiii

5.14 Relative velocity error. Relative error averaged across strand vertices is tracked

for every contact problem across eight bundles simulating a hair toss. Extended

periods of resting contact observe by the baseline simulation and not enforced in the

network impulses result in large velocity errors. Notably, even one impulse showing

error in a case of resting contact can lead to movement of vertices which exhibits

high error compared to baseline methods. 160

5.15 Relative impulse error. Whereas the velocity error is high for neural impulses,

training to match impulses allows for low relative error with regards to impulses

produced by the largest amount of baseline iterations. Relative error on impulses

produced by network inferences remains low across contact scenarios. On the other

hand, baseline solutions with lower iteration counts produce large relative errors in

their solutions. 161

5.16 Evolution of a strand bundle. The same initialized hair groom (a) is simulated

twice with different contact resolution techniques. Frames are captured after a

second of simulation once resting contact is achieved for the baseline simulation

(b) and the network inference (c). Similarly, the final frame of the simulation after

tossing the hair bundles for a few seconds shown (d) for the baseline simulation and

(e) for the neural network derived contact results. 162

5.17 Resting contact. Arrays of strands initialized with random perturbations to position,

velocity, and number of strands in orthogonal configurations are used to train and

test resting contact treatment. Test result frames from initialization choosing one

such setup of strands and after simulating for over 20 seconds are shown to verify

the stability of resting contact. 163

5.18 Time per step. As strands become more entangled, the number of contacts grows.

This leads to timesteps becoming slower, greatly impacting the overall time to

simulate. The total time per timestep here (orange) is dominated by the time

required for collision resolution (blue). 164

xiv

5.19 Relative cost of collision resolution. A plot showing the relative percentage of a

timestep spent on collision resolution. Even for a problem as small as 1000 strands,

resolving collisions overwhelmingly accounts for the majority of the timestep’s cost. 165

5.20 Time cost of growing contact problems. Iterative methods scale poorly as the

number of contacts grow. On the other hand, the time cost for computing an

inference is fixed, and can be trained to approximate any underlying physical model

or baseline complex implementation. 166

5.21 Network advantage as contacts scale. Given the fixed cost of performing a colli-

sion with neural networks, the more contacts present allot for increased performance

speedups. Notably above roughly 100 contacts it always becomes advatageous to

resolve contacts with the network, and the boosted performance is only bound by

processor memory considerations. 167

6.1 The shoulders we stand on. This work lives at the intersection of three decorated

sub-fields of the computer science community. 176

xv

List of Tables

2.1 A comparison of geometric challenges, design and manufacturing considerations,

and additional features sought across several tagging techniques. 35

4.1 Classification accuracy of network steps (Titan V) 115

4.2 Model extraction accuracy on CIFAR-10 . 117

4.3 Model reconstruction evaluated on ImageNet classification. 118

4.4 DNN accuracy estimating convolutional hyperparameters. 118

4.5 Classification accuracy of network steps (GTX-1080). 121

4.6 Classification accuracy on datasets combining many GPUs 122

4.7 Transfer attack results on CIFAR-10. 124

4.8 Transfer attack results on MNIST. 125

xvi

Acknowledgements

For some reason just my name gets to sit at the front of this dissertation, when in reality none

of this was possible without the help of so many others. I refuse to proceed any further without first

acknowledging all the support I received throughout this degree.

Academically, I’ll begin with my two advisors. Professor Eitan Grinspun and Professor

Changxi Zheng, without your combined encouragement I would not be here. Though you each

served as my advisor, know that you acted more as a friend throughout this entire process. I

continue to learn so much, both intellectually and regarding life in general, from our close

relationship. Thank you for always respecting me and treating me as an equal, even when I had just

started my studies. I am so honored and appreciative to have been able to work in your lab.

In addition, I’ve also had the pleasure of being mentored by several others along my journey.

In particular I want to thank Dingzeyu Li, for being an inspiration and providing and endless stream

of moral support throughout the years, along with Michael Reed who first introduced me to all the

excitement and chaos that is graphics. I also want to thank Danny Kaufman, Etienne Vouga,

Rasmus Tamstorf, and Yonghao Yue for adopting me on projects and guiding me on the many

styles of conducting research. Whether you know it or not, you’ve each left an impression on my as

to how I question the world.

I also would like to acknowledge many other colleagues who’s graduate odyssey overlapped

with mine and who helped me find my passion. Namely Peter Allen, Christopher Batty, Honglin

Chen, Peter Yichen Chen, Loic Ciccone, Gabriel Cirio, Stelian Coros, Keenan Crane, Fang Da,

xvii

Michael Falkenstein, Katy Gero, Yotam Gingold, Fernando de Goes, Carmine Elvezio, Raymond

Yun Fei, Akash Garg, Mohammed Haroun, Alec Jacobson, Hod Lipson, Joni Mici, William Miller,

Pilar Molina Lopez, Shree Nayar, Klint Qinami, Austin Reiter, Joaquin Ruales, Rohan Sawhney,

Adriana Schulz, Brennan Smith, Oded Stein, Bernhard Thomaszewski, Abraham Tseng, Carl

Vondrick, David Watkins-Valls, Angela Wei, Olivia Winn, Rundi Wu, Chang Xiao, Henry Ruilin

Xu, Yuan Yang, Qingnan Zhou, and Ziwei Zhu. When I rave to people about the welcoming and

vibrant research community, its you lot that I think of.

It also goes without saying that I am forever grateful to my family and the friends I’ve made

along the way. This list is by no means complete, but I would like to give a special thanks to Maria

Maia, Cristiane Teles Maia, Nelson Maia, Nick Caros, Michael Loffredo, Charlee Dyroff, Bailey

Springer, Andy Mueller, Meredith Anne Clark, Helen Charlton, Zac Charlton, Max Bartick,

Zuzanna Fuchs, David Halpern, Mireia Triguero Roura, Christie Capper, Brandon Michael

Arrington, May Erouart, Patricia Howard, Allegra Greenland, Ellen Streit, Matt Freisen, Jourdan

Bua, Leyli Guliyeva, Savannah Fletcher, Randolph Rivo, Clarissa Pena, Jessica Rosa, Anne

Fleming, and one cat named Tulum.

xviii

Dedication

to New York City and all those who share its spirit

xix

Preface

Hello there and welcome dear reader! You’ve arrived at my dissertation on the intersection of

three worlds: physics-based simulations, graph structures and algorithms, and dataset driven

solutions. Each one these disciplines is supported by many years of academic and industry-proven

literature, and offers unique benefits to the scientific community. In return for their strengths

however, these sub-fields arrive with individual dependencies and constraints. Luckily however, in

this work we will explore how these techniques prove to be distinctly compatible with one another,

producing an interdisciplinary methodology with more potential beyond the sum of its parts.

When I began my pursuit of a PhD many years ago, I did not set out to merge these concepts

together. In reality, I was drawn to investigate many different areas that were inspired by my

background as a mechanical engineer, my experiences with robotics, and my passion for computer

graphics. I was also blessed to have numerous different advisors, managers, and mentors who

pulled me in exciting different directions and encouraged me to take on a breadth of independent

projects. As a result, I admittedly bounced around between several seemingly unconnected topics,

researching works related to: contact tunneling, granular constitutive models, 3D printed tagging,

fluid & hair coupling, side-channel security leaks, capacitance sensors, robotic mobile

manipulation, neural implicit physics, and machine learned contacts, just to name a few. Each of

these endeavors was accompanied by its share of successes and failures and only a fraction of these

efforts will be covered in this thesis.

Looking back on my years at Columbia, the path that lead to the subject of this dissertation

1

was by no means intentional. Yet reflecting on all my works several patterns became apparent.

Inadvertently, graphs have always proven useful across all my disparate contexts. Time and time

again I found myself taking advantage of dual representations of a graph or landed on a strategy

that requires optimizing a graph traversal. At the same time, throughout all of my projects the need

would emerge for a synthetic dataset, whether in rendering viewpoints or for generating data to

inform a model. Naturally my disposition for graphics, physics, and mechanical engineering

brought me to collect data from physics based environments; which although not deliberate proved

to be especially fortuitous given the global pandemic which characterized the final years of my

graduate studies.

Nevertheless my motivation has been—and will always be—to push the state of the art.

Combining what works, challenging what doesn’t, and bypassing the limits of what we believe to

be possible was what fueled my graduate studies. But that motivation alone was not enough, and

this chapter of my life would not have been possible without the friends and family who stood by

me all the way. So thank you to all my mentors, co-contributors, colleagues, and everyone else who

took part in this journey. I am forever indebted, in lumine tuo videbimus lumen!

Without further ado, happy reading!

Henrique Teles Maia

2

Chapter 1: Introduction

1.1 Motivation

Example-based exploration is one of the fundamental methods by which people engage with

the world around them. People initially learn to interact with their surroundings not by adopting

theories or applying logic, but rather by empirically studying the effects of their own behavior taking

note of actions and reactions. Consider for instance the simple act of playing catch with a ball.

Most children do not concern themselves with Newton’s Laws or parabolic trajectories. Instead

they anticipate where the ball might end up based on previous experiences. Patterns are drawn from

the trial and error of previous attempts to catch or throw a ball. The same occurs if some new shape

of ball or object is introduced into the game, unconsciously humans mentally draw from similar

memories and interactions to model some unknown behavior.

This same approach extends to science and engineering, where it can be formulated to produce

equally powerful and predictive models of behavior. In exchanging trial and error for brute force

search, along with instincts and memories for data-driven statistical techniques, one arrives at a

similar methodology by which to experiment and study physical relationships in the real world.

Better yet, computer simulations enable the entire process to occur within a digital sandbox where

conditions can be surveyed without consequence. NASA does not need to wait to arrive on Mars

in order to test out wheel designs for its rover, but can narrow in between different designs by

tuning virtual Martian landscapes. Similarly, if Boeing is looking to explore a new wing design, it

may do so with computational tools that consider thousands of different options before physically

manufacturing the best ones and confirming its results in a wind-tunnel. Endless trials can be run–

often in parallel–without material, environmental, or safety costs in the physical world. Innovation

backed by simulated data is rapidly becoming the new standard in these and other contexts.

3

The key to leveraging simulated environments, however, derives from how samples are collected.

If any scenario can be digitally played out, where to begin, how small do changes in circumstances

need to be, and how many measurements are appropriate for each instance? Observations must

work to establish the crucial relationships between interacting forces. That is, instead of examining

all possible branches or eventualities, which would prove computationally burdensome, researchers

must selectively introduce variations that best augment their existing model. This is most readily

achieved by first identifying associations, namely the constants and variables at play when multiple

objects interact, and formalizing these to serve as a guides when generating data. For example,

when studying an N-body system, e.g. atoms in a molecule, rigid body interactions, or family

tree, it suffices to model relationships between interacting pairs in order to understand the full

system. Each subject of interest becomes a node in a graph working to describe the system, with

relevant correspondences and forces connecting pairs of entities forming edges in the same graph.

Determining the necessary relationships, establishing invariants, and correctly attributing variables

to graph elements helps to factor out the complexities of the data. When applied in this manner

graphs become a powerful backbone to reign in the numerous concerns associated with large

datasets under one uniform and useful abstraction.

1.2 Problem Statement

This dissertation aims to formalize and channel the efforts required to leverage large handcrafted

simulated datasets by structuring the observations as graphs. Most data-driven techniques place the

burden of sorting and sifting through features belong to their data on downstream optimization tech-

niques. However, virtual measurements make it easy to selectively capture an abundance of labeled

entries in diverse and arbitrary states. Naively sampling the breadth of possible configurations leads

to an exponential and combinatorial growth of the dataset that poses difficulties to most numerical

methods. Is it therefore necessary to first shape and funnel features drawn from large quantities

of complex, high dimensional, and interdependent variables into a more robust, principled, and

manageable format.

4

Graphs formalize how to operate over an assembly of dependencies. Graphs map domain

expertise into assumptions, constraints, and connections that can be generalized over the data. This

added consistency complements the dataset by assisting with the combinatorics of the observed

samples, managing intricate connections and distilling them into local functions. Therefore, through

careful structuring of the data into graph-like structures, one can safely expose algorithms to varied

conditions with an understanding of how the system will perform and scale.

The benefit of such an approach is the ability to tackle real and physical constraints via an

unconstrained dataset of hand-crafted and curated observations. Systems that utilize graph treatment

to manage data are flexible and gain the benefits of both data-driven and graph-organized paradigms.

Such methods can adapt to new situations, without concerns of additional computational burden, by

simply adjusting the data used to drive the pipeline as new data becomes available. This dissertation

focuses on data collected from simulated and controlled environments since these provide unlimited

access to physically accurate and realistic models of behavior. These virtual stages are paired

with a methodology that outlines how to cast synthetic datasets into a structure whose processing

guarantees simpler frameworks and ultimately more robust applications.

1.3 Approach

This dissertation presents a novel framework to make the most of large and unwieldy datasets.

The approach spans any collection of observations gathered in support of data-driven techniques.

This includes geometric meshes, signal traces, or time-integrated physically-driven interactions,

to name a few. The approach is agnostic to the subject material of the dataset because it provides

an adaptive post-processing lens over the data, which simplifies treatment and growth of variables.

The key idea involves merging domain expertise together with latent patterns across samples to

reorganize the data into a flexible, scalable, and hyper-local graph paradigm. Powerful and functional

relationships emerge simply by reviewing the primal and dual nature connecting related elements

of the graph. These serve to highlight dependencies, forces, and other structural associations that

promote more efficient handling of the data. A myriad of existing graph algorithms, data structures,

5

and optimizations exist for computational graphs and trees, which likewise become available

to further improve wrangling of cumbersome datasets. Applications demonstrating seemingly

unrelated, complex, and noisy samples are used to highlight these benefits and confirm these

findings.

This thesis details the method across several stages. To begin an archetypal description of the

procedure, as applied to a generic task and dataset, is first laid out. This template is followed by

a synopsis of state of the art contributions achieved by this approach on three distinct problem

areas. Next, relevant literature associated with these tasks are surveyed, alongside works related

to graphs and data-driven applications. Subsequent chapters present each problem in turn, as well

as the improvements enabled by adopting the proposed framework. These include first challenges

to embedding information across the manufacturing and design of diverse, complex, and custom

geometric shapes. The method is also exemplified in the analysis of sensitive signals belonging

to neural architectures surrendered by physical side-channel emissions. Lastly, graphs are used to

promote a novel data-driven approach for efficient large-scale contact dynamics. The dissertation

concludes by summarizing the findings and contributions across examples, as well as discussing

known limitations and research considerations that warrant further exploration.

1.4 Methodology

The goal of many researchers and engineers is to achieve and model physically realistic behavior.

This thesis proposes a methodology that encourages collecting and utilizing large sets of simulated

data to inform realistic models of behavior in conjunction with graph algorithms. Simulated and

synthetic examples are not limited like their real world annotated counterparts. Digital observations

are collected at low cost, can be automated, and permit the study of arbitrary scenarios and

interactions. Their exploratory discretion is not without fault however, as this added freedom also

adds both complexity and degrees of freedom to the measurements taken. Generalized patterns

must be formulated across the data to reduce the combinatorial expansion of variables. Graphs

restrain the space of features considered by focusing computational operations on nodes and edges.

6

Categorizing data into these primitives also simplifies the relationships between values by explicitly

laying out dependencies. Therefore, graphs are specifically positioned to assist with data driven

approaches that have exploded in popularity over recent years.

The proposed methodology proceeds as follows:

1. Generate a specialized dataset from synthetic data to assist an objective

2. Identify combinatorial challenges and inter-sample patterns to factorize

3. Overlay a graph to instill structure and manage the spectrum of states

4. Leverage graph algorithms to operate on the data via this distilled lens

To elaborate, when presented an objective consider exploring both common scenarios and

edge cases in a simulated environment. This sandbox should be accurate and representative of the

target outcomes, complete with limitations, noise, and other challenges. Leverage the realism and

flexibility of the digital playground to collect numerous observations tied to diverse interactions.

Review the dataset generated in search of statistical patterns and distinguished states that can

influence the configuration of a graph. Together with domain knowledge, assign states, variables,

and measurements of the data to an objective-specific multi-graph, ensuring all relevant quantities

and relationships are housed within the graph. Iterate on graph designs, considering benefits inherent

to both the primal and dual representation. Identify whether connections are directional, if global

similarities may be factored out, and the range of influence nodes have on their neighbors. In

addition, evaluate the how new samples might extend the graph, either in scale or by augmenting

existing structures. At last, with the graph formulated and data consolidated, establish a plan of

attack by traversing the graph elements. The allocation of quantities into general graph elements

will in turn lend itself to parallelization over nodes or edges of the same category or label. Similarly,

each local operation need only depend on adjacent graph entries, simplifying the functions applied

to process the data. Optimizations and guarantees thereby naturally emerge that preserve the quality

of results as the data grows and the objective is pursued.

7

1.5 Contributions

The following chapters investigate challenges with pipelines receptive to digitally acquired

datasets from applications in diverse problem areas. This methodology is validated in its application

to computer vision tasks on real world 3D printed objects, side channel extraction of neural network

topologies from active GPUs, and lastly the efficient handling of contacts in simulated strand

interactions. These assessments show not only that this approach is broadly applicable, but that

systems that partner data driven models with graph algorithms outperform existing methods in terms

of robustness and quality guarantees.

The product of this dissertation is a study of the emergent benefits found in pairing graph

structures with the modeling of various behaviors supported by simulated datasets. Three evaluations

combine to illustrate the wide range of applications that stand to benefit from combining powerful

graph techniques with limitless synthetic data points. Each individual study achieves novel state of

the art contributions, which are detailed here:

1.5.1 LayerCodes

Ch. 3 observes how simulated proxies can assist with the design of physical tags that embed

information in geometries produced through additive manufacturing. The resulting approach is

titled LayerCode and relies on graph structures to produce a robust tag given the complex interplay

of unconstrained geometries present in the target dataset.

LayerCodes introduce a novel tagging mechanism that:

• Exploits the layering structure intrinsic to additive manufacturing processes to directly tag

physical objects without any additional processing or altering of the object’s geometry;

• Enables the reading of tags by just taking a single photo at wide viewing angles;

• Robustly and uniformly treats physical objects exhibiting high curvatures, unsmooth rough

surfaces, thin features or rod-like structures, self-occlusions, and other nontrivial factors that

limit the use of previous approaches;

8

• Achieves deployment of LayerCode tags on all known forms of 3D printers, including the

popular Fused Deposition Modeling printers as well as Stereolithography based printers;

• Preserves the outward appearance of objects by tagging in the Near-Infrared range of the

electromagnetic spectrum;

• Works regardless of the available medium by alternating printing layer height sizes, materials,

colors, or other properties to the same effect;

• Permits unconstrained tagging on any location of the object, from a chosen location up to the

entire object itself;

• Grants free depth information about the object geometry that allows for downstream augmented-

reality and robotic grasping applications;

• Details how to enhance existing 3D printer firmware and hardware to enable multi-printing of

different colors, materials, or properties; and

• Successfully passes stress tests and virtual validation on 99.6% of a 4, 835 shape dataset

composed of custom non-expert generated objects, as well as over 20 physically realized

objects actualized from three distinct types of 3D printers.

1.5.2 Neural Snooping

Ch. 4 studies how diverse network architectures may be effectively distilled into graphs for

extraction and reconstruction by means of electromagnetic side channel attacks. Carefully curated

synthetic datasets support the extracted graphs with detailed specifications in the recovery of large

and deep black-box designs to great fidelity. In turn this raises awareness of the GPU’s EM radiation

as an information-rich, easily and non-intrusively probed side channel.

This unveils a novel neural-snooping technique which:

• Details how the large-amplitude EM radiation associated with machine learning GPU imple-

mentations betrays sensitive network topology layouts and layer hyperparameters;

9

• Explores metrics for comparing model similarities by way of Levenshtein distances, transfer

attack scores, layer orders, and operator parameter specifications;

• Introduces a simple–yet–effective Bi-LSTM classification model to translate side-channel

measurements;

• Extends the scope of recoverable scenarios from the previous works that demonstrate only

contrived shallow networks (i.e., fewer than 20 layers) on more limited edge hardware instead

to structurally more complex and prevalent deep network architectures (i.e., 100+ layers)

running on modern GPUs;

• Successfully recovers the full structure of general common networks, such as AlexNet,

VGGNet, ResNet101, and random fully-connected and convolutional neural network based

designs;

• Relies solely on a cheap and elementary fluxgate magnetic sensor, operating at 47kHz and

obtainable off-the shelf for $3 USD;

• Presents a robust algorithm that requires limited-to-no a priori knowledge of parameters

and heuristics, complete with an integer programming optimization formulation that avoids

assigning parameter information from predetermined variable sets;

• Extracts network information utilizing only a single scan from the target computer, and

deciphers ambiguities through offline computation;

• Recovers arbitrary runtime network layer types and their parameters, be they fully connected,

convolutional, recurrent, activation functions, or pooling operators;

• Supports attacks on both of the most popular machine learning programming interfaces, i.e.

tensorflow and pytorch;

• Demonstrates vulnerabilities through highly accurate model extraction and adversarial transfer

attack results that leverage the proposed in-depth recovery of a black box network models;

10

• Confirms the transferability of the attack method between GPUs, both of known and unknown

specification, as well as under multi-GPU stations; and

• Discusses countermeasures and defenses to protect against this side-channel and other similar

snooping techniques.

1.5.3 Data-Driven Hair Contact

Ch. 5 explores how this methodology is applied to tackle the inefficiencies of contact resolution

in large scale elastic-rod interactions. Large datasets of collision instances are produced and used to

supply training for a Graph Neural Network used to predict impulses and constrained-updates for

each timestep.

The result is a learning based contact-handling alternative for strand simulations that:

• Introduces the first neural net driven physics-based contact handling for hair simulation;

• Produces visually plausible results, generating locks, bundles, and resting contacts without

introducing noticable artifacts;

• Presents a novel Dual-Graph-Net tailored for edge-edge dominant collision regimes;

• Performs at large scales not previously explored for Graph Neural Networks, featuring over a

million contacts and millions of graph nodes;

• Achieves up to 300X speedup over state-of-the-art baseline contact solves, with 200 − 250X

speedup on average;

• Scales predictably, with a fixed inference cost which increases speedup improvements as the

number of contacts scale;

• Trivially parallelizes and is directly portable to GPUs where increased performance (10−30X

over CPU) is observed;

11

• Adjusts responses based on the training data used to produce unique styles of contact treat-

ment;

• Does not make assumptions about the underlying strand or contact model; and

• Supports a variety of grooms and hair parameters from a two hairs up to tens-of-thousands of

strands.

12

Chapter 2: Related Work

The application studies and overarching methodology presented throughout this dissertation draw

from numerous related disciplines and a breadth of previous literature. Each of these subcomponents

combine to support the need for alternative methods and scientific advances. Here may be found a

catalog of recent advances and relevant works associated with the methodology presented in this

thesis, broken down into several general areas:

1. An overview of data-driven techniques and graph algorithms that aim to bridge the sim-2-real

and real-2-sim gap present in science in engineering.

2. A survey of the recent introduction of machine learning and data driven techniques to physics-

based simulation for engineering and artistic purposes.

3. In depth presentation of physical hyperlinks and their many manifestations throughout the

research community in search of a user-friendly generally-applicable method.

4. Side-channel extraction strategies, with a focus on data-driven techniques and attackers

seeking to target neural network architectures.

5. The pursuit of robust and efficient strand simulation frameworks for both entertainment and

scientific purposes.

2.1 Simulating with Datasets and Graphs

The proposed methodology calls for utilizing datasets of synthetic data to learn realistic be-

havioral models via graph algorithms. Simulated examples more easily provide access to labeled

and controlled behaviors and interactions. Graph formulations then constrain the space of digital

13

features by simplifying efforts to operations on nodes and edges of the formulated graph. In order to

appreciate the benefits of the proposed methodology, one must first bring to mind how researchers

utilize computational tools to model reality by leveraging real world measurements and experiments

to fuel digital models. To support and highlight the incentive for data-driven approaches, next

follows an understanding of how to leverage statistical analysis over collected databases to inform

heuristics and algorithms. This section then concludes by calling attention to the involvement

of graphs, trees, and more contemporary techniques to instill structure over data with adaptive

structures and algorithms.

2.1.1 Sim-2-Real & Real-2-Sim

The task of Sim-to-Real, and conversely Real-to-Sim, transfer is one shared by many application

areas. Simulations provide controlled environments for gathering observations and experimentation

at low cost. However, their validity is highly dependent on an accurate representation of the real

world.

Simulated models are often intended to be used in the real world. Applications in robotics design

practice in digital sandboxes before entering reality [92, 154, 189]. Similarly, techniques in computer

vision are often tailored to interpret real images and align them with software interactions [49,

89, 175]. The gap between simulation and reality must also be faced when preparing security

applications, as software and hardware considerations must be taken into account to contend with

digital and physical attacks [8, 78, 123].

On the other hand, it is often fruitful to guide the development of a digital technique with real

world measurements. Principled values facilitate parameter tuning in the case of physics-based

simulations, which combine mechanical and physical equations to produce dynamic behavior [29,

54, 93]. Careful understanding and measurement of the real world can also inform design. Such is

the case most prominently when manufacturing features that depend on physical interactions, as in

the fields of physical information embedding [106, 107, 122] and digital design for fabrication [170,

171, 169].

14

2.1.2 Data-Driven Techniques

Curated datasets provide alternatives when precise behavioral models are unavailable or expen-

sive. Often these measurements provide an input-output pair collected by labeling real world data,

as is often the case with image based datasets [42, 43]. These datasets feature practical scenarios in

the wild, but can often times be laborious or subjective to label. Data-driven techniques can also

benefit from synthetic collections, such as those comprised of 3D objects or paths [24, 61, 212], as

is often of interest to those in robotics. Regardless of their form, these datasets describe aggregate

behavior that can be used to statistically dictate algorithms.

Data-driven models approximate complexity in a variety of ways. Model-reduction techniques

couple datasets with simplified or scaled behavioral models. These include methods that make

simplifying assumptions about dynamic behavior [53, 54], or project degrees of freedom into a lower

dimensional—and thereby easier to solve—space [60, 204]. Machine learning approaches pair

neural networks with data to great effect. By linking results to data features through gradient descent

and back-propagation, applications in vision [73], security [205], natural language processing [182],

and robotics [96], all stand to benefit from larger datasets when possible, and have been shown to

work with both synthetic and real data.

2.1.3 Graph Algorithms

Mathematical graph theory extends into computer science by way of graph data types and

traversal algorithms. These approaches define rules over collections of nodes and edges, attributing

each with specific properties and relationships to one another [71, 141]. This gives structure

abstractly to data formulated in such primitives, e.g. limiting data in a graph node to only interact

with incident edges or neighboring nodes.

Recently these approaches have been combined with machine learning techniques to directly

benefit from datasets. The result is the introduction of Graph (Neural) Networks who host embed-

dings on nodes and edges of a graph that can influence one another through neural-graph hybrid

operations [10, 150, 162]; and profit from both data-driven and graph techniques.

15

2.2 Learning to Simulate

Machine learning techniques have only begun to scratch the surface of physics based simulation

pipelines. As revealed in the various works discussed below, the recent advent of neural networks

in the graphics community shows great potential for novel data-driven approaches for simulation.

Physically-guided upsampling [203, 187], remarkably small reduced models [30], and resource-

light proxy simulations are all made possible through adaptations of deep learning procedures in

simulation [57]. Training data is widely abundant, but should be carefully aggregated and augmented

to account for physical considerations. Deep neural networks haven proven themselves quite robust

when used appropriately, serving as not just a tool for approximation, but enabling new applications

of physics based simulation as well. Acknowledging the rapid advancements and limitations of

network architectures, the simulation community has much to gain from utilizing neural networks

in conjunction with principled physical constraints.

The union of simulation with deep learning techniques has advanced rapidly in recent years,

maturing to the point where trained models are reliably deployed across research and industry alike.

This work examines recent adoptions of neural architectures in the graphics community by first

exploring a couple of concrete instances where neural networks are employed for the purpose of

physics-based simulation. A summary of contributions concerning temporally coherent smoke

simulation and reduced deformable simulations is presented. This is followed by a discussion of how

to best aggregate synthetic data for use in simulated environments, where access to training samples

is unbounded but resources are limited. A look into instances where machine learning outperforms

current models is next related, as well as the corresponding inverse situations in which pre-existing

formulations remain more robust. Lastly, speculation about how learning-based techniques serve

roles outside of traditional model reduction and classification is framed in the context of recent

works.

16

2.2.1 Representative Examples

Neural networks are biologically inspired machine learning models used to approximate func-

tions. Although they have circulated the research community since the introduction of the perceptron

over half a century ago [156], recent advancements in both theory and hardware have invigorated

use of artificial neural networks, quickly making learning-based approaches the methodological

workhorse of several academic fields. This is particularly true regarding research in computer

vision and robotics, disciplines closely neighboring computer graphics, both of which are currently

undergoing an explosion of ideas and publications in part due to machine learning [173, 97]. Thus it

is plausible to expect that physics based simulation stands to similarly benefit from machine learning

techniques given deep learning can be applied as a powerful nonlinear function approximator. The

merits of this pairing are surveyed in this work.

The following subsections explore the potential of machine learning for simulation by summa-

rizing two recent works. First clarifying the work of applying GANs to generate temporally stable

smoke simulations. Secondly, by detailing the contributions of model reduction techniques using

auto-encoders for deformable simulations.

TempoGAN

Machine learning approaches have been used to augment existing simulations, helping to guide

upsampling with additional details and high frequency effects. In [203], this concept is applied

towards creating temporally coherent some simulations by taking low resolution input scenes and

generating a 4x increase in resolution with generative adversarial networks. Paving the way for

future work in high dimensional physics-guided problems, they are the first to synthesize four-

dimensional physics fields using neural networks. Their approach, named ‘TempoGAN’, is robust

enough to generate high-resolution volumetric data from passively advected low resolution flow

quantities, and their robustness is attributed to a core focus on ensuring temporal coherence. All in

all, their contributions are characterized by:

17

1. the introduction of a distinct temporal discriminator to work alongside a spatial adversary

2. insights on physics aware data augmentation techniques

3. an artist-controllable smoke upsampler that works on individual frames in arbitrary order, and

provides up to 10x speedups

The key insight of [203] is to entangle two GANs into one, a conditional spatial GAN for

generating highly detailed smoke effects, and an unconditional temporal GAN to ensure generated

results are coherent. Constructing their framework in this fashion allows the end result to infer “an

instantaneous solution to the underlying advection problem based only on a single snapshot of data,

without having to compute a series of previous timesteps.” Working on a single frame extends the

applications of their method and since no tracking information is necessary they find single frames

can be handled on the fly when rendering a smoke volume, and thus all the high resolution data can

be discarded once used without eating up storage.

Applying the traditional GAN pipeline in this scenario requires setting up pairs of high and low

resolution density volumes. Here they acquire low resolution data by subsampling high resolution

scenes with a uniform 4x drop in resolution. These low resolution samples, yielded from roughly 20

simulations consisting of 120 frames each, are then augmented in physically inspired ways to avoid

overfitting. Since their network takes as input density, velocity, and vorticity information from their

simulations, the augmentations transformations are restricted to those that can be computed directly

from those quantities and do not violate underlying physics when applied. Thus their chosen

augmentations consist of primarily rotations and scalings of their existing samples, purposely

avoiding sharing and non-uniform scaling operations. Due to the simplicity of these augmentations,

they are able to generate additional samples from different inertial frames on the fly, and refrain

from needing to provide large data sets to their networks.

The end result of their efforts is a pipeline of three convolutional neural networks. One

spatial discriminator which takes a generated density volume and the input to the generator, and

determines if it closely matches a corresponding high resolution smoke simulations. Another

18

temporal discriminator which takes three sequential frames generated from passively advecting

a single low resolution frame forward and backwards. These frames are given to the temporal

discriminator alongside the velocities used, and it can then assess whether together they are

temporally coherent. Lastly a generator, which must satisfy both discriminators, works simply with

a low resolution voxel grid of density, velocity, and vorticity as input. Each network hosts its own

loss functions, specifically tailored to avoid vanishing gradients and emphasize visual and physical

qualities of the synthesized smoke.

Notably, the authors found each discriminator alone is not enough to generate plausible up-

sampled results as without the temporal discriminator they observed flickering and other artifacts,

and without the spatial discriminator the results appear smoothed and lack high frequency details

characteristic of smoke simulations. Alternating between the two discriminators facilitates training

of the generator, and allows artists to focus resources when optimization of only one quality is

preferred.

Training takes from 14 hours to 9 days, but once tuning is finished the discriminators are no

longer necessary and the generator can be used to provide instantaneous upsampling of frames.

Their approach is not without its limits however, and outside performance considerations their

main constraint is a fixed jump in resolution (in this case a 4x boost) that is generated from a

fixed input size voxel grid. However, since their input voxel grid can be tiled, and is trained to

handle boundaries, they can handle arbitrarily larger domains with ease. The authors even showcase

an example where they take as input the generated output of upsampling a low resolution sim,

generating an 8x increase in resolution. This poses no difficulty to their method, although artifacts

and errors present in the first iteration of upsampling are only further highlighted in the second pass.

TempoGAN [203] demonstrates that it is possible to achieve temporally coherent results using

machine learning. It achieves this goal by avoiding the resource heavy approaches which work

on sequences of simulation data, and instead instills temporal stability on individual frames by

exploiting the underlying physics to guide augmentation and advection of the input frames. Their

results closely match higher resolution simulations and generate visually detailed high quality

19

smoke that is geared towards artists with limited computational resources.

Latent Space Dynamics

Another initial step towards the inclusion of learning-driven architectures for physics based

simulation is presented by [57]. Here the authors detail the first effort in neural network-based

nonlinear reduced space simulation of large-deformation elastic dynamics. Building on the vast

literature of model reduction approaches for elastic deformations, this work follows the traditional

routine of mapping the computationally large degrees of freedom from tetrahedral and hexahedral

meshes to smaller subspaces where deformations can be more readily computed. Given that most

deformations are highly nonlinear, their key insight is to replace linear candidate latent space

representations with something reduced but still nonlinear, namely an auto-encoder framework.

The results of such efforts culminate in simulation framework that can adapt to different material

models easily, and provides equivalent or greater visual fidelity with comparable performance to

other reduced-space approaches.

In contrast to other methods, no rigs, painted weights, or material tuning is required in this

approach. Instead, the auto-encoder network is trained to produce deformations directly from

perturbed meshes, regardless of the underlying constitutive model applied. This results in an

auto-encoder driven reduction of degrees of freedom that ensures any nonlinearity captured is

specific to the data used in training. In practice, a neo-Hookean model is used to motivate merely

500 − 1000 snapshots of deformed meshes are required to tune the small auto-encoder required,

consisting of 2 layers with 100 hidden nodes each. Given pre-generated example deformations, this

small architecture boasts training times no longer than 10 minutes, and is able to support interactive

sessions at 60 frames-per-second on meshes consisting of hundreds of thousands of elements.

Compared to other methods, the work of [57] performs roughly 1.2 − 1.7x faster than other

reduced formulations. Although this improvement is modest, examples show they are able to handle

materials up to 10x stiffer than those reported in previous works tailored towards large deformations.

Due to the flexible nature of auto-encoder layering, they are also free to choose latent dimensions

20

that approach the true minimum degrees of freedom required by a system. In a side-by-side

comparison with principle component analysis reduction, [57] is able to accurately achieve the

same representative nonlinear bending deformations as Principle Component Analysis (PCA) but

with only 2 degrees of freedom instead of 6. This leads to a smaller number of cubature prints

required during simulation, and the authors also highlight that “there is little room for non-physical

configurations to be represented” when working in such a highly-reduced space.

This approach is not without its limitations however. The authors found a randomly initialized

auto-encoder network has great difficulty converging for the size of examples and networks used

throughout the work. This could perhaps be attributed to the mean-squared error loss used throughout

training or a lack of connectivity information in the input features. Both these choices are aimed

at keeping the network straight-forward and simple to execute but fail to account for otherwise

physics-inspired principles related to deformations. Instead, in order to assist with convergence,

PCA is used to first reduce the size of the input meshes prior to invoking the auto-encoder. This

choice is validated by the fact that PCA represents a linear dimensionality reduction, which is then

fed into the auto-encoder network, and thus does not impede the sought-after nonlinear degrees of

freedom in the reduced space.

The provided method by [57] conveys a valid alternative to existing model reduction methods.

Instead of replacing all dynamics with a learned model, which would represent a radical change to

existing approaches, the authors alternatively showcase the benefits surrounding the use of nonlinear

auto-encoders in the place of previous medal reduction techniques. No tuning is required other than

the network hyper-parameters, and so limited knowledge of material models is necessary given

example deformations are present. Minimal runtime accelerations are achieved, but nevertheless

this work presents a viable alternative to existing methods which may be improved upon given

future advancements in either the simulating of elastic deformations or auto-encoder networks.

21

2.2.2 Data Generation for Simulated Settings

An attractive component of pairing machine learning techniques with simulated settings is the

promise of endless data generation. Whether on-the-fly or iteratively, the data samples necessary for

training a neural network architecture can be acquired using typical simulation techniques through

controlled and systematic means. New samples are acquired by exploring the parameter space and

re-running simulations. This provides a welcome contrast to the traditional data generation pipeline

of accumulating datasets in the wild, labeling them, and facing strict limitations on the available

landscape of scenarios and samples.

In some cases, no examples are needed, as the entire environment can be learned, attributed

losses, and all parameters controlled and exposed to the network. These are unique scenarios where

the entire pipeline is differentiable [81, 40, 4], and thus the simulation approach consists of moving

towards a goal by observing past attempts. A loss function is computed with respect to a set of

goals and the simulation adapts accordingly.

More common however, the aim is to apply machine learning to a specific portion of the

simulation pipeline, whether because it is difficult or slow, rather than attempt to learn the domain

in its entirety [6, 187, 57]. In these cases a bottleneck is overcome by a neural network, deliberately

choosing an approximation of physics to replace the more costly and principled calculation. These

scenarios are of interest not just because they are far more general, but they are also aligned with

the traditional machine learning approaches of applying nonlinear regression on a high-dimensional

manifolds from distributions on samples. These involve instances of model reduction, synthesizing

advection, nonlinear deformations, augmenting visual quality, and many others.

However, even though samples are synthetically generated and readily available for simulated

contexts, this does not making the process of choosing the right training data any easier. The same

challenges that face real-world data, concerning overfitting and coherence, are again observed

when it comes to training neural network architectures. Specifically for simulated physics-based

environments, where the concern is to robustly capture all the desired phenomena, the concerns

arise as follows:

22

• How to prevent overfitting on training scenarios?

• What range of extrapolation can be expected?

• How to maintain temporal stability?

Overfitting training samples is a common concern when applying regressions on limited datasets.

Every scenario must be well-represented, and the model applied must be flexible enough to capture

all potential outcomes. Outside of the issue concerning mode collapse (see [202] for an extended

discussion on the topic), the inability to handle arbitrary test input comes from a medley of

unbalanced training samples, samples that are dissimilar from test cases, and models that converge

too tightly on training sets. Samples can become unbalanced for several reasons:

• A mesh may be oriented in a way that is not always guaranteed to be true, and so most

samples are biased towards an arbitrary setup.

• Handling of boundary conditions may be sparsely covered, leading to results that may be

unfamiliar or altogether ignore boundaries.

• A lack of diversity in meshes or elements, caused by repeating the same structure in many

results and expecting a more general solution.

• Having far more numbers of samples where a certain phenomena occurs, such as turbulent

fluid behavior alongside few samples of laminar flow.

• Merely presenting longer simulations from one scenario than another, such as soft elastic

bodies taking longer to settle than stiffer ones.

• Working with a dataset predominantly composed of a certain length scale, and testing on a

more varied set.

Many of these cases can be avoided by careful construction and attention to data aggregation

when composing a training set. In most scenarios, simply enumerating each category of a training

23

corpus and selecting samples at random from each division until a balanced and sufficient corpus is

acquired will rectify issues of overfitting [147]. In addition, other common remedies include the

augmentation of existing data through careful manipulation. Novel samples can be generated by

simply rotating, flipping, scaling, and also normalizing entries to account for a wider range of cases

than those previously visited [147, 193, 102]. This is particularly useful when applied to granular

materials or fluid columns who are setup to collapse to the right in training, but expected to also

flow left when appropriate. In some cases, such as when dealing with point sets, it is also possible

to apply a symmetric function to avoid having to order or permute input samples. In the case of

[28], this function may even be learned as part of the neural net architecture.

Further action can be taken against overfitting by applying traditional techniques of using

dropout, cross-validation, and hold-out sets. In these cases training data is partitioned and evaluated

against to ensure the learned model captures the desired behavior. In the case of drop-out, units of

the network are ignored at random to balance out training amongst the nodes and avoid accumulating

too much weight on said units. Together, all these aforementioned approaches can help to balance

and augment training samples in order to prevent overfitting.

However, even with balanced datasets it is possible the learned network may focus too much

on samples it has seen, and fail to account for nearby similar samples that arise in practice. This

can easily occur when working with regressions since forces and angles come from numerically

richer domains than classifiers. In the case of dealing with torques, distances, and friction, [17]

found careful randomization of environment parameters helped account for unseen scenarios during

applied simulations. These parameters included mass, velocities, torque, distances, friction, and

tilmestep size. All adjustable parameters were chosen from an appropriate range, with some held

constant while others varied in a noisy fashion throughout simulation runs. This was repeated

numerous times to generate a training set, and the results showed far more robust outcomes than

training on known, expected, or recorded parameters alone. Similar approaches are used in the case

of splash generation in [187].

Small changes in resolution can also effect simulation results. Neural network architectures

24

often have rigid input frameworks which expect the same size input for all entries. Short of

training separate networks for each resolution scale, as is commonly done, other alternatives include

upsampling or downsampling simulations to achieve the desired input resolution [203, 187]. In these

cases, the authors found both fine and coarse simulations should be run in a similarly sized domain

with differing resolutions to ensure robustness towards both high frequency and low frequency

effects.

Likewise, an alternative method which tackles varying resolutions and meshes configurations

to improve extrapolation results is domain partitioning. In this case, the input is divided up into

regions which match the trained examples, and boundary elements are either smoothed or given

special treatment. With regards to nonlinear elastic deformation [118] found domain decomposition

of complex concave shapes into sectioned cantilever beams allowed them to simplify training. In

their examples, a simple cantilever beam is used to handle various shapes with branching and

cross junctions, by first assigning mesh laments to a substructuring graph. This allows them to

handle the nonlinear dynamics of each domain regardless of its complexity, and–contrary to related

work–permits them to simulate in the ‘fullspace’ without any reduction of simulation degrees of

freedom.

Furthermore, the notion of partitioning can be taken even further into the neural network

architecture. In anticipating when certain conditions are met, difficult nonlinear dynamic behavior

can be split into linear components through the use of switching linear dynamical systems (SLDS),

which partition time and behavior rather then space and mesh elements to extend trained models

into unseen test cases [11]. For example, the case of 2D balls, whose bouncing around in a box is

driven by a neural network, the handling of dynamics can be split into linear systems by detecting

when collisions are about to happen between balls and other balls or boundaries. Each event before,

during, or after a collision triggers a switching variable which transitions the network to a new set

of weights tailored to handle each scenario robustly.

Lastly, the search for temporal stability is also crucial for physics-based simulations to appear

coherent. Depending where in the pipeline a machine learning model is placed, flickering or jittering

25

of network output may be observed throughout the simulation. This is often because networks are

sensitive to small changes in input if the underlying manifold is highly nonlinear or if samples in the

region are sparse. To alleviate temporal instability, sometimes it is possible to directly incorporate

the time dimension by passing sequences of data and expecting a corresponding ordered sequence

as output [160, 210]. However, with regards to simulation, and especially concerning 3D simulation

(4D with time), the number of weights, training samples, and resources required for training quickly

become prohibitive. Instead, [203] choose to work with individual frames towards their goal of

smoke upsampling to avoid having to deal with large inputs, and achieve their aim by training

a separate discriminator to penalize temporal incoherence. Alternatively, temporal stability can

be achieved within the same network through a hierarchical approach. [90] is able to achieve

temporal stability in their workflows by choosing features which concatenate a mix of global and

local features, thereby smoothing and filtering high-frequency artifacts that might arise. In practice

they draw on a fixed grid of features at ten different scales centered on their input point to acquire a

sufficient amount of neighborhood information whilst still capturing the global phenomena.

2.2.3 Machine Learning Improving Existing Techniques

Despite its infancy in the field of computer graphics and simulation, there are already instances

where machine learning is proving more potent than traditional techniques. As expected, these

scenarios arise where data-driven and model reduction techniques have been applied in the past.

Instead of needing to prescribe a model which may not be flexible enough to capture all the modes

of interest, a more general approximation function is enabled through neural nets, which can be

made arbitrarily more complex through the addition of hidden nodes, deepening of layers, and the

corresponding addition of training examples. The abstraction of the learning approach offloads the

need for parameter tuning to a more familiar space of feature selection, framework crafting, and

hyper-parameter experimentation.

Along these lines, some of the most significant improvements over existing techniques comes in

relation to virtual character control. Reinforcement learning and Q-networks have far surpassed the

26

prior work involving carefully constructed state machines. Still a finite state machine in spirit, the

observation, action, reward protocol used in machine learning can quickly gather examples from

motion databases, or even partial motions, to explore and react to the space around them. This has

lead to a myriad of works exploring such techniques ([147, 145, 146]) and combining them with

previous approaches to better simulate autonomous agents.

Moreover, another typical use case for networks involves speeding up runtime environments that

are directed towards real-time interactions. These are environments where mobile devices are in play

with limited resources for computing simulations, or speed is restriction. Thus, having the ability to

store a network of weights and simply pass new feature vectors across it to arrive at a solution is

extremely valuable. As such, numerous examples exist in the literature which achieve much higher

rates of simulation than previous principles methods. The first involves nonlinear deformation

for character posing and skinning in [6]. By separating deformations into a linear and nonlinear

component, and learning a deformation approximation for the expensive nonlinear component from

roughly fifteen-thousand example poses, film-quality rigs were able to be deformed on an iPad.

Utilizing the principled approach for the linear component, and using that as input allowed a 5− 10x

speedup after training a network of just 128 nodes. Similarly, nonlinear deformations for cloth

deformation and wrinkling were comptuted using two distinct neural network architectures in [164],

leading to vast speedups geared towards virtual try-on of clothing. In this case, more robust shape

retargeting and generalization to new body shapes is achieved than state of the art methods, and

the run-time gains from using machine learning allow for 250 frames-per-second execution during

virtual try-on.

Furthermore, deep learning approaches sometimes enable richer set of features with regard to

visual quality. In the case of splash generation in [187], splashes which could not be captured by

a low-resolution simulation of a 160 x 150 x 50 grid were able to be generated by learning from

higher resolution simulations. In these examples, the runtime of 3D fluid simulations was also

either on par with existing approaches, or up to 9 times faster, and always with higher detail and

splash profiles. Lastly, with regards to rendering ambient occlusions, the work of [75] shows how

27

retrofit a neural network forward pass into a shader so that the advantages of training am ambient

occlusion model can be exploited at runtime. In their comparisons their convolutional neural net

outperforms all other methods in accuracy, while maintaining comparable or faster runtimes. Due

to the computational simplicity of their forward pass, they are even able to sample scene pixels

for ambient occlusions at significantly (4 − 16x) higher sample counts, which in turn leads to their

improved performance.

Difficulty Learning

However, it is not always the case that machine learning can improve upon or outperform

principled simulations. A key concept to consider is the smoothing aspect of machine learning, as is

aims to approximate a function through its samples. For this reason, scenarios where an existing

formula is known, and can suffer from averaging, will lead to instances where machine learning

may improve the runtime but lower the accuracy of the approach.

This is certainly the case for fluid flow over airfoils, as explored by [183]. This work showcases

that although a significant speedup against traditional Computational Fluid Dynamics (CFD)

approaches can be achieved (up to 1000x faster than other CFD simulations), their Convolutional

Neural Network (CNN) architecture required roughly 25 − 50 thousand samples and still fell

within an error of about 3%. Although this error might seem low, it is still significant for the

applications relating to engineering in which Reynolds flows over airfoils are required, thus leading

their approach to be better seen as a proxy for airfoil design and iteration, prior to a full-fledged

CFD simulation being run. In this case simply having the empirical formulas proves more accurate

than trying to learn and average their impact on field pressure and velocity.

Likewise, simulating deformations with variational auto-encoder (VAE), as is done in [57]

is another scenario where having the principled equations proves more fruitful. Due to various

efforts in optimization and improvement of existing methods, the authors found simply replacing

the model reduction pipeline with a VAE yielded only a modest improvement, with some results

running slower than previous methods as well. Furthermore, their approach benefits greatly from

28

using principle component analysis and a preconditioned to their model reduction, revealing that

it is not always the case where a machine learning model can simply replace and outperform

another regression if the underlying physics are already shaped and analytically predisposed to other

approaches. In this case, rather than following the straightforward steps of principle component

analysis, an entirely new reduced equations of motion needed to be derived, and numerous samples

gathered and trained on, for a system which had limited improvements. Consequently, it is key to

first analyze the problem statement or component of the physics-based simulation pipeline that is

getting augmented through machine learning to first see whether it can be posed as a classification

problem, or handle smoothed out regressions.

2.2.4 Beyond Model Reduction and Approximation

It is straightforward to view machine learning as a general tool for model reduction, regression,

classification, and overall approximation of nonlinear functions. These avenues exemplify the

foundations of deep neural nets, and the vast number of applications where they initially made an

impact. Yet, there are other use cases for machine learning which give rise to new features and

applications, both in physics based simulation and robotics. In general, they involve exploiting the

black-box like nature of machine learning to compensate for choices in constitutive models, enable

iterative design, or replace the entire tilmestep altogether in goal driven simulation environments

which can be made backwards differentiable [4].

Thinking of neural nets as a framework or pipeline which can generalize to its training samples

is a useful endeavor. In many cases, simulations can be made to adapt better to their use cases by

tailoring the training data appropriately, without having to rewrite or restructure code. This allows

for simulation architectures which can be interchanged to handle different environments or compute

distinct laws, as is the case in [90]. There the authors were able to capture light scattering effects in

clouds that arises from direct illumination from scenarios where purely environment illumination

was available. They were also able train for different light scattering models, and achieved retraining

and adaptation to new scenarios with only 12 hours of training required, and no changes to code

29

necessary.

In a similar fashion, [191], were able to create a system for handling elastic deformation which

can handle numerous elastic material models. Simply by training on examples drawn from a

different constitutive model, they are able to reproduce NeoHookean, St Venant-Kirchoff, and

Corotational models of elasticity in a unified manner. Not only are they able to easily interchange

between what model to apply on a given mesh, but by vertex painting are able to easily combine

multiple models on a single mesh so that each region behaves in accordance to a distinct elastic

deformation law. Thereby, just given examples of deforming objects, and without needing to write

the formulas down themselves, they are able to handle damping, coarsening, and varying models

for elasticity under one framework.

Additionally, machine learning can also sometimes serve as a replacement for the entire step,

rather than simply approximating a given component or function. In the case of virtual character

control, numerous works have gone through the lengths of backwards propagating error throughout

the entire step to optimize over the entire pipeline. In some cases, such as [81], entire time sequences

can be optimized over, tracing error and rewards across timesteps. In this case, taking advantage

of the fact that Material Point Method schemes are entirely differentiable, they combine efforts

made by their soft elastic robots across time steps in their attempts to reach a goal. This global

optimization is able to create efficient soft-robotic actuators that quickly adapt to different rewards

and losses, taking advantage of machine learning to quickly handle new environments and even

generate proxies for real-world elastic prints which behave similarly to their simulated counterparts.

In the same spirit, but with rigid robotics, [40] use a single model to control the motion of a

soccer ball, mechanical arm, and quadruped walking robot by adapting their network to learn across

all of time, and carefully structuring their environment so that it is differentiable. They even go

through the additional challenge of differentiating the rendered scene through a camera projection

so that they can learn from video of real-world robots and train their agents to improve upon their

rewards.

Finally, design tools are invaluable patrons of physics-based simulation. They also have come

30

to benefit from machine learning in simulated settings by using neural nets to assist in fast iteration

of designs under approximate physics. In this sense, the deep learning approach is not just an

approximation tool, but also an oracle used throughout early stage design to enable “immense

amounts of design alternative without facing the time-consuming task of evaluation and selection”

[67]. Albeit less accurate, the far more lightweight and efficient machine learning approximation of

both interior and exterior Reynolds flow performance serves as a surrogate-modeling technique in

a computational fluid dynamic design environment. Working on a dataset of distinct car profiles,

as well as oblong shapes, they were able to iterate on designs with a feedback rate of 2 seconds as

opposed to the baseline minute and a half time normally required to update changes. However they

are not the only ones to take this approach, as [127] also took advantage of machine learning to train

the control of unsteady fluid flows. In this case, using 4000 samples from costly CFD simulations,

they were able to suppress vortex shredding and other phenomena associated with airflow over

a cylinder, by modeling control parameters related to the movement and angular velocity of the

cylinder to improve results across significant time horizons. Therefore, through the iterative design

speedups gained from machine learning the controller, they are able to choose the right proportional

control parameters necessary to achieve their given goals.

2.3 Physical Information Embedding

Ch. 3 introduces the concept of LayerCodes and a method of materializing physical hyperlinks

in everyday objects and complex geometries. The rich features of LayerCode set it apart from

existing tagging mechanisms, a summary of which are shown in 2.1. The following section

positions LayerCodes relative to existing methods and elaborates on the pitfalls of prior works

which motivated LayerCodes.

2.3.1 Traditional Embeddings

Although traditional barcodes are robust, they are privy to certain assumptions. Convention

dictates that in order for a barcode to work, it must be laid on a flat surface, surrounded by two

31

quiet zones of empty space, and consist of evenly-spaced encoded digits composed of fixed length

modules [199]. The code requires preserving the ratios of these modules even when scanned at an

off-axis angle, which in turn demands a flat surface in order to read correctly. Variances in curvature

will also result in ratio distortions between individual module lengths, and curves of too high a

grade will provide difficulty for linear scanners when attempting to both capture and decode the

entire message. The strict requirement on flatness significantly limits the adoption of barcodes to

arbitrary geometries. This becomes an insurmountable challenge when considering customized

complex shapes and addressing the growing "maker" movement.

In one of the early efforts to tag mass-produced printed objects, [195] extensively developed and

discussed printing electronics in the object’s interior. Since then, much research along this direction

has focused on embedding specialized hardware inside the 3D printed objects. For example,

magnets, Radio-Frequency IDentification (RFID) chips, optical elements, circuits, and extra support

materials have since been utilized for tagging purposes [208, 87, 198, 91, 197]. However, these

hardware components not only lead to additional cost, but also require highly specialized and

usually expensive equipment for accessing the embedded information. Similarly, personalized

design leads to customized complex geometry, which poses challenges for the mass manufacturing

of some tag markers. This includes designs which depend on mold casts, such as flexible silicon

material was introduced in Metamolds to accommodate complicated geometry [135]. It also limits

the ability of novice enthusiasts to iterate in the design process to explore new designs, who must

instead experiment with alternative methods like the wire frame fabrication prototyping cycle [132].

In comparison, LayerCode is a natural cost-free byproduct in the printing process and only needs a

camera for decoding.

2.3.2 Experimental Techniques

The abundant expanse of maker-made shapes include shapes that are curved and may involve

rough or bumpy surface features. These qualities provide similar but high frequency limitations

to that of curvature, resulting in the extra addition of bases or flat regions when a tag must be

32

embedded. In order to address this problem for custom shapes, other methods have been introduced

which work to internalize their physical hyperlinks.

In computer graphics and HCI, advances in fast and accurate sound simulation enable acoustic

sensing and tagging. Early pioneering work includes the appearance-altering Acoustic Barcodes

and Lamello [72, 165]. To better maintain the exterior appearance, various methods were proposed

to optimize the internal resonant chambers to achieve robust tagging performance, including

BlowHole [181], Acoustic Voxels [107], and SqueezaPulse [74]. Although acoustic tagging

approaches have shown promise, they share an inherent limitation: they cannot handle arbitrary

shapes, like thin rod structures and thin shell objects, because of physical size constraints from

the resonant chamber. These approaches however rely on volumetric shapes in order to imprint

their codes. Since many shapes created for personalized fabrication will be hollow, involve thin

shells or features, and may even contain holes, it is desirable to find a method which does not

make assumptions constraining internal cavities of these specialized shapes. Moreover, relying on

certain light or sound properties results in the need for calibrated environments and unconventional

equipment when it comes to decode. LayerCode, on the other hand, is capable of working on a wide

range complex shapes, as shown in Figure 3.3, 3.12, and 3.25.

Aside from internal structural requirements, the view angle and effects of perspective projection

also cannot be assumed when handling such arbitrary shapes. Personalized builds are many times

created by novice designers, who employ no strict convention, and thus can be held, stood up,

and viewed from virtually any direction. Unlike traditional barcodes, which have a clear scanning

orientation that is orthogonal to the rectangular optical code, tailor-made shapes are designed

completely free of any positioning until they are fabricated. Once submitted for manufacturing, a

printing direction is chosen–often deliberately–which at last instills a bearing on a shape. Printing

directions are often picked in order to increase stability or robustness of prints, but otherwise to

ensure certain features are maintained since an inherent grain or texture is produced from the

depositing of material up to the machine fidelity. Altogether this limits the viability of certain

tagging methods which make assumptions on the way in which an object will be interacted with [116,

33

55], or require semantic information and additional hardware for the tag to function [168, 148].

Most related to the proposed method are AirCode and Optimal Discrete Slicing. AirCode uses

unnoticeable subsurface scattering to embed a QR code-like pattern to preserve the superficial

appearance [108]. One key limitation is that the control of subsurface scattering requires high-

precision resin-based printers, which precludes an application to consumer-level filament-based

printers. This is because the layered nature of the printing process is not accounted for when

designing the subsurface tags. [2] proposed variable layer deposition thickness (or layer height)

slicing to optimize printing time. Instead of optimizing time, LayerCodes leverage variable layer

slicing to encode information, making LayerCode available to a wide range of 3D printers (see

3.4). Another advantage from considering the printing process is the lack of compromise in cost

or fabrication/cleaning time, which introduce significant trade-offs in hardware or acoustic-based

methods.

LayerCode is not the first to utilize controllable layer heights in 3D printing. Pioneer work from

two decades ago focused on slicing speed while producing coherent slices friendly to printers [126].

More recently, the focus has shifted to more high-level design-related goals. [192] optimized layer

heights to preserve salient regions on printed meshes. [177] designed a novel slicing algorithm for

CAD NURBS models to overcome the accuracy issue in precision manufacturing. Similar to [2],

VarSlice [35] and others [214] manipulate layers based on curvature to speed up printing where

possible. A comprehensive review can be found in [133]. Inspired by the long line of work on layer

slicing, the approach presented in this thesis explores the layering nature to develop a robust tagging

scheme.

The layer information LayerCodes embed not only encapsulates the tag, but also conveys the

depth information. To estimate depth from the images, there is abundant literature on leveraging

structured light 3D reconstruction [179]. Most previous methods use active and controlled light

sources and multiple images to help decode the depth [211, 68]. For depth estimation from a single

image, due to its ill-posed nature, most prior work has resorted to data-driven methods [166, 31].

Relying on the structured layer information, this dissertation demonstrates it is possible to estimate

34

nonsmooth & thin shells affordable 3D printer structural appearance ubiquitous free depth
rough surfaces & rods decoding agnostic preservation preservation tagging estimation

Common Barcode ✗ ✗ ✓ N/A ✓ ✗ ✗ ✗

Printed Optics ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗

[Willis et al 2012]

InfraStructs ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✗

[Willis and Wilson 2013]

Acoustic Barcodes ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗

[Harrison et al. 2012]

Acoustic Voxels ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗

[Li et al. 2016]

Lamello ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗

[Savage et al. 2015]

RFID based ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗

[Iyer t al. 2017, 2018]

Blowhole ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗

[Tejada et al. 2018]

AirCode ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗

[Li et al. 2017]

LayerCode ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[Maia et al. 2019]

Table 2.1: A comparison of geometric challenges, design and manufacturing considerations, and
additional features sought across several tagging techniques.

depth from a single image and this can be complementary to existing data-driven approaches.

2.4 Side Channel Neural Extraction

The Graphics Processing Unit (GPU) is a favored vehicle for executing a neural network. As it

computes, it also hums—electromagnetically. What can this hum tell us? Could listening to the

GPU’s electromagnetic (EM) radiation reveal details about the neural network? Ch. 4 studies this

question and find that magnetic induction sensing reveals a detailed network structure, including

both topology and hyperparameter values, from inferences of otherwise unknown networks running

on GPUs.

35

2.4.1 Input-Output Deductions

The approach adopted by this dissertation falls under the umbrella of black-box model extraction.

Absent access to the model’s internals, one might infer structure from observed input-output pairs.

For instance, [186] demonstrated that, for simple models such as decision trees and support vector

machines hosted on a cloud, certain internal information can be extracted via a large amount of

queries. This approach, which was extended to infer details of deep neural networks [139, 114,

46, 190], is typically able to recover some crucial information, such as the optimization learning

rate and narrowing in on the network structure family, but has not demonstrated recovery of full

structural details.

2.4.2 Digital Side Channels

An orthogonal approach, side-channel analysis (SCA), extracts information gained from the

physical implementation of a model, rather than in the mathematical model itself. Side channel

attacks take advantage of physical exploits to uncover sensitive information from hardware in its

intended environment. Without inspecting binaries or digging into software, details concerning

the layout of protected networks are leaked to nearby listeners through the fluctuating electrical

and magnetic characteristics of the running processors. Analysis of timing [99], power [98, 117],

cache flushes [207], and audio [59] have been prominently demonstrated to extract secret keys from

cryptographic procedures such as the Digital Signature and Advanced Encryption Standards. The

method formulated in this thesis is one such approach, and demonstrates how magnetic induction

sensing can reveal network details from inferences of unknown networks running on graphics

processing units (GPUs).

2.4.3 Physical Side Channels

When concerned with machine learning, different network models exert different computational

burdens on hardware [201]. The variance across operations and layers result in different physical

patterns of consumption, regardless of implementation or hardware, leaving neural architectures

36

in general susceptible to side channel attacks. SCA was recently used to infer machine learning

models by observing power consumption profiles [201, 194, 45], timing information [47] and

memory/cache access [78, 76, 84, 206]. These methods placed a malware process on the machine

hosting the black-box model. The proposed threat model does not involve introducing processes on

the host.

In cases where access to memory is secured by the target, one can still leverage physical access to

collect patterns from the processor itself or its power consumption. Recently, side channel analysis

of EM radiation has been applied to exploit network model extraction [8, 209]. These attempts

concentrate on EM radiation from embedded processors. Edge devices are often constrained to lite

(abbreviated) machine learning frameworks, limiting the size and complexity of models supported

by the hardware. In contrast to GPUs, embedded processors emit a relatively weak EM signal,

necessitating delicate and costly measurement devices and even mechanical opening of the chip

package.

2.5 Strand Simulation Techniques

Several works have aimed to simulate strand behavior. This section begins by highlighting the

diverse prior works focused on integrating rods subject to contacts under various representations.

What follows then reviews recent literature looking to approximate strand interactions in the interest

of more expedient or robust results. Lastly, this chapter concludes by exploring the efforts that

combine physics-based simulation with machine learning, arriving at the emerging use of Graph

Neural Networks (GNNs) for dynamic systems.

2.5.1 Strand Simulation

Several methods have been used to articulate the elasticity and contact dynamics that govern

strand interactions. Though approximations exist, most methods seek to integrate the three dominant

forces that define 1D curves in space: stretching, bending, and twist [13]. By taking a traditional

mass-spring system and tracking frames on a connected train of edges along with an additional

37

twist degree of freedom, these additional forces serve to describe the behavior of hairs, trees, yarns,

and even viscous threads (e.g. dripping honey) [12]. Though strand simulation schemes can be

specialized for certain scenarios, such as curvy helical strands [14], the pioneering work of Discrete

Elastic Rods (DER) [13, 12] is widely adopted due to it’s robustness, scaling, and physical accuracy.

Whereas contact and friction are concerned, numerous works aim to handle the large number

of inter-strand contact instances that are dominated by dry-friction effects [44, 15, 38, 37]. These

include those that take extra care to combat stretching from collisions which introduce instabilities in

the compliance of rods, and demand nonlinear handling [93]. Due to the large number of constraints

gathered between strand bundles, friction is handled via a Gauss-Seidel treatment of Second order

Cone Complementarity hard constraints [37], which are treated in contact clusters while accounting

for material compliance of strands.

This approach however requires expensive iterative solvers, which in turn has prompted al-

ternative research into cascading barrier functions, deemed Incremental Contact Potentials (IPC),

aimed at resolving collisions [110]. These utilize adaptive and dynamic penalty forces to maintain

volumetric elements intersection and inversion free, even at large timesteps. This is extended to be

able to handle friction by using a dissipative potential introduced in a lagged formulation. However,

this is only possible due to a conservative detection of nearby constraints, allowing the newton solve

to be aware of nearby constraints, both active and inactive. This permits iterations to ensure no

collision events are missed or introduced. Distance and stiffness, the barrier stiffness parameters,

are dynamically updated inside the projected Newton solve to improve conditioning and adapt to

each contact. Lastly, continuous Collision Detection (CCD) is used to verify steps taken in the line

search are valid.

Friction is smoothed to fit into the variational Newton-type solver. This is achieved by lagging

the sliding bases used for contact until the end of a nonlinear solve or the end of the timestep itself.

The frictional force itself is smoothed so that it can be computed as an energy function, similar to a

barrier function, that proves reasonably accurate [109, 110].

Incremental Contact Potentials have even been is extended to handle codimensional elements,

38

allowing for thin structures such as strands and cloth-like meshes [109]. This drops the original

requirement of thickness to enforce unsigned distances for contact. In order to handle shells and

rods they inflate materials with an additional thickness to create a rounded thickened boundary.

Special treatment for handling CCD in additive pieces, monotonically increasing the force applied

reminiscent of other variational approaches such as Asynchronous contact mechanics [70].

Similar to the barrier treatment of friction used in Incremental Potential Contacts, approaches

tailored for soft-robotics with friction on the end-effectors utilize smooth friction with a tanh

approximation to form a differentiable approximation for soft-robot simulation [58]. This creates

a hybrid Sequential Quadratic Programming approach mixed with penalty friction cones who’s

stiffnesses are tuned to perform material parameter estimation on real world objects using motion

tracking. Their contact aware differentiable simulation allows for trajectory optimization and control

policies to be explored using back-propagation of their robots PD controllers.

2.5.2 Approximate Physics

Given the computational burden of simulating accurate physics-based strand dynamics, various

alternative methods have been explored throughout recent years that achieve high quality visual

results while forgoing engineering accuracy. This includes methods which simply the constraint

manifold such that all interactions can be treated by with specialized solvers or guarantees [18, 20,

119]. Furthermore, such methods also encompass hybrid approaches which track variables through

both Eulerian and Lagragian means, exchanging information through restriction and prolongation

steps. Such division of representation can be used to leverage the advantages of each approach,

such as treating rods with a Lagrangian mass-spring model while using Eulerian grid-based Fluid

Implicit Particles (FLIP [19]) volume constraints to precondition treatment of contact clusters [125].

Grid velocities enforce incompressibility and influence smooth bulk motion. Continuum methods

force nearby hairs to behave similarly. This can be desirable under compression, preventing

interpenetration, but can be undesirable when two independent regions or hair clumps interact.

Special care is taken to check incoming velocities incident on cell faces and decoupling neighboring

39

cells if they exhibit different velocity normals [125]. Ultimately, ghost cells are added in their

place to allow for independent motion. Once grid velocities are transferred back to rods, collisions

are definitively treated in Lagrangian manner. Hair is modeled jointly as both as curves and as a

volumetric velocity field, where the grid is recreated at every time step. Although this improves the

difficult and computationally burdensome collision handling for strands, it also features multiple

parameter choices in stencil size, kernel for interpolation functions, as well as thresholds for pressure

and density visible to the grid, which are unique to this approach.

Nevertheless, volume preservation on the grid often provides a better preconditioner to Con-

tinuous Time Collision Detection (CTCD) than penalty based techniques because it considers not

only positions but velocities as well. A combined three stage penalty, CTCD, and rigid impact

zones ([22]) approach is able to resolve collisions in virtually all scenarios. As an added benefit,

the prevention of tunneling keeps the overall configuration from falling into worse—potentially

entangled—situations where contact resolution becomes even trickier.

Examples show a hybrid approach of both Eulerian volume preservation and Lagrangian collision

resolution is necessary, and ultimately quantitatively faster than Lagrangian contact handling alone.

Friction is modeled via viscosity terms inherent to the grid-facilitated fluid-like treatment. Due to

this wet stiction like visual results, hybrid methods that rely on fluid treatment are confined to handle

simple braids, characters with straight hair, and simpler hairballs. These restrictions hold even with

further extensions contributing the solving of the Poisson equation on an irregular voxel domain

with Neumann and Dirichlet boundary conditions to optimize the background fluid contributions to

the hair [124].

Hybrid Eulerian-Lagrangian approaches can also offer a duality in representation to highlight

the disparity that can exist between the constraints and the degrees of freedom of the strand

representation [178]. Numerous degrees of freedom between points kept in tension, or inside tubes

are extraneous. Not only do these extraneous variables needlessly increase solver complexity, but

they also actively hinder simulation expressiveness when the degrees of freedom present are not

aligned or found in the right places.

40

The response to these considerations is to introduce reduced nodes of freedom for strands to be

placed parametrically on deforming curves or surfaces to match given constraints. Nodes can be

thought to slide to the locations where they are required. Notably, amongst the available interaction

modes twist is not considered, only inextensibility, bending, gravity, and kinetic energy. Friction

is only handled in the infinite friction case. Coined as Eulerian-on-Lagrangian simulations (EoL),

they emphasize directly intertwining material representations with the background grid [52], and

are nevertheless able to handle very extensive, long, intricate pulley systems, and strands under high

tension. Furthermore, this approach calls for tracking Eulerian nodes in order to add constraints

and degrees of freedom that are not tied to the strand itself, but to objects and relative locations

(potentially moving) in space. At times, when volumetric interactions are in abundance, it is also

useful to adapt timestep size in order to account for overlapping regions of contact [105], though

this poses some challenges for thin structures. Unlike discrete strand counterparts, mass and energy

of Eulerian-on-Lagrangian approaches are distributed along the length of the strand, instead of

being lumped at material edge vertices. In similar spirit to the approach discussed in Ch. 5, the

creation of a strand graph is used to organize constraints between strands and scene objects.

For specializes treatment of strands and yarns in a Eulearian-on-Lagrangian setting, special

care must be taken to introduce and remove nodes correctly. This includes the ability to track

explicitly contact points both in the spatial and material domains, simply by placing nodes at contact

locations, and thus reduce the complexity and increase the accuracy of contact handling [161].

Such approaches do not remesh, but rather exploit implicit Eulerian contact handling methods by

means of novel Eulerian with Interpolated Lagrangian (EIL) nodes. Degenerate discretizations

that arise as sliding contacts approach one another are sidestepped by replacing a traditional EoL

contact node with an EIL node which is fixed spatially but permitted to slide geodesically along

the material as an interpolation of nearby EoL nodes. This replaces the traditional introduction

of a new node at the contact, meaning no material points are introduced that result in adding to

the energy of the strand. Without an explicit material point, bending, stretch, and other associated

forces do not appear and introduce difficulty for the material solve of the strand. Such schemes are

41

perfect for resolving contact dynaics in yarn and knitted cloth simulations [164, 161] which often

employ eulerian approaches alongside lagrangian material representations. Granted a threshold for

transforming EoL nodes into EIL coutnerparts, they can handle frictional contact on strands in close

sliding contact.

Further diverging from the baseline of physically grounded discrete elastic rod simulations

are methods which are required to run at interactive rates. Real-time hair dynamics often trade-

off larger relaxations of the underlying physics for the responsiveness and interactivity of the

resulting simulation. They are able to robustly handle large time steps with strands exhibiting fast

motions, as well as recovering the hair shapes after substantial deformations. Such approaches

were first attempted through a dynamic follow-the-leader approach tailored for inextensible rod

simulations [131]. Visual plausibility and speed improvements argue for abandoning accuracy and

instead rigidly constraining subsequent edge nodes to lie inside a fixed radius away from their

predecessor. When rectification is necessary, follow the leader is applied in both directions, that is,

emanating from each endpoint of the strand, iteratively. Interactive rates are achieved for simulations

of up to 10 thousand hairs. The base formulation is derived from Position Based Dynamics (PBD)

[130], with bending and collisions again handled iteratively as equally weighted additions to a

collection of enforceable constraints. As an extension, more careful treatment of contact and

friction is available with a framework for using linear solvers to solve nonlinear complementarity

problems [120]. This enables rigid and deformable simulation that takes into account geometric

stiffness characteristic of rod interactions [185], alogn with implicit time stepping. The addition of

nonlinear complementarity also allows both general time integration techniques and a smoothed

formulation of Coulomb friction for contact.

Consideration of twist once again enters the picture in a position-based setting targeted at real

time hair simulation, but only with the additional tracking of ghost particles [188]. These extra

points appear at the midpoint of otherwise traditional Discrete Elastic Rods to house material

information such as mass and rest variables. This allows traditional PBD to act on simplified

representation of material energies, particularly twist, which is limited to a less than 180 degree

42

rotation. Contact resolution is handled in the traditional approach [130] between material ghost

points on rods.

Further compromises can be made in the name of real-time interactive rates by way of simulating

strand proxies. This includes methods that do not simulate individual strands, but instead hair

mesh surfaces [200]. Guide sheets of hair are populated with distributions of strands at render

time, creating an overall appearance of hair without any heavy computational costs. Nevertheless,

these approaches employ a volumetric force model for incorporating hair interactions inside what is

considered the hair mesh volume. They also introduce a position correction method to minimize

the local deformation of the hair mesh that is introduced via collision handling. Such approaches

serve as predecessors to Air Meshes [129], which extend this volumetric approach into a Position-

Based-Dynamics setting in order to unify both methods. By carefully seeding hair sheets with

volumetric tetrahedral elements, the same elements used for simulation can serve the purpose of

collision detection in a scheme that requires inverted volumetric elements to recover across timesteps.

Notably, post-processing is performed should hair tets fall inside external collision elements, and

the tetrahedral elements and hair guides themselves are simulated using cloth dynamics [7] rather

than strand models.

This falls in contrast to methods that simulate guide strand dynamics as mass-spring particle

systems and extrapolate results for dense upsampling [25]. Methods of this nature train skinning

weights by computing storing large offline simulation datasets derived from small example motions,

and choose the interpolation values carefully to favor those that exhibit similar motions. This

produces results of up to 150 thousand strands at 40 milliseconds per frame by weakly coupling

strand bundles into hair correction groups that receive additional consideration to avoid tunneling.

Hair dynamics are decoupled from collision resolution, utilizing a different strand representation

for each. Dynamics are computed solely on the reduced set of guide strands, whereas collisions

are performed on the reduced strand model using penalty methods [21]. K-Nearest-Neighbors per

node on upsampled hairs indicate which guide node to use for weights, which allows collisions on

upsampled hair to be treated using a temporally coherent modification of traditional position-based

43

constraints [130]. This, in combination with the mass-spring model used results in interactions

where friction is not considered, only stiction. Yet, even by only detecting collisions on a subset

of 20 thousand strands from their simulated 150 thousand, they are still able to handle complex

interactions with external geometries for both straight and curly hair.

Subsequent methods have carried on these successful practices of attributing guide hairs to

nearby upsampled strands via skinning, however with additional consideration given for strand-

object interactions. Although contacts are still transferred via penalty forces from the guide hairs,

these methods are especially tailored for cases where guide hairs may not suffice to capture nearby

contacts in the presence of hair-solid behavior. This involves the use of time-varying skinning

weights to tackle regions where coherence between guide hairs may be broken [26]. Two way

contact coupling then adjusts guide hairs based on their upsampled hair interaction with solids,

allowing only guide hairs to be explicitly simulated but still manage to treat otherwise distant

contacts. This is achieved by pairing level sets that are stored on a background grid to inform

the distance to solids and expedite distant contact computation, with traditional Continuous-Time

Collision Detection capable of removing flickering and tunneling artifacts.

2.5.3 Machine Learning & Simulation

In addition to traditional and real-time approximations of strand behavior, another emerging

avenue for simulation is that of data-driven approaches. In particular, machine learning and neural

network techniques have recently been deployed to tackle settings of gradient-traceable physics.

Differentiable physics was initially explored predominantly in the robotics community [4, 39],

where policy controllers were taught to learn from their surroundings to improve their handling

of the environment towards directed objectives. This has inspired a look towards differentiable

representations of materials and forces which can be tuned via the back-propagation techniques

widely adopted by neural networks. One such example is ChainQueen [82], which extends the

Moving Least Squares Material Point Method (MLS-MPM) [80] used for elastic and fracture

simulation. This extension works such that every governing equation of motion is chosen to be

44

smooth and differentiable, allowing for a simulator that can be implemented fully in Tensorflow [1]

and tuned to achieve motion planning and control tasks. However, it is important to note that instead

of directly approximating physics using neural networks, ChainQueen differentiates MLS-MPM.

Grid and particle transfer functions, along with equations of motion are all by design smoothed

and differentiable, allowing backpropagation that can link the final simulation state to the initial

state and control parameters chosen for the step. Collisions in this environment are handled by the

MPM formulation on the background grid by updating velocities. Techniques of this nature makes

extensive use of the Taichi [79] programming language and store ’memo’ simulation states that

enable symbolic differentiation of prior simulation steps when performing gradient descent. In

pushing these foundational works further, a completely differentiable physics engine for simulation

can be achieved [83]. The key difference stemming from the improvement of the ’memos’ from

ChainQueen to a light-weight tape is used to record the whole simulation program structure

and replay the gradient kernels in a reversed order, for end-to-end back-propagation. The result

combines the data structure abstraction of the Taichi language paradigm with thread safety, first

class parallelism, and tensor representations that can be used for forward and backward gradient

computation. However, this avenue of approach is intended only for simulations where the entire

simulation step requires differentiable programming in order to learn policies and weights.

Alternative machine learning approaches aim to leverage traditional simulation results rather

than replacing the entire pipeline with differentiable functions. Such approaches gather large

datasets from simulation timesteps and sample interactions, that are produced by traditional or

arbitrary means. From this accumulated data, a neural network architecture is trained to classify or

regress connections between input configuration states and output variables for various components

of the simulation pipeline. For example, slow and computationally expensive fluid simulations can

be called on to produce thousands of highly detailed splash scenarios. These instances can then serve

as input to a design intended to articulate splash patterns from coarse particle densities, allowing

a simulation with few degrees of freedom to appear to consist of several of orders of magnitude

more particles [100]. Approaches of these nature work well for Eulerian systems, where a stencil

45

for local interactions is predefined, but fails to adapt when the number and size of interactions

changes dynamically. The difficulty predominately stems from the requirements of fixed input

feature dimensions for machine learning methods.

In order to extend the traditional building blocks of network layers, classification, and regression

to dynamic inputs, Graph Neural Networks (GNN) were introduced [167]. GNNs dictate how to

aggregate features and funnel them into a system of fully connected update functions regardless

of the valence of interactions. They formalize where weights might live and experience back-

propagation for a directed and attributed multi-graph with optionally global attributes [27].

As such, they are attributed to allow for updates of values best stored on graphs, and have been

popularized and expanded on to tackle fluid [162], cloth [150], robotic control [163], and rigid body

simulations [9, 10]. These methods rely on simulation feature information stored on nodes and

dependencies between interactions related through graph edges. Since nodes can only influence

neighboring nodes via edges, long range edge connections ([112]) and hierarchical clustering

of nodes ([128, 111]) have also been explored to more efficiently propagate information across

the graph. Such techniques inspire the approach discussed in Ch. 5, which builds on encoding,

processing, and decoding Graph Network pipelines ([150]), to target strands ([172]) and focuses of

expediting contact friction interactions.

46

Chapter 3: LayerCode

With the advance of personal and customized fabrication techniques, the capability to embed

information in physical objects proves to be evermore crucial. We present LayerCode, a tagging

scheme that embeds a carefully designed barcode pattern in 3D printed objects as a deliberate

byproduct of the 3D printing process. The LayerCode concept is inspired by the structural re-

semblance between the parallel black and white bars of the standard barcode and the universal

layer-by-layer approach of 3D printing. LayerCode tags are designed, developed, and evaluated

by iterating over a large simulated dataset of complex custom meshes and their virtual renderings.

Through a novel graph-based tag abstraction, we introduce an encoding algorithm that enables the

3D printing layers to carry information without altering the object geometry. We also introduce

a decoding algorithm that reads the LayerCode tag of a physical object by just taking a photo.

The physical deployment of LayerCode tags is realized on various types of 3D printers, including

Fused Deposition Modeling printers as well as Stereolithography based printers. Each offers its

own advantages and trade-offs. We show that LayerCode tags can work on complex, nontrivial

shapes, on which all previous tagging mechanisms may fail. Validation of the LayerCode technique

is confirmed at a massive scale, with a geometry database enabling stress and unit tests efficiently

and in parallel. Among 4,835 tested shapes, we successfully encode and decode on more than 99%

of the shapes.

3.1 Introduction

Invented 45 years ago, the optical barcode has become an indispensable minutiae in today’s

digital era. The design is simple—59 black and white bars printed on a flat surface. But its use is

ubiquitous. From package delivery and airplane boarding to inventory management and patient

47

a c d f ig

b e h

Figure 3.1: LayerCode tags are deployed in 3D printed objects through two-color printing (a),
variable layer heights (d), and near-infrared steganography (g). In the first case (a), the LayerCode
tag is visible; in the second (d), the tag is less visible; and in the third (g) it is completely invisible,
but still machine-readable. Just like reading a barcode, we capture an image of each object, and our
decoding algorithm processes the image to create a decoding graph (b, e, h), from which a linear
barcode (and thus the corresponding bit string) is recovered (c, f, i).

identification, the barcode serves as a link bridging physical artifacts to modern digital systems.

In this work, we rethink barcodes in the context of additive manufacturing, popularly known

as 3D printing. 3D printing offers a quick way of making customized, complex shaped objects.

Unlike a mass-produced product which by design has a reserved flat surface region to host barcodes,

3D printed shapes are often complex and curved: thin features, slender threads, and holes are not

uncommon. As a result, the traditional barcodes cannot be placed or printed on such objects.

Recent years have seen a few approaches proposed toward embedding optical tags in 3D printed

objects, on the surface [94], beneath the surface [108] and inside the objects [198]. However,

these approaches either require specialized (and expensive) hardware to read the tags or only work

on a limited set of simple shapes (i.e., those with a flat or smooth surface). This limitation, in

stark contrast to the complexity of shapes that current 3D printers commonly produce, remains a

significant open problem.

We introduce LayerCode, to bring the concept of optical barcodes into 3D printed objects,

especially those with curved shapes and fine structures. Our key idea is inspired by noticing a

structural resemblance between optical barcodes and 3D printed objects: essential in a barcode are

its black and white bars arranged in parallel; universal in all 3D printed objects are the printing layers

introduced in a parallel fashion. In fact, virtually all additive manufacturing uses a layer-by-layer

48

printing process [115, 152]. Thus, if we could interleave two “types” of layers in a 3D printing

process, we would be able to embed a barcode everywhere in a 3D printed object.

Materializing this idea faces two challenges. The first is algorithmic. Due to an object’s complex

shape, its layering structure may appear curved, disconnected, or shadowed when captured by a

camera. We therefore seek a robust encoding and decoding algorithm that embeds information in

printing layers and later retrieves this information from the images of a conventional camera. The

second challenge is in practical realization. In various types of 3D printers, including those that

support only a single material, we need to introduce two layer types that can be distinguished from

camera images.

We address the first challenge by introducing a new coding algorithm. Unlike the standard

barcode that maps every bit to a bar thickness, we encode individual bits based on the local change

of layer thickness, which, as we will show, is invariant under different surface orientations and

curvatures. At the decoding time, we exploit a key observation that each layer spans the entire

cross-section of the object. This suggests that there exist many image-plane paths along which

we can decode. The rich set of decoding paths is advantageous, enabling us to sidestep shadows,

highlights, and uncertain image regions to decode robustly.

We address the second challenge by developing software and hardware updates for printers.

For printers that support two materials (such as Makerbot Replicator 2 and PolyJet), the layer

types are naturally introduced by assigning different materials. For fused deposition modeling

(FDM) printers with only a single material (such as the Ultimaker 2), we propose to change the

filament deposition height during printing to indicate different layer types—this approach largely

preserves the appearance of printed objects. Last but not least, for stereolithography printers (such

as Autodesk Ember), we propose to mix Near-Infrared (NIR) dye in the printing resin to create the

second type of layers. In this way, both types of layers (with and without NIR dye) appear the same

to the eye, and thus the original appearance of the printed objects is fully preserved. Nevertheless,

they appear differently to a camera with a NIR filter, and thus can be decoded. This unobtrusive and

machine-readable tagging is similar in spirit to [108] and finds many applications.

49

take a photo decoding (§4)

Figure 3.2: Usage scenario. A scene with a LayerCode-tagged object is captured by a conventional
camera. Our graph-based algorithm then decodes the embedded information from the image.

Features Our proposed LayerCode approach features a number of attributes desired for tagging

3D printed objects:

Robustness on complex shapes. LayerCode tags can be applied to objects with complex

shapes (e.g., see Figure 3.3), and are significantly more versatile than existing approaches. Besides

demonstrating our algorithm with real-world examples, we also test it exhaustively using rendered

images on Thingi10k [212], a dataset consisting of 4,835 printable meshes across a wide range of

shapes. We show that our algorithm is able to encode and decode on those meshes. We include our

code and data in the supplementary files and will release them publicly for future comparison.

Ease with a conventional camera. LayerCode tags can be read by a conventional camera,

without resorting to expensive hardware (Figure 3.2). Even for the NIR tags, the only additional

hardware needed for decoding is a NIR filter and a NIR light source (e.g., TV remote); both are

low-cost and easily accessible.

Compatibility with 3D printers. LayerCode tags can be used in various types of 3D

printers, whether they are single material or multi-material, FDM or stereolithography printers.

We demonstrate our method on three types of printers: Ultimaker 2, PolyJet, and Autodesk

Ember. Interestingly, we show that through a simple hardware and software augmentation, even a

single-material stereolithography printer like the Ember can support two types of layers to embed

LayerCode tags.

Structural preservation. Since LayerCode tags are built upon the layer-by-layer 3D printing

50

process without modifying the original shapes; they have a minimal, if not negligible, impact on the

mechanical properties of the printed objects. This feature contrasts starkly to previous approaches,

as they all alter the shapes to a certain extent.

Appearance preservation. LayerCode tags, when fabricated using two materials of different

colors, change the appearance of the object. However the object appearance is preserved in the

other two 3D printing approaches, namely by changing the FDM deposition thickness and using

resins mixed with NIR dyes (Figure 3.15 and 3.17).

Ubiquitous tagging of an object. Embedded in 3D printed layers, LayerCode tags span over the

entire object body, both inside and on the surface. The ubiquity of tagging is beneficial: tags can be

decoded along many surface paths, which make the decoding process robust. This redundancy also

renders the tag readable from multiple camera view angles without careful alignment. Remarkably,

it even allows the tag to be recovered from a broken or damaged object—a useful feature for object

repair and reconstruction (Figure 3.18).

Depth information for free. When captured in an image, the interleaving parallel layers of a

LayerCode tag can be reinterpreted as an ideal parallel structured light pattern projected on the

object. Thus, using the structured light technique of computer vision, even from a single image

of the tagged object, we are able to estimate a point-wise depth of the object from the camera

(Figure 3.10). In other words, every LayerCode tag automatically conveys the shape information of

its carrier object for free.

In summary, we highlight the following contributions:

• We introduce a new tagging mechanism that exploits the layering structures widely employed

in additive manufacturing processes and that offers a rich set of features.

• We develop a decoding algorithm that is robust against high curvatures, rough surfaces, thin

features, occlusions, and other factors that limit the use of previous approaches.

• We propose three methods that achieve LayerCode tags in various types of 3D printing

processes and offer their own advantages and tradeoffs.

51

• We conduct a comprehensive evaluation consisting of 4,835 rendered images as well as over

20 physical objects from three types of 3D printers.

Figure 3.3: Challenging shapes. LayerCode tags can be embedded in challenging shapes such as
those with holes, thin features, curved surfaces, and branching threads, and can be decoded suc-
cessfully. To our knowledge, no previous optical tagging mechanism can handle these challenging
shapes.

3.2 Encoding

Conceptually, the encoding process decomposes a 3D printed shape into two sets of interleaving

layers, which we refer as the black and white layers, respectively (Figure 3.4), to echo the black and

white bars in standard barcodes. We also refer the black and white layers generally as the coding

layers to distinguish from the 3D printing layers made in the 3D printing process. Each black or

white layer consists of multiple consecutive 3D printing layers, and has a variable thickness.

In practice, we need to assign each 3D printing layer different properties (such as colors) so

that at decoding time, the black and white layers can be recognized from a camera image. These

practical details are deferred until §3.4. In this section, our goal is to assign each coding layer a

thickness to encode a piece of information.

52

black layer

white layer

Figure 3.4: Distorted thickness. A sphere is coded with black and white layers of equal thickness.
On the captured image, curvature and perspective cause layers to appear spatially varying in size.

The input to our encoding algorithm is a 3D shape, the tag information represented as a bit

string, as well as the 3D printing direction with respect to the printed object (i.e., the direction along

which 3D printing layers will be grown). Unlike other tagging methods, there is no restriction on

the 3D printed shape. We leave the flexibility of choosing a printing direction to the user, because

the printing direction may depend on the specific shape, printing software, support materials, and

perhaps subjective preferences. The output of the encoding algorithm is a series of slices along the

printing direction to specify the thickness of each coding layer.

Challenges and insights In a standard optical barcode, the black and white colors are used to

label individual bars, and a bit (0/1) is encoded in the thickness of each bar. Unfortunately, it would

be problematic to simply transfer this design to curved surfaces. As shown in Figure 3.4, a layer’s

thickness on a curved surface will appear spatially variant after being projected on an image. Thus,

a new coding scheme is needed.

A key insight comes from noticing the fact that if the coding layers are thin (relative to the

inverse of the surface curvature along the printing direction), the thickness ratio of two consecutive

layers measured in a local region of the image plane is invariant. This is because in a small

local region, two nearby coding layers share approximately the same surface tangent plane, and

53

the projection from the tangent plane to the image plane follows an affine transformation which

preserves the layer thickness ratio.

Using local thickness ratios also favors the decoding step. As will be discussed in §3.3, it allows

us to sample the thickness ratio of two layers at many local regions on the image, and collectively

estimate a thickness ratio that is robust against imaging noise and artifacts.

Coding scheme We propose the following scheme to encode every bit in a bitstring. A bit “1” is

encoded if the thickness ratio of two consecutive layers is either 1/𝑀 or 𝑀 , where 𝑀 is a constant

larger than 1 that we will discuss shortly, and a bit “0” is represented by a unitary thickness ratio

(i.e., the same thickness). The representation of a bit string always starts from a layer with a baseline

thickness ℎ. The next layer thickness 𝑎𝑛+1 is either ℎ or 𝑀ℎ according to the current bit 𝑏𝑛+1 and

the previous layer thickness 𝑎𝑛, namely,

a𝑛+1 =

𝑎𝑛 if 𝑏𝑛+1 = 0,

𝑀ℎ if 𝑏𝑛+1 = 1 and 𝑎𝑛 = ℎ,

ℎ if 𝑏𝑛+1 = 1 and 𝑎𝑛 = 𝑀ℎ.

(3.1)

At decoding time, we recover the bit string sequentially, using the inverse map

b𝑛+1 =

1 if log 𝑎𝑛 − log 𝑎𝑛+1 = ± log𝑀,

0 if log 𝑎𝑛 − log 𝑎𝑛+1 = 0.
(3.2)

In practice, the value of log 𝑎𝑛 − log 𝑎𝑛+1 will never be precisely ± log𝑀 or 0 due to the image

estimation errors. But a nice property of this coding scheme is that the estimated values of log 𝑎𝑛 −

log 𝑎𝑛+1, when viewed as a random variable, will form three distribution modes symmetrically

centered at ± log𝑀 and 0. In §3.3.2, we will return to this property for robust decoding. Figure 3.5

illustrates this scheme for 𝑀 = 2.

In theory, 𝑀 can be any value larger than 1. It offers the user the flexibility of trading off the

54

bit 0

bit 1

Figure 3.5: Encoding scheme. Each pair of layers encodes a single bit. A bitwise 0 or 1 can be
determined by computing the ratio of adjacent layer thicknesses.

total number of bits of a shape for the robustness of decoding. A larger 𝑀 sets ± log𝑀 further away

from 0, so at decoding time the estimated log 𝑎𝑛 − log 𝑎𝑛+1 is more distinctive; but the layers are

thicker, and thus the shape can store less information. If 𝑀 becomes too large, a coding layer may

occupy a large surface area, where the surface curvature starts to vary considerably. Then, the local

layer thickness ratio also becomes spatially varying. In all our examples, we used 𝑀 = 2.

Among the coding layers, we also need to label where a bit string starts and ends. And we

use the following simple rules. We start a bit string from a layer with a thickness 𝑁ℎ, where 𝑁

is considerably larger than 𝑀 (in practice, 𝑁 = 4), followed by two layers (one black and one

white) with a thickness ℎ each. This appends a bit “0” to the beginning of the message. Then, after

encoding the full bit string, a single layer is added to encode a bit “1” followed by another layer of

thickness 𝑁ℎ. This additional structure isolates a tag and disambiguates the bit string direction on

the image plane.

Lastly, we reach a lemma about the total thickness of a bit string.

Lemma 1. Provided a bit string of length 𝑇 (𝑇 bits), the 3D printing thickness 𝐻 needed to host

this bit string is bounded by

(2𝑁 + 2 + 𝑇 + 𝑀)ℎ ≤ 𝐻 ≤ (2𝑁 + 3 + 𝑇 · 𝑀)ℎ.

Proof. In addition to the beginning 3 layers of a total thickness (𝑁 + 2)ℎ and the ending layer of

55

linear scan multi-line average non-linear scan graph-based search

Figure 3.6: Barcode challenges. Simple input shapes (Left) are followed by more challenging
geometry (Right), each suggesting a different approach to decoding. Linear scan works with
simple flat surfaces, but cannot generalize to flat pieces with holes. These might be decoded by
projecting all pixels to one dimension; however, globally projecting fails to handle curved objects.
Instead, locally tracing across layers is effective, until subsequent layers are too far to trace (e.g.,
see Figure 3.7-left). Lastly, our graph-based method can be used to handle highly complex shapes
with curve and holes, and is backwards compatible with all previous challenging shapes.

thickness 𝑁ℎ, there are 𝑇 + 1 layers in-between corresponding to the 𝑇 bits followed by the ending

bit “1”. Recall that whenever a bit “1” appears, the layer thickness changes across two layers.

Therefore, among the 𝑇 +1 layers, there is at least one layer whose thickness is different from others.

If that layer is a thick layer (of thickness 𝑀ℎ), we obtain the lower bound. If that layer is a thin

layer (of thickness ℎ), we reach the upper bound.

Conversely, this lemma shows that if a 3D shape has a size 𝐷 along the printing direction and

𝐷 ≫ ℎ, then its information capacity (i.e., total bits) is at least
⌈
𝐷
ℎ·𝑀 − 2𝑁+3

𝑀

⌉
.

Repetition The user needs to choose the layer’s baseline thickness ℎ at encoding time, although

as presented in §3.3, our decoding algorithm is agnostic to ℎ. From Lemma 1, we know that if a 3D

printed object has a size 𝐷 along the printing direction, and if we need to store 𝑇 bits, ℎ should be

at most 𝐷/(2𝑁+2+𝑇+𝑀). Oftentimes, ℎ is much smaller than this bound. Then, we repeat the same

bit string (and thus the layer thickness pattern) multiple times until the total thickness occupies the

entire printing distance. Effectively, we embed multiple copies of the bit string in the entire object

(Figure 3.6 & Figure 3.25).

56

This repetition introduces no additional printing cost, and is beneficial in practice. It allows the

barcode to be read from a wider range of camera angles, and thereby eases camera alignment at

decoding time. Additionally, the redundant bit strings allow for a robust voting scheme at decoding

time (see §3.3.3).

Error correction coding Our coding scheme is about encoding a bit string in a physical rep-

resentation (i.e., layer thickness) and decoding from a tangible form (i.e., 3D printed objects).

Thus, it is able to carry any error-correction codes. In our experiments, we choose not to add

any error-correction redundancy for the purpose of understanding the pure performance of our

method. Our coding scheme can support various error-correction coding schemes such as the

Reed-Solomon codes [153]. These coding schemes add redundant bits to a bit string for correcting

errors at decoding time.

3.3 Decoding

We now describe our core algorithm of decoding LayerCode tags from a camera image. To start

decoding, we expect the black and white layers of the object to appear distinctively on the image.

This is guaranteed through our fabrication methods specific to different types of printers. Focusing

on the core decoding algorithm here, we defer those fabrication details in §3.4.

𝑎𝑛 ≠ 𝑎𝑛+1 (3.3)

𝑎𝑛+1 ≈ 𝑎𝑛+2 (3.4)

To motivate the overarching idea of our algorithm, we start by considering a few increasingly

challenging situations (see Figure 3.6). First, on a curved surface, the thickness of a coding layer

varies spatially on the image (Fig 3.4), making the decoding (e.g., using (3.2)) easily fallible. If

the surface curvature is relatively small, previously existing rectifications include decoding along

57

inaccurate thicknesscan’t find neighbor

Figure 3.7: Layer thickness estimation. (Left) Looking at local pixel regions is not sufficient
to guarantee that neighboring layers can be found. (Right) Computing the shortest path between
neighbors as a vector or traced path will often not measure an accurate layer thickness. Distances
must be projected along the printing direction (or boundary normal direction).

multiple projection lines of pixels [48] and along curved paths [113]. Nevertheless, the concept of

an image-space decoding path is flawed once a more complex shape is considered. As illustrated in

Figure 3.7, if a shape is zigzag or branching, it is almost impossible to find a path along which the

entire encoded bit string is covered. This case seems to suggest that a more reasonable way is by

segmenting individual layers and somehow measuring the layer thickness. Yet, such a layer-centric

approach is also vulnerable, as highlights, shadows, and image noise may “shatter” a layer into

separated regions (Figure 3.6-right).

We propose a graph-based algorithm. We treat each coding layer region, which may not include

an entire layer, as a graph node. Two nodes are connected if they are from different but neighboring

layers. As we will show, a robust decoding algorithm can be realized by strategically traversing this

graph.

3.3.1 Image Preprocessing

Real-world photos are noisy and usually not suitable for direct analysis. For example, pixels

sharing the same coding layer might appear very different due to lighting, shading, occlusion, and

58

other reasons. Correctly labeling these pixels into distinct discrete clusters is important. Otherwise

layers can bleed into one another or get skipped, leading to incorrect decoding.

Before delving into the decoding details, we preprocess the camera image to separate the object

from its background and remove check for regions where pixel intensities are either too high or

too low. We cull regions in shadow, in highlight, or out of focus since they can lead to false

segmentation of layers. This has the added benefit of helping with occlusions and regions of the

object which are distant topologically, but appear close due to camera perspective projection. In

removing these uncertain regions, the resulting image better guarantees that neighboring pixels

refer to neighboring regions on the tagged 3D shape. The preprocessing step depends on specific

types of 3D printed objects—whether they are bi-material objects, objects with variable layer

deposition heights, or objects solidified using NIR resin; they exhibit different image features. We

defer this fabrication-specific preprocessing step in §3.4. Afterward, we binarize the remaining

pixels, labeling them as in either black layers or white layers (see Sec. 3.4.6 for details). Later

in Figure 3.15-e and -h, we show an example of images before and after this preprocessing step.

Images resulted from this step are ready for decoding (see Algorithm 1 for an outline of major

steps).

3.3.2 Graph Construction

First, we construct a graph to represent the layer structure. To compute ratios, we need a bi-label

representation of the image. Depending on the specific printing and imaging process, we develop

several approaches to segment the image into its bi-label representation in order to compute ratios

of lengths between neighboring segments. Through a flood-fill process, we identify individual pixel

regions where all the pixels are labeled black or white respectively at the end of the preprocessing

step. That is, the bi-label representation abstracts the printer-dependent imaging process, supporting

a printer-agnostic decoding algorithm. Each region is represented as a graph node, and two nodes

are connected if their regions are adjacent to each other (Figure 3.8-a,b). This formalizes the

generation of the graph, which abstracts away all downstream complexities from having to account

59

Algorithm 1 Decoding Steps
1: procedure DECODE

2: Process the image and segment the image pixels.
3: Build Connectivity Graph ⊲ § 3.3.2
4: while Traverse every path on the graph do ⊲ § 3.3.3
5: if Decodes on paths seen are in agreement then
6: Terminate Traversal Early ⊲ § 3.3.5
7: end if
8: end while
9: Vote on path candidates ⊲ § 3.3.3

10: end procedure

for image-specific constraints. Once in its dual form, regardless of the printing method used, all

these graphs can be decoded the same way.

Next, we associate every edge 𝑒 with two quantities, a 2D vector 𝒗 in image space and a binary

label 𝑟 . Consider an edge 𝑒 that connects nodes 𝐴 and 𝐵. Its vector 𝒗 represents the general direction

along which we can move from the image region 𝐴 to the region 𝐵. As will become clear shortly

(§3.3.3), this direction will guide us in traversing the graph without getting trapped in a loop. To

compute 𝒗, we first identify boundary pixels in each region. These are the pixels within 𝛿 pixels

away from another region (𝛿 = 3 in practice). At each boundary pixel, we estimate a boundary

normal direction as the direction along which we can enter into a different region by moving the

shortest distance. 𝒗 is then defined as the average normal direction over all boundary pixels between

region 𝐴 and region 𝐵. When computing the average, we use the normal direction 𝒏𝑝 for pixel 𝑝 in

region 𝐴, and the opposite normal direction −𝒏𝑝 for 𝑝 in 𝐵. Thus, the average direction 𝒗 is in fact

associated to the directed edge from 𝐴 to 𝐵, and for clarity we denote it as 𝒗𝐴→𝐵. The direction for

the opposite edge is just 𝒗𝐵→𝐴 = −𝒗𝐵→𝐴.

The binary label 𝑟 is associated to the undirected edge, and is denoted as 𝑟𝐴↔𝐵 for clarity. We

compute 𝑟𝐴↔𝐵 as follows. First, from each boundary pixel 𝑝 between 𝐴 and 𝐵, we estimate the

layer thickness ℎ𝐴 (𝑝) of the region 𝐴 by first finding the shortest image-plane vector 𝒅m between

𝑝 and another region that is not 𝐴 or 𝐵 but connected to 𝐴. ℎ𝐴 (𝑝) is then set to be the length

of 𝒅m projected on the normal direction 𝒏𝑝 (see Figure 3.7). Symmetrically, from 𝑝, we also

60

A

B

C

E
D

A

B

undirected graph
without direction constraints

C

D

E

directed graph
with direction constraints

A

B

C

D

E

layering direction

Figure 3.8: Graph construction and traversal. (left) We identify individual pixel regions (A-E)
through flood filling. (middle) We create a graph, where each node represents a pixel region, and
two nodes are connected if their regions are adjacent to each other. Since the layers are added along
the printing direction, it makes no sense to traverse back and forth along the printing direction
for decoding—for example, A→B→C does not produce a valid bit string, while A→B→D is
reasonable (right).

estimate the layer thickness ℎ𝐵 (𝑝) of 𝐵 using a similar step. Then, pixel 𝑝 contributes a vote for

𝑟𝐴↔𝐵. It votes for label “0" if | log ℎ𝐴 (𝑝) − log ℎ𝐵 (𝑝) | < 1
2 log𝑀 (i.e., closer to 0), indicating

the second case in (3.2) and suggesting a bit “0" encoded between 𝐴 and 𝐵. On the other hand,

if | log ℎ𝐴 (𝑝) − log ℎ𝐵 (𝑝) | ≥ 1
2 log𝑀, it votes for label “1”, suggesting the first case in (3.2) and

hence a bit “1”. The final label 𝑟𝐴↔𝐵 is taken as the majority vote over all boundary pixels.

At first glance, assigning the label 𝑟𝐴↔𝐵 requires a prior knowledge of 𝑀 , which is not known

from the image. Fortunately, our coding scheme presented in §3.2 enables an easy and robust way

of estimating log𝑀. In the above process, we collect all | log ℎ𝐴 (𝑝) − log ℎ𝐵 (𝑝) | values for all

boundary pixels on the image. From (3.2), we know that these values are expected to be either

log𝑀 or 0, although we do not know what 𝑀 is. If we think of each | log ℎ𝐴 (𝑝) − log ℎ𝐵 (𝑝) | value

as a random variable, these random variables must be generated through a mixture of two Gaussians

(in 1D): one is centered at 0, and another center (i.e., log𝑀) is unknown but can be estimated using

the maximum likelihood estimation [136].

This Gaussian mixture estimation also enables us to identify the starting nodes, which correspond

to the starting layers (with a thickness 𝑁ℎ) described in §3.2. If node 𝐴 corresponds to a starting

61

layer, then the estimated | log ℎ𝐴 (𝑝) − log ℎ𝐵 (𝑝) | values from its boundary pixels will appear as

outliers of the Gaussian mixture model, as they are considerably larger than log𝑀 . If this case is

encountered, we label 𝐴 as a potential starting node and include it in a set S.

3.3.3 Decoding through Graph Traversal

We now decode the bit string by traversing the graph. Our traversal repeatedly starts from each

node in the set S, and moves to the next node through a depth-first search (DFS). Because the object

is always 3D printed in a layer-by-layer fashion, we must avoid looping back to earlier layers during

the traversal. To this end, the direction vector associated to each edge is helpful. As illustrated

in Figure 3.8-c, consider a traversal that reaches a node 𝐵 from a node 𝐴. In the DFS, we visit the

next node 𝐷, only when the moving direction from 𝐴 to 𝐵 is approximately consistent with the

moving direction from 𝐵 to 𝐷. In other words, we require 𝒗𝐴→𝐵 · 𝒗𝐵→𝐷 ≥ Δ (Δ = 0.35 in all our

examples).

The traversal stops when a node in S is reached or when DFS runs out of unvisited nodes. In the

latter case, the current traversal path is simply discarded, as we expect a valid bit string to always

end with a thick ending layer (recall §3.2), which must have been included in S. In the former case,

we decode a bit string by concatenating the binary labels of all edges on the path. It is worth noting

that this path might traverse backward a bit string. If that happens, we would decode a bit string

starting with “1” and ending with “0”. From our coding scheme in §3.2, it is easy to see that we can

just reverse the bit string to obtain the original one.

This graph traversal process generates many paths and thus many bit strings. Some of them

might be erroneous due to image noise. But collectively, they are robust. Therefore, we finalize the

bit string by taking a bit-wise majority vote over all decoded bit strings.

Remark. The majority voting, albeit simple, is a fundamental philosophy behind many modern

error-resilient systems, from peer-to-peer networks, to Byzantine fault tolerance, to modern-day

blockchain technology (e.g., see [103, 134]). Here, we exploit the voting scheme in both assigning

the edge labels and decoding the traversal paths. From this very perspective, the aforementioned

62

condition 𝒗𝐴→𝐵 · 𝒗𝐵→𝐷 ≥ Δ should be seen as a way of culling votes that are likely rejected. It

is meant to accelerate the graph traversal but it is not a necessary condition to ensure correctness.

Thus, the choice of Δ is not sensitive.

3.3.4 Loop Prevention with Graph Invariants

To avoid looping, we use directed edges to denote the connectivity between one label to the other.

We also take advantage of the monotonically printed layered structure. We only create directed

edges where we are sure that subsequent neighbors must radiate out from the original layer.

We use a dot product threshold of 0.35 to indicate the crossing of both regions (A->B, B->D)

is continuing in the same direction along the shape. Figure 3.8 shows this as we consider all the

candidates as A moves to B, only D results in a correct path. while C and E both rescind the code

backwards in the direction of A (which would lead to repeated bits in the decoded message). Since

this can never be the case by construction of applying the code layer by layer, these cases can only

lead to invalid decoding. We repeat this directed traversal process for all individual labels in order

to ensure the graph is complete. These directions are crucial in graph traversal §3.3.3 and Figure 3.8

show a failure case with undirected graph.

Now we can compute the ratios between neighboring nodes where layer height is stored. These

ratios stored at edges allows us to traverse the graph later and directly read out the code by analyzing

the ratios as paths are taken from node to node. To estimate the layer length reliably, we compute it

by averaging the neighboring distances. For example, in the mesh from Figure 3.8, we use node

B’s parents (A, C, E) and B’s children (D) to compute the length of B. We sample all the boundary

points from B’s parents and B’s children and calculate the smallest distance between them.

With a directed graph constructed for each start node, we traverse via Depth-First-Search to

decode valid paths. To counteract potential inaccuracies from camera noise, bi-label conversion,

and other image processing steps, we employ a statistical voting scheme to determine the relative

ratio of neighboring nodes from our shape.

During the traversal process, we have no knowledge regarding the absolute lengths embedded in

63

Algorithm 2 Graph Traversal
1: for each Start/End Node do
2: Add node to queue
3: create an adjacency matrix for this Start node
4: while node in queue do
5: Pop node from queue
6: for each neighbor of this node do
7: if neighbor is unvisited & not a start/end node then
8: add neighbor to queue
9: add neighbor to adjacency matrix

10: end if
11: end for
12: end while
13: Search Adjacency Matrix for valid paths leaving from start
14: for each potential path do
15: Decode path from computed ratio pairs along route
16: increment vote count for each bit
17: if Sufficient paths seen & bits agree statistically then
18: declare a decoded message early
19: end if
20: end for
21: end for
22: Decode message based on majority of votes for each bit

64

full traversal: 5,764,801 paths early termination: 64 pathsholes cause branching

Figure 3.9: Early termination. (left) Holes and fine features leads to a large decoding graph
with many branches. (middle) As a result, a naïve graph traversal unnecessarily explores too many
decoding paths. (right) Early termination allows us to declare a tag with confidence after processing
just a small fraction of the available paths.

the object. At each node stores the length of its layer and our goal is to compute all the ratios on the

edges that connects pairs of nodes.

Since we know the fixed ratio 𝑀, there must be exact three clusters of ratios, 𝑀, 1, and 1/𝑀.

By partitioning up space of ratios into three distinct groups, we can tell whether neighboring layers

are the same or different, resulting in a 0 or 1 bits respectively. This clustering proves especially

robust if the number of pixels between layers in small in the image. Relying on fixed numbers can

introduce a lot of noise, whereas clustering facilitates assigning ratios based on what is seen in the

image at a particular angle. From the clustering results, we can decode the stream of bits along

every path.

3.3.5 Early Termination

We terminate the graph traversal if we have surveyed a sufficient number of paths, and most of

them are already in agreement. As shown in Figure 3.9, this is particularly useful when dealing

with objects where the number of paths grows exponentially due to holes and other fine features.

We begin by imposing a lower bound on how many decoding paths to consider before checking

for early termination. Once at least 𝐾 unique paths have successfully been decoded, we begin to

tally the agreement across votes for each individual bit (𝐾 = 64 in practice). If all bits individually

concur by 80% or more, the graph traversal terminates and outputs the agreed upon decoding.

65

Otherwise, it continues. It is important not to vote on entire bit strings, but rather individual bits, as

this way best allows early termination when there are only a few bits in disaccord.

3.3.6 Extensions

The black and white layers not only encode a bit string but impose a geometric structure that

brings additional advantages. The appearance of these layers can be reinterpreted as a parallel light

pattern projected on the object, and this interpretation has an interesting connection to the depth

recovery using structured light techniques from computer vision [179].

On the object surface, the boundary curves between any two consecutive layers by construction

must be on a series of parallel planes. The distances between these planes depend on individual

layer thicknesses. If we know the orientation of those planes with respect to the camera, we can

recover the depth of every point on layer boundaries by intersecting a camera ray with the plane

where the point resides. In this way, from a single image, we can recover the object’s depth. Unlike

traditional structured light approaches, we require no active projector emitting light patterns. A

graphic depiction of this idea is provided later in Figure 3.11 of Appendix 3.3.7.

In practice, when we place an object and photograph it, the coding layers are all parallel to the

table surface (because of the way the layers are 3D printed). Thus, the layer plane’s orientation

aligns with the table’s surface orientation, which can be inferred using a standard camera calibration

process (e.g., with a checkerboard placed on the table). By decoding the bit string, we obtain every

layer thickness, being it ℎ, 𝑀ℎ, or 𝑁ℎ (recall §3.2), and in turn the distances between the layer

planes. The baseline thickness ℎ can be either set a priori or retrieved from the object that encodes

the ℎ value. More details of this extension are provided in Appendix 3.3.7.

Taking advantage of the orthographic and fixed ratio modulation properties, we demonstrate

preliminary results on passive 3D sensing. In previous 3D reconstruction research, one popular

approach is the calibrated structured light technique. Structured light reconstruction works by

registering where lines intersecting a shape, coming from a projector at a known and calibrated

position in world space, are received at a camera fixed in space. The intersection of the ray incident

66

recovered layer heightssingle image input images synthesized from novel viewpoints

Figure 3.10: 2.5D image re-synthesis. An object carrying a LayerCode tag also carries depth
information for free. From a single image, we can estimate the object’s 3D coordinates with respect
to the camera (middle), which in turn allows us to re-synthesize images from other viewpoints
(right).

to the camera with the lines emitted from the projector can be used to pinpoint 3D coordinates in

world space by computing points with respect to a shared world reference frame that relates the

transformation from the projector coordinate frame and the camera coordinate frame.

Our reconstruction works similarly in spirit to this approach with a few key differences.

1. We don’t need an active projector since the pattern is printed as layers.

2. The pattern is perfectly orthographic as a result of the additive manufacturing process.

Each line on the object is known to be parallel to all other lines by construction. This removes

the errors and approximations associated with removing the perspective projection of the lines

emitted from the projector used to mark the object. Instead we can work with an ideal orthographic

projection, where the only variable is the distance along the printing direction that separates each

layer. Assigning a world coordinate frame that aligns one dimension with the printing direction,

such as a world-space origin on a table denoting height zero, all that remains is determining the

height of each layer off the table. Fortunately, with LayerCode we can directly approximate the

heights by back solving for the lengths of layers after decoding the object from the detected ratios.

More details on the 3D position calculation are explored in the following Section (Sec. 3.3.7) and

we refer the reader to the survey work of [179]. Figure 3.10 shows a single photo of the SMILEY

67

model and the depth estimated from it.

The estimated depth is useful in many ways, such as direct 2.5D image manipulation and image

re-synthesis from novel viewpoints, not just in the way demonstrated in Figure 3.10. In §3.4.7, we

also show the use of depth information for virtual recovery of damaged objects (see Figure 3.18).

3.3.7 Details on Depth Recovery

Figure 3.11 illustrates the depth recovery procedure. Each selected image pixel from layer

boundaries forms a ray 𝒖 = [𝑋𝑐, 𝑌𝑐, 1]⊺ in the camera reference frame. The origin of the camera

reference frame is the focal point of the camera, and each pixel in the camera can be represented

by the ray denoted above. Assuming this coordinate system, we next calibrate and solve for the

3×3 intrinsic matrix K of the camera. With this in hand, we can invert camera specific parameters,

including focal length, pixel size, lens characteristics, to determine where pixels project in space.

Next we must take into account the extrinsic parameters that relate the camera to the world

coordinate frame. By looking at a marker in the scene with known properties, such as a checkerboard,

we can extract the rotation 𝑅 and translation 𝑡 between the world coordinate frame and the camera

coordinate frame.

Thus, if the camera lives at

𝒒𝑤 = −R𝒕⊺ (3.5)

in the world reference frame, we can then similarly write the camera ray incident on our pixel as:

𝒗𝑤 = RK−1𝒖, (3.6)

This leaves us only to solve for where along this ray _, from the camera and through the pixel, does

an intersection occur with a given plane height in the scene. We can estimate each plane height by

inverting our LayerCode decoding to approximate lengths.

Concretely, if the world coordinate frame and our printing layers align in direction, these planes

68

Figure 3.11: Depth recovery. The boundary curves between any two consecutive coding layers are
on a series of parallel planes. The depth of every point of the boundary curves can be recovered by
intersecting a camera ray with the plane that point resides on.

can be described by the normal vector

𝒏 =

(
0, 0, 1

)
(3.7)

and the point in space

𝒑𝑤 =

(
0, 0, height

)
, (3.8)

which, when combined with the ray emanating from the camera position 𝒒𝑤, is known:

_ =
𝒏⊺ (𝒑𝑤 − 𝒒𝑤)

𝒏⊺𝒗𝑤
, (3.9)

and thus we solve for the world coordinate of the pixel at:

𝒑𝑝 = 𝒒𝑤 + _𝒗𝑤 . (3.10)

In any case, the position of the camera needs to be known in space, relative to the world

coordinates (or table). A marker is needed in order to compute this extrinsic camera calibration,

although not needed for reconstructing the points otherwise. If the camera’s position relative to the

69

Two-Color Printing

Variable Layer Heights

Invisible NIR Dye

Figure 3.12: Fabricated pieces carry LayerCode tags made by two-color printing, variable layer
heights, and near-infrared resins. LayerCode tags are successfully embedded and decoded for
shapes with bumpy, shell, curvy, and other complex geometry.

table is known through a calibration, or computed and fixed for the images used, then the marker is

not necessary for recovering the LayerCode shape.

3.4 Fabrication

Since its inception, LayerCode has been designed to work with a wide variety of layered

manufacturing methods. This section describes three different embodiments of LayerCode adapted

to various types of 3D printers: Stratasys PolyJet, Ultimaker 2, and Autodesk Ember. Fabricating

LayerCode objects on these 3D printers carries the advantages and tradeffs for each: varying from

ease of implementation to visual concealment of the barcodes. Recognizing that some of the

following approaches require augmentation of 3D printer firmware and/or hardware, we plan to

open source all our firmware codes and hardware modifications.

We use a Canon DSLR camera with 5184 × 3456px to take photos. To read NIR LayerCode

tags, we used a Grasshopper3 camera from Point Grey with a resolution 2048 × 1536px for its easy

adoption of the NIR filter. We also tried an iPhone camera with a resolution 4032 × 3024px and

found the results similar.

70

3.4.1 Two-Color Fabrication

The most direct way of making LayerCode objects is by using a multi-material 3D printer.

Many 3D printers (e.g. MakerBot, MakerGear, and PolyJet) now support multi-material fabrication

with decreasing costs. By mapping the black and white layers of a LayerCode tag to two colors of

3D printing materials, these printers can produce LayerCode objects without any modifications to

software or hardware.

As a demonstration, we use Stratasys PolyJet to fabricate two-color LayerCode objects (see

Figure 3.13). Decoding these types of LayerCode objects is straightforward, as their surface textures

are already in two colors. Simple thresholding in image space suffices to binarize the input camera

image and prepare for decoding (as described in §3.3). While simple for fabrication, this type

of LayerCode tags would change the object appearance. In certain applications (e.g., see [108]),

appearance preservation is desired, so unobtrusive or completely invisible barcodes are preferable.

The next two fabrication approaches aim to offer this feature.

3.4.2 Fabrication with Variable Layer Heights

Although not all 3D printers support multi-material fabrication, virtually all printers are able to

print at a range of resolutions. Here the resolution indicates the height of a single layer deposition

during the 3D printing process. We refer it as the layer height to avoid confusion with the

aforementioned coding layer thickness.

Noticing the printers’ ubiquitous ability of layer height control, we propose to use distinct 3D

printing layer heights for each type of coding layers. When fabricating black layers, we use a small

layer height ℎ0, i.e., a high printing resolution; we switch to a larger layer height ℎ1 for making

white layers (see Figure 3.15). This approach requires only a single material, and introduces little

change to the surface geometry. Under environment lighting, the resulting LayerCode tags are

barely noticeable to our eyes (Figure 3.15-e).

Interestingly, the small and large layer heights cause the two types of coding layers to have

distinctive distributions of specular highlights. This can be understood by the illustration in

71

Figure 3.14. Exploiting this difference, the decoding algorithm is able to segment black coding

layers from white coding layers from a camera image. The image processing steps taken to produce

the input of §3.3 are outlined in Figure 3.15 and detailed in Sec. 3.4.6.

#Vertices : 2450

Euler : 2

Genus : 1

Closed : True

Solid : False

Edge manifold : True

Duplicated faces : False

Sample Query Information:

Figure 3.13: Physical hyperlink. The LayerCode tag embedded in this Zebra-shaped object reveals
shape and related mesh information.

In practice, although the layer height is adjustable, almost all existing 3D printing software use

a single layer height for printing an object. We overcome this limitation by carefully constructing

a G-code program that runs on the 3D printer and instructs when to switch the layer height.

Figure 3.15 depicts this implementation. We use the first-party slicer to generate a G-code

program that prints the object with the small layer height ℎ0 (Figure 3.15-b), and another G-code

program that prints at the larger layer height ℎ1 (Figure 3.15-b). We then interweave these two at

specific locations to construct alternating printing heights (Figure 3.15-b). In our approach, we

always set ℎ1 as an integer multiple of ℎ0 to ensure seamless switches of layer heights.

Since the simple G-code manipulation requires no hardware changes, we envision that this

type of LayerCode tags can be readily incorporated into existing 3D printers with an over-the-air

software update. On the other hand, while its impact on object appearance is minimal, this impact is

not completely invisible. If stringent appearance preservation is a priority, we recommend the next

approach, one that embraces near infrared (NIR) optical properties for LayerCode embodiment.

Another means to express LayerCodes lies in varying the layer heights in different layers during

printing. Fundamentally all 3D printers print within a range of fine to coarse resolution for each

72

specular reflections

Figure 3.14: Distinctive highlight distributions. The black layers (orange color) are made of 3D
printing layers each with a small height, while the white layers (green color) have a much larger
3D printing layer height. As a result, the specular highlights in black layers appear sparser and
more granular, while the highlights in white layers are denser and more uniform. The difference of
highlight distributions allows the decoding algorithm to discern the two types of coding layers by
processing a camera image.

layer. Conventionally, the printing layer-height is chosen once in the beginning and kept uniform

for the entire print.

Prior works have explored varying layer heights in order to optimize the quality and time tradeoff

when printing via additive manufacturing [2]. Yet, few have examined this production design choice

as a latent form of feature embedding. To extend varying layer height for tagging, we propose to

use two distinct layer heights for each label. These will appear as thinner and thicker segments of

the printed piece, and may be regarded as subtle and hardly-noticeable textures.

In terms of appearance, these layer-height LayerCode prints are far less discernable than two-

color printing, leading to more discreet tags. Nevertheless, although the entire object is printed with

a single material and color, close inspection will reveal smooth and striated regions where there

is interplay between LayerCode layers. These two or more distinct patterns can then be used for

decoding. A direct benefit of varying layer height LayerCode is its ubiquitousness. Although not all

printers support multi-color functionality, virtually all printers are capable of printing at a range of

height resolutions. We demonstrate this via manipulating the G-code which is used ubiquitously

to control 3D printers.

73

slicing with different layer heights and our g-code mixing send to printer bilateral filteringcontrast boosting graph construction

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 3.15: Variable layer heights. A twisted vase is encoded with a variable height LayerCode
(a-d), printed (e), and then decoded (f-h). At the decoding time, a camera image (e) is converted into
grayscale, followed by contrast boosting (f), bilateral filtering (g), and a Gaussian-mixture-based
clustering to binarize the image (h), which is in turn supplied to the decoding algorithm for graph
construction and decoding along paths (red curve on (h)).

G-code generates the path of the nozzle head during printing, specifying different paths and

height adjustments for every layer per the layer height specific settings. We use the first-party slicer

to generate a coarse version with large layer height and a fine version with small layer height. We

then interweave these two at specific positions to align the two alternating print heights.

When it comes to decoding, instead of segmenting based on colors, one can filter based on

different textures such as specularity. Shown in Figure 3.14, the specular lights, for example, can be

used to cluster two categories. We implemented a complete pipeline to process these images and

generate the bi-label representation (§ 3.4.6) needed for graph-based decoding. We detail various

image processing steps in Figure 3.15.

Looking closely, there are minor artifacts on the VASE from G-code tweaking during alternating

heights. We believe the quality can be further improved if the printer natively support varying

layer height. With simple G-code manipulation and no hardware change, we demonstrated the

deployment of LayerCode with single material printers. Since the impacts on visual appearance and

structural strength are minimal, we envision this type of tagging can be readily incorporated into all

existing consumer printers with an over-the-air (OTA) software update.

3.4.3 Variable Layer Height Implementation

Although some 3D printing platforms support the use of varying layer heights, it is often limited

in capacity if available to the user. However, across all 3D printer models, instructions are conveyed

74

from staging software to printer hardware through print files composed of G-code commands. In

practice, we achieve alternating layer heights by directly manipulating the underlying G-code.

For a given print, the G-code files are similar in structure regardless of layer height settings,

and so files directing fine and coarse versions of a print may be spliced together to achieve a print

which alternates for each coding layer. Depending on the printer specifications, other settings might

be adjusted accordingly: when working with Fused Deposit Modeling (FDM) printers, it may also

be necessary to adjust the nozzle temperature when switching layer heights in order to ensure a

successful print.

For FDM printers, G-code instructs the path of the nozzle head throughout printing, specifying

different paths and height adjustments for every slice per the layer-height specific settings. This

makes it possible to interweave G-code files at the termination of each layer, when the printer

nozzle lifts to the next layer. Splicing together the two G-code files at this intermission will

cause them to continue each other’s print, allowing for seamless alternating print properties, so

long as the files are combined at the appropriate layers heights. Due to their thickness differences,

each G-code file will require a different number of layers to achieve a certain print height, and

thus ensuring these heights match is crucial for print continuity. In practice, this is guaranteed by

choosing the thick layer height as an integer multiple of the thin layer height.

This ensures the printer deposits at the appropriate height from the nozzle onto the piece. If care

is not taken to align layer-heights directly, or too much space is given when layers get deposited,

then visible gaps and artifacts at the swaps partitions may appear. Alternatively, if not enough space

is given, the head will sink into printed material, which can roughen the look of the printed material

and encourages jamming of the print head.

3.4.4 Fabrication with Invisible Near-Infrared Dyes

Inspired by ColorMod [151] which uses photochromic inks to recolor objects after their printing,

we propose to control the NIR optical properties of Stereolithography Apparatus (SLA) resins—the

materials commonly used in Stereolithography printers—using NIR dyes.

75

single resin tray double resin tray

original
single plate

our custom designed
CNC-millled metal
double plate

firmware
update

hardware
update

(a)

(b)

(d)

(c)

Figure 3.16: Hardware augmentation of Autodesk Ember. (a) Autodesk Ember has only one
resin tray, and thus cannot support two types of coding layers. We replace the build plate (b) on
its rotational platform with a new CNC-milled plate (c) that support two trays (d). This hardware
augmentation together with its firmware modification allows us to deploy NIR LayerCode tags in
3D printed objects.

NIR dyes are granular substances based on small organic molecules, commonly used in chemical

biology and industrial applications [51, 50]. They have strong optical absorption in the NIR range

(i.e., 700 ∼ 1100 nanometers in wavelength), but weak absorption in the visible light range. In other

words, they appear nearly transparent in the visible light range but dark in the NIR range. Thanks

to this property, we can darken the NIR “color” of a 3D printing material while leaving its visible

appearance unchanged by mixing a certain amount of NIR dye in the 3D printing resin. In practice,

we mix 35mg of 828nm dye into every 100ml of PR-57 CMYK+W resin. Mechanical stirrers are

employed for a day to ensure an even mixture of the dye in the resin.

This procedure creates the resin for one type of our coding layers, and for the other type, we use

the original, untouched resin. The challenge is how to use both resins in a single printing and switch

one to another for every coding layer. For high-end, expensive 3D printers, it is possible to use both

resins simultaneously. Here, we provide a low-cost solution by augmenting Autodesk Ember.

For given applications where changing the color or layer height is too obtrusive, we demonstrate

76

tagging by altering the optical qualities outside of the visible light range with Near-Infrared Dyes.

In this section we explore producing invisible LayerCodes through the use of Near-Infrared (NIR)

dyes, which are similar in spirit to the photochromic inks used in ColorMod to recolor objects after

printing [151].

NIR dyes are granular substances whose electromagnetic response has peaks in the near infrared

range, namely from 700 to 1100 nanometers in wavelength. These powders are often dispersed in

chemistry and industrial settings[51, 140]. We use them to alter the NIR spectrum of Stereolithog-

raphy Apparatus (SLA) resins. Similar to previous two LayerCode implementations, tagging an

object consists of interweaving optical settings. In this case, we use two resin trays, one with regular

resin and another one composed of resin mixed with NIR dye. Material printed with NIR dye will

absorb NIR rays, and thus appear darker than material without it, generating the distinctive binary

appearance required for LayerCode embedding.

Autodesk Ember is a stereolithography printer. As shown in Figure 3.16, it comes with one

180° tray (in orange) with a transparent bottom and can hold only one type of resin. Like most

stereolithography printers, when printing an object, Ember lowers its build platform (which faces

downward) to almost touch the bottom of the resin-filled tray. To grow a printing layer, a UV

laser shines through the transparent tray bottom, and solidifies the part of resin between the build

platform and tray bottom. We found that in this process the tray is fixed on a build plate which is the

limiting factor if we wanted to add another 180° tray. Noticing this limitation, we custom designed

a new build plate (Figure 3.16-d) which fits in the printer and supports two resin trays; each will be

used to hold a different resin. To make use of both trays, we modified Ember’s firmware such that

whenever a different coding layer is started, the printer 1) lifts its build platform, 2) switches the

tray by rotating the build plate, 3) lowers down its build platform again, and 4) resumes the printing.

More details of this augmentation are provided in Appendix 3.4.5, and we will open source the

computer-aided design (CAD) models of the build plate, software firmware, and instructions in

amending the printer.

Figure 3.1-g shows a LayerCode object printed by our double-material Ember. To our eyes, the

77

LayerCode tag is completely invisible, so the object’s appearance is fully preserved. To decode

a tag, we image its carrier object in the NIR range by mounting a longpass filter with a cut-on

wavelength at 850nm1 in front of the camera. No special camera is needed, as the conventional

image sensor is capable of capturing NIR light.

Figure 3.17: NIR LayerCode tags in sunlight. The NIR LayerCode tags remain invisible in
sunlight (left), but become visible when imaged with a NIR filter in front of the camera (right). No
additional light source is needed.

When imaging the object indoors, we need to illuminate the object with a NIR light source, such

as the 850nm and 950nm LEDs commonly used on TV remote controls. However, since sunlight

has NIR wavelengths2, it can be exploited to expose LayerCode tags without resorting to additional

lighting. Figure 3.17 shows a pair of images taken under uncontrolled natural daylight on a partly

sunny day. The embedded LayerCode tag is discernible and can be successfully decoded.

We see LayerCode tags with great potential not just as a tag, but as a means of intellectual

property (IP) protection and anti-counterfeit detection while preserving aesthetics.

3.4.5 Invisible Near-Infrared Implementation

Dye Mixing Exact measurements between NIR-dye and resin depend on the mixing properties

and spectrographic fingerprint of the NIR-dye. In our case, we found 25-50 milligrams of dye

dissolved and mixed evenly (after stirred for one day using a magnetic stirrer) per 100ml of PR-57

1We use the filter from Thorlabs Inc.
2In fact, nearly all the infrared radiation in sunlight is near infrared.

78

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_ID=918

CMYK+W resin, and this formula generates a strong enough disparity in the printed coding layers.

In experimenting with different levels of NIR signatures, we explored the use of three types of

dyes that peak their absorption coefficients at 828nm, 912nm, and 1031nm, respectively. Although

NIR-dyes peak in the Near-Infrared electromagnetic range, they may still express some weak signal

in the visible light range, and thus discolor the resin they mix with. Therefore, once the dye is mixed

with the resin, achieving an invisible LayerCode requires only the color of the resin without dye to

match that of the NIR-dye resin mixture.

Firmware & Hardware Modifications In order to automate the printing and swapping process,

a multi-material resin based printer is required. This presents a significant (and often prohibitive)

financial and technical barrier to experimentation and exploration. Here, we show how to upgrade a

low-cost and simple-to-use SLA printer to exhibit multi-resin functionality. Primarily, this involves

replacing the rotating tray platform of the Autodesk Ember printer, along with updating its firmware

to integrate novel swap commands, as shown in 3.16.

Careful disassembly of the printer allows the removal of the existing tray platform. A substitute

extended platform should then be milled from aluminum, or other similarly heavy composite, so as

to avoid altering the load on the motors. Notably, replacement platforms that were printed in ABS

plastic were found to deflect under the weight of the resin trays, leading to numerous difficulties

and failed prints. If the two resin tray windows, which are supported by the resin tray platform,

are not level with one another, then between tray swaps the print bed may differ in height, and

miss layers which attempt to print. This is similar to misaligned G-code heights in variable-layer-

height printing, but far more difficult to recover, since in this case gravity fights against the print

progression.

Finally, a firmware update is needed to introduce a swap command, which lifts the build platform

to a safe height prior to rotating to another tray. This command concludes the swap by lowering

down the build platform to its previous height on the complementary resin tray, where the print may

continue to progress as if no swap had occurred. Once printer modifications are completed, two

79

resin trays may be retrofit within the printer chamber on the new rotation plate, each accessible via

swap commands enabled in the updated firmware. Then, during the printing, one may trigger a

desired swap at the desired slices via a secure shell connection or by depositing a formatted CSV

file along with the model images for printing.

Please refer to our video for a quick demonstration of this hardware modification process. Given

the precision required to modify the Autodesk Ember for multi-resin use, we plan to release all the

CAD models, designs, instructions, and code involved in amending the printer.

Observing NIR LayerCode Tags Once printed, the final piece appears smooth and uniformly

colored to the naked eye in visible light. Since most light bulbs are tuned to illuminate the visible

light range, turning lights on or off has little effect on the visibility of NIR LayerCode. However,

this does not guarantee the NIR layering will become apparent when captured through a NIR filter,

since there must be some appropriate NIR light illumination to introduce the contrast. In order to

best expose the LayerCode while indoors, the use of LED NIR lights is recommended to illuminate

the scene and printed object. For optimal conditions, choose LEDs that are similar in wavelength to

the peak of the NIR. 850nm LED for 828nm Dye, 950nm LED for 912nm Dye, etc. Under a NIR

camera, the layers printed with NIR-Dye will appear darker, since they are designed to absorb NIR

radiation at given frequencies. In outdoors, natural sunlight can produce enough NIR excitation to

reveal the LayerCode pattern, without resort to NIR lights.

3.4.6 Print-Specific Processing

At decoding time, we image a LayerCode carrier object using a conventional camera. The image

is preprocessed (as outlined in §3.3) before feeding into the decoding algorithm. Here, we describe

the image preprocessing details.

For an object made by a two-color printer, we use intensity thresholding to clean highlights

and shadows. The remaining pixels are those on the black and white coding layers, and clearly

visible from the camera. To label what type of coding layers each pixel is in, we perform a two-way

80

clustering through a Gaussian mixture model in a sliding window; each window produces the

label of its central pixel. We found that a better labeling quality can be achieved by repeating this

clustering step three times, each with different sliding window sizes (50 × 50px,100 × 100px, and

200 × 200px), followed by a pixel-wise majority vote of the labels. When contrast is high, and

if there is not too much variance within individual colors, k means clustering can also be used to

directly to assign labels for each pixel. Notably, with either approach it is also helpful to convert

images to the LAB/HSV color space to focus solely on the color channels of AB when clustering,

removing some of the uncertainty added by lighting.

Labeling images of objects with varying layer heights but a uniform color (Figure 3.15-e)

requires an altogether different approach. Once the background is removed, the image is effectively

grayscale, since the object is 3D printed with a single-color material. In this case, a series of

morphological operations are applied on the image, including bottom and top hat filtering, in order

to first increase the contrast of the image. Once contrast is improved, we use a bilateral filter [143]

to blur the black and white layer regions without blurring their boundaries. We rescale, threshold,

and clean the image, labeling of regions ready for decoding. Figure 3.15 illustrates these steps.

Lastly, labeling images of objects with NIR materials is to a large extent similar to processing

bi-colored object images. NIR images come in grayscale, and our first step is to increase its contrast,

followed by removal of highlights and shadows. Afterward, we classify the remaining pixels into

two types corresponding to the black and white coding layers, and this step is similar to bi-colored

object images.

3.4.7 Discussion on Implementation and Application

Among the three approaches described above, as we make the LayerCode tags to better preserve

object appearance, increasingly more software and hardware modifications are needed—there is no

free lunch.

All three approaches have a minimal impact on the object’s mechanical strength, since they fully

preserve the object’s volumetric shape (up to the printing resolution). In contrast, previous tagging

81

approaches (such as [198, 108, 94]) all alter the object shape inside or near the surface.

In terms of printing time, all print jobs took from 40 minutes to several hours, depending on the

model complexity. When printing with two colors and with variable layer heights, the time costs are

comparable to printing without LayerCode tags. For Ember printing with NIR resin, we observed a

minor overhead (about 15% to 20% slow-down) because of the extra tray swaps.

A remarkable strength of LayerCode tags is the ability to decode even when the object is

damaged, thanks to the layer-by-layer printing process that spreads the tag over the entire body of

the object. For example, Figure 3.18-b shows an angel model with a broken wing. Nevertheless, we

can still traverse the remaining part of the LayerCode graph and successfully decode the tag.

code still

visible on

interior

3D

reconstruction

Figure 3.18: LayerCode tag and augmented reality. (Left) A fallen angel damages its wing.
However, the LayerCode tag can still be read since it is present on the interior of the object.
Decoding the damaged piece reveals the embedded tag, from which we know 1) the original 3D
model, and 2) its 3D depth and position with respect to the camera. (Right) These information
enable a virtual repair of the angel displayed in an augmented reality fashion.

The ability to read tags from damaged objects opens the door to many applications. For

example, through an embedded LayerCode tag, one can recover the original model to patch a broken

piece [180]. Another scenario can apply to augmented reality. From a single image of the object

(damaged or not), we can extract the tag and estimate its 3D position with respect to the camera

82

(through depth recovery in §3.3.6), and display an augmented object (e.g., the original model of

a currently damaged one) or animate the static object in 3D (e.g., similar to previous efforts on

animating books [16, 32]).

Moreover, we envision LayerCode tags being used for 3D printer steganography, similar in spirit

to Machine Identification Codes3 (also known as the Yellow dots), a watermark that many paper

printers and copiers leave on every single printed page for device identification. Our LayerCode

tags (especially the unobtrusive ones) allow 3D printers to introduce similar watermarks for similar

purposes (e.g., counterfeit detection) that have motivated paper printers.

3.5 Evaluation on Virtual Dataset

To understand the performance of our decoding algorithm more thoroughly, we also test our

algorithm on a large dataset of shapes using synthetic images generated by a photorealistic renderer.

A glimpse of the tested shapes is shown in Figure 3.25. This evaluation over such a virtual dataset

is justified by several considerations:

3https://en.wikipedia.org/wiki/Machine_Identification_Code

83

https://en.wikipedia.org/wiki/Machine_Identification_Code

Mercator projection of viewing angle success
on our virtual database

Z

Y X

Figure 3.19: The decoding success rate across the entire database of each view direction is

color-mapped on a sphere, whose equator is aligned to the plane perpendicular to the printing

direction. This mapping is unrolled in the Mercator projection, with representative views of a tagged

bust shown (on top) for a few points of interest.

i. Cost and time. In terms of both cost and time, it is unaffordable to 3D print all the shapes

in the dataset. 3D printing of a single object is usually an hour-long process, barring failures.

Virtual rendering of 3D printed objects, on the other hand, can be finished in a short time, and the

84

resulting images are photorealistic.

ii. Feasibility. For many complex shapes that we use in this evaluation, it is hard, if not impossible,

to fabricate them via current commodity 3D printers. But 3D printing technology is constantly

and rapidly improving. Therefore, it is desirable to test our algorithm on those complex shapes to

prepare for the future.

iii. Thoroughness. In a virtual environment, we can test our algorithm using a large number of

objects viewed from many camera angles. Thoroughly testing over all these variances provides us

statistical insights which in turn guide our use of LayerCode tags in practice. This thoroughness

is made possible only through virtual experiments.

With the physical limitation of today’s 3D printers, it is impossible to thoroughly test our

algorithm on all the extremely complex shapes – getting all the shapes to printing properly alone

turns out to be a significant, if not impossible, challenge. We tested LayerCode on 4,835 virtual

meshes of varying complexity and analyzed the performance on them. We believe in the coming

years, 3D printing technology will become so robust and so much faster that all shapes are possible

and easy to print. When the time comes, we want to assure that our tagging mechanism has been

fully tested.

Building a pipeline to test virtual examples has several advantages.

i. Cost. Although 3D printing becomes more accessible, the cost to print and maintain a fleet of

printer is non-negligible.

ii. Time. 3D Printing is usually hour-long process, without the possibility of failure. Virtual

rendering, on the other hand, can be done in almost real-time.

iii. Coverage. To achieve comprehensive testing in various lighting, viewing angle, and other

conditions, physical printing may require a considerable amount of manual efforts (similar to

what we did in §3.4). Virtual environments, again, are relatively easy to setup and update as

needed.

85

3.5.1 Database Construction

We tested our algorithm over a set of shape meshes from the Thingi10k dataset [212]. The

testing shapes are selected through the following “printability” criteria: 1) They must be watertight

2-manifolds (i.e., no self-intersections), and 2) have only a single connected component. 3) They

should also have consistent surface normals without degenerate faces. Following these criteria, we

obtain 4,835 meshes.

Each of these meshes is processed to embed a LayerCode tag indicating the mesh’s database ID.

When we encode the tag (using the procedure in §3.2), the printing direction is chosen to be the

longest dimension of the mesh, and the baseline layer thickness ℎ is set to repeat the tag three times.

The output of the encoding step is a shape with two sets of coding layers ready for rendering. Each

type of layer is assigned a different material color (i.e., red and blue). We then use the physics-based

renderer Mitsuba [88] to generate a photorealistic image from a chosen camera angle.

To understand how the view angles affect the decoding, we uniformly sample 30 viewing

directions on a sphere co-centered with the object. All the view directions are guaranteed far from

the printing direction, since looking along the printing direction unlikely reveals the entire barcode.

Figure 3.25 shows 18 representative shapes and the rendered images from multiple view angles. The

image from each view is the only input to the decoding algorithm and thus decoded independently.

3.5.2 Results Statistics

Camera angle dependency Because of the surface curvature and local occlusions, from certain

camera angles the coding layers are better seen. A natural question is what camera angles are more

suitable for decoding the tag. Figure 3.19 reports our experiment results, suggesting that view

directions just north or south of the equator appear statistically the most promising for decoding

tags. This is somewhat counter-intuitive, as one might expect the directions at equator to be the

most promising.

Our hypothesis is that these slightly titled view angles allow the coding layers to be viewed by

avoiding more occlusions introduced by bulges at one end or the center of the shape. For example,

86

the bust in Figure 3.19-top has its head and shoulders protrude from its center axis, making decoding

hard from above but much easier from below.

Figure 3.21 shows that some shapes can accommodate a wider range of view angles than others

for successful decoding. For example, one shape is readable from all 30 views, whereas 44 other

shapes are not decodable at all (which account for only 0.9% of the shapes in the dataset). On

average, for any given shape, its tag is readable from 51% of the viewing directions we sampled.

Overall, 78.0% of the shapes can be decoded in 10 view directions, 49.5% can be decoded in 15

directions, and 21.7% can succeed in 20 directions.

Timings Decoding time varies from seconds and up to 5 minutes, depending on specific shapes

and view angles. Image resolution impacts decoding time, since the decoding algorithm involves

many image processing operations. Our experiments use a fixed resolution 2048 × 2048px in

all rendered images, on par with modern smartphone cameras. Another affecting factor is the

complexity of the graph constructed in the decoding step. Simpler shapes, curvy or flat, lead to

smaller number of graph nodes, and thus are faster to decode. On the other hand, holes or occlusions

tend to split coding layers on the image plane into separate graph nodes and result in a larger graph.

Thus, shapes with many holes and fine structures take longer to decode.

Lower bound of h. In §3.2, we derive the upper bound of ℎ from Lemma 1. A smaller ℎ allows

the object to host more copies of the tag. But if ℎ is too small, the coding layers will become

hardly discernible on the image. In an experiment, we progressively reduce ℎ and encode only a

single copy of an ID in the object. In this process, we keep the camera angle and image resolution

unchanged, and check at what ℎ value the decoding would fail. Not surprisingly, the lower bound of

ℎ depends on the object shape. Figure 3.22 reports the results.

Shape complexity. Figure 3.25 lists some of the nontrivial shapes from our dataset, all of which

can be successfully decoded. These shapes all possess a mix of the following challenging features:

bumpy surface, thin shell, thin rods, sharp corners, highly occluded surfaces, holes, and so forth. A

87

complete set of shapes including 4,791 successful shapes and 44 failure cases, is provided in the

supplementary file. Here we highlight and discuss three of the shapes.

WATERSPLASH is highly irregular. LayerCode tag manages to survive the fine and thin features

by leveraging the solid external base and internal regions. BUNNYSTRIPE is a typical thin shell

model with stripe-like surface patches. Despite of the holes and discontinuity showing on the

images, our graph-based decoding algorithm is able to find valid paths leading to correct decoding.

STRATUMVASE is yet another extremely challenging shape with more than 180,000 faces. The

shape is similar to SPIRAL (Figure 3.24-a) on which our algorithm fails. But a key difference is that

the thin slices here do not occlude or shadow the neighboring regions because of the orientation

alignment with the printing direction.

Stress test To further gain some insights on to what extent the shape may have fine features while

remaining decodable, we designed a stress test, inspired by the shape of Swiss cheese. Starting with

an wedge shape, we iteratively add holes with a random radii at random locations (see Figure 3.23).

As more holes are hollowed, parts of the shape become thinner and more fine features emerge. At

each iteration, we encode an ID in the current shape and check if it can be decoded. Eventually,

decoding algorithm fails when the shape is hollowed out until only 10% of its original volume is

left.

Failure cases Out of the 4,835 tested shapes, 44 cannot be decoded at all. We choose three of

them shown in Figure 3.24. The Escher-like staircase exhibits highly complex topology at most

camera angles, which makes it hard to find a complete path on the decoding graph. The spiral

appears simple at first glance, but each spiral always occludes some coding layers, and so the entire

tag is hardly seen from any given angle. Similarly, the bumpy blob occludes itself all over, and

the heavy shadows spread over the surface, causing ambiguities and making the image processing

prone to errors.

Finally, the key takeaway from the successful shapes and failure cases is that although some

shapes are geometrically complex, the main difficulty comes in finding a labeling algorithm which

88

can accurately distinguish layers and lead to a correctly connected graph. The camera projects

points that are distant geodesically appear close in the rendered 2D image. Connecting these layers

with edges between their nodes means skipping across several printed layers. Interesting future

work might be to alternate back and forth between the image and the graph (and perhaps even the

3d reconstruction) in order to self-correct labels on the image and connections on the graph.

89

Figure 3.25: Successfully decoded shapes. A peek into the diversity of tested shapes within

our database. Each view presented is correctly decoded by our graph-based algorithm. Shapes

with bumpy, shell, thin, curvy, and other challenging properties showcased here are still subject

to encoding and decoding by our LayerCode approach. Three shapes indicated by the stars are

discussed in the main text.

90

3.6 Limitations & Concluding Remarks

We have presented LayerCode, a tagging scheme that embeds carefully designed optical barcodes

as a deliberate byproduct of the existing layer-by-layer 3D printing process. At its core, a LayerCode

tag is an optical barcode readable by a conventional camera. For this reason, it also retains a few

limitations of standard optical barcodes.

Foremost, it requires direct line of sight for decoding. If an object is completely occluded or

poorly illuminated, decoding will fail. The ability to decode LayerCode tags also depends on the

camera view angle. While as shown in our experiments, LayerCode tags can be correctly read from

a wide range of camera angles, there are other view angles (such as those nearly aligned with the

printing direction) from which the decoding is prone to failure.

Our decoding algorithm runs for up to tens of seconds, slower than decoding a regular barcode.

This is partly because our current implementation uses Matlab, and partly because we wish to

explore a sufficient number of decoding paths for the sake of robustness. Then, an interesting future

direction is how to speed up the decoding algorithm. If we can significantly shorten the decoding

time, it would be possible to decode from a multi-frame capture or a short video clip, and further

improve the robustness.

In our NIR Ember printing process, a small detail might cause a practical concern. Every time

the printer starts a new coding layer, the build platform switches from the tray holding one resin

to another tray filled with the second type of resin. As a result, every such switch brings a small

amount of resin in one tray to another. In our experiments, though this cross mixing of resins causes

no negative effects on the tag’s readability. But if we were to print for an extended period, resin

contamination would be accumulated, and might become a practical issue to consider.

Despite LayerCode’s potential for IP protection and counterfeit detection, it is not a physically

one-way tag (meaning one that is "easy to compute, but hard to invert" [155]). With a high-resolution

camera for measuring coding layer thicknesses and a spectrometer analysis of NIR resin formula, it

is possible to reverse engineer and counterfeit a LayerCode tag on another 3D printer. To achieve

91

truly unclonable tags, we might have to consider a fusion of optical codes, RFIDs, and other new

modalities. This remains as an interesting future direction.

Figure 3.26: LayerCoded toys. Examples of visible LayerCodes on toy models which, if

manufactured using special Near-Infrared markers and dyes, could be used for IP protection and

counterfeit detection.

Last but not least, LayerCode tags use only two types of coding layers to encode a bit string,

corresponding to the black and white colors in standard barcodes. In theory, there is no limitation

on how many coding “colors” can be used. As 3D printers become more precise and robust, it is

possible to extend LayerCode to use ternary or quaternary coding layers for higher information

capacity. One can also explore a generalized version where a pairwise ratio may go beyond 1 and

𝑀 to 𝑀2 or even 𝑀3 to support thicker layers near challenging regions (see inset). For all that,

LayerCode is the first step toward robustly tagging complex, 3D printed shapes, and it is our hope

that our open-sourced code, hardware, and benchmark database can help the research community

develop more robust and ubiquitous physical tagging mechanisms.

92

Figure 3.20: A visualization of tagged meshes test in our database. A random cross-section of
shapes found in the dataset, consisting of several thousands of non-expert designs. This includes a
mix of functional pieces, toys, and artistic designs all exhibiting geometric qualities representative
of custom shapes in the wild.

93

100

60

80

40

20

78.0%

49.5%

21.7%

database covered with at least n views

de
co

da
bl

e
pe

rc
en

ta
ge

 30 25 20 15 10 5 0

99.6%

number of views

Figure 3.21: Decoding the dataset from sample views. We plot the distribution of all 4,835 tested
shapes with respect to the number of view angles from which they can be decoded successfully.
99.6% of the shapes can be decoded from at least one sampled view direction.

0.180 mm0.679 mm 0.623 mm 0.940 mm 0.922 mm

Figure 3.22: Lower bound of h. The decoding becomes challenging if the coding layers are made
too thin. Here we show the smallest baseline layer thickness ℎ still readable under different views
for shapes normalized to 10cm in length along the printing direction.

94

0 81 162 243 324

holes

Figure 3.23: Stress test. From left to right, we keep adding holes to the wedge and check if the
resulting shape can hold a readable LayerCode tag. 324 holes of random radii are added before
decoding is no longer possible. Decoding is possible even when the final wedge is 10.81% of its
original volume and has many fine features.

Figure 3.24: Failure cases. Among the 4,835 shapes, 44 shapes cannot be decoded. Here are three
challenging failed shapes.

95

Chapter 4: Can one hear the shape of a neural network?:

Snooping the GPU via Magnetic Side Channel

Neural network applications have become popular in both enterprise and personal settings.

Network solutions are tuned meticulously for each task, and designs that can robustly resolve

queries end up in high demand. As the commercial value of accurate and performant machine

learning models increases, so too does the demand to protect neural architectures as confidential

investments. We explore the vulnerability of neural networks deployed as black boxes across

accelerated hardware through electromagnetic side channels.

We examine the magnetic flux emanating from a graphics processing unit’s power cable, as

acquired by a cheap $3 induction sensor, and find that this signal betrays the detailed topology and

hyperparameters of a black-box neural network model. The attack acquires the magnetic signal for

one query with unknown input values, but known input dimensions. The network reconstruction

is possible due to the modular layer sequence in which deep neural networks are evaluated. By

accumulating a large dataset of arbitrary and diverse network architectures, we find that each layer

component’s evaluation produces an identifiable magnetic signal signature. Analysing this dataset

we develop a semantic graph to structure the raw signals perceived, from which layer topology,

width, function type, and sequence order can be inferred using a suitably trained classifier and a

joint consistency optimization based on integer programming.

We study the extent to which network specifications can be recovered, and consider metrics for

comparing network similarity. We demonstrate the potential accuracy of this side channel attack in

recovering the details for a broad range of network architectures, including random designs. We

consider applications that may exploit this novel side channel exposure, such as adversarial transfer

attacks. In response, we discuss countermeasures to protect against such snooping techniques.

96

4.1 Introduction

The graphics processing unit (GPU) is a favored vehicle for executing a neural network. GPUs

allow difficult and sizable jobs to be treated faster, and have been used extensively in state of

the art machine learning pipelines across both academic and commercial settings. In turn, the

widespread success of neural network models when applied to real-world challenges in vision [73],

security [205], natural language processing [182], and robotics [96], has solidified the demand for

GPUs to support machine learning technologies. Hardware and software companies alike have

streamlined management of the GPU into their products as they strive to support ever larger and

more complex neural networks [137, 1].

These recent developments raise security concerns surrounding an adversary who wishes to

uncover the underlying network design from an application. Model extraction attacks, aimed at

reverse engineering a network structure, have attracted a growing research effort [139, 186, 190],

and are motivated by several incentives. First, it is well known that the performance of a network

model hinges on its judiciously designed structure—but finding an effective design is no easy task.

Significant time and energy is expended in searching and fine-tuning network structures [213].

Moreover, in industry, optimized network structures are often considered confidential intellectual

property. In some cases businesses even charge per inference for queries submitted by a client to

networks they host or provide as a service [3, 62].

Furthermore, a reverse engineered “surrogate” model also makes the black-box “victim” model

more susceptible to adversarial transfer attacks [142, 114], in which a vulnerability identified in

the surrogate is exploited on the victim. Success in the exploit is contingent on the ability of the

surrogate to successfully model the vulnerabilities of the victim. Recovering accurate, detailed

network topology and hyperparameters informs the modeling of a good surrogate. It is therefore

important to understand how this valuable, privileged information can be compromised.

These risks are assessed in the study of physical side-channel attacks targeting neural networks.

Granted local access to processors, several works have explored how electromagnetic (EM) radiation

97

is a powerful side channel through which one can infer network details [209, 8]. However, these

works make use of methods specified to a limited set of neural architectures that are tailored for

microprocessors and edge devices. We apply their same threat model, but instead generalize our

approach to handle a wider array of deep neural networks running on the GPU.

Most similar to our goal is a recent effort that likewise targets models on a GPU but by observing

read-write volumes and memory traces via both EM signals and bus snooping [78]. However,

rather than aiming to predict precise parameter dimensions for their extracted layers, their approach

randomly selects parameter values from predetermined sets. We instead examine an alternative

source of EM leakage, the power supplied to the GPU, and develop a novel way to assign parameters

for arbitrary layers that result in valid architectures. Our work extends the capability of previous

EM side channel attacks in order to generalize extraction for complex models running on advanced

hardware.

Approach. The GPU consumes energy at a variable rate that depends on operations performed.

Every microprocessor instruction is driven by transistor electron flows, and different instructions

require different power levels [66]. The many compute cores of a GPU amplify the fluctuation

in energy consumption, and so too the current drawn from the power cable. Current induces

magnetic flux governed by the Biot-Savart law [65], and current fluctuations induce EM ripples

whose propagation through the environment is governed by the Ampère-Maxwell law. Even a cheap,

$3 magnetic induction sensor (see Figure 4.2) placed within a few millimeters of the power cable

suffices to record these EM ripples.

We examine the fluctuation of magnetic flux from the GPU’s power cable, and ask whether a

non-intrusive observer can glean the information needed to reconstruct neural network structures.

Our findings span across multiple GPU models and demonstrate transfer attacks on state of the art

networks. Remarkably, we show that, through magnetic induction sensing, a passive observer can

reconstruct the complete network structure even for large and deep networks.

To reconstruct the black-box network’s structure, we propose a two-step approach. First, we

98

estimate the network topology, such as the number and types of layers, and types of activation

functions, using a suitably trained neural network classifier. Then, for each layer, we estimate

its hyperparameters using another set of deep neural network (DNN) models. The individually

estimated hyperparameters are then jointly optimized by solving an integer programming problem to

enforce consistency between the layers. We demonstrate the potential accuracy of this side-channel

attack in recovering the details for a wide range of networks, including large, deep networks such

as ResNet101 [73]. We further apply this recovery approach to demonstrate black-box adversarial

transfer attacks.

To summarize, our main contributions are as follows:

• We study how the large-amplitude EM radiation associated to neural network GPU imple-

mentations allows recovery of significantly richer network details.

• We explore a simple–yet–effective recurrent classification model that translates measurements

made by a cheap and elementary sensor.

• We present a robust algorithm based on limited a priori knowledge of parameters and heuris-

tics, complete with an integer programming optimization formulation, which improves on

previous attempts to specify network models from side-channel information.

• We demonstrate vulnerabilities through model extraction and transfer attack results that

leverage the proposed in-depth recovery of a black box network model.

Our advance. Previous works are demonstrated on shallow networks (e.g., fewer than 20 layers)

and on more limited edge hardware. It remains unclear whether these methods can also extract

deep network models, ones that are structurally more complex and more prevalent in practice. We

demonstrate successful recovery of the full structure of deep networks, such as AlexNet [101],

VGGNet [174], and ResNet101 [73]. With that, we hope to raise awareness of the GPU’s EM

radiation as an information-rich, easily and non-intrusively probed side channel.

99

4.2 Technical Background

4.2.1 Neural Networks

Neural Networks constitute a field of machine learning algorithms suited for general purpose

feature extraction, regression, and classification objectives [104]. A network is an assembly layers,

each containing either a linear operation, an aggregate operator, or a non-linear activation function

that works to transform an input. Each layer consists of a differentiable function in order to permit

optimization of an objective through back-propagation and stochastic gradient descent.

The design of a neural network, often referred to as its architecture, model, or topology, gives

the network its shape. Models are commonly defined by their shape characteristics, namely: (i)

the number of layers used, also known as the depth, (ii) the sequence in which layers appear, and

(iii) each layer’s individual type (e.g. fully connected, convolutional, recurrent, pooling, activation,

normalization, etc.). Networks may then compose these elements in unique ways. For example,

VGGNet and ResNet are both composed of convolutional, pooling, activation, and fully connected

layers, but structure them with distinct numbers of layers set up in differing orders.

Beyond the high-level shape of a network, a model must also specify the parameters for its

layers. This includes detailing the size and padding of convolution kernels, whether to use average

or max pooling, or choice in activation function from a growing list of candidates (e.g., ReLU,

Tanh, Sigmoid, etc.). It also predominantly involves delineating the dimension for each layer. In

practice, a layer’s size dimension determines the number of operations (such as multiplication or

addition) it imposes, and is closely related to the computational overhead of the layer. Asides from

transforming the values passing through the network, size parameters also influence the dimensions

of neighboring layers. Layer definitions cannot be specified arbitrarily and must be consistent across

layers in the network in order to ensure valid output-input dimension agreement.

After a neural architecture is chosen, networks undergo stages of training and inference. Training

leverages a labeled dataset of inputs and desired outputs to update values stored on layers in order

to minimize a target loss function. Inferences make use of the trained network to resolve queries,

100

leveraging patterns ’learned’ throughout training [104]. A networks shape, along with the variance

of the training set, dictates the capability of a network to accurately and efficiently process new

queries.

4.2.2 GPUs for Deep Neural Networks

GPU hardware is used pervasively throughout the machine learning community, and some GPUs

even feature dedicated tensor-based cores optimized for computing network steps [138]. We use

step to refer to performing a specific kind of network operation, such as a linear operation, batch

normalization, pooling, activation function, etc. A layer is a sequences of steps, e.g., a (i) linear

operation, then (ii) pooling, then (iii) activation. While there may be data dependencies between

steps, there are no such dependencies within a step.

The parallel nature of GPU computation lends itself to a natural implementation of networks,

wherein each step defines a compute kernel that is executed in parallel, i.e., single instruction

multiple data (SIMD) parallelism. Transitions between steps, however, are synchronized [23]: in

our example above, activation begins only after pooling completes. This cross-step synchronization

allows for implementations structured into modules, or GPU kernels. This modular approach is

employed in widely-used deep learning frameworks such as PyTorch and TensorFlow [144, 1].

4.2.3 Magnetic Signals from GPUs

Kernel execution demands transistor flips, which place electric load on the GPU processor,

in turn emitting magnetic flux from its power cable. An induction sensor measures this flux and

produces proportional voltage. The time-varying voltage is our acquired signal (see Figure 4.1).

Different steps correspond to different GPU kernels, transistor flips, electric loads, and signal

characteristics, which are distinguished even by the naked eye (see Figure 4.1). Cross-step synchro-

nization involves idling, dramatically reducing electric load and signal level (see Figure 4.1). These

rapid sharp drops demarcate steps.

We observe that the acquired signal strongly correlates to the kind of GPU operations, rather

101

vo
lts 5.0

4.5

ms20 251550 10

4.0

3.5

3.0

2.5
conv BN relu MP conv con

vBN BNaddrelu relu

Figure 4.1: Leaked magnetic signal. (left) Our induction sensor captures a magnetic signal when a
CNN is running on the GPU. We observe strong correlation between the signal and the network
steps. Across two steps, the GPU has to synchronize, resulting in a sharp drop of the signal level
(highlighted by the selected red circle). (right) We can accurately classify the network steps and
reconstruct the topology, as indicated by the labels under the 𝑥-axis. Here we highlight the signal
regions associated with convolutions (conv), batch-norm (BN), Relu non-linear activations (relu),
max-pooling (MP), and adding steps together (add).

than the specific values of computed floating point numbers. We verify this by examining signals

using both PyTorch and TensorFlow and on multiple GPU models (see §4.6). Furthermore, we

discuss how the signal is processed in §4.4.1, and later address challenges to our side-channel signal

in §4.7.

The signal is also affected by the input to the network. Although the specific input data values

do not influence the signal, the input data size does. When the GPU launches a network, the size of

its single input (e.g., image resolution) is fixed. But the network may be provided with a batch of

input data (e.g., multiple images). As the batch size increases, more GPU cores will be utilized in

each step. The GPU consequently draws more power, which in turn strengthens the signal. Once all

GPU cores are involved, further increase of input batch size will not increase the signal strength,

but elongate the execution time until the GPU runs out of memory.

Therefore, in launching a query to the black-box network model, the adversary should choose

a batch size sufficiently large to activate a sufficient number of GPU cores to produce a sufficient

signal-to-noise ratio. We find that the range of the proper batch sizes is not prohibitively large (e.g.,

64 ∼ 96 for ImageNet networks), loosely depending on the size of the single input’s features and

the parallel computing ability of the GPU. In practice, the adversary can choose the batch size by

experimenting with their own GPUs under various image resolutions.

102

Notably however, we do not require knowledge of batch size to robustly recover network

topology (as opposed to hyperparameters), only that the batch size is sufficiently large enough to

provide a clear signal. While we used a consumer friendly sensor with limited sampling rate (see

4.5.1) and corresponding signal-to-noise ratio (SNR), a sensor with high sampling rate and SNR

would correspondingly require a smaller minimum batch size.

4.3 Threat Model

Incentives. Successful model extraction attacks yield numerous benefits to an adversary who

might otherwise acquire the network through legal means. Motives vary by circumstance, although

the primary considerations for an adversary to carry out a successful model extraction attack include

intellectual theft, cost aversion, and bypassing security measures.

Physical IP snooping. Most major tech firms provide platforms to manage neural networks

as a service that can be vertically integrated [137, 1, 85]. A client subscribes to the machine

learning interface of the service provider but can otherwise host these services within their own

servers to preserve the integrity of their data. The ability to host these platforms onsite or on edge

devices grants local access to these machine learning applications and creates an opportunity for an

adversary who looks to acquire intellectual property.

Circumventing payment. Neural inference engines are often deployed as black-box services

which an attacker may have economic incentives to sidestep [62, 3, 137]. In these scenarios, a

service provider may invest significant time and resources towards developing a robust model,

which it hopes to recover and profit from by charging clients for queries. Through model extraction

and offline training an attacker can avoid both the development and prediction charges of the reverse

engineered model.

Violating sentries. In cases where a machine learning approach is taken to identify viruses or

spam, an attacker increases their chances of deceiving or bypassing the model by recovering its

underlying neural network architecture. Proximate models have shown to produce better transfer

attacks, allowing one to uncover the classification pitfalls of a similar model offline before attempting

103

to fool the production model.

These sort of incentives are not new and have garnered interest from the research community

in the past [194]. Our work explores the extent to which electromagnetic side-channels can leak

network information in these settings. One such attack scenario is often referred to as known-

plaintext attack. An adequate use case would be when the attacker legally acquires a copy of the

network with API access to it and aims at recovering its internal details e.g. for IP theft [8]. Another

scenario entails vulnerabilities associated with a company’s desire to save on costs. Imagine renting

a vertically integrated internal cloud platform for ML (e.g., IBM Cloud Pak for Data with Watson

Assistant deployed on local hardware [85]). Such platforms are designed to be tamper resistant:

users should be able to access services via an application interface (API), but not have access to

easily reverse engineer details of the vendor’s proprietary design/architectures. While a user may be

motivated to steal and replicate the design, their access is limited to the API and physical access,

as opposed to “virtual” programming access. Because GPUs are widespread in deep learning,

having a variety of non-dominating threat models is useful. Unlike other attacking methods [77,

78], magnetic induction side-channel attacks do not require any code to run on the host machine in

order to alter or leak logic. This makes electromagnetic side-channel attacks particularly attractive

in cases where the attacker has no permission or opportunity to access software. These scenarios

may lead to a false sense of security, since magnetic side channel exploits are pervasive and difficult

to both detect and defeat [69]. Merely drawing power to perform operations can lead to changes in

the nearby magnetic field for electricity driven hardware, making magnetic side-channel access to

GPUs intrinsic.

For these reasons, enterprises that embed networks into their applications rely on the privacy of

their models. While the host hardware and operating system may be secured by passwords and file

access controls, there remains the threat that an attacker gains physical proximity to the hardware.

The dangers associated with physical access have been established by several side-channel works

exhibiting different goals under various computing environments [194, 201, 196, 8, 45]. Our study

explores how the risk of forfeiting confidentiality remains present for complex designs running on a

104

GPU.

Target scope. Our primary focus centers on using an electromagnetic side channel to reverse

engineer the neural architecture and its defining layer parameters. The networks in question may

be of arbitrary size and depth, and involve combinations of fully connected, convolutional, and

recurrent layers, along with a medley of interspersed activation, normalization, and pooling layers.

Together these layers span the basic components used to assemble most state of the art networks

and account for models used across a variety of machine learning applications [73, 205, 182, 96,

174, 101]. Furthermore, there are no restrictions on the types of variables involved in the network,

suggesting our method is type agnostic and can support binary, integer, or real-valued models

equally.

Attacker’s capability. We follow the threat model of prior works who measure physical EM

signals from models where the adversary may control the input [8, 209] . Our attacker has no prior

knowledge of the target neural network. The model is taken to be developed, trained, and validated

elsewhere. The only accessible result is an inference engine whose code, memory, and design

cannot be accessed without tampering with the service or otherwise alerting the provider. The

attacker is both non-invasive and passive, working within standard operating procedure and treating

the network as a black-box while providing inputs of known size to the target. The adversary can

only observe the side channel information leaked from the targeted hardware. Our attacker does not

make any effort to circumvent countermeasures, given that side channel attacks on neural networks

have only recently been attempted on computing accelerators [78].

The side channel information is revealed by placing a magnetic induction sensor in close

proximity to the GPU’s power cable, and launching a query to produce a measurable signal. Our

attacker’s ability to observe the input and acquire signals matches the assumptions of several studies

that explore side-channel leakage [196, 194, 209, 8] The attacker is otherwise weak, without ability

to execute code on the host CPU and GPU; and without knowledge of the input values and output

results of the launched queries, only their size. Not only that—they also lack direct access to the

105

GPU hardware, beyond the proximity to the power cable. The adversary only requires access to

their own GPU hardware and deep learning framework (e.g., PyTorch, TensorFlow), matching that

of the victim in order to train offline and carry out the attack. Although it is possible to extract

network information from similar processors in the family of the target GPU (§4.6.2), best results

are achieved when offline computing is performed on the same platform as the victim.

4.4 Signal Analysis & Network Reconstruction

We prepare for the attack by training several recovery DNN models. After the attacker launches

a single batch query (whose input and output values are irrelevant), we recover structure from

the acquired signal in two stages: (i) topology and (ii) hyperparameters. To recover topology, a

pretrained DNN model associates a step to every signal sample. This per-sample classification

partitions the signal into segments corresponding to steps. We estimate hyperparameters for

each individual segment in isolation, using a step-specific pretrained DNN model, and resolve

inconsistencies between consecutive segments using an integer program. The pretraining of our

recovery DNN models is hardware-specific, and good recovery requires data gathered from similar

hardware.

4.4.1 Topology Recovery

Classifying steps in a network model requires taking in a time-series signal and converting it

to labeled operations. The EM signal responds only to the GPU’s instantaneous performance, but

because the GPU executes a neural network sequence, there is rich context in both the window

before and after any one segment of the signal. Some steps are often followed by others, such as

pooling operations after a series of convolutions. We take advantage of this bidirectional context in

our sequence to sequence classification problem by utilizing a recurrent neural network to classify

the observed signal.

Bidirectional Long Short-Term Memory (BiLSTM) networks are well-suited for processing

time-series signals [64]. We train a BiLSTM network to classify each signal sample 𝑠𝑖 predicting

106

the step 𝐶 (𝑠𝑖) that generated 𝑠𝑖 (see Figure 4.1-b). The training dataset consists of annotated signals

constructed automatically (see §4.5.2). The input signal is first normalized before undergoing

processing with a two-layer BiLSTM network, using a dropout layer of 0.2 in between. The input

to our network is a sliding window of the time-series signal, the entirety of which is classified

according to the available step operations from our supervised learning dataset. For all experiments

in our work, we used a layer size of 128 for the two BiLSTM layers and an input-output window

size of 128. We train the BiLSTM by minimizing the standard cross-entropy loss between the

predicted per-sample labels and the ground-truth labels. This approach proves robust, and is the

method used by all of our experiments and on all GPU’s tested.

The segmented output of our BiLSTM network on our extracted signal is for the most part

unambiguous. Operations that follow one another (i.e. convolution, non-linear activation function,

pooling) are distinct in their signatures and easily captured from the context enabled by the sliding

window signal we use as input to the BiLSTM classifier. Errors that arise come primarily from

traces of very small-sized steps, closer to our sensor’s sampling limit. Noise in such regions may

over-segment a non-linear activation, causing it to split into two (possibly different) activation steps.

To ensure consistency we post-process the segmented results to merge steps of the same type that are

output in sequence, cull out temporal inconsistencies such as pooling before a non-linear activation,

and remove activation functions that are larger than the convolutions that precede them.

This concludes identifying the sequence of steps, recovering the layers of the network, including

their type (e.g., fully connected, convolution, recurrent, etc.), activation function, and any subsequent

forms of pooling or batch normalization. What remains is to recover layer hyperparameters.

Since we aim to extract arbitrary topologies, we must pay special attention to how we assign

parameters to our detected layers. This proves unlike other methods [77], that aim to detect

networks from discrete families of models and need only approximate a known model, who’s

pre-built parameter definitions can then be applied. Rather, we must compose detected networks

from the ground up.

107

4.4.2 Hyperparameter Estimation

Hyperparameter consistency. The number of hyperparameters that describe a layer type depends

on its linear step. For instance, a CNN layer type’s linear step is described by size, padding, kernel

size, number of channels, and stride hyperparameters. Hyperparameters within a layer must be

intra-consistent. Of the six CNN hyperparameters (stride, padding, dilation, input, output, and

kernel size), any one is determined by the other five. Hyperparameters must also be inter-consistent

across consecutive layers: the output of one layer must fit the input of the next. A brute-force search

of consistent hyperparameters easily becomes intractable for deeper networks; we therefore first

estimate hyperparameters for each layer in isolation, and then jointly optimize to obtain consistency.

Initial estimation. We estimate a specific hyperparameter of a specific layer type, by pretraining

a DNN. We pretrain a suite of such DNNs, one for each (layer type, hyperparameter) pairing. Once

the layers (and their types) are recovered, we estimate each hyperparameter using these pretrained

(layer type, hyperparameter) recovery DNNs.

Each DNN is comprised of two 1024-node fully connected layers with dropout. The DNN

accepts two (concatenated) feature vectors describing two signal segments: the linear step and

immediately subsequent step. The subsequent step (e.g., activation, pooling, batch normalization)

tends to require effort proportional to the linear step’s output dimensions, thus its inclusion informs

the estimated output dimension. Each segment’s feature vector is assembled by (i) partitioning

the segment uniformly into 𝑁 windows, and computing the average value of each window, (ii)

concatenating the time duration of the segment. The concatenated feature vector has a length of

2𝑁 + 2.

The DNN is trained with our automatically generated dataset (see §4.5.2). The choice of loss

function depends on the hyperparameter type: For a hyperparameter drawn from a wide range,

such as a size, we minimize mean squared error between the predicted size and the ground truth

(i.e., regression). For a hyperparameter drawn from a small discrete distribution, such as stride, we

minimize the cross-entropy loss between the predicted value and the ground truth (i.e., classification).

108

In particular, we used regression for sizes and classification for all other parameters.

Joint optimization. The initial estimates of the hyperparameters are generally not fully accurate,

nor consistent. To enforce consistency, we jointly optimize all hyperparameters, seeking values that

best fit their initial estimates, subject to consistency constraints. Our optimization minimizes the

convex quadratic form

min
𝑥𝑖∈Z0+

∑︁
𝑖∈X

(
𝑥𝑖 − 𝑥∗𝑖

)2
, subject to consistency constraints, (4.1)

where X is the set of all hyperparameters across all layers; 𝑥∗
𝑖

and 𝑥𝑖 are the initial estimate and

optimal value of the 𝑖-th hyperparameter, respectively. The imposed consistency constraints are:

(i) The output size of a layer agrees with the input size of the next layer.

(ii) The input size of the first layer agrees with the input feature size.

(iii) The output size of a CNN layer does not exceed its input size (due to convolution).

(iv) The hyperparameters of a CNN layer satisfy

𝑠out =

⌊
𝑠in + 2𝛽 − 𝛾(𝑘 − 1) − 1

𝛼
+ 1

⌋
, (4.2)

where 𝛼, 𝛽, 𝛾, and 𝑘 denote the layer’s stride, padding, dilation, and kernel size, respectively.

(v) Heuristic constraint: the kernel size must be odd.

Among these constraints, (i-iii) are linear constraints, which preserves the convexity of the problem.

The heuristic (v) can be expressed as a linear constraint: for every kernel size parameter 𝑘 𝑗 , we

introduce a dummy variable 𝜏𝑗 , and require 𝑘 𝑗 = 2𝜏𝑗 + 1 and 𝜏𝑗 ∈ Z0+. Constraint (iv) , however,

is troublesome, because the appearance of stride 𝛼 and dilation 𝛾, both of which are optimization

variables, make the constraint nonlinear.

Since all hyperparameters are non-negative integers, the objective must be optimized via integer

programming: IP in general case is NP-complete [141], and the nonlinear constraint (iv) does not

109

make life easier. Fortunately, both 𝛼 and 𝛾 have very narrow ranges in practice: 𝛼 is often set to be

1 or 2, and 𝛾 is usually 1, and they rarely change across all CNN layers in a network. As a result,

they can be accurately predicted by our DNN models; we therefore retain the initial estimates and

do not optimize for 𝛼 and 𝛾, rendering (4.2) linear. Even if DNN models could not reliably recover

𝛼 and 𝛾, one could exhaustively enumerate the few possible 𝛼 and 𝛾 combinations, and solve the IP

problem (4.1) for each combination, and select the best recovery.

The IP problem with a quadratic objective function and linear constraints can be easily solved,

even when the number of hyperparameters is large (e.g., > 1, 000). In practice, we use IBM

CPLEX [34], a widely used IP solver. Optimized hyperparameters remain close to the initial DNN

estimates, and are guaranteed to define a valid network structure.

4.5 Experimental Setup

In the following section we discuss hardware choices, sensor setup, and dataset generation

details of our experiments.

weiv edis weiv pot
GPU power cable

Analog-to-Digital
Converter

GND

USB output

GPU

Sensor placed on the power cable

Figure 4.2: Sensing setup. Placement of the magnetic induction sensor on the power cord works
regardless of the GPU model, providing a common weak-spot to enable current-based magnetic
side-channel attacks.

4.5.1 Hardware Sensors

We use the DRV425 fluxgate magnetic sensor from Texas Instruments for reliable high-frequency

sensing of magnetic signals [86, 149]. This sensor, though costing only $3 USD, outputs robust

analog signals with a 47kHz sampling rate and ±2mT sensing range. For analog to digital con-

version (ADC), we use the USB-204 Digital Acquisition card, a 5-Volt ADC from Measurement

110

Computing [33]. This allows a 12-bit conversion of the signal, mapping sensor readings from

-2mT∼2mT to 0V∼5V.

Previous works have attempted electromagnetic side-channel attacks with industrial probes,

e.g. the Langer RF-U 5-2 [8]. These sensors are rated to measure at higher frequencies ranging

from 30MHz to 3GHz, but are far more expensive ($1,500+ USD) and require additional technical

equipment to operate. Other power side channel exploits have explored sampling at again higher

rates varying from 400KHz to 2.5GHz [194, 201]. Sampling at these frequencies allows finer capture

of hardware signals that can ease network step classification, although it significantly increases the

amount of feature data to be processed. In contrast, our method involves a $3 USD sensor sampling

at 47KHz. Sampling at rates lower than 47KHz would make it difficult to adequately capture short

events on the GPU, such as non-linear activation functions and small matrix multiplications that

may occur.

4.5.2 Dataset Construction

Sensor placement. Setup of the sensor requires that (i) the sensor is within range of the electro-

magnetic signal and (ii) the sensor orientation is consistent. To avoid interference from other electric

components, we place the sensor near the GPU’s magnetic induction source, anywhere along the

power cable. Because magnetic flux decays inversely proportional to the squared distance from

the source, according to the Biot-Savart law [65], we position the sensor within millimeters of the

cable casing (see Figure 4.2). Flipping the sensor over will result in a sign change of the received

magnetic induction signal, thus we maintain a uniform orientation to avoid the misalignment of

readings across the dataset.

Gaining such access constitutes the physical snooping by which we establish a side-channel.

From there the GPU’s time-varying performance can be traced, and listening to the signals reveals a

correlation between the underlying operational load and the power drawn to the GPU. Critically,

the magnetic induction observed must be both synchronized to the operations in the device kernel

and of sufficient fidelity. Otherwise, in the presence of some notable delay, it would be virtually

111

impossible to align a relationship between the signal and the inner workings of the GPU. Similarly,

constrained by either low sampling frequency or resolution, the captured signal will not be able

to profile any meaningful response for analysis. Fortunately however, we found ample details can

be detected with the finite resolution and relatively low frequency provided by an off-the-shelf

magnetic induction sensor.

Data capture. Pretraining the recovery DNN models (recall §4.4) requires an annotated dataset

with pairwise correspondence between signal and step types (see Figure 4.2). We can automatically

generate an annotated signal for a given network and specific GPU hardware, simply by executing a

query (with arbitrary input values) on the GPU to acquire the signal. Timestamped ground-truth GPU

operations are made available by most deep learning libraries (e.g., torch.autograd.profiler

in PyTorch and tf.profiler in TensorFlow).

A difficulty in this process lies in the fact that the captured (47kHz) raw signals and the ground

truth GPU traces run on different clocks. Similar to the use of clapperboard to synchronize picture

and sound in filmmaking, we precede the inference query with a short intensive GPU operation

to induce a sharp spike in the signal, yielding a synchronization landmark (see Figure 4.6). We

implemented this “clapperboard” by filling a vector with random floating point numbers.

Training Set Details. The set of networks to be annotated could in principle consist (i) solely of

randomly generated networks, on the basis that data values and “functionality” are irrelevant to us,

and the training serves to recover the substeps of a layer; or (ii) of curated networks or those found

in the wild, on the basis that such networks are more indicative of what lies within the black-box.

We construct our training set as a mixture of both approaches. Randomly generated networks

involve base steps made up of a mixture of fully-connected, recurrent, and CNN layers. These

are accompanied by 5 different activation functions, 2 types of pooling layers, and a potential

normalization operation. Off the shelf networks consist of VGG and ResNet variants. All in all we

consider 500 networks for training, ranging from 4 to 512 steps per network and culminating in

70, 933 individual steps in total. When we construct these networks, their input image resolutions

112

are randomly chosen from [224×224, 96×96, 64×64, 48×48, 32×32]: the highest resolution is used

in ImageNet, and lower resolutions are used in datasets such as CIFAR. We will release training

and test datasets along with source code and hardware schematics for full reproducibility.

Test dataset. We construct a test dataset fully separate from the training dataset. Our test dataset

consists of 64 randomly generated networks produced the same way as those randomly generated

for training. The number of layers ranges from 30 to 50 layers. To diversify our zoology of test

models, we also include smaller networks that are under 10 layers, LSTM networks, as well as

ResNets (18, 34, 50, and 101). Altogether, each test network has up to 514 steps. In total, the

test dataset includes 5, 708 network steps, broken down into 1, 808 activation functions, 1, 975

additional batch normalization and pooling, and 1, 925 fully connected, convolutional, and recurrent

layers.

4.5.3 Variations of the Approach

Choice of Sensor Previous works have attempted electromagnetic side-channel attacks with

industrial probes, e.g. the Langer RF-U 5-2 [8]. These sensors are rated to measure at higher

frequencies ranging from 30MHz to 3GHz, but are far more expensive ($1,500+ USD) and require

additional technical equipment to operate. Other power side channel exploits have explored sampling

at again higher rates varying from 400KHz to 2.5GHz [194, 201]. Sampling at these frequencies

allows finer capture of hardware signals that can ease network step classification, although it

significantly increases the amount of feature data to be processed. In contrast, our method involves

a $3 USD sensor sampling at 47KHz. Sampling at rates lower than 47KHz would make it difficult

to adequately capture short events on the GPU, such as non-linear activation functions and small

matrix multiplications that may occur.

Recovering Encoder-Decoder Encoder-decoder networks can similarly be recovered by our

method. The handling of decoders differs in the constraints used for the integer programming

problem to ensure parameter consistency. Decoders are composed of the same functional steps

113

as encoders, but potentially grow in size across steps. Treating decoders requires reassessing the

optimization constraints to enforce that layers remain the same size or grow. Recovering encoder-

decoder networks introduces the additional challenge of pinpointing the switch from encoder

to decoder. However, if this transition can be detected or approximated, an additional boundary

constraint could be introduced to our integer programming formulation that would allow the network

to be split into two optimization problems constrained to align at the transition. This formulation

would provide a natural extension of our method to handle encoder-decoder networks, however any

such attempts remains future work.

Snooping During Training The method naturally extends to training tasks by ignoring signals

related to back-propagation and focusing only on the feed-forward steps. Access to training would

provide numerous examples of the network to work with, rather than the single extracted source

acquired during inference, and would likely increase the recovery accuracy of our method. One

could straightforwardly apply our method to every training epoch and consolidate the proposed

networks using statistics and heuristics on the candidate models. Our focus on inferences stems

from our threat model, which does not require access to hardware during training.

Software Optimizations Machine learning frameworks sometimes allow for performance-tuned

alternatives for frequently used operations. These inference optimizers have the effect of introducing

new categories to the supervised BiLSTM classification task, either by merging commonly paired

operations (i.e. fully connected step and batch norm) or introducing new operations altogether (i.e

optimized mean computation for average pooling). Changing topology classification categories

provides a defense against a BiLSTM classifier trained without optimizers in its dataset. However,

there are no stipulations against building a dataset consisting of inferences where optimizers are

both turned on and off, generating an encompassing BiLSTM classifier that would be robust to such

defenses.

114

Table 4.1: Classification accuracy of network steps (Titan V)

Layer Type Prec. Rec. F1 # samples
LSTM .997 .992 .995 8,704
Convolution .993 .996 .994 447,968
Fully-connected .901 .796 .846 10,783
Add .984 .994 .989 22,714
BatchNorm .953 .955 .954 47,440
MaxPool .957 .697 .806 4,045
AvgPool .371 .760 .499 675
ReLU .861 .967 .911 28,512
ELU .464 .825 .594 2,834
LeakyReLU .732 .578 .646 9,410
Sigmoid .694 .511 .588 8,744
Tanh .773 .557 .648 4,832
Weighted Avg. .968 .967 .966 -

Multi-GPU Setups Multi-GPU setups do not introduce interference so long as their power cables

are isolated and sufficiently far apart (>7mm). An easy way to avoid any such interference is

to record the signal on the GPU itself or near the power cable plugs into the GPU. We have

experimented with recording multi-GPU setups and found no issues isolating the side-channel

information of the victim GPU.

4.6 Results

This section presents the major empirical evaluations of our method.

4.6.1 Accuracy of Network Reconstruction

Topology reconstruction. As discussed in §4.4, we use a BiLSTM model to predict the network

step for each single sample. Table 4.1 reports its accuracy, measured on an Nvidia Titan V GPU.

There, we also break the accuracy down into measures of individual types of network steps, with an

overall accuracy of 96.8%. An interesting observation is that the training and test datasets are both

115

unbalanced in terms of signal samples (see last column of Table 4.1). This is because in practice

convolutional layers are computationally the most expensive, while activation functions and pooling

are lightweight. Also, certain steps like average pooling are much less frequently used. While such

data imbalance does reflect reality, when we use them to train and test, most of the misclassifications

occur at those rarely used, lightweight network steps, whereas the majority of network steps are

classified correctly.

We evaluate the quality of topology reconstruction using normalized Levenshtein distance

(i.e., one of the edit distance metrics) that has been used to evaluate network structure similarity

[63, 78]. Here, Levenshtein distance measures the minimum number of operations—including

adding/removing network steps and altering step type—needed to fully rectify a recovered topology.

This distance is then normalized by the total number of steps of the target network.

We report the detailed results in Figure 4.4. Among the 64 tested networks, 40 of the recon-

structed networks match precisely their targets, resulting in zero Levenshtein distance. The average

normalized Levenshtein distance of all tested networks is 0.118. Furthermore, since the Levenshtein

distance does not distinguish between adding layers or swapping layers, in the context of network

architectures it is also fruitful to consider the 𝐿1 difference in number of steps. Along this metric,

we reconstruct networks to high fidelity, with an average normalized network-length error of 0.04.

This confirms our networks are recovered with similar network lengths and often exact step matches.

To provide a sense of how the normalized Levenshtein distance is related to a network’s ultimate

performance, we conduct an additional experiment to gauge reconstruction quality via classification

accuracy. We consider AlexNet (referred as model A) and its five variants (refered as model B, C, D,

and E, respectively). The variants are constructed by randomly altering some of the network steps

in model A. The Levenshtein distances between model A and its variants are 1, 2, 2, 5, respectively,

and the normalized Levenshtein distances are 0.05, 0.11, 0.11, 0.28 (see Figure 4.3). We then

measure the performance (i.e., standard test accuracy) of these models on CIFAR-10. As the edit

distance increases, the model’s performance drops.

116

C
la

ss
ifi

ca
tio

n
te

st
 a

cc
ur

ac
y

0.7

0.732

0.765

0.798

0.83

A B C D E

0.771

0.8080.8060.811
0.822

0 0.05 0.11 0.28 0.11
Normalized
Levenshtein distance

Figure 4.3: Edit distance performance. Each model’s classification accuracy drops as its Leven-
shtein distance from the original model (model A: AlexNet) increases.

Table 4.2: Model extraction accuracy on CIFAR-10

Model Target Titan V Titan X GTX1080 GTX960
VGG-11 89.03 89.61 89.63 88.46 88.3
VGG-16 90.95 91.08 91.03 89.33 90.78
AlexNet 81.68 85.26 85.11 85.27 85.03
ResNet-18 92.77 92.61 92.82 92.79 92.04
ResNet-34 92.21 92.28 92.95 90.81 92.71
ResNet-50 90.89 91.8 91.97 91.2 91.29
ResNet-101 91.58 91.91 91.85 91.37 91.72

DNN hyperparameter estimation. Next, we report the test accuracies of our DNN models

(discussed in §4.4.2) for estimating hyperparameters of convolutional layers. Our test data here

consists of 1804 convolutional layers. On average, our DNN models have 96%-97% accuracy. The

break-down accuracies for individual hyperparameters are shown in Table 4.4.

Reconstruction quality measured as classification accuracy. Ultimately, the reconstruction

quality must be evaluated by how well the reconstructed network performs in the task that the

original network aims for. To this end, we test seven networks, including VGGs, AlexNet, and

ResNets, that have been used for CIFAR-10 classification (shown in Table 4.2). We treat those

networks as black-box models and reconstruct them from their magnetic signals. We then train those

reconstructed networks and compare their test accuracies with the original networks’ performance.

Both the reconstructed and original networks are trained with the same training dataset for the

117

same number of epochs. The results in Table 4.2 show that for all seven networks, including large

networks (e.g., ResNet101), the reconstructed networks perform almost as well as their original

versions. We also conduct similar experiments on ImageNet and report the results in Table 4.3 of

4.6.1.

Reconstruction quality on ImageNet We treat ResNet18 and ResNet50 for ImageNet classi-

fication as our black-box models, and reconstruct them from their magnetic signals. We then

train those reconstructed networks and compare their test accuracies with the original networks’

performance. Both the reconstructed and original networks are trained with the same training

dataset for the same number of epochs. The results are shown in Table 4.3, where we report both

top-1 and top-5 classification accuracies. In addition, we also report a KL-divergence measuring the

difference between the 1000-class image label distribution (over the entire ImageNet test dataset)

predicted by the original network and that predicted by the reconstructed network. Not only are

those KL-divergence values small, we also observe that for the reconstructed network that has a

smaller KL-divergence from the original network (i.e., ResNet18), its performance approaches more

closely to the original network.

Table 4.3: Model reconstruction evaluated on ImageNet classification.

Model
ResNet18 ResNet50

Original Extracted Original Extracted
Top-1 Acc. 64.130 64.608 62.550 61.842
Top-5 Acc. 86.136 86.195 85.482 84.738
KL Div. - 2.39 - 4.85

Table 4.4: DNN accuracy estimating convolutional hyperparameters.

Kernel Stride Padding Image-in Image-out
Precision 0.971 0.976 0.965 0.968 0.965

Recall 0.969 0.975 0.964 0.969 0.968
F1 Score 0.969 0.975 0.962 0.967 0.965

118

10%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
normalized edit distance

20%

30%

40%

50%

60%

Figure 4.4: Distribution of normalized Levenshtein distance on dataset. We plot the distribution
of the normalized Levenshtein distances between the reconstructed and target networks. This results,
corresponding to Table 4.1 in the main text, use signals collected on Nvidia Titan V.

4.6.2 Accuracy across GPUs

Twin GPU transferability. Our proposed attack requires the adversary to have the same brand/ver-

sion of GPU as the victim, but not necessarily the same physical copy (see Figure 4.6). Here, we

obtain two Nvidia GTX-1080 Graphics cards running on two different machines with different

CPUs and RAM, using one to generate training data and another one for black-box reconstruction.

We set out to verify that (i) the leaked magnetic signals are largely related to GPU brand/version

but not the other factors such as CPUs and (ii) the signal characteristics from two physical copies of

the same GPU type stay consistent. When we run the same network structure on both GPUs, the

resulting magnetic signals are similar to each other, as shown in Figure 4.6. This suggests that the

GPU cards are indeed the primary sources contributing the captured magnetic signals.

Next, we use one GPU to generate training data and another one to collect signals and test our

black-box reconstruction. The topology reconstruction results are shown in Table 4.5, arranged

in the way similar to Table 4.1, and the distribution of normalized Levenshtein edit distance over

the tested networks are shown in Figure 4.5. These accuracies are very close to the case wherein a

119

10%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
normalized edit distance

20%

30%

40%

50%

60%

Figure 4.5: Distribution of normalized Levenshtein distance across GPUs. An experiment
comparing the distribution of the normalized Levenshtein distances between two Nvidia GTX-1080
GPUs. One is used for collecting training signals, and the other is used for testing our side-channel-
based reconstruction algorithm.

single GPU is used. The later part of the reconstruction pipeline (i.e., the hyperparameter recovery)

directly depends on the topology reconstruction. Therefore, we expect that the final reconstruction

is also very similar to the single-GPU results.

Unspecified GPU transferability. Thus far we have considered the case where the attacker knows

the hardware model and version of the target GPU. We now explore the case where the model and

vo
lts

2.5

5

5

2.5

ms60306 12 18 24 5436 42 480

Figure 4.6: Hardware signal similarity. Here we plot the resulting signals from the same network
model deployed on two different instances of a Nvidia GTX 1080 (running on two different
computers). In the green dash boxes on the left are the spikes that we inject on purpose (discussed
in §4.5.2) to synchronize the measured signal with the runtime trace of the GPU operations.

120

Table 4.5: Classification accuracy of network steps (GTX-1080).

Prec. Rec. F1 # samples
LSTM .997 .999 .998 12,186
Convolution .985 .989 .987 141,164
Fully-connected .818 .969 .887 9,301
Add .962 .941 .951 30,214
BatchNorm .956 .944 .950 48,433
MaxPool .809 .701 .751 1,190
AvgPool .927 .874 .900 294
ReLU .868 .859 .863 11,425
ELU .861 .945 .901 8,311
LeakyReLU .962 .801 .874 3,338
Sigmoid .462 .801 .585 5,106
Tanh .928 .384 .543 8,050
Weighted Avg. .945 .945 .945 -

version are unavailable. The adversary may attempt to address this by exhaustively pretraining

reconstruction networks for a wide range of GPU models. The signal collected from the target GPU

may then be processed by the wide range of reconstruction networks. Since software upgrades may

affect GPU performance and alter the emitted magnetic signals, the software version is considered

to be part of the GPU model specification. In our experiments, we keep software versions constant,

including OS version, CUDA version, and PyTorch/Tensorflow version.

The scenario in which GPU model and version are unavailable can present itself in two ways:

The victim GPU may or may not be represented during the network training phase. We explore

each case in turn.

Suppose that the victim GPU is not represented in the network training phase. To explore

this scenario, we perform K-fold cross-validation of classification accuracy across 6 unique GPUs.

For each potential victim GPU, we perform reconstruction multiple times, each time against

measurements of another GPU, utilizing a new dataset comprised of all other GPUs. The results of

this K-fold cross-validation can be found on the top row of Table 4.6. There we find that older GPUs

121

Table 4.6: Classification accuracy on datasets combining many GPUs
Target GPU

GTX-960 MSI-1060 MSI-1070 MSI-1080 EVGA-1080 GTX-1080
With Holdout 61.3 77.4 83.4 87.1 93.2 93.9
Full Dataset 96.5 88.6 93.4 91.7 95.8 95.2

(such as the GTX-960) perform poorly when trained on newer counterparts. Accuracy improves

when trained with similar models, such as the three 1080 architectures, which although they have

different memory allowances and hardware specifications, result in high holdout accuracy. This

suggests that it is possible to achieve favorable results even without precise knowledge of the target

GPU, so long as the training employs a similar GPU.

Next, suppose that the victim GPU is represented in the network training phase. Although our

proposed attack encourages the attacker to train solely and specifically with the victim GPU, by

assumption this is not possible in this scenario. Instead, we train one generalized network comprised

of signals from all available GPUs. We then evaluate the reconstruction accuracy for each specific

GPU against the generalized network. As recorded in the second row of Table 4.6, reconstruction

accuracy improves when the victim GPU is represented during training, even if the training set is

“contaminated” by data from other GPU models.

Multi-GPU Workstations. Multi-GPU configurations do not introduce interference so long as

their power cables are isolated and sufficiently far apart (>7mm). An easy way to avoid any such

interference is to record the signal either on the GPU itself or proximate to the connection between

power cable and GPU. We experimented with recording multi-GPU configurations and found no

issues isolating the side-channel information of the victim GPU.

4.6.3 Transfer Attack

An adversarial transfer attack attempts to design an input that tricks an unknown target model.

The name transfer alludes to the method of attack: The attacker builds a surrogate, an approximation

(informed guess) of the unknown target model, and seeks out an input that tricks the surrogate.

122

The attacker hopes that the exploit “transfers” to the actual target, i.e., that an input that tricks the

surrogate also tricks the target. The likelihood of a successful attack increases as the surrogate better

approximates the target. In a black-box setting, finding an effective surrogate is very hard [41].

Therefore, the attacker wishes to design a more informed surrogate. One avenue toward this is to

design surrogates with topology and parameters similar to the target.

CIFAR-10 Dataset. Here we test on six networks found in the wild, ranging from VGGs to

AlexNet to ResNets, as listed on the header row of Table 4.7. The table shows the percent of

successful transfer attacks over 5, 000 attempts on the CIFAR-10 dataset.

We consider each target architecture on each of four GPUs in turn (top four rows of Table 4.7).

We consider each such architecture-GPU combination, in turn, as black-box target. Using the

side channel exploit, we reconstruct the target’s structure to obtain a surrogate architecture, which

we train on CIFAR-10 to obtain a surrogate model. We craft inputs that trick the surrogate, and

evaluate whether those inputs also trick the target. Transfer attack success is defined as the percent

of generated inputs (based on the surrogate) that correctly cause the trained target model to mislabel

an input. All adversarial inputs are generated via Projected Gradient Descent [121], using an 𝜖 of

0.031 and an 𝛼 of 0.003 for all results. The success rate of the transfer attacks is summarized in the

upper four rows of Table 4.7.

To gauge the success rates of the “side channel surrogates,” we compare them against “white-box

surrogates.” We build six white-box surrogates, corresponding to the six known target architectures;

these white-box surrogates differ only in weights, as the surrogates are trained from scratch on

CIFAR-10. The idealized white-box surrogates serve as a benchmark for effective surrogates; refer

to the success rates in the bottom six rows of Table 4.7.

Remarkably, the “side-channel surrogates” offer comparable success rates to “white-box sur-

rogates.” The relative success of side-channel surrogates becomes more pronounced for deeper

networks (ResNets), where it appears that architecture dominates sensitivity to weight values.

When the number of layers is small, as in VGG-11 and AlexNet architectures, the margin for error

123

Table 4.7: Transfer attack results on CIFAR-10.
Target Model

ResNet-18 ResNet-34 ResNet-101 VGG-11 VGG-16 AlexNet

So
ur

ce
M

od
el

GTX-960 98.56 92.51 91.20 63.41 72.57 58.90
GTX-1080 97.88 90.86 86.24 64.69 55.19 56.83
Titan X 98.32 93.45 84.47 61.89 77.36 68.41
Titan V 98.48 93.65 91.27 64.39 72.77 60.17
ResNet-18 97.70 90.72 80.27 47.98 86.64 30.56
ResNet-34 97.21 92.46 82.30 51.42 85.60 32.34
ResNet-101 92.53 86.98 92.95 53.98 83.04 30.55
VGG-11 65.86 57.82 57.52 60.24 65.50 39.95
VGG-16 74.00 61.54 54.23 41.60 74.29 29.57
AlexNet 10.11 9.59 10.19 11.60 10.42 62.70

decreases, and more importance is given to the weights of the target. However, even in these cases

where attack performance drops, the side-channel surrogates closely match the success rate of their

white-box counterparts, displayed in the lower rows. In other words, the side-channel reconstruction

effectively turns a black-box into a white-box attack.

MNIST Dataset. Similar to our analysis of CIFAR-10 transfer attacks, we also conduct transfer

attack experiments on the MNIST dataset. We download four networks online, which are not

commonly used. Two of them are convolutional networks (referred as CNN1 and CNN2), and the

other two are fully connected networks (referred as DNN1 and DNN2). None of these networks

appear in the training dataset. We treat these networks as black-box targets, reconstruct a side-

channel surrogate for each, and attack the four targets; results are shown in Table 4.8. As baselines,

we also train white-box surrogates with the exact architecture of the four target models.

In Table 4.8, every row shows the transfer attack success rates for surrogate-target pairs. Each

column labeled as “extr.” corresponds to the extracted (reconstructed) model whose target model is

given in the previous column before it. In addition, we also show all the models’ test accuracies

on MNIST in the last row of the table. The results show that all the reconstructed models approx-

imate their targets closely, both in terms of their abilities for launching transfer attacks and their

classification performance.

124

Table 4.8: Transfer attack results on MNIST.

Target Model
CNN1 CNN2 DNN1 DNN2

So
ur

ce
M

od
el GTX-1080 .802 .878 .999 .874

CNN1 .858 .226 .785 .476
CNN2 .395 .884 .354 .354
DNN1 .768 .239 .999 .803
DNN2 .703 .219 .975 .860

All four of our extracted networks, visible in the top row of Table 4.8 achieve high transfer

attack scores against our candidate targets. These high scores suggest a close approximation of

the target models by our reconstructed networks. The similarity between our extracted network’s

transfer attack results and the results achieved by the matching source model across the bottom four

rows also indicates a strong correspondence in the achieved architectures. We find that even across

the MNIST dataset we are able to generate a model that behaves akin to a white-box transfer attack.

4.7 Defenses Against Magnetic Side Channels

At this point, we have shown the robustness and accuracy of the magnetic side channel exploits

and turn our attention to countermeasures. Traditionally side channel defenses fall under the category

of either detection or reduction of the relevant signal [176]. Since our approach is non-invasive and

passive in that it does not alter any code or hardware operation of GPUs, detection methods which

consist of somehow discovering someone is listening to the GPU are not applicable to magnetic

leakage. Instead we focus on suppression techniques of the correlated signal, which aim to decrease

the leaked signal-to-noise ratio by either confounding the signal in place or concurrently injecting

noise to mask emissions [36]. We explore both these avenues separately by looking at prevention

and jamming.

125

volts
4.5

20 251550 10

3.5

2.5

volts
4.5

3.5

2.5
ms20 251550 10 30 35

ms30 35

Figure 4.7: Deceptive steps. Our side channel cannot track dataflow across the network to
distinguish relevant operations (green and blue highlights). Extraneous interspersed steps (red and
orange) can mix in signals to impede topology extraction, trading off less efficient processing for
security.

4.7.1 Prevention

As shown in Figure 4.1, each rise and drop of the magnetic signals correspond to the boundary

between GPU operations. This is only possible when the input batch is large enough to keep every

GPU operation sustained and stabilized at a high-load state. To prevent this behavior, one can

restrict the input to be sufficiently small (e.g. 1 single image) whenever appropriate, such that the

magnetic signals never reach any stable state and suffer from a low signal-to-noise ratio, rendering

our sensing setup futile.

Another way to prevent magnetic side channel leakage is to use a non-standard framework for

inference which the adversary does not have any training data to start with. Whether by bringing

into play new low-level GPU kernels or operating in unique sequences, an atypical software

implementation of a network architecture will result in magnetic signatures that are unaccounted for

in the offline training.

Yet another possible defense mechanism results from the fact that we are not tracking the actual

126

dataflow in the GPU. For example, we can correctly identify two GPU operations, convolution

and batch norm, within a long sequence. But there is no evidence to be found within the magnetic

side channel proving the dataflow follows the same pattern—the output from convolution could be

a dead end and batch norm takes input from a previous GPU operation. This mismatch between

the dataflow and the underlying network model makes it hard to decipher network measurements

robustly.

We explore this approach in Figure 4.7, and find that one can muddle the signal by periodically

altering the flow of logic in the target network. By introducing additional operations within the

network logic for the GPU to perform, the network appears to consist of steps that are not in

fact necessary for inference. We achieve this by regularly performing an additional convolution,

normalization, or pooling function on a copy of the dataflow input at any junction along the network.

These accessory network steps create dead branches in the topology of the network, producing

data that is abandoned since it is not used anywhere further along as part of the inference. In

our experiments we found that although our BiLSTM had no issues classifying any invalid steps

added, they were nevertheless sufficient to derail our estimate of network topology. However we

also confirmed that shuffling in additional computation has the undesirable effect of prolonging

inference times and reducing overall network efficiency [36], leading to an inference delay linear in

the quantity, types, and sizes of the extraneous steps introduced.

4.7.2 Jamming

While running on tiny input batch size or tampering with network logic may at times be

infeasible, we find jamming to be an additional effective defense mechanism when applicable.

Unlike simpler processors, GPUs are capable of concurrently operating multiple programming

kernels (e.g., each in a different CUDA stream). This allows for alternative code to run adjacent to

the hidden target network, inducing EM signals that potentially obfuscate the signal related to the

model architecture.

Specifically, during the inference of a large input batch, we ran a third-party CUDA GPU stress

127

Background GPU Utilization (%)

Ac
cu

ra
cy

 0%

25%

50%

75%

100%

0 10 20 30 40 50

Figure 4.8: Classification accuracy in the precense of noise. We simultaneously run additional
immaterial kernels on the GPU while collecting inferences on a target dataset. The background load
is increased until accuracy on the target drops below 50%.

test in the background [184]. We found that the magnetic signals are completely distorted because

of the constant high utilization of GPU. The main caveats opposing this heavy handed approach

involve higher power consumption and the possible effects on the lifetime of a GPU.

To further quantify how secondary usage might mask the signal associated to primary usage,

we also trained a network to recover signals from a GTX-1080 GPU while incrementally adding a

background load throughout testing. The network is solely trained on a dataset of signals free of

noise or any secondary processes on the GPU. Next, we record a fixed test set of signals, repeating

the recording process at varying levels of background load on the GPU. We repeat this process until

the extraction accuracy falls below 50%. The results are depicted in Figure 4.8.

Though ample background use can limit our sensor’s effectiveness, it is important to note that

normal background, variable, and low-utilization GPU operations do not affect our signal recovery.

Figure 4.8 shows that the network performs best when free of any noise, and degrades as concurrent

background noise introduces an additional 35% GPU utilization. Around and beyond this level

of noise we find that the background signals reached similar peaks to that of the target network,

whose unhindered GPU utilization ranges from 10% ∼ 45%. Consequently, as the signal becomes

128

dominated by background signals, the accuracy drops, until a masking effect akin to jamming with

a constant signal is achieved between 45% ∼ 50% background utilization.

4.8 Ethical Considerations

The general notion that a magnetic side channel can leak information has been disclosed in prior

work [194, 201, 196, 8, 45]. However, the extent to which such a side channel can recover neural

architecture details is becoming more evident. As with all disclosures of vulnerabilities, sharing

these findings creates the potential for malicious use. Due to the non-intrusive nature of this attack,

network application logs do not include the requisite details to determine via audits whether such

malicious use is already occurring.

At the same time, such side channel information can lead to positive outcomes, such as non-

intrusive hardware monitoring and intellectual property protection.

Therefore, it is not straightforward to weigh the costs and benefits of disclosing this vulnerability.

What is clear is that creating a better shared understanding of such vulnerabilities is a necessary

step toward developing appropriate precautions, safeguards, and countermeasures.

We have corresponded with vendors to disclose and describe our findings, and will provide the

requisite time for mitigation. We have also discussed several viable defense mechanisms targeting

GPU processes and network implementations in response to our study.

4.9 Discussion

Comparisons. Our method considers more general recovery of more complex GPU-based net-

works using lower cost sensors. Compared to prior works [8, 209], we recover networks from a

single EM trace using a data-driven approach leveraging BiLSTMs, rather than requiring multi-

ple scans (potentially tens-of-thousands) and relying on additional steps like Correlation Power

Analysis or visual inspection for topology recovery. Approaches based on these methods make

additional assumptions about layer sizes and handle a maximum of 7 and 23 layers, respectively,

whereas we accommodate hundreds of layers. It is unclear whether these methods extend beyond the

129

straightforward and small multi-layer perceptrons and CNNs programmable on simpler processors

to other layer types and models. Moreover these prior methods use setups that cost thousands

of dollars and involve either tampering with the chips or carefully positioning processors against

sensors via stepper-motors, particularly limiting application to GPUs.

Unlike previous approaches, we do not require access to input-output variables and can handle

large state-of-the-art models using a $3 sensor. Our side-channel exploit stems entirely from the

GPU’s power cord, without requiring intimate knowledge of memory registers, without intricate

signal capture, nor access to input-output variables. Furthermore, we optimize parameter assignment

as an integer programming problem, allowing us to tackle arbitrary networks without choosing

between parameter templates for hidden models. We validate across various GPUs and our extracted

networks achieve transfer attack rates of 55.19 − 77.36% (VGG) 84.47 − 98.56% (ResNet), with

existing works demonstrating 51.53% (VGG) [209] and 75.9% (ResNet) [78]. Lastly, our study

includes diverse activation functions, normalization layers, pooling variants, and recurrent layers

unexplored in previous literature.

Limitations. In our formulation, we assume networks progress in a linear fashion and do not

handle complex graph networks with intricate branching topologies. We cannot tell if a network is

trained with dropout since dropout layers do not appear at inference time. Indeed, any operation

that only appears during training is beyond the capability of magnetic side channel snooping.

It is an assumption of our method that the target network is observed during inference and not

during training. Our method may naturally extend to extracting within training phases by ignoring

signals related to back-propagation and focusing only on the feed-forward steps. This extension

would require the additional processing to isolate the forward pattern and sanitize other signals

auxiliary to the model architecture, which we do not explore within the scope of this work. Access

to training would provide numerous example signatures of the network to work with, rather than the

more restricted single source acquired during inference, which might in turn increase the recovery

accuracy and robustness of our method. Given the ability to single out forward passes, one could

130

straightforwardly apply our method to batches in every training epoch and consolidate the proposed

networks using statistics and heuristics on the candidate models. Our focus on inferences stems

from our threat model, which does not require access to hardware during training.

Conclusion. We set out to study what can be learned from passively listening to a magnetic side

channel in the proximity of a running GPU. Our prototype shows it is possible to extract both the

high-level network topology and detailed hyperparameters. To better understand the robustness and

accuracy, we collected a dataset of magnetic signals by inferencing through thousands of layers on

four different GPUs. We also investigated how one might use this side channel information to turn a

black-box attack into a white-box transfer attack.

131

Chapter 5: Data Driven Hair Contact

Modern strand simulation pipelines are largely throttled by the handling of inter-strand contact.

For large entangled bundles of rods, contact treatment can consume more than 98% of the cost of

a timestep. We propose to improve the efficiency of strand simulation pipelines by using a data

driven approach to resolve collisions. At each timestep, we construct a contact graph from collisions

detected on simulated rod pairs and employ Graph Neural Networks to predict the contact update.

The data used to guide our model is generated offline from physically-accurate, albeit slow, collision

samples. Our approach results in strand simulations that achieve up to 400× speedups across a

variety of grooms while remaining visually plausible. Whereas prior contact handling algorithms are

constrained to specific choices in hardware, strand representation, or contact model, our approach

easily generalizes to take advantage of parallel architectures and is agnostic to any underlying rod

or friction models. We compare large scale scenarios against state-of-the-art simulation techniques

to reveal the sizable computational memory and time advantages of using our method.

5.1 Introduction

Large scale strand simulations are troublesome to simulate. Analyzing existing strand contact

pipelines [38, 54, 93, 109], most state of the art methods share a common bottleneck. We find that

solving for accurate collision resolution between rods is computationally expensive at scale and

virtually prohibitive at large time steps. The principal delay stems from how traditional techniques

treat intertwined contact networks via iterative local solves with conservative residual thresholds. In

such schemes, collision updates require a large number of costly iterations to resolve constraints and

propagate each individual contact across the system. This becomes a sticking point for time-critical

applications, that are forced to sacrifice prolonged contact handling routines in order to maintain

132

simulation progress. Common concessions taken in order to approximately resolve contacts quickly

involve adopting a simplified contact model, curtailing the number of collisions treated, or limiting

the number of iterations allotted for solving contact. Such compromises threaten to abandon any

sort of guarantees on the accuracy or convergence of the resulting contact update that shapes each

timestep of most practically sized examples. Notably we find that, soon after the number of contact

instances reaches a modest amount and even with these adjustments in place, all solves end by way

of early-termination, i.e. exiting above an acceptable error threshold after hitting an iteration limit.

These approximations therefore effectively either loosen or abandon the guarantees on accuracy

promised by full scale treatment using the chosen contact solver. Yet, even after surrendering

accuracy, contact remains the simulation bottleneck and accounts for the overwhelming majority of

each timesteps wall-clock time, at times composing more than 99%. A technique for efficient large

scale hair contact resolution that addresses these shortcomings is therefore highly desirable.

In light of the accepted concessions, we believe it warranted to trade off prior approximations

for alternatives that achieve similar results and significantly reduce the costs incurred. We seek

instead a data-driven model that can benefit from slow and accurate solutions, while providing speed

assurances for end-users that are easier to manage and predict. By relying on data such a method

would allows us to leverage existing discrete elastic rod simulations that we wish to emulate with

the ability to generate labeled datasets and variations as needed. However, such an alternative for

strand contact should achieve a few key desiderata:

• The training data should be accurate and principled.

• The data driven approach shows a significant speedup.

• The method allows for tuning (few if any) parameters to adjust speed versus accuracy of

resulting simulation.

• Gathering offline generated training data should not be prohibitive with regards to time or

memory considerations.

• The ability to produce large-scale examples from smaller training scenes.

133

• Generalize to scenarios that are distant from the training setup and initial conditions.

• Such method should be portable, and applicable to different strand and contact resolution

implementations.

• Support arbitrary strand constitutive parameters and work for curly, wavy, and straight hair

alike without modification.

With these criteria in mind, we are motivated to introduce a data-driven alternative that can

expedite contact for hair simulations. However, data-driven approximations face two concerns when

applied to hair contact. Firstly, elastic rods do not map naturally to traditional model reduction

techniques or existing neural network architectures. Many reduction techniques are volumetric

(such PCA) and do not account for the one-dimensional nature of strands which must interact

everywhere along the geometry. As for deep learning approaches, the dynamic and variable nature

of both the strands degrees of freedom (e.g. a short yarn coming into contact with a long hair) and

the nonlinear nature of collisions poses challenges to the common fixed-resolution vector or matrix

inputs of neural networks. Secondly, the space of contact configurations we aim to approximate

grows combinatorially At any given instance in time, many hairs or few strands may be colliding,

and at arbitrary locations throughout their corresponding geometry. This again poses a problem

when we seek a result free of visual artifacts and flexible enough to work with various strand models.

All in all, most popular approaches cannot directly produce acceptable results that achieve similar

visual and reduce the costs incurred by the simulation.

We propose to continue the partnership developed between simulated examples and graph

formulations in order to tackle the challenges surrounding efficiently simulating hair contact. We

present a graph-network learning based formulation for accelerating contact updates to dynamically

interacting systems of strands. The simulated input configurations and output collision resolutions

generated are used to inform a neural network based on slow albeit accurate collision solves,

allowing us to benefit from diverse and physically principled strand, friction, and collision models.

Inspecting the baseline hair simulation examples samples we discover time-varying contact clusters

134

that form spatially, and their properties that inform the contact solve. We translate these contact

clusters into graphs that can be used to train and efficiently infer the approximate post-solve degrees

of freedom from contact configurations on large scale simulations. We address both the structuring

and constraining of our data pairs through the use of Graph Neural Networks [10, 27, 111, 112, 150,

163, 162, 167]. Our approach is builds on the work achieved by other encoding-processing-decoding

Graph Network pipelines [150], but rather than exploring an unsupervised approach to replace

or precondition the dynamics [162, 172], we focus on a supervised method that targets the main

bottleneck in strand simulation.

This involves centering a structure on collisions rather than simulation elements, and formulating

a novel interpretation of dynamic piece-wise linear elastic curves in 3D as embeddings held in nodes

and edges of a graph network. Elements in the graph network are combined with machine learning

algorithms to process latent embeddings and to communicate across the graph which includes

contact edges. This transformation onto a Graph-Network sidesteps the overwhelming complexity

of data introduced by simulating free curves in space with possibly varying degrees of freedom

and contact stencils. This framework allows us to moderate any exponential or combinatorial

expansion of our dataset, and constrains our efforts to solve local operators on the proposed graph.

The resulting simulation targets foremost an improvement in efficiency of collision resolution

while remaining visually plausible. Once trained, our model resolves collisions up to 300 − 400×

faster than the baseline solution. In addition, we also present a method that achieves the following

contributions:

• First neural net driven strand contact simulation.

• Novel Dual Graph-Net tailored for edge-edge collision schemes

• Quantitative speedups compared to state-of-the-art

• Large scale simulations trained from small scenes

• Stable results free of artifacts not present in training

135

• A fully generalizable, portable, scalable, and agnostic approach

• Model and parameter agnostic, working for straight and curly strands, and generalizing to

configurations that are distant from the training regime

We demonstrate the key benefits of our approach across a variety of large degree-of-freedom

(DoF) contact scenarios. These examples showcase how our data-driven treatment adapts to various

material and external forces, including the presence of twist required by curly strands. We perform

both quantitative and qualitative evaluation of our results in comparison to other state-of-the-art

strand simulation codebases, and validate our approach against grooms of various styles.

5.2 Mapping Strands to Graphs

We seek a flexible representation capable of adapting to strands in contact in ever more entangled

configurations. The method should handle varying degrees of freedom for the discretization of

strands, simultaneously treat a hand-full or a head-full of hairs, and remain agnostic to hair-type and

other physical groom parameters. The framework must also, regardless of complexity or scenario,

reduce to a consistent mapping suitable for training a network consisting of a fixed set of weights.

Given the thin and clustered nature of dynamic strand systems, voxel, image, and other fixed-size

input setups cannot readily capture diverse rod interactions. The nonlinear number of collisions and

changing contact bodies poses a challenge to training a neural model which requires consistently

shaped inputs. Penetrating objects may be composed of different degrees of freedom and shapes,

making a fully connected multi-layer perceptron or convolutional network difficult to assemble.

The elements in contact also change as collisions appear and are resolved throughout the simulation,

with no spatial-temporal coherence. Instead we extend the use of Graph Neural Networks to manage

variable sized inputs and support the desired arbitrarily evolving collision landscapes.

Definitions For clarity of exposition, when discussing simulation space, i.e. traditional and

principled Discrete Elastic Rod (DER) dynamics involving material forces, we will refer to strands

that are discretized into vertices connected by rods. On the other hand, when discussing our neural

136

graph abstraction, which mirrors the simulated strands but is absent any notion of physics and

instead manipulates vector attributes instead of DoF, we distinguish these graph elements as nodes

and edges. An illustration of this convention can be found in Figure 5.1

Figure 5.1: Simulation and graph correspondence. Physical quantities such as dimensions and
material properties specify a simulated strand composed of rods and vertices, while neural features
and embeddings define the attributes of a correlated graph network.

Given a discretization of strands and their material properties (e.g. mass, frames, velocity,

etc.) into rods and vertices [13], it may seem both natural and tempting to directly map strands

onto the edges and nodes of a Graph Neural Network (GNN). That is, converting rods into edges

and projecting vertices onto nodes, respectfully. However, strands make up only a portion of the

dynamics we wish to capture. Asides from internal and global forces, collections of strands are

rarely found in isolation and behaviorally intertwined through complex collision interactions. These

contacts are nonlinear, appearing and disappearing spatially throughout time across our simulated

configuration to associated Degrees of Freedom (DoF). This poses questions of how and where to

place contacts in the graph representation.

Naturally edges are fit to connect two different nodes in our graph representation, just as rods

connect two vertices. At first glance this supports introducing additional "contact" edges throughout

the graph. However, since traditionally collisions occur between rod elements on strands, this would

suggest we must either introduce multiple redundant edges between nodes (5.2a, 5.2b) or extend the

137

base notion of graphs to connect two edges together with another edge (5.2c).

Figure 5.2: Primal-graph ambiguities. Mapping rods to edges and vertices to nodes leads to
counter-intuitive graph representations of rod-rod collisions. Left to right, (a) a contact can introduce
a singular contact node that connects the strand vertices involved, (b) the vertices can be connected
directly resulting in redundancies with 4 collision edges representing one contact, or (c) edges in
the graph can be connected by special contact edges.

Due to these challenges and ambiguities, we instead map our simulated strands to a DualGraph

learning representation for first class treatment of collisions. Specifically, we generate graph nodes

for every rod, and link these nodes with edges that represent connective vertices of a strand (see

Figure 5.3). Under this alternate view, contacts can be directly represented as edges and connect

rods in simulation space which exist as nodes on the graph. Furthermore, since contact-edges

change from timestep to timestep, these specialized edges can be lazily instantiated between graph

nodes (elastic rods) at runtime whenever a collision is present, as shown in Figure 5.3.

This inverted approach has several advantages. Firstly, contacts between strands provide simple

and intuitive connections to the graph at various scales. The same machinery can be used to train a

net that localizes contacts within a strand or consolidates strand vertices into a single node for a

hierarchical approach (see 5.3.2). Furthermore, not all simulated vertices are mapped onto the graph,

only the internal vertices. Crucially, discrete elastic rods exhibit twist and bending modes that are

only present at internal vertices of the strand. Twisting and bending energies, which derive from

deviations of the material frames between two adjacent strand edges, intuitively can be presented

across internal vertices. In choosing to structure the graph as the dual of the strand, the network

more naturally captures these inherent features of the dynamics.

Notably, the rods and vertices that compose the individual strands never change connectivity

information throughout the simulation. This allows for the corresponding nodes and edges of the

138

Figure 5.3: Dual-graph collision representation. Strands colliding (left) at locations highlighted
by the blue diamonds can be easily represented by the dual-graph (right) which maps rods to nodes,
vertices to edges, and contacts as inter-strand node-to-node edge connections.

graph to also be kept fixed, requiring their topology to only be instantiated once at the onset of the

simulation. Afterwards, the only changes that must be administered to the graph are the allotment

of contact connections. With an initial mapping in place, we can step a simulation forward to detect

collisions and generate new contact edges to complete the graph. While distributing contact edges

we can also update any feature attributes on the graphs to account for the latest representation of the

simulations configuration.

This mapping is versatile enough to support estimating quantities available anywhere on the

graph. This includes velocity updates on either graph nodes or edges, as well as inter-strand forces

at the temporally-generated contact connections. Updating velocities allows for a potentially full

end-to-end differentiable simulation system, but therein-by forces the network model to account for

all aspects of dynamics. Given stiff strand dynamics often require non-linear treatment [93], this

may prove to be overkill or insufficient [172]. Learning just force components however, such as the

impulses at contacts, allows for an approximate data-driven collision treatment while leaving the

remaining dynamics to be robustly handled by principled approaches.

Notably, additional simulation elements, such as external collision meshes, can also be supported

139

by the graph (see Figure 5.4). These otherwise unaccounted-for objects appear to the graph as

additional lone-standing nodes to be created on-the-fly, similar to the contact-edges. Mesh-elements

and other runtime interactions can connect to the existing graph via supplementary contact edges,

and can be initalized as rods with no twist or given their own specialized encoding (see §5.4). We

next discuss the model design and training environment used by our method to infer impulses at

contact edges in in order to efficiently and robustly simulate strands in contact.

Figure 5.4: Adaptive external nodes. An additional node is added to the graph at runtime to
account for collisions with other simulation objects. Scripted nodes (depicted with inset circle) are
flagged in the graph via one-hot encoding.

5.3 Choice of Model

Given a suitable correspondence between arbitrary simulated rods in contact and a trainable

graph abstraction (outlined in Sec. 5.2), we next aggregate data to inform our neural model. We start

by detailing the numerous components and design choices of our method, specifying the baseline

simulation we aim to imitate, and subsequently enumerating the features necessary to be drawn

140

from the physics-based strand configuration. Lastly we discuss the process of dataset generation for

training our data-driven graph neural network approach.

5.3.1 Rod & Contact Model

Data samples are collected from the popular and industry proven Discrete Elastic Rod (DER)

model [13, 12, 54]. Unlike Material Point Method [110] and position-based-dynamics [130]

implementations of strand interactions, DER approaches have been showcased at scale [93], display

complex impulse-driven dry friction behaviour [37], and are stable enough to be paired with implicit

integration schemes for increased efficiency. This simulation baseline also generalizes widely, and

can be paired with numerous forces [12], coupled together with other dynamics (e.g. fluids [54]),

and also used to drive the mechanics for both strand and cloth simulation [53]. Nevertheless, despite

its widespread adoption, DER implementations still suffer from a collision resolution bottleneck

much in the same way of strand models and simulators featuring large-scale contact handling.

5.3.2 Feature Design

Once assembled, the DualGraph must work to predict impulses not just based on topology and

connectivity information, but also the present state of the system. Unlike a physics simulation, the

Graph Neural Network does not operate on the strand degrees of freedom explicitly. Instead it must

first project chosen variables into a latent representation that is amenable supervised data-driven

gradient-descent optimization. This involves taking advantage of the encoder-processor-decoder

framework adopted by other Graph Neural Network simulations [150, 162, 163] to only handle

physical variables at the input and output of the model. This requires collecting the relevant input

features for the graph, i.e. strand nodes, strand edges, and contact edges.

Node features

Each rod of in the simulation is mapped to an unique node in the graph. As input, we consider

the velocity and position of each rod. In order to normalize against transformations in the rods

141

position in space, these quantities are projected onto the coordinate frame of the rod itself. As given

by the Discrete Elastic Rod formulation [13], the rod and material frames of twist form a coordinate

frame which is suitable. The material frame of the rod in world space is also included, along with

the relative stretch, twist, and bending properties of the rod as compared to its rest state. Lastly, a

final bit indicates whether the node is scripted or free to move, completing the 31 dimensional input

vector per node.

Figure 5.5: Dual feature mapping. Elastic rods map to a neural-friendly dual graph representation

by converting simulation edges to GraphNet nodes and connecting them with graph edges.

Contact features

In order to contextualize a collision across nodes, features for the contact edges on the graph

must also be populated. Since these edges bridge two rods in simulation, we first pass two scalar

normalized coordinate values indicating where the contact occurs along the two rods. The rods

themselves are directed by the vertex indices that compose them, giving a consistent mapping for

these abscissa values. Additionally a contact frame used to produce a frictional contact is also

passed in as a feature for the contact. This includes a contact normal direction between both rods,

as well as two additional orthogonal directions used for the friction tangent plane. These vectorized

142

matrices are followed by the relative and average velocity between the two rods, taken at the point

of contact. Lastly the material frames of the rods are also passed in for context, since all node values

exist in the coordinate system of these material frames. Of these features, the relative velocity,

average velocity, and material frames are all projected onto the friction contact frame of reference

of the collision.

Alternative Mappings

In order to accurately approximate the contact dynamics between strands, the graph must take

into consideration some view of the current configuration of the strands and the associated detected

contacts. Other allotments of the simulation degrees of freedom are also possible and discussed

here.

The nodes contain all the position and velocity information of the strand rods, and this informa-

tion is shared across the graph via edges representing internal vertices as well as edges pertaining

to collisions. However, if desired, it is possible to store twist and bending specific features on the

graph edges themselves rather than on nodes. This localizes the information where it is relevant

in the physics view of the scene, but (as discussed in §5.4) adds additional training burden to the

network.

Depending on the context it is also sometimes useful to consider appending input vectors with

aggregate features of nearby occurrences. This allows the nodes to share a more global and averaged,

rather than local and explicit, view of the system state which can benefit volume preservation or

fluid interactions. Doing so requires collecting statistics of nearby traits, such as density of strands,

density of contacts, or statistical moments, to provide neighborhood information centered at each

node.

Yet another alternative to the method adopted in our examples is to produce a simplified strand

cluster representation. Calling into mind hierarchical graph networks [112, 128], each strand in

the simulation maps not to a dual representation of nodes and edges, but to a single graph node.

Contacts still form between these nodes, but effectively connect strands rather than individual rods.

143

As is supported by the multi-graph basis for Graph Neural Networks [10], both self-edges and

multiple edges between nodes are permitted in this condensed abstraction. Effectively, the graph

mapping becomes a condensed view of the relative interactions between strands, forming a contact

cluster. The added benefit of this approach is the drastic reduction in nodes for the graphs, and

subsequently the more efficient relaying of features through the graph. In the case of long or distant

contact chain interactions, this allows information to travel more directly across the graph from

strand to strand. On the other side of the coin however, similar features must still make up the nodes

and edges of this compact view. This therefore creates an additional burden of localizing degrees

of freedom relevant to the contact on the contact edges themselves, or through added specialized

features on the nodes.

Lastly, it is also possible to combine both approaches for the sake of benefiting from both a

local and global view [128]. Such a scheme propagates information both short distances through

neighboring rod vertices and long distances within and outside of a strand by adding additional

edges that pool and distribute the attributes of each rod node to a higher order node representing

the strand itself. Collision connections then either take in both local and global features or are

potentially duplicated, passing between strands and again between rod nodes. A hybrid dual graph

network therefore looks both locally at individual rods but also at larger strand interactions, at the

cost of combining the computational burden of both scales.

5.3.3 Dataset Generation

Our method relies on supervised learning and therefore requires collections of input-output pairs

for training. To our knowledge, there are no existing contact dynamics databases available for use

in simulating strand friction, and so we handcraft our own with our goals in mind. Though various

solutions are possible (see 5.3.2), we inform our model by mapping end of timestep constrained

impulses to the start of timestep state of our strands. This is achieved by running simulations using a

desired set of strand material parameters and contact treatment, and recording the associated graph

networks for each timestep. Each sample is a collection of node and edge features, for each rod in

144

the simulation, along with graph connectivity information. Additionally, each detected collision

is recorded as in input edge, and the corresponding contact responses as saved as an additional

collision edge target feature. Section 5.4 details how features of this graph are transformed into

latent embeddings and used to predict a vector which aims to approximate the target features.

We take our data from the friction and impulse formulation provided by discrete elastic rods [93].

This approach has traditionally been shown at scale [93, 37] and suffers from the common contact

handling bottlenecks we aim to address. Other penalty-based variants [54, 109] or Eulerian

counterparts [125] may also be used to achieve different contact styles. In gathering data, we find it

sufficient to run small clustered strand scenarios with interactions indicative of the visual features

we desire. The ability to work with small datasets proves beneficial given the slow nature of strand

contact simulations. Rather than needing to run large slow simulations, we produce grand hair

interactions at scale by examining small patches of strands at similar packing densities. Keeping the

number of contacts low means we can produce diverse samplings of a given material space, and

learn how to recover from contact under many different configurations.

145

Figure 5.6: Typical training array. Small bundles are seeded at random and undergo a few seconds

of simulated motions. Here 8 clusters of strands operate for under 3 seconds and are used to infer

large grooms with tens of thousands of hairs throughout prolonged simulations.

All of our examples are derived from bundles composed of no higher than 50 interacting strands,

composed of up to 20 vertices each. By staggering clusters in space, we not only offset strands to

limit contacts, but also sample features at diverse coordinates, helping to ensure there is no world

frame or coordinate bias in our results. Each interconnected contact cluster results in a separate

training set graph, meaning our graphs do not always contain the same number of nodes, edges,

strands, or contacts. Diversity in the training dataset restricts the graph from naively learning a fixed

map from one set of initial graphs to another, and instead improves the network operators to react to

what is seen locally.

146

Robust Imitation

Given that the network performs a computational regression, it is limited in its ability to exactly

solve friction in all scenarios. Small errors, born out of either numerical floating point precision

or capacity to approximate, can lead novel contact states that diverge from the regime learned

in training. Moving away from known scenarios in turn makes it more difficult to predict valid

impulses, and possibly leads to further spiraling and degradation of quality. Though such scenarios

are possible, and increasingly common as the testing environment and target configuration grows

more distant from those witnessed in training, we found it sufficient to improve the quality of our

approach injecting noise during training. In the case of impulses, we add Gaussian noise on top of

the solution given by the Gauss-Seidel iterative solver after recording the correct impulses for any

given timestep or contact problem. Adding noise not only increases the robustness of the trained

model, but also helps to introduce new trajectories into the training dataset, even when the same

initial conditions are used repeatedly.

In cases where the target simulation is prohibitively far from instances explored in training, we

found success augmenting the training process with imitation learning. Because we are training from

entirely simulated examples, with no outside or user-in-the-loop input, this allows us to benefit from

principles of Direct Policy Learning. Rather than relying on a predetermined, fixed, or constrained

dataset, we instead have access to an interactive demonstrator that the model may query. By means

of a fully physically based target environment, this expert oracle can be used to provide feedback

on predicted roll-out trajectories and demonstrations; and means we can gather new data and evolve

the training dataset at runtime.

This form of Imitation learning proves particularly fruitful given the configuration of our

simulation state across timesteps are not independent and identically distributed from one another.

The output of one timestep, which is influenced by an impulse inference, will color the input to the

next timestep. Therefore, as previously mentioned, any approximation error may lead us towards an

unfamiliar input space, and this error may further accumulate as we strive to predict from only the

familiar that the network used for training.

147

Algorithm 3 DualGraph Contact Data Aggregation
1: procedure DATAAGGREGATECOLLISIONRESPONSE

2: Collect noise-injected contact samples near the initial state of the system
3: Train a Graph Neural Network on these samples
4: while The network fails to simulate the current scenario do
5: for a limited trajectory starting from this configuration do
6: Step the simulation using the latest network
7: Run the expert baseline simulation on each contact scenario
8: Augment the dataset with the ground-truth solution
9: Accept the network prediction and continue

10: end for
11: Re-train or continue to train the network policy using the new samples as expert feedback
12: end while
13: end procedure

Consequently, rather than anticipating all the data necessary for training and forming a large

comprehensive dataset ahead of time, it is easier for an ‘expert’ to demonstrate the target [157, 158,

159]. Starting with a small dataset, we begin to explore our world with our initial contact response

and utilize the oracle, i.e. the slow principled baseline solutions, to tame a possibly diverging input

space, having errors neither accumulate and the saving our model from places the expert never

visited.

Formally, to apply this approach, we adopt a Data Aggregation strategy [159] that starts with

(1) a DualGraph trained on initial principled hair contact demonstrations. Then, we execute the

following loop until we converge; in each iteration, we (2) collect trajectories by solving contacts

via a DualGraph (which was obtained in the previous iteration) and using to simulate the strands at

each timestep. Then, for every inference, we (3) collect ground-truth output from the oracle (what

would have the expert have done in the same configuration). Finally, we (1) train a new DualGraph

policy using this feedback. These steps are detailed in Algorithm 3.

5.4 Network Specification

Our approach adapts the encoder-processor-decoder framework adopted by previous GraphNet

simulation frameworks [150, 162, 163, 10]. The first encoding step converts features into an

148

in-place latent embedding on the graph. Next, the processing step works through the graph to relate

information across adjacent and incident graph elements (e.g. inform nodes with incident edges,

or sharing rod attributes with a contact that bridges strand nodes). Lastly, the graph is decoded,

transforming latent-space vectors back to physical quantities for use in the simulation. In a force or

contact-only based formulation, we decode contact edges to retrieve impulses. This enables us to

only consider contact edges of the graph when decoding onwards. If velocities are the desired output

than we convert graph nodes and material edges into the vectors of similar degrees of freedom that

indicate changes to velocities for each strand or vertex.

Encoder Architecture All of our individual input features (see §5.3.2) per graph element are

flattened and concatenated into a 1×N vector. These enter the GraphNetwork to be met with a series

of 3 Fully Connected (FC) layers of size 64. Each layer is accompanied by a ReLU [56] nonlinear

activation function in between each layer. The final activation layer is also passed through a Layer

Normalization [5] function. The resulting encoding produces a latent embedding that transforms all

of the input attributes, regardless of choice, omission, or addition of features, to a representation

with fixed and predictable dimensions.

Processor Architecture Up until this point the graph has been populated with features and

those attributes have been independently projected into a latent space. What remains is to share

information throughout the graph elements with adjacent nodes and edges. This processing step

can be thought of as propagating velocity, geometry, force, and other variables across the graph

connectivity as deemed relevant for resolving contacts. Figure 5.7 illustrates this process. This

core step begins by taking the latest node embeddings 𝑣𝑖 and pooling all incident nodes to form

a representation of the node-neighborhood. This aggregated vector is passed through its own

network, again consiting of 3 FC layers with ReLU activation and a LayerNorm component. A

similar pooling of contact edges associated with a given node is also performed to produce a latent

representation of the contacts present on a node. Together, the latest embedding of this node, along

with the accumulated contact and node-neighbors are passed through yet another network, 𝑓𝑣, to

149

generate an updated latent embedding for the nodes. This updated representation is then fed to the

contacts, which combine their own embedding 𝐶𝑖 with the two nodes that make up the contact to

update the current latent vector representing the contact.

Figure 5.7: DualGraph network processing block. The processing block updates latent embed-

dings of nodes and contacts. Nodes are updated first by pooling adjacent nodes and aggregating

incident contacts. Contact edges are updated last by looking at the updated nodes so that the

impulses can be directly computed by decoding without wasting computation.

Throughout these operations, whenever multiple elements are potentially involved there must be

a pooling operator in effect. This aggregating function is crucial for Graph Networks, since it allows

a flexible abstraction, permitting one rod to house zero or more contacts arbitrarily. Aggregating

must be order independent and funnel any number of latent vectors into one. Suitable candidates

include summation and averaging functions. All of our examples use unsortated summation to

aggregate more than one vector into one.

At the end of the processing step it is also possible to include a residual connection. This is

performed by simply adding the initial embedding of both nodes and edges to their post processing

150

step updates. Residual connections intuitively allow the network to focus weights on optimizing

the relative changes to variables, rather than the absolute values themselves. For deep neural

networks, this functional normalization property of residual connections also has the added benefit

of facilitating gradients from getting lost or blowing up.

Notably, each iteration of this processing block only distributes information one degree away

from the source. If further propagation is necessary, multiple processing-steps 𝑀 can be taken,

each divulging features further by one edge connection simultaneously across all nodes. Doing so

allows greater context for interactions at any given node or edge of the graph. However, doing so

comes at multiple costs to the overall system. Each additional step requires the output of previous

steps, therefore extending the computational and therefore time costs of the network inference by

𝑀. Adding more steps also has the effect of averaging together more and more attributes (taken

from further and further away) into nodes and edges. If the capacity, i.e. size of latent layers, is

not sufficiently high, the resulting prolonged processing will diffuse variables and lead to all graph

elements looking the same. As a balance between these competing factors, our models for our

examples utilize just 3 steps to compromise the need for a small and efficient network.

Decoder Architecture Lastly, we must decode out updated latent embedding to reflect a term

applicable to the strand configuration of the simulation. We pass the latest contact edges through a

series of layers, similar to that of our encoding architecture. This again consists of 3 fully connected

layers with ReLU activations. Lastly, rather than applying a LayerNormalization, an additional fully

connected layer is applied without any nonlinear activation function. The output of this layer serves

as the output of the network.

5.4.1 Training Scheme

Training this network architecture requires several considerations. We utilize Adam Opti-

mizer [95] with a learning rate of 1E−5 to update the weights. Due to the disparity in sizes and

memory intensive nature of training a Graph Neural Network, we only optimize one graph at a

151

time. This in turn provides a batch size that is of the order of the number of output contacts per

graph, which varies for each contact cluster. This training process is repeated for 1E6 iterations

Adam optimizer, with learning rate, batch size, number of iterations. In all of the training steps the

number of processing steps remain fixed. If the number of processing steps is large however, then it

is possible to first converge network weights on a small number of steps for a set number of epochs

prior to incrementally changing the number steps. In order to improve training and convergence, it

is also fruitful to normalize the input and target variables. All input and output features are scaled

and shifted to sit between 0 and 1, allowing the network gradients to focus on degrees of freedom

irrespective of their physical world dimensions. Differences between the graph output and desired

target impulses are computed using a LogCosh function per contact edge, and these values are

averaged across all edges to produce a loss term.

5.5 Results

The desired output of a hair contact pipeline is the efficient and accurate modeling of strand-

strand behavior. The baselines discusses in this work are geared towards visual quality and only

limited application towards engineering standards. This is in part due to the compromises made in

terms of contact resolution, which are traded off for speed and performance considerations. Thus it

is prudent to show that by using the proposed DualGraph implementation we are able to reduce

the cost of collision resolution in hair simulations without introducing unruly visual artifacts. Our

approach is the first to combine strand collision resolution with data-driven methods, and stands to

benefit from the limitless data generation that physically-based simulation provide. This exploration

introduces an avenue for faster large scale hair simulations, paving the way for future data driven

explorations relating not just to hair or thin structures, but other complex and challenging-to-map

physics-based phenomena.

152

Figure 5.8: Hairball. Recreated grooms achieved by state-of-the-art hair simulations [93] are

simulated at a fraction of the computational cost. Here small 50-strand bundles of curly hair contact

treatment are generalized and extrapolated to 3 thousand longer wavy hairs.

We are motivated by early successes in replacing contact solves with inferred approximations.

Through a mixture of DualGraph and careful data aggregation, results have been demonstrated at

various scales. This includes the precise contact required to simulate piles of 2-5 strands coming

into stable resting contact. The low number of strands involved demands accurate treatment, since

inconsistencies will lead to tunneling and errors cannot be hidden amidst the bulk of the strand

behavior. Our approach also evaluates examples at larger scales. Grooms sought by artists involve

thousands upon thousands of strands, often serving as guides and extrapolated using skinning

weights [25]. The ability to perform stable simulations with more strands improves the looks

of such methods. Thus we explore larger hairball examples (see Fig. 5.8) to see how small but

representative contact scenarios can inform a groom that are several orders of magnitude higher,

and also consider how our trained models generalize. This is done by exploring several factors not

observing in training, including: more hairs, altered strand geometries, varied packing densities,

new motions, and different material parameters. Asides from visual quality, quantitative statistics

are also gathered for these examples to showcase the advantages of a machine learning inference

approach.

153

5.5.1 Qualitative Comparisons

Figure 5.9 showcases the quality of our method. Using a simple "curly" hair style trained on

a small contact interaction, we increase the number of strands and vertices while maintaining all

material parameters fixed. We find that the overall visual quality of the groom is preserved, with

knots and bundles forming immediately after just one hair flip. Unlike continuum-based contact

methods, there is no stiction or gross movement of the strand clusters, and though each strand is

capable of moving freely they still form into bundles. On the right we see the effects of turning off

collision resolution between strand pairs. The strands there are free to tunnel and pass each other,

and appear to swim on the surface of the collision mesh, swinging freely. Our method in the center

closely approximates both the overall appearance and local strand-friction phenomena desired in

strand simulation, but does so at a fraction of the cost.

Figure 5.9: Quality of contact approximation. Here we find 3 hairballs consisting of 500 strands

that are each simulated by different means and captures at the same timestep after performing a hair-

flip. On the left (a) shows the baseline simulation, the center (b) shows the results of our machine

learned contact approximation, and on the right (c) the relative effect of turning off strand-strand

contact handling.

We also find that the visual attributes achieved at small scales translate well to larger grooms as

154

well. Such qualities are promising to artists who may wish to toy with ideas in quick small iterations

before launching larger camera-ready simulation runs. Figure 5.10 looks at how the same features

sought after in the training set are highlighted and heightened at different growing scales. Such

growth continues, with the largest sims (fit into GPU memory) consisting of 16-thousand strands,

and running stably without stretching, blowup, or visual artifacts.

Figure 5.10: Network results as strands grow. Increasing the number of strands does not impact

the quality of results, so long as the density of strands remains similar to that of the training set. On

the left (a) shows the a 500 strand simulation, the center (b) shows 1000 strands, and on the right (c)

3000 strands are used, all resulting in similar local and global features.

Stability is a key factor for hair simulations. Larger scenarios are not only slow, but greatly

increase the combinatorial number of contacts possible between individual rod elements. As this

number grows there is increased risk of stretching and other physical instabilities causing the

simulation to fail due to the stiffness of competing strand forces. Therefore it is crucial that any

novel contact scheme not introduce jitter or additional stiffness burdens on the dynamics of the

system. In Figure 5.11 we see that even under dense scenes with curly entangled hair, or through

long straighter hair-types, the proposed method does not impede simulation.

155

Figure 5.11: Stable high-density contact scenarios. Simulations relying on neural inferences

remain stable even at large scales. On the left (a) shows the a 16-thousand strand simulation, and on

the right (b) longer locks can be found in a straightened style.

Generalization Machine learning methods rely on a dataset of observations in order to optimize

performance. Since no dataset can be exhaustive, it is prudent to understand how a model generalizes.

This includes both interpolation to scenarios untested but well within the real of available samples,

but also extrapolation to new parameters. In the case of strand simulation with contact dynamics,

elements of interest include motions seen in training, qualities of the hair groom, as well as statistics.

Larger groups of strands are capable of behavior not achievable by smaller bundles, such as dense

knots, appearance of volume, or weighing down a matted section of hairs. Here we explore these

concerns of generality.

Our experiments draw from small interactions consisting of no more than 50 strands. Notably,

our results feature more than two orders-of-magnitude more strands trained on these small instances.

These examples also all range in the number of vertices involved, extending the training set’s 20

vertices to up to 120 strands. This greatly increases the degrees of freedom of the simulation,

but thanks to the fixed cost of inferences, has negligible impact on the time to compute contact

impulses. The only considerations that must be kept in order to generalize in such a way are the

156

density of interactions seen in training, which must be kept close to that of testing and validation.

Increasing the number of strands requires increasing the surface area where strands can be seeded.

Relatedly, we find that increasing the DoF of the strand can cause the length of rods to shrink

if the strand length is not increased. Although there are no physical restrictions on shortening

rod lengths, the associated dynamics and forces experienced may stray further away from those

present in the training set. This is because of the length dependency present in a strand’s stretching,

twist, and bending forces, leading to a sensitivity that hard to account for if not samples adequately.

Nevertheless, we find that our method is able to generalize to various new parameters without issue,

as shown in Fig. 5.10 and Fig. 5.11.

Figure 5.12: Generalization of weights. Weights trained on one hair type are not restricted to a

single style of hair. Here we see that the curly strands used in other examples can also provide

contact resolution for long wavy hair (top-left), thicker curly hair (top-right), dense wavy hair

(bottom-left), and pseudo-straight hair (bottom-right).

157

Extrapolating to new scenarios is often also a challenge for data-driven models. Because our

method does isolates the problem to look at impulses, we find we are able to resolve contacts in

completely foreign scenarios. So long as the relative features present in these new scenarios is still

knowable from training, we can handle contact without modification to our algorithm or needing to

train new weights.

Looking at Figure 5.12, we find that the same fixed weights and model are able to support

various unique grooms. Coarse dense-curly hair is leveraged to produce examples with long, wavy,

and straight hair. Moreover, even if thickness parameters are changes in the strands, stable resting

contact is still achievable. Such generalization is pivotal for harnessing small contact simulations to

inform larger more complex scenarios without needing to retrain.

5.5.2 Quantitative Comparisons

In addition to qualitative results, measurements and statistics based on desired behavior and

heuristics can also be used to explore the quality of Graph Network based collisions. Namely, by

comparing the resulting velocity field properties of neural contacts and by monitoring tunneling

artifacts, one can place the stability of our approach in relation to the baseline simulation.

Velocity Profiles Although the impulses are trained on a loss—and work to act—only on the

contacts of colliding strand elements, the effects of neural inferences on velocities can also be

observed. This is achieved by first running a baseline simulator with a fixed tolerance for impulse

accuracy threshold and a large number of solver iterations to achieve a solution. This same simulated

setup is then repeated for other lower iteration counts as well as with neural network based contact

impulses. A proxy for velocity error agnostic to rollout and trajectory discrepancies can then be

calculated by comparing the average and velocity error accumulated on the strand vertices.

To test, eight hairball bundles are simulated to toss about using randomly seeded configurations.

At every frame, contacts detected are treated four different ways. First by running the baseline

simulator with 10000 Gauss-Seidel iterations and up to 3 adaptive nonlinar iterations. Next the

158

neural impulses are applied to the same contact problem, as well as the baseline simulator capped at

100 and 500 Gauss-Seidel with no adaptive nonlinearity. For each contact cluster, the relative error

between constrained velocities is computed for all strands, and the average per cluster is tracked

across frames. The relative error for impulses at every contact are also tracked.

Figure 5.13: Statistical strand bundles. Performance profiles pertaining to constrained velocities
and predicted impulses are collected over eight hairballs. Each contact graph generated is solved
four different ways, with a low, medium, and high number of baseline solver iterations as well as
neural impulse inferences.

Results of this experiment can be found in Figure 5.14 and Figure 5.15. High errors appear in

the velocity profile due to small errors in impulses. This comes from the measurement of average

relative error, especially during periods of resting contact, which are difficult to obtain by the

network inferences. During periods of motion, the velocity error relative to a baseline solver allotted

large numbers of iterations is on par with those exhibited by small and medium number of iterations.

159

Figure 5.14: Relative velocity error. Relative error averaged across strand vertices is tracked for
every contact problem across eight bundles simulating a hair toss. Extended periods of resting
contact observe by the baseline simulation and not enforced in the network impulses result in large
velocity errors. Notably, even one impulse showing error in a case of resting contact can lead to
movement of vertices which exhibits high error compared to baseline methods.

When considering impulses, Figure 5.15 showcases the effect of training to match large iteration

results directly. In looking to reproduce impulses from a solver directly, the resulting velocities may

not be desirable, but lower relative error is achieved as opposed to the same baseline solver with

smaller numbers of iterations. This suggests the network learns to shortcut the baseline results, and

may possibly serve as a warm-start, similar to the methods that rely on principled simulation as a

post-processing step [125, 172].

Rod-Rod Tunneling Inter-penetrations may occur between rod-rod elements in contact if col-

lisions are not treated properly. These non-physical collision treatment artifacts may occur in

various ways. Casual drift may arise across timesteps if the impulses used to treat contact are

too small to resolve a collision with a thickness boundary. In the case of large timesteps or large

160

Figure 5.15: Relative impulse error. Whereas the velocity error is high for neural impulses,
training to match impulses allows for low relative error with regards to impulses produced by the
largest amount of baseline iterations. Relative error on impulses produced by network inferences
remains low across contact scenarios. On the other hand, baseline solutions with lower iteration
counts produce large relative errors in their solutions.

incident velocities between strand elements, it is also possible for a rod to pass through another rod

entirely. If center-lines of rod elements pass through unresolved, it becomes challenging to rectify

the tunneling and acquire the valid desired collision normals. Lastly, tunneling can also occur if

nearby elements are not conservatively considered throughout contact handling. In such scenarios

resolving some collisions may push rod elements into other novel contact states that are not treated

within the timestep. Such artifacts are especially present when contacts are detected near vertices of

bent rod segments, but detection does not account for neighboring or adjacent rod elements. We

perform two experiments, one targeting practical use with large degrees of freedoms and another

aimed at isolating contact errors, to study tunneling artifacts introduced by approximating contacts

with neural inferences.

161

Figure 5.16: Evolution of a strand bundle. The same initialized hair groom (a) is simulated twice

with different contact resolution techniques. Frames are captured after a second of simulation once

resting contact is achieved for the baseline simulation (b) and the network inference (c). Similarly,

the final frame of the simulation after tossing the hair bundles for a few seconds shown (d) for the

baseline simulation and (e) for the neural network derived contact results.

First we revisit the scenario in Figure 5.13 to determine how many tunneling events appear

throughout a modest simulation setup with a groom tailored for large scale examples. The same

simulation is run twice, once operating strictly with Graph Neural Network derived impulses and

another performing with baseline contact mechanics. Each example experiences the same run-time

duration and scripted motions. Frames captured from these twin runs are shown in Figure 5.16.

Differences can be noticed from the configuration achieved both at initial resting contact (b & c), and

after experiencing a 360◦ hair-toss motion (d & e). Although the overall appearance is preserved,

some visual volume loss is experienced from the network groom. With regards to tunneling events,

the baseline simulation experiences 4 instances where new contacts are detected after collision

resolution is applied. The network approach, albeit significantly faster, is less stable and showcases

162

487 drift occurrences and 6 center-line tunneling events throughout the 3, 000 contact timesteps

simulated. Although drift does not produce tunneling but instead overlap of rods defined with

thicknesses, the center-line crossing events suggests that for simulations where stability or accuracy

is paramount, such as those with engineering implications, the trade-off for speed must be carefully

vetted.

Figure 5.17: Resting contact. Arrays of strands initialized with random perturbations to position,
velocity, and number of strands in orthogonal configurations are used to train and test resting
contact treatment. Test result frames from initialization choosing one such setup of strands and after
simulating for over 20 seconds are shown to verify the stability of resting contact.

In a second experiment, new network weights are trained with aim of preventing tunneling

from a much simpler strand setup. Arrays of orthonogonally oriented strands are placed above

one another in stacks, and dropped to produce a delicate self-supporting structures from resting

contact. Such a setup guarantees that even one center-line tunneling event creates not only a drastic

visual artifact, but leads to the unraveling of the remaining points of contact associated with the

tunneling strand. Once trained, we randomly choose one configuration of top and bottom level

strands to showcase the ability to perform resting contact. Strands are axis aligned for simplicity in

visualization, although any rotations of these setups are also explored. After running for extended

periods of simulation, i.e. over 20 seconds using a timestep of 1𝐸−3, we find the simulation is stable

enough with neural contacts to produce resting contact without tunneling or other visual artifacts

163

if trained on simpler and more representative scenarios. No center-line crossings are observed

throughout the entire simulation. Such results indicate how a targeted training approach can be used

to ensure stable results when either less degrees of freedom are at play or simulations environments

that more closely resemble training than chaotic and large scale hair grooms.

5.5.3 Quantitative Advancements

Figure 5.18: Time per step. As strands become more entangled, the number of contacts grows.

This leads to timesteps becoming slower, greatly impacting the overall time to simulate. The total

time per timestep here (orange) is dominated by the time required for collision resolution (blue).

In addition to achieving visual parity, it is also important to consider the computational trade-offs

of using an alternative contact resolution scheme. Modern hair-contact simulations are dominated

by the costs of resolving collisions. Whereas strand dynamics can be solved independently and in

parallel, collision resolution is often performed by iteratively improving all constraints detected

during the broad phase of collision handling. Figure 5.19 reveals how slow contact resolution can

become the bottleneck, even throughout modest simulation scenarios.

As simulations grow in size, this problem also scales to result in prohibitively slow simulation

164

pipelines. Pipelines grind to a halt not just due to the increased number of strands, but also contacts.

As seen in Figure 5.18, a groom fixed with only 1000 strands becomes evermore entangled as the

hair geometry tosses and turns. This leads to a growth in number of contacts, subsequently requiring

more time to resolve each one by iterating over them a fixed number of times.

Figure 5.19: Relative cost of collision resolution. A plot showing the relative percentage of a

timestep spent on collision resolution. Even for a problem as small as 1000 strands, resolving

collisions overwhelmingly accounts for the majority of the timestep’s cost.

As the size of problems grow, timesteps can take as long as 20 minutes per frame [93]. Even for

large timesteps, this leads to simulations which require days, if not weeks, to terminate. Notably, this

is true even in cases where background preconditioners are employed. Hybrid Eulerian-Lagrangian

approaches [125] reportedly use 603 cells for volumetric step, with examples ranging from 1200–

10, 000 hairs. Yet even so, they require 15 min per frame to simulate, with 26.9% Lagrangian

collisions, 33.9% volumetric, and 39.2% of time spent on the integration of their mass-spring

model.

165

Figure 5.20: Time cost of growing contact problems. Iterative methods scale poorly as the number

of contacts grow. On the other hand, the time cost for computing an inference is fixed, and can be

trained to approximate any underlying physical model or baseline complex implementation.

Using Graph Neural Networks allows us to sidestep these issues. By achieving qualitatively

robust and stable contact results, we are able to produce timesteps at a fraction of the cost by relying

on inferences. Regardless of the size of the problem, the network only needs to operate 𝑀 number

of steps on the contact edge neighborhoods, resulting in a low linear cost. As shown in Figure 5.20,

the baseline simulation shown in black grows super-linearly with the number of contacts and the

green cost of the network approach stays the same. The large gap between the two approaches is

accentuated in Figure 5.21, where the relative speed-up is illustrated. As the number of contacts

grows this speedup varies, often reaching rates between 300× and 400× reduction from the baseline

simulation.

166

Figure 5.21: Network advantage as contacts scale. Given the fixed cost of performing a collision

with neural networks, the more contacts present allot for increased performance speedups. Notably

above roughly 100 contacts it always becomes advatageous to resolve contacts with the network,

and the boosted performance is only bound by processor memory considerations.

Remarkably, the neural network approach also stands to benefit from the use of parallel proces-

sors. Even with large quantities of nodes and edges, each with their own features, moving back and

forth from a GPU, there is still a significant speed advantage. This extends the ability to simulate

strands with friction-based schemes and other data-inspired models of contact to the GPU. Doing

so has the potential to make larger physically-based strand simulations more readily available to

applications such as films and games, as it approaches real-time rates.

167

5.6 Conclusion

5.6.1 Future Work

There are several avenues associated with using machine learning for strand simulation that

remain to be explored. This includes the numerous combinatorial alterations that can be made in

the representation of the graph, as discussed in Section 5.3.2. Methods which consolidate strands

into singles nodes have much to gain in terms of computational efficiency, but an understanding of

how to embed features in such a framework remains to be explored.

Input factorization Part of the robustness of our approach draws from the ability to generalize to

new scenarios. We take careful steps to factor out rotations, translations, and any other transforma-

tions of our variables by projecting them to a local frame. Given this success, it is also interesting

to consider what else may be factored and the resulting effects on the neural-assisted simulation.

Quantities such as the timestep size, contribution from forces and impulses, velocities, and other

geometric factors (e.g. length of rods) have the potential to both further generalize our approach

and possibly increase the deviations acceptable from the training dataset.

Style Transfer Data driven methods allow for style transfer based on the training set. Further

exploration of alternative contact strategies could reveal stylistic properties in the data collected,

that hopefully translate to the network impulses as well. Such scenarios might include overlaying

contact Graph Neural Networks on a simulation that resolves contacts via a background grid.

Alternatively, pairing networks with data derived from wet hair, rather than dry-hair explored in this

work, might also result in different appearances and contact schemes. Elements of this sort that

effect a simulations ability to preserve volume, influence motion, and overall groom warrant future

work.

Inverse Grooms Finding a suitable neural representation for strand simulation opens the door to

many opportunities. Mapping kinematics, dynamics, and geometry information to a graph provides

168

a sandbox for learning the configuration of a system, and can serve as a starting point for finding

systems at rest. Balancing the internal forces in a given initial state would allow for inverse-hair-do

generation, allowing artists to design stable grooms. Moreover, these initial geometries could be

inferred from photographs, greatly advancing the quality of personal avatars by granting them

access to physically-based strand dynamics.

Smoothing predictions We are currently predicting solely the impulses of our system. This

allows us to rely on traditional mechanisms to integrate our strands forward and resolve the stiffness

of our forces. However, in a fully differentiable approach, further performance gains could be

achieved by replacing not just contact resolution, but the full end-to-end simulation pipeline with a

Graph Network. Attempts to do so must face the issue of nonlinear contacts introduced through

collision detection. However, modern works involving neural-implicit representations and neural

signed-distance-fields provide encouragement in this direction.

5.6.2 Discussion

We introduce DualGraphs for data-driven treatment of strand contact dynamics via Graph Neural

Networks. To our knowledge, this is the first neural-net driven approach tailored to handle collisions

in strand simulations. Our framework is geared specially for strand geometries, and modifies Graph

Network machinery to emphasize the prediction of edge-located contact impulses at scale. The

resulting behavior of simulated strands visually matches that of the baseline iterative solve, but

at a much higher simulation throughput. Quantitative and qualitative comparisons are made for

large scale simulations showcasing various styles and material parameters for hair simulation. The

resulting simulations generalize to scenarios that vary drastically from the training regime, and also

scale predictably unlike traditional methods. Our approach is portable, it can be run on single-thread

and parallel processors alike, and supports any strand model that may be translated to an abstract

graph composed of nodes and edges. Such flexibility presents a promising step towards other

partnerships between physical simulation and the growing machine learning community.

169

Chapter 6: Discussion

6.1 Summary

Example based exploration is a powerful tool. Numerous scientific and engineering phenomenon

are difficult to describe mathematically but easy to observe. Custom designed shapes can be

characterized by their geometric features, e.g. bumpy, thin shell, containing holes, or sharply angled.

The space of possibilities may seem endless, especially given when taken at unique orientations.

However, by sampling large datasets of non-expert designs one can immediately gain a better

understanding of the spectrum of configurations and categorical patterns that manifest in practice.

Likewise, it may appear at first that modern processors release noisy and indistinct magnetic

radiations, if they leak signals to begin with. Nonetheless, observing multitudes of sensor signals

in sync with calculations reveals a latent relationship between emission and command. Even in

the case of complicated and entangled hard to compute physical interactions, this too holds true.

Patterns begin to emerge from data that is otherwise complex when large quantities of measurements

are collected and analyzed.

Simulation has the potential to work hand-in-hand with data-driven techniques. Virtual explo-

ration saves both cost and time; photo-realistic renderings can capture views, vast combinatorial

alterations to network topologies can be constructed, and millions of physically-accurate strand

measurements can be collected, all without depleting resources, risking physical failures, or wasting

time. Even in the case of infeasible situations, these too may be studied in simulated environments to

prepare for scenarios to come. That is, shapes that are currently challenging to manufacture can still

be considered, exotic architectures may be observed, and arbitrary hairstyles can be explored, all

without limitation. Exploration inside a digital sandbox can also be performed thoroughly; statistical

insights can be gathered from any and all angles, and solutions to problems can be dissected and

170

tested in full. As discussed throughout this thesis, simulations play a large role in the research

and design of algorithms. LayerCodes are the product of numerous design choices that are made

apparent and validated when seamlessly applying tags to thousands of shapes and interpreting the

overall success. Similarly, without offline simulation the snooping of neural architectures would

require far more assumptions and leaked recordings from the target, yet by emulating possible

scenarios the side-channel attack presented becomes far more potent. Moreover, in the case of

lethargic hair simulations, the simulations themselves become the answer as a source for data to

fuel data-driven enhancements to the most challenging bottlenecks.

The key to leveraging simulated environments, however, derives from how samples are collected.

Carefully structuring the data collected, and structuring the simulations, further elevates the reach

of simulated techniques Graph algorithms. A primal and dual graph abstraction allows LayerCodes

to efficiently isolate and process geometric invariants in the relative ratio of layer-heights between

adjacent layers. Graphs also allow for the optimization of potential parameters in the side channel

analysis of neural networks. In the case of expediting large scale strand contact simulations, Graph

Neural Networks present the most flexible and adaptive medium by which to mold strands into

network amenable features for training and inference.

This dissertation works to harmonize the intersection of data-driven methods, simulation tech-

niques, and graph-based formulations into more than the sum of its parts. Each application presented

is unique and distinct in its real world constraints and considerations. The ability to apply a single

methodology between such diverse problems speaks towards the potential and broad applicability

of the proposed approach. In each case, state of the art solutions were made possible solely by

harnessing simulated datasets with graph algorithms.

6.2 Contributions

In the case of LayerCodes, this methodology enabled the ubiquitous tagging of complex

custom shapes. The method provided is robust on arbitrary geometries, and accessible through a

conventional camera. Furthermore it generalizes regardless of medium, compatible with any type

171

of 3D printer or additive manufacturing technique. It also can be implemented to preserve the

appearance and structural nature of a tagged object, whilst still providing gratuitous added depth

information. Stress tests are performed virtually to distinguish valid choices for layer heights, and

challenging cases in the presence of occlusions are discussed. Validated across 4,835 unique shapes

and over 145, 050 photo-realistic renderings, LayerCodes provide a functional and robust alternative

to conventional barcodes and other physical hyperlinks.

With regards to side-channel security, the partnership of synthetic data and careful abstraction

advances the threat of electromagnetic side channel attacks to extract neural architectures. Prior

attempts have only demonstrated recovery on shallow networks, (e.g., fewer than 20 layers) and on

more limited edge hardware. The successful black-box extraction of deep network models made

up of hundreds of layers, ones that are structurally more complex and more prevalent in practice,

through synthetic offline simulation serve to raise awareness of the GPU as an information-rich,

easily and non-intrusively probed side channel. With just one scan, this novel attack can specify

layers and their parameters without ever leaving a digital trace. In strong contrast to existing

literature, the proposed approach achieves over 90% accuracy through the simple use of an off-the-

shelf $3 sensor. The simplicity and robustness of the threat gives way to many suitable defenses by

way of obfuscation, prevention, and jamming that are discussed in hopes of promoting security for

the the growing intellectual pursuits of the machine learning community.

Large scale physical simulations also benefit from a directed data driven approach. By leveraging

the methodology directly, simulations that once took hours and days can be speed up to take just

minutes and seconds. Graph Networks trained on large handcrafted contact datasets allow for the

first neural driven strand contact simulation pipeline. Whereas previous applications of Graph Neural

Networks operate on tens to hundreds of nodes, this study works almost exclusively at massive scales

featuring hundreds of thousands and sometimes millions of graph elements. Competitive speedups

of up to 400× faster solves than traditional state-of-the-art methods are produced, without any

additional jitter or artifacts. The result is a fully generalizable, portable, scalable, and representation-

agnostic approach, capable of harnessing small datasets.

172

6.3 Limitations

While the methods discussed in this dissertation represent state of the art results in their

respective fields, they are not without their limitations. Each approach was developed with target

environments in mind, and requires careful consideration in order to be used properly.

LayerCodes are quite robust in their ability to handle an expansive zoology of shapes. The

encoding method however does not provide any build in error-correction as is common to other en-

coding schemes. There is no inherent limitation preventing the adoption of existing bit-certification

strategies, but adding those comes at the cost of lengthening the tag. Additional complications that

may arise from lengthened tags were not part of the study, and thus caveat emptor. The dozens of

actualized LayerCodes presented were printed on commodity 3D printers, as such industrial printers

may be more suitable for smaller and precise layers suitable for longer bit-streams. Nevertheless,

one of the main limitations of LayerCode is the need to tune parameters, namely base-bit-height 𝑀 .

The size of each layer as it appears under perspective projection is greatly effected by the shape

of the object. In particular, self-occlusions can greatly complicate the analysis, both in hindering

image processing but also in producing difficult to interpret graphs. LayerCodes excel in settings

of ideal lighting, such as factory assembly lines or displays that grant line-of-sight. Any use for

safety-critical applications where these conditions cannot be met is therefore discouraged.

The neural snooping technique discussed in this paper is also not without fault. The approach

presented relies on heuristic assumptions concerning the possible space of layer parameters that are

discussed in detail. However, granted the exceeding pace of machine learning advancements, it is

conceivable that future network designs may abandon the foundational and practical considerations

that prompted those assumptions. Furthermore, neural topologies are revealing evermore branching

networks, ones that feature self-loops, concatenation, and summation of logits. These forks, although

serialized on the GPU, cannot be handled by our method since it is unclear which layers feed into

which other steps without some prior knowledge of the underlying architecture. It is expected

that these difficult designs, along with physical access to the computing hardware, are the main

173

obstructions to practical side-channel attack presented.

Merging machine learning with physics-based simulations is an endeavour that is still in its

infancy. By introducing model reductions, approximations, and regressions to various points of a

principled pipeline, one risks the loss of key guarantees in terms of conservation of physical laws

(e.g. momentum, energy, thermodynamics). As such, it is important to first explore these ideas in the

lower risk realms of visual applications, such as the gaming and entertainment industry, rather than

engineering settings. The method presented is able to produce fast and stable contact mechanics

that give off physically correct appearances. Side-by-side however, we can see the artifact of errors

introduced by impulse approximations, most pertinently in the loss of volume from large grooms of

hair. Poor treatment of friction, or dislodging resulting from numerically imprecise contacts allow

strands to not only tunnel, but nudge past one another. Repeated over many timesteps and active

motions of the strands, this effect culminates in a less defined, overall messier and lower volume

appearance. Due to the large, complex, and combinatorial nature of possibly valid strand dynamics,

the resulting look remains visually plausible but nevertheless not ideal.

6.4 Future Work

These three studies highlight individual achievements as part of a larger work. The scientific

pursuit of better results does not end with these exhibits, but instead these applications serve as a

launching point for future research.

In general, it would be interesting to explore how end-to-end simulations may leverage shape

datasets for even more advanced tagging techniques. LayerCodes with more than two layer types

would exponentially increase the encoding capacity of tags whilst reducing the length of bit-streams.

Better yet, two-dimensional tags may also be achievable if differentiable rendering can help close

the loop in optimizing what a fixed ideal tag may be under various viewpoints. Such extensions

would also orthogonally apply to the use of LayerCode tags for robotic grasping, whose on-object

manipulation hints promise to trivialize what is otherwise a notoriously challenging task. From the

security perspective, each tag experiences unique defects and imperfections during manufacturing,

174

which if captured could lead to physical one-way tags that are easy to perceive but difficult to

counterfeit.

Magnetic fluctuations are not tied to graphics processing units, but a byproduct of any electrical

circuitry. Examining mobile devices for neural side-channel leakage remains to be studied, yet

grows in relevance with the widespread adoption of artificial intelligence in edge-devices. Similarly,

the approach presented in this thesis does not depend on magnetic leakage, but any sort of correlated

signal. Future work should explore the efficacy of our pipeline sourced by other physical or digital

side-channel traces. Lastly, the analysis provided focuses on acquiring information from networks

as they inference. Attacking training schedules and other parameter tuning related properties is also

of interest and requires formal feasibility studies if physical access is permitted during training.

Proving that machine learning can benefit simulations, when in turn simulations can generate

data for machine learning, opens the door to an exciting area of scientific discovery. Many

complex physical phenomena do not have explicit definitions in mechanics or physics, and the

ability to observe, model, simulate, and validate creates an efficient framework for defining these

previously out of reach behaviors. As hardware capacity grows and neural architectures scale,

it will be interesting to explore the range and limitations of these seemingly unbound methods.

Specifically inverse-kinematics problems, such as converting a photo to a simulated self-supporting

representation in equilibrium, will serve countless downstream applications in understanding

the real-world. Additionally, further pushing the treatment of contacts based on neural implicit

representations can tie together many challenging problems related to collision avoidance, grasping,

and unified simulation frameworks. Extending this research towards such an approach would

leverage the lessons learned via complex and entangled strands, and become applicable for any

arbitrary physics based simulation.

175

6.5 Conclusion

Figure 6.1: The shoulders we stand on. This work lives at the intersection of three decorated

sub-fields of the computer science community.

As data driven methods continue to thrive, the search for comprehensive datasets–along with

the desire to wrangle raw and noisy observations–will only develop further. The computer science

community is pushing the frontiers of the state of the art at a rate that cannot be kept up with by

traditional means of collecting data. Therefore the ability to measure samples freely from controlled

simulated environments may prove to be the missing piece to growing efforts in scientific and

engineering research. The feedback loop of models that become more accurate with better data, and

simulations that become more robust with better models, has the potential to numerous engineering

disciplines, far beyond just the applications discussed throughout this thesis. With this outlook

in mind, I hope the contributions discussed here will inspire further research that takes advantage

of graph-managed data-driven methods and pairs them with the endless the limitless sandbox for

scientific exploration made available through physics-based simulation.

176

References

[1] M. Abadi et al., “Tensorflow: A system for large-scale machine learning,” in 12th USENIX
symposium on operating systems design and implementation (OSDI 16), 2016, pp. 265–283.

[2] M. Alexa, K. Hildebrand, and S. Lefebvre, “Optimal discrete slicing,” ACM Trans. Graph.,
vol. 36, no. 1, 12:1–12:16, 2017.

[3] Amazon, Amazon elastic inference pricing, https://aws.amazon.com/machine-learning/
elastic-inference/pricing/, Accessed: 2021-01-22.

[4] F. de Avila Belbute-Peres, K. Smith, K. Allen, J. Tenenbaum, and J. Z. Kolter, “End-to-
end differentiable physics for learning and control,” in Advances in Neural Information
Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, Eds., Curran Associates, Inc., 2018, pp. 7178–7189. [Online]. Available:
http://papers.nips.cc/paper/7948-end-to-end-differentiable-physics-for-learning-and-
control.pdf.

[5] J. L. Ba, J. R. Kiros, and G. E. Hinton, Layer normalization, 2016. [Online]. Available:
https://arxiv.org/abs/1607.06450.

[6] S. W. Bailey, D. Otte, P. Dilorenzo, and J. F. O’Brien, “Fast and deep deformation approxi-
mations,” ACM Transactions on Graphics, vol. 37, no. 4, 119:1–12, Aug. 2018, Presented
at SIGGRAPH 2018, Los Angeles. [Online]. Available: http://graphics.berkeley.edu/papers/
Bailey-FDD-2018-08/.

[7] D. Baraff and A. Witkin, “Large steps in cloth simulation,” in Proceedings of the 25th
Annual Conference on Computer Graphics and Interactive Techniques, ser. SIGGRAPH
’98, New York, NY, USA: Association for Computing Machinery, 1998, pp. 43–54, ISBN:
0897919998. [Online]. Available: https://doi.org/10.1145/280814.280821.

[8] L. Batina, D. Jap, S. Bhasin, and S. Picek, “Csi nn: Reverse engineering of neural network
architectures through electromagnetic side channel,” in Proceedings of the 28th USENIX
Security Symposium, USENIX Association, 2019.

[9] P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, and K. kavukcuoglu, “Interaction networks
for learning about objects, relations and physics,” in Proceedings of the 30th International
Conference on Neural Information Processing Systems, ser. NIPS’16, Barcelona, Spain:
Curran Associates Inc., 2016, pp. 4509–4517, ISBN: 9781510838819.

177

https://aws.amazon.com/machine-learning/elastic-inference/pricing/
https://aws.amazon.com/machine-learning/elastic-inference/pricing/
http://papers.nips.cc/paper/7948-end-to-end-differentiable-physics-for-learning-and-control.pdf
http://papers.nips.cc/paper/7948-end-to-end-differentiable-physics-for-learning-and-control.pdf
https://arxiv.org/abs/1607.06450
http://graphics.berkeley.edu/papers/Bailey-FDD-2018-08/
http://graphics.berkeley.edu/papers/Bailey-FDD-2018-08/
https://doi.org/10.1145/280814.280821

[10] P. W. Battaglia et al., “Relational inductive biases, deep learning, and graph networks,”
CoRR, vol. abs/1806.01261, 2018. arXiv: 1806.01261. [Online]. Available: http://arxiv.org/
abs/1806.01261.

[11] P. Becker-Ehmck, J. Peters, and P. van der Smagt, “Switching linear dynamics for variational
bayes filtering,” 2019. [Online]. Available: https://openreview.net/forum?id=B1MbDj0ctQ.

[12] M. Bergou, B. Audoly, E. Vouga, M. Wardetzky, and E. Grinspun, “Discrete viscous
threads,” in ACM SIGGRAPH 2010 Papers, ser. SIGGRAPH ’10, Los Angeles, California:
Association for Computing Machinery, 2010, ISBN: 9781450302104. [Online]. Available:
https://doi.org/10.1145/1833349.1778853.

[13] M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and E. Grinspun, “Discrete Elastic
Rods,” ACM Transactions on Graphics (SIGGRAPH), vol. 27, no. 3, 63:1–63:12, Aug.
2008.

[14] F. Bertails, B. Audoly, M.-P. Cani, B. Querleux, F. Leroy, and J.-L. Lévêque, “Super-helices
for predicting the dynamics of natural hair,” ACM Trans. Graph., vol. 25, no. 3, pp. 1180–
1187, Jul. 2006. [Online]. Available: https://doi.org/10.1145/1141911.1142012.

[15] F. Bertails-Descoubes, A. Derouet-Jourdan, V. Romero, and A. Lazarus, “Inverse design of
an isotropic suspended kirchhoff rod: Theoretical and numerical results on the uniqueness
of the natural shape,” Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Science, vol. 474, p. 20 170 837, Apr. 2018.

[16] M. Billinghurst, H. Kato, and I. Poupyrev, “The magicbook - moving seamlessly between
reality and virtuality,” IEEE Computer Graphics and applications, vol. 21, no. 3, pp. 6–8,
2001.

[17] X. Bin Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-real transfer of robotic
control with dynamics randomization,” May 2018, pp. 1–8.

[18] S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly, “Projective dynamics: Fusing
constraint projections for fast simulation,” ACM Trans. Graph., vol. 33, no. 4, Jul. 2014.
[Online]. Available: https://doi.org/10.1145/2601097.2601116.

[19] J. U. Brackbill and H. M. Ruppel, “Flip: A method for adaptively zoned, particle-in-cell
calculations of fluid flows in two dimensions,” J. Comput. Phys., vol. 65, no. 2, pp. 314–343,
Aug. 1986. [Online]. Available: https://doi.org/10.1016/0021-9991(86)90211-1.

[20] C. Brandt, E. Eisemann, and K. Hildebrandt, “Hyper-reduced projective dynamics,” ACM
Trans. Graph., vol. 37, no. 4, Jul. 2018. [Online]. Available: https:/ /doi.org/10.1145/
3197517.3201387.

178

https://arxiv.org/abs/1806.01261
http://arxiv.org/abs/1806.01261
http://arxiv.org/abs/1806.01261
https://openreview.net/forum?id=B1MbDj0ctQ
https://doi.org/10.1145/1833349.1778853
https://doi.org/10.1145/1141911.1142012
https://doi.org/10.1145/2601097.2601116
https://doi.org/10.1016/0021-9991(86)90211-1
https://doi.org/10.1145/3197517.3201387
https://doi.org/10.1145/3197517.3201387

[21] R. Bridson, S. Marino, and R. Fedkiw, “Simulation of clothing with folds and wrinkles,”
in Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, ser. SCA ’03, San Diego, California: Eurographics Association, 2003, pp. 28–36,
ISBN: 1581136595.

[22] R. Bridson, R. Fedkiw, and J. Anderson, “Robust treatment of collisions, contact and friction
for cloth animation,” ACM Trans. Graph., vol. 21, no. 3, pp. 594–603, Jul. 2002. [Online].
Available: https://doi.org/10.1145/566654.566623.

[23] I. Buck, “Gpu computing: Programming a massively parallel processor,” in International
Symposium on Code Generation and Optimization (CGO’07), IEEE, 2007, pp. 17–17.

[24] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar, “The ycb object
and model set: Towards common benchmarks for manipulation research,” in Advanced
Robotics (ICAR), 2015 International Conference on, IEEE, 2015, pp. 510–517.

[25] M. Chai, C. Zheng, and K. Zhou, “A reduced model for interactive hairs,” ACM Trans.
Graph., vol. 33, no. 4, Jul. 2014. [Online]. Available: https://doi.org/10.1145/2601097.
2601211.

[26] Chai, Menglei and Zheng, Changxi and Zhou, Kun, “Adaptive skinning for interactive
hair-solid simulation,” IEEE Transactions on Visualization and Computer Graphics, vol. 23,
pp. 1–1, Apr. 2016.

[27] M. B. Chang, T. Ullman, A. Torralba, and J. B. Tenenbaum, “A compositional object-based
approach to learning physical dynamics,” arXiv preprint arXiv:1612.00341, 2016.

[28] R. Charles, H. Su, M. Kaichun, and L. Guibas, “Pointnet: Deep learning on point sets for
3d classification and segmentation,” Jul. 2017, pp. 77–85.

[29] B. Chen, M. Chiquier, H. Lipson, and C. Vondrick, “The boombox: Visual reconstruction
from acoustic vibrations,” CoRR, vol. abs/2105.08052, 2021. arXiv: 2105.08052. [Online].
Available: https://arxiv.org/abs/2105.08052.

[30] P. Y. Chen et al., Crom: Continuous reduced-order modeling of pdes using implicit neural
representations, 2022. [Online]. Available: https://arxiv.org/abs/2206.02607.

[31] W. Chen, Z. Fu, D. Yang, and J. Deng, “Single-image depth perception in the wild,” in Proc.
NIPS, 2016, pp. 730–738.

[32] G. Cimen, Y. Yuan, R. W. Sumner, S. Coros, and M. Guay, “Interacting with intelligent
characters in ar,” International SERIES on Information Systems and Management in Creative
eMedia (CreMedia), no. 2017/2, pp. 24–29, 2018.

179

https://doi.org/10.1145/566654.566623
https://doi.org/10.1145/2601097.2601211
https://doi.org/10.1145/2601097.2601211
https://arxiv.org/abs/2105.08052
https://arxiv.org/abs/2105.08052
https://arxiv.org/abs/2206.02607

[33] M. Computing, Usb-200 series single gain multifunction usb devices (accessed oct 1, 2020),
2020. [Online]. Available: https://www.mccdaq.com/usb-data-acquisition/USB-200-
Series.aspx.

[34] I. I. Cplex, “V12. 1: User’s manual for cplex,” International Business Machines Corporation,
vol. 46, no. 53, p. 157, 2009.

[35] S. Crayons, Variable slicing for 3d printing on autodesk ember, [Online; accessed 30-
December-2018], 2016.

[36] D. Das and S. Sen, “Electromagnetic and power side-channel analysis: Advanced attacks
and low-overhead generic countermeasures through white-box approach,” Cryptography,
vol. 4, no. 4, 2020. [Online]. Available: https://www.mdpi.com/2410-387X/4/4/30.

[37] G. Daviet, “Simple and scalable frictional contacts for thin nodal objects,” ACM Trans.
Graph., vol. 39, no. 4, Jul. 2020. [Online]. Available: https://doi.org/10.1145/3386569.
3392439.

[38] G. Daviet, F. Bertails-Descoubes, and L. Boissieux, “A hybrid iterative solver for robustly
capturing coulomb friction in hair dynamics,” in Proceedings of the 2011 SIGGRAPH Asia
Conference, ser. SA ’11, Hong Kong, China: Association for Computing Machinery, 2011,
ISBN: 9781450308076. [Online]. Available: https://doi.org/10.1145/2024156.2024173.

[39] J. Degrave, M. Hermans, J. Dambre, and F. wyffels, “A differentiable physics engine
for deep learning in robotics,” Frontiers in Neurorobotics, vol. 13, p. 6, 2019. [Online].
Available: https://www.frontiersin.org/article/10.3389/fnbot.2019.00006.

[40] Degrave, Jonas and Hermans, Michiel and Dambre, Joni and wyffels, Francis, “A differen-
tiable physics engine for deep learning in robotics,” Frontiers in Neurorobotics, vol. 13, p. 6,
2019. [Online]. Available: https://www.frontiersin.org/article/10.3389/fnbot.2019.00006.

[41] A. Demontis et al., “Why do adversarial attacks transfer? explaining transferability of
evasion and poisoning attacks,” in 28th USENIX Security Symposium Security 19), 2019,
pp. 321–338.

[42] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in 2009 IEEE Conference on Computer Vision and Pattern
Recognition, 2009, pp. 248–255.

[43] L. Deng, “The mnist database of handwritten digit images for machine learning research,”
IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–142, 2012.

[44] A. Derouet-Jourdan, F. Bertails-Descoubes, G. Daviet, and J. Thollot, “Inverse dynamic hair
modeling with frictional contact,” ACM Trans. Graph., vol. 32, no. 6, Nov. 2013. [Online].
Available: https://doi.org/10.1145/2508363.2508398.

180

https://www.mccdaq.com/usb-data-acquisition/USB-200-Series.aspx
https://www.mccdaq.com/usb-data-acquisition/USB-200-Series.aspx
https://www.mdpi.com/2410-387X/4/4/30
https://doi.org/10.1145/3386569.3392439
https://doi.org/10.1145/3386569.3392439
https://doi.org/10.1145/2024156.2024173
https://www.frontiersin.org/article/10.3389/fnbot.2019.00006
https://www.frontiersin.org/article/10.3389/fnbot.2019.00006
https://doi.org/10.1145/2508363.2508398

[45] A. Dubey, R. Cammarota, and A. Aysu, “Maskednet: The first hardware inference engine
aiming power side-channel protection.,” arXiv: Cryptography and Security, 2019.

[46] V. Duddu and D. V. Rao, “Quantifying (hyper) parameter leakage in machine learning,”
arXiv preprint arXiv:1910.14409, 2019.

[47] V. Duddu, D. Samanta, D. V. Rao, and V. E. Balas, “Stealing neural networks via timing
side channels,” arXiv preprint arXiv:1812.11720, 2018.

[48] G. A. England, Method of reading a barcode representing encoded data and disposed on an
article and an apparatus therefor, US Patent 5,510,604, Apr. 1996.

[49] D. Epstein, B. Chen, and C. Vondrick, “Oops! predicting unintentional action in video,”
in The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun.
2020.

[50] J. O. Escobedo, O. Rusin, S. Lim, and R. M. Strongin, “Nir dyes for bioimaging applications,”
Current opinion in chemical biology, vol. 14, no. 1, pp. 64–70, 2010.

[51] K. R. Falkenstern, A. M. Reed, V. Holub, and T. F. Rodriguez, Digital watermarking and
data hiding with narrow-band absorption materials, US Patent App. 15/669,103, May 2018.

[52] Y. Fan, J. Litven, D. I. W. Levin, and D. K. Pai, “Eulerian-on-lagrangian simulation,” ACM
Trans. Graph., vol. 32, no. 3, Jul. 2013. [Online]. Available: https:/ /doi.org/10.1145/
2487228.2487230.

[53] Y. (Fei, C. Batty, E. Grinspun, and C. Zheng, “A multi-scale model for simulating liquid-
fabric interactions,” ACM Trans. Graph., vol. 37, no. 4, 51:1–51:16, Aug. 2018. [Online].
Available: http://doi.acm.org/10.1145/3197517.3201392.

[54] Y. (Fei, H. T. Maia, C. Batty, C. Zheng, and E. Grinspun, “A multi-scale model for
simulating liquid-hair interactions,” ACM Trans. Graph., vol. 36, no. 4, 56:1–56:17, Jul.
2017. [Online]. Available: http://doi.acm.org/10.1145/3072959.3073630.

[55] M. Fiala, “Artag, a fiducial marker system using digital techniques,” in CVPR 2005, 2005,
pp. 590–596. [Online]. Available: http://dx.doi.org/10.1109/CVPR.2005.74.

[56] K. Fukushima, “Cognitron: A self-organizing multilayered neural network,” 1975.

[57] L. Fulton, V. Modi, D. Duvenaud, D. I. W. Levin, and A. Jacobson, “Latent-space dynamics
for reduced deformable simulation,” Computer Graphics Forum, 2019.

[58] M. Geilinger, D. Hahn, J. Zehnder, M. Bächer, B. Thomaszewski, and S. Coros, “Add:
Analytically differentiable dynamics for multi-body systems with frictional contact,” ACM

181

https://doi.org/10.1145/2487228.2487230
https://doi.org/10.1145/2487228.2487230
http://doi.acm.org/10.1145/3197517.3201392
http://doi.acm.org/10.1145/3072959.3073630
http://dx.doi.org/10.1109/CVPR.2005.74

Trans. Graph., vol. 39, no. 6, Nov. 2020. [Online]. Available: https://doi.org/10.1145/
3414685.3417766.

[59] D. Genkin, A. Shamir, and E. Tromer, “Rsa key extraction via low-bandwidth acoustic
cryptanalysis,” in Annual Cryptology Conference, Springer, 2014, pp. 444–461.

[60] C. Goldfeder and P. K. Allen, “Data-driven grasping,” Autonomous Robots, vol. 31, no. 1,
pp. 1–20, 2011.

[61] C. Goldfeder, M. Ciocarlie, H. Dang, and P. K. Allen, “The columbia grasp database,” in
Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, IEEE, 2009,
pp. 1710–1716.

[62] Google, Googleai pricing, https : / / cloud .google . com/ai - platform/prediction /pricing,
Accessed: 2021-01-17.

[63] A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber, “Connectionist temporal classifica-
tion: Labelling unsegmented sequence data with recurrent neural networks,” in Proceedings
of the 23rd international conference on Machine learning, 2006, pp. 369–376.

[64] A. Graves, S. Fernandez, and J. Schmidhuber, “Bidirectional lstm networks for improved
phoneme classification and recognition,” in International Conference on Artificial Neural
Networks, Springer, 2005, pp. 799–804.

[65] D. J. Griffiths, Introduction to electrodynamics, 2005.

[66] E. Grochowski and M. Annavaram, “Energy per instruction trends in intel microprocessors,”
Technology@ Intel Magazine, vol. 4, no. 3, pp. 1–8, 2006.

[67] X. Guo, W. Li, and F. Iorio, “Convolutional neural networks for steady flow approxima-
tion,” in Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’16, San Francisco, California, USA: ACM, 2016,
pp. 481–490, ISBN: 978-1-4503-4232-2. [Online]. Available: http://doi.acm.org/10.1145/
2939672.2939738.

[68] O. Hall-Holt and S. Rusinkiewicz, “Stripe boundary codes for real-time structured-light
range scanning of moving objects,” in Proc. ICCV, IEEE, vol. 2, 2001, pp. 359–366.

[69] Y. Han, S. Etigowni, H. Liu, S. Zonouz, and A. Petropulu, “Watch me, but don’t touch me!
contactless control flow monitoring via electromagnetic emanations,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, ser. CCS ’17,
Dallas, Texas, USA: Association for Computing Machinery, 2017, pp. 1095–1108, ISBN:
9781450349468. [Online]. Available: https://doi.org/10.1145/3133956.3134081.

182

https://doi.org/10.1145/3414685.3417766
https://doi.org/10.1145/3414685.3417766
https://cloud.google.com/ai-platform/prediction/pricing
http://doi.acm.org/10.1145/2939672.2939738
http://doi.acm.org/10.1145/2939672.2939738
https://doi.org/10.1145/3133956.3134081

[70] D. Harmon, E. Vouga, B. Smith, R. Tamstorf, and E. Grinspun, “Asynchronous contact
mechanics,” ACM Trans. Graph., vol. 28, no. 3, Jul. 2009. [Online]. Available: https :
//doi.org/10.1145/1531326.1531393.

[71] J. Harris, J. Hirst, and M. Mossinghoff, Combinatorics and Graph Theory, ser. Undergrad-
uate Texts in Mathematics. Springer New York, 2009, ISBN: 9780387797113. [Online].
Available: https://books.google.com/books?id=DfcQaZKUVLwC.

[72] C. Harrison, R. Xiao, and S. E. Hudson, “Acoustic barcodes: Passive, durable and inexpen-
sive notched identification tags,” in UIST 2012, 2012, pp. 563–568. [Online]. Available:
http://doi.acm.org/10.1145/2380116.2380187.

[73] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

[74] L. He, G. Laput, E. Brockmeyer, and J. E. Froehlich, “Squeezapulse: Adding interactive
input to fabricated objects using corrugated tubes and air pulses,” in Proc. TEI, ACM, 2017,
pp. 341–350.

[75] D. Holden, J. Saito, and T. Komura, “Neural network ambient occlusion,” in SIGGRAPH
ASIA 2016 Technical Briefs, ser. SA ’16, Macau: ACM, 2016, 9:1–9:4, ISBN: 978-1-4503-
4541-5. [Online]. Available: http://doi.acm.org/10.1145/3005358.3005387.

[76] S. Hong, M. Davinroy, Y. Kaya, D. Dachman-Soled, and T. Dumitraş, “How to 0wn the nas
in your spare time,” in International Conference on Learning Representations, 2019.

[77] S. Hong et al., “Security analysis of deep neural networks operating in the presence of cache
side-channel attacks,” arXiv preprint arXiv:1810.03487, 2018.

[78] X. Hu et al., “Deepsniffer: A dnn model extraction framework based on learning architec-
tural hints,” in Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, 2020, pp. 385–399.

[79] Y. Hu, T.-M. Li, L. Anderson, J. Ragan-Kelley, and F. Durand, “Taichi: A language for
high-performance computation on spatially sparse data structures,” ACM Trans. Graph.,
vol. 38, no. 6, Nov. 2019. [Online]. Available: https://doi.org/10.1145/3355089.3356506.

[80] Y. Hu et al., “A moving least squares material point method with displacement discontinuity
and two-way rigid body coupling,” ACM Trans. Graph., vol. 37, no. 4, Jul. 2018. [Online].
Available: https://doi.org/10.1145/3197517.3201293.

[81] Y. Hu et al., “Chainqueen: A real-time differentiable physical simulator for soft robotics,”
Oct. 2018.

183

https://doi.org/10.1145/1531326.1531393
https://doi.org/10.1145/1531326.1531393
https://books.google.com/books?id=DfcQaZKUVLwC
http://doi.acm.org/10.1145/2380116.2380187
http://doi.acm.org/10.1145/3005358.3005387
https://doi.org/10.1145/3355089.3356506
https://doi.org/10.1145/3197517.3201293

[82] Y. Hu et al., “Chainqueen: A real-time differentiable physical simulator for soft robotics,” in
2019 International Conference on Robotics and Automation (ICRA), 2019, pp. 6265–6271.

[83] Y. Hu et al., Difftaichi: Differentiable programming for physical simulation, 2020. arXiv:
1910.00935 [cs.LG].

[84] W. Hua, Z. Zhang, and G. E. Suh, “Reverse engineering convolutional neural networks
through side-channel information leaks,” in 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), IEEE, 2018, pp. 1–6.

[85] IBM, Ibm’s cloud pak for data with watson assistant, https://newsroom.ibm.com/2019-10-
21-IBM-Advances-Watson-Anywhere-with-New-Clients-and-Innovations-Designed-to-
Make-it-Even-Easier-to-Scale-AI-Across-Any-Cloud, Nov. 2020.

[86] T. Instruments, Drv425: Fully-integrated fluxgate magnetic sensor for open-loop appli-
cations (accessed oct 1, 2020), 2020. [Online]. Available: https://www.ti.com/product/
DRV425.

[87] V. Iyer, J. Chan, I. Culhane, J. Mankoff, and S. Gollakota, “Wireless analytics for 3d printed
objects,” in Proc. UIST 2018, ser. UIST ’18, Berlin, Germany: ACM, 2018, pp. 141–152,
ISBN: 978-1-4503-5948-1. [Online]. Available: http:/ /doi.acm.org/10.1145/3242587.
3242639.

[88] W. Jakob, Mitsuba renderer, http://mitsuba-renderer.org, 2010.

[89] K. Jo, M. Gupta, and S. Nayar, “DisCo: Display Camera Communication Using Rolling
Shutter Sensors,” ACM Trans. on Graphics (also Proc. of ACM SIGGRAPH), vol. 35, no. 5,
150:1–13, Jul. 2016.

[90] S. Kallweit, T. Müller, B. Mcwilliams, M. Gross, and J. Novák, “Deep scattering: Rendering
atmospheric clouds with radiance-predicting neural networks,” ACM Trans. Graph., vol. 36,
no. 6, 231:1–231:11, Nov. 2017. [Online]. Available: http://doi.acm.org/10.1145/3130800.
3130880.

[91] H. C. Kao, P. Johns, A. Roseway, and M. Czerwinski, “Tattio: Fabrication of aesthetic and
functional temporary tattoos,” in Proc. CHI, 2016, pp. 3699–3702.

[92] D. Kappler, J. Bohg, and S. Schaal, “Leveraging big data for grasp planning,” in ICRA,
IEEE, 2015, pp. 4304–4311.

[93] D. M. Kaufman, R. Tamstorf, B. Smith, J.-M. Aubry, and E. Grinspun, “Adaptive nonlinear-
ity for collisions in complex rod assemblies,” ACM Trans. Graph., vol. 33, no. 4, Jul. 2014.
[Online]. Available: https://doi.org/10.1145/2601097.2601100.

184

https://arxiv.org/abs/1910.00935
https://newsroom.ibm.com/2019-10-21-IBM-Advances-Watson-Anywhere-with-New-Clients-and-Innovations-Designed-to-Make-it-Even-Easier-to-Scale-AI-Across-Any-Cloud
https://newsroom.ibm.com/2019-10-21-IBM-Advances-Watson-Anywhere-with-New-Clients-and-Innovations-Designed-to-Make-it-Even-Easier-to-Scale-AI-Across-Any-Cloud
https://newsroom.ibm.com/2019-10-21-IBM-Advances-Watson-Anywhere-with-New-Clients-and-Innovations-Designed-to-Make-it-Even-Easier-to-Scale-AI-Across-Any-Cloud
https://www.ti.com/product/DRV425
https://www.ti.com/product/DRV425
http://doi.acm.org/10.1145/3242587.3242639
http://doi.acm.org/10.1145/3242587.3242639
http://doi.acm.org/10.1145/3130800.3130880
http://doi.acm.org/10.1145/3130800.3130880
https://doi.org/10.1145/2601097.2601100

[94] R. Kikuchi, S. Yoshikawa, P. K. Jayaraman, J. Zheng, and T. Maekawa, “Embedding qr
codes onto b-spline surfaces for 3d printing,” Computer-Aided Design, vol. 102, pp. 215–
223, 2018.

[95] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR,
vol. abs/1412.6980, 2015.

[96] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,” The
International Journal of Robotics Research, vol. 32, no. 11, pp. 1238–1274, 2013. eprint:
https://doi.org/10.1177/0278364913495721. [Online]. Available: https://doi.org/10.1177/
0278364913495721.

[97] J. Kober and J. Peters, “Reinforcement learning in robotics: A survey,” in Learning Motor
Skills: From Algorithms to Robot Experiments. Cham: Springer International Publishing,
2014, pp. 9–67, ISBN: 978-3-319-03194-1. [Online]. Available: https://doi.org/10.1007/978-
3-319-03194-1_2.

[98] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Annual international
cryptology conference, Springer, 1999, pp. 388–397.

[99] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems,” in Annual International Cryptology Conference, Springer, 1996, pp. 104–113.

[100] G. Kohl, K. Um, and N. Thuerey, Learning similarity metrics for numerical simulations,
2020. arXiv: 2002.07863 [cs.LG].

[101] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convo-
lutional neural networks,” in Advances in neural information processing systems, 2012,
pp. 1097–1105.

[102] S. Laine et al., “Production-level facial performance capture using deep convolutional
neural networks,” in Proceedings of the ACM SIGGRAPH / Eurographics Symposium on
Computer Animation, ser. SCA ’17, Los Angeles, California: ACM, 2017, 10:1–10:10, ISBN:
978-1-4503-5091-4. [Online]. Available: http://doi.acm.org/10.1145/3099564.3099581.

[103] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,” ACM Trans-
actions on Programming Languages and Systems (TOPLAS), vol. 4, no. 3, pp. 382–401,
1982.

[104] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature Cell Biology, vol. 521,
no. 7553, pp. 436–444, May 2015.

[105] D. I. W. Levin, J. Litven, G. L. Jones, S. Sueda, and D. K. Pai, “Eulerian solid simulation
with contact,” ACM Trans. Graph., vol. 30, no. 4, Jul. 2011. [Online]. Available: https:
//doi.org/10.1145/2010324.1964931.

185

https://doi.org/10.1177/0278364913495721
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1007/978-3-319-03194-1_2
https://doi.org/10.1007/978-3-319-03194-1_2
https://arxiv.org/abs/2002.07863
http://doi.acm.org/10.1145/3099564.3099581
https://doi.org/10.1145/2010324.1964931
https://doi.org/10.1145/2010324.1964931

[106] D. Li, A. Nair, S. Nayar, and C. Zheng, “AirCode: Unobtrusive Physical Tags for Digital
Fabrication,” in ACM Symposium on User Interface Software and Technology (UIST), Oct.
2017.

[107] D. Li, D. I. Levin, W. Matusik, and C. Zheng, “Acoustic voxels: Computational optimization
of modular acoustic filters,” ACM Trans. Graph., vol. 35, no. 4, 2016.

[108] D. Li, A. S. Nair, S. K. Nayar, and C. Zheng, “Aircode: Unobtrusive physical tags for digital
fabrication,” in Proc. UIST, 2017.

[109] M. Li, D. M. Kaufman, and C. Jiang, Codimensional incremental potential contact, 2020.
arXiv: 2012.04457 [cs.GR].

[110] M. Li et al., “Incremental potential contact: Intersection-and inversion-free, large-
deformation dynamics,” ACM Trans. Graph., vol. 39, no. 4, Jul. 2020. [Online]. Available:
https://doi.org/10.1145/3386569.3392425.

[111] Y. Li, J. Wu, R. Tedrake, J. B. Tenenbaum, and A. Torralba, “Learning particle dynamics
for manipulating rigid bodies, deformable objects, and fluids,” in International Conference
on Learning Representations, 2019. [Online]. Available: https://openreview.net/forum?id=
rJgbSn09Ym.

[112] Y. Li, J. Wu, J.-Y. Zhu, J. B. Tenenbaum, A. Torralba, and R. Tedrake, “Propagation
networks for model-based control under partial observation,” in ICRA, 2019.

[113] L. Liu, M. Y. Shimizu, and L. M. Vartanian, Method and apparatus for reading machine-
readable symbols having surface or optical distortions, US Patent 5,854,478, Dec. 1998.

[114] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable adversarial examples and
black-box attacks,” arXiv preprint arXiv:1611.02770, 2016.

[115] M. Livesu, S. Ellero, J. Martinez, S. Lefebvre, and M. Attene, “From 3d models to 3d
prints: An overview of the processing pipeline,” Comput. Graph. Forum, vol. 36, no. 2,
pp. 537–564, 2017.

[116] P. Lopes, P. Jonell, and P. Baudisch, “Affordance++: Allowing objects to communicate
dynamic use,” in CHI 2015, 2015, pp. 2515–2524. [Online]. Available: http://doi.acm.org/
10.1145/2702123.2702128.

[117] C. Luo, Y. Fei, P. Luo, S. Mukherjee, and D. Kaeli, “Side-channel power analysis of a gpu
aes implementation,” in 2015 33rd IEEE International Conference on Computer Design
(ICCD), IEEE, 2015, pp. 281–288.

[118] R. Luo, T. Shao, H. Wang, W. Xu, K. Zhou, and Y. Yang, “Deepwarp: Dnn-based nonlinear
deformation,” ArXiv, vol. abs/1803.09109, 2018.

186

https://arxiv.org/abs/2012.04457
https://doi.org/10.1145/3386569.3392425
https://openreview.net/forum?id=rJgbSn09Ym
https://openreview.net/forum?id=rJgbSn09Ym
http://doi.acm.org/10.1145/2702123.2702128
http://doi.acm.org/10.1145/2702123.2702128

[119] M. Ly, J. Jouve, L. Boissieux, and F. Bertails-Descoubes, “Projective dynamics with dry
frictional contact,” ACM Trans. Graph., vol. 39, no. 4, Jul. 2020. [Online]. Available:
https://doi.org/10.1145/3386569.3392396.

[120] M. Macklin, K. Erleben, M. Müller, N. Chentanez, S. Jeschke, and V. Makoviychuk, “Non-
smooth newton methods for deformable multi-body dynamics,” ACM Trans. Graph., vol. 38,
no. 5, Oct. 2019. [Online]. Available: https://doi.org/10.1145/3338695.

[121] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning
models resistant to adversarial attacks,” in International Conference on Learning Represen-
tations, 2018. [Online]. Available: https://openreview.net/forum?id=rJzIBfZAb.

[122] H. T. Maia, D. Li, Y. Yang, and C. Zheng, “Layercode: Optical barcodes for 3d printed
shapes,” ACM Trans. Graph., vol. 38, no. 4, 112:1–112:14, Jul. 2019. [Online]. Available:
http://doi.acm.org/10.1145/3306346.3322960.

[123] H. T. Maia, C. Xiao, D. Li, E. Grinspun, and C. Zheng, Can one hear the shape of a
neural network?: Snooping the gpu via magnetic side channel, 2021. arXiv: 2109.07395
[cs.CR].

[124] A. McAdams, E. Sifakis, and J. Teran, “A parallel multigrid poisson solver for fluids
simulation on large grids,” in Proceedings of the 2010 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, ser. SCA ’10, Madrid, Spain: Eurographics Association,
2010, pp. 65–74.

[125] A. McAdams, A. Selle, K. Ward, E. Sifakis, and J. Teran, “Detail preserving continuum
simulation of straight hair,” ACM Trans. Graph., vol. 28, no. 3, Jul. 2009. [Online]. Available:
https://doi.org/10.1145/1531326.1531368.

[126] S. McMains and C. H. Sequin, “A coherent sweep plane slicer for layered manufacturing,”
in Fifth ACM Symposium on Solid Modeling and Applications, Ann Arbor, Michigan, USA,
June 9-11, 1999, 1999, pp. 285–295.

[127] J. Morton, F. D. Witherden, A. Jameson, and M. J. Kochenderfer, “Deep dynamical modeling
and control of unsteady fluid flows,” in Proceedings of the 32Nd International Conference
on Neural Information Processing Systems, ser. NIPS’18, Montréal, Canada: Curran
Associates Inc., 2018, pp. 9278–9288. [Online]. Available: http://dl.acm.org/citation.cfm?
id=3327546.3327599.

[128] D. Mrowca et al., “Flexible neural representation for physics prediction,” in Proceedings of
the 32nd International Conference on Neural Information Processing Systems, ser. NIPS’18,
Montreal, Canada: Curran Associates Inc., 2018, pp. 8813–8824.

187

https://doi.org/10.1145/3386569.3392396
https://doi.org/10.1145/3338695
https://openreview.net/forum?id=rJzIBfZAb
http://doi.acm.org/10.1145/3306346.3322960
https://arxiv.org/abs/2109.07395
https://arxiv.org/abs/2109.07395
https://doi.org/10.1145/1531326.1531368
http://dl.acm.org/citation.cfm?id=3327546.3327599
http://dl.acm.org/citation.cfm?id=3327546.3327599

[129] M. Müller, N. Chentanez, T.-Y. Kim, and M. Macklin, “Air meshes for robust collision
handling,” ACM Trans. Graph., vol. 34, no. 4, Jul. 2015. [Online]. Available: https://doi.org/
10.1145/2766907.

[130] M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff, “Position based dynamics,” J. Vis.
Comun. Image Represent., vol. 18, no. 2, pp. 109–118, Apr. 2007. [Online]. Available:
https://doi.org/10.1016/j.jvcir.2007.01.005.

[131] M. Müller, T. Kim, and N. Chentanez, “Fast simulation of inextensible hair and fur,” Dec.
2012.

[132] S. Müller et al., “Wireprint: 3d printed previews for fast prototyping,” in The 27th Annual
ACM Symposium on User Interface Software and Technology, UIST ’14, Honolulu, HI, USA,
October 5-8, 2014, 2014, pp. 273–280.

[133] H. H. Nadiyapara and S. Pande, “A review of variable slicing in fused deposition modeling,”
Journal of The Institution of Engineers (India): Series C, vol. 98, no. 3, pp. 387–393, 2017.

[134] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[135] K. Nakashima, T. Auzinger, E. Iarussi, R. Zhang, T. Igarashi, and B. Bickel, “Corecavity:
Interactive shell decomposition for fabrication with two-piece rigid molds,” ACM Trans.
Graph., vol. 37, no. 4, 135:1–135:13, 2018.

[136] N. M. Nasrabadi, “Pattern recognition and machine learning,” Journal of electronic imaging,
vol. 16, no. 4, p. 049 901, 2007.

[137] NVIDIA, Nvidia triton inference server, https : / / developer.nvidia . com/nvidia - triton -
inference-server, Jan. 2021.

[138] ——, Tensorcores, https://www.nvidia.com/en-us/data-center/tensor-cores, Accessed:
2021-01-26.

[139] S. J. Oh, M. Augustin, M. Fritz, and B. Schiele, “Towards reverse-engineering black-box
neural networks,” in International Conference on Learning Representations, 2018. [Online].
Available: https://openreview.net/forum?id=BydjJte0-.

[140] T. J. Owen, E. Cathie, and K. A. Fletcher, Photochromic inks, US Patent 9,738,825, Aug.
2017.

[141] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms and complex-
ity. Courier Corporation, 1998.

188

https://doi.org/10.1145/2766907
https://doi.org/10.1145/2766907
https://doi.org/10.1016/j.jvcir.2007.01.005
https://developer.nvidia.com/nvidia-triton-inference-server
https://developer.nvidia.com/nvidia-triton-inference-server
https://www.nvidia.com/en-us/data-center/tensor-cores
https://openreview.net/forum?id=BydjJte0-

[142] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami, “Practical
black-box attacks against machine learning,” in Proceedings of the 2017 ACM on Asia
conference on computer and communications security, 2017, pp. 506–519.

[143] S. Paris, P. Kornprobst, J. Tumblin, F. Durand, et al., “Bilateral filtering: Theory and
applications,” Foundations and Trends® in Computer Graphics and Vision, vol. 4, no. 1,
pp. 1–73, 2009.

[144] A. Paszke et al., “Pytorch: An imperative style, high-performance deep learning library,” in
Advances in neural information processing systems, 2019, pp. 8026–8037.

[145] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, “Deepmimic: Example-guided deep
reinforcement learning of physics-based character skills,” ACM Trans. Graph., vol. 37, no. 4,
143:1–143:14, Jul. 2018. [Online]. Available: http://doi.acm.org/10.1145/3197517.3201311.

[146] X. B. Peng, G. Berseth, K. Yin, and M. Van De Panne, “Deeploco: Dynamic locomotion
skills using hierarchical deep reinforcement learning,” ACM Trans. Graph., vol. 36, no. 4,
41:1–41:13, Jul. 2017. [Online]. Available: http://doi.acm.org/10.1145/3072959.3073602.

[147] X. B. Peng, A. Kanazawa, J. Malik, P. Abbeel, and S. Levine, “Sfv: Reinforcement learning
of physical skills from videos,” ACM Trans. Graph., vol. 37, no. 6, Nov. 2018.

[148] T. Pereira, S. Rusinkiewicz, and W. Matusik, “Computational light routing: 3d printed
optical fibers for sensing and display,” ACM Trans. Graph., vol. 33, no. 3, 2014.

[149] V. Petrucha and D. Novotny, “Testing and application of an integrated fluxgate sensor
drv425,” Journal of Electrical Engineering, vol. 69, no. 6, pp. 418–421, 2018.

[150] T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. Battaglia, “Learning mesh-based
simulation with graph networks,” in International Conference on Learning Representations,
2021. [Online]. Available: https://openreview.net/forum?id=roNqYL0_XP.

[151] P. Punpongsanon, X. Wen, D. S. Kim, and S. Mueller, “Colormod: Recoloring 3d printed
objects using photochromic inks,” in Proc. CHI 2018, 2018, p. 213.

[152] B. Redwood, F. Schffer, and B. Garret, “The 3d printing handbook: Technologies, design
and applications,” 2017.

[153] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” Journal of the
society for industrial and applied mathematics, vol. 8, no. 2, pp. 300–304, 1960.

[154] J. M. Romano, K. Hsiao, G. Niemeyer, S. Chitta, and K. J. Kuchenbecker, “Human-inspired
robotic grasp control with tactile sensing,” IEEE Transactions on Robotics, vol. 27, no. 6,
pp. 1067–1079, 2011.

189

http://doi.acm.org/10.1145/3197517.3201311
http://doi.acm.org/10.1145/3072959.3073602
https://openreview.net/forum?id=roNqYL0_XP

[155] J. Rompel, “One-way functions are necessary and sufficient for secure signatures,” in Proc.
ACM Symposium on Theory of Computing, ACM, 1990, pp. 387–394.

[156] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and organiza-
tion in the brain,” Psychological Review, pp. 65–386, 1958.

[157] S. Ross and D. Bagnell, “Efficient reductions for imitation learning,” in Proceedings of
the Thirteenth International Conference on Artificial Intelligence and Statistics, Y. W.
Teh and M. Titterington, Eds., ser. Proceedings of Machine Learning Research, vol. 9,
Chia Laguna Resort, Sardinia, Italy: PMLR, May 2010, pp. 661–668. [Online]. Available:
https://proceedings.mlr.press/v9/ross10a.html.

[158] S. Ross and J. A. Bagnell, “Reinforcement and imitation learning via interactive no-regret
learning,” CoRR, vol. abs/1406.5979, 2014. arXiv: 1406.5979. [Online]. Available: http:
//arxiv.org/abs/1406.5979.

[159] S. Ross, G. J. Gordon, and J. A. Bagnell, “No-regret reductions for imitation learning
and structured prediction,” CoRR, vol. abs/1011.0686, 2010. arXiv: 1011.0686. [Online].
Available: http://arxiv.org/abs/1011.0686.

[160] M. Saito, E. Matsumoto, and S. Saito, “Temporal generative adversarial nets with singular
value clipping,” in ICCV, 2017.

[161] R. M. Sanchez-Banderas, A. Rodriguez, H. Barreiro, and M. A. Otaduy, “Robust eulerian-
on-lagrangian rods,” ACM Trans. Graph., vol. 39, no. 4, Jul. 2020. [Online]. Available:
https://doi.org/10.1145/3386569.3392489.

[162] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P. W. Battaglia,
“Learning to simulate complex physics with graph networks,” in International Conference
on Machine Learning, 2020.

[163] A. Sanchez-Gonzalez et al., “Graph networks as learnable physics engines for inference
and control,” in Proceedings of the 35th International Conference on Machine Learning,
J. Dy and A. Krause, Eds., ser. Proceedings of Machine Learning Research, vol. 80, Stock-
holmsmässan, Stockholm Sweden: PMLR, Jul. 2018, pp. 4470–4479. [Online]. Available:
http://proceedings.mlr.press/v80/sanchez-gonzalez18a.html.

[164] I. Santesteban, M. A. Otaduy, and D. Casas, “Learning-based animation of clothing for
virtual try-on,” Comput. Graph. Forum, vol. 38, pp. 355–366, 2019.

[165] V. Savage, A. Head, B. Hartmann, D. B. Goldman, G. J. Mysore, and W. Li, “Lamello:
Passive acoustic sensing for tangible input components,” in CHI 2015, 2015, pp. 1277–1280.

[166] A. Saxena, S. H. Chung, and A. Y. Ng, “Learning depth from single monocular images,” in
Advances in neural information processing systems, 2006, pp. 1161–1168.

190

https://proceedings.mlr.press/v9/ross10a.html
https://arxiv.org/abs/1406.5979
http://arxiv.org/abs/1406.5979
http://arxiv.org/abs/1406.5979
https://arxiv.org/abs/1011.0686
http://arxiv.org/abs/1011.0686
https://doi.org/10.1145/3386569.3392489
http://proceedings.mlr.press/v80/sanchez-gonzalez18a.html

[167] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph neural
network model,” Trans. Neur. Netw., vol. 20, no. 1, pp. 61–80, Jan. 2009. [Online]. Available:
https://doi.org/10.1109/TNN.2008.2005605.

[168] M. Schmitz, M. Herbers, N. Dezfuli, S. Günther, and M. Mühlhäuser, “Off-line sensing:
Memorizing interactions in passive 3d-printed objects,” in Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems, CHI 2018, Montreal, QC, Canada,
April 21-26, 2018, 2018, p. 182.

[169] A. Schulz, H. Wang, E. Grinspun, J. Solomon, and W. Matusik, “Interactive exploration
of design trade-offs,” ACM Trans. Graph., vol. 37, no. 4, Jul. 2018. [Online]. Available:
https://doi.org/10.1145/3197517.3201385.

[170] A. Schulz, J. Xu, B. Zhu, C. Zheng, E. Grinspun, and W. Matusik, “Interactive design space
exploration and optimization for cad models,” ACM Transactions on Graphics, vol. 36,
no. 4, Jul. 2017.

[171] A. Schulz et al., “Interactive robogami: An end-to-end system for design of robots with
ground locomotion,” The International Journal of Robotics Research, vol. 36, no. 10,
pp. 1131–1147, 2017.

[172] H. Shao et al., “Accurately solving rod dynamics with graph learning,” in Advances in
Neural Information Processing Systems, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.
Vaughan, Eds., 2021. [Online]. Available: https://openreview.net/forum?id=r2uzPR4AYo.

[173] H. Shekhar, S. Seal, S. Kedia, and A. Guha, “Survey on applications of machine learning
in the field of computer vision,” in Emerging Technology in Modelling and Graphics, J. K.
Mandal and D. Bhattacharya, Eds., Singapore: Springer Singapore, 2020, pp. 667–678,
ISBN: 978-981-13-7403-6.

[174] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” CoRR, vol. abs/1409.1556, 2014. [Online]. Available: http://arxiv.org/abs/
1409.1556.

[175] D. Sims, O. Cossairt, Y. Yue, and S. K. Nayar, “Stretchcam: Zooming Using Thin, Elastic
Optics,” Tech. Rep., Dec. 2017.

[176] R. Spreitzer, V. Moonsamy, T. Korak, and S. Mangard, “Systematic classification of side-
channel attacks: A case study for mobile devices,” IEEE Communications Surveys Tutorials,
vol. 20, no. 1, pp. 465–488, 2018.

[177] B. Starly, A. Lau, W. Sun, W. Lau, and T. Bradbury, “Direct slicing of STEP based NURBS
models for layered manufacturing,” Computer-Aided Design, vol. 37, no. 4, pp. 387–397,
2005.

191

https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1145/3197517.3201385
https://openreview.net/forum?id=r2uzPR4AYo
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556

[178] S. Sueda, G. L. Jones, D. I. W. Levin, and D. K. Pai, “Large-scale dynamic simulation
of highly constrained strands,” ACM Trans. Graph., vol. 30, no. 4, Jul. 2011. [Online].
Available: https://doi.org/10.1145/2010324.1964934.

[179] G. Taubin, D. Moreno, and D. Lanman, “3d scanning for personal 3d printing: Build your
own desktop 3d scanner,” in ACM SIGGRAPH 2014 Studio, ACM, 2014, p. 27.

[180] A. Teibrich, S. Mueller, F. Guimbretiere, R. Kovacs, S. Neubert, and P. Baudisch, “Patching
physical objects,” in Proc. UIST 2015, ACM, 2015, pp. 83–91.

[181] C. Tejada, O. Fujimoto, Z. Li, and D. Ashbrook, “Blowhole: Blowing-activated tags for in-
teractive 3d-printed models,” in Proc. Graphics Interface 2018, Canadian Human-Computer
Communications Society / Societe canadienne du dialogue humain-machine, 2018, pp. 131–
137.

[182] P. Teufl, U. Payer, and G. Lackner, “From nlp (natural language processing) to mlp (machine
language processing),” in Computer Network Security, I. Kotenko and V. Skormin, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 256–269, ISBN: 978-3-642-14706-
7.

[183] N. Thürey, K. Weissenow, L. Prantl, and X. Hu, “Deep learning methods for reynolds-
averaged navier-stokes simulations of airfoil flows,” 2018.

[184] V. Timonen, Multi-gpu cuda stress test (accessed oct 1, 2020), 2020. [Online]. Available:
https://github.com/wilicc/gpu-burn.

[185] M. Tournier, M. Nesme, B. Gilles, and F. Faure, “Stable constrained dynamics,” ACM Trans.
Graph., vol. 34, no. 4, Jul. 2015. [Online]. Available: https://doi.org/10.1145/2766969.

[186] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing machine learning
models via prediction apis,” in 25th USENIX Security Symposium (USENIX Security 16),
2016, pp. 601–618.

[187] K. Um, X. Hu, and N. Thuerey, “Liquid splash modeling with neural networks,” Computer
Graphics Forum, vol. 37, Apr. 2017.

[188] N. Umetani, R. Schmidt, and J. Stam, “Position-based elastic rods,” in Proceedings of
the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ser. SCA ’14,
Copenhagen, Denmark: Eurographics Association, 2015, pp. 21–30.

[189] J. Varley, C. DeChant, A. Richardson, A. Nair, J. Ruales, and P. Allen, “Shape completion
enabled robotic grasping,” in Intelligent Robots and Systems (IROS), IEEE/RSJ 2017
International Conference on, 2017.

192

https://doi.org/10.1145/2010324.1964934
https://github.com/wilicc/gpu-burn
https://doi.org/10.1145/2766969

[190] B. Wang and N. Z. Gong, “Stealing hyperparameters in machine learning,” in 2018 IEEE
Symposium on Security and Privacy (SP), 2018, pp. 36–52.

[191] B. Wang, P. G. Kry, Y. Deng, U. M. Ascher, H. Huang, and B. Chen, “Neural mate-
rial: Learning elastic constitutive material and damping models from sparse data,” ArXiv,
vol. abs/1808.04931, 2018.

[192] W. Wang et al., “Saliency-preserving slicing optimization for effective 3d printing,” Comput.
Graph. Forum, vol. 34, no. 6, pp. 148–160, 2015.

[193] N. Watters, D. Zoran, T. Weber, P. W. Battaglia, R. Pascanu, and A. Tacchetti, “Visual
interaction networks: Learning a physics simulator from video,” in NIPS, 2017.

[194] L. Wei, B. Luo, Y. Li, Y. Liu, and Q. Xu, “I know what you see: Power side-channel attack
on convolutional neural network accelerators,” in Proceedings of the 34th Annual Computer
Security Applications Conference, 2018, pp. 393–406.

[195] K. Weigelt, M. Hambsch, G. Karacs, T. Zillger, and A. C. Hübler, “Labeling the world:
Tagging mass products with printing processes,” IEEE Pervasive Computing, vol. 9, no. 2,
pp. 59–63, 2010.

[196] L. Weissbart, S. Picek, and L. Batina, “One trace is all it takes: Machine learning-based
side-channel attack on eddsa,” in International Conference on Security, Privacy, and Applied
Cryptography Engineering, Springer, 2019, pp. 86–105.

[197] K. D. D. Willis, E. Brockmeyer, S. E. Hudson, and I. Poupyrev, “Printed optics: 3d printing
of embedded optical elements for interactive devices,” in Proc. UIST 2012, 2012.

[198] K. D. D. Willis and A. D. Wilson, “Infrastructs: Fabricating information inside physical
objects for imaging in the terahertz region,” ACM Trans. Graph., vol. 32, no. 4, 2013.

[199] N. J. Woodland and S. Bernard, Classifying apparatus and method, US Patent 2,612,994,
Oct. 1952.

[200] K. Wu and C. Yuksel, “Real-time hair mesh simulation,” in Proceedings of the 20th
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, ser. I3D ’16,
Redmond, Washington: Association for Computing Machinery, 2016, pp. 59–64, ISBN:
9781450340434. [Online]. Available: https://doi.org/10.1145/2856400.2856412.

[201] Y. Xiang et al., “Open dnn box by power side-channel attack,” IEEE Transactions on
Circuits and Systems II: Express Briefs, 2020.

[202] C. Xiao, P. Zhong, and C. Zheng, “Bourgan: Generative networks with metric embeddings,”
in Proceedings of the 32Nd International Conference on Neural Information Processing

193

https://doi.org/10.1145/2856400.2856412

Systems, ser. NIPS’18, Montréal, Canada: Curran Associates Inc., 2018, pp. 2275–
2286. [Online]. Available: http://dl.acm.org/citation.cfm?id=3327144.3327154.

[203] Y. Xie, E. Franz, M. Chu, and N. Thuerey, “Tempogan: A temporally coherent, volumetric
gan for super-resolution fluid flow,” ACM Trans. Graph., vol. 37, no. 4, 95:1–95:15, Jul.
2018. [Online]. Available: http://doi.acm.org/10.1145/3197517.3201304.

[204] H. Xu, Y. Li, Y. Chen, and J. Barbič, “Interactive material design using model reduction,”
ACM Trans. Graph., vol. 34, no. 2, Mar. 2015. [Online]. Available: https://doi.org/10.1145/
2699648.

[205] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural network-based graph
embedding for cross-platform binary code similarity detection,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, ser. CCS ’17,
Dallas, Texas, USA: Association for Computing Machinery, 2017, pp. 363–376, ISBN:
9781450349468. [Online]. Available: https://doi.org/10.1145/3133956.3134018.

[206] M. Yan, C. W. Fletcher, and J. Torrellas, “Cache telepathy: Leveraging shared resource
attacks to learn dnn architectures,” in 29th USENIX Security Symposium (USENIX Security
20), 2020, pp. 2003–2020.

[207] Y. Yarom and K. Falkner, “Flush+ reload: A high resolution, low noise, l3 cache side-
channel attack,” in 23rd USENIX Security Symposium (USENIX Security 14), 2014, pp. 719–
732.

[208] S. H. Yoon, Y. Zhang, K. Huo, and K. Ramani, “Tring: Instant and customizable interactions
with objects using an embedded magnet and a finger-worn device,” in Proc. UIST 16,
Tokyo, Japan: ACM, 2016, pp. 169–181, ISBN: 978-1-4503-4189-9. [Online]. Available:
http://doi.acm.org/10.1145/2984511.2984529.

[209] H. Yu, H. Ma, K. Yang, Y. Zhao, and Y. Jin, “Deepem: Deep neural networks model recovery
through em side-channel information leakage,” in 2020 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), 2020, pp. 209–218.

[210] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative adversarial nets
with policy gradient,” in Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, ser. AAAI’17, San Francisco, California, USA: AAAI Press, 2017, pp. 2852–
2858. [Online]. Available: http://dl.acm.org/citation.cfm?id=3298483.3298649.

[211] L. Zhang, B. Curless, and S. M. Seitz, “Rapid shape acquisition using color structured light
and multi-pass dynamic programming,” in Proc. 3D Data Processing Visualization and
Transmission, IEEE, 2002, pp. 24–36.

[212] Q. Zhou and A. Jacobson, “Thingi10k: A dataset of 10,000 3d-printing models,” arXiv
preprint arXiv:1605.04797, 2016.

194

http://dl.acm.org/citation.cfm?id=3327144.3327154
http://doi.acm.org/10.1145/3197517.3201304
https://doi.org/10.1145/2699648
https://doi.org/10.1145/2699648
https://doi.org/10.1145/3133956.3134018
http://doi.acm.org/10.1145/2984511.2984529
http://dl.acm.org/citation.cfm?id=3298483.3298649

[213] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architectures for
scalable image recognition,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018, pp. 8697–8710.

[214] L. Zucheul, D. Kim, and Y.-i. Seo, Variable slicing for 3d modeling, US Patent App.
14/964,916, Jun. 2016.

195

	Acknowledgments
	Dedication
	Preface
	Introduction
	Motivation
	Problem Statement
	Approach
	Methodology
	Contributions
	LayerCodes
	Neural Snooping
	Data-Driven Hair Contact

	Related Work
	Simulating with Datasets and Graphs
	Sim-2-Real & Real-2-Sim
	Data-Driven Techniques
	Graph Algorithms

	Learning to Simulate
	Representative Examples
	Data Generation for Simulated Settings
	Machine Learning Improving Existing Techniques
	Beyond Model Reduction and Approximation

	Physical Information Embedding
	Traditional Embeddings
	Experimental Techniques

	Side Channel Neural Extraction
	Input-Output Deductions
	Digital Side Channels
	Physical Side Channels

	Strand Simulation Techniques
	Strand Simulation
	Approximate Physics
	Machine Learning & Simulation

	LayerCode
	Introduction
	Encoding
	Decoding
	Image Preprocessing
	Graph Construction
	Decoding through Graph Traversal
	Loop Prevention with Graph Invariants
	Early Termination
	Extensions
	Details on Depth Recovery

	Fabrication
	Two-Color Fabrication
	Fabrication with Variable Layer Heights
	Variable Layer Height Implementation
	Fabrication with Invisible Near-Infrared Dyes
	Invisible Near-Infrared Implementation
	Print-Specific Processing
	Discussion on Implementation and Application

	Evaluation on Virtual Dataset
	Database Construction
	Results Statistics

	Limitations & Concluding Remarks

	Can one hear the shape of a neural network?: Snooping the GPU via Magnetic Side Channel
	Introduction
	Technical Background
	Neural Networks
	GPUs for Deep Neural Networks
	Magnetic Signals from GPUs

	Threat Model
	Signal Analysis & Network Reconstruction
	Topology Recovery
	Hyperparameter Estimation

	Experimental Setup
	Hardware Sensors
	Dataset Construction
	Variations of the Approach

	Results
	Accuracy of Network Reconstruction
	Accuracy across GPUs
	Transfer Attack

	Defenses Against Magnetic Side Channels
	Prevention
	Jamming

	Ethical Considerations
	Discussion

	Data Driven Hair Contact
	Introduction
	Mapping Strands to Graphs
	Choice of Model
	Rod & Contact Model
	Feature Design
	Dataset Generation

	Network Specification
	Training Scheme

	Results
	Qualitative Comparisons
	Quantitative Comparisons
	Quantitative Advancements

	Conclusion
	Future Work
	Discussion

	Discussion
	Summary
	Contributions
	Limitations
	Future Work
	Conclusion

	References

