
THÈSE NO 2770 (2003)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE À LA FACULTÉ SCIENCES ET TECHNIQUES DE L'INGÉNIEUR

Institut de traitement des signaux

SECTION D'ÉLECTRICITÉ

POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES TECHNIQUES

PAR

ingénieur électricien diplômé EPF
et de nationalité chilienne et italienne

acceptée sur proposition du jury:

Prof. T. Ebrahimi, directeur de thèse
Prof. A. Baskurt, rapporteur
Prof. H. Bunke, rapporteur
Prof. B. Macq, rapporteur
Dr G. Taubin, rapporteur

Prof. D. Thalmann, rapporteur

Lausanne, EPFL
2003

COMPRESSION OF 3D MODELS WITH NURBS

Diego SANTA CRUZ DUCCI

To my beloved Joëlle and Dorian.

The significant problems we face cannot be

solved at the same level of thinking we were

at when we created them.

Albert Einstein

Acknowledgments

The process carrying out this research and writing this thesis has been a wonderful adventure and

a very exciting time. Nevertheless, it has not been without its share of pain and I could not have

achieved this work without the help, support and encouragement of many around me.

First of all I would like to thank Prof. Murat Kunt who persuaded me of doing a PhD and offered

me a position in the lab. I would like to thank Prof. Touradj Ebrahimi, my thesis supervisor, for

the many initial discussions on the subject, for the freedom he gave me in carrying out this research

and his unconditional support. He has also provided me with great opportunities to participate in

other projects, such as the JPEG 2000 standardization process, where I have learned a lot. I am

grateful to the members of my jury, Prof. Atilla Baskurt, Prof. Horst Bunke, Prof. Benôıt Macq,

Prof. Juan R. Mosig, Dr. Gabriel Taubin and Prof. Daniel Thalmann, for accepting to be part of

the committee and for reading the manuscript.

I am also grateful to all my colleagues that have helped me carry out this work. In particular

to Nicolas Aspert, with which the collaboration on developing many 3D tools has been invaluable.

Also thanks to Davy Jacquet for developing some initial tools during his student project.

For all their friendship, fruitful discussions and countless unforgettable moments I would like to

thank all the Signal Processing Laboratory members. I am also grateful to the secretaries of the

laboratory, Marianne Marion, Fabienne Vionnet, Isabelle Bezzi and Corinne Degott, for their help

and their patience, and to our system administrator, Gilles Auric, for his logistic support.

My sincere gratitude goes to my wife, Joëlle, to whom I dedicate this thesis together with my

son, Dorian. Without her support and encouragement I would have never been able to carry out

this PhD. Thanks for always being there, comprehensive and caring. Thanks also to Dorian, for

being a lovely child and for his long nights of uninterrupted sleep.

Finally, thanks to my parents who have provided me with great opportunities and encouraged

in all my undertakings with great love.

vii

viii Acknowledgments

Contents

Acknowledgments vii

Version abrégée xix

Abstract xxi

1 Introduction 1

1.1 Context . 1

1.2 Approach . 2

1.3 Main contributions . 3

1.4 Outline . 3

2 3D model representation 5

2.1 Introduction . 5

2.2 Polygonal meshes . 5

2.3 Parametric curves and surfaces . 6

2.4 B-Splines . 8

2.4.1 B-Spline functions . 9

2.4.2 B-Spline surfaces . 12

2.4.3 B-Spline curves . 18

2.4.4 Fundamental NURBS algorithms . 19

2.4.5 Trimmed NURBS . 21

2.5 Other surface modeling techniques . 23

2.5.1 Other parametric surfaces . 23

2.5.2 Subdivision surfaces . 24

2.5.3 Implicit surfaces . 25

2.6 Model properties . 26

2.7 Solid modeling . 27

2.7.1 Regularized Boolean set operations . 27

2.7.2 Boundary representation . 27

2.7.3 Constructive solid geometry . 28

2.8 Conclusions . 28

ix

x Contents

3 3D model coding 31

3.1 Introduction . 31

3.2 Entropy coding . 31

3.2.1 Entropy . 32

3.2.2 Huffman coding . 33

3.2.3 Arithmetic coding . 34

3.3 Quantization and distortion . 37

3.3.1 Rate distortion . 37

3.3.2 Scalar quantization . 38

3.3.3 Differential pulse code modulation . 40

3.3.4 Distortion in 3D models . 42

3.4 Coding of polygonal meshes . 43

3.4.1 Uncompressed meshes . 44

3.4.2 Geometry Compression . 46

3.4.3 Topological Surgery . 47

3.4.4 Triangle Mesh Compression . 50

3.4.5 Edgebreaker . 52

3.4.6 Edgebreaker derivatives . 57

3.4.7 Edgebreaker for polygonal meshes . 59

3.4.8 Triangle Mesh Compression derivatives . 61

3.4.9 Angle analyzer . 63

3.4.10 Other methods . 66

3.4.11 Coding of non-manifolds . 68

3.4.12 Progressive methods . 69

3.5 Coding of parametric surfaces . 72

3.6 Conclusions . 73

4 Parametric surface coding 77

4.1 Introduction . 77

4.2 Uncompressed NURBS . 78

4.3 General coder structure . 79

4.4 Knot vectors . 79

4.4.1 Prediction and quantization . 81

4.4.2 Distortion analysis . 83

4.4.3 Entropy coding . 86

4.5 Control points . 90

4.5.1 Prediction and quantization . 90

4.5.2 Distortion analysis . 99

4.5.3 Entropy coding . 99

4.6 Degenerate and closed surfaces . 103

4.7 Trimmed surfaces . 104

4.7.1 Knot vectors . 106

4.7.2 Control points . 106

4.7.3 Trim distortion in 3D space . 106

4.8 Performance analysis . 109

4.8.1 Distortion measurement . 109

4.8.2 Quantizers and rate distortion . 110

Contents xi

4.8.3 Comparative compression ratios . 122

4.8.4 Global and local quantizer bases . 122

4.8.5 Coded bit distribution . 122

4.8.6 Comparison with polygonal meshes . 129

4.9 Conclusions . 129

4.9.1 Summary . 129

4.9.2 Achievements . 131

5 Encoder design and extensions 133

5.1 Introduction . 133

5.2 Optimal linear predictors . 133

5.3 Trimming loop optimization . 136

5.3.1 Curve merging . 137

5.3.2 Curve simplification . 138

5.4 Error resilience . 140

5.4.1 Data partitioning . 141

5.4.2 Basic error detection . 143

5.4.3 Segment markers . 143

5.4.4 Bitstream reordering . 146

5.5 Conclusions . 146

6 Applications 149

6.1 Introduction . 149

6.2 VRML coding . 149

6.3 Mixed reality . 151

6.4 Computer aided design . 153

6.5 Augmented commercials . 154

6.6 Conclusions . 155

7 Conclusions 157

7.1 Summary of achievements . 157

7.2 Future directions . 158

A Distortion induced by knot quantization 161

A.1 Introduction . 161

A.2 Distortion on curves . 161

A.3 Distortion on surfaces . 166

Bibliography 167

Curriculum Vitæ 175

xii Contents

List of Figures

2.1 Examples of manifold classification for the center vertex v. 6

2.2 Example orientable manifold with five vertices (v0, . . . , v4), four faces (three triangles

plus one quadrilateral) and eight edges. 7

2.3 The quadratic B-Spline functions for different knot vectors U 11

2.4 A simple biquadratic polynomial B-Spline surface with knot vectors U = {0, 0, 0, 1, 2, 2, 2}
and V = {0, 0, 0, 1, 2, 3, 3, 3}. The dashed lines and solid bullets show the control net

and points. 15

2.5 The effect of control point modification on a biquadratic NURBS surface, where all

control points have unity weights. The thick lines delimit the region affected by the

modification of the central control point. The (a) and (c) plots show the control nets

while (b) and (d) the resulting surfaces. 15

2.6 The effect of weight modification on the surface of figure Figure 2.5(c). The thick

lines delimit the region affected by the modification of the central weight. 16

2.7 The surface of a goblet modeled as one truly rational NURBS patch. The patch is

cubic in the direction of the height and quadratic in the other, perpendicular, one. . 17

2.8 The iso-curves and control net of a sphere octant described as a biquadratic NURBS

surface. 22

2.9 Trimming domains defined by NURBS curves. 22

2.10 Trimmed NURBS surfaces resulting of applying the trimming domains of Figure 2.9

to the surface of figure Figure 2.4. 23

3.1 Elias coding example: the string “0100” from a binary source with p(0) = 3
4 and

p(1) = 1
4 can be coded as the fraction 5

8 (i.e., 0.101 in binary). 35

3.2 Block diagram of a DPCM coder . 41

3.3 Example of non symmetric surface distances: Dmax(S, Ŝ) < Dmax(Ŝ,S). 42

3.4 VRML description of an irregular pyramid (left) and the rendered model (right). . 44

3.5 Vertex ordering in a triangle strip, triangle fan and generalized triangle strip. 46

3.6 The triangle mesh of the union of a cube and an irregular tetrahedron: (a) mesh

with labeled vertices (sharp edges are bold, hidden edges are dashed) and (b) the

corresponding vertex graph. 48

3.7 Topological Surgery applied to the mesh of Figure 3.6: (a) the vertex tree, (b) the cut

mesh (cut area grayed), (c) the cut mesh “flattened” as a simply connected polygon

(branching and leaf triangles are labeled as “B” and “L”, respectively). 49

xiii

xiv List of Figures

3.8 Triangle Mesh Compression coding process for the mesh of Figure 3.6, starting at the

vertex labeled 1. Thick lines denote the current active list edges, or cut border, and

the arrow indicates its orientation. Gray denotes an active list that has been pushed

down the stack. The current pivot is shown by the thick dot. 53

3.9 Parallelogram prediction as used in Triangle Mesh Compression. The vertex r is

predicted as r′, so as to form a parallelogram with vertices w, u and v with a crease

angle α. 54

3.10 Edgebreaker operations. Dark gray denotes processed triangles, light gray the triangle

being coded. Thick lines denote the cut-border. Dashed edges are removed from the

cut border and dotted ones are inserted. The arrow shows the current gate. The

vertex defining the new triangle is shown as the thick dot. 55

3.11 Cause for splits in the original Triangle Mesh Compression algorithm. 61

3.12 Set of symbols used to code triangles. The thick solid line is the current active gate

(v0, v1). Dashed lines are gates to be inserted. Black, white and gray dots are the

gate’s vertices, new front vertices and previously coded front vertices, respectively. . 65

3.13 Set of symbols used to code quadrilaterals. The thick solid line is the current active

gate (v0, v1). Dashed lines are gates to be inserted. Black, white and gray dots are the

gate’s vertices, new front vertices and previously coded front vertices, respectively.

The last row shows the three possible configurations that can be coded with a JQ

symbol. 65

4.1 Example of a simple NURBS surface in VRML. 78

4.2 Simplified view of the coder structure. 80

4.3 Histograms of the breakpoint prediction error for the non-uniform break vectors of

various models. The breakpoints of the uniform break vectors are not considered. . . 82

4.4 Ratio of the surface distortion bound to the actual surface L∞ parametric distortion,

as a function of the knot quantization step size ∆k, for various surfaces. 85

4.5 Ratio of the parametric to Hausdorff L∞ distortions for various models and knot

quantization step sizes. 86

4.6 Histograms of the number of significant bits in the quantizer indices of the breakpoint

prediction error for various models. Used ∆k = 2×10−4, hence εk = 13 and Nk = 14.

The proportion of non-zero values for (a), (b) and (c) is 77%, 82% and 85%, respectively. 89

4.7 Histograms for the coding cost improvement of using a full 2n-ary model instead of a

simple bitplane coder for the breakpoint prediction error. 91

4.8 Comparison of the control net obtained using affine coordinates vs. the first three

homogeneous coordinates for control points, for the goblet model. 92

4.9 Histograms of the combined x, y and z prediction errors for the control points using

the parallelogram predictor, for various models. 94

4.10 The killeroo-lowres, scissors and coke models. 95

4.11 Histograms of the weight values for various models. 97

4.12 Histograms of weight prediction error for various models. 98

4.13 Histograms of the number of significant magnitude bits in the quantizer indices of the

control point coordinate prediction error for various models and quantizer step sizes,

using the parallelogram predictor. The quantizer step sizes are given with respect to

the exact bounding box size (i.e., not power of two approximated). 101

4.14 The fairing and lion models. 105

4.15 A trimmed surface of the subprop model and its corresponding three trimming loops.

The surface has 25 control points, while the trimming curves total 199 control points. 107

List of Figures xv

4.16 Distortion due to knot quantization for varying ∆′
k on various models. The quantizer

step sizes are roughly equivalent to 7, 8, 9, 10, 11 and 12 bit quantizations. 110

4.17 Knot rate-distortion for varying ∆′
k on various models. The quantizer step sizes are

roughly equivalent to 7, 8, 9, 10, 11 and 12 bit quantizations. 111

4.18 Overall bitrate increase arising by reducing the global knot quantizer step size from

7.8× 10−3, for various models and ∆′
c = ∆′

w = 7.8× 10−3. 112

4.19 Distortion due to weight quantization for varying ∆′
w on various models. The quan-

tizer step sizes are roughly equivalent to 7, 8, 9, 10, 11 and 12 bit quantizations. . . 113

4.20 Weight rate-distortion for varying ∆′
w on various models. The quantizer step sizes

are roughly equivalent to 7, 8, 9, 10, 11 and 12 bit quantizations. 113

4.21 Overall model distortion for varying ∆′
c, with ∆′

k = ∆′
c and ∆′

w = ∆′
c, for various

models. The quantizer step sizes are roughly equivalent to 7, 8, 9, 10, 11 and 12 bit

quantizations. 114

4.22 Overall rate-distortion for varying ∆′
c and various ∆′

k values, with ∆′
w = 7.8× 10−3,

with the parallelogram predictor. 115

4.23 Overall rate-distortion for varying ∆′
c and various ∆′

w values, with ∆′
k = ∆′

c, with

the parallelogram predictor. 115

4.24 Overall distortion and rate-distortion for the highly detailed killeroo-hires model. 116

4.25 Visual results for the scissors model. 117

4.26 Detail of visual results for the scissors model of Figure 4.25. 118

4.27 Hausdorff distortion distribution for the scissors model coded with ∆′
c = 3.9×10−3

and ∆′
k = ∆′w = 7.8× 10−3 . 119

4.28 Trim curve distortion for varying ∆′
t,c and ∆′

t,w, with ∆′
t,c = ∆′

t,w, and ∆′
t,k = 7.8×10−3.120

4.29 Trim curve rate-distortion for varying ∆′
t,c and ∆′

t,w, with ∆′
t,c = ∆′

t,w, and ∆′
t,k =

7.8× 10−3. 120

4.30 Overall distortion for trimmed curves, with all quantizer step sizes equal. 121

4.31 Overall rate-distortion for trimmed models, with all quantizer step sizes equal. . . . 121

4.32 Distortions for control point quantization in the global and local bases. All the global

quantizer step sizes are set to the same value. 125

4.33 Rate-distortion for control point quantization in the global and local bases. All the

global quantizer step sizes are set to the same value and duplicate map coding is

enabled. 126

4.34 Global distribution of coded bits for various models. All global quantizer step sizes

are set to 2× 10−3. 127

4.35 Detailed distribution of coded bits for knots vectors and duplicate map, for various

models. All global quantizer step sizes are set to 2× 10−3. 128

4.36 Detailed distribution of coded bits for surface control points and trimming curves.

All global quantizer step sizes are set to 2× 10−3. 128

4.37 Rate distortion of compressed NURBS (CNURBS) and the corresponding Touma-

Gotsman (TG) compressed triangular meshes coded at 8, 10 and 12 bits, for various

tessellation precisions. 130

5.1 The arrangement of the three predictors considered. 135

5.2 Example of decoded models for a BER of 10−4, restart period of 1 and basic error

detection only. The quantizer step sizes are set to 2× 10−3. 144

5.3 Example of decoded models for a BER of 10−4, restart period of 1 and with segment

markers. The quantizer step sizes are set to 2× 10−3. 145

xvi List of Figures

6.1 Large VRML model made of 362 surfaces and 230 trim loops, with 9827 and 3652

control points, respectively. 150

6.2 Futuristic vehicle made of 137 surfaces and 284 trimming loops, with 7667 and 1743

control points, respectively. 152

6.3 Two Chinese garden statues. 152

6.4 Large CAD model made of 2262 surfaces and 1187 trimming loops, with 90855 and

43500 control points, respectively. 153

6.5 Control net of the large CAD model of Figure 6.4. 154

6.6 Highly detailed model of a car, made of 1057 surfaces and 338 trim loops, with 60704

and 338 control points, respectively. 155

List of Tables

3.1 Maximum distortion for uniform quantization of geometric objects of various scales

as a function of the number of quantized bits. 45

3.2 Coding of the vertex and triangles trees and marching pattern of Figure 3.7. The

triangle tree is rooted on vertex 1b. 49

4.1 The duplicate map (dmap) coding cost and change in control point (c.p.) coding cost

for ∆′
c = 2× 10−3 and ∆′

w = 2× 10−3, with the parallelogram predictor, for various

models. 104

4.2 The duplicate map (dmap) coding cost and change in control point (c.p.) coding cost

for ∆′
c = 10−2 and ∆′

w = 10−2, with the parallelogram predictor, for various models. 105

4.3 Compression ratios, over the original VRML file size, for various models. The gzip

column shows the compressed file size using gzip at its maximum setting. The “nom-

inally lossless” column is obtained by setting the quantizers to the relative precision

of 32 bit floating point (i.e., 24 bits). The other columns are obtained by setting ∆′
k,

∆′
c, ∆′

w, ∆′
t,k, ∆′

t,c and ∆′
t,w to the value shown, and are roughly equivalent to 8, 10,

12 and 16 bit quantizations of the surface points in Euclidean space. In all cases the

coding of the duplicate map has been enabled. 123

4.4 Compression ratios, over the gzip’ed VRML file size, for various models. The gzip

column shows the compressed file size using gzip at its maximum setting. The “nom-

inally lossless” column is obtained by setting the quantizers to the relative precision

of 32 bit floating point (i.e., 24 bits). The other columns are obtained by setting ∆′
k,

∆′
c, ∆′

w, ∆′
t,k, ∆′

t,c and ∆′
t,w to the value shown, and are roughly equivalent to 8, 10,

12 and 16 bit quantizations of the surface points in Euclidean space. In all cases the

coding of the duplicate map has been enabled. 124

5.1 Minimum variance predictors of order 3 and 4 for various models. 134

5.2 Minimum variance predictor of order 6 for various models. 134

5.3 Percent change in coded bitrate for the minimum variance predictors of Tables 5.1

and 5.2, with respect to the parallelogram predictor. 135

5.4 Perecent change of coded bitrate for high order minimum variance predictors, with

respect to the parallelogram predictor, for the killeroo models. 135

5.5 Optimal predictors, within a 0.033 tolerance, and their bitrate improvement over the

parallelogram predictor for various models. 136

xvii

xviii List of Tables

5.6 The effects of trim curve merging on various models. The bitrate savings for the

trimming curve data alone as well as the overall are shown. No knot removal has been

applied on the merged curves. All quantizer step sizes are set to 9.8 × 10−4 ≈ 2−10.

The predictor for the trimming curve control points is set to the first order one. . . . 138

5.7 The effects of trimming curve simplification, alone and combined with merging, on

various models. The simplification factor is set to 0.2. The bitrate savings are reported

for merged and simplification combined. All quantizer step sizes are set to 9.8×10−4 ≈
2−10. The predictor for the trimming curve control points is set to the first order one. 140

5.8 Bitrate savings for trim curve combined merging and simplification, for different sim-

plification factors. All quantizer step sizes are set to 9.8×10−4 ≈ 2−10. The predictor

for the trimming curve control points is set to the first order one. 140

5.9 Overhead (%) due to arithmetic coder termination and restart, using a restart period

of one, for two quantizer step sizes. 142

Version abrégée

Avec les récents progrès de l’informatique et des télécommunications, les modèles 3D sont de plus en

plus utilisés dans les applications multimédia. La visualisation, les jeux, le divertissement et la réalité

virtuelle comptent parmi les exemples les plus répandus. Dans le domaine du multimédia les modèles

3D ont été traditionnellement représentés comme des maillages polygonaux. Cette représentation

plane par morceaux, peut être vue comme l’analogue des images bitmap pour les surfaces 3D. Comme

les images bitmap, ils jouissent d’une grande flexibilité et sont particulièrement bien adaptés pour

décrire des informations acquises depuis le monde réel, comme par exemple, lors d’un processus de

balayage. Ils souffrent, cependant, des mêmes limitations, notamment une résolution limitée et un

grand espace de stockage.

La compression de maillages polygonaux est un domaine de recherche très actif depuis une

décennie et des algorithmes de compression efficaces permettant de réduire fortement les besoins

en place de stockage, ont été proposés dans la littérature. Cependant, cette description bas-niveau

de formes 3D a une performance limitée. Une compression plus efficace devrait être possible avec

l’usage de primitives de plus haut niveau. Cette idée a été extensivement explorée dans le contexte du

codage à base de modèles de l’information visuelle. Dans une telle approche, lors de la compression

de l’information visuelle une représentation de plus haut niveau (par ex. un modèle 3D d’une tête

parlante) est obtenue par analyse. Ceci peut être vu comme un problème de projection inverse. Une

fois cette tâche accomplie, les paramètres du modèle résultants sont codés à la place de l’information

originale. Il est communément admis que si le module d’analyse est suffisamment efficace le coût

total de codage (dans le sens débit distorsion) en sera largement réduit.

La performance relativement basse et la haute complexité des méthodes d’analyse existantes

(mis à part des cas spécifiques où une connaissance a priori de la nature des objets est disponible),

a empêché un large déploiement des techniques de codage basées sur une telle approche. Le progrès

dans le domaine de l’infographie (computer graphics) a néanmoins changé cette situation. En effet,

de nos jours, un nombre croissant d’images, vidéos et contenu 3D sont générés par procédés de

synthèse au lieu de provenir d’un appareil de capture, tels une caméra ou un scanner. Cela signifie

que le modèle sous-jacent dans le stade de synthèse peut être utilisé pour améliorer les performances

de codage sans avoir besoin de recourir à un module d’analyse hautement complexe. En d’autres

mots, ce serait une erreur que de vouloir essayer de compresser une description bas-niveau (par ex.

un maillage polygonal) alors qu’une description de plus haut niveau est disponible dans le processus

de synthèse (par ex. une surface paramétrique). Cela est, cependant, ce qui est couramment fait

dans le domaine du multimédia, où des descriptions de modèles 3D de haut niveau sont convertis en

maillage polygonaux, ne serait-ce que par manque d’un format standard pour le codage de ceux-ci.

Par ailleurs, la façon dont nous consommons l’information audiovisuelle est en train de changer.

A l’opposé des anciennes applications et une grande partie des actuelles, l’interactivité est en train

de devenir un élément clé de la manière dont nous consommons l’information. Dans le cadre de la

xix

xx Version abrégée

présente dissertation, cela signifie que, lorsque nous codons un information visuelle (par ex. une

image ou une vidéo), des considérations évidentes par le passé telles que la sélection des paramètres

d’échantillonage n’est plus aussi évidente qu’avant. En effet, à l’instar d’un environnement interactif

où la résolution d’affichage effective peut être contrôlée par l’utilisateur à travers un zoom, il n’y

a pas de choix optimal clairement défini pour les paramètres d’échantillonage. Cela signifie qu’à

cause de l’interactivité, la représentation utilisée pour coder la scène devrait permettre l’affichage

des objets dans une large gamme de résolutions et, idéalement, jusqu’à l’infini.

Une façon de résoudre ce problème serait l’utilisation d’un suréchantillonage extensif. Néanmoins,

cette approche est irréaliste et trop coûteuse à implanter dans beaucoup de situations. L’alternative

serait d’utiliser une représentation indépendante de la résolution. Dans le domaine du modelage 3D,

lesdites représentations sont couramment disponibles lorsque les modèles sont crées par un artiste

sur un ordinateur.

Le sujet de cette dissertation est précisément la compression de modèles 3D dans une forme

de plus haut niveau. Le codage direct sous une telle forme devrait délivrer une performance débit

distorsion améliorée tout en procurant un large degré d’indépendance de résolution. Il n’y a pas eu,

jusqu’à ce jour, de travaux majeurs sur la compression efficace de telles représentations, telles que

les surfaces paramétriques. Cette thèse propose une solution pour combler ce vide.

Une variété de représentations 3D de haut niveau existe, parmi lesquelles les surfaces paramé-

triques sont un choix répandu parmi les designers. Dans la famille des surfaces paramétriques, les

B-Splines rationnelles non-uniformes (NURBS) jouissent d’une grande popularité étant donné qu’une

large gamme d’outils basés sur les NURBS sont couramment disponibles. Récemment, les NURBS

ont été ajoutées dans le Virtual Reality Modeling Language (VRML) ainsi que son descendant de

nouvelle génération le eXtensible 3D (X3D). Les bonnes propriétés des NURBS et leur utilisation

largement répandue nous ont conduit à les choisir comme forme sous laquelle les modèles seront

codés.

Le but principal de cette dissertation est la définition d’un système de codage des modèles 3D

NURBS avec une distorsion garantie. La base du système est la modulation par impulsion et codage

différentiel (DPCM) codée entropiquement. Dans le cas de NURBS, garantir la distorsion n’est pas

évident, dès lors que certains de ses paramètres (par ex. nœuds) ont une influence compliquée sur

la distorsion totale de la surface. A cette fin, une analyse détaillé de la distorsion est effectuée. En

particulier, des relations jusqu’alors inconnues entre la distorsion des nœuds et la distorsion de la

surface résultante est démontrée.

L’efficacité de la compression est recherchée à chaque stade et des codeurs entropiques simples

mais néanmoins efficaces sont définis. Le cas particulier de surfaces fermées et dégénérées avec des

point de contrôle dupliqués est adressé et un codage simple et efficace est proposé pour compresser

les relations de duplication.

Les aspects de l’encodeur sont aussi analysés. Des prédicteurs optimaux ayant une bonne perfor-

mance sur une large classe de modèles sont trouvés. Des techniques de simplification, ayant un coût

négligeable sur la distorsion, sont aussi considérées pour une meilleure efficacité de compression.

La transmission sur des canaux présentant un taux d’erreur non négligeable est aussi considérée

est une extension de résilience aux erreurs est définie. Le train de données est morcelé en codant

indépendamment des petits groupes de surfaces et en insérant les marqueurs de resynchronisation

nécessaires. Des stratégies simples pour atteindre le niveau désiré de protection sont proposées. La

même extension sert aussi pour l’accès aléatoire et le réordonnancement à la demande du train de

données.

Abstract

With recent progress in computing, algorithmics and telecommunications, 3D models are increasingly

used in various multimedia applications. Examples include visualization, gaming, entertainment and

virtual reality. In the multimedia domain 3D models have been traditionally represented as polygonal

meshes. This piecewise planar representation can be thought of as the analogy of bitmap images

for 3D surfaces. As bitmap images, they enjoy great flexibility and are particularly well suited

to describing information captured from the real world, through, for instance, scanning processes.

They suffer, however, from the same shortcomings, namely limited resolution and large storage size.

The compression of polygonal meshes has been a very active field of research in the last decade

and rather efficient compression algorithms have been proposed in the literature that greatly mit-

igate the high storage costs. However, such a low level description of a 3D shape has a bounded

performance. More efficient compression should be reachable through the use of higher level primi-

tives. This idea has been explored to a great extent in the context of model based coding of visual

information. In such an approach, when compressing the visual information a higher level represen-

tation (e.g., 3D model of a talking head) is obtained through analysis methods. This can be seen

as an inverse projection problem. Once this task is fulfilled, the resulting parameters of the model

are coded instead of the original information. It is believed that if the analysis module is efficient

enough, the total cost of coding (in a rate distortion sense) will be greatly reduced.

The relatively poor performance and high complexity of currently available analysis methods

(except for specific cases where a priori knowledge about the nature of the objects is available), has

refrained a large deployment of coding techniques based on such an approach. Progress in computer

graphics has however changed this situation. In fact, nowadays, an increasing number of pictures,

video and 3D content are generated by synthesis processing rather than coming from a capture

device such as a camera or a scanner. This means that the underlying model in the synthesis stage

can be used for their efficient coding without the need for a complex analysis module. In other

words it would be a mistake to attempt to compress a low level description (e.g., a polygonal mesh)

when a higher level one is available from the synthesis process (e.g., a parametric surface). This is,

however, what is usually done in the multimedia domain, where higher level 3D model descriptions

are converted to polygonal meshes, if anything by the lack of standard coded formats for the former.

On a parallel but related path, the way we consume audio-visual information is changing. As

opposed to recent past and a large part of today’s applications, interactivity is becoming a key

element in the way we consume information. In the context of interest in this dissertation, this

means that when coding visual information (an image or a video for instance), previously obvious

considerations such as decision on sampling parameters are not so obvious anymore. In fact, as in

an interactive environment the effective display resolution can be controlled by the user through

zooming, there is no clear optimal setting for the sampling period. This means that because of

interactivity, the representation used to code the scene should allow the display of objects in a

xxi

xxii Abstract

variety of resolutions, and ideally up to infinity.

One way to resolve this problem would be by extensive over-sampling. But this approach is

unrealistic and too expensive to implement in many situations. The alternative would be to use

a resolution independent representation. In the realm of 3D modeling, such representations are

usually available when the models are created by an artist on a computer.

The scope of this dissertation is precisely the compression of 3D models in higher level forms. The

direct coding in such a form should yield improved rate-distortion performance while providing a

large degree of resolution independence. There has not been, so far, any major attempt to efficiently

compress these representations, such as parametric surfaces. This thesis proposes a solution to

overcome this gap.

A variety of higher level 3D representations exist, of which parametric surfaces are a popular

choice among designers. Within parametric surfaces, Non-Uniform Rational B-Splines (NURBS)

enjoy great popularity as a wide range of NURBS based modeling tools are readily available. Re-

cently, NURBS has been included in the Virtual Reality Modeling Language (VRML) and its next

generation descendant eXtensible 3D (X3D). The nice properties of NURBS and their widespread

use has lead us to choose them as the form we use for the coded representation.

The primary goal of this dissertation is the definition of a system for coding 3D NURBS models

with guaranteed distortion. The basis of the system is entropy coded differential pulse coded mod-

ulation (DPCM). In the case of NURBS, guaranteeing the distortion is not trivial, as some of its

parameters (e.g., knots) have a complicated influence on the overall surface distortion. To this end,

a detailed distortion analysis is performed. In particular, previously unknown relations between the

distortion of knots and the resulting surface distortion are demonstrated.

Compression efficiency is pursued at every stage and simple yet efficient entropy coder realizations

are defined. The special case of degenerate and closed surfaces with duplicate control points is

addressed and an efficient yet simple coding is proposed to compress the duplicate relationships.

Encoder aspects are also analyzed. Optimal predictors are found that perform well across a wide

class of models. Simplification techniques are also considered for improved compression efficiency

at negligible distortion cost.

Transmission over error prone channels is also considered and an error resilient extension defined.

The data stream is partitioned by independently coding small groups of surfaces and inserting the

necessary resynchronization markers. Simple strategies for achieving the desired level of protection

are proposed. The same extension also serves the purpose of random access and on-the-fly reordering

of the data stream.

Introduction 1
1.1 Context

With recent progress in computing, algorithmics and telecommunications, 3D models are increasingly

used in various multimedia applications. Examples include visualization, gaming, entertainment and

virtual reality. In the multimedia domain 3D models have been traditionally represented as polygonal

meshes. This piecewise planar representation can be thought of as the analogy of bitmap images

for 3D surfaces. As bitmap images, they enjoy great flexibility and are particularly well suited

to describing information captured from the real world, through, for instance, scanning processes.

They suffer, however, from the same shortcomings, namely limited resolution and large storage size.

The compression of polygonal meshes has been a very active field of research in the last decade

and rather efficient compression algorithms have been proposed in the literature that greatly mit-

igate the high storage costs. However, such a low level description of a 3D shape has a bounded

performance. More efficient compression should be reachable through the use of higher level primi-

tives. This idea has been explored to a great extent in the context of model based coding of visual

information. In such an approach, when compressing a video captured by a camera, for instance, an

analysis module attempts to model the scene under consideration as a set of (generally) 3D models.

This can be seen as an inverse projection problem. Once this task is successfully fulfilled, instead of

coding the image sequence from the video, represented as a set of pixels and their motions, the pa-

rameters of the model extracted from the scene are coded. It is believed that if the analysis module

is efficient enough, the total cost of coding (in a rate distortion sense) will be greatly reduced.

The relatively poor performance and high complexity of currently available analysis methods

(except for specific cases where a priori knowledge about the nature of the objects is available), has

refrained a large deployment of coding techniques based on such an approach. Progress in computer

graphics has however changed this situation. In fact, nowadays, an increasing number of pictures,

video and 3D content are generated by synthesis processing rather than coming from a capture

device such as a camera or a scanner. This means that the underlying model in the synthesis stage

can be used for their efficient coding without the need for a complex analysis module. In other

words it would be a mistake to attempt to compress a low level description (e.g., a polygonal mesh)

1

2 Chapter 1. Introduction

when a higher level one is available from the synthesis process (e.g., a parametric surface). This is,

however, what is usually done in the multimedia domain, where higher level 3D model descriptions

are converted to polygonal meshes, if anything by the lack of standard coded formats for the former.

On a parallel but related path, the way we consume audio-visual information is changing. As

opposed to recent past and a large part of today’s applications, interactivity is becoming a key

element in the way we consume information. In the context of interest in this dissertation, this

means that when coding visual information (an image or a video for instance), previously obvious

considerations such as decision on sampling parameters are not so obvious anymore. To be more

clear, consider the following example. In a conventional digital video coding problem, the sampling

(i.e. number of pixels in the image) mostly depends on the display resolution. Knowing the resolution

of the display, there is no need to acquire and then to code a signal with sampling characteristics

beyond those that the display is capable of reproducing.

In an interactive environment, this is not true anymore. Even using a conventional display

with, for instance, a resolution of 300× 400 pixels, one could request to examine more closely (and

therefore display) an object in a scene. This means that because of interactivity, the representation

used to code the scene should allow the display of objects in a variety of resolutions, and ideally up

to infinity.

One way to resolve this problem would be by extensive over-sampling. But this approach is

unrealistic and too expensive to implement in many situations. The alternative would be to use

a resolution independent representation. In the realm of 3D modeling, such representations are

usually available when the models are created by an artist on a computer.

1.2 Approach

The scope of this dissertation is precisely the compression of 3D models in higher level forms. As

explained above, the direct coding in such a form should yield improved rate-distortion performance

while providing a large degree of resolution independence. There has not been, so far, any ma-

jor attempt to efficiently compress these representations, such as parametric surfaces. This thesis

proposes a solution to overcome this gap.

A variety of higher level 3D representations exists, of which parametric surfaces are a popular

choice among designers. Within parametric surfaces, Non-Uniform Rational B-Splines (NURBS)

enjoy great popularity as a wide range of NURBS based modeling tools are readily available. Re-

cently, NURBS has been included in the Virtual Reality Modeling Language (VRML) [113] and its

next generation descendant eXtensible 3D (X3D) [114]. The nice properties of NURBS and their

widespread use has lead us to choose them as the form we use for the coded representation.

The approach presented in this dissertation draws its origins from the vast literature available in

3D polygonal mesh coding and the related field of image compression. Since the landmark paper of

Deering published in 1995 [15] the field of polygonal mesh coding has seen intense activity, leading to

standardization in MPEG-4 [49] and very efficient algorithms in the past few years [2, 56, 64, 109].

The primary goal of this dissertation is the definition of a system for coding 3D NURBS models

with guaranteed distortion. In the case of NURBS, guaranteeing the distortion is not trivial, as

some of its parameters (e.g., knots) have a complicated influence on the overall surface distortion.

To this end, a detailed distortion analysis is performed. In particular, previously unknown relations

between the distortion of knots and the resulting surface distortion are demonstrated.

Compression efficiency is pursued at every stage and simple yet efficient entropy coder realizations

are defined. The special case of degenerate and closed surfaces with duplicate control points is

addressed and an efficient yet simple coding is proposed to compress the duplicate relationships.

1.3. Main contributions 3

Encoder aspects are also analyzed. Optimal predictors are found that perform well across a wide

class of models. Simplification techniques are also considered for improved compression efficiency

at negligible distortion cost.

Transmission over error prone channels is also considered and an error resilient extension defined.

The data stream is partitioned by independently coding small groups of surfaces and inserting the

necessary resynchronization markers. Simple strategies for achieving the desired level of protection

are proposed. The same extension also serves the purpose of random access and on-the-fly reordering

of the data stream.

1.3 Main contributions

The main contributions of this dissertation can be summarized as follows.

• Definition of an efficient coding procedure for knot vectors, separating multiplicity and value

information.

• Derivation and demonstration of a bound relating the knot quantization error to the resulting

parametric surface distortion.

• Definition of a simple yet effective entropy coding procedure for the prediction errors of the

various parameter types (knots, coordinates and weights).

• Definition of an efficient entropy coding procedure to compress the duplicate point information

of closed and degenerate surfaces.

• Derivation of a detailed distortion analysis for each parameter type leading to the definition

of global quantizer settings for a balanced distribution of distortion among the data types.

• Derivation of predictors for optimal compression performance that behave uniformly on a wide

class of models.

• Thorough evaluation of rate-distortion performance leading to the definition of heuristics for

optimal, in the rate-distortion sense, quantizer settings. These heuristics complement the

derivation of the global quantizer settings.

• Definition of a decomposition of the data stream in independent segments to achieve error

resilience and random access capabilities.

1.4 Outline

This dissertation is organized as follows. Chapter 2 is dedicated to a review of the existing means

for describing the shape of 3D objects. We discuss surface modeling techniques including polygo-

nal meshes and parametric surfaces, with special attention on B-Splines, as well as solid modeling

techniques such as boundary representations (B-Reps) and constructive solid geometry. Other sur-

face modeling techniques, such as subdivision and implicit surfaces are also reviewed. Chapter 3 is

dedicated to a review of the state-of-the-art in 3D model coding. In particular the coding of 3D

polygonal meshes, the most researched topic in 3D compression, is reviewed at length with special

attention to fixed rate coding. Prior to this, a brief review of the relevant results of information

theory is included.

4 Chapter 1. Introduction

Chapter 4 presents the main contributions of this dissertation. A coding system for NURBS

surfaces, trimmed or not, is presented. A detailed distortion analysis is performed to derive guar-

anteed distortion bounds and the experimental rate-distortion performance is assessed. Chapter 5

discuss encoder techniques that can be used to achieve optimal compression performance, as well as

extensions to operate in error prone environments. Chapter 6 presents several application scenarios

demonstrating the viability and interest of the proposed system. Conclusions and an outline of some

interesting future research directions are presented in Chapter 7. Finally, the demonstration of the

surface distortion bound given a knot quantization error is provided in Chapter A.

3D model representation 2
2.1 Introduction

This chapter is dedicated to a review of the different schemes used to represent the shape of three-

dimensional (3D) objects, and their associated properties. The development of the techniques used

to represent the 3D models started out of a necessity in the computer aided geometric design

community. Later, many of the methods have been adopted and extended in the more general

computer graphics field.

The representation of 3D objects can be divided into two main categories: surface modeling and

solid modeling. Surface modeling deals with the problem of representing two-dimensional surfaces

embedded in the three-dimensional space. These surfaces might or might not define a volume.

Solid modeling extends on the techniques of surface modeling to deal with the representation and

manipulation of volumes completely surrounded by surfaces, such as a cube, a sphere or much more

complicated objects such as airplanes, buildings, the human body, etc.

This chapter is organized as follows. Section 2.2 briefly introduces polygonal meshes and some

of the associated topological concepts. Section 2.3 introduces the general concept of parametric

curves and surfaces, while Section 2.4 introduces in more detail one of the most common parametric

surface forms, B-Splines, including regular tensor product as well as trimmed surfaces. Other surface

representation techniques are briefly described in Section 2.5. Section 2.6 describes the major model

properties such as normals, texture coordinates and color. Section 2.7 introduces some of the

concepts and special constraints of solid modeling as well as some of the most commonly used

techniques. Finally conclusions are drawn in Section 2.8.

2.2 Polygonal meshes

A polygonal mesh [7, 23] describes a surface as a set of connected polygonally bounded planar

surfaces. More formally, a mesh M = (V,F) is represented by a set V of points in R
3, called

vertices, together with a set F of n-tuples of ordered vertices from V, called faces. The n-tuple

5

6 Chapter 2. 3D model representation

{v1, . . . , vn} of a face defines a polygon with edges (v1, v2),. . . ,(vn−1, vn) and (vn, v1). Each face

should form a planar polygon. Clearly, adjacent polygons share some of their vertices and edges.

We call the neighborhood N(v) of a vertex v the set of vertices that share an edge with v. It is also

referred to as the 1-ring of v. The number of edges incident on a vertex is referred to as the valence

or degree of the vertex.

A triangular mesh is a mesh in which all the faces are triangles. Any polygonal mesh can be

transformed into a triangular mesh by triangulating each polygonal face.

A mesh is said to be a 2-manifold, or simply a manifold, if for every vertex v the faces incident

on v are homeomorphic to a disk, or a semi-disk if v is on a boundary. A manifold mesh will thus

be locally planar at all vertices. Figure 2.1 shows examples of manifold and non-manifold cases.

An alternative, more abstract definition for triangular meshes is as follows: a triangular mesh is

manifold if for each vertex v in V , the vertices of N(v) can be sorted in a list {n1(v), . . . , nk(v)}
such that for each couple (ni(v), ni+1(v)) the edges (ni(v), v) and (v, ni+1(v)) belong to a same

face. In a manifold, each edge is either shared by two faces or belongs to one face only. They are

referred to as internal and external edges, respectively. The closed loops of external edges form the

boundaries of the manifold. A manifold without external edges is said without boundary.

v

(a) manifold

v

(b) boundary manifold

v

(c) non-manifold

Figure 2.1: Examples of manifold classification for the center vertex v.

Each face has an orientation that is determined by the order of the vertices in the n-tuple

describing it, which defines an up and a down side for the face. If the order is reversed, the

orientation is also reversed. Two faces f1 and f2 have a consistent orientation if for each shared

edge its vertices v1 and v2 appear in opposite orders in the n-tuples describing f1 and f2. In other

words, two faces are consistently oriented if their up sides are oriented in the same direction. A

mesh is said orientable if all of its faces can be consistently oriented. Figure 2.2 shows a simple

orientable manifold. Many systems only deal with orientable manifold meshes.

Although polygonal meshes can accurately describe any objects with planar surfaces, such as

drawers, boxes, building exteriors, etc., they can only approximate curved surfaces. However, this

approximation can be made arbitrarily close to the curved surface being modeled by using small

enough polygons. However, the storage space requirements can increase dramatically as well as the

time it takes to run certain algorithms. Furthermore, a polygonal mesh approximation of a curved

surface that appears sufficiently close at one scale, will inevitably appear too coarse at sufficiently

finer scales.

2.3 Parametric curves and surfaces

The coordinates of the set of points on a surface, or a portion of it, embedded in 3D space can be

represented by equations. These can be given either in implicit or parametric form. In the former,

the surface is defined by an implicit equation that is satisfied by the points of the surface. In the

2.3. Parametric curves and surfaces 7

v1

v2v3

v4

v0

Figure 2.2: Example orientable manifold with five vertices (v0, . . . , v4), four faces (three triangles

plus one quadrilateral) and eight edges.

latter, the coordinates of the points on the surface are functions of two independent variables. A

surface S could be defined as

S = {(x, y, z) | f(x, y, z) = 0}

in implicit form and as

S(u, v) =
(
x(u, v), y(u, v), z(u, v)

)

in parametric form, were u and v are the independent variables or parameters.

The implicit form makes it easy to determine if a point is on the surface, and if not, on which side

it is located. However, the implicit form does not lend itself to compute the points on the surface

in a simple way, when drawing for instance, and even less so to local modifications of the shape.

Furthermore, it is very difficult to model free-form objects using the implicit form. Conversely,

the parametric form naturally allows to compute the points on the surface by simply evaluating

the coordinate functions within the parameter domain. In addition, many forms of parametrization

allow local modifications of the surface to be carried out in a fairly straightforward way, as we will see

later. However, the problem of determining if a given point is on the surface is not straightforward,

but is typically less of a concern since it arises less often.

In a very similar manner, a curve in 3D space can be defined parametrically as

C(u) =
(
x(u), y(u), z(u)

)

where only one parameter, u, is required. This can be regarded as a mapping from an interval of R

into Euclidean E
3, which is more typically expressed as

C(u) =

n−1∑

i=0

fi(u)Pi umin ≤ u ≤ umax

where Pi is the set of n control points, collectively referred to as the control polygon, and {fi(u)}
the set of parametric functions. For a curve in 2D space, the third coordinate is left out. Note that

while curves in 2D space can also be expressed in implicit form, it is not possible to do so for curves

in 3D space, except as intersections of two surfaces defined in implicit form. In the following we will

concentrate on surfaces, however all remarks can be transposed to curves by analogy.

8 Chapter 2. 3D model representation

A parametric surface can be regarded as a mapping from a region of R
2 into the Euclidean E

3

space. There are several ways to perform this mapping. One of the most widely used is tensor

product surfaces. They are defined as

S(u, v) =
n−1∑

i=0

m−1∑

j=0

fi(u)gj(v)Pi,j

umin ≤ u ≤ umax

vmin ≤ v ≤ vmax

,

where Pi,j is the set of n ×m control points, which are collectively referred to as the control net,

and {fi(u)} and {gj(v)} the sets of parametric functions. Note that the domain of definition in R
2

is rectangular. For this reason, tensor product surfaces are often referred to as rectangular patches.

The control points are topologically arranged in a rectangular grid, and can be organized in a matrix

of n rows and m columns to obtain the following matrix formulation

S(u, v) = [fi(u)]
T [Pi,j][gj(v)] ,

where [fi(u)] and [gj(v)] are length n andm column vectors, respectively, and T denotes the transpose

operator. Each of the m columns of the [Pi,j] matrix blends the n parametric functions of u, {fi(u)},
with one parametric function of v. Analogously, each of the n rows of [Pi,j] blends the m parametric

functions of v, {gj(v)}, with one parametric function of u.

Although strictly speaking any function could be used to generate a parametric surface only

polynomials and rational functions, as well as piecewise variations of these, are employed in modeling.

While being the most flexible approach, arbitrary functions are too general and no useful properties

for surface modeling can be derived. On the contrary, piecewise polynomial and rational functions

possess a set of very useful properties, while still allowing for great flexibility in the shape, as we

will see.

A natural way to derive a parametric surface from polynomial functions would be to express it

in power basis form. Thus fi(u) = ui and gj(v) = vj . Although straightforward in formulation, this

representation has several major drawbacks. While the power basis form can be efficiently evaluated

using Horner’s method

n−1∑

i=0

aiu
i = ((. . . ((an−1u+ an−2)u+ an−3)u+ . . .)u+ a1)u+ a0 ,

a slight variation of the value of some ai can induce a large variation of the result, for large i,

which would lead to a sensibly different geometric shape. Furthermore, the control points have no

geometric relationship to the actual shape, making it very difficult to interactively create and modify

surfaces. For these reasons, other schemes have been derived, which are explained in the following

sections.

2.4 B-Splines

Tensor product parametric surfaces are obtained by interpolating or approximating a set of control

points using a given set of parametric functions. As was mentioned, the power basis for polynomial

functions is not adequate, but other piecewise polynomial bases exist that are much more suitable.

Among them, the B-Spline functions, which stand for Basis Spline, provide a very flexible framework

on which parametric surfaces can be built. Polynomial as well as rational constructions are possible,

allowing not only to model free-form surfaces, but also to precisely describe common analytical

shapes such as spheres, cylinders, ellipsoids, etc. Rational B-Splines have become the standard for

curve and surface description in computer graphics. They are commonly known as NURBS, which

2.4. B-Splines 9

stands for Non-Uniform Rational B-Splines∗. NURBS have been recently added as an extension

[30, 113] to the Virtual Reality Modeling Language [47] and are a proposed part of its successor,

the eXtensible 3D (X3D) standard [114]. They are also part of the widely used OpenGLTM 3D

rendering API (Application Programming Interface) [119]. Besides B-Splines other suitable bases

do exist, such as Bernstein polynomials and the Bézier curves and surfaces they generate [21, 29].

However, the B-Spline functions form a unifying foundation and Bézier surfaces are a special case

of B-Splines, as explained in Section 2.4.2. Thus we limit our coverage to B-Splines only.

The theory of B-Splines was first suggested by Schoenberg [93, 94] and Riesenfeld [87] and Gordon

and Riesenfeld [28, 29] applied the B-Spline basis to curve and surface definitions. Versprille [111]

was the first to discuss rational B-Splines. In the following sections we give an overview of B-Splines

and their application to tensor product surfaces. A more detailed introduction can be found in [21],

[20] and [88] while an in-depth coverage can be found in [80] and [22].

2.4.1 B-Spline functions

The basis functions used to define B-Spline curves and surfaces are the B-Spline functions. They

are piecewise polynomial functions defined as follows. Given a non-decreasing sequence of r real

numbers U = {u0, u1, . . . , ur−1}, the ith B-Spline function of pth degree (i.e. order p+ 1), Ni,p(u),

is recursively defined as

Ni,0(u) =

{

1 if ui ≤ u < ui+1

0 otherwise
(2.1a)

Ni,p(u) =
u− ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u) , (2.1b)

where the 0/0 quotient is defined to be zero.

The ui values are referred to as knots and U is the knot vector. Note that consecutive knots can

have equal values: if ui through ui+k−1 are all equal, ui is said to have multiplicity k. The unique

values in the knot vector are referred to as breakpoints. The semi-open interval [ui, ui+1) is called

the ith knot span.

The B-Spline functions have the following properties:

1. for a knot vector with r values there are n = r − (p+ 1) basis functions of degree p;

2. local support: Ni,p(u) is non-zero only in the interval [ui, ui+p+1);

3. non-negativity: Ni,p(u) ≥ 0 ∀ u ∈ [ui, ui+p+1);

4. in the ith knot span [ui, ui+1) at most p+1 of the B-Spline functions of degree p are non-zero,

namely Ni−p,p, . . . , Ni,p;

5. partition of unity:
∑n
j=0Nj,p(u) =

∑i
j=i−pNj,p(u) = 1 ∀ u ∈ [ui, ui+1);

6. for p > 0, Ni,p(u) attains exactly one maximum value;

7. the n Ni,p(u) functions defined on a given knot vector U are linearly independent.

The B-Spline basis functions are smooth functions. In fact, all the derivatives of Ni,p(u) exist

at the interior of a knot span. At a knot uj , Ni,p(u) is p− ki,j times continuously derivable, where

ki,j is the multiplicity of uj , as seen by Ni,p(u). Note that, since Ni,p(u) is identically zero outside

∗As pointed out by Piegl and Tiller [80], in the early 90’s some researchers joked in that the acronym stands for

Nobody Understands Rational B-Splines!

10 Chapter 2. 3D model representation

the interval [ui, ui+p+1), the multiplicity ki,j as seen by Ni,p(u) is the multiplicity of uj in the set

{ui, . . . , ui+p+1}, and not in the set U . Using Ci notation, the B-Spline functions are C∞ continuous

everywhere except at knot values, where they are C(p−ki,j) continuous.

The first derivative is calculated as

N ′
i,p(u) =

p

ui+p − ui
Ni,p−1(u)−

p

ui+p+1 − ui+1
Ni+1,p−1(u) (2.2)

and the kth derivative is

N
(k)
i,p (u) = p

(

N
(k−1)
i,p−1 (u)

ui+p − ui
−

N
(k−1)
i+1,p−1(u)

ui+p+1 − ui+1

)

. (2.3)

The following non-recursive formulation is also given in [80] for k ≤ p

N
(k)
i,p (u) =

p!

(p− k)!

k∑

j=0

ak,jNi+j,p−k(u) , (2.4)

where

a0,0 = 1

ak,0 =
ak−1,0

ui+p−k+1 − ui
ak,j =

ak−1,j − ak−1,j−1

ui+p+j−k+1 − ui+j
j = 1, . . . , k − 1

ak,k =
−ak−1,k−1

ui+p+1 − ui+k
.

Note that the denominators above can become zero, in which case the quotient is considered to be

0. For k > p, N
(k)
i,p (u) ≡ 0.

Now that we have established the continuity properties of B-Spline basis functions let’s consider

V, the vector space of all the piecewise polynomials of degree p that are Crj continuous at uj and

C∞ continuous elsewhere; where {uj}, 0 ≤ j ≤ l, is a strictly increasing set of breakpoints. Then

the B-Spline basis functions of pth degree defined on the knot vector

U = {u0, . . . , u0
︸ ︷︷ ︸

p−ro

, u1, . . . , u1
︸ ︷︷ ︸

p−r1

, . . . , ul, . . . , ul
︸ ︷︷ ︸

p−rl

}

form a basis of V. Therefore, any piecewise polynomial function with given continuity constraints can

be expressed as a linear combination of B-Spline functions over an appropriately defined knot vector.

This justifies the statement that B-Splines form a unifying foundation for piecewise polynomial and

rational curves and surfaces.

Although knot vectors can be an arbitrary sequence of non-decreasing real values, some classes

provide additional properties to the B-Spline functions. The following classification is typically

found in the literature:

clamped if the knot vector is of the form

U = {a, . . . , a
︸ ︷︷ ︸

p+1

, up+1, . . . , ur−p−2, b, . . . , b
︸ ︷︷ ︸

p+1

} ;

uniform if all the knots are uniformly spaced, that is ui+1 − ui = c, 0 ≤ i ≤ r − 2;

2.4. B-Splines 11

clamped uniform if the knot vector is clamped and the interior knots are uniformly spaced;

periodic if the knot vector is non-clamped uniform.

Depending on the authors, clamped knots are often referred to as non-periodic or open. In the

remaining of this dissertation we shall only use the clamped term, since the other ones are less

intuitive and misleading at times. Note that the notion of clamped is with respect to the degree of

the B-Spline functions the knot vector defines.

When a knot vector is clamped B-Spline functions have the following additional properties:

N0,p(a) = 1 and Ni,p(a) = 0 for i 6= 0

Nn−1,p(b) = 1 and Ni,p(b) = 0 for i 6= n− 1.

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
0,2

N
1,2

N
2,2

N
3,2

N
4,2

N
5,2

(a) U = {0, 1, 2, 3, 4, 5, 6, 7, 8}

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
0,2

N
1,2

N
2,2

N
3,2

N
4,2

N
5,2

(b) U = {0, 0, 0, 1, 2, 3, 4, 4, 4}

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
0,2

N
1,2

N
2,2

N
3,2

N
4,2

N
5,2

(c) U = {0, 0, 0, 1, 2, 2, 4, 4, 4}

Figure 2.3: The quadratic B-Spline functions for different knot vectors U .

Figure 2.3 shows the shape of the quadratic B-Spline functions for various types of knot vectors.

Figure 2.3(a) shows the periodic knot vector. As can be seen, all B-Spline functions are translated

12 Chapter 2. 3D model representation

versions of the first one, hence the term periodic. Figure 2.3(b) shows the typical clamped uniform

knot vector, while Figure 2.3(c) shows a similar knot vector but where one of the internal knots has

multiplicity 2. At that knot the continuity is reduced from C1 to C0.

2.4.2 B-Spline surfaces

Given the knot vectors U = {u0, . . . , ur−1} and V = {v0, . . . , vs−1} a polynomial tensor product

B-Spline surface of degree p and q in the u and v directions, respectively, is defined as

S(u, v) =

n−1∑

i=0

m−1∑

j=0

Ni,p(u)Nj,q(v)Pi,j

up ≤ u ≤ ur−p−1

vq ≤ v ≤ vs−q−1

, (2.5)

where n = r − (p + 1) and m = s − (q + 1). The rational counterpart is obtained by defining

a polynomial surface in projective P
4 space and projecting it to Euclidean E

3 space. Denoting

homogeneous coordinates by the w superscript, a B-Spline rational surface of degrees p and q is

obtained as

Sw(u, v) =
n−1∑

i=0

m−1∑

j=0

Ni,p(u)Nj,q(v)P
w
i,j

up ≤ u ≤ ur−p−1

vq ≤ v ≤ vs−q−1

, (2.6)

where {Pw
i,j} are the control points in projective space. Projecting this to Euclidean space one

obtains

S(u, v) =

n−1∑

i=0

m−1∑

j=0

Ri,j(u, v)Pi,j

up ≤ u ≤ ur−p−1

vq ≤ v ≤ vs−q−1

, (2.7)

where

Ri,j(u, v) =
Ni,p(u)Nj,q(v)wi,j

∑n−1
k=0

∑m−1
l=0 Nk,p(u)Nl,p(v)wk,l

(2.8)

are the rational basis functions. The p and q subscripts of Ri,j are omitted for brevity. Here wi,j
is the homogenizing coordinate of Pw

i,j , while Pi,j are the corresponding affine coordinates. That

is, if Pi,j = (xi,j , yi,j , zi,j) then Pw
i,j = (xi,jwi,j , yi,jwi,j , zi,jwi,j , wi,j). The wi,j quantity is called

the weight of control point Pi,j . Note that the polynomial form of Eq. (2.5) is a special case of

the rational form of Eq. (2.7), where all the weights are equal. Strictly speaking, rational surfaces

defined as above are not tensor product once they are projected into Euclidean space, but the term

is retained nevertheless.

If the weights are restricted to be positive, the rational basis functions are always well defined (i.e.

the denominator is non-zero) over the entire parametric domain of the surface. Furthermore, the

properties enumerated above for the univariate B-Spline functions carry on in an analogous fashion

to the bivariate rational functions, which provides NURBS surfaces with very desirable properties,

outlined below. While some authors have used zero and/or negative weights [88], in practice only

positive weights are used. In fact, they are enforced by standards such as VRML [113] and X3D

[114].

The main properties of NURBS surfaces with positive-only weights are:

1. projective and affine transformation invariance;

2. strong convex hull property: if (u, v) ∈ [ui0 , ui0+1)× [vj0 , vj0+1), then S(u, v) is in the convex

hull of the control points Pi,j , i0 − p ≤ i ≤ i0 and j0 − p ≤ q ≤ j0;

3. local control: if Pi,j or wi,j is modified it affects the surface only for (u, v) ∈ [ui, ui+p+1) ×
[vj , vj+q+1);

2.4. B-Splines 13

4. S(u, v) is C(p−k) continuous in the u direction at u knots of multiplicity∗ k, C(q−k) continuous

in the v direction at v knots of multiplicity k and C∞ continuous everywhere else;

5. if both the U and V knot vectors are clamped the NURBS surface interpolates the four corner

control points (P0,0, Pn−1,0, P0,m−1 and Pn,m)

6. if both knot vectors are of the form U = {0, . . . , 0
︸ ︷︷ ︸

p+1

, 1, . . . , 1
︸ ︷︷ ︸

p+1

} and V = {0, . . . , 0
︸ ︷︷ ︸

q+1

, 1, . . . , 1
︸ ︷︷ ︸

q+1

} the

resulting NURBS surface is a Bézier surface [80] with the same control points (i.e. the B-Spline

functions reduce to the Bernstein polynomials).

In general a NURBS surface does not interpolate its control points, except at places where the

knot multiplicities lead to C0 continuity in both directions. A very attractive property of NURBS

is their local control, since the modification of a control point only affects the surface shape in

its neighborhood. Therefore, it is possible to obtain large surfaces and their shape can be easily

controlled. Also, the number of control points is decoupled from the degree of the NURBS, making

it feasible to use large control nets to obtain complex shapes without numerical instabilities or major

complexity problems. This is to be contrasted to the popular Bézier surface for which the number

of control points is directly related to its degree. In that case multiple adjacent patches are needed

to obtain moderately complex shapes, requiring extra inter-patch constraints in the control point

placement to ensure the desired surface smoothness at the patch borders. In addition, it is relatively

easy to add knots and control points without altering the NURBS shape, using the well known knot

insertion algorithm (see Section 2.4.4). The extra knots and control points are typically used to

reduce the neighborhood affected by the modification of some control point or weight.

As we have seen above the parametric continuity of a NURBS surface can be adjusted with the

knot vectors. However, this continuity does not always reflect the characteristics of the surface itself

and the definition of geometric continuity is necessary. We use Gi notation to denote geometric

continuity, instead of Ci. A surface is said to be G1 continuous if a unique tangent plane exists at

every point. More generally, geometric continuity can be defined as in [21, sec. 18.7]: a surface is Gi

continuous if, for every point, a C i parameterization exists on its neighborhood. A NURBS surface

which is Ci continuous will therefore be Gi continuous in general, except at particular locations

where that continuity can be raised by special alignment of neighboring control points or lowered

by using multiple coincident control points.

Surface derivatives

The parametric derivatives of a purely polynomial NURBS can be obtained by directly deriving its

B-Spline functions to obtain

∂k+l

∂ku∂lv
S(u, v) =

n−1∑

i=0

m−1∑

j=0

N
(k)
i,p (u)N

(l)
j,q(v)Pi,j . (2.9)

For surfaces with U and V clamped knot vectors the above expression simplifies to

∂(k+l)

∂ku∂lv
S(u, v) =

n−k−1∑

i=0

m−l−1∑

j=0

Ni,p−k(u)Nj,q−l(v)P
(k,l)
i,j , (2.10)

∗For NURBS surfaces, as well as curves, the relevant multiplicity of a knot uj is the maximum multiplicity with

respect to all non-zero basis functions, which is simply the total multiplicity of uj in U .

14 Chapter 2. 3D model representation

where Ni,p−k(u) and Nj,q−l(u) are evaluated on the knot vectors

U (k) = {uk, . . . , ur−k−1},
V (l) = {vl, . . . , vs−l−1},

and

P
(k,l)
i,j =

Pi,j k = 0 and l = 0,
p−k+1

ui+p+1−ui+k

(

P
(k−1,l)
i+1,j −P

(k−1,l)
i,j

)

k > 0,

q−l+1
vj+q+1−vj+l

(

P
(k,l−1)
i,j+1 −P

(k,l−1)
i,j

)

l > 0.

Note that the derivatives are purely polynomial NURBS surfaces as well. In particular, the first

derivatives are given by

Su =
∂

∂u
S(u, v) =

n−2∑

i=0

m−1∑

j=0

Ni,p−1(u)Nj,q(v)
p

ui+p+1 − ui+1
(Pi+1,j −Pi,j), (2.11)

Sv =
∂

∂v
S(u, v) =

n−1∑

i=0

m−2∑

j=0

Ni,p(u)Nj,q−1(v)
q

vi+q+1 − vi+1
(Pi,j+1 −Pi,j). (2.12)

For rational NURBS surfaces the derivatives in Euclidean E
3 space involve denominators to

high powers and are not NURBS surfaces. Nonetheless, Piegl and Tiller [80] give a rather simple

expression for the first derivative. Given the surface in homogeneous space as Sw(u, v) let A(u, v)

be the surface obtained by considering only the first three coordinates of Sw(u, v) and w(u, v) the

homogenizing coordinate of Sw(u, v). The first derivative of S(u, v) is then given by

Sα(u, v) =
Aα(u, v)− wα(u, v)S(u, v)

w(u, v)
, (2.13)

where the α subscript denotes the partial derivative on either u or v.

Examples

Figure 2.4 shows a simple biquadratic polynomial B-Spline surface defined over uniform clamped

knot vectors. As it can be seen the resulting surface approximates the control net and has at least

C1 continuity at all points. Figure 2.5 shows the effect that the translation of a control point

has on the resulting surface. As can be seen the surface is only modified in the neighborhood of

the control point, as required by property 3 above. All points of the surface in that region are

translated in the same direction as the control point. The amount of translation is maximum close

to the modified control point and diminishes as we move farther from it. Figure 2.6 shows the effect

of weight modification. If the weight of a control point is increased all the surface points within

its neighborhood are pulled toward it. On the other hand, if it is decreased the surface points are

pulled away from the control point. Figures 2.6(c) and 2.6(d) demonstrate the effect of negative

weights. As can be clearly seen the use of negative weights breaks the convex hull property 2 above.

Furthermore, negative weights produce a very irregular parametrization: in the center of the region

affected by the control point a small portion of the parametric domain is mapped to a large portion of

the surface. Negative weights can also introduce zero roots in the denominator of Eq. (2.8), leading

to evaluation problems and numeric instabilities. Because of this, negative weights are avoided in

practical systems, as previously mentioned.

Figure 2.7 shows a complex surface modeled as a single NURBS patch. The NURBS is cubic in v,

the direction of the axis, and quadratic in u, the perpendicular direction. The clamped non-uniform

2.4. B-Splines 15

0

1

2

3

0
1

2
3

4

0

1

2

x

y

z

Figure 2.4: A simple biquadratic polynomial B-Spline surface with knot vectors U =

{0, 0, 0, 1, 2, 2, 2} and V = {0, 0, 0, 1, 2, 3, 3, 3}. The dashed lines and solid bullets show the con-

trol net and points.

(a) (b)

(c) (d)

Figure 2.5: The effect of control point modification on a biquadratic NURBS surface, where all

control points have unity weights. The thick lines delimit the region affected by the modification of

the central control point. The (a) and (c) plots show the control nets while (b) and (d) the resulting

surfaces.

16 Chapter 2. 3D model representation

(a) w3,3 = 1 (b) w3,3 = 5

(c) w3,3 = −0.2 (d) w3,3 = −0.5

Figure 2.6: The effect of weight modification on the surface of figure Figure 2.5(c). The thick lines

delimit the region affected by the modification of the central weight.

knot vectors are

U = {0, 0, 0, 0.25, 0.25, 0.5, 0.5, 0.75, 0.75, 1, 1, 1}
V = {0, 0, 0, 0, 0.05, 0.1, 0.124, 0.15, 0.2, 0.225, 0.25, 0.3, 0.325,0.348,

0.423, 0.494, 0.564, 0.585, 0.618, 0.684,0.805, 1, 1, 1, 1}

This example shows the flexibility of the NURBS formulation: while the top of the goblet is a

surface of revolution, the bottom is a square base exhibiting sharp angles. The internal knots of U

are all of multiplicity two, leading to C0 continuity in the parameter space. However, geometrically

speaking, the surface is G∞ continuous in u at the top of the goblet (circle) and G0 continuous at

the bottom (square). This difference is solely due to the special placement of the control points and

their weights. The homogeneous coordinates of the control points along the top of the goblet are

(
1

−0.24
0
1

)

, 1√
2

(
1

−0.24
−0.24

1

)

,

(
1
0

−0.24
1

)

, 1√
2

(
1

0.24
−0.24

1

)

,

(
1

0.24
0
1

)

, 1√
2

(
1

0.24
0.24
1

)

,

(
1
0

0.24
1

)

, 1√
2

(
1

−0.24
0.24
1

)

,

(
1

−0.24
0
1

)

,

while along the bottom they are

(
0

−0.339
0
1

)

,

(
0

−0.170
−0.170

1

)

,

(
0
0

−0.339
1

)

,

(
0

0.170
−0.170

1

)

,

(
0

0.339
0
1

)

,

(
0

0.170
0.170

1

)

,

(
0
0

0.339
1

)

,

(
0

−0.170
0.170

1

)

,

(
0

−0.339
0
1

)

.

These control points form a square, at the bottom as well as at the top. However, the ones at the

top have weights of 1/
√

2 at the corners, which change the shape from a square into a circle. Finally

note that the surface is closed in the u direction, since the first and last control points along the u

direction are always equal and that U is clamped.

2.4. B-Splines 17

(a) control net (b) u and v iso-curves

(c) shaded rendering

Figure 2.7: The surface of a goblet modeled as one truly rational NURBS patch. The patch is

cubic in the direction of the height and quadratic in the other, perpendicular, one.

18 Chapter 2. 3D model representation

Remark on end knot values

As a concluding remark let us note that for a given knot vector U the values of the first and last

knots, uo and ur−1, have no influence on the shape of the surface S(u, v). Likewise for the first

and last knots of V , v0 and vs−1. In fact, each function Ni,p(u) is defined exclusively by the knots

{ui, . . . , ui+p+1} and thus N0,p(u) is the only function affected by uo. Although N0,p(u) is non-zero

only on the interval [uo, up+1), the surface is defined over [up, ur−p−1] and thus [up, up+1) is the

interval of interest here. If we look at the recursive formula of Eq. (2.1) for N0,p, the only non-zero

functions of degree p−1 over [up, up+1) are N1,p−1 through Np,p−1. Therefore the left term vanishes

and, since N1,p−1 through Np,p−1 are not defined by u0, the value of u0 has no effect on N0,p over

[up, up+1). Thus, the value of u0 does not affect the surface S(u, v). Analogously, the values of ur−1,

v0 and vs−1 do not affect S(u, v) either.

2.4.3 B-Spline curves

For completeness let us now provide the definition of NURBS curves. As expected, a pth degree

rational B-Spline curve is defined in projective space as the polynomial curve

Cw(u) =

n−1∑

i=0

Ni,p(u)P
w
i up ≤ u ≤ ur−p−1. (2.14)

Projecting to Euclidean E
3 space yields

C(u) =

n−1∑

i=0

Ri(u)Pi up ≤ u ≤ ur−p−1, (2.15)

where

Ri(u) =
Ni,p(u)wi

∑n−1
k=0 Nk,p(u)wk

(2.16)

are the rational basis functions. As previously, the p subscript of Ri(u) is omitted for brevity. All

the properties of NURBS surfaces enumerated in the previous section carry over to NURBS curves

by analogy and therefore they are omitted here. Let us just note that given a NURBS surface S(u, v)

and a fixed v̄, S(u, v̄) is a NURBS curve of parameter u and control points {Qwi }, where

Qw
i =

m−1∑

j=0

Nj,q(v̄)P
w
i,j ,

and analogously for fixed ū.

The derivatives are computed in a form analogous to that of surfaces. For a purely polynomial

curve C(u) with a knot vector U = {u0, . . . , ur−1} the first derivative is

C′(u) =
d

du
C(u) =

n−2∑

i=0

Ni,p−1(u)
p

ui+p+1 − ui+1
(Pi+1 −Pi), (2.17)

where Ni,p−1(u) is evaluated on the knot vector {u1, . . . , ur−2}. For a rational curve the first

derivative is given by

C′(u) =
A′(u)− w′(u)C(u)

w(u)
, (2.18)

where A(u) is the polynomial curve obtained by considering only the first three coordinates of Cw(u)

and w(u) is the homogenizing coordinate of Cw(u).

2.4. B-Splines 19

2.4.4 Fundamental NURBS algorithms

In the above sections we have introduced the basic definitions and concepts of NURBS, as well as

some examples. Now we introduce some of the fundamental NURBS algorithms that are required

for the development of the subsequent chapters.

Knot insertion

Knot insertion refers to the process of adding a new knot to a given knot vector of a curve or surface

and recalculating the set of control points so that the shape is not changed, either geometrically or

parametrically. This is one of the most important NURBS algorithms since it allows to perform such

basic operations such as curve or surface subdivision and addition of control points to increase the

flexibility of shape control. We first overview the algorithm for curves and then apply it to surfaces.

Let Cw(u) =
∑n−1
i=0 Ni,p(u)P

w
i be a NURBS curve defined on the knot vector U = {u0, . . . , ur−1}.

Let ū ∈ [uk, uk+1) be the knot to be inserted in U , Ū = {u0, . . . , uk, ū, uk+1, . . . , ur−1} the resulting

knot vector and N̄i,p(u) the B-Spline functions defined on Ū . The vector space defined by {Ni,p(u)}
is embedded in the one defined by {N̄i,p(u)}, which has one more dimension. Therefore, expressing

Cw(u) in terms of N̄i,p(u) amounts to a change of basis and the curve is not changed, either

geometrically or parametrically. Note that inserting a knot vector outside the parametric domain

of definition of the curve, that is outside [up, ur−p−1], makes no practical sense and leads to an

undetermined problem as the curve is extended on one of its sides.

Let Qw
i denote the new control points. Thus

Cw(u) =
n−1∑

i=0

Ni,p(u)P
w
i =

n∑

i=0

N̄i,p(u)Q
w
i .

As demonstrated in [80, pp. 141–144] the new control points can be easily obtained by

Qw
i = αiP

w
i + (1− αi)Pw

i−1, (2.19)

where

αi =

1 i ≤ k − p
ū−ui

ui+p−ui
k − p+ 1 ≤ i ≤ k

0 i ≥ k + 1

.

As can be seen only p new control points need to be computed, the other ones remaining unchanged.

Note that, if a knot ū is inserted multiple times so that its resulting multiplicity is p, one of the new

control points lies on the curve at u = ū. More precisely, if ul is the first knot larger than ū (i.e.

ū = ul−1 < ul) or the last one if none exists, then Cw(ū) = Qw
l−p−1. Doing this subdivides (i.e.

splits) the curve in two pieces. Furthermore, if each internal knot is inserted so that its multiplicity

is p, then the NURBS curve becomes a piecewise Bézier one.

Knot insertion on NURBS surfaces is simply realized by knot insertion as explained above. For

example, to insert a new knot in U , the algorithm above is carried out for each one of the m columns

of the control point matrix. Similarly, to insert a new knot in V it should be carried out for the

n rows of the control point matrix. Like curves, NURBS surfaces can be subdivided by inserting

knots with the appropriate multiplicities.

Knot removal

Knot removal is the inverse process of knot insertion. Typical applications are to piece together

piecewise Bézier curves into one NURBS curve and to clean up knot vectors after repeated knot

20 Chapter 2. 3D model representation

insertion and control point modification during interactive design, to obtain the simplest possible

representation. Clearly, it is not always possible to remove a knot from a NURBS curve or surface

without altering it, either geometrically or parametrically. Let U be the knot vector of a NURBS

curve Cw(u), with control points Pw
i and where the knot ul has multiplicity k. Let Ū be the knot

vector resulting of removing t times the knot ul from U , with 1 ≤ t ≤ k. We say that ul is t times

removable if Cw(u) has a precise representation on the basis of the B-Spline functions defined on

Ū , where Qw
i are the new control points.

We know that at ul Cw(u) is at least C(p−k) parametrically continuous. However, if the control

points are properly placed, the curve can well be Ch continuous, where h ≥ p− k + t. Therefore, if

we can verify that the first p− k+ t derivatives of Cw(u) are continuous at ul, then ul is effectively

t times removable. Note that it is necessary to verify this in the projective space, since C(u) can

be continuous even if Cw(u) is not. Verifying this amounts to applying Eq. (2.19) t times in reverse

and ensuring that no impossible equality arises. That is, we verify that Cw(u) can be obtained from

a NURBS curve defined on the knot vector Ū by inserting ul t times. Solving this set of equations

yields the new control points Qw
i .

The removal of a u (v) knot of a NURBS surface is carried out by repeating the procedure

outlined above for each of the m columns (n rows) of the control point matrix. If the removal

procedure fails on one of the columns (rows) then the knot is not removable for the surface. Details

of knot removal algorithms for curves and surfaces can be found in [108].

Reparameterization

Given a NURBS curve C(u) defined on u ∈ [a, b] and a function f(t) one can express the curve in

terms of the parameter t by posing u = f(t) and obtain the new parametric curve C̄(t). It is clear

that the two curves are parametrically different but geometrically identical. If f(t) is a piecewise

polynomial or rational function and fulfills the conditions

• f ′(t) > 0 for all t ∈ [c, d] (i.e. f(t) is strictly increasing) and

• a = f(c) and b = f(d),

or

• f ′(t) < 0 for all t ∈ [c, d] (i.e. f(t) is strictly decreasing) and

• a = f(d) and b = f(c),

then the new curve will be a piecewise polynomial or rational curve that can be expressed as a

NURBS curve (if f(t) is decreasing then the curve is reversed). If the degree of C(u) is p and that of

f(t) is p′ then C̄(t) is of degree p′p. We should point out that, if f(t) is rational, then the curve will

be geometrically changed in projective space, nevertheless its projection to Euclidean space remains

unmodified.

Typical applications of reparameterization are internal point mapping (i.e. forcing a curve to

assume particular points at particular parameter values), modification of end derivatives and mod-

ification of end weights. The general procedure to carry out reparameterization is quite involved

and the interested reader is referred to [80, sec. 6.4]. One particularly interesting case is when f(t)

is a linear function of the form αt+ β. In this case the control points of C̄(t) and its degree are the

same as those of C(u) (i.e. they remain unchanged). The new knot vector T = {ti} is obtained by

applying the inverse of f(t) to the original knots ui. The only effect of this reparameterization is to

change the parameter bounds and multiply all the derivatives of the curve by α. Thus, any NURBS

curve can be reparameterized so that its knot vector occupies the [0, 1] interval. Reparameterization

can be applied to any of the two parameters of NURBS surfaces in much the same manner.

2.4. B-Splines 21

Weight normalization

This is not a NURBS algorithm per se but an interesting remark on Eq. (2.8): if all the weights

of a NURBS surface are multiplied by some non-zero constant the surface remains unchanged in

Euclidean space, either parametrically or geometrically. Note, however, that the surface is changed

in projective space. This property can be used to normalize the weights of a surface to the (0, 1]

interval, provided that the original weights are all positive. The same remark applies to NURBS

curves.

Tessellation

In many situations, such as display, it is necessary to evaluate points on a NURBS surface. This can

be carried out by repetitive use of knot insertion in order to obtain, for a surface of p and q degrees

in u and v, u and v knots of multiplicities p and q, respectively. At the intersection of these knots

the control point will lie on the surface. A more geometric interpretation of this procedure is the

equivalent Cox-de Boor algorithm [80]. Although perfectly valid, this procedure is not adequate for

display on modern graphics hardware, where it is more beneficial to exploit the highly optimized

triangle primitives. In particular, knot insertion requires considerable amounts of memory for a

large number of points and uses floating-point instructions which cannot, in general, be offloaded to

a graphics co-processor.

To exploit triangle primitives of modern hardware, NURBS surfaces can be converted to tri-

angular meshes with a given tolerance through a procedure known as tessellation. Many NURBS

tessellation algorithms can be found in the literature [62], where the tolerance is given either as

the maximum allowable distance from a triangle to the “true” NURBS surface or as the maximum

allowable triangle side length. Depending on the algorithms these tolerances can be expressed either

in the object’s 3D space or in the projected 2D screen space.

2.4.5 Trimmed NURBS

One of the limitations of NURBS surfaces is that their topology is rectangular, which is a direct

consequence of using a tensor product formulation. This is apparent when modeling some shapes

that require several coincident, or degenerate, control points. As an example Figure 2.8 shows a

sphere octant described by a NURBS surface. The control net has nine control points, where the

three ones at the top are coincident. As it can be seen by the iso-curves the parameter space is

severely distorted near that region. Such degenerate control points are allowed by the NURBS

surface formulation, but their manipulation and evaluation is not without problems.

Even more so, this topological limitation imposes a considerable hurdle on solid modeling sys-

tems, where it is necessary to model the result of surface intersections and Boolean operations (see

Section 2.7.1). The resulting shapes are often difficult to express using the rectangular topology. As

a solution Casale [10] proposes trimmed surfaces, which allow to cut away portions of a parametric

surface.

A trimmed NURBS surface consists of two things: a tensor product NURBS surface as defined

in Section 2.4.2 and a properly ordered set of trimming curves that define which portions of the

parameter rectangle are to be excluded from the domain of definition. The trimming curves could

be of any form, but clearly NURBS curves are most desirable. Given a surface S(u, v) let the N

trimming curves be defined as

Ck(h) = (uk(h), vk(h)) =

nk−1∑

i=0

Nk
i,lk

(h)wki
∑nk−1
j=0 Nk

j,lk
(h)wkj

Pk
i k = 0, 1, . . . , N − 1 (2.20)

22 Chapter 2. 3D model representation

Figure 2.8: The iso-curves and control net of a sphere octant described as a biquadratic NURBS

surface.

where Pk
i are control points in the (u, v) domain, wkj their associated weight, and the Nk

i,lk
are

degree lk B-Spline functions defined over the knot vector

Hk = {hk0 , . . . , hkmk−1}.

The curves Ck(h) are all properly oriented forming M < N number of loops. When marching along

a curve in a loop as indicated by its direction, the valid portion of the domain of definition is always

on the same side. Figure 2.9 shows two examples of trimming domains, with one and three loops.

Figure 2.9(b) shows that the loops can be nested to define holes. Figure 2.10 shows the result of

applying the previous trimming domains to a simple NURBS surface.

(a) simple domain (1 loop) (b) complex domain (3 loops) (c) curves of complex domain

Figure 2.9: Trimming domains defined by NURBS curves.

The fundamental algorithms of Section 2.4.4 also apply to trimmed NURBS, with the exception

of reparameterization and tessellation. If the u parameter of a NURBS surface is reparameterized

with the function u = f(t), the u coordinate of the trimming curves also needs to be reparameterized.

For the kth trimming curve the u coordinate is given by uk(h) and needs to be reparameterized

as tk(h) = f−1(uk(h)), where f−1 is the inverse of the function f . Clearly this will lead to a

NURBS curve only if f(t) is a linear polynomial or rational function. In the special case of a

linear reparameterization with f(t) = αt + β the u coordinates of the Pk
i control points of the

trimming curves need to be transformed by the t = (u−β)/α relation. Of course, the same remarks

2.5. Other surface modeling techniques 23

(a) trimming domain of Figure 2.9(a) (b) trimming domain of Figure 2.9(b)

Figure 2.10: Trimmed NURBS surfaces resulting of applying the trimming domains of Figure 2.9

to the surface of figure Figure 2.4.

apply to the v parameter of a NURBS surface. Tessellation of trimmed NURBS surfaces requires

modified algorithms that take into account the trimming regions and are thus more complex. Many

such algorithms have been developed with varying degrees of complexity and accuracy, of which

[69, 81, 82] are good examples. [85] considers the issue of jointly tessellating multiple trimmed

NURBS surfaces.

2.5 Other surface modeling techniques

Besides polygonal meshes and tensor product surfaces many other surface modeling techniques have

been developed, some of which we briefly review here.

2.5.1 Other parametric surfaces

Among parametric surfaces we have only addressed rectangular tensor product ones. Although very

flexible, they suffer from two main drawbacks: cumbersome design of complex shapes and rectangular

topology. The design issue can be addressed by techniques such as Hierarchical B-Splines [24]. The

rectangular topology is, however, inherent in tensor product formulations and other domain types

are required to overcome them. Triangular patches have no topological limitation and are thus better

suited. Among them, Bézier ones have been thoroughly studied. As pointed out by Farin [21], they

were originally developed by de Casteljau in 1959 as the first generalization of Bézier curves to

surfaces, although those results remained largely unknown for more than fifteen years. Since the

basis functions of Bézier curves, the Bernstein polynomials, are defined in terms of one-dimensional

barycentric coordinates they are easily extended to two dimensions in a triangular setting. For

degree n the can be expressed as

Bni,j,k(u) =

(
n

i j k

)

uivjwk =
n!

i!j!k!
uivjwk, i+ j + k = n, (2.21)

24 Chapter 2. 3D model representation

where u = (u, v, w) is the vector of barycentric coordinates of the parametric triangle domain∗. The

formulation of an nth degree Bézier triangle is then trivial and yields

S(u) =
∑

i+j+k=n

Pi,j,kB
n
i,j,k(u), (2.22)

where the Pi,j,k control points are arranged in a regular triangular grid. All the geometric properties

of tensor product Bézier surfaces, or their equivalent NURBS formulation, remain valid for Bézier

triangles. More details on Bézier triangles and their application to geometric modeling can be found

in [21]. Although Bézier triangles have seen an important development since the early days of surface

modeling, NURBS surfaces remain the preferred method in existing modeling systems, despite their

topological limitations.

Unlike multivariate Bernstein polynomials, the development of multivariate B-Spline functions

is rather involved. Dahmen, Micchelli and Seidel [14] proposed triangular B-Splines that have been

extended by Qin and Terzopoulos [84] to triangular NURBS, which enjoy many of the properties

of their tensor product counterparts. Despite the theoretical development of triangular NURBS,

their application has not seen major developments and remains a curiosity, due to the complicated

domain partitioning that can be required and their time-consuming evaluation.

As a final remark, let us note that triangular meshes can be thought of as linear parametric

surfaces, were each triangle is parameterized in terms of its (local) barycentric coordinates. However,

no inter-patch constraints are enforced and the surface is only G0 continuous.

2.5.2 Subdivision surfaces

Another approach to generating smooth surfaces is subdivision surfaces. They are based on the

following basic procedure: start with a 2-manifold polygonal mesh and iteratively apply a refinement,

or subdivision, procedure. In general, the faces of the polygonal mesh need not be planar. If the

subdivision procedure is well chosen a smooth surface is obtained in the limit. The first subdivision

surface schemes were proposed by Catmull and Clark [11] and Doo and Sabin [17]. The rules

of subdivision are similar in both schemes. In the regions of the mesh which are topologically

rectangular, they can be considered as the control net of a B-Spline patch and the refined mesh

is obtained by subdividing the patch into four sub-patches. In the other regions of the mesh the

rule is adapted in an ad-hoc manner. These algorithms will therefore generate a surface which is

a B-Spline surface everywhere, except at a limited number of extraordinary points. The scheme of

Catmull and Clark generates bicubic B-Splines while that of Doo and Sabin generates biquadratic

B-Splines. However, in both cases the limit surface is only G1 continuous at the extraordinary

points, even though one could expect G2 continuity for the former.

Peters [79] proposes a slightly different method (also explained in [21, sec. 19.4]), referred to

as surface splines. The original arbitrary mesh is refined once to obtain a mesh of quadrilaterals.

Following this a corner cutting procedure is applied and triangular and/or rectangular Bézier patches

are fitted on the resulting mesh. Each vertex of the original mesh has two blend ratios associated to

it that can be used to vary the curvature of the resulting surface in its neighborhood. If triangular

or a mix of triangular and rectangular patches are employed the resulting surface is G1 everywhere.

If only rectangular patches are employed the resulting surface is G1 except at vertices with an even

number of incident edges exceeding four. Depending on some choices of the corner cutting procedure

the resulting surface can approximate or interpolate the original mesh.

∗Although three variables appear the polynomials are bivariate only, since the barycentric coordinates always sum

up to one, thus u + v + w = 1.

2.5. Other surface modeling techniques 25

Loop [66] proposes a similar but simpler algorithm that requires only one refinement step and

no corner cutting. As usual, the refinement step is used to isolate the irregularities of the mesh.

Then a quad-net is generated for each vertex of the resulting mesh, from which four quartic Bézier

triangles are derived that ensure tangent plane continuity at their edges. In regular regions of the

mesh, each set of four triangle patches reduces to a biquadratic rectangular patch. The resulting

surface is therefore a parameterizable surface that has G1 continuity.

More recently, Zorin, Schröder and Sweldens [121] proposed a modified Butterfly subdivision

scheme which is smooth on irregular meshes, unlike the original Butterfly scheme [18]. As the

Catmull-Clark and Doo-Sabin schemes it is only based on subdivision, but unlike them it is inter-

polative by construction.

The main advantage of subdivision surfaces is the capability to model arbitrary topologies, some-

thing that is not possible to do with rectangular parametric patches without resorting to degenerate

control nets. However, the price paid is that, in general, it is not possible to obtain an analytic

expression of the surface (e.g., in Catmull-Clark, Doo-Sabin and modified Butterfly schemes). Not

being able to derive an analytic expression complicates many design and analysis operations and

it can make difficult the realization of some precise shapes such as quadrics. Even in the cases

where it is possible to derive an analytic expression, as in the Loop and Peters schemes above, the

precise relation between the shape of the initial mesh and the resulting shape is not trivial, also

complicating some design operations.

2.5.3 Implicit surfaces

The principle of implicit surfaces were briefly explained in Section 2.3. Here we will explain in some

more detail the particular types of implicit surfaces. An implicit surface is generally defined as

Sf = {P ∈ R
3|f(P) = 0}, (2.23)

where f : R
3 → R is the function defining the surface. The following types of implicit surfaces can

be distinguished.

Algebraic surfaces satisfy Eq. (2.23) where f is a polynomial. They have been used in graph-

ics and modeling, although the shapes they can model are restricted and there is no direct

relationship between the polynomial coefficients and the resulting shape.

Quadrics are algebraic surfaces where the polynomial is of degree two. They represent the familiar

ellipsoid, sphere and cylinder as well as more exotic shapes such as hyperboloids, elliptic and

hyperbolic paraboloids, etc. While they can suffer from some of the shortcomings of algebraic

surfaces, the type of shape and its characteristics (e.g., sphere radius) can be rather easily

derived from the polynomial coefficients.

Superquadrics are a generalization of quadrics allowing the representation of a wider surface fam-

ily [120]. Their equation is similar to that of quadrics but involve non-integer exponents. For

example a superellipsoid, centered on the origin and whose axes are aligned to the coordinate

axes, is given by

f(P) = f(x, y, z) =
[

(x/a1)
2/ε2 + (y/a2)

2/ε2
]ε2/ε1

+ (z/a3)
2/ε1 − 1.

where ε1,2 > 0. The ε1,2 parameters determine the “deviation” from a quadric, if they are

unity a quadric is obtained.

26 Chapter 2. 3D model representation

Hyperquadrics are an extension [61] of superquadrics where

f(P) = f(x, y, z) =

n∑

j=1

|ajx+ bjy + cjz + dj |εj

− 1,

and where εj > 0 and n ≥ 3. The surface is enclosed in the convex envelope defined by the set

of planes ajx+ bjy+ cjz+ dj = ±1. As the εj coefficients increase the surface merges with its

envelope. An advantage of hyperquadrics is that additional terms can be added that modify

the surface “semi-locally”, which is desirable for surface matching algorithms. The display of

the surface is, however, far from straightforward, in particular for large n.

With the exception of quadrics and superquadrics, implicit forms are rarely used for modeling.

Both these forms accept, however, parametric forms, and quadrics can be represented by NURBS.

The algebraic surfaces and hyperquadrics are, however, much more suitable for surface matching

algorithms [75]. As it was previously noted, the display of implicit surfaces is not trivial.

2.6 Model properties

In addition to geometric shape, 3D models have many other position dependent characteristics, which

are collectively referred to as model properties. In some cases, as for example in polygonal meshes,

the position of the vertices is also considered a property. Besides this, the most common model

property is the normal vector. Normal vectors define the direction and orientation of the tangential

plane in each position of the surface and are essential for the lighting calculations when rendering

a shaded model, as well as in many other operations. In implicit models defined as in Eq. (2.23)

the normal vectors are obtained as N = [∂f/∂x, ∂f/∂y, ∂f/∂z], which is easily evaluated. For

parametric surfaces the derivation is also rather straightforward: given a surface S(u, v) its normal

vector is

N(u, v) =
∂S(u, v)

∂u
× ∂S(u, v)

∂v
.

It can happen that both partial derivatives are zero for some (u, v), even if the surface has a normal

defined at that point. In that case other means need to be used to compute the normal. For NURBS

the expression N(u, v) can be of high degree and rather expensive to evaluate.

For polygonal meshes, the normal vectors are typically explicitly given. If not, they can be

estimated, but having accurate normal vectors is essential for a good quality rendering when the

mesh is coarse. Normals can be bound to different elements [7], as follows:

face normals: one normal is associated with each face, or polygon, of the mesh;

vertex normals: one normal is associated with each vertex of the mesh;

corner normals: one normal is associated with each corner of each face.

The most compact representation is obtained with face normals. However, they need to be inter-

polated between adjacent faces to obtain a G1 rendering of the model. Vertex normals is the most

widely used type. They are still fairly compact and allow a G1 rendering of the surface. Within a

face the normal is typically interpolated from the normals at its vertices. Vertex normals, howev-

er, cannot model sharp edges (as between the sides of a cube). This can be achieved with corner

normals, which are the most flexible but least compact normal representation for polygonal meshes.

Most systems support face and vertex normals, as is the case in VRML [47]. Corner normals are,

however, not widely supported.

2.7. Solid modeling 27

Other common and important model properties are texture coordinates and color. Texture

coordinates are 2D coordinates that define how an image or texture is to be mapped, as a decal,

onto the surface [see 23]. Texture coordinates can be bound to vertices or corners. Color is typically

represented as an RGB triplet and can be bound to faces, vertices or corners.

2.7 Solid modeling

The techniques presented in the previous sections allow to describe the shape of surfaces in 3D

space. These surfaces, however, are not necessarily closed and therefore do not necessarily bound

a volume. In many applications it is necessary to describe closed volumes, or solids, as well as

being able to distinguish inside from outside. Doing so allows to carry out, among others, physical

based simulations. The term solid modeling collectively refers to the techniques that consider closed

volumes. In the following we will review some of the basic concepts of solid modeling systems. A

more detailed introduction can be found in [23].

2.7.1 Regularized Boolean set operations

No matter how the solid objects are represented it is desirable to be able to combine pairs of objects

to create more complex ones. One of the most intuitive and popular methods for doing this is

through Boolean set operators: union (∪), intersection (∩) and difference (−). On 3D solids they

are conceptually realized by the straightforward application of those operators to the (infinite) sets

of space points in the volume of the solids. Applying these Boolean operators to solids does not,

however, always yield solids. As a trivial example consider the intersection of two adjacent cubes:

it is a two-dimensional square, which is not a solid. To avoid such cases regularized Boolean set

operators are used. If we distinguish between interior and boundary points of a solid (boundary

points are not necessarily part of the object), we can define the closure of an object as the union of

its interior and boundary point sets. A regularized operator op∗ between objects A and B is then

defined as

A op∗ B = closure(interior(A op B)),

where op can be any of ∪, ∩ or −. With this definition the degenerate artifacts that can occur with

plain Boolean set operators are avoided and the result is always a valid solid.

2.7.2 Boundary representation

Boundary representations, or B-reps, describe an object in terms of its boundary surfaces: vertices,

edges and faces. Regularized Boolean operators can be applied on the B-reps to construct more

complex objects. In the simplest case the faces are restricted to planar polygons and the repre-

sentation is thus a polygonal mesh. This restriction allows for simpler implementations, but the

resulting B-reps are, in general, only capable of approximating the solids being modeled. Some

systems allow B-rep meshes with curved faces, for which tensor product NURBS surfaces are widely

used. Trimmed NURBS surfaces are generally used to handle the result of the Boolean operations.

However, the intersection of NURBS surfaces can lead to very high order implicit trimming curves

[74] (e.g., degree 32 for biquadratic patches and 162 for bicubic). An overview of possible strategies

to handle these intersections in a reasonable way is given in [74]. Among them we can mention the

use of piecewise parametric polynomial approximations to the trimming curves.

Many systems restrict the possible B-reps to 2-manifolds. However, in some cases Boolean

operators on 2-manifolds can generate objects which are not 2-manifolds and special steps are

28 Chapter 2. 3D model representation

required to avoid such situations. Arbitrary 2-manifolds, either with or without boundary, obey

Euler’s formula [73]. Given a mesh with V vertices, E edges and F faces, the Euler characteristic

χ is defined as

χ = V − E + F. (2.24)

Euler’s formula states that χ is a constant that depends only on the topology of the 2-manifold

surface. For an orientable (see Section 2.2) 2-manifold B-rep of C connected components, with H

boundary loops (i.e. holes on the surface) and G holes passing through the object, it is given by

χ = 2(C −G)−H. (2.25)

If an object has a single component then G is known as its genus∗; for multiple components G is

the sum of the genera of its components. Any orientable 2-manifold of genus G, without boundary,

can be continuously deformed (i.e. is homeomorphic) into a sphere with G handles. As an example,

a sphere has genus zero while a torus has genus one. Hence, they have Euler characteristic 2 and 0,

respectively. In the non-orientable case Euler’s formula becomes

χ = 2C −G−H. (2.26)

One of the main results involving Euler’s formula states that two 2-manifolds are homeomorphic if

and only if they have the same number of boundary loops, they are both orientable or non-orientable,

and they have the same Euler characteristic [73, Theorem 11.1]. An orientable 2-manifold of genus

zero with one component and no holes, and thus homeomorphic to a sphere, is often referred to as

a simple mesh†.

2.7.3 Constructive solid geometry

In constructive solid modeling (CSG) simple primitives are combined by means of regularized

Boolean set operators. The sequence of operators is stored in a tree, its leaves being the simple

primitives. Unlike B-reps, the result of an operation is not computed as another, more complex,

object. Algorithms that need to evaluate the final object (i.e. the tree’s root) can do so by walking

the tree in depth-first order without explicitly combining the primitives. Some CSG systems do,

however, store a B-rep approximation to make some operations, such as on-screen display, more

efficient.

The type of primitives supported depend on the system. Some of them use simple solids such

as parallelepipeds and quadrics. The advantage is that the primitives being solids, any combination

will always yield a solid. Other systems use half-spaces as primitives. For example a cube can be

defined as the intersection of six planar half-spaces. Half-spaces not being solids, their combinations

do not always yield half-spaces and special steps must be taken to ensure the validity of the CSG

model. Despite this, half-spaces are a popular choice for CSG primitives due to the simplicity of

handling operations such as slicing.

2.8 Conclusions

In this chapter we have reviewed various popular schemes for the representation of 3D objects.

Of the possible techniques, polygonal meshes, parametric surfaces and subdivision surfaces appear

∗More formally, the genus of a surface can be defined as the maximum number of non-intersecting closed loops

along which the surface can be cut without disconnecting it [115].
†Note, however, that in some texts the definition of a simple mesh allows for one boundary loop, in which case it

is homeomorphic to a disk.

2.8. Conclusions 29

as the only comprehensive solutions to describe free-form objects. The other techniques can only

describe a limited set of shapes or are not adequate for modeling purposes.

While simple and flexible, polygonal meshes are not capable of accurately representing smooth

surfaces. If at a given scale a mesh can approximate sufficiently well a smooth curved surface, it will

not be sufficient at a finer scale where the non-smoothness will become apparent. Of parametric

and subdivision surfaces, only the former are capable of exactly modeling analytic shapes, such as

quadrics, in addition to free-form ones. We have also seen that despite their topological limitations

tensor product and trimmed NURBS surfaces are a comprehensive solution which have become a

popular choice in modeling tools.

In the later sections we have also described the representation of the model properties and

the main issues of solid modeling in connection with the previously described surface modeling

techniques. Trimmed parametric surfaces can represent the resulting shape of a chain of solid

modeling operations, although not without some non-trivial, yet solvable, problems.

30 Chapter 2. 3D model representation

3D model coding 3
3.1 Introduction

This chapter is dedicated to a review of previous work in 3D model coding, including a review of

fundamental results and techniques in entropy coding and rate-distortion theory. We pay particular

attention to non-progressive, or single-rate, mesh coders but also include a discussion of progressive

ones. In addition we discuss the compression of non-manifold meshes as well as parametric surfaces.

This chapter is organized as follows. In Section 3.2 we review the fundamental notion of en-

tropy in information theory and describe two practical realizations of entropy coding: Huffman and

arithmetic coding. In Section 3.3 we introduce the concept of quantization and the main results of

rate-distortion theory. We also introduce a meaningful distortion for 3D models and relate previous

results to it. The long Section 3.4 is dedicated to polygonal mesh coding, reviewing from early meth-

ods, such as Geometry Compression of Deering, to state-of-the-art methods such as Angle Analyzer

of Lee, Alliez and Desbrun. Included in the discussion is also a brief review of progressive coding

methods and techniques to handle non-manifold meshes. Section 3.5 is dedicated to the compression

of parametric surfaces. Finally, conclusions are drawn in Section 3.6.

3.2 Entropy coding

Consider an alphabet of symbols AX = {α1, α2, . . .}, usually finite in size, where we denote the

number of symbols as ‖AX‖. A message composed of a sequence of symbols from this alphabet

can be trivially transmitted using B = dlog2‖AX‖e bits per symbol. However, depending on the

statistical properties of the alphabet, and the correlation between subsequent symbols, one can

usually code the message in less than B bits per symbol, and often considerably less. The process of

coding in such a way is referred to as entropy coding, which we explain in the following sections. More

details on entropy coding and related concepts can be found in many books, such as [53, 77, 107].

31

32 Chapter 3. 3D model coding

3.2.1 Entropy

If we disregard the interdependencies between the different symbols of a message, we can consider

each of them as the occurrence of an independent discrete random variable X with alphabet AX .

Each symbol x from the alphabet occurs with probability fX(x) (i.e., fX is the probability mass

function). The amount of information carried by the occurrence of a symbol x is clearly related to

fX(x) and we can define the quantity

IX(x) = − log2(fX(x)),

referred to as information content. Clearly 0 ≤ IX(x) <∞. The occurrence of a likely symbol does

not transmit much information and has an information content which is close to zero. Conversely,

the occurrence of a highly unlikely symbol carries a lot of information and its information content

will be high. From this, we can define the entropy H(X) as the expected value of the information

content, that is

H(X) = E[IX] =
∑

x∈AX

−fX(x) log2 fX(x).

The entropy is always non-negative and bounded above by H(X) ≤ log2‖AX‖. The upper bound

is only reached for a uniform distribution, where each symbol has the same probability fX(x) =

1/‖AX‖.
The entropy, as defined above, of a stationary random process {Xn} is usually infinite, since

{Xn} has infinite extent and thus the amount of information conveyed is infinite. A more useful

definition is the entropy rate, which can be thought of as the average entropy per symbol. It is

defined with the aid of the m-th order entropy

H(m)({Xn}) =
1

m
H(X0:m) =

1

m
(H(X0) +H(X1|X0) + · · ·+H(Xm−1|Xm−2, . . . , X0)),

where X0:m denotes the vector of random variables (X0, . . . , Xm−1). The first order entropy is

then the same as the entropy of any random variable of the process, and the m-th order entropy is

bounded by it. The entropy rate is defined as

H({Xn}) = lim
m→∞

H(m)({Xn}).

Since the m-th order entropy is a monotonically decreasing function of m and bounded below by

zero, the entropy rate always converges. Note that for stationary memoryless sources the first order

entropy, and hence the entropy of a random variable of the process, equals the entropy rate. In

general one refers to the entropy rate simply as entropy, the rate concept being implied from the

context.

The relevance of entropy to coding stems from Shannon’s noiseless source coding theorem [107,

sec. 2.1.3]. This theorem states that the average number of bits per symbol required to code a source

{Xn} without error is always larger than the entropy rate H({Xn}), and that this bound can be

approached arbitrarily close as the complexity of the coding scheme is allowed to grow without limit.

Conversely, if the code expends an average of less than H({Xn}) bits per symbol, the probability

of an error approaches 1 as the size of the message grows (i.e., the message cannot be losslessly

encoded with an average rate of less than H({Xn}) bits per symbol).

Clearly, a fixed-length code with B = dlog2‖AX‖e bits per symbol cannot approach the entropy

rate, except for the trivial case of uniformly distributed memoryless sources. To approach the limit

requires the use of variable length coding, where shorter codes are assigned to likely symbols and

longer codes to rarely occurring ones. The following two sections introduce two of the most popular

variable length coding algorithms: Huffman and arithmetic coding.

3.2. Entropy coding 33

Before closing this section, let us note that for continuous random variables the entropy is infinite,

since each particular value occurs with zero probability. A more useful quantity is the differential

entropy that is defined as

h(X) = −E[log2 fX(X)] = −
∫

fX(x) log2 fX(x)dx,

where fX is the probability density function (PDF) of the continuous random variable X. Unlike

entropy for discrete random variables, the differential entropy can be negative. It can be thought of

as a relative measure of the average information content, where h(X) is zero when X is uniformly

distributed in the interval [0, 1].

3.2.2 Huffman coding

Consider the code where each symbol x ∈ AX is assigned a separate codeword cx, which is a string

of ‖cx‖ bits. The code must be uniquely decodable, in that the concatenation of codewords must

not create any ambiguity on the coded message. A sufficient and necessary condition for unique

decodability [107, sec. 2.2] is that the codeword lengths satisfy

∑

x∈AX

2−‖cx‖ ≤ 1. (3.1)

The goal is to find a code (in general it is not unique) that minimizes the average code rate R =
∑

x∈AX
fX(x)‖cx‖. As demonstrated in [107, sec. 2.2], for any distribution of X there always exists

a uniquely decodable code with a rate that satisfies

H(X) ≤ R < H(X) + 1. (3.2)

Huffman developed an algorithm to find an optimum code satisfying Eq. (3.1), in the sense that

it minimizes the rate. Huffman’s algorithm for code construction for an alphabet ‖AX‖ can be

outlined as shown below. Once the code is constructed the encoding procedure becomes a simple

Algorithm 3.1: Huffman code construction

K ← ‖AX‖
Order the elements of AX = {α0, . . . , αK−1}, such that fX(αi−1) ≤ fX(αi)

if K = 2 then

cα0
← “0” and cα1

← “1”

else

Create the new alphabet AX′ = {α′
1, α2, . . . , αK−1}

fX′(α′
1)← fX(α0) + fX(α1)

fX′(αi)← fX(αi) for i ≥ 2

Invoke the code construction algorithm on the reduced alphabet ‖AX′‖
c0 ← cα′

1
with “0” appended

c1 ← cα′

1
with “1” appended

end if

table lookup operation. The decoding procedure is more involved but can also be optimized as a

table lookup operation.

While Huffman coding can achieve a rate close to the entropy in many cases, in general it cannot

guarantee a rate closer than implied by Eq. (3.2). Its limitation stems from the fact that each

symbol is coded with a separate codeword. Since these codewords must be at least 1 bit long each,

34 Chapter 3. 3D model coding

a Huffman encoded source has a code rate which is no less than 1 bit per symbol, even if its entropy

rate is much smaller. An extreme example is that of binary sources, where Huffman coding cannot

achieve any compression. This limitation can be overcome by blocking the source output. Each

block of m source symbols is assigned a codeword, instead of one codeword per symbol. This way,

the inefficiency is distributed among m symbols and the bounds on the achievable code rate become

H(X) ≤ R < H(X) +
1

m
.

Therefore, the entropy rate can be approached arbitrarily close with a sufficiently large m. However,

the number of codewords that have to be maintained in memory grows exponentially with m, as

‖AX‖m, and limits the attainable code rate in practical implementations.

So far we have only considered memoryless sources. To exploit the redundancy between successive

source outputs two approaches are possible. One is to apply blocking as above, with the same

practical limitations. The attainable code rate is then bounded by the m-th order entropy, instead

of the entropy rate, as

H(m)({Xn}) ≤ R < H(m)({Xn}) +
1

m
.

Another option is to construct a different Huffman code for each of the conditional probability

distributions fXm|X1:m
(·,x1:m). That is, a different Huffman code is selected to code xi based on the

previously coded xi−m+1, . . . , xi−1 source outputs. This approach also requires ‖AX‖m codewords

(‖AX‖m−1 separate codes of ‖AX‖ codewords each) to be stored and thus the order m of the model

is also limited in practice.

In the above we have assumed that the probability distribution of the source is known to the

coder and decoder. If it is not known, it can be estimated at the coder by counting the occurrences

of each symbol before applying Huffman’s algorithm. The resulting code is then transmitted as

overhead information prior to the coded message. This requires, however, to scan the entirety of

the source output, or a large part of it, before any information can be coded. Another option,

known as adaptive Huffman coding, is to estimate the probability distribution as the source outputs

are coded and to modify the Huffman code accordingly at regular intervals. This estimation and

code modification is performed at both the coder and decoder. While attractive at first, adaptive

Huffman solutions are usually avoided since they significantly increase the complexity of the coder

and decoder by requiring the periodical invocation of the Huffman code construction procedure,

a significant task in itself. Furthermore, since the probability distribution estimates can only be

based on previously coded source outputs, the coding efficiency is often inferior than that of static

Huffman coding.

3.2.3 Arithmetic coding

As we have seen above, codes which assign separate codewords to each symbol, such as Huffman,

are not efficient for sources with entropies below 1 bit per symbol. This limitation is lifted by

another class of coders collectively known as arithmetic coders. They are based on recursive interval

subdivision, which was devised by P. Elias shortly after Shannon’s original publication on information

theory [see 107, sec. 2.1.4]. For a source {Xn} with distribution fX the algorithm associates the

message x0:n = (x0, . . . , xn−1) with an interval [cn, cn + an) ⊆ [0, 1). It can be stated as shown

below, where FX is the cumulative distribution, given by

FX(αi) =
i−1∑

j=0

fX(αj). (3.3)

3.2. Entropy coding 35

Algorithm 3.2: Elias coding

c0 ← 0, a0 ← 1

for n = 0, 1, . . . do

cn+1 ← cn + anFX(xn)

an+1 ← anfX(xn)

end for

The algorithm starts with the unit interval. At each iteration it partitions the current interval

into K disjoint sub-intervals whose length is proportional to the probabilities of each symbol (i.e.,

the i-th sub-interval has length anfX(αi)), where K is the size of the alphabet AX . The sub-interval

corresponding to symbol xn is selected as the new interval and it goes to the next iteration. Since

successive intervals are nested, that is [cn+1, cn+1 +an+1) ⊆ [cn, cn+an), any number in the interval

[cn, cn+an) represents the message x0:n−1. The coded message is then formed by the fractional bits

of any such number expressed in binary. An example of this algorithm is shown in Figure 3.1 for a

binary source. Note that, since subsequent intervals are nested, the coded message can be decoded

one symbol at a time in a manner very similar to the encoding procedure above.

3

4

9

16

1

0

45

64

3

4

3

4

9

16

171

256

9

16

45

64

0

5

8
0

11

0

1

0 0

1

Figure 3.1: Elias coding example: the string “0100” from a binary source with p(0) = 3
4 and

p(1) = 1
4 can be coded as the fraction 5

8 (i.e., 0.101 in binary).

The average number of bits required to code m source outputs is mH(X), if we disregard the

overhead required to signal the length of the resulting codeword. Most often, a very large number m

of source outputs will be coded together making this overhead negligible. Unlike Huffman coding,

the complexity of the coding and decoding procedures are not affected by m, making such uses

feasible. Therefore, Elias coding can produce a code with a rate that is arbitrarily close to the

source entropy H(X) [see 107, sec. 2.1.4].

If we compare with Huffman coding, Elias coding can produce extremely efficient codes whatever

the entropy of the source and there is no need to resort to costly blocking schemes. Elias’ algorithm,

however, requires infinite precision arithmetic and thus is not a practical one. In fact, Elias’ algorithm

did not see any practical realization for many years. Nevertheless, finite precision realizations are

possible with the introduction of some approximations, at the cost of a very small loss in coding

efficiency. These realizations are collectively known as arithmetic coders. The main change is that

the interval size an must be rescaled whenever it becomes too small to avoid any risk of underflow.

Whenever a rescaling occurs, the base cn of the interval must also be rescaled accordingly. A

practical realization of arithmetic coding for K-ary alphabets is given by Witten, Neal and Cleary

[118].

36 Chapter 3. 3D model coding

So far we have only considered memoryless sources. However, with Elias’ algorithm it is trivial

to exploit the redundancy between successive source outputs. For an order p model, it suffices

to consider the conditional distribution fX|Xn−p:n
(xn,xn−p:n) instead of the marginal distribution

fX(xn) in Algorithm 3.2 and Eq. (3.3). The code rate will then approach the conditional entropy

H(X|X0:p), which is never larger, and often smaller, than the order p entropy H (p)({Xn}). Since the

symbols can be decoded one at a time, the decoder can select the appropriate conditional probability

at each iteration of the decoding procedure and thus the scheme remains realizable. This kind of

scheme is usually referred to as conditional or context dependent arithmetic coding, where a context

is the vector xn−p:n of past coded symbols.

While very effective, arithmetic coding is more complex than Huffman coding. Whereas the latter

involves only a table lookup operation, the former requires several additions and multiplications for

each coded symbol. One of the most expensive operations is the multiplication required to update

the interval size an and base cn. In the case of binary arithmetic coders, where the symbols are 0

and 1, the multiplications can be approximated by a sum, if the size of the interval an is always kept

close to one. The update formulas become as shown below, where f ′
X is a properly scaled version

of the distribution fX .

Algorithm 3.3: Approximated interval updating for binary sources

if xn = 0 then

an+1 ← f ′X(0) ≈ anf ′X(0)

cn+1 ← cn
else {xn = 1}
an+1 ← an − f ′X(0) ≈ an(1− f ′X(0)) = anf

′
X(1)

cn+1 ← cn + f ′X(0)

end if

This approximation is the basis of the Q-coder [78] and its very successful derivatives, the QM-

coder [77, 96] and MQ-coder [107]. The QM-coder is used in the JPEG [77, 112], JBIG [46] and

MPEG-4 [48, 49] visual coding standards, while the MQ-coder is used in the more recent JPEG 2000

[107] and JBIG-2 [51] standards. This family of coders always maintains the interval size an in the

[0.75, 1.5) interval. Although this approximation might seem crude, the loss in coding efficiency is

usually in the order of 0.5% to 1%, and does not exceed 3% in the worst case of a uniform distribution,

thanks to some additional optimizations. Another arithmetic coder based on this approximation is

the Z-coder [8], while the ELS coder [117] uses an alternative approximation based on logarithms.

Even though they are still more computationally demanding than Huffman coding, these arithmetic

coders require only a few basic operations per coded symbol.

While the use of a binary coder might seem restrictive, let us point that any K-ary alphabet can

be coded with a binary coder, by using conditional coding on the dlog2Ke bits of the binary form

of each symbol [see 107, sec. 2.3.2]. The number of binary distributions fX is the same as would be

necessary for the K-ary coder and the coding efficiency is not affected.

Although up until now we have assumed that the distribution fX is known, an adaptive scheme

is easily integrated into the Elias coding algorithm and its practical incarnations. At each iteration,

the current estimate f̃X,n can be used instead of the unknown distribution fX . The estimate can be

obtained by counting the occurrences of past coded symbols or by an implicit relationship between

the frequency of renormalization of the interval size an and the binary probability distribution.

All the practical coders cited above are adaptive ones. The Witten et al. and ELS coders use

explicit symbol counting, while the Q, QM, MQ and Z coders use an implicit estimation that is

computationally cheaper.

3.3. Quantization and distortion 37

3.3 Quantization and distortion

In the above we have seen how outputs of a source with finite alphabet can be losslessly compressed.

However, in many situations the source outputs are from an infinite and uncountable alphabet, such

as R, and entropy coding cannot be directly applied (the source entropy is infinite). Such is often

the case in geometric models, where vertex coordinates and other model properties are given as 32

bit or 64 bit floating point data that, for all practical purposes, can be assimilated to real valued

variables in an interval of R. Even if the source has a finite alphabet, the compressed rate that

can be achieved by entropy coding alone is usually larger than what is desired. In such cases, it

is necessary to reduce the precision of the source data to obtain a lower compressed rate, at the

expense of a distortion between the original and coded data. The coding process becomes, thus,

lossy.

Quantization is the process by which the precision of the source is reduced, be it from an infinite

to a finite alphabet, or from a large finite alphabet to a smaller one. For a source random process

{Xn}, discrete or continuous, quantization assigns an index q = Q(x), q ∈ Z, to the data vector x. In

general, many different vectors x are assigned the same index q. The inverse process, dequantization,

assigns a data vector x̂ = Q−1(q) to the codeword q, which is desired to be close to the original data

vector x in order to minimize distortion. The end-to-end process

x̂ = Q−1(Q(x))

is often also referred to as quantization and x̂ as the quantized data. Note that while Q−1 is a

one-to-one function, Q is a many-to-one function and Q−1 is not the inverse of Q, which does not

exist. Quantization is thus an irreversible process. The many-to-one relationship of Q reduces the

entropy of the source, at the expense of some distortion, and thus allows for higher compression.

In the above we have loosely referred to distortion. Distortion is the measure of dissimilarity, or

error, between the original data vector x and its quantized form x̂. Depending on the application,

different measures of distortion are desirable. A popular choice in coding applications is the mean

squared error (MSE)

EMSE = E[(X − X̂)2],

where X̂ is the quantized version of the random variable X. In some other applications, the maxi-

mum error

Emax = sup|X − X̂|
is a more appropriate measure. When dealing with MSE measures the distortionD is often expressed

as the signal-to-noise ratio (SNR) in dB, defined as

SNRD = 10 log10

σ2

D

for a signal of variance σ2.

Quantization is the basis of lossy compression. In general, the coarser the quantization the larger

the distortion between the original and coded data but the lower the compressed rate. This trade-

off between distortion and compressed rate is studied by rate-distortion theory. In the following

sections we will review some of the basics of quantization and rate-distortion theory. A more

detailed treatment of the matter can be found in [53, 77, 107].

3.3.1 Rate distortion

The trade-off between rate and distortion can be characterized by the rate-distortion function,

which gives the minimum rate R(D) that is required to code a source with distortion D. The rate-

distortion function is convex, continuous and monotonically decreasing on the interval (0, D̄), where

38 Chapter 3. 3D model coding

D̄ is the value above which R(D) = 0. Therefore, the inverse function does exist and is called the

distortion-rate function, D(R).

For an independent and identically distributed (IID) process X with variance σ2 and an MSE

distortion measure, the rate-distortion function is lower bounded by the Shannon lower bound given

by

RL(D) = h(X)− 1

2
log2 2πeD for D < σ2.

Note that for the trivial case of D ≥ σ2, R(D) = 0, since fixing X̂ = E[X] yields E[(X − X̂)2] =

σ2 ≤ D. Henceforth, we will assume D < σ2. The rate is maximum for a Gaussian process∗ and is

given by

R(D) =
1

2
log2

σ2

D
.

Therefore, the rate-distortion function R(D) of any IID process can be bounded by

RL(D) ≤ R(D) ≤ 1

2
log2

σ2

D
,

which can also be expressed for the distortion-rate function as

DL(R) =
1

2πe
22h(X)2−2R ≤ D(R) ≤ σ22−2R.

The Shannon lower bound for often used distributions can be found in [53, 107]. Furthermore, it is

known that, for small distortions D, and hence large rates R, the Shannon lower bound is tight and

thus D(R) ∼= DL(R), when R is large.

For correlated processes (i.e. sources with memory) the rate-distortion function is extremely

difficult to compute and its treatment is omitted here. The interested reader is referred to [53,

appendix D]. However, it is easily seen that the rate-distortion function for such processes will

always be smaller than the one of a memoryless process with the same distribution.

3.3.2 Scalar quantization

Scalar quantization is the simplest form of quantization, where each source data sample is quantized

independently. The domain D of the source data samples, usually R, is partitioned into M disjoint

intervals Iq with

t0 < t1 < · · · < tM−1 < tM , q = 0, 1, . . . ,M,

where

tq = inf(Iq) = sup(Iq−1).

Clearly t0 = inf(D) and tM = sup(D). The scalar quantizer maps all values in Iq to a value x̂q in

that interval. The values tq are thus the decision boundaries, or thresholds, for the x̂q. Given the

number of quantization levels M and a distortion measure the goal is to choose the tq and x̂q values

so that the distortion is minimized. The rate R of a scalar quantizer is dlog2Me and, if M is not a

power of two, can approach log2M arbitrarily close, as m gets large, by jointly coding m quantized

values.

For an MSE distortion the necessary conditions for an optimal scalar quantizer are

tq =
x̂q−1 + x̂q

2
(3.4)

∗Given all distributions with variance σ2, the differential entropy h is maximum for the Gaussian distribution.

3.3. Quantization and distortion 39

and

x̂q = E[X|X ∈ Iq]. (3.5)

Thus, the x̂q should be the centroids of the quantization intervals and the thresholds tq the midpoints

between the reconstructed values x̂q. These conditions are also sufficient if the source has a log-

concave PDF (i.e., log fX is a concave function). Uniform, Laplacian and Gaussian distributions all

fall under this class.

A quantizer fulfilling the above conditions is thus an optimal scalar quantizer and is called a

Lloyd-Max scalar quantizer. In general, the solution cannot be expressed in closed form but can be

found by iterative numerical algorithms : the Lloyd and Max algorithms [see 107, sec. 3.2.1]. The

rate-distortion performance of a Lloyd-Max quantizer can be approximated as

D(R) ∼= ε2σ22−2R (3.6)

for large R, where ε2 is a function of the source PDF (e.g., ε2 is 1, 4.5 and
√

3π/2 ∼= 2.721 for

uniform, Laplacian and Gaussian PDFs, respectively). For low values of R this approximation is

pessimistic and lower MSE distortions are achieved than predicted by Eq. (3.6).

These results can be improved if one allows for entropy coding of the quantizer output. The

Lloyd-Max quantizer optimizes the distortion under the only constraint of having M quantization

levels and does not take into account the entropy of the quantizer output. If one optimizes the

quantizer under the constraint H(X̂) ≤ R an offset is introduced in Eq. (3.4) that depends on the

probabilities P (X ∈ Iq) and therefore the thresholds tq are no longer the midpoints between the

x̂q. Conversely, Eq. (3.5) remains valid and the optimum x̂q are the centroids of the Iq. Like in the

Lloyd-Max quantizer an iterative algorithm can be used to solve the entropy constrained case [see

107, sec. 3.2.3]. Since the quantizer output is entropy coded M can be as large as necessary, and

M =∞ is the optimum for unbounded distributions (e.g., Gaussian and Laplacian).

For large H(X̂) (i.e. small MSE) the optimum entropy coded scalar quantizer is the uniform

quantizer, where all intervals are of equal size ∆ and the reconstruction values are the midpoints of

these intervals. Letting the quantizer indices take values in Z we have

Iq =

[q∆− ∆
2 , q∆ + ∆

2) q > 0

(−∆
2 ,

∆
2) q = 0

(q∆− ∆
2 , q∆ + ∆

2] q < 0

and

x̂q = q∆.

Under the assumptions that the entropy coding is effective, hence R ∼= H(X̂), and that ∆ is small

(i.e. small MSE) the MSE distortion is ∆2/12 and the rate-distortion function can be approximated

as

D(R) ∼= 1

12
22h(X)2−2R.

Comparing to the Shannon lower bound in Section 3.3.1, entropy coded uniform scalar quantization

differs by a factor of only πe/6, at high rates. In SNR terms the difference is 1.53 dB. At lower

rates, the optimal entropy coded scalar quantizer is not uniform anymore. However, a uniform scalar

quantizer with centroid reconstruction values (i.e., as in Eq. (3.5)) is nearly optimal [107, sec. 3.2.4].

Comparing to the results of the Lloyd-Max quantizer one can easily see that an entropy coded

uniform scalar quantizer performs better. Hence, at high enough rates there is little interest in using

scalar quantizers other than uniform, provided that the use of entropy coding is allowed. Another

advantage of the uniform scalar quantizer, which can be relevant in some applications, is that the

40 Chapter 3. 3D model coding

maximum error Emax is bounded by ∆ and thus it is easily controlled. For zero mean PDFs, a

small improvement in the rate-distortion performance of the uniform scalar quantizer can often be

obtained by increasing the width of the interval I0. Such quantizers are often referred to as deadzone

uniform scalar quantizers. Although this modification increases the distortion, the gains in H(X̂)

are high enough to compensate for that loss. This quantizer can be easily implemented as

q = Q(x) =

{

sign(x)b |x|∆ + ξc |x|
∆ + ξ > 0

0 otherwise
,

where ξ < 1 controls the width of I0 and

sign(x) =

1 x > 0

0 x = 0

−1 x < 0

.

For ξ = 1/2 the plain uniform scalar quantizer is obtained, where all intervals have width ∆. For

ξ = 0 the width of I0 is 2∆. This is an interesting and widely used case, where the quantizer indices

q′ for a lower rate quantizer with ∆′ = 2p∆, p ∈ N, are obtained by right bit-shifting the quantizer

indices q (i.e., q′ = b2−pqc).
As we have seen, entropy coded uniform scalar quantization is the best possible scalar quantizer

at high rates. However, it falls short by 1.53 dB of the Shannon lower bound. Comparing the

definition of the scalar quantizer at the beginning of this section to the general quantizer definition

of Section 3.3, one can see that scalar quantization is the special case where the data vectors x

are of length m = 1. The 1.53 dB gap can be diminished by allowing m to grow and thus by

jointly quantizing m data samples. This is referred to as vector quantization. In this case the

intervals Iq become regions in m-dimensional space and are not constrained to be m-dimensional

cubes anymore, which is the main limitation of scalar quantizers. As m is allowed to grow without

bound the performance of a vector quantizer gets arbitrarily close to the Shannon lower bound. The

complexity of vector quantizer encoders is, however, very high as m gets moderately large and they

cannot be exploited to their full potential in practical applications. A more detailed introduction

to vector quantization can be found in [107, sec. 3.4] while an extensive treatment can be found in

[27].

3.3.3 Differential pulse code modulation

The rate-distortion performance of the scalar quantizer established in the previous section assumes

that the source {Xn} is an IID process. If it is not IID the Shannon lower bound will be lower.

However, scalar quantization alone cannot exploit the source correlation and the performance will be

governed by the marginal PDF as if {Xn} was IID. Several techniques exist to exploit this correlation.

One is to use a vector quantizer, as it was briefly explained in the previous section. Another is to

use a scalar quantizer followed by conditional entropy coding of the quantization indices. However,

the number of conditional distributions that need to be tracked can be prohibitively large for small

distortions (i.e., large number of quantization levels) and simplifications of the conditional model are

necessary that degrade the achievable performance. Yet another technique is to use decorrelating

transforms, such as the discrete cosine transform (DCT) [52, 77, 107] or discrete wavelet transform

(DWT) [72, 107]. The resulting data of these transforms is nearly decorrelated, hence nearly IID,

and it is possible to proceed with entropy coded scalar quantization. In many cases conditional

entropy coding is applied, with a simplified conditional model, to exploit the remaining correlation.

3.3. Quantization and distortion 41

A fourth possibility is to predict a value from the past coded ones and to code the prediction

error. Let µn = µ(x0:n) be this predicted value and en = xn − µn the prediction error. Since {Xn}
and {En} are equivalent data sequences carrying the same information, H({Xn}) = H({En}).
However, if the predictor µ(x0:n) is appropriately chosen the first order entropies will usually obey

H(1)({En}) � H(1)({Xn}). A non-conditional entropy coder will thus be more effective if applied

on {En} than {Xn}. Furthermore, if conditional entropy coding is used, it is simpler and more

effective to use a simplified conditional model on {En} than on {Xn}.
When quantization is introduced in this predictive scheme it becomes known as differential pulse

code modulation (DPCM). To avoid the accumulation of successive quantization errors the prediction

must be based on the quantized values. DPCM is thus governed by the following equations

µn = µ(x̂0:n)

en = xn − µn
qn = Q(en)

ên = Q−1(qn)

x̂n = ên + µn.

Where the qn are the quantization indices that are transmitted, after being entropy coded if desired,

and ên and x̂n the quantized values of the prediction error and source data, respectively. The

equivalent block diagram is shown in Figure 3.2.

Q

µ

Q−1

ên

x̂nµn

qn

−

+

+

+

xn x̂nên

+

+

qn
Q−1

µ

µn

Figure 3.2: Block diagram of a DPCM coder

An important characteristic of DPCM is that the quantization error of the prediction error equals

that of the source data, i.e., ên−en = x̂n−xn. Therefore, {Xn} and {En} have the same distortion,

which is independent of the predictor µ. The optimal predictor is the one that minimizes the variance

of the prediction error and thus is the conditional mean of X given the previous (quantized) values

of the samples used in prediction. This optimal predictor cannot be found in practice because the

conditional mean depends on the quantized values. By assuming a high rate we can approximate

x̂n ∼= xn and obtain a conditional mean. In practice the predictor is often restricted, for the sake of

simplicity, to be a linear combination of the past quantized values. Nevertheless, a linear predictor

will only be optimal if {Xn} is Gaussian, but can provide a fairly good approximation for other

distributions. For Gaussian Markov-p processes, DPCM with a linear predictor and entropy coded

uniform scalar quantization can deliver a rate-distortion performance that differs from the Shannon

lower bound by 1.53 dB at high rates, as in the IID case. At low rates, however, the performance of

the predictor degrades because of the large distortion introduced by the quantization error and the

overall rate-distortion of the DPCM coder is severely affected. As such, the applicability of DPCM

is limited to high and medium rates.

42 Chapter 3. 3D model coding

3.3.4 Distortion in 3D models

The distortion measures used in the development of the previous sections are based on sample

to sample distances. When dealing with the geometry of 3D models the samples are the vertex

positions in space. However, the relevant distortion is the distance between the surfaces defined by

the vertices and not the distance between the vertices themselves. A meaningful distance between

two surfaces S and Ŝ can be defined as the Hausdorff distance [13]. First we define the point to

surface distance

d(P, Ŝ) = min
P̂∈Ŝ
‖P̂−P‖, (3.7)

where ‖·‖ denotes the usual Euclidean, L-2, norm. The Hausdorff distance is then defined as

Dmax(S, Ŝ) = max
P∈S

d(P, Ŝ). (3.8)

This distance is usually asymmetric, in that Dmax(S, Ŝ) 6= Dmax(Ŝ,S). An example depicting such

a situation is shown in Figure 3.3, where Dmax(S, Ŝ) < Dmax(Ŝ,S). A symmetric distance can be

defined as

Ds,max(S, Ŝ) = max
[

Dmax(S, Ŝ), Dmax(Ŝ,S)
]

. (3.9)

B

Ŝ

S

A

Dmax(Ŝ,S)

Dmax(S, Ŝ)

Figure 3.3: Example of non symmetric surface distances: Dmax(S, Ŝ) < Dmax(Ŝ,S).

The one-sided and symmetric Hausdorff distances provide a maximum, worst case, distortion

measure between two surfaces. A one-sided MSE-like distortion can be defined as

DMSE(S, Ŝ) =
1

|S|

∮

P∈S
d(P, Ŝ)2dS, (3.10)

where |S| is the area of S. A symmetric version can be defined analogously to Eq. (3.9).

Consider a polygonal mesh defined by vertices vi, i = 0, 1, . . . ,M−1, their coded counterparts v̂i

and the surfaces S and Ŝ defined by {vi} and {v̂i}, respectively. Unfortunately, there is no simple

relationship between the sample to sample MSE distortion

DMSE({vi}, {v̂i}) =
1

M

M−1∑

i=0

‖vi − v̂i‖2

and the surface to surface distances DMSE(S, Ŝ) and DMSE(Ŝ,S). Depending on the shape of the

polygons and the valence of the vertices the sample to sample MSE distortion can be smaller or

larger than the surface to surface distances. However, one can expect the same order of magnitude

for the two measures and therefore the rate-distortion results previously derived provide a useful

approximation for polygonal meshes. If one considers the maximum distance, the sample to sample

distance provides an upper bound to the surface to surface distances of Eqs. (3.8) and (3.9).

3.4. Coding of polygonal meshes 43

Since the Hausdorff based MSE and maximum distances are defined on the surfaces themselves,

and not samples, they remain applicable to polygonal meshes were there is not a one-to-one corre-

spondence between vertices of S and Ŝ. Such cases arise often when surface simplification steps are

involved in the coding process. Hence, the Hausdorff based distance is a more general distortion

measure.

Unfortunately, while Eq. (3.7) can be computed in exact form on polygonal meshes that is

usually not the case with Eqs. (3.8) and (3.10). Therefore, it is necessary to resort to point sampling

approaches to obtain an approximation of the maximum and MSE distances. Furthermore, if Ŝ has

a large number of polygons the exhaustive search for the minimum in Eq. (3.7) demands a very

large number of computations. Cignoni, Rocchini and Scopigno [13] and Aspert, Santa-Cruz and

Ebrahimi [3] propose methods to efficiently compute the Hausdorff based distances for triangular

meshes. Since all polygonal meshes can be converted to triangular ones with no geometric distortion,

those methods can provide close approximations of Dmax(S, Ŝ) and DMSE(S, Ŝ) for any polygonal

mesh.

3.4 Coding of polygonal meshes

As explained in the previous chapter, polygonal meshes are one of the most popular means to model

3D surfaces. Although very flexible in the kind of shapes that can be modeled, polygonal meshes

often require a very large storage space, in particular for high quality models. The compression of

polygonal meshes has therefore been a topic of much research in the past decade and continues to be

so. The early compression methods, such as that of Deering [15], were mainly focused on speeding

up the transfer of model data from the CPU to the graphics board, for rendering purposes, across a

bus limited in bandwidth. Such methods have to be of low complexity so as to be easily decodable

by the hardware on the graphics board and therefore they only obtain modest compression ratios.

Very rapidly though, more effective compression methods tailored for transmission over the Internet

or similar networks started being proposed and are still the main focus of research in the field. A

fairly recent review can be found in [45, Part IV]. Other, somewhat dated, reviews can be found in

[7] and [89].

The coding process of polygonal meshes can usually be divided into two complementary, yet fairly

independent, components: connectivity and geometry. Connectivity coding deals with the topology

of the mesh, or in other words the adjacency relations between the polygons. On the other hand,

geometry coding deals with the position in space, or coordinates, of each vertex and optionally

the normals, colors or any other model properties. In general, geometry coding will exploit the

connectivity information to increase the compression efficiency. In the following sections we will

review the previous art in the coding of polygonal meshes, following a more or less chronological

order. Let us note that many of the compression methods that have been proposed, and which

are explained below, deal with triangular meshes exclusively. In fact, any polygonal mesh can

be converted in a triangular mesh without distortion by triangulating each non-triangular face.

Furthermore, each so introduced edge can be specially signaled and the original polygonal mesh

can be recovered by simply removing these edges after decoding. Therefore, considering triangular

meshes is sufficient, although it is often not optimal.

Polygonal mesh coders can be classified as progressive or non-progressive (also referred to as

single-rate). A progressive coder will code a coarse version of the original mesh and will progressively

add more detail until the full detail mesh is recovered. This is convenient in situations where the

transmission of the whole compressed model takes considerable time: the receiver can quickly display

a coarse version of the model and refine it over time as more data is received. Conversely, single-rate

44 Chapter 3. 3D model coding

coders code the whole model as a unit. In general, single-rate coders deliver higher compression

efficiency than progressive ones since they can better exploit the redundancy in the data. Although

at first it might seem that only progressive coders should be of interest, single-rate coders are useful

in many situations and also serve to encode the coarse base mesh of progressive ones. In what

follows, we discuss single rate coders in detail and then provide a brief overview of progressive ones

in Section 3.4.12.

3.4.1 Uncompressed meshes

Prior to the overview of the compression methods, let us briefly cite the uncompressed formats as

a reference point. The VRML standard [47] defines a textual format for polygonal meshes, named

IndexedFaceSet. The (x, y, z) spatial coordinates of all the vertices in the mesh are given in an

array, named coord. Each face is then defined by the ordered list of zero based indices of its

vertices, given in an array named coordIndex. Since the number of vertices of each face is variable,

a dummy vertex with index −1 is used to indicate the end of each list. Hence, the connectivity and

geometry information is embodied in the coordIndex and coord arrays, respectively. Optionally,

normal vectors can be specified as bounded to faces or vertices, but not corners. Figure 3.4 shows an

example of a simple polygonal mesh described in VRML. As can be seen, VRML is not a compact

format but it is very flexible and the model data is easily modified.

IndexedFaceSet {

coord Coordinate {

point [

0 0 0

0 2.5 0

3.2 0 0

4.1 3.7 0

1.1 2.9 4

]

}

coordIndex [

0 1 3 2 -1

1 0 4 -1

3 1 4 -1

2 3 4 -1

0 2 4 -1

]

}

Figure 3.4: VRML description of an irregular pyramid (left) and the rendered model (right).

Analogous canonical binary representations can also be defined. For a model with V vertices the

vertex indices can be coded on dlog2 V e bits each. Additionally dlog2(N − 2)e bits are required per

face to code the number of vertices of each face, where N is the maximum number of vertices per

face (each face has at least three sides, hence the −2). The total number of bits required to code

the connectivity of a model with F faces is therefore

F dlog2(N − 2)e+ dlog2 V e
F−1∑

i=0

ni,

where ni is the number of vertices of the i-th face. For triangular meshes the first term vanishes

3.4. Coding of polygonal meshes 45

and the second one becomes 3F dlog2 V e. Recalling Euler’s formula, Eq. (2.24), we have

V − E + F = χ, (3.11)

where E is the number of edges and χ the Euler characteristic. Typical meshes have one component

and just a few holes and handles (i.e. low genus), hence their Euler characteristic χ is small in

magnitude. Letting EE and EI be the number of external and internal edges, respectively, we have,

for triangular meshes, EI = (3F − EE)/2 and thus E = EE + EI = 3F/2 + EE/2. If we further

assume the holes to be comparatively small, which is typically the case, and since we assume few

holes, EE � EI ≈ E and hence E ≈ 3F/2. Substituting into Eq. (3.11) yields V ≈ F/2 + χ and

since χ is close to zero, 2V ≈ F . Therefore, in a typical triangle mesh, there are roughly twice more

triangles than vertices∗. The coding cost becomes then approximatively 6V dlog2 V e. Therefore, the

space required for connectivity coding in such an uncompressed canonical form grows as O(V log V).

Such a non-linear behavior is clearly undesirable as it does not scale well to large models.

The vertex positions are usually stored as 32 bit floating point numbers (i.e., IEEE single precision

format). The 8 bit exponent of a single precision floating point number covers from the size of the

known universe down to the size of sub-atomic particles. The 24 bits of mantissa provide a precision

in excess of one in 16 million. It is clear that the encoding of vertex positions in individual geometric

objects does not require such a precision, nor such a dynamic range†. Even if some storage formats

allow such a precision, it corresponds to noise and has no parallel in any real world object. This

precision can be therefore reduced through quantization without loss of relevant data (although there

is a loss of information in the strict sense). The usual solution is to apply uniform quantization on

each of the vertex coordinates. The axis aligned bounding cube that encloses the geometric object

is partitioned into small cubes. The quantized position of each vertex is the center of the partition

cube it occupies. For a bounding cube of side length L and quantization of each coordinate into n

bits, the partition cubes are of side ∆ = L/2n. Hence, the maximum distortion for the position of

any vertex is
√

3/4L/2n. Table 3.1 shows the maximum distortion for varying number of bits and

object scales. While 8 bits appears as insufficient for most purposes, 10 to 12 bits provide enough

precision for many modeling applications and 16 bits is more than necessary for the vast majority of

applications. For example, 16 bits provide a precision comparable to the feature size of a Pentium 4

(0.13 µm) or a cell in a human body (∼10 µm) and are more than enough to precisely locate a car

in Manhattan or a door in the Titanic.

8 bits 10 bits 12 bits 16 bits 20 bits 24 bits

Pentium 4 die (14 mm) 47.4 µm 11.8 µm 2.96 µm 0.19 µm 11.6 nm 0.72 nm

Human body (1.8 m) 6.08 mm 1.52 mm 0.38 mm 23.8 µm 1.49 µm 92.9 nm

Titanic (269 m) 90 cm 22.7 cm 5.7 cm 3.6 mm 0.22 mm 13.9 µm

Manhattan (21.6 km) 73.1 m 18.2 m 4.57 m 28.5 cm 17.8 mm 1.11 mm

Table 3.1: Maximum distortion for uniform quantization of geometric objects of various scales as

a function of the number of quantized bits.

A canonical binary representation of geometry information will therefore often require between

30 and 36 bits per vertex and will rarely exceed 48 bits (i.e. 10, 12 or 16 bits per coordinate,

respectively). Comparing with the results for triangular meshes above, the cost of connectivity

∗Following an analogous development, quadrilateral meshes have roughly as many vertices as faces.
†Note however, that in a complex virtual world the scale of different objects can differ by several orders of

magnitude. Since this difference in size appears across objects it is not required to have an extremely high precision

to represent each of them.

46 Chapter 3. 3D model coding

coding grows much rapidly than geometry with model size. For example the connectivity cost is

slightly larger than that of geometry for models with 32, 64 and 256 vertices, when coordinates are

quantized to 10, 12 and 16 bits, respectively. For a model with 10’000 faces the connectivity cost is

more than 20 times larger than that of geometry, if a 12 bit quantization is used. This demonstrates

the interest on performing an efficient compression of connectivity.

3.4.2 Geometry Compression

As mentioned above, the first compression methods proposed for polygonal meshes were particularly

tailored to the problem of in-memory storage and rendering. Popular 3D toolkits, such as OpenGL

[119], make use of triangle strips and fans to reduce the number of times a vertex needs to be

transferred to and processed by the graphics hardware. As shown in Figure 3.5, each new vertex

is combined with one of the free edges of the previous triangle to form a new one. Depending on

which edge the new triangle is attached, two configurations are possible: the triangle strip and the

triangle fan. In the former, the edge on which the new triangle is formed alternates between “left”

and “right”, while in the latter the new triangle is always attached to the “right” edge. Triangle

strips are common on mostly regular meshes, such as those generated by tessellation of parametric

models, while triangle fans typically arise at irregular vertices. Both of these forms are supported

by OpenGL. A more general format, the generalized triangle strip, uses an extra bit per triangle to

specify on which of the two free edges the triangle should be formed and allows to merge triangle

strips and fans. While these structures reduce the number of times a vertex’s coordinates need to

be specified, they are limited by the fact that past vertices cannot be referenced. In other words,

the connectivity cannot be losslessly encoded. On the other hand, the decoding engine is extremely

simple and only two vertices need to be stored at any time.

3

5
7

6

4
20

1

(a) strip

1

2

5

0

4

3

(b) fan

0

1131

2 4
6

5

7

8

9

10

(c) generalized strip

Figure 3.5: Vertex ordering in a triangle strip, triangle fan and generalized triangle strip.

In the Geometry Compression scheme proposed by Deering [15], this restriction is partially lifted

3.4. Coding of polygonal meshes 47

by the use of a queue to store vertices. A new vertex can be optionally pushed into the queue so that

it can be referenced later. The resulting structure is referred to as a generalized triangle mesh. The

size of the queue required to be able to avoid sending vertices more than once is clearly dependent

on the model size and hence unlimited a-priori. Bar-Yehuda and Gotsman study this relationship

[5] and conclude that a queue of size 12.72
√
n is sufficient for an arbitrary triangular mesh with n

vertices and that 1.6
√
n is a lower bound. In Deering’s scheme the queue size is limited to 16, to limit

the amount of memory required, and thus 4 bit indices are required to reference past vertices. The

coordinates are uniformly quantized and coded using a predictive scheme and a modified Huffman

code. The predictor is simply the value of the previous vertex. The compression of normals (vertex

bounded) is more involved, as the orientation of the unit length normal is coded using spherical

coordinates instead of the Cartesian xyz values. This allows to reduce the number of bits used to

represent a normal since an almost uniform distribution of quantized orientations is obtained, which

would not the case if the xyz values were used. Vertex bounded colors can be specified as RGBα

values. They are coded in a way very similar to coordinates.

The final coded bitrate depends on the ability to exploit as much as possible the vertex queue

to avoid resending previous vertices. The construction of a generalized triangle mesh that fulfills

this requirement is a non-trivial problem. Chow [12] proposed an algorithm that locally constructs

the generalized triangle mesh by starting with triangle strips adjacent to the edges and covers the

object’s mesh in a spiraling pattern, taking care not to overflow the vertex queue. Using this

algorithm they obtain an average ratio of 0.67 between the number of explicitly coded vertices and

the total number of triangles. As a reference, this ratio is 3 for independent triangles, 1 for infinitely

long generalized triangle strips and ≈0.5 for a generalized triangle mesh on an infinite regular mesh.

As reported in [15], bitrates in the range of 25 to 30 bits per triangle can be obtained for typical

models with quantizations of 30 to 36 bits per vertex (i.e., 10 to 12 bits per coordinate) and 12

to 14 bits per normal. This amounts to a compression factor between 2 and 3 to 1 with respect

to the canonical encoding defined previously, quantized to the same number of bits. This modest

performance is largely due to the simplicity of the scheme and to the lossy coding of the connectivity

information. The compression factor is, however, about 8 or 9 to 1 relative to the primitives used for

rendering with triangle strips. Hence, a good reduction in the bandwidth requirements for rendering

is obtained. Deering’s architecture has been chosen as the compressed data format for the Java3D

API [100].

3.4.3 Topological Surgery

If a one-component mesh contains no holes, the coding of the connectivity amounts to the coding of

the graph that has the vertices as nodes and the face edges as edges, which is referred to as the vertex

graph. If the mesh is of genus zero (i.e. has no handles), the vertex graph is a planar graph. An

example is shown in Figure 3.6. In an equivalent way, the graph, referred to as the face graph, that

has faces as nodes and the edges shared by adjacent faces as graph edges can also be used to encode

the connectivity. In fact, the face graph is the dual of the vertex graph. In the case of triangular

meshes the face graph is referred to as the triangle graph. From a theoretical point of view Tutte

[110] enumerated all the possible structures that a planar triangular graph can assume and shows

that the encoding requires 3.245 bits per vertex. Hence, the entropy of the connectivity of simple

triangular meshes is 3.245 bits per vertex, or alternatively 1.623 bits per triangle, if all possible

meshes are considered equally probable. Taubin and Rossignac’s Topological Surgery [105, 106],

provides a practical way to efficiently compress the vertex graph for 2-manifold orientable triangular

meshes, along with extensions to deal with holes, handles, n-sided faces and non-orientable meshes.

Additionally, Topological Surgery also compresses vertex positions and other properties such as

48 Chapter 3. 3D model coding

1

4

76

5

2

3

0
8

(a)

6

5

3

0

1

8

2

7

4

(b)

Figure 3.6: The triangle mesh of the union of a cube and an irregular tetrahedron: (a) mesh with

labeled vertices (sharp edges are bold, hidden edges are dashed) and (b) the corresponding vertex

graph.

normals, colors and texture coordinates. We start by describing the connectivity coding algorithm

for meshes homeomorphic to a sphere (i.e., orientable 2-manifolds with no holes and no handles)

and then introduce the extensions to deal with more complex meshes.

Topological Surgery encodes the vertex graph as two interlocked trees. A spanning tree of the

vertex graph is constructed and the mesh is cut along the edges of this tree, the cut edges. The

resulting mesh has all the vertices on its boundary and is referred to as a simply connected polygon

by Taubin and Rossignac. An example is shown in Figure 3.7 for the mesh of Figure 3.6. Since the

mesh is 2-manifold and has no holes, each cut edge corresponds to two border edges of the simply

connected polygon. The triangle graph of a simply connected polygon is actually a binary tree, the

triangle spanning tree. Furthermore, the simply connected polygon can be viewed as generalized

triangle strips that are joined at branching triangles. The triangle spanning tree is thus composed of

triangle runs that end at either branching or leaf triangles. Topological Surgery encodes this tree by

starting at a leaf, that becomes the root, and recursively encoding each triangle run. A triangle run

is encoded as its length plus a bit indicating if it ends in a leaf or branching triangle. The triangle

spanning tree is, however, not sufficient to recover the simply connected polygon. In fact, within

each triangle run it is necessary to know to which free edge, “left” or “right”, the next triangle is to

be attached. This is encoded by the marching pattern as one bit per triangle, which is then entropy

coded.

Obviously, the simply connected polygon is not sufficient to reconstruct the original mesh, since

it is necessary to establish which pairs of edges of the former must be stitched together to close the

simply connected polygon into the mesh. This information is contained in the triangle spanning

tree that was used to cut the mesh. Topological Surgery encodes this tree in the same way as the

triangle spanning tree, except that an extra bit per run is used to signal if the new run is the last run

starting at the branching node. This extra bit is not required for the triangle spanning tree because

it is a binary tree. Thus, the encoded vertex and triangle spanning trees along with the marching

pattern, plus an offset to relate the roots of both trees, are enough to recover the connectivity of

the original mesh. Table 3.2 shows the encoding of the triangle tree and simply connected polygon

3.4. Coding of polygonal meshes 49

3

2

0

5

1

8

7

6

4

(a)

11

1

3

6

6 7

7

2

8
3

2

8

5 4

0

b
a

c

b

b

a a

b

b

a
a

a

b

(b)

1

8
1 3

7

2

6

67
2

8

3
1

0

54

c

a

a a

a

a

a

bb

b

b

b

b

L
L

L

L

B
B

(c)

Figure 3.7: Topological Surgery applied to the mesh of Figure 3.6: (a) the vertex tree, (b) the cut

mesh (cut area grayed), (c) the cut mesh “flattened” as a simply connected polygon (branching and

leaf triangles are labeled as “B” and “L”, respectively).

of Figure 3.7, where the triangle tree has been rooted on the leaf triangle that has the vertex 1b.

code run code format

Vertex tree (1,0,1), (6,1,0), (1,1,1) (length, endsInLeaf, isLastBranch)

Triangle tree (5,0), (1,1), (3,0), (2,1), (2,1) (length, endsInLeaf)

Marching pattern LLLL, , LR, R, L

Table 3.2: Coding of the vertex and triangles trees and marching pattern of Figure 3.7. The

triangle tree is rooted on vertex 1b.

Clearly, the compressed rate will depend on the triangle spanning tree used to cut the mesh.

The longer the triangle runs and the fewer branching triangles, the higher the compression ratio.

Taubin and Rossignac propose several methods to construct efficient vertex spanning trees. They

obtain the best results by a method that resembles the process of peeling an orange, which can be

described as follows. Starting at a root vertex, concentric rings are constructed by considering the

triangles that are adjacent to the previous ring. Each ring is then cut open and they are joined

together in a spiral.

If the original mesh has non-zero genus, then cutting along the vertex tree does not yield a simply

connected polygon. In fact, cutting in such a way reduces the Euler characteristic by one, from χ

to χ − 1. Due to the non-zero genus χ < 2 and thus the cut mesh has a Euler characteristic less

than one and cannot be a simply connected polygon. Because of the handles of the original mesh,

the cut mesh presents some cycles and additional cut edges are necessary to break them. Making

2 − χ cuts along jump edges is thus necessary to obtain a simply connected polygon. These jump

edges are the edges that belong to neither the vertex nor the triangle tree. The start of each jump

edge is coded in the triangle tree by treating each regular (i.e., non-branching and non-leaf) triangle

incident on a jump edge as being a branching triangle having one run of length zero starting at

the jump edge. For leaf triangles, two extra bits encoded in the marching pattern are required to

50 Chapter 3. 3D model coding

identify jump edges. The other end of jump edges is encoded in an extra table as the number of

edges separating the two vertices in the boundary of the mesh cut by the vertex tree.

If the original mesh has one or more boundaries it is possible that after cutting through the vertex

tree disconnected meshes are obtained. Topological Surgery avoids this by ensuring that all but one

of the edges of each boundary loop are included in the vertex tree. The remaining edge is treated

as a jump edge. If the mesh is non-orientable, the simply connected polygon is always orientable

and no special steps are required to encode it. The orientation, and thus the loop traversal order,

can, however, change across jump edges and thus one extra bit per jump edge is used to signal such

changes.

The scheme above can only handle triangular meshes. In order to handle arbitrary polygonal

meshes, the scheme presented in [105] is used which can be described as follows. Each polygonal face

is triangulated without adding new vertices. Edges of the original mesh are referred to as polygonal

edges, while edges introduced by the triangulation are referred to as non-polygonal. The vertex tree

is constructed on the original mesh, and thus contains only polygonal edges. In this way all the

non-polygonal edges will be interior edges of the simply connected polygon. Hence, one extra bit

per interior edge is required to recover the polygonal mesh.

Vertex positions are uniformly quantized and then coded in vertex tree traversal order. Predic-

tive coding is used with a linear predictor using the K most recent ancestors in the vertex tree.

The coefficients of the linear predictor are chosen as to minimize the MSE and coded as overhead

information. The prediction errors are then entropy coded. Properties (e.g., normals, colors, etc.)

are coded in an analogous way after quantization. For vertex and face bound properties the vertex

tree and triangle tree traversal order is used, respectively. For corner bound properties a corner tree

is constructed based on the order in which corners are visited during decompression and used for

the encoding order. Quantization of normals is done in a non-rectilinear way [105] somewhat similar

to that of Deering’s method [15].

In [105] Taubin et al. report compressed connectivity rates ranging from 1 to 8 bits per triangle,

for models of more than 100 triangles. Typically, the compression efficiency is larger for larger

models, since longer runs occur. Conversely, in the cases where “good” vertex trees cannot be found,

the compression efficiency does suffer due to the short triangle runs and high number of branching

triangles. When the geometry is included, compressed rates in the range of 6 to 11 bits per triangle

can be obtained with quantizations of 10 to 12 bits per coordinate. Comparing with Deering’s

method, Topological Surgery achieves compressed rates that are significantly lower even if the fact

that normals are not included for the latter is taken into account.

Bossen proposes an alternative way to encode the connectivity information [7]. The main dif-

ference is that instead of coding the length of each run in the triangle and vertex spanning trees, a

binary variable is used to signal if a tree edge is the end of a run. This and all other binary variables

are then compressed with binary arithmetic coding. Alternative ways to code holes and handles are

also proposed. This improved format is very similar to what is included in the MPEG-4 standard

[49] for the coding of polygonal meshes. Topological Surgery was originally submitted as a binary

format for VRML [105].

3.4.4 Triangle Mesh Compression

Touma and Gotsman propose an alternative method to code the connectivity and geometry of 2-

manifold triangular meshes, called Triangle Mesh Compression [45, 109]. The key to their coding

scheme is the following observation: in a triangular mesh which is an orientable manifold without

boundary the 1-ring of any vertex can be consistently ordered and furthermore the 1-ring forms a

closed loop. The coding algorithm is conceptually rather simple and basically consists of specifying

3.4. Coding of polygonal meshes 51

the valence of each vertex in a predetermined order. This kind of coding algorithm has become

known as vertex or valence based coding, of which Triangle Mesh Compression was the first to be

proposed.

Prior to describing the algorithm let us define the following terms.

Free vertex: a vertex not yet coded.

Free edge: an edge not yet coded.

Full vertex: a vertex with no free edges.

Active list: an ordered, cyclic, list of coded but not yet full vertices. We denote it as L =

{v0, v1, . . . , vl−1}, where l is its length. Since the list is cyclic vi = vi+kl, k ∈ Z.

Cut border: the loop of edges formed by the pair of vertices vi, vi+1, 0 ≤ i ≤ l − 1, of the active

list (note that vl, v0 is included in this list).

Pivot: the vertex on which all coding operations are performed. It is always the head of the active

list.

Let us first assume that the triangular mesh is without boundary and has no handles. Vertices

are coded with add n commands, where n is their valence. The algorithm is initialized by coding

an arbitrary vertex, which becomes the pivot. The active list is initialized to this vertex. Each free

edge incident on the pivot is then coded, in counter-clockwise order, by coding the vertex at the

other end. In this way, all the vertices in the 1-ring of the pivot are coded. Whenever a vertex vi
in the active list becomes full the edge (vi−1, vi+1) is implicitly coded and vi is removed from the

active list. If the full vertex is the pivot, the next one in the active list becomes the new pivot and

coding proceeds as previously. Note that, in this process the triangles are implicitly coded. After

each addition of a vertex to the end of the active list the (v0, vl−2, vl−1) triangle is implicitly coded,

with counter-clockwise orientation. Likewise, when a vertex vi becomes full, and prior to its removal

from the active list, the triangle (vi−1, vi, vi+1) is implicitly coded.

The cut border constitutes the boundary between the coded and not yet coded parts of the mesh,

as all vertices in its interior are full. When a free edge incident on the pivot is to be coded, it is

possible that the vertex at the other end is already present in the active list (i.e., the vertex has

been previously coded). Coding the free edge will cause the cut border to become self-intersecting.

This is coded with a split n command, where n is the offset in the active list between the pivot

and the other vertex of the edge being coded. The active list, hence the cut border, is split as

L1 = {v0, v1, . . . , vn−1, vn} and L2 = {vn, vn+1, . . . , vl}. The list L2 is pushed into an active list

stack and coding proceeds with L1. When the active list contains only three vertices and the pivot

is full, processing of that active list is terminated after removing the pivot. The next active list is

popped from the stack and processing continues. When processing of the last active list terminates

the whole triangle mesh has been coded. This process is shown in Figure 3.8 for the mesh of

Figure 3.6. The steps are as follows. (a) add 5, this new vertex becomes the pivot. (a)→(b): add

4, add 7, the active list forms the first triangle. (b)→(c): add 4. (c)→(d): add 7. (d)→(e): add

4. (e)→(f): the pivot vertex is full, remove it and make next vertex the new pivot. (f)→(g): add

5. (g)→(h): second to last vertex of active list is full, remove it. (h)→(i): the pivot vertex is full,

remove it and make next vertex the new pivot. (i)→(j): add 3. (j)→(k): split 2, push second

part of active list in stack. (k)→(l): add 3. (l)→(m): the pivot vertex is full, remove it and make

vertex the new pivot. (m)→(n): active list exhausted (only 3 vertices left and the pivot vertex is

full), pop next from stack. (n)→(o): last active list also exhausted. (p): reconstructed mesh.

52 Chapter 3. 3D model coding

The algorithm, as described above, only handles triangular meshes with no holes. Triangle

Mesh Compression handles holes by adding a dummy vertex for each hole, that is connected to all

vertices on the hole’s boundary, thus closing the mesh. These dummy vertices are specially coded by

adding a negative sign to their valence. Hence, the dummy vertices can be identified and removed

at the decoding stage. In order to handle meshes with handles it is necessary to introduce the

merge operation. In fact, for non-zero genus meshes, it is possible that a free edge to be coded is

incident on a vertex in an active list which has been pushed to the stack. In other words, this free

edge connects two disjoint cut borders, which must be merged. This situation is coded through

a merge i n command, where i is the position in the stack of the active list to be merged and n

is the position in that list of the vertex at which they should be merged. If the currently active

list is L = {v0, . . . , vl} and the one to be merged is L′ = {v′0, . . . , v′n, . . . , v′l′} the merged list is

{v0, . . . , vl, v′n, . . . , v′l′ , . . . , v0, . . . , v′n′−1}. After merging, L′ is removed from the stack.

The coding of a typical mesh consists primarily of add commands along with some splits and

very few merges. Furthermore, the vertex valence distribution is typically skewed, with a mean

of six. All this is amenable to efficient entropy coding. Touma and Gotsman use Huffman and

run-length coding. Using this scheme they typically obtain compressed connectivity rates between

1 and 2 bits per vertex, which amounts to 0.5 to 1 bits per triangle. For highly regular meshes,

such as those obtained through a tessellation process, they obtain values as low as 0.2 bits per

vertex (i.e., 0.1 bits per triangle). When compared to the Topological Surgery method previously

presented, Triangle Mesh Compression achieves a substantial improvement. Compared to Tutte’s

bound (3.245 bits per vertex), Triangle Mesh Compression yields a much lower coded rate for typical

meshes. However, this implies that some pathological meshes will have a coded rate that will exceed

3.245 bits per vertex.

As in Topological Surgery, Triangle Mesh Compression quantizes the coordinates to some number

of bits and uses predictive coding to reduce the entropy of vertex coordinate data. The predictor is

also linear, albeit more sophisticated. Due to the order in which the connectivity coding proceeds,

when a new vertex r is coded forming the triangle (u, v, r) with the u and v vertices of the active list,

an adjacent triangle (u,w, v) has already been coded. The two triangles, adjacent on the (u, v) edge,

are predicted to form a parallelogram. The predicted vertex position is thus r′ = u + v − w. This

predictor is often referred as the parallelogram predictor. The u, v, r and w vertices will, however, be

seldom coplanar. Touma and Gotsman recognize this fact and propose to predict the crease angle

along the (u, v) edge as an average of the crease angles between sets of previously coded neighboring

triangles. A schematic of the parallelogram predictor is shown in Figure 3.9. The prediction errors

are entropy coded using a mix of Huffman and fixed length coding. Using this technique, they report

compressed rates between 8 and 12 bits per vertex, with an 8 bit per coordinate quantization, for

a variety of models. Comparing to Topological Surgery, the geometry coding results are 1.5 times

better in average. The overall, connectivity plus geometry, results are 1.7 times better, in average,

for Triangle Mesh Compression.

3.4.5 Edgebreaker

Although Triangle Mesh Compression can compress the connectivity of mostly regular meshes very

efficiently, there is no known worst case analysis that provides an upper bound for the connectivity

coding rate. In fact, the coding cost of a split operation is not fixed and depends on the size of

the mesh as log2 V . Rossignac proposes the Edgebreaker [89] connectivity coding scheme that has

a guaranteed worst case compressed rate of 2 bits per triangle for genus zero meshes with no more

than one boundary. As Triangle Mesh Compression, it is a region growing algorithm. However, it

is based on faces instead of vertices.

3.4. Coding of polygonal meshes 53

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Figure 3.8: Triangle Mesh Compression coding process for the mesh of Figure 3.6, starting at

the vertex labeled 1. Thick lines denote the current active list edges, or cut border, and the arrow

indicates its orientation. Gray denotes an active list that has been pushed down the stack. The

current pivot is shown by the thick dot.

54 Chapter 3. 3D model coding

active list

v

u

r′

r
α

w

Figure 3.9: Parallelogram prediction as used in Triangle Mesh Compression. The vertex r is

predicted as r′, so as to form a parallelogram with vertices w, u and v with a crease angle α.

Edgebreaker codes a triangle mesh as a series of operations. Each operation processes one triangle

that is removed from the mesh. The set of not yet processed triangles forms one or more connected

components, the boundaries of which are called cut-borders. The edges of a cut-border form a closed

non-intersecting path of the original mesh. Note that cut-borders may share a vertex, but not an

edge. Each cut-border has an oriented edge, called the gate, on which the next operation will take

place. The set of cut-borders is stored in a stack, all operations taking place on the top one. For

meshes with boundary, the cut-border is initialized to the boundary loop, of which an arbitrary is

designated as the gate. For closed meshes the cut-border is initialized to a single arbitrary edge.

At each step Edgebreaker codes the not yet processed triangle that is incident on the gate as a

C, L, R, E or S operation and updates the cut-border and gate. These operations are shown in

Figure 3.10 and are as follows. Let the gate be the oriented edge (v1, v2) of the cut-border and v

the vertex of the triangle to be coded that is opposite the gate. If v is not on the cut-border a C

is coded. The gate (v1, v2) is removed from the cut-border and is replaced by the edges (v1, v) and

(v, v2), the latter becoming the new gate. If v is on the cut-border several situations can arise. If v

precedes v1 on the cut border an L is coded and the gate is replaced by (v, v2). If v follows v2 on

the cut-border an R is coded and the gate is replaced by (v1, v). If v both precedes v1 and follows

v2 on the cut-border an E is coded. This can only arise if the current cut-border has three edges, in

which case it vanishes after the E operation. The empty cut-border is popped from the stack and

coding continues with the next one. If v is somewhere else on the cut-border an S is coded and the

cut-border split in two, in much the same way as in Triangle Mesh Compression. The second half is

pushed down the stack and coding continues with the first one. Note that each operation codes the

triangle (v1, v2, v), with counter-clockwise orientation, which becomes a processed triangle. Note

that, as in the other region growing algorithms, no merge operations can occur for meshes of genus

zero homeomorphic to a sphere or disk.

One important point about Edgebreaker is that no index needs to be coded with the S split

operation, unlike in Triangle Mesh Compression. This is a direct consequence of encoding the E

operation. In fact, an E operation is always required to terminate the first loop created by an S

operation. In between an S operation and its matching E other pairs of S and E operations can

appear that further split the cut-borders. In this regard, S and E operations can be thought of

as opening and closing parentheses, respectively, in the stream of coded operations. Finding the

matching E of an S operation is thus straightforward. The split offset is the number of edges removed

3.4. Coding of polygonal meshes 55

L R

S

C

E

Figure 3.10: Edgebreaker operations. Dark gray denotes processed triangles, light gray the triangle

being coded. Thick lines denote the cut-border. Dashed edges are removed from the cut border and

dotted ones are inserted. The arrow shows the current gate. The vertex defining the new triangle

is shown as the thick dot.

56 Chapter 3. 3D model coding

from the cut-border, counting from the S operation up to, and including, its matching E. This can

be computed at the decoder by a simple procedure in a preprocessing step as C and S operations

increase the edge count by one, L and R decrease it by one and E decreases it by three.

As usual, the stream of operations is entropy coded. A conceptually simple approach would

consist in Huffman coding the symbols C, L, R, E and S. The Huffman tables would be computed for

the particular mesh being coded and included as overhead information in the coded representation.

Rossignac proposes in [89] a simpler approach consisting of prefix codes independent of the mesh

that guarantees a worst case compressed rate. Each operation codes exactly one triangle and there is

a one-to-one correspondance between C operations and interior vertices. Therefore, for meshes with

comparatively few boundary edges, about half the operations are Cs, as there are roughly twice more

triangles than vertices and almost all vertices are interior ones. The prefix code proposed in [89]

assigns a 1 bit codeword to C and 3 bit codewords to the other operations L, R, E and S. The total

coded bitrate is thus approximatively 2 bits per triangle. In the case of meshes without boundary

the bitrate is exactly 2 bits per triangle. A more rigorous demonstration can be found in [89]. The

CL and CE sequences are impossible for manifold meshes as they would specify an identical triangle

twice. Hence, the above code can be improved by using an alternative prefix code for operations

immediately following a C: a 1 bit codeword for C, as previously, and a 2 bit codeword for the other

operations R and S. Using this scheme a rate of 1.7 bits per triangle is reported [89]. For meshes

with a large number of boundary edges the above code is not optimal as the R operation becomes

the most frequent one. A more efficient, but similar code, would use 1 bit for R and 3 bits for the

other operations. In either case, the coding cost never exceeds 3 bits per triangle.

The coding procedure, as presented so far, is only capable of handling meshes with no more

than one boundary and with no handles. Rossignac also describes how to code additional holes

and handles. If the mesh has more than one hole, it can happen that the third vertex v of the

triangle to be coded lies on the boundary of a hole, instead of being on the cut-border or an internal

vertex. In this case an additional operation, M, should be coded to merge the cut-border with the

boundary loop of the hole in question. The length of the boundary loop needs to be encoded as well.

Coding this extra symbol would require to extend the prefix codes above by using, for example, 4

bits to code S and M operations, which would decrease the compression efficiency of each S. Instead,

Edgebreaker uses the same codeword for M and S and stores an M-table as overhead information to

distinguish between the two. The M-table includes the offsets of M operations in the coded stream

together with the lengths of their respective boundary loops. Handles are coded in a similar way. In

fact, in non-zero genus meshes the third vertex v of the triangle being coded can lie on a cut-border

which is not at the top of the stack. This happens because when the cut-border wraps around a

handle a new hole is created, instead of a disconnected component. This situation is handled in

Edgebreaker with a slightly different merge operation, M’. No length needs to be coded along M’, as

that is already known. However, it is necessary to code the position in the stack of the cut-border

to be merged and the offset of the vertex on that cut-border where the merge is to be performed.

As is the case with M operations, the same codeword is used for S and M’ and an M’-table is stored

to distinguish them. This table includes the corresponding stack index and vertex offset of each M’,

as well as the offsets of M’ operations in the coded stream. In general, since the number of holes

and handles is small compared to the total number of triangles of a mesh, the overall impact of M-

and M’-tables on the coding efficiency is very small.

If one compares Edgebreaker to Triangle Mesh Compression, the latter can provide much higher

compression for regular or semi-regular meshes than the former. Nevertheless, Edgebreaker has

a guaranteed worst case behavior that is linear in the number of triangles. In fact, Edgebreaker

provides a connectivity rate between 1.7 and 2 bits per triangle, with an absolute worst case of 2 bits

3.4. Coding of polygonal meshes 57

(3 bits if the codewords are badly chosen). On the other hand, Triangle Mesh Compression provides

a compressed rate between 0.5 and 1 bit per triangle in general, but can take up to in excess of 2 bits

per triangle for badly behaved meshes, with no guaranteed upper-bound. In addition, Edgebreaker’s

algorithm allows for a simpler implementation.

In [57] an alternative coding of the CLERS string is proposed that yields a worst case rate of

1.83 bits per triangle for meshes homeomorphic to a sphere (or equivalently 3.67 bits per vertex).

The scheme uses three sets of alternative prefix codes, somewhat similar to the original ones above.

The authors prove that, for an arbitrary mesh homeomorphic to a sphere, at least one of the three

sets of prefix codes has a rate that does not exceed 3.67 bits per vertex. It suffices then to select

the appropriate set for the mesh being coded and to include a 2 bit code signaling the choice at the

beginning. The authors, however, do not provide insight as to which set is appropriate for which

type of mesh and a priori the appropriate set can only be selected after constructing the CLERS

string. They use the same methods as the original Edgebreaker technique for encoding holes and

handles. For this kind of meshes the coding cost becomes 3.67(V + 2G) + 0.83B, where B is the

number of boundary edges, plus the cost of the M- and M’-tables.

With respect to Tutte’s bound of 3.245 bits per vertex, the worst case coded rate of this improved

coding scheme is fairly close (∼ +13%). This indicates that the algorithm is fairly close to the best

possible one from a worst case perspective. However, this also hints to the fact that the encoding is

not capable of compressing typically occurring meshes in a highly efficient manner.

3.4.6 Edgebreaker derivatives

The original Edgebreaker decoding algorithm exhibits an asymptotic non-linear time complexity

due to the look-ahead procedure that is used to handle sub-sequences generated by S operations.

Rossignac and Szymczak [91] propose a new decoding procedure, named Wrap&Zip, that exhibits lin-

ear time complexity as well as more efficient binary encodings of the CLERS string. The Wrap&Zip

decoding algorithm starts by decoding the CLERS string by assigning a new temporary third vertex

to the triangles decoded by L, E, R and S operations, instead of immediately identifying which of the

vertices of the cut-border is this third vertex. For C operations this third vertex is unique, as is not

on the cut-border, and a final label can be immediately assigned to it. The use of these temporary

vertices avoids the look-ahead procedure to deal with the S operations. This is the wrapping step. It

yields a simply connected polygon, very much like the triangle spanning tree and marching pattern

in Topological Surgery. During wrapping, each boundary edge of the simply connected polygon is

assigned an orientation that depends on the operation that generated it. The zipping step consists

in stitching the pairs of boundary edges that are incident to a common vertex and that are both

oriented away from it. This has the effect of merging a temporary vertex with its final label. Only

L and E operations can introduce edges that start zipping. While L operations generate only one

zip, E operations start recursive zipping. In [91] it is proved that the number of zip operations

equals the number of edges in the vertex spanning graph, V − 1. Hence, Wrap&Zip decoding has

linear time complexity. As such, this algorithm can only deal with simple meshes. [91] also proposes

extensions for meshes with holes and handles. Handles are dealt with in a way analogous to Topo-

logical Surgery, with two jump-edges per handle (in [91] they are called glue-edges). Triangles with

jump edges are coded by S∗ operations, along with the index of the edge to which their left edge,

the jump-edge, should be glued. Holes are dealt with S’ operations, which are analogous to the M

operations of Edgebreaker. As in Edgebreaker, the S∗ and S’ symbols are coded as S, and S∗- and

S’-tables are used to distinguish among them. An alternative but similar decompression algorithm,

named Zip&Wrap, is proposed in [90] along with a very simple implementation of the Edgebreaker

compression algorithm. The extensions for handling meshes with handles are also presented in the

58 Chapter 3. 3D model coding

subsequent papers [67, 92], along with an alternative explanation of Edgebreaker.

Rossignac and Szymczak [91] also propose alternative binary encodings that are, in general, more

efficient than those previously reported, but that no longer guarantee an upper bound of 2 bits per

triangle. The first proposed scheme codes CC, CS and CR pairs as single symbols (remember that

CL and CE pairs cannot occur), in addition to isolated R, E, S and L operations. The codewords

for these symbols are prefix codes of 2 or 4 bits. This scheme achieves, in general, rates between

1.3 and 1.6 bits per triangle. The other proposed scheme breaks the CLERS string into words by

introducing spaces after each non-C symbol that is followed by a C. The generated words are then

Huffman coded, and the corresponding Huffman table included as part of the coded mesh. This

scheme is also briefly mentioned in the original Edgebreaker paper [89]. Using such a technique they

obtain coded rates of 0.9 bits per triangle, including the Huffman table.

More recently another decoding algorithm for Edgebreaker has been proposed named Spirale

Reversi [44]. This algorithm works by decoding the CLERS string in reverse order, and reversing

the meaning of each operation. In this way no particular procedure is required to handle the split

generated by the S operation, avoiding Edgebreaker’s look-ahead and Wrap&Zip’s zipping. In this

reversed decoding a C removes a vertex from the cut-border, while L and R add new vertices to

the cut-border. An E operation introduces a new cut-border with three edges and the previous

cut-border is pushed to a stack along with its current gate. Finally, the S operation pops the top

cut-border from the stack and merges it with the current one. The two cut-borders are merged at

the end and start vertices of their gates, respectively. As decoded vertices are sometimes merged,

temporary dummy labels are assigned to the vertices introduced by some operations. For meshes

with a single boundary Spirale Reversi does not need to compute the length of the boundary by

scanning the CLERS string, unlike Edgebreaker and Wrap&Zip, as the boundary is simply the

cut-border after the decoding of the last operation of the reversed CLERS string. The coding of

additional holes is done in the same way as in Edgebreaker with an M operation. Reverse decoding of

M is performed in reverse by merging two of the vertices of the cut-border and splitting the current

cut-border, where one of the two halves becomes the hole’s boundary. Handles are coded in the same

way as in Edgebreaker with an M’ operation, except that the counterclockwise offset from the gate

to the common vertex is coded in addition to the counterclockwise offset from the common vertex to

the gate. The inverse M’ operation splits the current cut-border in two by merging the two vertices

given by the offsets and inserts this new cut-border in the stack at the position given by the index

coded with M’. Having both offsets allows Spirale Reversi to avoid scanning the reversed CLERS

string to deduce the length of the resulting new cut-border after the reverse merge. The reverse

decoding of the operations involves only fixed time procedures, leading to linear time complexity.

The only exception is the M’ operation whose decoding requires an O(n) procedure. However, the

number of M’ operations is upper bounded by the genus of the mesh, which is typically very low

compared to the number of triangles. Hence, the impact of these operations in the overall time

complexity is negligible. The binary coding of the reversed CLERS string bears approximatively the

same cost as the non reversed one, as its entropy rate cannot be modified by the reversing process.

A more efficient compression of the CLERS string has been studied in [103] that is tailored for

mostly regular meshes. The binary codes previously presented always guarantee a worst case rate of

2 bits per triangle or less. However, they do not exploit the redundancy inherent in mostly regular

meshes and achieve compressed rates considerably larger than other techniques, such as Triangle

Mesh Compression, on mostly regular meshes. A well known consequence of Euler’s formula is that

the average vertex valences in simple triangular meshes is six. In practice, typical meshes have a

large proportion of valence six vertices, typically in the order of 75% or more for large meshes. In

[103], Szymczak et al. propose a compression scheme for the CLERS string that achieves 0.811 bits

3.4. Coding of polygonal meshes 59

per triangle for large regular meshes (i.e., meshes of infinite size in which the proportion of valence six

vertices tends to 100%), although it gives up the tight worst case rate. Besides the compression step

they use the standard Edgebreaker compression algorithm and the Spirale Reversi decompression

algorithm. The CLERS string is coded in three parts. For the first part the algorithm predicts

if the next operation to be decoded is a C, and a hit/miss binary string is coded that corrects

any mispredictions. The predictor is based on the observation that a C operation decodes the last

incident triangle on the starting vertex of the gate. Hence, the next operation is predicted as C iff

the number of already decoded triangles incident on the starting vertex of the gate is five, since the

expected final valence is six. For a mesh with a proportion of valence six vertices tending to one, the

entropy of this hit/miss sequence tends to zero. The second part classifies these operations into two

groups: C, L or S and E or R. A binary sequence, called CLS/ER, distinguishes between the two

groups. With the aid of the hit/miss sequence for C this sequence can be coded as a binary variable

with an entropy of 0.311 bits per triangle, as proved in [103]. The third part distinguishes between

the L and S of the CLS group or the E and R of the ER group and codes this information with

another binary sequence, called LS/ER. Note that the C of the CLS group are already identified by

the hit/miss sequence. Since half the operations in the CLERS string are C the LS/ER sequence

has an entropy of at most 0.5 bits per triangle. The total entropy of this CLERS encoding is thus

0.811 bits per triangle, for large regular meshes. Given that arithmetic coding yields a rate that

approaches the entropy this encoding is realizable. However, no practical realization is provided in

[103].

Inspired by the ideas behind the above compression scheme, Szymczak proposes an efficient

practical compression of the CLERS string in [101, 102]. The compression procedure relies on

context based arithmetic coding. The context for encoding an operation is 5d+ nS , where d is the

degree of the starting point of the gate and nS is the index of the previously coded operation in

the set {C,L,E,R,S} (i.e., the ID of the operation). Remember that the CLERS string is coded

backward since the Spirale Reversi decompression algorithm is used. The reported compressed rates

vary between 0.6 and 1.2 bits per triangle, depending on the mesh. These rates are very close to

the entropy of the vertex valence distribution for the meshes tested, which in some way hints at the

optimality of the proposed scheme.

3.4.7 Edgebreaker for polygonal meshes

The above incarnations of Edgebreaker only handle triangular meshes. Although every polygonal

mesh can be transformed into a triangular mesh without geometric distortion, it is often desirable

to preserve the original polygonal form. Furthermore, it is more efficient to encode the polygonal

mesh than an arbitrary triangulated version of it.

To this end, King et al. [58] extend the original Edgebreaker algorithm to handle pure quadri-

lateral meshes, or Q-meshes, and mixed quadrilateral and triangular meshes, or QT-meshes. Con-

ceptually, the proposed algorithm encodes quads by splitting them into two triangles through one of

their diagonals. The split, however, is always performed along the diagonal that makes the coding

operations for both triangles adjacent in the CLERS string. This is ensured by always using the

diagonal to the left of the gate. A quad can thus be coded as a pair of Edgebreaker operators.

At the decoder it is known that each consecutive pair of decoded triangles must be merged into a

quad. In order to derive an efficient encoding of such a CLERS string it is necessary to determine

which pair of operators are possible. For a triangle there are five possible combinations of visited

and not yet visited vertices and edges when it is to be attached at the gate. These five possibilities

correspond to the five Edgebreaker codes C, L, E, R and S. As explained in [58], the number of such

combinations for an n-gon (i.e., polygon of n sides) is given by the Fibonacci number F(2n−1). For

60 Chapter 3. 3D model coding

a quadrilateral the number of combinations is thus 13. Hence, only 13 pairs of Edgebreaker opera-

tors are possible for quads, among the total of 23 that are possible in an arbitrary triangular mesh.

Using a technique analogous to that of [57], namely that the best among four possible prefix codes

is chosen to code a mesh, they achieve a worst case coded rate of 2.67 bits per vertex (equivalently

2.67 bits per quad) for any simple Q-mesh with no valence two vertices∗. If valence two vertices

are allowed, the worst case jumps to 3.07 bits per vertex. These results show that it is indeed more

efficient to encode Q-meshes as such, instead of coding an arbitrary triangulation of them. In fact,

the worst case values above are well below the absolute minimum worst case established by Tutte

of 3.245 bits per vertex for triangular meshes. The authors also prove that the absolute minimum

worst case rate for a Q-mesh cannot be below 2.24 bits per vertex. The achieved worst case rates are

therefore no more than 19% and 37% larger than the unknown absolute minimum, which is fairly

close to optimal but still leaves room for improvement.

For the encoding of QT-meshes the problem of distinguishing between quads and triangles arises.

Triangles use single labels, while quads use label pairs. King et al. solve this problem, by introducing

a sixth label, T, that precedes the label of a triangle. Hence, triangles are coded as TC, TL, TE, TR

or TS label pairs. Typically, QT-meshes contain a large proportion of quads, with few triangles. For

such meshes, the proposed technique is most effective, since the additional overhead is introduced

only for triangles. An extension to arbitrary polygonal meshes is also proposed. The same rule

that is used to split quads can also be used to split arbitrary polygons into triangles. An extra bit

is encoded with each label to signal if the triangle is to be merged to the next one or not. Note

however, that R and E triangles do not require the extra bit, as they can only occur at the end of

a polygon, if valence two vertices are not allowed. The worst case cost of this encoding is 5 bits per

vertex using the CLERS encoding of [57].

The experimental results show that the prefix codes yield compressed rates of 1.3 and 2 bits per

vertex for Q-meshes, depending on their regularity. These results are compared to the conditional

entropy coding of the CLERS labels with a 1 and 3 labels of memory (i.e., context) of random

triangulations of the Q-meshes. The results show that the prefix codes consistently outperform both

entropy coding schemes for random triangulations, which confirms the theoretical results outlined

above. The authors also experiment applying the same entropy coding to the labels of Q- and QT-

meshes, instead of using the prefix codes. For Q-meshes the encoding with a 1 label memory yields

results slightly inferior to the prefix codes. However, a 3 label memory greatly improves the coded

rate, achieving between 0.25 and 0.85 bits per vertex, which is several times better what can be

achieved with random triangulations. For QT-meshes, the encoding with a 1 label memory yields

considerably inferior results than random triangulations (2.5∼4.1 vs. 2.4∼2.5 bits per vertex). This

is due to the overhead incurred in signaling quads vs. triangles. However, a 3 label memory is

capable to capture the label interdependencies and a rate between 0.8 and 1.1 bits per vertex is

achieved, compared to 1.9 to 2.2 bits per vertex for random triangulations using the same entropy

coding.

Another face based algorithm for polygonal meshes is proposed in [60]. While not exactly an

Edgebreaker derivative, this algorithm reduces to Edgebreaker for triangular meshes. The key

observation, also made in the work above, is that an n-gon might interact with the gate and cut-

border in a finite number of ways, namely Pn. They derive the recursive relation Pn = 3Pn−1−Pn−2,

where P3 = 5 (triangle) and P4 = 13 (quad). As previously mentioned, Pn also verifies Pn =

F(2n − 1). The authors describe a way to obtain the index, between 0 and Pn − 1, describing the

interaction of the next polygon, as well as a way to derive back the interaction from the index. The

encoding algorithm thus proceeds by writing the degree (i.e., number of sides) of the next polygon

∗Valence two vertices are rare in practice and undesirable in many applications.

3.4. Coding of polygonal meshes 61

and its interaction index to the stream. The gate and cut-border are updated in a way equivalent

to Edgebreaker. They propose prefix codes for Q- and QT-meshes which achieve a worst case of 3.5

and 4 bits per face, respectively. The experimental results achieve rates between 2.2 and 3.4 bits

per vertex, depending on the mesh. The theoretical and practical results are inferior than those

achieved by the Edgebreaker extension above. Nevertheless, the algorithms are equivalent and only

differ in the binary encoding, which happens to be less effective in this case.

3.4.8 Triangle Mesh Compression derivatives

From the review above, it is clear that the best compressed connectivity rates for typical meshes are

obtained by Triangle Mesh Compression. In fact, Triangle Mesh Compression has long be considered

as the state of the art in connectivity and geometry coding. For a few years no work was published

that improved on its results.

Somewhat recently, Alliez and Desbrun [2] have analyzed Triangle Mesh Compression’s bottle-

necks and improved its connectivity coding results, in particular for non-regular meshes. Their

analysis shows that the encoding of split commands and their associated offsets seriously hampers

the coded rate for non-regular meshes, where the number of split commands is not negligible. The

split commands arise whenever the cut-border closes a cavity and becomes self-intersecting. This

often occurs as the cut-border grows around a dense area (i.e. with many triangles), as shown in

Figure 3.11 and is due to the simple order in which subsequent pivots are chosen (i.e., next one

in active list). As suggested in the middle of Figure 3.11 selecting a vertex in the interior of the

cavity as the next pivot would decrease the chance of closing the cavity. In [2] an adaptive pivot

selection is proposed to achieve this goal. When the pivot becomes full, the next pivot is chosen as

the vertex with the fewest free edges in the active list. If more than one vertex matches this rule,

the average number of free edges of a vertex and its two neighbors in the active list is considered. If

there is still a non-unique solution, an average with the four neighbors is considered and so on until

there is a unique selection. This criteria often results in selecting vertices inside the cavities. For

irregular coarse meshes the authors report a 70% decrease in the number of splits. The other source

area
dense

area
dense

area
dense

split

Figure 3.11: Cause for splits in the original Triangle Mesh Compression algorithm.

of decreased compression efficiency is the encoding of the split offsets, which are often large. Alliez

and Desbrun propose to encode the offset after sorting the active list’s vertices in order of increasing

Euclidean distance to the pivot. Using this technique the magnitude of the offset is drastically

reduced and often becomes zero. However, this sorting requires that the geometry be encoded inter-

leaved with the connectivity, which might be undesirable in some applications. In such a case, they

propose to use the same offset as in Triangle Mesh Compression, but with a sign. This effectively

reduces the magnitude of the offsets. The authors also propose an alternative way to handle holes.

Instead of adding one dummy vertex to each hole, they add a single ghost vertex that is connected

to each boundary vertex. The valence of the ghost vertex is coded at the beginning and a special

62 Chapter 3. 3D model coding

code is inserted each time the ghost vertex is encountered, instead of the add command. Since the

ghost vertex is probably non-manifold it is never chosen as a pivot. With some other minor mod-

ifications of the decoding algorithm holes are easily and efficiently handled. Using this technique

the compressed rate for meshes with a large number of holes is not largely affected. Finally, they

use an arithmetic coder instead of the Huffman and run-length coding. The experimental results

show that these modifications of Triangle Mesh Compression always increase the compressed rate

and particularly so for highly irregular meshes. The rate is reduced by 10% in average and up to

20% in some cases.

Alliez and Desbrun [2] also provide a theoretical study of valence based coding. They prove that

the highest possible first order entropy of the vertex valence distribution, subject to the constraint

of Euler’s formula, is 3.245 bits per vertex. This is exactly the same as Tutte’s bound. Hence, this

proves that valence based coding is optimal, in the worst case sense, provided that the number of

splits is negligible. Furthermore, they verify that the zero order entropy of the valence distribution

accurately predicts the coded bitrate, within 2%.

More recently Khodakovsky et al. [55] have extended valence based coding to polygonal meshes.

The entropies of the vertex graph and its dual, the face graph, are obviously the same as the

information content does not change. Based on this remark, the authors propose that an optimal

polygon mesh coder should be dual. Following this proposition, they extend the valence based

scheme by coding the degree of a face (i.e., its number of sides), each time the vertices of a not

yet coded face are to be processed. Each time a new face is encountered, all its free vertices are

coded and added to the active list. Apart from these modifications, the algorithm is basically the

same as that of Triangle Mesh Compression. For the pivot selection they use the same heuristics

as Alliez and Desbrun above. The face degrees and vertex valences are coded to separate streams.

In the case of a triangular mesh the entropy of the face degrees, or of the vertex valences in the

dual graph, is zero and thus the corresponding stream can be coded in virtually no space. For the

entropy coding the authors use a context based arithmetic coder. The contexts are derived from

the degree of the neighboring faces and vertices. The coded rates for polygonal meshes is about

the same as the best results for the polygonal version of Edgebreaker [58]. For triangular meshes,

regular and irregular, the proposed technique slightly outperforms the scheme of Alliez and Desbrun

above. The advantage over other methods is that the same coder is capable of coding arbitrary

polygonal meshes and yet it achieves code rates as good as, or even better than, the best coders

tailored specifically to triangular or quadrilateral meshes. The authors also theoretically derive the

worst case rate as a function of the ratio r = F/V (r = 2 and r = 1 for triangular and quadrilateral

meshes, respectively), under the assumption of a negligible number of splits. The maximum of this

function occurs for quadrilateral meshes, r = 1, leading to a worst-case rate of 2 bits per edge. This

coincides with the minimum number of bits necessary to encode the edges of an arbitrary planar

graph as found by Tutte [110]. Hence, this proves that this dual coding approach is optimal, in a

worst case sense, for the whole set of possible meshes. Note that this does not preclude the fact that

more efficient connectivity encodings can be found for a given corpus of meshes. For the triangular

mesh case, r = 2, the upper bound becomes 3.245 bits per vertex, as is the case for valence based

coding of triangular meshes. The authors also point out, based on the duality remark, that the

coded rate should be measured in bits per edge, instead of bits per vertex or face, as the number of

edges is the only invariant quantity under duality.

A very similar, independently developed, algorithm has also been recently proposed by Isenburg

[41]. Triangle Mesh Compression is extended in the same way as above to handle polygon meshes

and context based arithmetic coding is also used for entropy coding. The context formation is,

however, a little different. The context for face degrees is deduced from the average valence of the

3.4. Coding of polygonal meshes 63

known incident vertices. Following the duality principle, the context for vertex valences is deduced

from the degree of the face for which it is being added. The search for the next pivot is also modified.

In fact, the selection algorithm proposed by Alliez and Desbrun [2] explained above is an expensive

operation as it requires an extensive search on the active list. Isenburg proposes instead to use the

first vertex with the lowest number of free edges around the active list in counterclockwise order.

Furthermore, this search is used only if the lowest number of free edges is 0 or 1, otherwise the

next vertex in the active list becomes the pivot. Pointers to the potential next pivot vertices can be

rather easily maintained with a low impact on the time complexity of the algorithm. The results

reported are, in general, slightly better than those of Khodakovsky et al. above. The authors also

propose a simple mean of dealing with non-manifold meshes. Each non-manifold vertex is replicated

so as to obtain a manifold mesh. Each time a new vertex is coded through an add command, an

arithmetically coded binary flag is coded signaling if it is a duplicate of a previously coded vertex

or not. If it is a duplicate the index of the duplicated vertex is encoded in log2 n bits, where n

is the number of vertices coded so far. The decoder can thus “un-replicate” the relevant vertices

and recover the original non-manifold connectivity. Since the number of non-manifold vertices is

typically small, this simple strategy only marginally affects the coded bitrate.

In a further paper, Isenburg and Alliez [42] complement the above connectivity coding scheme

with geometry coding. It uses the parallelogram predictor from Triangle Mesh Compression in way

tailored to polygonal meshes. The author observes that polygons, as found in typical meshes, are

often quasi-planar and convex. Conversely, adjacent polygons often exhibit a crease angle between

them. It is therefore more convenient to predict the position of a new vertex from other ones of the

same polygon than from neighboring polygons. Hence, the parallelogram rule should be applied,

as much as possible, within polygons instead of across polygons. The traversal order of [41] allows

the effective application of this heuristic and more than 80% of the vertices are within predicted,

in average. The prediction residuals are coded with a context adaptive arithmetic coder. As the

distribution of within prediction errors is much more skewed than that of across predictions, different

contexts are used for the two. This avoids “polluting” the skewed distribution with large values

that would significantly decrease the compression performance. Using this extension to polygonal

meshes, the coded rate is reduced by more than 20% for quantizations between 8 and 12 bits per

coordinate. The reported coded rates are 11 bits per vertex on average, ranging from 7.3 to 15.4, for

a 10 bit quantization. For triangular meshes, the rates are very similar to those of Triangle Mesh

Compression, showing that the majority of the benefit comes from the large percentage of within

predictions and not solely from the use of an arithmetic coder.

3.4.9 Angle analyzer

Very recently another, more efficient, encoding algorithm has been proposed by Lee et al. [64], called

Angle-Analyzer. The proposed algorithm is capable of coding the connectivity and geometry of T-,

Q- and QT-meshes. The authors claim that handling higher degree polygons as combinations of

triangles and quads should not significantly affect the bitrate as polygonal models typically contain

few such faces. The connectivity coding attempts to mix the simplicity of face based coding schemes

such as Edgebreaker and Cut-Border Machine (see Section 3.4.10) with the efficiency of valence based

coding. They do this by redefining the five basic Edgebreaker symbols and exploiting many of the

valence based improvements presented in [2]. The algorithm always operates on the active gate,

which is an oriented edge. Of the two faces incident on the gate, the one on its left, or back face, was

previously coded, while the one on its right, or front face, is the next face to be coded. The vertices

of the front face which are not part of the gate are called the front vertices. The gates are stored in

ordered lists and a stack of such lists is maintained. At initialization time an arbitrary face is chosen

64 Chapter 3. 3D model coding

as the seed face. Its edges are stored as gates in the ordered list at the top of the stack. At each

coding step a gate in the list at the top of the stack is selected as active and processed. The symbol

specifying how to stitch the front face is coded and the gates incident on the front face replaced by

the other edges of the front face. Each time a new front vertex is encountered its geometry is coded.

Whenever a gate list becomes empty it is popped from the stack. When the stack is empty all the

polygons of the connected component have been coded. As in the other region growing algorithms

the gate lists define a cut-border, inside which all faces have been coded.

We refer to already coded and not yet coded vertices as visited and free vertices, respectively.

The symbols for triangles are as shown in Figure 3.12 and are as follows. If the front vertex is

free a C (create) is output. If the, visited, front vertex can be found by turning clockwise around

v1 or counterclockwise around v0 a CW (mesh clockwise) or CCW (mesh counterclockwise) is output,

respectively. If the front face is actually a hole an S (skip) is output. Otherwise the, visited, front

vertex is elsewhere on a gate list and a J (join) is coded along with the offset of the front vertex. The

offset is coded in the same way as in [2] above, except that all gate lists in the stack are considered

instead of just the one at the top. This avoids the need of a merge symbol. In fact, if the front

vertex is in the list at the top of the stack a split of that list should be performed. Conversely, if

the front vertex is on another list down the stack that list should be merged with the one at the

top. The symbols for quadrilaterals are shown in Figure 3.13 and are as follows. If both of the front

vertices are free a C2 (create 2 vertices) is output. If the left front vertex is visited and is found by

turning clockwise around v1 and the right one is free a CR is output. For the symmetric case a CL is

output. If both front vertices are visited a Mesh symbol is output. If both front vertices are visited,

the left one can be found by turning clockwise around v1 and the right one by turning clockwise

around the left one a DCW (mesh double-clockwise) is output. For the symmetric case a DCCW (mesh

double-counterclockwise) is output. The case where the front face is a hole is handled by the same

S symbol as for triangles. The remaining case is when one or both of the front vertices are visited

and can be found elsewhere in the gate lists. If this occurs a JQ (join quad) is output along with two

offset values calculated as for triangles. As shown in Figure 3.13, three possible configurations can

arise for a JQ: (a) both front vertices are visited and cannot be found by turning around the active

gate’s vertices; (b) one front vertex is free and the other visited but cannot be found by turning

around an active gate vertex; and (c) both front vertices are visited and one of them can be found by

turning around a vertex of the active gate. If one the front vertices is visited a −1 offset is coded for

it. These three possible configurations do not require different symbols, as the decoder can deduce

which one happened by local exploration. Whether to split or merge gate lists is decided in the

same way as for triangles. Since a different set of codes is used for triangles and quadrilaterals, no

extension is required to handled QT-meshes (the set of symbols to use at each coding step depends

on the degree of the front face). Worth noting is also the fact that the symbols above correctly

handle meshes with holes and handles and that no extensions are required.

Inspired by the findings of [2], the gate that forms the smallest angle with the following gate

along the cut-border is always selected as the active gate. This choice helps in minimizing the

number of J and JQ symbols required and proves to be much more effective than the heuristic used

in [2] in achieving this goal. For triangle and quadrilateral meshes the symbol distribution is largely

dominated by Cs and CRs, respectively. The symbols and offsets are thus efficiently compressed

through an arithmetic coder. The connectivity code generated by Angle-Analyzer is extremely

efficient. The reported connectivity bitrates improve on those of Triangle Mesh Compression and

the valence based coding of [2] by 38% and 35% in average, respectively. For uniform meshes, the

improvement of Angle-Analyzer exceeds 50%.

For geometry compression two methods are proposed. The first one uses the popular parallelo-

3.4. Coding of polygonal meshes 65

CWC CCW

S J

v01v

v0

1v v0

1v

1v v0

1v

v0

Figure 3.12: Set of symbols used to code triangles. The thick solid line is the current active gate

(v0, v1). Dashed lines are gates to be inserted. Black, white and gray dots are the gate’s vertices,

new front vertices and previously coded front vertices, respectively.

C2 CR CL

DCCWDCWMesh

JQ JQ JQ

v01v v01v v01v

v01v v01v v01v

v01v v01v v01v

Figure 3.13: Set of symbols used to code quadrilaterals. The thick solid line is the current active

gate (v0, v1). Dashed lines are gates to be inserted. Black, white and gray dots are the gate’s

vertices, new front vertices and previously coded front vertices, respectively. The last row shows the

three possible configurations that can be coded with a JQ symbol.

66 Chapter 3. 3D model coding

gram predictor previously described. However, instead of first quantizing the global coordinates, the

prediction errors are quantized in a coordinate system local to each vertex. To avoid drift buildup

the standard DPCM feedback loop is used (see Section 3.3.3). As has been proved in [56] (see

Section 3.4.12) a local coordinate system allows a better encoding. The active gate is chosen as the

local x axis, the back-face normal as the −z axis and the cross product of the z and x directions

as the y axis. The second geometry coding method uses three angles. The two angles formed be-

tween the sides of the “chamfered parallelogram” at the active gate’s vertices and the dihedral angle

between the front and back faces. The angle values are uniformly quantized and compressed with

an arithmetic coder. No prediction is used for this second method. The coded bitrates achieved by

both methods are very similar, depending on the mesh one or the other might be slightly better.

Compared against Triangle Mesh Compression these methods improve the coded bitrate by 19% on

average, for comparable MSE distortions (as defined in Section 3.3.4). Furthermore, the angle based

geometry coder gives smoother results when coarse quantization is used, leading to more pleasant

results.

Although the proposed gate selection algorithm makes for a very efficient connectivity code, its

implementation can, in our opinion, present portability problems that the authors fail to mention.

In fact, calculating the angle, or its cosine, between successive gates in the gate list involves floating

point computations. Furthermore, these computations depend on the decoded vertex positions,

which also involve floating point arithmetic. However, it is of utmost importance that the decoder

is able to exactly reproduce the encoder’s computations leading to the gate selection. If this is

not ensured, the decoder could choose a different gate in cases where the candidate angles are only

slightly dissimilar. Such a mis-selection would lead to a totally corrupted decoded connectivity.

Unfortunately it is almost impossible to ensure identical computations at encoder and decoder,

due to potentially different Angle-Analyzer implementations, potentially different implementations

of mathematical routines in the platform’s library and most importantly due to slightly different

floating-point arithmetic implementations across CPUs. Because of this, it seems to us that the

angle based gate selection heuristic, while very interesting from a theoretical point of view, is not

robust enough for a practical use. The authors propose, nevertheless, another heuristic analogous

to that of [2]: chose the next gate based on the number of already decoded polygons around the

first vertex of the gate (i.e., v0). While robust, this heuristic is less efficient in avoiding Js and JQs

and leads to an increased connectivity bitrate.

3.4.10 Other methods

Although the review of polygonal mesh coding above is fairly exhaustive the field is very rich and

thus many interesting methods have been omitted from the above discussion. In this section we

provide a brief overview of other popular methods.

Independently of Edgebreaker [89], Gumhold and Strasser [36] proposed a very similar face based

coding approach, called Cut-Border Machine. It uses five operators: new vertex, connect backward,

connect forward, split cut-border and border. The first three are the same as the C, L and R operators

of Edgebreaker, respectively. The fourth corresponds to the S operator, except that the split index

is coded (as in Triangle Mesh Compression). Since the Cut-Border Machine encodes the split offset

no E operator is required. On the other hand, the border operator is introduced to explicitly handle

the case where the gate is a boundary edge. Hence, Edgebreaker’s M operation is not required.

For non-zero genus meshes the Cut-Border Machine uses the cut-border union operator which is the

same as Edgebreaker’s M’, with the same associated index and offset. Additionally, this algorithm

proposes a rather efficient way to handle non-orientable meshes, requiring only one bit per split

cut-border and merge cut-border operators. The Cut-Border Machine was originally developed

3.4. Coding of polygonal meshes 67

for real-time compression and rendering, in the same line as Deering’s Geometry Compression. It

was later refined by Gumhold [35] for maximum compression, at the expense of increased time

complexity. The refined version uses a context based arithmetic coder, instead of prefix codes, and

an alternative way of handling holes. The achieved connectivity rates range between 1.2 to 2.7 bits

per vertex for typical meshes and can be as low as 0.3 for some regular meshes. Although it this is

not as efficient as Triangle Mesh Compression results are within 36% in average, but with a more

efficient implementation in terms of time complexity.

A third class of region growing connectivity coding approaches that we have not mentioned is

that of edge based coding. This class of methods was first introduced by Isenburg’s Triangle Fixer

algorithm [40]. The basic idea is that the coded region is grown by coding an additional triangle and

vertex with a T operator and additional codes are used to stitch the edges of adjacent triangles. As

in Edgebreaker and Cut-Border Machine a cut-border is maintained and all coding operations are

performed on the gate. A new triangle incident on the gate, and its opposite vertex, are coded with

a T operator. The L and R operators stitch the gate with the preceding and following edges in the

cut-border, respectively. The S operator stitches the gate with some other edge of the cut-border,

splitting it in two. When the cut-border becomes a digon an E operator is encoded terminating

the processing of the current cut-border. Note that since the E operator is used, no offset need be

encoded for S. Whenever the gate is to be stitched to an edge in another cut-border an M operator

is coded, together with the stack index and two offsets, as in Spirale Reversi (see Section 3.4.6).

Holes are explicitely handled by coding an H operator, along with the hole’s boundary length,

whenever the gate is a boundary edge. Decoding is performed in reverse order, in an analogous way

to Spirale Reversi. The symbols are coded with an order-3 adaptive arithmetic coder. The reported

connectivity rates range between 1.43 and 3 bits per vertex, with as low as 0.77 bits per vertex for

some regular meshes. In the same paper the author proposes an extended version, Triangle Strip

Compression, which is able to efficiently code the precomputed strips of the mesh along with the

connectivity. This has the advantage that efficient rendering of the decoded model is straightforward,

without requiring the re-computation of efficient strips (which is known to be a complex problem).

The Triangle Fixer connectivity coder was later extended by Isenburg and Snoeyink [43] to polygonal

meshes. Given its edge based nature, this is achieved by simply replacing the T operator with a Fn
operator, where n is the degree of the face being added.

On the geometry coding front, the parallelogram predictor introduced by Touma and Gotsman

in Triangle Mesh Compression remains one of the most effective and simpler predictors proposed.

While very effective in smooth parts of a model, it performs poorly across sharp creases like often

found in CAD models. However, a geometry coder for triangle meshes whose traversal order is driven

uniquely by the connectivity cannot possibly know the presence of creases. Kronrod and Gotsman

[59] propose to code the connectivity in a way that optimizes the efficiency of the parallelogram

predictor. For this they construct a weighted graph, where the weights are the prediction errors

across adjacent triangles. Then they build a minimum weight cover tree of this graph. The traversal

order is given by this tree, which minimizes the spread of the prediction error distribution. This

tree, however, is not sufficient to recover the full connectivity. The boundaries of the cover tree form

a set of simply connected polygons that are coded in 2 bits per triangle. While this scheme adversely

affects the coded connectivity rate, this loss is more than made up by the improved geometry coding.

The entropy of the coded models is reduced, in average, by 45% for CAD models and 10% for smooth

models when compared to Triangle Mesh Compression.

Following the widespread use of spectral methods for the lossy coding of images, such as the

DCT in JPEG [77], Kami and Gotsman [54] propose the use of spectral transforms to code mesh

geometry. While spectral transforms, such as the DCT, on regular 2D quadrilateral grids are well

68 Chapter 3. 3D model coding

known they remain largely unexplored on irregular grids as found in polygonal meshes. Kami and

Gotsman partition a mesh and compute a spectral transform based on Laplacian operators. In order

to keep the computation effort reasonable the size of the sub-meshes should be carefully chosen.

Furthermore, all sub-meshes should be of roughly the same size and the number of boundary edges

minimal so as to mitigate as much as possible the“blocking”artifacts introduced by the partitioning.

As is the case in image coding, the high-frequency components of the resulting spectra are less

relevant to the visual quality and can be discarded. For smooth models the reported results are

promising, in that very good quality reconstructions are obtained with rates considerably inferior

to those of Triangle Mesh Compression (between a half and a third). A nice property is that the

coded geometry is progressive, as discarding less high-frequency spectral coefficients improves the

reconstructed quality. For non-smooth models, such as those often used in CAD, the sharp creases

lead to large high-frequency coefficients that create ringing artifacts if discarded. Note that the

mesh connectivity must be available before computing the transform, and therefore connectivity

and geometry compression cannot be interleaved in this case.

3.4.11 Coding of non-manifolds

All the connectivity coding algorithms reviewed above require that the input mesh is 2-manifold.

While this might appear very restrictive at first, 3D surfaces are in general locally planar and thus

the corresponding meshes fulfill this requirement. Nevertheless, non-planarity can often arise at

some points of the surface leading to a non-manifold. As an example, two cubes that are adjacent

by and edge form a non-manifold mesh. The usual approach is to split the non-manifold vertices in

two or more so as to make the surface planar everywhere. An efficient method to do this is given in

[33, 34]. Note that the resulting mesh can have several components. After the conversion, any of the

above connectivity coding algorithms can be applied on the resulting mesh. This transformation

is, however, lossy as the original connectivity cannot be faithfully recovered. Depending on the

application, lossy connectivity coding might be undesirable. Furthermore, if the number of non-

manifold vertices is large the replicated vertex positions will often lead to a significant increase of

the compressed bitrate.

An straightforward way to code the information required to recover the original non-manifold

mesh is to specify the indices of the pairs of replicated vertices. This encoding is however very

costly and requires 2 log2 V
′ bits for each pair of vertices, where V ′ is the number of vertices of the

mesh after conversion to manifold. If this information is coded prior to the geometry, no repeated

encoding of replicated vertex positions is required leading to some bitrate savings. A more efficient,

yet very simple, scheme is used in [41] (see Section 3.4.8) and works as follows. Each time the

connectivity coder encounters a new vertex a binary flag is coded indicating if it is a duplicate of

a previsouly coded vertex. If it is a duplicate, the index of the duplicated vertex is coded in log2 n

bits, where n is the number of vertices coded so far, and no geometry is coded. The binary flag is

arithmetically coded. Although more efficient, this method can incur a significant overhead in large

meshes since the index can be as large as the number of vertices.

Two more sophisticated methods yielding better compression are proposed by Guéziec et al.

[32]. They are proposed as extensions to Topological Surgery [106] (see Section 3.4.3) but are easily

applicable to other connectivity coding schemes. Each non-manifold, or singular, vertex is replicated

using the method of [33, 34]. The set of replicas of a vertex is called a cluster. The first method,

referred to as stack-based, is extremely simple and maintains a list of cluster representatives, which

is initially empty. When a regular vertex is found a NONE command is coded. When the first

representative vertex of a cluster is found a PUSH command is coded and the vertex inserted at the

head of the list. When subsequent representatives of a cluster are found, a GET(i) command is

3.4. Coding of polygonal meshes 69

coded, where i is the index of the cluster in the list. Finally, when the last representative of a cluster

is found, a POP(i) command is coded, instead of GET(i), and the cluster representative is removed

from the list. This code requires one bit for regular vertices, which can be further arithmetically

coded, and two bits for the other commands. In addition, the GET and POP commands require at

most dlog2me extra bits for the index, where m is the number of non-manifold vertices in the original

mesh. Since m is typically much smaller than the total number of vertices, this method incurs an

overhead much lower than the above methods, yet being very simple.

The second method, referred to as variable-length, extends the previous one by exploiting the

fact that adjacent non-manifold edges in the original mesh often form long paths. Derived from

the connectivity coding of the manifold mesh a father-child relationship can be established between

vertices. For Topological Surgery, this relationship is directly derived from the vertex spanning tree

of each component and forms a forest (set of rooted trees). The conversion of paths of non-manifold

edges to a set of paths of manifold edges will often lead to a given number of adjacent vertices that

are clustered together along two, or more, paths of the father-child forest. This relationship can

be thought of as an open zipper. The stack-based approach will independently code each pair of

vertices of this “zipper”. However, a joint encoding would be much more efficient and can be handled

by the so-called stitch operation. A stitch specifies one vertex on each side of the “zipper” and a

length and can be coded by extending the commands of the stack-based approach, other than NONE,

with a length. Many of the GET and POP commands can be replaced by NONE, because the necessary

information is coded by the stitch. A method for constructing efficient stitches from the father-child

relationship is provided.

Using these methods on a set of non-manifold meshes Guéziec et al. [32] report average savings

in excess of 8% when non-manifold connectivity is included on Topological Surgery (quantizing coor-

dinates to 10 bits, colors to 6 bits and normals to 10 bits). Although the non-manifold connectivity

incurs an overhead, it is more than made up by the savings in geometry and property coding. The

stack-based method achieves overhead rates in the range of 3.6 to 10 bits per replica vertex. The

variable-length approach often reduces this figure considerably and can reach down to 0.8 bits per

replica vertex in some cases. The two methods, which use a common syntax, have been adopted by

the MPEG-4 standard [49] as part of the 3D mesh coder.

3.4.12 Progressive methods

In the previous section we have provided an extensive review of single rate mesh coders. In this

section we provide a brief overview of progressive coders for completeness. As previously explained

in Section 3.4 progressive methods start by coding a coarse version of the mesh and subsequently

add more and more vertices until the original mesh is recovered. Most progressive coders obtain the

coarse mesh by topological simplification and replay the inverse of the simplification steps along with

the corresponding vertex displacements to recover the original, fully detailed, mesh. The different

meshes that can be decoded between the coarse and fully detailed ones are referred to as levels of

detail. (LODs).

The first successful such method, Progressive Meshes, was developed by Hoppe [37] one year after

Deering’s Geometry Compression coder. It defines a single simplification operation: edge collapse.

It consists in collapsing an edge by merging its two end vertices v0 and v1 into a new vertex v′0. The

two triangles incident on the collapsed edge are also collapsed. This operation reduces the vertex,

triangle and edge counts by one, two and three, respectively. The inverse operation is the vertex

split. It splits the vertex v′0 back into v0 and v1, recovering the original local topology, by splitting

two of the edges incident on v′0. The edge collapse operations are successively applied to obtain the

coarse base mesh. At each step the edge that minimizes a simplification error will be selected. To

70 Chapter 3. 3D model coding

recover the original mesh from the base one, each vertex split can be coded as the index of v ′0 and

a permutation index to identify the two incident edges to be split. The permutation index requires

5 bits in average∗, leading to a connectivity cost of dlog2 V e + 5 bits per vertex. The positions of

the new vertices are coded as offsets from the split vertex, which are further Huffman coded. For

a 16 bit quantization the geometry coding cost is between 31 and 50 bits per vertex. Compression

of Progressive Meshes is further refined by Hoppe [38]. In this improved version bitrates between

60 and 110 bits per vertex are obtained for models with normals and texture coordinates (using 16

bits for position coordinates, 8 bits for normal coordinates and 16 bits for texture coordinates). A

nice property of Progressive Meshes is its ability to smoothly interpolate between levels of detail.

Since Progressive Meshes codes only one vertex at a time it generates a finely progressive coding.

However, it incurs a considerable bitrate penalty in doing so. Taubin et al. [104] propose a more

efficient method, Progressive Forest Split, that jointly codes multiple vertex split operations at a time,

at the expense of some granularity. The base mesh is encoded using Topological Surgery. At each

subsequent step, the refined mesh is obtained by a forest split operation, instead of a single vertex

split. The forest split operation consists in cutting the mesh along a forest of the vertex graph of

the current mesh, splitting the resulting boundaries apart, filling each of the resulting tree boundary

loops with simply connected polygons, and finally, displacing the new vertices. The forest can be

coded with one bit per edge. The simply connected polygons can be encoded either as in Topological

Surgery or using a fixed length coding of two bits per triangle. As the former might not be efficient

for small polygons, the most compact encoding is selected for each forest split, and signaled with a

one bit. If the forest at each coding step has the maximum possible number of edges, this encoding

leads to about 4 bits per new triangle, which compares very favorably to the dlog2 V e + 5 bits per

vertex of Progressive Meshes. The vertex displacements can be coded as in Progressive Meshes. A

more efficient encoding is, however, achieved by predicting the vertex positions as the output of a

global smoothing algorithm. As the authors report, this can decrease the geometry bitrate by as

much as 20-25%. The results show that this progressive encoding yields connectivity rates that are

only 1.7-2.7 times larger than the single rate results of Topological Surgery. Progressive Forest Split

has been adopted by the MPEG-4 standard [49] for the encoding of LODs.

Another scheme that removes a vertex at a time is proposed by Li and Kuo [65]. The simplifi-

cation step is performed through a vertex decimation method. Each time a vertex is removed, its

1-ring is triangulated (with no additional vertices). The vertex to be removed at each step is simply

selected as the one that introduces the least distortion. The refinement operation is performed by

selecting a region, removing all its interior edges, inserting an interior vertex, and finally, connecting

it to all the vertices of the region. This is encoded as a triangle index, that locates the region in the

mesh, and an index into a table of topological patterns. This table lists the possible neighborhood

patterns after a simplification step. For space reasons it is limited to 231 entries, requiring 8 bit

indices, and is able to handle vertices up to valence 10. Higher valence vertices are avoided as

never being eligible for simplification. In average, this requires log2V + 6 bits per vertex, which is

comparable to Progressive Meshes. The geometry is differentially coded, by predicting a vertex as

the average of its 1-ring. A novel approach is introduced to interleave the geometry and connectiv-

ity information. A uniform deadzone quantizer is employed for embedded quantization, instead of

the more generally used single uniform quantizer. The progressively finer position approximations

are explicitly multiplexed with the progressively finer connectivity to achieve a better progressive

rate-distortion performance. In fact, it would not be efficient to provide a finely quantized vertex

position when only few polygons have been reconstructed. As is the case for Progressive Meshes,

this method provides modest connectivity rates because new vertices are coded one by one.

∗The average vertex valence is 6 and the number of permutations of 2 on 6 is 30.

3.4. Coding of polygonal meshes 71

An important improvement of Progressive Meshes, Compressed Progressive Meshes, is proposed

by Pajarola and Rossignac [76]. It consists on the following modifications. The vertex split op-

erations are coded in batches, instead of one by one, with about 50% of the previously decoded

vertices being split in each batch. For each batch, the split vertices are marked with one flag bit

while traversing the previously decoded vertices, instead of explicitly encoding the indices. Also,

the incident edges to be split are coded as an unordered set, requiring less bits. Inspired by the

Butterfly subdivision scheme (Section 2.5.2), a vertex position is predicted as a linear combination of

the average position of vertices with topological distance 1 (i.e., its 1-ring) and the average position

of vertices with topological distance 2. This leads to two combined equations for each split-vertex

operation. Combined with the knowledge that each split-vertex was produced as the mid-point of

the collapsed edge during simplification, only one prediction error value is required for the two vertex

positions generated by a split-vertex operation. These error values are Huffman coded. Instead of

including the Huffman tables, the variance of the distribution in each batch is coded. The Huffman

tables are derived at the encoder and decoder from the coded variance under an assumption of a

Laplacian probability distribution. The experiments show that the connectivity rate is about 7 bits

per vertex of the final mesh. The comparisons with Progressive Forest Split shows an improvement

of roughly 50% overall (connectivity + geometry) for a lower geometric distortion.

Khodakovsky et al. [56] introduced a more effective compression scheme, called Progressive

Geometry Compression, particularly tailored for highly detailed meshes that exhibits a much better

rate-distortion behavior. Departing from the previous schemes it uses multi-resolution analysis, as

was already applied by [4], and which has been widely applied to image compression. First the

input surface is resampled so as to obtain a semi-regular uniform mesh. This process creates a

base coarse mesh along with a bijective map between the domain of the base mesh and the input

mesh. The base mesh is coded with Triangle Mesh Compression. Then a wavelet transform is

applied on the fine semi-regular mesh that outputs the base mesh and a set of wavelet coefficients.

For regular (i.e., valence 6) vertices the Loop subdivision (see Section 2.5.2) is used as the low-

pass reconstruction filter, which uniquely determines the high-pass filter. For non-regular vertices a

modified Loop subdivision is employed. The forward, or analysis, transform is carried out by solving

a sparse linear system. The inverse transform is performed by applying the Loop subdivision and the

corresponding high-pass filter. As is the case in image coding, the wavelet coefficients exhibit a very

skewed distribution. Furthermore, the wavelet coefficients can be organized in trees that correspond

to regions of the surface. The coefficients toward the root of a tree represent coarser detail, whereas

fine detail is embodied in coefficients closer to the leaves. These trees are efficiently coded using

embedded quantization and the Zerotrees concept pioneered by [95]. Instead of expressing the vector

valued wavelet coefficients in the global coordinate system, a local coordinate system is used that

has the z axis oriented in the surface normal direction. In this way most of the energy of the wavelet

coefficients is captured by the z component. Finally, the zerotree codes are further arithmetically

compressed. The rate-distortion results show reductions of up to 4 times of the MSE error, as

defined in Section 3.3.4, for equivalent bitrate when compared to Compressed Progressive Meshes.

It also provides better compression that the Triangle Mesh Compression and MPEG-4 (based on

Topological Surgery) single rate coders for the same L2 distortion. These greatly improved rate-

distortion behavior is due to the combination of effective coding through wavelets and zerotrees and

the embedded quantization. Note, however, that the original mesh cannot be recovered as there is

an intervening remeshing step. In general this is not a problem, since the remeshing error would be

of the same order as the quantization error. Nevertheless, some applications might require to recover

the connectivity of the original mesh after decompression, in which case this algorithm would not

be suitable.

72 Chapter 3. 3D model coding

An efficient progressive coder with lossless connectivity, has been recently proposed by Alliez and

Desbrun [1]. It uses basically the same simplification as [65], namely vertex decimation coupled with

the efficient valence based coding of [109]. However, it avoids coding the locations of the decimated

vertices by using a deterministic ordering and triangulation of the 1-rings that depends only on

connectivity information available to the decoder. Furthermore, each time a vertex is removed its

valence, or equivalently the degree of the face formed by its 1-ring, is output. The decimation is

applied by layers. In a given layer the maximum number of non-interfering vertices are decimated.

The 1-rings of vertices that can not be decimated are signaled through a skip code. Decimation

layers are interleaved with cleaning layers. The cleaning procedure removes 2 out of 3 triangles

by removing valence-3 vertices, obtaining a semi-regular mesh on which a further decimation layer

can be applied. Predictive coding is used for the geometry, as usual, but the prediction errors are

expressed in a local coordinate system in the same way as in Progressive Geometry Compression.

The predictor is the same as in [65] above. The results show that this compression algorithm is

almost as efficient as that of the best single rate coders, being only 10% worse than those of Triangle

Mesh Compression [109] for connectivity and geometry combined. The reported average connectivity

bitrate is 3.69 bits per vertex, which is also close to that of efficient coders such as Edgebreaker [57].

Although not compared to other methods, the progressive rate-distortion behavior appears to be as

good as that of Progressive Geometry Compression.

3.5 Coding of parametric surfaces

The compression of parametric surfaces, and meshes of such patches, has received relatively little

attention compared to that of polygonal meshes. While many of the techniques reviewed in the last

section can be applied to meshes of parametric patches, very few studies have proposed algorithms

that are specifically tailored for them. In what follows we provide a brief overview of the literature

related to parametric surface compression.

DeVore et al. [16] develop a multiresolution wavelet decomposition of box-splines∗ to express

parametric surfaces. An approximation with a reduced number of coefficients is achieved by se-

lecting only the wavelet coefficients above a given threshold. Reissell [86] proposes an alternative

wavelet decomposition, using interpolating functions instead of box-splines. The selection of wavelet

coefficients is performed in a similar manner, but following a truncated binary tree structure across

sub-bands. A similar wavelet decomposition for surfaces of arbitrary topological type is proposed

by Lounsbery et al. [68] in a manner related to subdivision surfaces. While all these decompo-

sitions explicitly target compression as an application, no rate-distortion analysis or experimental

compression results are provided.

Staadt et al. [97] and Gross et al. [31] propose a B-Spline wavelet decomposition as a generic

framework for the compression of uniformly sampled non-parametric, parametric and implicit lines,

surfaces and volumes. After selection of the relevant wavelet coefficients, progressive lossy coding

is applied using uniform quantization and Huffman coding. The results show, however, that for

parametric surfaces a very low rate-distortion performance is obtained. In fact, a very poor visu-

al quality reconstruction is attained at moderate compression ratios, requiring post-processing to

smooth the reconstructed surface.

In the spirit of Hoppe’s Progressive Meshes [37], Stoddart and Baker [98, 99] propose a pro-

gressive coding of surfaces as quadrilateral meshes of generalized biquadric B-Splines using edge

collapse operations. The use of generalized biquadric B-Splines guarantees a G1 continuous surface.

Unfortunately, no experimental results are provided regarding compression.

∗A multidimensional generalisation of B-Splines.

3.6. Conclusions 73

Another wavelet approach is presented by Malassiotis and Strintzis [71]. They also use box-spline

derived wavelets to obtain a multiresolution decomposition, although the high-pass sub-bands are

not critically sampled. The coding scheme utilizes scalar quantization followed by Huffman coded

DPCM. Experimental results are shown for surfaces fitted to small samples of natural data. Although

no clear rate-distortion result is presented, they report rates ranging from 1.11 to 3.7 bits per vertex

for an unknown quantization.

Very recently, Furukawa and Masuda [25] propose an interesting approach to coding NURBS

surfaces. For each surface the knot vectors and boundary curves are coded first. The boundary

curve control points are coded as the deviation from the straight segment between the start and end

points of the curve. From the boundary curves an approximate surface is generated, using a bicubic

Coons patch. The differences between the control points of this approximate surface and the original

is then coded. The boundary curve data and prediction error of control points is transformed with

the DCT and uniformly quantized. The quantized coefficients are output to a textual file that is

compressed with a general purpose file compressor. The reported compression ratios, with respect

to the original losslessly compressed textual data, vary between 3 and 10 for good visual quality.

Unfortunately the reported results are difficult to interpret as they don’t provide any indication if

the distortion is absolute or relative to the model bounding box size.

Finally, we should mention that MPEG-4’s Animation Framework eXtension (AFX) [9, 50]

includes support for NURBS surfaces, in a way similar to VRML [113]. However, the NURBS data

is coded using the general Binary Format for Scenes (BIFS), which consists on simple DPCM and

arithmetic coding that is used for general data. Unlike for polygonal meshes, MPEG-4 does not

currently include a coder specially designed for NURBS surfaces.

3.6 Conclusions

In the first part of this chapter, two areas of interest to 3D model coding have been reviewed, namely

entropy coding and rate-distortion theory. The principles behind entropy coding were introduced

as well as two widely used realizations: Huffman and arithmetic coding. Huffman coding is com-

putationally efficient but provides limited compression efficiency for low-entropy sources and it is

necessary to resort to blocking to approach the entropy limit. Arithmetic coding, while more com-

putationally demanding, can approach the source entropy arbitrarily close. Multiplier free binary

arithmetic coders, such as the MQ, reduce the computational requirements while incurring almost

no degradation in compression performance. Furthermore, the implementation of higher order mod-

els (i.e., conditional coding) and adaptive variations of entropy coders is straightforward for the

arithmetic coders. This makes arithmetic coding a very flexible and powerful entropy coder, even

if it incurs a higher computational cost when compared to Huffman coding. About rate-distortion

theory it has been seen that for small distortions and IID sources, entropy coded uniform scalar

quantizers are optimal and therefore there is no need to consider more complex scalar quantizers,

such as Lloyd-Max, if entropy coding is allowed. However, its performance falls short by 1.53 dB

from the Shannon lower bound (SLB). In fact, it is necessary to resort to much more complex vector

quantization schemes to approach the SLB further. We have also briefly mentioned some alterna-

tives for coding non-IID sources, namely: vector quantization, decorrelating transforms (e.g., DCT,

DWT) and predictive coding (i.e., DPCM). Finally, we have defined a meaningful distortion for

3D models, based on the Hausdorff distance. Unfortunately, no simple relation exists between the

Hausdorff based distortion and the sample to sample distortion used in the development of the rate-

distortion theory. However, both distortions can be expected to have the same order of magnitude

and thus the findings remain largely applicable, even if not rigorous.

74 Chapter 3. 3D model coding

On the second part of this chapter we have provided a thorough review of the state of the

art in single-rate polygonal mesh coding, followed by a brief review of progressive polygonal mesh

coding and also by a review of the scarce literature available on parametric surface coding. The

coding of a polygonal mesh can be considered in two fairly independent parts: connectivity and

geometry. As we have seen, a canonical coding of connectivity as a labeled graph has a non-linear

cost. However, Tutte’s theoretical study derives an upper bound of 3.245 bits per vertex for an

unlabeled triangular graph, a linear cost. Geometry information is usually coded by applying global

uniform quantization between 8 and 12 bits, higher precisions being typically unnecessary. Early

polygonal mesh compression methods, such as that of Deering [15], were geared toward rendering

and use only lossy connectivity coding achieving modest compression. Lossless connectivity coding

is introduced by Topological Surgery, by Taubin and Rossignac [106], achieving higher compression

overall. The connectivity graph is decomposed in two interlocked-trees and run-length coded. The

geometry is compressed using entropy coded linear prediction, following the traversal order of one of

the connectivity trees. A refined version of Topological Surgery forms the basis to polygonal mesh

compression in the MPEG-4 standard. Higher compression is achieved by the later region growing

schemes, of which the valence based Triangle Mesh Compression, of Touma and Gotsman [109],

provides best results. Connectivity is handled by coding the valence of new vertices and signaling the

cases where the region border grows onto itself through special split codes. The valence distribution

being skewed, entropy coding is very effective. Connectivity rates range between 1 and 2 bits/vertex

are typically obtained, with as low as 0.2 bits/vertex for mostly regular meshes. Geometry is coded

using the parallelogram predictor, a particular linear predictor. Because of the region growing

connectivity code, better neighbors can be chosen for the predictor leading to 50% better geometry

compression as compared to Topological Surgery (e.g., 8 to 12 bits/vertex for an 8 bit quantization).

Another, simpler, region growing approach with a guaranteed worst case, Edgebreaker, is proposed

by Rossignac [89]. This face based scheme uses five symbols to signal how each new triangle face

is to be attached to the coded region. An encoding with a worst case of 3.67 bits/vertex, which

is within 13% of Tutte’s bound, has been derived. However, only modest rates are achieved on

typical meshes. In fact, providing a worst case rate so close to Tutte’s bound, limits the achievable

rate on typical meshes to be also close to Tutte’s bound. The attempt to guarantee a worst case

rate is thus questionable. Several other Edgebreaker encodings without worst case guarantees have

been proposed, which can achieve rates between 1.2 and 2.4 bits/vertex. We have also reviewed the

numerous Edgebreaker decoding algorithms, of which Spirale Reversi, of Isenburg and Snoeyink [44],

functions in linear time. We also reviewed extensions of Edgebreaker to polygonal meshes, which

are based on deterministic triangulations of the polygonal faces.

Better connectivity rates are achieved by refinements of Triangle Mesh Compression that resort

to adaptive traversal algorithms and that also exploit geometric information in the coding of con-

nectivity. Alliez and Desbrun [2] carry out a thorough analysis of Triangle Mesh Compression and

achieve a 10% improvement in average. They also prove that the maximum entropy of the vertex

valences is the same as Tutte’s bound, hinting at the optimality of valence based approaches under

the assumption of a negligible number of split codes. Khodakovsky et al. [55] extend the valence

based approach, and the above optimality proof, to polygonal meshes. A similar extension is also

provided by Isenburg [41]. Both extended schemes also achieve further improvements by the use of

conditional arithmetic coding. Finally, the best compression ratios to date are achieved by Angle

Analyzer, proposed by Lee, Alliez and Desbrun [64]. It is a region growing method that mixes the

face based approach of Edgebreaker with the adaptive traversal of the valence based approaches

above. However, unlike the previous methods the adaptive traversal is driven by the connectivity

and geometry of the polygonal mesh, instead of connectivity only. The geometry coding uses DPCM

3.6. Conclusions 75

and quantizes the error on a local coordinate system, instead of the classical predictive scheme on

globally quantized coordinates. They obtain improvements on connectivity of 35% in average over

the one of Alliez and Desbrun [2] and of 19% on geometry over Triangle Mesh Compression.

Most of the above methods include extensions to handle meshes with holes and handles. All

of them, however, require that the connectivity be manifold. In Section 3.4.11 we review several

methods to losslessly deal with non-manifold meshes, among which the two efficient ones of Guéziec

et al. [32]. In Section 3.4.12 we briefly reviewed progressive polygonal mesh coders. Most progressive

coders are based on coding, in reverse, the mesh simplifications steps from the original mesh to a

coarse version. Progressive Meshes, by Hoppe [37], uses vertex split (i.e., the inverse of edge collapse)

operations but has a non-linear coding cost. Its results are improved by Progressive Forest Split,

of Taubin et al. [104], by grouping the edge collapse operations in trees and applying techniques

similar to Topological Surgery. Better results are obtained with Compressed Progressive Meshes, of

Pajarola and Rossignac [76], by coding edge collapse operations in bacthes and a novel geometry

prediction rule. Another simplification operator, vertex decimation, is employed by the scheme of

Li and Kuo [65]. The encoding of connectivity and geometry takes place in an special interleaved

manner that leads to a better progressive rate-distortion performance.

A different approach is taken in Progressive Geometry Compression, by Khodakovsky et al.

[55], based on multiresolution analysis and coding techniques inspired by EZW image coding [95].

Another novelty introduced is the use of a local coordinate system, oriented along a tangential

plane and its normal, to express the refinement data. The resulting rate-distortion performance is

excellent, obtaining better results than popular single-rate coders. The coding algorithm involves,

however, a remeshing step and is therefore not suitable for applications that require the preservation

of the original connectivity. Another scheme based on the vertex decimation has been recently

proposed by Alliez and Desbrun [1]. However, instead of signaling the location of decimated vertices

it uses a deterministic ordering that can be replayed at the decoder. The connectivity is coded

using a valence based scheme and geometry coding uses the local coordinate system of Progressive

Geometry Compression coupled with the predictor of Li and Kuo [65] above. The performance

achieved is similar to that of Progressive Geometry Compression, although no remeshing step is

involved.

Finally, in Section 3.5, we reviewed the scarce literature available on the coding of parametric

surfaces. The few results available suggest that multiresolution analysis provides poor rate-distortion

results on parametric models. Only very modest compression can yield good visual quality. The

approach of Furukawa and Masuda [25] for NURBS coding is, however, very interesting although

the reported compression ratios are not very large.

76 Chapter 3. 3D model coding

Parametric surface

coding 4
4.1 Introduction

As reviewed in Chapter 2, parametric surfaces are a convenient and popular method to describe

computer authored 3D models. Parametric surfaces are particularly popular in the domain of Com-

puter Aided Design (CAD) and virtual character generation. Although such models are usually

compact when compared to polygonal meshes they can still be rather large and could benefit from

a controlled compression system. In this chapter we propose such a system for lossy coding of para-

metric models given as NURBS surfaces. We have chosen NURBS, among the multiple parametric

forms, because they are widely used in varied domains of geometric modeling. As an example, they

have been recently added to the VRML standard [113]. A useful NURBS coding system should

fulfill a number of requirements, as follows.

Generic : models are created on a large variety of systems and under different constraints. The

resulting data can therefore have different characteristics depending on the type of application,

object being modeled, detail of the model, etc. A NURBS compressor should be able to deliver

similar efficiency for these different types of models, be they small or large, very smooth or

highly detailed.

Efficient : the amount of bits needed to represent a NURBS model should be small so that the

coded models can be economically transmitted or stored.

Guaranteed distortion : the amount of distortion introduced when coding a model should be

know a-priori. For a large part of applications, such as CAD, it is necessary to provide a

guaranteed L∞ distortion as that defines the tolerance up to which the model is defined.

Flexible : the coding algorithm should not restrict the type of model data that it is capable of

handling. For example, no restrictions should be made on the type of knot vectors or degree

of the surfaces that can be coded. In fact, it is desirable in some applications to recover the

original data as closely as possible, so that the model can be modified as if it was the original.

77

78 Chapter 4. Parametric surface coding

As we have seen in Section 3.5, few techniques have been proposed for the coding of parametric

models, let alone fulfilling the above requirements.

This chapter is organized as follows. Section 4.2 provides a brief overview of the storage required

for uncompressed NURBS models. Section 4.3 gives a high-level view of the coder structure to

aid in the understanding on each part in the later sections. Section 4.4 introduces the techniques

used for coding the knot vectors, with a detailed analysis of the distortion bounds. An analogous

development is carried out for control point coordinates and weights in Section 4.5. Section 4.6 treats

the special case of surfaces that are closed in some parametric direction or that present degeneracies,

while Section 4.7 extends the previous techniques to trimmed surfaces. A detailed evaluation of the

resulting coding system is provided in Section 4.8. Finally conclusions are drawn in Section 4.9.

4.2 Uncompressed NURBS

Before introducing the coding of NURBS surfaces let us present, as a reference point, how such

data is coded in its uncompressed form. In general, each NURBS based commercial package uses

its own coding and few standard exchange formats exist. The aging IGES standard [39], widely

used in CAD applications, uses a rather arcane form of textual encoding. Recently, an extension

[113] has been added to the popular VRML standard to deal with NURBS, in a way similar to that

of polygonal meshes presented in Section 3.4.1. Rational surfaces are expressed by control points

in Euclidean E
3 space and their associated positive weights, instead of the more general projective

P
4 space. Unlike polygonal meshes, no explicit connectivity information is required. The syntax

also supports trimmed surfaces, where the trimming curves are in NURBS or piecewise linear form.

Related surfaces can be explicitly grouped for joint tessellation in renderers. A simple example is

shown in Figure 4.1. As is the case for polygonal meshes the VRML encoding is not compact but

it remains flexible and easily modifiable. Note that for reasonably sized surfaces, the storage cost is

dominated by that of control points.

NurbsSurface {

uOrder 3

vOrder 2

uDimension 3

vDimension 2

uKnot [0 0 0 1 1 1]

vKnot [0 0 1 1]

controlPoint [

0 -1 0

0.5 -1 0.5

1 -0.7 -0.7

0 1 0

0.5 1 -0.1

1 1 0.6

]

weight [

1 0.7 1

1 0.7 1

]

}

Figure 4.1: Example of a simple NURBS surface in VRML.

More compact binary encodings can be obtained by writing knot values and control point coor-

4.3. General coder structure 79

dinates and weights as 32 bit single precision IEEE floating-point numbers, which is the precision

required by VRML implementations. This leads, however, to a usage of 128 bits per control point

in addition to the space required for the knot values. Obviously, great savings can be achieved with

proper compression of these values, with a controlled amount of distortion, which is the matter of

the following sections.

4.3 General coder structure

Figure 4.2 shows a simplified view of the NURBS coder’s structure. The basic building blocks

are prediction, quantization and entropy coding. As shown in the figure, knots and control points

are handled independently, although in a similar manner. The first step is to normalize all input

NURBS surfaces. This involves exploiting the properties presented in Section 2.4 to obtain knot

vectors of the form {0, 0, u2, . . . , ur−3, 1, 1} and weights in the interval (0, 1]. Note that none of

these modifications affect the geometry of the surface. As degenerate and closed surfaces can have

multiple coincident control points, the optional “duplicate detection”block, explained in Section 4.6,

can be used to improve the compression efficiency.

Prediction and quantization follow the classical DPCM scheme (see Section 3.3.3) to exploit the

inherent redundancy in knot and control point values. Since 3D models are usually visualized in an

interactive manner where the user can zoom into any part of the object, it is important to guarantee

a maximum deviation at any point of the decoded surface. Furthermore, in CAD and CAD-like

applications, a guaranteed bound for the maximum deviation is often required. Therefore an L∞
distortion measure seems more appropriate than the more widely used L2 distortion measure. The

use of DPCM provides direct control over the L∞ distortion of the coded values that, as we will

demonstrate, can be related to the L∞ distortion of the surface itself. Transform coding, such as

DCT or DWT based schemes, has also been considered. However, both control point and knot vector

data often exhibit large discontinuities that represent significant features of the surface shape. A

transform could introduce large distortions in the neighborhood of these locations, adversely affecting

the quality of the decoded model. Additionally, it is often the case that the number of control points

in each surface is rather low and some transforms would have trouble exploiting the redundancy in

such cases. For these reasons, the choice of DPCM seems more appropriate than transforms.

Entropy coding uses the MQ adaptive arithmetic coder presented in Section 3.2.3 that provides

very good compression efficiency while having relatively low computational complexity. The symbols

coded by the arithmetic coder are generated by a statistical model that depends on the type of data

(knot values, control point coordinates, weights, etc.). Multiple adaptive contexts are used to cater

for the different statistics of each type of symbol. The MQ coder also provides a non-adaptive

context with a uniform distribution that is convenient to code data of unknown distribution. Its use

is roughly equivalent to send data along an uncompressed secondary bitstream, although without

any of the synchronization issues that more than one bitstream implies.

4.4 Knot vectors

Although the number of knot values is usually much lower than that of control point coordinates

and weights (e.g., the gnom model in Figure 4.3 has 612 knots and 6798 control point coordinates),

it is also important to achieve good compression for them.

Since the values of the first and last knots are irrelevant, given a knot vector U ≡ {ui} of r

elements, we consider only the reduced knot vector Ǔ ≡ U − {u0, ur−1}. The knot vectors define

the shape of the B-Spline functions. In addition, the multiplicity of the knots define the continuity

80 Chapter 4. Parametric surface coding

k
n
o
t

p
re

d
ic

to
r

co
n
tr

o
l
p
n
t.

p
re

d
ic

to
r

n
o
rm

a
li
za

ti
o
n

N
U

R
B

S
su

rf
a
ce

d
u
p
li
ca

te
d
et

ec
ti
o
n

en
tr

o
p
y

co
d
er

E
i,

j

δ i
,j

ν
i

∆
c

∆
w

ζ i

Q
i,

j

∆
k

ξ i
,j

co
n
tr

o
l
p
o
in

ts

u
,
v

k
n
o
ts

d
u
p
li
ca

te
m

a
p

b
it
st

re
a
m

F
ig

u
r
e

4
.2

:
S
im

p
li
fi
ed

v
ie

w
of

th
e

co
d
er

st
ru

ct
u
re

.

4.4. Knot vectors 81

of the surface. It is thus important to be able to preserve the continuity information in the coded

representation. To this end we split the reduced knot vector Ǔ into a multiplicity map Um ≡ {umi }
and a break vector U ′ ≡ {u′i}. The latter is the vector of breakpoints (i.e., the unique knot values)

while the former specifies the multiplicity associated with each breakpoint, minus 1. More formally

umi = hi − 1 i = 0, . . . , r′ − 1 (4.1a)

u′i = ui+
∑

i
l=0

um
l

i = 0, . . . , r′ − 1 (4.1b)

where hi is the multiplicity of the breakpoint u′i in the reduced knot vector Ǔ and r′ is the number

of breakpoints in U ′, or equivalently the number of unique values in Ǔ . For knot vectors with no

multiple knots the multiplicity map will be a sequence of zeroes and the break vector will be the

same as the reduced knot vector.

4.4.1 Prediction and quantization

The break vector is a strictly increasing sequence of values in the [0, 1] interval, since the knot

vector is normalized. Most break vectors are uniform or close to it. One can thus expect the

difference between consecutive breakpoints to remain constant, or close to constant. We therefore

use a predictor that exploits this property: the predicted value ũ′i obeys

ũ′i − û′i−1 = û′i−1 − û′i−2; (4.2)

and thus

ũ′i = 2û′i−1 − û′i−2, (4.3)

where û′j is the previously decoded value of u′j . The prediction error is therefore

νi = u′i − 2û′i−1 + û′i−2 i = 1, . . . , r′ − 2. (4.4)

The first and last breakpoints are always implicit. Hence û′0 = u′0 = 0 and û′r−1 = u′r′−1 = 1. In

order to compute v0 we set û′−1 = 1/(r′ − 1), which follows from the supposition of a quasi-uniform

break vector and hence minimizes the magnitude of ν0.

A uniform scalar quantizer is applied on the prediction error. Since we later entropy code the

resulting quantization indices, it is not necessary to consider more elaborate scalar quantizers (see

Section 3.3.2). Given the quantizer step size ∆k, the quantization index is ζi = 〈νi/∆k〉 and the

reconstructed prediction error ν̂i = ζi∆k, where 〈·〉 denotes the rounding operator. The break value

is thus decoded as

ûi = ν̂i + 2ûi−1 − û′i−2. (4.5)

As for any DPCM coder with a uniform scalar quantizer, the coding error for breakpoints, and thus

knots, is bounded by ∆k/2. That is, |ûi−ui| ≤ ∆k/2. We therefore achieve a guaranteed maximum

L∞ distortion for the knot values of ∆k/2.

Figure 4.3 shows the histograms of the prediction error obtained for the non-uniform break

vectors of three models. As it can be seen, the distribution is very skewed and thus effective entropy

coding can be easily applied. Note that for uniform break vectors, the prediction error is identically

zero.

Although the predictor above is very effective it cannot, in general, guarantee that the decoded

break vector will be a sequence of strictly increasing values. If the quantization error is large enough,

it can happen that û′i−1 > û′i, for some i. This leads to an illegal knot vector that cannot be used to

define B-Spline functions. Even the case of equality is not desired, since it modifies the continuity

properties of the B-Spline functions, and in some cases could also lead to illegal knot vectors (e.g., if

82 Chapter 4. Parametric surface coding

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

fr
eq

ue
nc

y

quantized value

(a) gnom, 26 surface patches, 238 samples in histogram.

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

fr
eq

ue
nc

y

quantized value

(b) camera, 32 surface patches, 343 samples in histogram.

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

fr
eq

ue
nc

y

quantized value

(c) subprop, 10 surface patches, 91 samples in histogram.

Figure 4.3: Histograms of the breakpoint prediction error for the non-uniform break vectors of

various models. The breakpoints of the uniform break vectors are not considered.

4.4. Knot vectors 83

some internal knot has a resulting multiplicity larger than the B-Spline degree). An exclusive upper

bound on ∆k that guarantees proper coding is min{u′i+1 − u′i}. That implies u′i + ∆k < u′i+1 and

û′i ≤ u′i + ∆k/2 < u′i+1 −∆k/2 ≤ û′i+1 ⇒ û′i < û′i+1 for all i.

This upper bound, however, is not tight and larger values of ∆k rarely lead to illegal decoded

knot vectors. In practice the encoder must check that all the decoded breakpoints form a strictly

increasing sequence. This is, in principle, computationally simple since the decoder has to calculate

the decoded values of each breakpoint for the DPCM predictor anyways. However, in the rare case

that the constraint is violated it deems necessary the use of an iterative scheme to find a suitable

value for ∆k. As we will show later, the coding cost of knot vectors is rather small when compared

to that of control points. Using a smaller than necessary ∆k will therefore not affect the overall

coding cost in a very significant way.

The use of the DPCM structure often requires an implementation in floating-point arithmetic,

given that the input data is in that format. Nevertheless, an equivalent, integer only implementation

can also be realized. In such an implementation, each breakpoint is quantized with a uniform scalar

quantizer of step size ∆k prior to any prediction. The predictor is then applied on the resulting

quantization indices and no further quantization is required. Such an integer only implementation

is computationally simpler. Nevertheless, when breakpoints are quantized care must be taken to

ensure the constraint of a strictly increasing decoded break vector. We use, however, a floating-point

implementation for uniformity with the predictors used for control point coordinates.

4.4.2 Distortion analysis

The use of DPCM with a uniform scalar quantizer guarantees that the L∞ distortion on the knot

values is no larger than ∆k/2. The distortion of interest is, however, that of the surface shape, which

is of course related to that of knots. The relation between these two distortions is not trivial and,

to our knowledge, has not been previously assessed. In Appendix A we develop bounds on the L∞
distortion of a curve or surface given the quantization error of one breakpoint. It turns out that this

distortion is proportional to the quantization error, the maximum distance between pairs of adjacent

control points and the knot multiplicity, and inversely proportional to the minimum knot spacings.

Detailed formulas are given in Appendix A, along with the demonstration. In the following we apply

those bounds to derive the proportionality factor D̄ between the knot and surface L∞ distortions.

Furthermore, we use this quantity D̄ to set the knot quantization step size in a meaningful way.

Polynomial surfaces

Consider a non-rational surface S(u, v). Let ψ(t) = t +
∑t
l=0 u

m
l be the function that maps a

breakpoint index t to the index of the last knot corresponding to u′t. Following the notation used in

Appendix A, Dψ(t) is the maximum deviation induced on the curve by the quantization of breakpoint

u′t. Quantizing breakpoint u′t affects the curve only on the interval (u′tinf
, u′tsup

), where tinf and tsup

are the indexes of the breakpoints corresponding to knots uψ(t)−um
t −p and uψ(t)−um

t +p, respectively.

Therefore, on the interval [u′t, u
′
t+1) only the quantization of breakpoints u′

ṫ+1
to u′

ẗ−1
affect the

surface, where ṫ and ẗ are such that ṫsup = t and ẗinf = t + 1. The total distortion on the interval

[u′t, u
′
t+1) is thus

ẗ−1∑

l=ṫ+1

Dψ(l)

84 Chapter 4. Parametric surface coding

and the total distortion on the overall curve is thus

D = max
0≤t≤r′−2

ẗ−1∑

l=ṫ+1

Dψ(l).

Let εD̄ψ(l) be the upper bound on Dψ(l) as calculated by one of the formulas in Appendix A. Hence

D̄ = max
0≤t≤r′−2

ẗ−1∑

l=ṫ+1

D̄ψ(l), (4.6)

and εD̄ is the upper bound on D.

Rational surfaces

The bounds given in Appendix A, and therefore Eq. (4.6), are only valid for polynomial surfaces.

In the case of rational surfaces they only provide a distortion bound in projective space, where the

surface is always polynomial, that we need to relate to Euclidean space. Given a distortion Dw

in projective space for a surface with control points Pi,j and weights wi,j Tiller [108] provides the

following bound for the Euclidean distortion D:

D ≤ 1 + max‖Pi,j‖
minwi,j

Dw.

This bound is however not satisfactory. It depends on the maximum norm of control points, which

has no relation to the surface shape itself, since a surface can be arbitrarily translated. Furthermore,

if all weights are equal (i.e., the surface is polynomial), it does not reduce to the obvious relation

D ≤ Dw/minwi,j . Hereafter we develop a tighter bound that addresses these problems.

Consider two points P1 and P2 with weights w1 and w2 and a translation vector T. Without loss

of generality let P1 be the point with the smallest weight (i.e., w1 ≤ w2). The Euclidean distance

between these two points can be bounded as

‖P1 −P2‖ =

∥
∥
∥
∥

w1(P1 −T)

w1
− w2(P2 −T)

w2

∥
∥
∥
∥

=

∥
∥
∥
∥

w1(P1 −T)− w2(P2 −T)

w1
+
(w2 − w1

w1

)
(P2 −T)

∥
∥
∥
∥

≤ ‖w1(P1 −T)− w2(P2 −T)‖+ |w2 − w1| ‖P2 −T‖
w1

.

The left term of the numerator just above is the distance between the projective points correspond-

ing to P1 and P2 translated by −T, where only the first three coordinates are considered (i.e., the

homogenizing coordinate is disregarded). The term |w2 − w1| is the difference between the homog-

enizing coordinate of these points. By the convex hull property this bound can be applied to the

distortion of rational surfaces, where P1 and P2 would be pairs of corresponding control points.

The Euclidean distortion D is hence bounded as

D ≤ DA
T

+Dw max‖Pi,j −T‖
minwi,j

, (4.7)

where DA
T

is the distortion on the first three homogeneous coordinates of the surface translated by

−T and Dw is the distortion of the homogenizing coordinate. The translation vector T is arbitrary

and can be chosen so as to minimize max‖Pi,j+T‖ and obtain the tightest possible bound. A simple

choice which is often close to optimal is the center of the bounding box of control points. Note that

4.4. Knot vectors 85

the above bound reduces to the obvious relation D ≤ Dw/minwi,j when applied to polynomial

surfaces, since Dw = DA
T

and Dw = 0. Note also that this bound reduces to the one of Tiller by

using the relations DA
T
≤ Dw and Dw ≤ Dw.

Therefore, the general expression for D̄ that holds for rational surfaces becomes

D̄ =
D̄A

T
+ D̄w max‖Pi,j −T‖

minwi,j
,

where D̄A
T

is calculated by applying Eq. (4.6) to the first three homogeneous coordinates of the

surface translated by −T and D̄w by applying Eq. (4.6) to the homogenizing coordinate.

Knot quantization step size

Figure 4.4 shows the ratio between the estimated surface distortion to the actual surface parametric

distortion. The distortion is estimated as D̄ times the L∞ distortion of knot values. By parametric

distortion we mean the distortion max‖S(u, v)− S̃(u, v)‖, that is the maximum deviation of a point

on the surface corresponding to a parametric position. Note that, as we will see below, this can

differ from the surface distortion as measured by the Hausdorff distance (see Section 3.3.4). As we

can see, the distortion is consistently overestimated, by a factor between 3 and 17. This discrepancy

comes from the fact that D̄ is not a really tight bound and that we use the L∞ distortion of knots,

instead of the per breakpoint error. Nevertheless, the estimate is fairly close to reality.

10
−5

10
−4

10
−3

10
−2

2

4

6

8

10

12

14

16

18

∆
k

coke−0
gnom−7
spoon−0
jack−0
stingray−0

Figure 4.4: Ratio of the surface distortion bound to the actual surface L∞ parametric distortion,

as a function of the knot quantization step size ∆k, for various surfaces.

Figure 4.5 shows the ratio between the parametric and Hausdorff L∞ distortions. As it can be

seen, the parametric distortion is, in general, between one and ten times larger than the Hausdorff

one. This difference can be explained by the fact that the Hausdorff distortion measures the deviation

of the surface in the normal direction, while the parametric distortion often occurs in the tangential

direction. This is particularly true for the stingray-0 surface, which is a mostly flat shape. Which

distortion measure is appropriate depends on the application. For applications that require the

preservation of the parametrization of a curve the parametric distortion is most appropriate. This

86 Chapter 4. Parametric surface coding

is also the case when the surface includes trimming curves. These curves are defined in parametric

space and therefore any parametric distortion will affect the placement of the trims on the surface.

If, however, the surface does not include any trimming loop the less stringent Hausdorff distance is

more appropriate. The definition of a distortion bound for the Hausdorff distance remains, however,

an unsolved problem.

10
−5

10
−4

10
−3

10
−2

10
0

10
1

10
2

∆
k

coke−0
gnom−7
spoon−0
jack−0
stingray−0

Figure 4.5: Ratio of the parametric to Hausdorff L∞ distortions for various models and knot

quantization step sizes.

Based on the above we will fix the knot quantization step size from D̄ and assuming ∆k/2 as

the L∞ distortion of knot values. The individual contributions of the U and V knot vectors to the

overall surface distortion is difficult to determine a priori. Except for the cases of uniform break

vectors, in which case the contribution of the knot vector is identically zero, we will assign half the

distortion to U and half to V . Let ∆′
k/2 be the maximum allowable L∞ surface distortion incurred

by knot value quantization. We fix the quantization step size as

∆α
k ≤

∆′
k

2D̄α
, (4.8)

where ∆α
k and D̄α are ∆k and D̄ for U or V , as appropriate. The value ∆′

k can be interpreted as

the Euclidean E
3 space equivalent of the quantization step size ∆k in parametric space. In the cases

where either U or V has a uniform break vector, the quantization step size used is the double of

that above, since the uniform break vector induces no distortion on the surface.

In our implementation we fix ∆′
k globally for an entire model and apply Eq. (4.8) to obtain a

knot quantizer step size for each knot vector of each surface. The D̄ψ(l) values are calculated using

the tightest possible bounds as given in Appendix A for the knot multiplicity of breakpoint u′l (or

v′l).

4.4.3 Entropy coding

As previously mentioned, we entropy code the quantization indices νi and multiplicity values umi
with the MQ arithmetic coder. In addition to these it is also necessary to code the degree and

4.4. Knot vectors 87

knot vector length to have a complete characterization of the B-Spline functions. In the following

paragraphs we explain how each of these entities is entropy coded.

Degree, length and type

In a given model with several NURBS surfaces, only a few different B-Spline degrees are used. Most

typically only quadratic and cubic forms are used, although higher and lower degrees are occasionally

employed. For a B-Spline of degree p we code the n-bit word p− 1 with a full 2n-ary model. Using

such a model assigns one independent probability in the binary arithmetic coder to each possible

value and is thus equivalent to 2n-ary arithmetic coding. This is shown in Algorithm 4.1. The n-bit

word is coded from most significant to least significant bit and the context index for each bit is

uniquely determined by its position and the value of the previously coded ones. For an n-bit word

2n − 1 binary contexts are required. In our implementation we set n = 3, hence covering up to a

maximum degree of 8, which is more than is required by VRML’s base profile [113] and what is

allowed in OpenGL [119]. Entropy coding the degree has the advantage of allowing arbitrary orders

while ensuring that no more than 1 bit is required in average in the typical case of only quadratic

and cubic B-Splines.

Algorithm 4.1: Code value x with a full 2n-ary model and a binary arithmetic coder

c← 0

for i← n− 1 to 0 do

b← b x2i c − 2b x
2i+1 c (i.e., ith bit of x)

Code bit b with context c.

if b = 0 then

c← c+ 1

else

c← c+ 2i

end if

end for

The minimum length of a knot vector is always twice the B-Spline function order (i.e., degree plus

one), since an order p+1 NURBS requires at least p+1 control points to be defined. In addition, the

knot vector length for Bézier surfaces expressed in NURBS form is always twice the order. Therefore,

for a knot vector of length r and a B-Spline of degree p, we code the value r̄ = r − 2(p+ 1). Given

that knot vectors can be arbitrarily long, a full model as used for degree coding is not applicable

as that would require too many contexts and no meaningful symbol distribution could be derived.

Instead, we first signal a coding length group j and then code r̄ as an mj-bit word, each bit being

coded with the uniform context of the MQ coder (i.e., uncompressed). The coding group index j

is coded using a full 2n-ary model. The first coding group is reserved exclusively for Bézier knot

vectors, for which r̄ = 0, by setting m0 = 0. Therefore, no extra bits are required for r̄ for such

knot vectors. In our implementation we use four coding groups, requiring a 22-ary model for their

index, and we set m1 = 5, m2 = 10 and m3 = 15. The maximum length is thus 32768, more than

twice what is required by VRML’s base profile. The special handling of Bézier knot vectors allows

to efficiently code models made of Bézier surfaces, incurring a coding cost for the knot vector length

that approaches zero with the number of surfaces.

The clamped and uniform knot vector types are signaled with two flags. Although not strictly

necessary, these flags reduce the overall coding cost and complexity. In the common case of clamped

knot vectors the first and last values of the multiplicity map equal the degree p and need not be

88 Chapter 4. Parametric surface coding

coded. For uniform knot vectors, the multiplicity map and prediction error are identically zero and

need not be coded either. In the case of non-uniform knot vectors we still signal uniform break

vectors with a third flag, in which case only the multiplicity map need be coded. Each of these three

flags is coded with its own context of the MQ coder.

Multiplicity map

In the case where the knot vector is non-uniform its multiplicity map needs to be coded. We use

a model similar to that used in JPEG [77] for DPCM values, which is itself a modified version of

the method devised by Langdon [63]. It is shown in Algorithm 4.2. The basic idea is to choose

the statistics with which to code the magnitude bits of a value based on its log2 bin. First the

value is signaled as zero or non-zero with the MZERO context. If non-zero the position of its most

significant bit (i.e., the log2 bin) is signaled using contexts MEXP through MEXP+n. Finally, the

magnitude bits of the remaining value are coded, if necessary, with a context dependent on the log2

bin. This modified version needs to code one symbol less for power of 2 values, when compared to

Langdon’s since x − 1 is coded instead of x if the value is non-zero. Note that for any knot the

multiplicity value umi is never larger than p. For a maximum coded degree of 8, only 6 contexts are

required: MZERO, MEXP to MEXP+2, MMAG and MMAG+1.

Algorithm 4.2: Code multiplicity value x

if x = 0 then

Code a 1 with context MZERO

else

Code a 0 with context MZERO

n← dlog2 xe
for j ← 0 to n− 1 do

Code a 1 with context MEXP+j

end for

Code a 0 with context MEXP+n

if n ≥ 2 then

Code bits n− 2 to 0 of x− 1− 2n with context MMAG+n− 2.

end if

end if

Quantization indices

If a break vector is non-uniform (i.e., some quantization indices are non-zero) it is necessary to

code the quantization indices. We use bitplane arithmetic coding for this. Given a global knot

quantization step size of ∆′
k the quantizer used for the knot vector is ∆k = ∆′

k/2
dlog2(2D̄)e, following

Eq. (4.8). The minimum number of bits necessary to code the magnitude of the quantization indices

without overflow is dlog2(1/∆k+1)e, since the range of possible prediction errors is [−1, 1]. We signal

∆′
k using exponent mantissa representation as ∆′

k = 2−εk(1+µk/2
M), where εk ≥ 1, 0 ≤ µk ≤ 2M−1

and M is the number of bits used to signal the mantissa µk. The number of magnitude bits is thus

Nk = εk+dlog2(2D̄)e+1. The quantity dlog2(2D̄)e is coded for each surface as a fixed length binary

number using the uniform context of the MQ coder. Figure 4.6 shows the histogram of the number

of significant bits of |ζi|, for the same models of Figure 4.3. As it can be seen the distribution is

often bimodal.

4.4. Knot vectors 89

0 5 10 15
0

0.2

0.4

0.6

0.8

fr
eq

ue
nc

y

significant magnitude bits

(a) gnom, 238 samples, mean: 5.1 bits

0 5 10 15
0

0.2

0.4

0.6

0.8

fr
eq

ue
nc

y

significant magnitude bits

(b) camera, 343 samples, mean: 2.5 bits

0 5 10 15
0

0.2

0.4

0.6

0.8

fr
eq

ue
nc

y

significant magnitude bits

(c) subprop, 91 samples, mean: 5.5 bits

Figure 4.6: Histograms of the number of significant bits in the quantizer indices of the breakpoint

prediction error for various models. Used ∆k = 2 × 10−4, hence εk = 13 and Nk = 14. The

proportion of non-zero values for (a), (b) and (c) is 77%, 82% and 85%, respectively.

90 Chapter 4. Parametric surface coding

We code |ζi| by bitplanes, from most significant to least significant. As suggested by Figure 4.6,

max |ζi| is usually smaller than 2Nk − 1. Therefore, many of the most significant bitplanes will be

identically zero. Let ηk be their number. Instead of explicitly coding all these zero bits separately,

ηk is coded using a comma code (ηk 0s followed by one 1), with the dedicated KZBP context. In

practice this is more cost efficient and less computationally expensive than explicit coding. For the

remaining Nk−ηk bitplanes the bits are coded one at time. For each |ζi|, the most significant 0 bits

up to and including the most significant 1 bit are coded with the KLZERO context. The remaining

bits of |ζi| are coded with the KMREF context. Finally, for each non-zero ζi the sign is coded with

the KSIGN context.

An alternative to the simple coding procedure above is to code the number of significant bits in

each |ζi| value with a full 2n-ary model, and then code the magnitude bits as above. This coding

procedure has the potential to better exploit the bi-modality of the distributions shown in Figure 4.6.

Figure 4.7 compares the coding rate obtained by these two coding procedures for a large collection

of models and various quantization step sizes. The full 2n-ary model achieves coding rates between

3% and 5% better, in average, than the simple bitplane coder. However, this improvement is below

the standard deviation, which is between 6% and 7%. We consider therefore that this modest

improvement is not worth the increase in complexity and will henceforth use the simple bitplane

coder.

4.5 Control points

As previously mentioned the coding structure used for control points is similar to that used for knot

values, namely DPCM followed by entropy coding. However, the number of control points being

typically much larger than that of knots it is worth using a higher complexity predictor and entropy

coder for control points.

NURBS control points can be represented either in projective space with homogeneous coordi-

nates or in Euclidean space as affine coordinates plus an associated weight. Figure 4.8 shows the

control net obtained by using the affine coordinates of control points (i.e., normal situation) and

using the first three homogeneous coordinates as affine ones. This allows to compare the control net

in affine space vs. the control net in projective space, by reducing the four dimensions of the latter

to three. As it can be clearly seen the structure present in the affine coordinates is much higher than

that present in the homogeneous ones. As a consequence, the redundancy in the control point data

is easier to exploit on the affine coordinates. We shall thus code the control points using the affine

coordinates plus the weight, instead of the homogeneous coordinates. The two forms are, however,

equivalent and the entropy rate present in each is exactly the same. Following this separation of

affine coordinates and weights, control points and their weights are coded independently, although

in a very similar manner.

4.5.1 Prediction and quantization

Control point coordinates

Prior to prediction we need to offset the control points Pi,j to obtain a dynamic range centered on

zero that is easier to handle. We use the center of the model’s axis aligned bounding box as the offset

for all surfaces of the model. Using the same offset for all surfaces has the advantage that coincident

control points between different surfaces are still coincident after being offset. This is important as

model designers often use coincident control points to ensure geometric continuity between surfaces,

although this is not a sufficient nor necessary condition. In order to later characterize the maximum

4.5. Control points 91

−20 −15 −10 −5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

relative improvement (%)

fr
eq

ue
nc

y

(a) ∆k = 2 × 10−3, mean = -2.8%, σ=6.7%

−20 −15 −10 −5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

relative improvement (%)

fr
eq

ue
nc

y

(b) ∆k = 2 × 10−4, mean = -4.4%, σ=6.5%

−20 −15 −10 −5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

relative improvement (%)

fr
eq

ue
nc

y

(c) ∆k = 2 × 10−5, mean = -3.5%, σ=7.4%

−20 −15 −10 −5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

relative improvement (%)

fr
eq

ue
nc

y

(d) ∆k = 2 × 10−6, mean = -2.6%, σ=5.7%

Figure 4.7: Histograms for the coding cost improvement of using a full 2n-ary model instead of a

simple bitplane coder for the breakpoint prediction error.

92 Chapter 4. Parametric surface coding

(a) affine coordinates (b) homogeneous coordinates

Figure 4.8: Comparison of the control net obtained using affine coordinates vs. the first three

homogeneous coordinates for control points, for the goblet model.

magnitude of predicted control points we require to precisely know the dynamic range of offset

control points. Let O = (xO, yO, zO) be this center point. We code its coordinates using an

exponent mantissa representation as x̂O = 2εx,O (1+µx,O/2
MO), and likewise for yO and zO, obtaining

Ô = (x̂O, ŷO, ẑO). Let 2L be the maximum dynamic range of the control points of the entire model,

across all three coordinates. That is, for Pi,j = (xi,j , yi,j , zi,j),

L = log2 max{(maxxi,j −minxi,j), (max yi,j −min yi,j), (max zi,j −min zi,j)},

where the maximums and minimums are taken across all surfaces of the model. We signal this

dynamic range simply as L̂ = dLe. Let P′
i,j = Pi,j − Ô be the offset control points. The resulting

maximum magnitude for any of the coordinates of offset control points is not larger than

2L̂−1 + 2εO−MO ,

since the error incurred by coding a coordinate of O is no larger than 2εO−MO , where εO is either

εx,O, εy,O or εz,O, as appropriate.

Control points of each surface are predicted and quantized following a raster scan order. To allow

for various kinds of statistics for the model data we use a general linear predictor as the DPCM

predictor for the control point coordinates. A point P′
i,j is thus predicted as

P̃′
i,j =

∑

k≥0
l>0 when k=0

λk,lP̂
′
i−k,j−l, (4.9)

where λk,l are the predictor coefficients and the P̂′
i,j are the previously decoded control points. The

prediction error is thus

Ei,j = P′
i,j −

∑

k≥0
l>0 when k=0

λk,lP̂
′
i−k,j−l.

4.5. Control points 93

As is the case for breakpoints there is no interest in using scalar quantizers other than uniform since

we allow for entropy coding. Given a quantizer step size of ∆c the quantization indices are thus

simply Qi,j = 〈Ei,j/∆c〉. The decoded control points are trivially obtained as

P̂i,j = Êi,j +
∑

k≥0
l>0 when k=0

λk,lP̂i−k,j−l,

where Ei,j = Qi,j∆c. At the top and left ends of the control net the “missing” control points P̂′
i,j ,

where i < 0 or j < 0, are set by mirroring any known control points across the control net borders.

As a special case, for the top-left corner control point the prediction P̃′
0,0 is set to zero, since no

control points are known at that stage.

An effective, yet very simple, linear predictor is the parallelogram predictor of Touma and Gots-

man [109] (see Section 3.4.4). In this case

λk,l =

1 k = 1, l = 0,

1 k = 0, l = 1,

−1 k = 1, l = 1,

0 otherwise.

Figure 4.9 shows the histograms of the control point prediction error obtained with the parallelogram

predictor on the models of Figures 4.3 and 4.10. The killeroo-lowres model is a NURBS fitting

of a high-resolution 3D scan, while the others are CAD modelings. As it can be seen the distribution

is very skewed and therefore linear predictors can provide a prediction error that is amenable to

efficient yet simple entropy coding.

At the top row and leftmost column of the control net the parallelogram predictor reduces to

a zero order predictor due to the lack of previous coded values. The prediction error can thus be

often improved by the use of a 1D predictor that works across the top row or leftmost column. We

therefore provide the choice between zero-, first- and second-order so called “edge” predictors, in

addition to the use of the selected linear predictor used for all other control points. As we will later

see, the first-order predictor often provides some added compression ratio, while the second order

one is rarely of interest.

Quantization in a local basis

Inspired by the work of Khodakovsky et al. [56] (see Section 3.4.12) we propose a variant of the

above DPCM scheme that uses a local coordinate system to quantize the prediction error at each

control point, instead of the global coordinate system. Although independently developed, this

concept has also been recently applied by Lee et al. [64] to single-rate coding of polygonal meshes.

For a point Pi,j we define the local orthonormal basis (e1, e2, e3) as

e1 =
P̂i−1,j + P̂i,j−1 − 2P̂i−1,j−1

‖P̂i−1,j + P̂i,j−1 − 2P̂i−1,j−1‖
,

e2 =
e3 × e1

‖e3 × e1‖
,

e3 =
(Pi−1,j −Pi−1,j−1)× (Pi,j−1 −Pi−1,j−1)

‖(Pi−1,j −Pi−1,j−1)× (Pi,j−1 −Pi−1,j−1)‖
.

Therefore e1 and e3 are set to the directions of the main diagonal and normal, respectively, of

the parallelogram formed by the parallelogram predictor. The other basis vector, e2, is set so as

94 Chapter 4. Parametric surface coding

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fr
eq

ue
nc

y

quantized value

(a) gnom, 26 surfaces, 2266 control points.

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fr
eq

ue
nc

y

quantized value

(b) camera, 32 surfaces, 2642 control points.

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fr
eq

ue
nc

y

quantized value

(c) killeroo-lowres, 89 surfaces, 17181 control points.

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fr
eq

ue
nc

y

quantized value

(d) scissors, 7 surfaces, 1002 control points.

Figure 4.9: Histograms of the combined x, y and z prediction errors for the control points using

the parallelogram predictor, for various models.

4.5. Control points 95

(a) killeroo-lowres (b) scissors

(c) coke

Figure 4.10: The killeroo-lowres, scissors and coke models.

96 Chapter 4. Parametric surface coding

to obtain a right-handed orthonormal basis. This local basis is introduced in the DPCM loop by

projecting the prediction error Ei,j into it and quantizing the resulting coordinates by ∆c, and then

performing the opposite precessing to obtain the dequantized error Êi,j . The quadrilateral formed

by the three points above and the point to be coded Pi,j is expected to be close to planar. Thus,

the magnitude of the prediction error along e3 should be less than that along e1 and e2, leading to

more efficient entropy coding.

The use of this scheme involves some relatively complex operations to obtain (e1, e2, e3) at each

control point and project the quantized error from the local to the global basis. At the encoder, it

is in addition necessary to project from the global to the local basis, which involves the inversion of

the matrix [e1; e2; e3]. These computations cannot be realistically realized in integer or fixed-point

arithmetic, making the use of floating-point arithmetic a requirement. In fact, the use of the local

basis places some rather stringent requirements on the numerical precision used at the decoder to

implement these operations. Of particular concern are the cases where the parallelogram used to

define the local basis is degenerate, or close to. This can occur if P̂i−1,j − P̂i,j or P̂i,j−1− P̂i,j have

a length close to zero or are close to parallel. Nevertheless, such degenerate conditions are entirely

legal and actually rather common in NURBS models. Since floating-point arithmetic is required,

there is no way to ensure that a decoder is able to exactly reproduce the encoder computations,

without any rounding error. Therefore, it is necessary to signal, for each control point, if the local

basis is considered degenerate given the minimum precision requirements for a decoder. In such a

case, the global basis is used as a fall-back. This signaling requires the coding of extra information,

and therefore the gains brought by the local basis should be higher than the cost incurred by the

handling of degenerate conditions. We defer the comparative analysis of the global and local bases

to Section 4.8.

Weights

Figure 4.11 shows the histograms of the weight values for various models. As it can be seen, often

only very few different weight values are used in a given model (e.g., camera and scissors models).

This would suggest the use of a table lookup approach to coding the weights. On the other hand,

such an approach can be complex and not perform well in the case of a large number of different

weight values, as in the coke model, and therefore lacks flexibility. Furthermore, exploiting local

correlation is more difficult with this technique. We take thus the same approach to coding weights

as used for control point coordinates, with a linear predictor and uniform quantization later followed

by entropy coding.

We have found that the 1D analogous of the parallelogram predictor performs well for weights.

In fact, a weight is typically equal to its top or left neighbor in the control net and therefore more

complex predictors are typically less effective. The prediction error for a weight wi,j is therefore

δi,j = wi,j − w̃i,j = wi,j − (ŵi−1,j + ŵi,j−1 − ŵi−1,j−1),

where w̃i,j is the predicted value and ŵi,j the previously decoded weights. Since the majority

of weights equal one we set w̃0,0 = 1. Given a quantizer step size ∆w the quantization indices

are ξi,j = 〈δi,j/∆w〉 and the decoded values ŵi,j are trivially derived as ŵi,j = w̃i,j + δ̂i,j , where

δ̂i,j = ξi,j∆w.

Figure 4.12 shows the weight prediction error histograms obtained for the models of Figure 4.11.

Unfortunately, the histograms are not as skewed as those of control point coordinates. Nevertheless,

the vary large proportion of zero values still allows for a rather efficient entropy coding.

4.5. Control points 97

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

fr
eq

ue
nc

y

normalized value

(a) coke, 21 surfaces, 1601 weights

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

fr
eq

ue
nc

y

normalized value

(b) camera, 32 surfaces, 342 weights

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

fr
eq

ue
nc

y

normalized value

(c) scissors, 7 surfaces, 81 weights

Figure 4.11: Histograms of the weight values for various models.

98 Chapter 4. Parametric surface coding

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

fr
eq

ue
nc

y

quantized prediction error

(a) coke

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

fr
eq

ue
nc

y

quantized prediction error

(b) camera

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

fr
eq

ue
nc

y

quantized prediction error

(c) scissors

Figure 4.12: Histograms of weight prediction error for various models.

4.5. Control points 99

4.5.2 Distortion analysis

As we previously did for knots, we now look at the surface distortion induced by the quantization of

control point coordinates and weights, and use it to derive meaningful values for the quantizer step

sizes for each surface of a model. Let us first consider the distortion engendered by control point

coordinate quantization alone. It is a well knot fact [see 80, chap. 11] that given quantization error

P̄i,j for control point Pi,j the distorted surface is

Ŝ(u, v) =
∑

Ri,j(u, v)P̂i,j =
∑

Ri,j(u, v)Pi,j +
∑

Ri,j(u, v)P̄i,j = S(u, v) +
∑

Ri,j(u, v)P̄i,j ,

where the Ri,j(u, v) are the rational B-Spline functions (see Section 2.4.2). Hence, the distortion

is a NURBS surface with identical knot vectors and weights and the quantization errors as control

points. By the convex hull property the L∞ distortion on the surface is limited by the L∞ distortion

on the affine coordinates of the control points, namely ∆c/2. When the entire model of an object is

taken into consideration it does not make sense to provide varying coding accuracies for the various

surfaces, since a single object should be represented with the same L∞ distortion everywhere. We

therefore use the same quantizer for all surfaces. We signal a global coordinate quantization step

size ∆′
c relative to the object’s bounding box approximate size 2L̂ and set ∆c = ∆′

c2
L̂. The L∞

distortion on any of the affine coordinates of the object’s surfaces is no larger than ∆c/2, while the

norm of the Euclidean L∞ distortion is ∆c

√
3/2.

The distortion analysis for weights is more involved as these are present in both the numerator

and denominator of the rational B-Spline functions. Nevertheless, we can consider the distortion in

the projective space and deduce the one in Euclidean space using the same bound that was derived

for the knot case in Section 4.4.2. Consider a control point Pi,j , its associated weight wi,j , its

quantized version ŵi,j , and a translation vector T. The norm of the distortion on the first three

homogeneous coordinates of the translated control point is

DA
T

= ‖wi,j(Pi,j −T)− ŵi,j(Pi,j −T)‖ = |wi,j − ŵi,j | ‖Pi,j −T‖ = Dw‖Pi,j −T‖.

Making use of Eq. (4.7) and the convex hull property, we find that the L∞ distortion of the surface

engendered by quantization of weights alone is not larger than

2max‖Pi,j −T‖
minwi,j

max|wi,j − ŵi,j | ≤
max‖Pi,j −T‖

minwi,j
∆w.

As for knots, finding the optimal value for T that minimizes max‖Pi,j −T‖ is a difficult problem.

Nevertheless, a good enough estimate for our purposes for the minimum of max‖Pi,j − T‖ is half

the diagonal length of the control points’ bounding box of the surface being coded, which is easy

to compute. As for control point coordinates, we desire the L∞ distortion induced by weight

quantization to be the same for all the surfaces of an object. Hence, we signal a global weight

quantizer step size ∆′
w relative to the approximate bounding box size 2L̂ and set the quantizer ∆w

individually for each surface, using the above bound.

4.5.3 Entropy coding

We entropy code the quantization indices using a bitplane coder, similar in spirit to that used for

break vectors, that we explain in the following paragraphs. We distinguish non-rational and rational

surfaces by coding a binary flag at the start of each surface. If it is non-rational no weights are

coded, as all of them are unity. Also, prior to coding the quantizer indices we code the degenerate

basis flag for each control point if the local basis is used to quantize the prediction errors. This flag

is coded using its own arithmetic coder context.

100 Chapter 4. Parametric surface coding

In order to prevent overflow of the quantized indices we require to know the dynamic ranges of

the coordinate and weight prediction errors. To ease the notation in what follows we define, for an

arbitrary 3D point P = (x, y, z), the function

Θ(P) = Θ(x, y, z) = max{|x|, |y|, |z|}

that gives the maximum magnitude of the coordinates of P. In Section 4.5.1 we established that

the maximum magnitude of any coordinate after offsetting the control points is bounded as

max Θ(P′
i,j) ≤ 2L̂−1 + 2εO−MO , (4.10)

where 2L̂ is the approximated size of the model’s bounding box and εO is the exponent of the coded

offset for the relevant coordinate. Using the parallelogram predictor the bound on the predicted

control points is

max Θ(P̃i,j) ≤ 3max Θ(P̂i,j) ≤ 3max Θ(P′
i,j) + 3

∆c

2

and therefore

max Θ(Qi,j) = max
〈Θ(P′

i,j − P̃i,j)

∆c

〉

≤
〈

4
max Θ(P′

i,j)

∆c
+

3

2

〉

≤
〈2L̂+1 + 2εO−MO+2

2L̂−εc
+

3

2

〉

,

where εc is the exponent of the exponent-mantissa representation used to signal ∆′
c and therefore

∆c ≥ 2L̂−εc . We set MO, the number of mantissa bits used to code the model offset Ô, so as to

ensure that εO −MO + 2 − L̂ ≤ 0. Hence we require that MO ≥ εO − L̂ + 2. This means that we

require the offset to be coded with sufficient precision relative to the model’s bounding box size.

With this constraint, and knowing that εc ≥ 0, the bound becomes

max Θ(Qi,j) ≤ 3 . 2εc + 2.

Finally, the number of bits Nc used to code a quantization index must not be smaller than

dlog2(max Θ(Qi,j) + 1)e ≤ 3 . 2εc + 2 ≤ 3 . 2εc + 2εc ≤ 2εc+2.

Therefore, the number of bits required to code the quantization indices without overflow is

Nc = εc + 2,

when the parallelogram predictor is used. In the above it is implied that we require εc ≥ 2, and thus

∆′
c < 1/2, which is less than the minimum that any realistic compression setting would use.

In the general case of an arbitrary linear predictor the number of bits required to avoid overflow

will be determined by the sum of the absolute values of the predictor coefficients. Instead of deriving

this quantity from them we choose to clip the predicted values to the range of the offset control

points P′
i,j , as given in Eq. (4.10). In fact, a predicted value outside the bounding box given by

Eq. (4.10) does not make sense and can only hurt compression performance. Using this limiting

scheme the number of required bits is reduced by 1, yielding Nc = εc + 1. Independent of this, the

use of a local basis for quantizing the prediction errors incurs an extra bit since the magnitude of a

coordinate can be increased by up to
√

3.

The bitplane coding of coordinate quantizer indices proceeds in a way similar to that of break-

points. Each of the x, y and z coordinates is coded in an identical way although using separate

sets of contexts for the arithmetic coder, so that their potentially differing statistics can be properly

exploited. We code the values from the most significant bitplane (Nc−1) down to the 0-th bitplane.

Figure 4.13 shows the histograms of the number of significant bits of each value obtained on various

4.5. Control points 101

models and for two quantizer step sizes. As we can see, for not very fine quantization step sizes

(e.g., 12 magnitude bits or less) the distribution is fairly skewed toward zero and bitplane coding

should be very effective. For very fine quantizations (e.g., 16 or 15 magnitude bits) the distribution

can sometimes be bi-modal or have its peak at a non-zero value. Given such a fine quantizer, the

lower bitplanes will actually be noise-like and such a distribution is to be expected. In any case, the

maximum number of significant magnitude bits is always considerably lower than Nc. Although not

shown in the histograms, the number of significant magnitude bits along the top row and leftmost

column of the control net, and in particular at the top-left corner, is usually much larger than at

the other parts of the control net. This is due to the fact that the linear predictor is less efficient at

these border locations, since there are less samples available on which to base the prediction.

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

fr
eq

ue
nc

y

significant magnitude bits

∆’
c
 = 2e−3; N

c
 = 12

∆’
c
 = 2e−4; N

c
 = 16

(a) gnom, means: 1.5 and 3.4 bits

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

fr
eq

ue
nc

y

significant magnitude bits

∆’
c
 = 2e−3; N

c
 = 12

∆’
c
 = 2e−4; N

c
 = 15

(b) camera, means: 0.9 and 2.3 bits

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

fr
eq

ue
nc

y

significant magnitude bits

∆’
c
 = 2e−3; N

c
 = 12

∆’
c
 = 2e−4; N

c
 = 15

(c) killeroo-lowres, means: 0.6 and 2.1 bits

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

fr
eq

ue
nc

y

significant magnitude bits

∆’
c
 = 2e−3; N

c
 = 12

∆’
c
 = 2e−4; N

c
 = 15

(d) scissors, means: 0.7 and 1.8 bits

Figure 4.13: Histograms of the number of significant magnitude bits in the quantizer indices of

the control point coordinate prediction error for various models and quantizer step sizes, using the

parallelogram predictor. The quantizer step sizes are given with respect to the exact bounding box

size (i.e., not power of two approximated).

102 Chapter 4. Parametric surface coding

As in the breakpoint case we first signal the number of leading all zero bitplanes. Let ηc,1 be the

number of most significant bitplanes that are identically zero, except possibly for the top-left corner.

Likewise, let ηc,2 be the number of additional such bitplanes when the top column and leftmost row

are ignored. In general ηc,2 > ηc,1. We arithmetically code both these quantities using a comma

code but with separate contexts (i.e., ηc,1 0s followed by one 1 with context CBZBP plus ηc,2 0s

followed by one 1 with context CZBP). The remaining uncoded bits are handled by bitplanes, one

bit at a time. For each value the most significant 0 bits up to and including the most significant

1 bit are coded. The context depends on the position of the most significant 1 bit of the top and

left neighbors not being below the current bitplane (i.e., the neighbors are significant). The four

possibilities are the top neighbor only, left neighbor only, both neighbors or none. This rather

simple context modeling allows to efficiently exploit most of the first order redundancy still present

in the values. Inspired by the context modeling of JPEG 2000 [107] the remaining, magnitude

refinement, bits are coded with one of three contexts. The first magnitude refinement bit of each

value is coded with context CMREF1S if the top or left neighbors are significant at the current

bitplane and CMREF1NS otherwise. The rest of the magnitude refinement bits are coded with

a third context (CMREF2). This special handling of the first magnitude refinement bit allows to

exploit the correlation with its neighbors that is usually present in it. Lower magnitude refinement

bits do not, however, exhibit such a correlation and it is therefore not worth using more elaborate

schemes to code them. Finally, for each non-zero value the sign is coded with the CSIGN context.

Due to differing statistics the top-left value as well as the top row and leftmost column values

use a simplified set of contexts to code the most significant bits. The top-left value uses a context

CTLLZERO while the other top row or leftmost column values use the CBLZERO context. Hence,

no first-order modeling is employed at these locations.

The entropy coding of the quantizer indices of weights follows an identical scheme, using a

separate set of contexts, with the only exception that the top-left value is handled as any other

top row or leftmost column value. This is done since the predicted weight value at that location is

typically accurate. The weights require, however, that we encode the per surface quantizer step size

∆w. Instead of coding ∆w for each surface we code the factor used to convert from the global step

size ∆′
w. Let 2ε̄w be this factor, rounded to the next integer power of two. From Section 4.5.2

ε̄w =
⌈

log2

(dBB

minwi,j

)⌉

− L̂,

where the quantity dBB is the diagonal length of the bounding box of the surface’s control points,

used as an approximation of max‖Pi,j −T‖ (see Section 4.5.2). We code ε̄w as a signed fixed length

integer with the uniform context of the MQ-coder.

The number of bits Nw required to handle the weight quantizer indices without overflow is easier

to derive than for coordinates. Since we always work with normalized weights in the range (0, 1] the

range of the prediction error is [−2, 2]. The number of required bits is thus Nw = εw + ε̄w + 2. If

like in the coordinate case we choose to limit the predicted value to be in the range [0, 1] then one

less bit is required.

Despite the different statistics of coordinates and weights we have chosen to use the same entropy

coder for both of them. The motivations are that the coordinate entropy coder performs well for

weights and that the complexity of the implementation is lowered by the use of the same entropy

coder, in particular for hardware designs. The scheme requires a total of twelve arithmetic coder

contexts per coordinate or weight, leading to a grand total of forty-eight for the entropy coding of

control points.

4.6. Degenerate and closed surfaces 103

4.6 Degenerate and closed surfaces

NURBS surfaces sometimes form closed shapes, such as cylinders. The common, although not

unique, way of obtaining a closed surface is to use clamped knot vectors and make the first and

last rows, or columns, of the control net identical. The control net of a closed surface will therefore

contain a series of pairs of coincident control points. In a similar manner the modeling of some

shapes that do not have tensor product like topology, such as a sphere octant, require multiple

coincident control points as shown in one of the examples of Section 2.4.5. In such cases we say

that the coincident control points form a pole, while in the case of closed surfaces we say that the

pairs of coincident control points form a seam. Note that, in general, control points in a seam have

only one duplicate, while control points at poles have two or more duplicates. In order to preserve

these important characteristics of a surface it is necessary to ensure that control points that are

coincident in the original model are still coincident in the decoded model. This can only be ensured

if the coefficients of the linear predictor are integers. In fact, if a coefficient is not an integer it is

probable that the prediction of a control point is not aligned to the quantization grid of a coincident

control point, resulting in a different coded position in space, which in turn produces undesirable

visual distortions (e.g., cracks). Furthermore, the prediction errors should all be quantized in the

same coordinate system, preventing the use of the local basis (see Section 4.5.1). In short, poles and

seams of a control net are only preserved if the control point predictor has only integer coefficients,

of which the parallelogram predictor is a special case, and the local basis is not used. Besides these

restrictions, linear predictors do not work well at poles and the repeated coding of identical control

points usually leads to less than optimal compression performance. It is therefore desirable to

provide means to efficiently and faithfully code duplicate control points, without placing restrictions

on the prediction of control points.

The problem of coding duplicate relationships among control points is equivalent to the problem

of handling, in a lossless manner, non-manifolds in polygonal mesh coding. In Section 3.4.11 we

reviewed existing techniques, of which the one of Guéziec et al. [32] is the most efficient. A variation

of their variable length coding scheme (see Section 3.4.11) could be easily derived and would probably

be rather efficient. Nevertheless, we propose an alternative technique which is simpler to encode

and models the seams and poles of control nets in a more efficient way, while at the same time being

flexible.

First we establish a duplicate map for each control net. It lists the control points in raster scan

order. For each control point that has duplicates we provide the list containing their indices, also

in raster scan order. For control points that are already listed as duplicates of a previous control

point no duplicate list is provided. Evidently, no control point coordinate or weight data needs to

be coded for duplicate points. The duplicate map is entropy coded with the arithmetic coder, as

follows. For each control point that is not a duplicate of a previous one we code a flag signaling

if it has any duplicates, using one of four contexts. The one to use is determined by the top and

left neighbors having or not any duplicates themselves. This simple context modeling is intended

to capture the different statistics of seams and poles. If the current control point, whose position

we denote as (i0, j0), has any duplicates its duplicate list follows. For each member of this list one

bit is coded, with an independent context, telling if it is the last member of the list or not. If the

list has more than one member we predict to be at a pole, otherwise we predict to be at a seam.

Now we need to code the position of the duplicate in the control net. Let it be (i, j). The row index

i is coded as the offset from the one of the previous duplicate in the list. Furthermore, the offset

is predicted as the offset used for that previous duplicate, unless we are at the first duplicate of a

pole, in which case it is predicted as zero. If the row offset is zero the column index j is coded as

the offset from the column index of the previous duplicate, plus one. This offset is itself predicted

104 Chapter 4. Parametric surface coding

in the same way as for the row index. If the row offset is non-zero we code j as the offset from j0
and the value used to predict future column offsets is set to zero. Note that in the cases where the

row or column index is implicit (e.g., the previous duplicate was in the last row of the control net)

the row or column index is omitted.

The prediction error e of each offset is coded as follows. One bit is coded, with its own context,

signaling if it is zero. If non-zero we code |e| − 1 from its most significant to its least significant bit,

where we derive the number of magnitude bits from the control net dimensions. The leading 0 bits

and the most significant 1 bit are coded with a specific context, while the magnitude refinement

bits are coded with the MQ-coder’s uniform context. Finally, the sign of e is coded with its own

context, if not implied from its maximum and minimum possible values. The context used to code

the condition e = 0 is different for rows and columns. In addition two sets of these two contexts are

used, one when coding a pole and another when coding a seam.

Table 4.1 shows the coding cost per control point incurred by the technique above for various

models, and compares it to the cost of coding the coordinates and weights. As it can be seen,

the duplicate map’s cost is almost negligible when the proportion of control points having or being

duplicates is low. When this proportion increases the cost increases as well but it never exceeds 1

bit per control point. The overall coding cost of control points is almost always decreased, often

by a noticeable amount. In particular the lion model has many surfaces with poles and therefore

benefits the most, reaching savings of almost 20%. Table 4.2 shows the same results but compares

it to the coding cost of coordinates and weights for a rather large quantization step size (10−2 is

roughly equivalent to a 7 bit quantization of the original data). As expected, the benefit of duplicate

map coding decreases with larger quantization step sizes. Nevertheless, it still remains advantageous

for several models, despite the large quantizer. Hence, the coding of the duplicate map is usually

beneficial, even in cases where its use is not strictly required because a predictor with integer only

coefficients is used and quantization is performed in the global coordinate system.

model c.p. having/being dmap cost c.p. coord. and weight cost (bits/c.p.)

duplicates (%) (bits/c.p.) w/o dmap with dmap change (%)

coke 8.8 0.15 9.01 8.76 −2.8

subprop 22.6 0.20 8.59 7.74 −9.9

killeroo-lowres 2.2 0.01 5.87 5.83 −0.7

fairing 1.1 0.08 6.31 6.34 +0.5

scissors 38.1 0.77 6.63 6.56 −1.1

lion 48.5 0.90 16.21 13.12 −19.1

Table 4.1: The duplicate map (dmap) coding cost and change in control point (c.p.) coding cost

for ∆′
c = 2× 10−3 and ∆′

w = 2× 10−3, with the parallelogram predictor, for various models.

4.7 Trimmed surfaces

Trimmed NURBS surfaces, as explained in Section 2.4.5, are often employed in modeling, be it

in CAD applications or otherwise. A generic system should therefore be able to handle them.

In general, most systems describe the trimming curves as NURBS in the parametric space of the

surface. In addition, piecewise linear curves are also usually accepted as a compact way to describe

simple trims. In what follows we describe how do we code trimming curves. We restrict all trimming

curves to be in NURBS form and we do not cater for piecewise linear curves. In fact, the latter

can be trivially converted to order 2 NURBS with a clamped uniform knot vector and vice-versa.

4.7. Trimmed surfaces 105

model c.p. having/being dmap cost c.p. coord. and weight cost (bits/c.p.)

duplicates (%) (bits/c.p.) w/o dmap with dmap change (%)

coke 8.8 0.15 5.84 5.73 −1.9

subprop 22.6 0.20 5.00 4.64 −7.2

killeroo-lowres 2.2 0.01 3.01 3.00 −0.3

fairing 1.1 0.08 3.54 3.59 +1.4

scissors 38.1 0.77 3.91 4.20 +7.4

lion 48.5 0.90 10.45 8.74 −16.4

Table 4.2: The duplicate map (dmap) coding cost and change in control point (c.p.) coding cost

for ∆′
c = 10−2 and ∆′

w = 10−2, with the parallelogram predictor, for various models.

(a) fairing, 15 surfaces, 734 control points. (b) lion, 49 surfaces, 2142 control points.

Figure 4.14: The fairing and lion models.

106 Chapter 4. Parametric surface coding

Given that our encoding of these type of knot vectors is very efficient it is more compact to code all

piecewise linear curves as NURBS.

Prior to coding the trimming curves it is necessary to signal the number of trimming loops of a

surface and the number of curves in each of these. Most often a NURBS surface has either zero or

one trimming loop, and rarely more. We therefore use one bit to signal the presence of trimming

loops and, if there are any, another bit to signal if there is one trimming loop or more. Each of these

bits is arithmetically coded with its own context. If there are more trimming loops, their number

is coded as a fixed length integer with the MQ-coder’s uniform context. The number of trimming

curves in each loop is coded in a way analogous to the coding of knot vector lengths. We first code

a group index describing the number of bits used to code the value and then code the binary word

with the MQ-coder’s uniform context. This allows to support a large number of trimming curves,

while using only a few bits in the common case of just a few curves.

4.7.1 Knot vectors

Knot vectors are coded in the same way as those of surfaces, as explained in Section 4.4. The

only difference is that we require that all knot vectors be clamped. As the trimming curves in a

loop must form a closed curve the end-point of a curve must coincide with the start-point of the

subsequent one. In order to ensure this, design systems use clamped curves and make the last and

first control point of adjacent curves coincident. This restriction allows us to avoid coding the end

control points and automatically guarantees that the decoded trim curves form a closed curve. If,

however, a non-clamped trim curve is encountered during the coding process, it can be converted

to a clamped one without any geometric or parametric distortion. The sets of arithmetic coder

contexts used to entropy code the trim curve knots is independent from that of surfaces to allow for

differing statistics and thus better compression.

4.7.2 Control points

The control points are also coded analogously to surface control points. The major difference,

however, is that the control points of the trim curve live in the 2-dimensional parametric (u, v)

space of the surface. Furthermore, their coordinates are always in the range [0, 1] since the knot

vectors of the surface are normalized. As mentioned above, the affine coordinates of the last control

point of each curve need not be coded. The weight, however, can differ between the last and first

control points of two adjacent curves and therefore needs to be coded. In fact, the end weights of

the control polygon of a clamped curve do not affect the end points of the curve itself. The predictor

is a 1D linear predictor, since we deal with a control polygon instead of a control net. As particular

cases we note the zero-order one, which predicts a control point as being equal to its predecessor,

and the first-order one, which predicts constant differences between adjacent control points. The

entropy coder is equivalent to that of surfaces, although with the 2D context modeling reduced to

1D. Figure 4.15 shows the trimming curves of a surface of the subprop model. As it can be seen,

the curves are much more complex than the surface they trim, which is instead rather simple. This

is often the case and leads to a coding cost for trimming curves much higher than for surfaces.

4.7.3 Trim distortion in 3D space

Trimming curves live in the (u, v) parametric space of the trimmed surface. Therefore, the distortion

bounds that we have established in Sections 4.4.3 and 4.5.1 only relate the distortion of the trim

knots or control points to the distortion in the parametric (u, v) space. A deviation of a trim curve

4.7. Trimmed surfaces 107

(a) trimmed surface (b) trimming loops

(c) detail of 2nd trimming loop

Figure 4.15: A trimmed surface of the subprop model and its corresponding three trimming loops.

The surface has 25 control points, while the trimming curves total 199 control points.

108 Chapter 4. Parametric surface coding

in the parametric space will have as effect the displacement of the surface’s borders in 3D space,

leading to a potentially visible distortion. Hence, it is important that we obtain bounds that relate

parametric to Euclidean distortion. We achieve this by approximating the surface with a first order

Taylor expansion. Given a parametric deviation (ρu, ρv) at a point (u, v) the surface deviation is

S(u0 + ρu, v0 + ρv)− S(u0, v0) ≈
∂

∂u
S(u, v)ρu +

∂

∂v
S(u, v)ρv = Su(u, v)ρu + Sv(u, v)ρv,

where we use the notation of Section 2.4. Its norm can be bounded as

max‖Su‖ |ρu|+ max‖Sv‖ |ρv|,

where we have dropped u and v for clarity. From the above it is clear that the same distortion on

the u and v coordinates of trim control points can have very different effects on the resulting 3D

distortion. Because of this, we use different quantizer step sizes to code the u and v coordinates of

these points that we denote by ∆t,u and ∆t,v, respectively. Hence, the 3D surface distortion due to

control point coordinate quantization is bounded by

max‖Su‖
∆t,u

2
+ max‖Sv‖

∆t,v

2

Instead of explicitly signaling ∆t,u and ∆t,v for each surface, we signal a global quantizer ∆′
t,c for

the entire model, relative to its approximate bounding box size 2L̂ and set

∆t,u =
∆′
t,c

2ε̄t,u
≤

∆′
t,c2

L̂

2max‖Su‖
,

∆t,v =
∆′
t,c

2ε̄t,v
≤

∆′
t,c2

L̂

2max‖Sv‖
,

where ε̄t,u = dlog2 max‖Su‖e+1− L̂ and ε̄t,v = dlog2 max‖Sv‖e+1− L̂. Note that we assign half the

distortion to u and half to v, by lack of a better estimate of the interaction between the two. This

guarantees that the L∞ surface distortion due to the quantization of trim control point coordinates

does not exceed ∆′
t,c/2. The values ε̄t,u and ε̄t,v are coded for each surface as signed fixed-length

integers through the MQ-coder’s uniform context, if there are any trims.

For the weight quantization a slightly different bound is used, since given a weight distortion we

know the norm of the distortion on the parametric plane but not the individual u and v distortions.

If ρ is the deviation in parametric space then the deviation in 3D space is bounded by

(max‖Su‖+ max‖Sv‖)ρ.

We signal a global trim weight quantizer ∆′
t,w for all surfaces, relative to 2L̂ and set the quantizer

step size ∆t,w for each trim curve as

∆t,w =
∆′
t,w

2ε̄t,w+ε̄w
,

where ε̄t,w = dlog2(max‖Su‖+ max‖Sv‖)e− L̂ and ε̄w is calculated for each trim curve as explained

in Sections 4.5.2 and 4.5.3. Here ε̄t,w accounts for the relation between the parametric and 3D

space distortions, while ε̄w accounts for the relation between projective and affine parametric space

distortions. Thus, the L∞ distortion due to trim curve weight quantization does not exceed ∆′
t,w/2.

The value ε̄t,w is coded for each surface in the same way as ε̄t,u and ε̄t,v above.

Finally, the quantizer step size is set in a similar fashion using the same bound as given above for

weights. We signal a global trim knot quantizer ∆′
t,k, relative to 2L̂ as usual, and set the quantizer

for the knot vector of each trim as

∆t,k =
∆′
t,k

2ε̄t,w+dlog2 D̄e ,

4.8. Performance analysis 109

where D̄ is calculated for each trim knot vector as explained in Section 4.4.2 and dlog2 D̄e is coded

as explained in Section 4.4.3. Here D̄ accounts for the relation between the trim curve parametric

and surface parametric distortions.

In order to compute the ε̄t,u, ε̄t,v and ε̄t,w quantities we need to know the maximum norm of the

partial derivatives Su and Sv of the surface. If the surface is non-rational and clamped the partial

derivatives are non-rational NURBS surfaces as well and are given by Eq. (2.11). Their maximum

norm is thus straightforward to obtain using the convex hull property. If the surface is rational the

partial derivatives are not NURBS surfaces and the same strategy cannot be applied. Nevertheless,

Eq. (2.13) gives the derivative in terms of the non-rational surface A(u, v), obtained by considering

only the first three homogeneous coordinates, and the 1D non-rational function w(u, v), obtained by

considering only the homogenizing coordinate. From Eq. (2.13) the maximum norm of the derivative

is bounded as

max‖Sα‖ ≤
max‖Aα(u, v)‖+ max|wα(u, v)|max‖S(u, v)‖

minw(u, v)
,

where α stands for the partial derivative with respect to u or v, as appropriate. Since Aα(u, v) and

wα(u, v), as well as S(u, v), are all NURBS their maximum and minimum norm is computed by the

convex hull property. Like in Section 4.4.2 a translation can be applied prior to computing A(u, v)

so as to obtain a tighter bound. This does not affect the derivative, since it is translation invariant.

Finally, if the surface is not clamped it can be converted to a clamped one, by using knot insertion,

for the purpose of computing the maximum derivative. Since knot insertion does not modify the

surface, either parametrically or geometrically, the derivative of the original and clamped surfaces

are identical.

4.8 Performance analysis

In the previous sections we have described the coding technique and distortion trade-offs for all the

constituents of a NURBS model: knot vectors, control points and weights and trimming curves.

In this section we provide a detailed experimental analysis of the relation between global quantizer

settings and the established distortion bounds as well as the resulting compression performance

of the coding system. We consider only the parallelogram predictor, with the first order “edge”

predictor, for surface control point coordinates. For trim curve control points we consider only the

first order predictor. We postpone the analysis of different predictors till the next chapter.

4.8.1 Distortion measurement

In the following, the parametric L∞ and L2 distortions between the original and coded surfaces is

measured by sampling both NURBS surfaces at a very large number (approx. 250’000 per model)

of regularly spaced positions on the parametric domain and taking the Euclidean distance between

the resulting pairs of points. The Hausdorff L∞ and L2 distortions, as defined in Section 3.3.4,

are obtained by sampling one surface at regularly spaced positions on the parametric domain and

searching, for each sample, the closest point on the other surface. Both, the forward and backward

Hausdorff distortions are measured and the resulting symmetric measure is reported. The clos-

est point problem is resolved using numerical methods as outlined in [80], namely a combination

of Newton-Raphson root finding and Broyden-Fletcher-Goldfarb-Shanno (BGFS) and Nelder and

Mead’s Simplex minimization algorithms [26]. This combination provides a robust, yet reasonably

fast, solution for the problem.

Unfortunately, the above strategy for measuring the parametric distortion cannot be straight-

forwardly applied to trimmed surfaces. The problem is that the parametric domain is no longer a

110 Chapter 4. Parametric surface coding

square and there is no one-to-one correspondence between positions in the original and coded para-

metric domains due to the distortion of the trimming curves that define this domain. Therefore,

measuring the parametric distortions for trimmed surfaces is an ill-defined problem. We instead

resort to only measuring the Hausdorff distortion. Furthermore, since the evaluation of the closest

point problem is rather complicated for trimmed surfaces we resort to tessellating the models to

a very large number of triangles (approx. 900’000) and measuring the Hausdorff distortion on the

resulting polygonal models with the Mesh [3] tool. The tessellation process is performed using the

OpenGL NURBS tessellator [119].

4.8.2 Quantizers and rate distortion

Surface knot vectors

In Section 4.4.2 we used the previously established knot distortion bounds to derive a per-surface

quantization step size ∆k from a global (i.e., per-model) step size ∆′
k that guarantees a surface

L∞ distortion not exceeding half this latter value. Figure 4.16 shows the resulting distortions for

varying values of the global knot quantizer for two representative models with non-uniform knots.

The parametric L∞ distortion is around 10 times smaller than expected from the value of ∆′
k. This

means that the influence of the knot quantization is consistently overestimated, which is in agreement

with the observations in Section 4.4.2. The L2 distortions are, however, very much smaller. The

reason for this is twofold. First, on typical models a considerable number of surfaces have uniform

break vectors, which are losslessly coded, and hence reduce the overall L2 distortion. Second, the

knot distortion bounds are worst case L∞ estimations and a considerably smaller L2 distortion is

to be expected.

10
−4

10
−3

10
−2

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

∆’
k

D
is

to
rt

io
n

(B
B

ox
 s

iz
e

re
la

tiv
e)

Hausdorff L∞
Hausdorff L

2
Parametric L∞
Parametric L

2
Expected L∞

(a) coke

10
−4

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

∆’
k

D
is

to
rt

io
n

(B
B

ox
 s

iz
e

re
la

tiv
e)

Hausdorff L∞
Hausdorff L

2
Parametric L∞
Parametric L

2
Expected L∞

(b) scissors

Figure 4.16: Distortion due to knot quantization for varying ∆′
k on various models. The quantizer

step sizes are roughly equivalent to 7, 8, 9, 10, 11 and 12 bit quantizations.

Figure 4.17 shows the knot coding rate-distortion functions for the same models. The bitrate

is reported as bits per knot. The knot coding includes the B-Spline degrees, knot vector lengths,

multiplicity maps and breakpoint values. Surprisingly, the coke model has a rather non-smooth

behavior: although reducing the quantization step size always reduces the distortion it does not

4.8. Performance analysis 111

always increase the bitrate. Nevertheless, the bitrate differences are rather small. The probable

cause of such unexpected behavior is the fact that DPCM is a non-linear process and some particular

quantizer values yield easier to compress data. The general trend is, however, similar to that of the

better behaved scissors model. By comparing the plots one can also observe that the knot coding

cost for scissors is much higher than for coke. In fact, the proportion of uniform break vectors,

which are much more efficiently coded, in the latter is much higher than in the former.

1.2 1.25 1.3 1.35 1.4 1.45
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

rate (bits/knot)

D
is

to
rt

io
n

(B
B

ox
 s

iz
e

re
la

tiv
e)

Hausdorff L∞
Hausdorff L

2
Parametric L∞
Parametric L

2

(a) coke

5 5.5 6 6.5 7
10

−7

10
−6

10
−5

10
−4

10
−3

rate (bits/knot)

D
is

to
rt

io
n

(B
B

ox
 s

iz
e

re
la

tiv
e)

Hausdorff L∞
Hausdorff L

2
Parametric L∞
Parametric L

2

(b) scissors

Figure 4.17: Knot rate-distortion for varying ∆′
k on various models. The quantizer step sizes are

roughly equivalent to 7, 8, 9, 10, 11 and 12 bit quantizations.

Finally, Figure 4.18 shows the increase in the overall (i.e., including knots and control points)

bitrate when the global knot quantizer step size is changed from 7.8 × 10−3 ≈ 2−7 to smaller

values, all other things being kept equal. As it can be seen, the increase is often modest, although

non-negligible. Nevertheless, models that have a large proportion of non-uniform break vectors

(e.g., gnom, goblet, scissors, stingray) can incur a considerable increase when exceedingly small

quantizers are used.

Summarizing, applications that must ensure a prescribed parametric L∞ distortion can rather

safely use a quantizer step size 10 to 20 times larger than the maximum allowed distortion. Fur-

thermore, applications for which only the Hausdorff distortions are relevant can use much more

aggressive quantization, with a step size often 150 times larger, or even more, than the allowed

distortion. Note, however, that parametric distortion is relevant for trimmed surfaces, as previously

noted. On the other hand, as shown in Section 4.8.5, the knot coding cost represents only a small

proportion of the overall coding cost and it is therefore useless to use an excessively large knot

quantizer step size.

Surface weights

As previously explained in Section 4.5.2, the per-surface weight quantizer step size ∆w is derived from

the global quantizer step size ∆′
w using the surface’s bounding box diagonal length and minimum

weight. Figure 4.19 shows the resulting distortions for varying values of the global weight quantizer.

As for knots, the parametric L∞ distortion is considerably smaller than what is predicted by the

bound given in Section 4.5.2, which is based on that of Eq. (4.7). This behavior is not particular to

112 Chapter 4. Parametric surface coding

−1 0 1 2 3 4 5 6 7 8

coke

gnom

goblet

lion

sail_seawolf

sandbagger

scissors

stingray

% bitrate increase

∆’
k
 = 2.4e−04

∆’
k
 = 9.8e−04

∆’
k
 = 2.0e−03

∆’
k
 = 7.8e−03

Figure 4.18: Overall bitrate increase arising by reducing the global knot quantizer step size from

7.8× 10−3, for various models and ∆′
c = ∆′

w = 7.8× 10−3.

these models and has been observed on all the our test rational models. In fact, Eq. (4.7) usually

provides a rather loose bound. Furthermore, in Section 4.5.2 we apply this bound collectively to

all weights of a surface. A somewhat tighter bound can be found by applying Eq. (4.7) to each

weight independently. For each weight wi,j only the bounding box and weights of the control points

affecting the relevant knot spans for wi,j need to be considered, instead of all the surface control

points. The overall surface bound would then be the maximum of these per-weight bounds. It is not

clear, however, that this much more complex bound would be tighter, as the basic one of Eq. (4.7)

is not itself tight. Figure 4.20 shows the corresponding weight rate-distortion curves, where the

bitrate is reported as bits per weight of rational surfaces. Both models are well behaved. We can

observe, however, that the weight coding cost is much higher for coke than for scissors. This large

difference is easily explained by the histograms shown in Figure 4.12. In fact, coke has many more

different weight values and its prediction error distribution is wider, leading to higher entropy and

thus a reduced compression ratio. Summarizing the above results an application can, in general,

use a global weight quantizer step size ∆′
w that is 20 or more times larger than the allowed L∞

distortion. As shown in Section 4.8.5, the weight coding cost can sometimes be a considerable

part of the overall coding cost (e.g., for coke) and choosing a suitable value of ∆′
w is important in

achieving the highest rate-distortion performance.

Surface control points

Figure 4.21 shows the overall (i.e., including the distortion induced by knot, weight and control point

coordinate quantization) for varying quantizer step sizes. Given a quantizer step size ∆′
c the expected

parametric L∞ distortion is
√

3∆′
c/2

∗. From the plots, it is clear that the parametric L∞ distortion

is very close to the expected distortion. Furthermore, the Hausdorff L∞ distortion is almost identical

to the parametric one. Taking into account the results on knot and weight induced distortion above,

one can note that the largest contributor to the overall distortion is the quantization of control

point coordinates. In addition one can note that the parametric and Hausdorff L2 distortions are

∗Given that we work in 3D and that each coordinate has an identical maximum error of ∆′
c/2 the maximum

resulting Euclidean error distance is
√

3 larger, or
√

3∆′
c/2.

4.8. Performance analysis 113

10
−4

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

∆’
w

D
is

to
rt

io
n

(B
B

ox
 s

iz
e

re
la

tiv
e)

Hausdorff L∞
Hausdorff L

2
Parametric L∞
Parametric L

2
Expected L∞

(a) coke

10
−4

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

∆’
w

D
is

to
rt

io
n

(B
B

ox
 s

iz
e

re
la

tiv
e)

Hausdorff L∞
Hausdorff L

2
Parametric L∞
Parametric L

2
Expected L∞

(b) scissors

Figure 4.19: Distortion due to weight quantization for varying ∆′
w on various models. The quan-

tizer step sizes are roughly equivalent to 7, 8, 9, 10, 11 and 12 bit quantizations.

2.5 3 3.5 4 4.5 5
10

−7

10
−6

10
−5

10
−4

10
−3

rate (bits/weight)

D
is

to
rt

io
n

(B
B

ox
 s

iz
e

re
la

tiv
e)

Hausdorff L∞
Hausdorff L

2
Parametric L∞
Parametric L

2

(a) coke

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
10

−7

10
−6

10
−5

10
−4

10
−3

rate (bits/weight)

D
is

to
rt

io
n

(B
B

ox
 s

iz
e

re
la

tiv
e)

Hausdorff L∞
Hausdorff L

2
Parametric L∞
Parametric L

2

(b) scissors

Figure 4.20: Weight rate-distortion for varying ∆′
w on various models. The quantizer step sizes

are roughly equivalent to 7, 8, 9, 10, 11 and 12 bit quantizations.

114 Chapter 4. Parametric surface coding

consistently 2 and 3 times smaller than their L∞ counterparts, respectively, for all quantizer step

sizes. This has also been observed on all the other test models.

10
−4

10
−3

10
−2

10
−5

10
−4

10
−3

10
−2

∆’
c

D
is

to
rt

io
n

(B
B

ox
 s

iz
e

re
la

tiv
e)

Hausdorff L∞
Hausdorff L

2
Parametric L∞
Parametric L

2
Expected L∞

(a) coke

10
−4

10
−3

10
−2

10
−5

10
−4

10
−3

10
−2

∆’
c

D
is

to
rt

io
n

(B
B

ox
 s

iz
e

re
la

tiv
e)

Hausdorff L∞
Hausdorff L

2
Parametric L∞
Parametric L

2
Expected L∞

(b) scissors

Figure 4.21: Overall model distortion for varying ∆′
c, with ∆′

k = ∆′
c and ∆′

w = ∆′
c, for various

models. The quantizer step sizes are roughly equivalent to 7, 8, 9, 10, 11 and 12 bit quantizations.

Figure 4.22 shows the corresponding Hausdorff L∞ rate-distortion curves with a fixed weight

quantizer step size and varying control point coordinate and knot quantizers, when using the paral-

lelogram predictor. Worth noting is the fact that the knot quantizer has virtually no effect on the

distortion and little effect on the bitrate. A notable exception is the use of large knot quantizers

(e.g., 3.9 × 10−3 ≈ 2−8 and 7.8 × 10−3 ≈ 2−3) with small coordinate and weight quantizers (i.e.,

at high bitrates). As shown in Figure 4.16, in this situation the knot induced distortion becomes

comparable to, or larger than, the control point induced distortion leading to a severe degradation

of the compression performance. This phenomenon is, however, not observable on the Hausdorff L2

distortion. Although not shown, the latter is approximately 3 times smaller than the L∞ distortion

for ∆′
k = ∆′

c and thus is just a parallel plot. The analogous plots for various ∆′
w values are shown

in Figure 4.23. In this case, however, the behavior of coke and scissors is considerably different.

Although the distortion of both models is not affected by a change of ∆′
w, the bitrate of the latter

is considerably affected, whereas that is not the case for the former. In the coke model all the

surfaces are rational and its weight distribution does not lend itself to highly effective compression.

On the other hand in scissors only one surface is rational, out of seven, representing only 8%

of the control points, and its weight distribution is more easily compressed. Nevertheless, in both

models the large quantizer ∆′
w = 7.8 × 10−3 provides the best rate-distortion performance, at all

rates. This conclusion also follows from the previous analysis of the weight-only distortion, where

we stated that a weight quantizer up to 20 times larger than the desired global L∞ distortion can

be used. As for the varying knot quantizer case, the L2 distortion shows the same behavior, hence

the corresponding plots are omitted. Figure 4.24 shows the distortion and rate-distortion results

obtained on the very large killeroo-hires model, which is non-rational and has uniform knot

vectors only. As it can be seen, this model exhibits the same behavior although it shows much lower

bitrates due to the high density of control points.

Visual results for the scissors model are shown in Figure 4.25 for two coordinate quantizer step

4.8. Performance analysis 115

9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14
10

−4

10
−3

10
−2

rate (bits/cp)

L ∞
 H

au
sd

or
ff

di
st

or
tio

n
(B

B
ox

 s
iz

e
re

la
tiv

e)

∆’
k
 = 2.4e−04

∆’
k
 = 4.9e−04

∆’
k
 = 9.8e−04

∆’
k
 = 2.0e−03

∆’
k
 = 3.9e−03

∆’
k
 = 7.8e−03

∆’
k
 = ∆’

c

(a) coke

5 6 7 8 9 10 11 12 13
10

−4

10
−3

10
−2

rate (bits/cp)
L ∞

 H
au

sd
or

ff
di

st
or

tio
n

(B
B

ox
 s

iz
e

re
la

tiv
e)

∆’
k
 = 2.4e−04

∆’
k
 = 4.9e−04

∆’
k
 = 9.8e−04

∆’
k
 = 2.0e−03

∆’
k
 = 3.9e−03

∆’
k
 = 7.8e−03

∆’
k
 = ∆’

c

(b) scissors

Figure 4.22: Overall rate-distortion for varying ∆′
c and various ∆′

k values, with ∆′
w = 7.8× 10−3,

with the parallelogram predictor.

6 7 8 9 10 11 12 13 14
10

−4

10
−3

10
−2

rate (bits/cp)

L ∞
 H

au
sd

or
ff

di
st

or
tio

n
(B

B
ox

 s
iz

e
re

la
tiv

e)

∆’
w

 = 2.4e−04
∆’

w
 = 4.9e−04

∆’
w

 = 9.8e−04
∆’

w
 = 2.0e−03

∆’
w

 = 3.9e−03
∆’

w
 = 7.8e−03

∆’
w

 = ∆’
c

(a) coke

5 6 7 8 9 10 11 12 13
10

−4

10
−3

10
−2

rate (bits/cp)

L ∞
 H

au
sd

or
ff

di
st

or
tio

n
(B

B
ox

 s
iz

e
re

la
tiv

e)

∆’
w

 = 2.4e−04
∆’

w
 = 4.9e−04

∆’
w

 = 9.8e−04
∆’

w
 = 2.0e−03

∆’
w

 = 3.9e−03
∆’

w
 = 7.8e−03

∆’
w

 = ∆’
c

(b) scissors

Figure 4.23: Overall rate-distortion for varying ∆′
c and various ∆′

w values, with ∆′
k = ∆′

c, with

the parallelogram predictor.

116 Chapter 4. Parametric surface coding

10
−4

10
−3

10
−2

10
−5

10
−4

10
−3

10
−2

∆’
c

D
is

to
rt

io
n

(B
B

ox
 s

iz
e

re
la

tiv
e)

Hausdorff L∞
Hausdorff L

2
Parametric L∞
Parametric L

2
Expected L∞

(a) killeroo-hires

2 3 4 5 6 7 8 9
10

−5

10
−4

10
−3

10
−2

rate (bits/cp)
D

is
to

rt
io

n
(B

B
ox

 s
iz

e
re

la
tiv

e)

Hausdorff L∞
Hausdorff L

2
Parametric L∞
Parametric L

2

(b) distortion (parallelogram predictor)

Figure 4.24: Overall distortion and rate-distortion for the highly detailed killeroo-hires model.

sizes, along with the original model. For ∆′
c = 3.9× 10−3 some artifacts are visible along the top of

the blade, whereas no artifacts are visible for ∆′
c = 9.8× 10−4. Figure 4.26 shows a detailed view of

the same coded models that exemplifies the so-called “crack” problem. In fact, the larger quantizer

step size creates a sufficiently large deviation of the borders of two adjacent surfaces, creating a

visible crack that does not exist in the original model. The crack is, however, imperceptible with the

smaller quantizer. This crack problem is the reason why the L∞ distortion is a relevant distortion

measure, since it provides an upper bound on the width of the crack. Finally, Figure 4.27 shows the

distribution on the model of the Hausdorff distortion along with the corresponding error histogram,

as shown by the Mesh program [3]. As it can be seen the error distribution is biased toward zero

(i.e., mostly blue and green color shades), while the maximum distortion is very localized (i.e., no

visible surface points are shown in red). This demonstrates that the resulting coded surfaces behave

nicely, as long as the targeted L∞ distortion is small enough to prevents cracks.

Trimmed surfaces

In addition to the three quantizer step sizes, ∆′
k, ∆′

c and ∆′
w, analyzed above three extra quantizer

step sizes determine the rate-distortion performance for models with trimmed surfaces: ∆′
t,k for trim

curve knots and ∆′
t,c and ∆′

t,w for trim curve control point coordinates and weights in parametric

space, respectively. As explained in Section 4.8.1, we resort to tessellation of the trimmed models in

order to measure the distortion. Unfortunately, the OpenGL NURBS tessellator is not very accurate

and sometimes introduces a measurement error comparable to the magnitude of the distortion being

measured, hence yielding somewhat unreliable results. As a consequence, the results presented in

this paragraph are not very accurate for small distortions (i.e., in the order of 10−4).

Figure 4.28 shows the distortion induced by the trim curve coding as the control point coordinate

and weight quantizer step sizes are varied. We only report the L∞ distortion as that is the only

surface distortion that is relevant for trimming curves. The L2 surface distortion is not relevant, as

it is measured on the entire surface and the coding of the trim curves only affects the borders of the

trimmed surface. The corresponding rate-distortion curves are show in Figure 4.29, where the rate is

reported as bits per trim curve control point. We can observe that the actual distortion is below the

4.8. Performance analysis 117

(a) original

(b) ∆′
c = 3.9 × 10−3 and ∆′

k
= ∆′w = 7.8 × 10−3 (c) ∆′

c = 9.8 × 10−4 and ∆′
k

= ∆′w = 7.8 × 10−3

Figure 4.25: Visual results for the scissors model.

118 Chapter 4. Parametric surface coding

(a) ∆′
c = 3.9 × 10−3 and ∆′

k
= ∆′w = 7.8 × 10−3 (b) ∆′

c = 9.8 × 10−4 and ∆′
k

= ∆′w = 7.8 × 10−3

Figure 4.26: Detail of visual results for the scissors model of Figure 4.25.

expected one. The somewhat irregular behavior at small quantizer step sizes is suspected to be an

artifact of the OpenGL NURBS tessellator, as explained above. The corresponding rate-distortion

curves are shown in Figure 4.29. It can be observed that the cost of trim curve coding is very high,

consuming in excess of 15 bits per control point. The reasons for such a high cost, when compared to

the surface coding cost, are many. Often, the trimming curves are the product of applying Boolean

set operators and are obtained through numerical approximation algorithms. As such, the trimming

curves can present a large number of irregularly spaced knots and control points, which are difficult

to predict. Furthermore, surfaces are often sensitive to trim curve placement and therefore the

conversion from the specified Euclidean space global quantizers to the parametric space quantizers

increases the number of magnitude bits to be coded by a considerable amount. This increase is,

however, necessary to ensure that the prescribed maximum distortion is not exceeded. In addition,

typical models use a very large number of small trimming curves per trimming loop, instead of a few

long curves. The cost of coding these independent curves is non-negligible. Nevertheless, we should

point out that a large quantity of information is embedded in the trimming curves, as obtaining the

same shape without trimming would require a very large number of control points. In this sense,

it is to be expected that the coding cost is rather high. Notwithstanding, in the next chapter we

propose several encoder strategies to diminish this cost with negligible or no distortion.

Figure 4.30 shows the overall distortion when all the surface and trim curve quantizers are set

equal and varied. Figure 4.31 shows the corresponding rate-distortion curves, where the rate is

expressed as bits per control point. As it can be seen, the resulting Hausdorff L∞ distortion is

always slightly inferior than the expected, from the quantizer step sizes, distortion. The exception

being the subprop model for very small quantizer step sizes, where we measure little reduction in

distortion as the quantizer step size is decreased. Again, we suspect this to be an artifact of the

OpenGL NURBS tessellator.

4.8. Performance analysis 119

F
ig

u
r
e

4
.2

7
:

H
au

sd
or

ff
d
is

to
rt

io
n

d
is

tr
ib

u
ti
on

fo
r

th
e
s
c
i
s
s
o
r
s

m
o
d
el

co
d
ed

w
it
h

∆
′ c

=
3.

9
×

10
−

3
an

d
∆

′ k
=

∆
′ w

=
7.

8
×

10
−

3

120 Chapter 4. Parametric surface coding

10
−4

10
−3

10
−2

10
−4

10
−3

10
−2

∆’
t,c

=∆’
t,w

D
is

to
rt

io
n

(B
B

ox
 s

iz
e

re
la

tiv
e)

Hausdorff L∞
Expected L∞

(a) flashlight

10
−4

10
−3

10
−2

10
−5

10
−4

10
−3

10
−2

∆’
t,c

=∆’
t,w

D
is

to
rt

io
n

(B
B

ox
 s

iz
e

re
la

tiv
e)

Hausdorff L∞
Expected L∞

(b) subprop

Figure 4.28: Trim curve distortion for varying ∆′
t,c and ∆′

t,w, with ∆′
t,c = ∆′

t,w, and ∆′
t,k =

7.8× 10−3.

21 22 23 24 25 26 27 28 29 30 31
10

−4

10
−3

10
−2

rate (bits/tccp)

L ∞
 H

au
sd

or
ff

di
st

or
tio

n
(B

B
ox

 s
iz

e
re

la
tiv

e)

(a) flashlight

14 16 18 20 22 24 26
10

−5

10
−4

10
−3

10
−2

rate (bits/tccp)

L ∞
 H

au
sd

or
ff

di
st

or
tio

n
(B

B
ox

 s
iz

e
re

la
tiv

e)

(b) subprop

Figure 4.29: Trim curve rate-distortion for varying ∆′
t,c and ∆′

t,w, with ∆′
t,c = ∆′

t,w, and ∆′
t,k =

7.8× 10−3.

4.8. Performance analysis 121

10
−4

10
−3

10
−2

10
−4

10
−3

10
−2

Quantizer step size

D
is

to
rt

io
n

(B
B

ox
 s

iz
e

re
la

tiv
e)

Hausdorff L∞
Expected L∞

(a) flashlight

10
−4

10
−3

10
−2

10
−4

10
−3

10
−2

Quantizer step size

D
is

to
rt

io
n

(B
B

ox
 s

iz
e

re
la

tiv
e)

Hausdorff L∞
Expected L∞

(b) subprop

Figure 4.30: Overall distortion for trimmed curves, with all quantizer step sizes equal.

28 30 32 34 36 38 40 42 44
10

−4

10
−3

10
−2

rate (bits/cp)

L ∞
 H

au
sd

or
ff

di
st

or
tio

n
(B

B
ox

 s
iz

e
re

la
tiv

e)

(a) flashlight

10 15 20 25
10

−4

10
−3

10
−2

rate (bits/cp)

L ∞
 H

au
sd

or
ff

di
st

or
tio

n
(B

B
ox

 s
iz

e
re

la
tiv

e)

(b) subprop

Figure 4.31: Overall rate-distortion for trimmed models, with all quantizer step sizes equal.

122 Chapter 4. Parametric surface coding

4.8.3 Comparative compression ratios

In Section 4.2 we described how NURBS surfaces are represented in the VRML NURBS extension

[113]. The use of NURBS in VRML is appealing since NURBS can represent complex surfaces with

a relatively low number of coefficients, in particular when compared to polygonal meshes. Table 4.3

shows the compression ratios, with respect to the original VRML file size, achieved by the proposed

NURBS coding, for various quantizer settings. We also include in the comparison the result of

compressing the VRML data with the popular gzip file compression utility, as it is typically used

with VRML. In addition, we also report the results of quantizing knots, coordinates and weights with

a step size 2−24. This is equivalent to the relative precision of IEEE single precision 32 bit floating

point data, which is the precision required by VRML. Hence we label the column as “nominally

lossless”, because besides rounding errors introduced in the computations during the coding process

the result is as precise as the original VRML model.

The original VRML size is, however, not a good basis for comparison since it can vary consid-

erably depending on the number of whitespace characters used and such textual formatting details.

In addition, VRML data is rarely transmitted uncompressed. A more meaningful comparison is

shown in Table 4.4, where the compression ratios are expressed with respect to the VRML data

compressed with gzip. This compression removes a lot of the variability in the original file size and

is the common form under which VRML data is transmitted. The results show that average com-

pression ratios between 6 and 8 are obtained for quantizer step sizes that create very little distortion.

We can also observe that an average compression ratio of 2 is obtained for nominally lossless data,

even if the NURBS coding system has not been specifically designed for such mode of operation.

It is also worth noting that the compression efficiency can be increased a little by adjusting the

individual quantizer step sizes as shown in the previous sections, instead of setting all of them to

the same value.

4.8.4 Global and local quantizer bases

In the previous sections we have presented results by performing the control point coordinate quan-

tization in the global coordinate system. We now compare the performance of quantization in the

local basis, as described in Section 4.5.1, and the global basis.

Figure 4.32 shows the Hausdorff L∞ and L2 distortions for the both quantization bases. As

expected the L∞ distortion is the same for both bases, on all models. In fact, the quantization

on a different basis amounts for a rotation and hence should not modify the L∞ distortion. On

the other hand, the L2 distortion is, in general, smaller when the quantization is performed on

the local basis. For some models, such as scissors, it is considerably so. From these results one

would be tempted to deduce that the local basis performs better than the global one. Figure 4.33

shows the corresponding rate-distortion curves. Although for the same quantizer the local basis

performs better, it incurs an increase in the coded bitrate that, in general, makes its rate-distortion

performance inferior to that of the global quantizer. This is particularly so for coke. Nevertheless,

the local basis shows a slight advantage at high bitrates for gnom and killeroo-hires, which are

smoother models. This slight advantage does not, however, justify the considerable increase in

computational complexity that the use of the local basis incurs.

4.8.5 Coded bit distribution

In the previous sections we have reported the overall coded rates, as rate-distortion curves, for the

different parameters that define NURBS surfaces. It is however interesting to know how the coded

bits are spent for the coding of these different parameters, in other words the coded bit distribution.

4.8. Performance analysis 123

V
R

M
L

si
ze

co
m

p
re

ss
io

n
ra

ti
o

(o
ve

r
V

R
M

L
si

ze
)

m
o
d
el

tr
im

m
ed

(b
y
te

s)
g
z
i
p

3.
9
×

10
−

3
9.

8
×

10
−

4
2.

4
×

10
−

4
1.

5
×

10
−

5
n
om

in
al

ly
lo

ss
le

ss

(f
or

32
b
it

fl
oa

ts
)

c
o
k
e

n
o

48
93

6
5.

5
31
.7

23
.5

18
.4

12
.2

6.
9

g
n
o
m

n
o

72
89

2
4.

4
29
.4

21
.1

16
.0

10
.7

6.
4

g
o
b
l
e
t

n
o

57
19

4.
4

22
.3

17
.4

14
.7

11
.0

6.
4

k
i
l
l
e
r
o
o
-
h
i
r
e
s

n
o

18
43

18
6

2.
6

82
.4

50
.9

30
.1

12
.9

5.
9

k
i
l
l
e
r
o
o
-
l
o
w
r
e
s

n
o

51
67

03
2.

8
53
.1

31
.1

18
.7

9.
6

5.
0

l
i
o
n

n
o

80
17

1
4.

8
25
.8

19
.3

15
.3

10
.8

7.
2

m
a
l
e
-
h
e
a
d

n
o

24
89

26
2.

8
34
.6

21
.6

14
.4

8.
2

4.
6

p
e
n
c
i
l

n
o

67
09

6
7.

2
79
.1

49
.4

40
.3

30
.0

20
.2

s
a
i
l
_
s
e
a
w
o
l
f

n
o

14
47

61
2.

6
80
.0

63
.2

49
.9

24
.2

8.
7

s
a
n
d
b
a
g
g
e
r

n
o

12
40

5
3.

7
38
.6

24
.9

17
.9

10
.3

5.
5

s
c
i
s
s
o
r
s

n
o

27
10

6
4.

5
33
.8

23
.8

18
.0

11
.6

6.
8

s
t
i
n
g
r
a
y

n
o

40
04

4
2.

6
60
.8

38
.0

25
.1

12
.7

5.
9

c
a
m
e
r
a

ye
s

16
16

39
3.

2
31
.6

23
.3

17
.9

11
.5

6.
7

f
a
i
r
i
n
g

ye
s

43
64

5
3.

7
36
.5

25
.7

19
.3

12
.6

7.
6

f
l
a
s
h
l
i
g
h
t

ye
s

17
07

6
7.

9
26
.0

22
.5

19
.7

15
.9

13
.5

o
f
f
i
c
e
c
h
a
i
r

ye
s

18
02

12
5.

5
33
.0

25
.5

20
.3

14
.2

9.
0

s
u
b
p
r
o
p

ye
s

11
05

63
3.

4
30
.7

22
.0

16
.4

10
.5

6.
5

av
er

ag
e

4.
2

42
.9

29
.6

21
.9

13
.5

7.
8

T
a
b
le

4
.3

:
C

om
p
re

ss
io

n
ra

ti
os

,
ov

er
th

e
or

ig
in

al
V

R
M

L
fi
le

si
ze

,
fo

r
va

ri
ou

s
m

o
d
el

s.
T

h
e
g
z
i
p

co
lu

m
n

sh
ow

s
th

e
co

m
p
re

ss
ed

fi
le

si
ze

u
si

n
g
g
z
i
p

at
it
s

m
ax

im
u
m

se
tt

in
g.

T
h
e
“n

om
in

al
ly

lo
ss

le
ss

”
co

lu
m

n
is

ob
ta

in
ed

b
y

se
tt

in
g

th
e

q
u
an

ti
ze

rs
to

th
e

re
la

ti
ve

p
re

ci
si

on
of

32
b
it

fl
oa

ti
n
g

p
oi

n
t

(i
.e

.,

24
b
it
s)

.
T

h
e

ot
h
er

co
lu

m
n
s

ar
e

ob
ta

in
ed

b
y

se
tt

in
g

∆
′ k,

∆
′ c,

∆
′ w
,
∆

′ t,
k
,
∆

′ t,
c

an
d

∆
′ t,
w

to
th

e
va

lu
e

sh
ow

n
,
an

d
ar

e
ro

u
gh

ly
eq

u
iv

al
en

t
to

8,
10

,
12

an
d

16
b
it

q
u
an

ti
za

ti
on

s
of

th
e

su
rf

ac
e

p
oi

n
ts

in
E

u
cl

id
ea

n
sp

ac
e.

In
al

l
ca

se
s

th
e

co
d
in

g
of

th
e

d
u
p
li
ca

te
m

ap
h
as

b
ee

n
en

ab
le

d
.

124 Chapter 4. Parametric surface coding

g
z
i
p
’e

d
co

m
p
re

ss
io

n
ra

ti
o

(o
ve

r
g
z
i
p
’e

d
V

R
M

L
si

ze
)

m
o
d
el

tr
im

m
ed

V
R

M
L

si
ze

3.
9
×

10
−

3
9.

8
×

10
−

4
2.

4
×

10
−

4
1.

5
×

10
−

5
n
om

in
al

ly
lo

ss
le

ss

(b
y
te

s)
(f

or
32

b
it

fl
oa

ts
)

c
o
k
e

n
o

89
02

5.
8

4.
3

3.
3

2.
2

1.
2

g
n
o
m

n
o

16
57

5
6.

7
4.

8
3.

6
2.

4
1.

5

g
o
b
l
e
t

n
o

12
94

5.
0

3.
9

3.
3

2.
5

1.
5

k
i
l
l
e
r
o
o
-
h
i
r
e
s

n
o

71
23

12
31
.8

19
.7

11
.6

5.
0

2.
3

k
i
l
l
e
r
o
o
-
l
o
w
r
e
s

n
o

18
56

02
19
.1

11
.2

6.
7

3.
5

1.
8

l
i
o
n

n
o

16
70

5
5.

4
4.

0
3.

2
2.

2
1.

5

m
a
l
e
-
h
e
a
d

n
o

90
47

0
12
.6

7.
8

5.
2

3.
0

1.
7

p
e
n
c
i
l

n
o

93
22

11
.0

6.
9

5.
6

4.
2

2.
8

s
a
i
l
_
s
e
a
w
o
l
f

n
o

55
67

0
30
.8

24
.3

19
.2

9.
3

3.
3

s
a
n
d
b
a
g
g
e
r

n
o

33
28

10
.4

6.
7

4.
8

2.
8

1.
5

s
c
i
s
s
o
r
s

n
o

59
78

7.
5

5.
2

4.
0

2.
6

1.
5

s
t
i
n
g
r
a
y

n
o

15
28

4
23
.2

14
.5

9.
6

4.
8

2.
3

c
a
m
e
r
a

ye
s

49
90

7
9.

8
7.

2
5.

5
3.

5
2.

1

f
a
i
r
i
n
g

ye
s

11
74

6
9.

8
6.

9
5.

2
3.

4
2.

0

f
l
a
s
h
l
i
g
h
t

ye
s

21
66

3.
3

2.
9

2.
5

2.
0

1.
7

o
f
f
i
c
e
c
h
a
i
r

ye
s

32
65

2
6.

0
4.

6
3.

7
2.

6
1.

6

s
u
b
p
r
o
p

ye
s

32
66

7
9.

1
6.

5
4.

8
3.

1
1.

9

av
er

ag
e

12
.2

8.
3

6.
0

3.
5

1.
9

T
a
b
le

4
.4

:
C

om
p
re

ss
io

n
ra

ti
os

,
ov

er
th

e
g
z
i
p
’e

d
V

R
M

L
fi
le

si
ze

,
fo

r
va

ri
ou

s
m

o
d
el

s.
T

h
e
g
z
i
p

co
lu

m
n

sh
ow

s
th

e
co

m
p
re

ss
ed

fi
le

si
ze

u
si

n
g
g
z
i
p

at
it
s

m
ax

im
u
m

se
tt

in
g.

T
h
e
“n

om
in

al
ly

lo
ss

le
ss

”
co

lu
m

n
is

ob
ta

in
ed

b
y

se
tt

in
g

th
e

q
u
an

ti
ze

rs
to

th
e

re
la

ti
ve

p
re

ci
si

on
of

32
b
it

fl
oa

ti
n
g

p
oi

n
t

(i
.e

.,

24
b
it
s)

.
T

h
e

ot
h
er

co
lu

m
n
s

ar
e

ob
ta

in
ed

b
y

se
tt

in
g

∆
′ k,

∆
′ c,

∆
′ w
,
∆

′ t,
k
,
∆

′ t,
c

an
d

∆
′ t,
w

to
th

e
va

lu
e

sh
ow

n
,
an

d
ar

e
ro

u
gh

ly
eq

u
iv

al
en

t
to

8,
10

,
12

an
d

16
b
it

q
u
an

ti
za

ti
on

s
of

th
e

su
rf

ac
e

p
oi

n
ts

in
E

u
cl

id
ea

n
sp

ac
e.

In
al

l
ca

se
s

th
e

co
d
in

g
of

th
e

d
u
p
li
ca

te
m

ap
h
as

b
ee

n
en

ab
le

d
.

4.8. Performance analysis 125

10
−4

10
−3

10
−2

10
−5

10
−4

10
−3

10
−2

Quantizer step size

H
au

sd
or

ff
di

st
or

tio
n

(B
B

ox
 s

iz
e

re
la

tiv
e)

L∞ global

L∞ local

L
2
 global

L
2
 local

(a) coke

10
−4

10
−3

10
−2

10
−5

10
−4

10
−3

10
−2

Quantizer step size

H
au

sd
or

ff
di

st
or

tio
n

(B
B

ox
 s

iz
e

re
la

tiv
e)

L∞ global

L∞ local

L
2
 global

L
2
 local

(b) gnom

10
−4

10
−3

10
−2

10
−5

10
−4

10
−3

10
−2

Quantizer step size

H
au

sd
or

ff
di

st
or

tio
n

(B
B

ox
 s

iz
e

re
la

tiv
e)

L∞ global

L∞ local

L
2
 global

L
2
 local

(c) scissors

10
−4

10
−3

10
−2

10
−5

10
−4

10
−3

10
−2

Quantizer step size

H
au

sd
or

ff
di

st
or

tio
n

(B
B

ox
 s

iz
e

re
la

tiv
e)

L∞ global

L∞ local

L
2
 global

L
2
 local

(d) killeroo-hires

Figure 4.32: Distortions for control point quantization in the global and local bases. All the global

quantizer step sizes are set to the same value.

126 Chapter 4. Parametric surface coding

6 7 8 9 10 11 12 13 14 15
10

−5

10
−4

10
−3

10
−2

rate (bits/cp)

H
au

sd
or

ff
di

st
or

tio
n

(B
B

ox
 s

iz
e

re
la

tiv
e)

L∞ global

L∞ local

L
2
 global

L
2
 local

(a) coke

7 8 9 10 11 12 13 14 15 16 17
10

−5

10
−4

10
−3

10
−2

rate (bits/cp)

H
au

sd
or

ff
di

st
or

tio
n

(B
B

ox
 s

iz
e

re
la

tiv
e)

L∞ global

L∞ local

L
2
 global

L
2
 local

(b) gnom

5 6 7 8 9 10 11 12 13
10

−5

10
−4

10
−3

10
−2

rate (bits/cp)

H
au

sd
or

ff
di

st
or

tio
n

(B
B

ox
 s

iz
e

re
la

tiv
e)

L∞ global

L∞ local

L
2
 global

L
2
 local

(c) scissors

2 3 4 5 6 7 8 9
10

−5

10
−4

10
−3

10
−2

rate (bits/cp)

H
au

sd
or

ff
di

st
or

tio
n

(B
B

ox
 s

iz
e

re
la

tiv
e)

L∞ global

L∞ local

L
2
 global

L
2
 local

(d) killeroo-hires

Figure 4.33: Rate-distortion for control point quantization in the global and local bases. All the

global quantizer step sizes are set to the same value and duplicate map coding is enabled.

4.8. Performance analysis 127

Figure 4.34 shows the high-level bit distribution for non-trimmed and trimmed models. The

bitstream header is of small fixed size (i.e., independent of the model size) and hence almost negligible

for all but the smallest models, such as goblet and sandbagger. The largest proportion of bits is

spent on the coding of control point coordinates, whereas weights take only very little space, except

for coke as already pointed out in the analysis of weight coding performance. Likewise, knot vectors

take a modest proportion of the overall bitrate. This explains why the knot and weight quantizer

step sizes have a very limited effect on the coded rate. For trimmed models we can see that the

coding of the trimming curves takes about half the overall coded bitrate, the reasons for which have

been previously explained.

Figure 4.35 shows the detailed bit distribution for knot vectors and duplicate maps. As expected,

the largest proportion of the knot coding cost is taken by the break values. This is particularly true

for models that use highly non-uniform knot vectors. On the other hand, models that have uniform

knot vectors (e.g., killeroo-lowres, killeroo-hires, male-head) or quasi-uniform ones (e.g.,

pencil) are coded very efficiently, as it is to be expected. Concerning the duplicate map we can

observe that the models that have few or no duplicate points spend very little bitrate. On the

other hand, models that have a considerable amount of duplicate points spend a considerably larger

amount, although still relatively small. Worth noting is the fact that the coding of the offset of

duplicate points takes relatively little bitrate, given that many values are possible, demonstrating

the effectiveness of the coding scheme.

Finally, Figure 4.36 shows the detailed bit distribution for control point coordinates and weights

and trimming curves. We can see that a large proportion (50% or more) of the control point coding

cost is spent in coding the leading zero bits and most significant one bit (i.e., the significance map).

The rest is spent in the sign and magnitude refinement bits which are almost uncompressible, since

extremely difficult to predict. As for the trimming curves we can see that most of the coded rate is

consumed by the trimming curve control point coordinates and, for rational curves, weights. The

trimming loop header, which comprises the number of trimming loops, number of trimming curves

in each loop and the per surface quantizer step adjustments, consumes very little space.

0 2 4 6 8 10 12 14

coke

gnom

goblet

killeroo−hires

killeroo−lowres

lion

male−head

pencil

sail_seawolf

sandbagger

scissors

stingray

rate (bits/cp)

header
knots
dmap
coords
weights

(a) non-trimmed models

0 5 10 15 20 25 30 35

camera

fairing

flashlight

officechair

subprop

rate (bits/cp)

header
knots
dmap
coords
weights
trims

(b) trimmed models

Figure 4.34: Global distribution of coded bits for various models. All global quantizer step sizes

are set to 2× 10−3.

128 Chapter 4. Parametric surface coding

0 1 2 3 4 5 6 7

coke

gnom

goblet

killeroo−hires

killeroo−lowres

lion

male−head

pencil

sail_seawolf

sandbagger

scissors

stingray

rate (bits/knot)

length
order, type
mmap
break vals.

(a) knot vectors

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

coke

gnom

goblet

killeroo−hires

killeroo−lowres

lion

male−head

pencil

sail_seawolf

sandbagger

scissors

stingray

rate (bits/cp)

has/is dup
dup offset

(b) duplicate map

Figure 4.35: Detailed distribution of coded bits for knots vectors and duplicate map, for various

models. All global quantizer step sizes are set to 2× 10−3.

0 2 4 6 8 10 12 14

coke

gnom

goblet

killeroo−hires

killeroo−lowres

lion

male−head

pencil

sail_seawolf

sandbagger

scissors

stingray

rate (bits/cp)

coord lzero
coord sig/mag
weight lzero
weight sig/mag

(a) surface control points

0 5 10 15 20 25

camera

fairing

flashlight

officechair

subprop

rate (bits/tcp)

tl hdr
tc knots
tc coords
tc weight

(b) trim curves

Figure 4.36: Detailed distribution of coded bits for surface control points and trimming curves.

All global quantizer step sizes are set to 2× 10−3.

4.9. Conclusions 129

4.8.6 Comparison with polygonal meshes

Last but not least, we present a comparison of the rate-distortion of the proposed NURBS coding

scheme against compressed polygonal meshes. Since NURBS is a compact representation, even if

not compressed, it is to be expected that smooth models are more efficiently coded as NURBS than

as polygonal meshes. The intent of this comparison is, however, to demonstrate that there is great

interest, from a rate-distortion point of view, in transmitting NURBS models in their NURBS form

instead of resorting to transmitting a tessellation of these, even if the resulting polygonal mesh is

very efficiently compressed.

We have tessellated the NURBS models∗, at several precisions, yielding multiple triangular mesh-

es with varying triangle counts. These meshes have then been coded with the Touma-Gotsman (TG)

compressor [109], reviewed in Section 3.4.4, at 8, 10 and 12 bit quantizations. Although, Touma-

Gotsman compression is currently not the most effective state-of-the-art compressor it provides very

competitive results for the mostly regular meshes that are obtained from the tessellation of the

NURBS models. Figure 4.37 shows the results for various models. One can observe that, at low

bitrates (i.e., high distortion) NURBS provide between 3 and 8 times better compression. At high

bitrates (i.e., very low distortion) NURBS provide between 15 and 50 times better compression.

Besides being more efficient, compressed NURBS retain most of the resolution independent charac-

teristics of the original models. Furthermore, the coded NURBS models contain the surface normal

information implicitly. Although surface normals can be estimated from the surface information in

triangular models, accurate rendering would require coding the normal vectors, leading to an even

greater advantage for compressed NURBS.

4.9 Conclusions

4.9.1 Summary

In this chapter we have proposed a new coding system for NURBS models, which is based on pre-

diction coupled with efficient entropy coding. We have also derived bounds that allow to determine

a-priori the distortion of the resulting coded model. The results shown demonstrate that the coder

provides good rate-distortion performance and that compares very favorably to compressed VRML

NURBS models, even under the conditions of “nominally lossless” distortion. We have also demon-

strated the advantage, from a rate-distortion point of view, of coding NURBS models as such and

not transforming them in compressed polygonal meshes.

Several requirements were listed in the introduction of this chapter, of which we can now make

the following observations.

Generic : the proposed coder deals efficiently with the different types of models. The coding has

been designed to very efficiently deal with common particular cases, such as clamped uniform

knot vectors and one or two different surface degrees, yet it performs efficiently under the

more general unconstrained cases. Furthermore, we have reported results for several types of

models, finding similar rate-distortion characteristics.

Efficient : the achieved compression ratios for all models are reasonably high. With respect to

compressed VRML, we find average compression ratios between 6 and 9 for very low distortion

values. For “nominally lossless” (i.e., the relative precision required by VRML, that of IEEE

32-bit floating point numbers) the average compression ratio is two.

∗It is worth noting that these models were originally created as NURBS and are not the result of fitting a NURBS

representation to a polygonal mesh or some other non-NURBS representation.

130 Chapter 4. Parametric surface coding

10
3

10
4

10
5

10
−5

10
−4

10
−3

10
−2

bytes

L 2 H
au

sd
or

ff
di

st
or

tio
n

(B
B

ox
 s

iz
e

re
la

tiv
e)

CNURBS
TG 8 bits
TG 10 bits
TG 12 bits

(a) coke

10
3

10
4

10
5

10
−5

10
−4

10
−3

10
−2

bytes

L 2 H
au

sd
or

ff
di

st
or

tio
n

(B
B

ox
 s

iz
e

re
la

tiv
e)

CNURBS
TG 8 bits
TG 10 bits
TG 12 bits

(b) gnom

10
2

10
3

10
4

10
5

10
−5

10
−4

10
−3

10
−2

10
−1

bytes

L 2 H
au

sd
or

ff
di

st
or

tio
n

(B
B

ox
 s

iz
e

re
la

tiv
e)

CNURBS
TG 8 bits
TG 10 bits
TG 12 bits

(c) goblet

10
3

10
4

10
5

10
−5

10
−4

10
−3

10
−2

bytes

L 2 H
au

sd
or

ff
di

st
or

tio
n

(B
B

ox
 s

iz
e

re
la

tiv
e)

CNURBS
TG 8 bits
TG 10 bits
TG 12 bits

(d) lion

Figure 4.37: Rate distortion of compressed NURBS (CNURBS) and the corresponding Touma-

Gotsman (TG) compressed triangular meshes coded at 8, 10 and 12 bits, for various tessellation

precisions.

4.9. Conclusions 131

Guaranteed distortion : the distortion bounds derived in this chapter allow to determine the

quantizer step sizes adequate to ensure a prescribed L∞ distortion. While the bounds for

knots and weights overestimate the distortion, we have found that the overestimate factor is

similar for all models. This allows to take them into account, in addition to the distortion

bounds, when setting the quantizer step sizes for optimal rate-distortion performance.

Flexible : no arbitrary restrictions have been included in the proposed coding system. The only

restrictions are that weights must be positive and that the surface degree is limited to eight.

The former is an almost universally accepted restriction in systems dealing with NURBS, and

thus has no effect on the applicability of the proposed coder. The latter is somewhat arbitrary,

but is larger than the limits imposed by other NURBS systems. The maximum surface degree

can, however, be easily increased at the expense of extra contexts for the arithmetic coder, or

some slightly increased computationally complexity, at negligible coding cost.

4.9.2 Achievements

Several achievements have been realized in this chapter:

distortion bounds : we have derived bounds for the surface distortion induced by the quantization

of knots, control point coordinates and weights. While the bounds for control points are rather

straightforward, the one for knots is highly involved and has not been previously reported.

entropy coding : the proposed entropy coding scheme is particularly tailored to each type of coded

data and deals effectively with the statistics of the prediction data.

closed and degenerate surfaces : a particular duplicate map coding technique has been pro-

posed that efficiently deals with closed and degenerate surfaces, leading to large bitrate savings

in some models.

detailed anaylis : the performance of the proposed coding system has been analyzed in detail. The

influence of quantization of each data type on the surface distortion has been assessed and the

rate-distortion behaviour analyzed. In addition the distribution of bits from the entropy coder

has been studied.

132 Chapter 4. Parametric surface coding

Encoder design and

extensions 5
5.1 Introduction

A method to code NURBS models has been defined in the previous chapter and its rate distortion

performance analyzed along with optimal trade-offs for the different quantizer step sizes. However,

some aspects of the encoding process have been neglected, namely optimal predictors and trimming

curve simplification. Furthermore, no mechanism has been included to deal with transmission errors.

These topics are the subject of this chapter. They complement the coding system already defined.

This chapter is organized as follows. Section 5.2 analyzes the available choices for linear predictors

and their performance for different model classes and provides simple solutions that are optimal or

close to optimal. Section 5.3 deals with the optimization of trimming curves that usually consume

a very important part of the coded bitrate. Section 5.4 extends the coding system in a simple way

to allow for error detection and containment. Finally, conclusions are drawn in Section 5.5.

5.2 Optimal linear predictors

The coder as described in the previous chapter can use arbitrary linear predictors for the control

point coordinates. However, the results have been presented only for the parallelogram predictor.

Here we look at different predictors and how they affect the coding performance. As different

predictors do not affect the distortion we only concentrate on the coded rate.

A common choice in DPCM applications is a minimum variance (MV) predictor [see 52, chap. 6

and 11]. An MV predictor minimizes the variance of the prediction error, and hence its energy,

under the assumption of a stationary signal. As lower prediction error energy usually leads to better

compression the predictor is close to optimal. Following the formulation of the predictor in Eq. (4.9),

the optimal predictor is found by solving, over the causal domain and for the desired number of

predictor coefficients, the system of equations

r(l, k) =
∑

j≥0
j>0 when i=0

λi,jr(k − i, l − j) (k, l) 6= (0, 0),

133

134 Chapter 5. Encoder design and extensions

where {r(k, l)} is the covariance matrix of control point coordinates.

Tables 5.1 and 5.2 show the so obtained MV predictors of order 3, 4 and 6. Figure 5.1 shows

the corresponding arrangements on the control point grid. We can observe that the order 3 MV

predictor is always close to the parallelogram predictor, for which λ0,1 = λ1,0 = 1 and λ1,1 = −1.

Furthermore, with the exception of the killeroo models, λ1,−1 in the order 4 and 6 MV predictors

is close to zero. This implies that there is, in general, little correlation between a control point

and its upper-right neighbor. The same remark also applies, although to a lesser extent, to λ0,2

and λ2,0 in the order 6 MV predictor. Table 5.3 shows the relative changes in bitrate for the MV

predictors with respect to the parallelogram predictor. Surprisingly, the performance of the former

are really poor when compared with the latter, with the exception of the killeroo models. The

pencil model is particularly sensible. Inspecting the prediction error data shows that the control

nets of that model have rows of control points which are parallel to the yz plane. The prediction

error along x will thus be zero for the parallelogram predictor and non-zero, although small, for the

MV predictor. The fact that zeros are very efficiently coded explains the drastic bitrate increase.

The general failure of the MV predictor is probably due to the fact that the coordinate data is not

stationary. A counterexample to this trend is provided by the killeroo models. For these models

the MV predictor yields a slightly better compression performance. This is probably due to the fact

that these models are very large (17181 and 56625 control points, respectively, in 89 surfaces) and

obtained by fitting NURBS surfaces to range scanning data of a real-world 3D object. Table 5.4

shows the results of experimenting on these models with higher order MV predictors, where the 8,

10 and 12 closest causal neighbors are considered. As expected the higher resolution version of the

model benefits most of large predictors and shows a considerable improvement.

order 3 order 4

model λ0,1 λ1,0 λ1,1 λ0,1 λ1,0 λ1,1 λ1,−1

coke 0.9923 0.9823 −0.9760 0.9923 0.9821 −0.9760 0.0001

gnom 0.8616 0.9068 −0.7773 0.8618 0.8337 −0.7456 0.0491

killeroo-lowres 0.9663 0.9342 −0.9007 0.9672 0.7050 −0.8058 0.1342

killeroo-hires 0.9778 0.9571 −0.9349 0.9785 0.7152 −0.8281 0.1346

pencil 0.9978 0.9984 −0.9963 0.9978 0.9991 −0.9963 −0.0007

stingray 0.9811 0.9976 −0.9787 0.9811 0.9953 −0.9778 0.0013

scissors 0.9077 0.9953 −0.9031 0.9079 0.9885 −0.9004 0.0044

Table 5.1: Minimum variance predictors of order 3 and 4 for various models.

order 6

model λ0,1 λ1,0 λ1,1 λ1,−1 λ0,2 λ2,0

coke 1.0044 0.9804 −0.9678 0.0013 −0.0161 −0.0072

gnom 0.8655 0.8952 −0.5262 0.0782 −0.1445 −0.2083

killeroo-lowres 0.9841 0.7149 −0.7340 0.1321 −0.0522 −0.0452

killeroo-hires 0.9889 0.7251 −0.7654 0.1309 −0.0419 −0.0376

pencil 0.9978 1.0011 −0.9958 −0.0007 −0.0007 −0.0021

stingray 0.8386 1.1521 −0.8247 0.0031 −0.0055 −0.1639

scissors 0.8991 1.0297 −0.8584 0.0152 −0.0169 −0.0695

Table 5.2: Minimum variance predictor of order 6 for various models.

5.2. Optimal linear predictors 135

λ1,0

λ0,1

λ1,1

(a) order 3

λ1,−1λ1,0

λ0,1

λ1,1

(b) order 4

λ2,0

λ1,−1λ1,0λ1,1

λ0,1λ0,2

(c) order 6

Figure 5.1: The arrangement of the three predictors considered.

model order 3 order 4 order 6

coke +27.2 +27.2 +33.2

gnom +13.0 +12.8 +15.8

killeroo-lowres −0.2 −0.9 −1.4

killeroo-hires −0.4 −1.2 −1.7

pencil +45.7 +38.6 +49.8

stingray +10.6 +11.1 +3.5

scissors +12.8 +15.3 +22.7

Table 5.3: Percent change in coded bitrate for the minimum variance predictors of Tables 5.1 and

5.2, with respect to the parallelogram predictor.

model order 8 order 10 order 12

killeroo-lowres −1.4 −1.8 −1.9

killeroo-hires −5.8 −5.7 −6.1

Table 5.4: Perecent change of coded bitrate for high order minimum variance predictors, with

respect to the parallelogram predictor, for the killeroo models.

136 Chapter 5. Encoder design and extensions

Since the MV predictors fail to provide good results for most models we resort to exhaustive

search to asses the optimality of the parallelogram predictor. The time required to search the

predictor space for the optimum is large and grows exponentially with the predictor’s order. In

order to keep the search time in a manageable scale we first perform a rather coarse search for all

predictors with coefficients in the [−1.3, 1.3] range and whose sum is in the [0.7, 1.3] range. Since

the control nets are mainly smooth the optimum predictor should be more integrator-like than

derivative-like, hence the restriction on the sum. Besides, all MV predictors sum to values between

0.95 and 1. This coarse search gives the parallelogram predictor, or a very similar one, as the

optimum for orders 3, 4, 5 and 6. In a second step we refine this optimum up to a tolerance of 0.005,

0.01, 0.02 and 0.033 for the order 3, 4, 5 and 6 predictors, respectively. Table 5.5 shows the results

for the order 6 predictor, for all the models above except killeroo-lowres and killeroo-hires.

It turns up that the parallelogram predictor is always the optimum, except for stingray. It is also

worth noting that the second best predictor found has, in general, considerably lower performance.

In fact, the more CAD-like a model is (i.e., with control nets having sharp edges) the more sensible

it is to the predictor chosen. For relatively smooth control nets, such as gnom and stingray, the

exact choice of the predictor does not affect the bitrate in a considerable manner. Although not

shown, the results for the order 3, 4 and 5 predictors are analogous. For the killeroo-lowres and

killeroo-hires models the efficiency of the so found optimum predictors is similar to that of the

MV predictors.

optimal order 6 predictor bitrate change (%)

model λ0,1 λ1,0 λ1,1 λ1,−1 λ0,2 λ2,0 best 2nd best

coke 1 1 -1 0 0 0 − 10.0

gnom 1 1 -1 0 0 0 − 1.4

pencil 1 1 -1 0 0 0 − 18.6

stingray 0.89941 1.06641 -0.89941 0 0 -0.06641 −0.4 −0.4

scissors 1 1 -1 0 0 0 − 7.6

Table 5.5: Optimal predictors, within a 0.033 tolerance, and their bitrate improvement over the

parallelogram predictor for various models.

Summarizing, we have shown that the parallelogram predictor is, in general, the optimum linear

predictor for all practical purposes. Although this can be surprising at first it is to be expected since

control points are arranged in quadrilaterals. Designers apply only limited amounts of deformation

on the quadrilaterals, making the parallelogram predictor an optimal one. This is particularly true

for CAD models (e.g., coke, pencil). For models with very dense control nets (e.g., killeroo-

lowres, killeroo-hires) better performance can be achieved by using the MV predictors with

large support (i.e., high order), gaining a few percent in the coded bitrate.

5.3 Trimming loop optimization

As we saw in the previous chapter, trimming curves are often complex and incur a high coding cost.

In Section 12 we outlined the multiple reasons for this behavior, among which we can find: complex

curves obtained by numerical algorithms and large number of short curves per trimming loop. The

influence of these two factors can often be reduced, with little or no surface distortion, by curve

merging and curve simplification. The former will reduce the number of curves per loop, while the

latter will lower the complexity of each curve. We explain these two techniques below.

5.3. Trimming loop optimization 137

5.3.1 Curve merging

Within a trimming loop, adjacent curves always have at least G0 continuity, since they must form

a closed loop. The ending point of a curve will thus coincide with the starting point of the next.

Two such NURBS curves can always be merged into a single curve, if they have the same degree.

Consider the curves C1(u) and C2(u) of common degree p defined on the clamped knot vectors

U1 = {a1, . . . , a1
︸ ︷︷ ︸

p+1

, u1,p+1, . . . , u1,r1−p−2, b1, . . . , b1
︸ ︷︷ ︸

p+1

},

U2 = {a2, . . . , a2
︸ ︷︷ ︸

p+1

, u2,p+1, . . . , u2,r2−p−2, b2, . . . , b2
︸ ︷︷ ︸

p+1

}.

We denote the n1 = r1− p− 1 and n2 = r2− p− 1 control points as {P1,i} and {P2,i}, respectively,

and {w1,i} and {w2,i} the corresponding weights. Since the curves are adjacent P1,n1−1 ≡ P2,0.

C1(u) and C2(u) can be merged into a single curve C̄(u) by simply concatenating the knot

vectors with an appropriate offset and removing the excess inner knots. The resulting knot vector

is

Ū =

a1, . . . , a1
︸ ︷︷ ︸

p+1

, u1,p+1, . . . , u1,r1−p−2, b1, . . . , b1
︸ ︷︷ ︸

p

,

b1 +
u2,p+1 − a2

c
, . . . , b1 +

u2,r2−p−2 − a2

c
, b1 +

b2 − a2

c
, . . . , b1 +

b2 − a2

c
︸ ︷︷ ︸

p+1

,

where c is an arbitrary positive constant. The length of Ū is r = r1 +r2−p−2. The n = n1 +n2−1

new control points are

P̄i =

{

P1,i if i ≤ n1 − 1,

P2,i−n1+1 if i ≥ n1,

and the corresponding weights are

w̄i =

{

w1,i if i ≤ n1 − 1,
w1,n1−1

w2,0
w2,i−n1+1 if i ≥ n1.

Note the special handling of weights for the second curve. If the curves are rational it is necessary

that they have coincident end-points in homogeneous space for them to be merged. This, in general,

will not be the case. We can, however, renormalize the weights of the second curve to achieve

coincidence in homogeneous space, as is done above. This is always possible since the curve end-

points are coincident in affine space. The resulting curve is geometrically identical to the original

pair of curves and hence the merging of trimming curves incurs no surface distortion.

If c = 1 both curves remain parametrically unchanged. However, setting c = 1 will often produce

a merged curve that does not have good parametrization, since the parameterizations of C1(u) and

C2(u) are a-priori arbitrary and unrelated. Most notably, even if the contact of the two curves is

geometrically G1 continuous the merged curve will not necessarily be parametrically C1 continuous

at the joint. If the parametric first derivatives at the end of C1(u) and the start of C2(u) are parallel

the curves have G1 continuous contact. To achieve parametric C1 continuity it then suffices to set

c so that the norm of the derivatives are equal. The resulting curve will be C1 continuous, at least.

138 Chapter 5. Encoder design and extensions

The derivatives at the end points are

C′
1(b1) =

p

b1 − u1,r1−p−2

w1,n1−2

w1,n1−1
(P1,n1−1 −P1,n1−2),

C′
2(a2) =

p

u2,p+1 − a2

w2,1

w2,0
(P2,1 −P2,0),

and therefore setting

c =
‖C′

1(b1)‖
‖C′

2(a2)‖
=

u2,p+1 − a2

b1 − u1,r1−p−2

w1,n1−2

w1,n1−1

w2,0

w2,1

‖P1,n1−1 −P1,n1−2‖
‖P2,1 −P2,0‖

yields a C1 joint if C′
1(b1) and C′

2(a2) are parallel. Note, however, that for rational curves the result

will be C1 in affine space, but not necessarily so in homogeneous space.

At the coder we inspect each trimming loop and successively merge pairs of adjacent curves, as

explained above, if they are of equal degree and have G1 contact. Curves that have only G0 contact

were probably intended to be disjoint by the designer and are therefore not merged. In addition,

merging them would leave a knot of high multiplicity that will often be as expensive to code as the

clamped knot vectors of the two adjacent curves. Furthermore, there would be no clear choice of c to

yield a good overall parametrization. The only exception to this rule are first degree curves, which

are actually piecewise linear curves and thus have no inherent G1 continuity. Note that merging

curves with G1 contact will also create a high multiplicity knot. Its multiplicity can, however, be

reduced without distortion through knot removal, as the merged curve is at least C1 at that knot.

Table 5.6 shows the effects of trimming curve merging on various models. The number of curves

is, in general, drastically reduced since many of the small curves have G1 contact and can be merged.

The reduction of knots and control points is less important, since each merge operation removes only

p+2 knots, of the many in each curve, and one control point. The bitrate savings are, however, non-

negligible and sometimes large. Although the bitrate savings due to curve merging are sometimes

modest (e.g., camera, fairing, subprop), the resulting longer curves allow for more aggressive

simplification, as shown in the next section.

original merged savings (%)

model # curves # knots # c.p. # curves # knots # c.p. trim overall

camera 174 1817 1547 60 1507 1433 4.7 2.2

fairing 12 458 446 8 450 442 2.4 0.9

flashlight 48 180 140 18 120 110 17.8 9.8

officechair 305 1307 1037 154 983 886 13.2 4.7

subprop 106 986 852 60 851 806 3.3 1.4

Table 5.6: The effects of trim curve merging on various models. The bitrate savings for the

trimming curve data alone as well as the overall are shown. No knot removal has been applied on

the merged curves. All quantizer step sizes are set to 9.8 × 10−4 ≈ 2−10. The predictor for the

trimming curve control points is set to the first order one.

5.3.2 Curve simplification

NURBS curves can be simplified by applying knot removal algorithms. A knot that has little or no

influence over the curve’s shape is removed, as is its corresponding control point. The other control

points are recomputed so as to obtain a curve as close as possible to the original. If at a knot of

multiplicity k the curve is Cp−k+s continuous the knot is s times redundant and can be removed s

5.3. Trimming loop optimization 139

times without distortion. Tiller [108] proposes an algorithm, also given in [80], that performs the

knot removal by inverting the knot insertion formulas. Since the problem is overdetermined, applying

the inverse formulas from the start and end of the curve yield, in general, different solutions for the

control points. If and only if the knot is redundant the solutions are identical. Tiller’s algorithm

removes a knot if the two solutions are equal, within some small tolerance. This algorithm is hence

suitable to remove redundant knots. However, non-redundant knots will not be removed even if

an approximate solution to the overdetermined problem exists that incurs a small curve distortion.

The simplification power is therefore limited. Note that for rational curves the algorithm is applied

in projective space, where the curve is polynomial.

Eck and Hadenfeld [19] overcome the above limitation by considering the approximate solutions

that are a linear combination of the two particular solutions obtained from the start and end of

the curve. The coefficients for the linear combination are determined so as to minimize a distortion

measure. Eck and Hadenfeld propose three parametric distortion measures: discrete-L∞, discrete-

L2 and continuous-L∞. The discrete distortions approximate the parametric curve distortion by

using the convex hull property, while the continuous one directly minimizes the parametric curve

distortion. As usual, we are interested in the L∞ distortion. For simplicity’s sake we use the discrete

variant. The continuous one provides tighter bounds and thus has a higher simplification power,

but it is highly involved requiring auxiliary functions and iterative solutions. Since the parametric

distortion is considered, the parametrization of the simplified curve will be close to that of the

original. Knot removal can, in some cases, modify the endpoints of the curve. This is not desirable

as that it breaks the G0 continuity of the trimming loop. To avoid it, we set the constraints on Eck

and Hadenfeld’s algorithm to ensure parametric C0 contact at the endpoints. The details of the

somewhat involved algorithm and distortion bounds can be found in [19].

The above algorithm solves the problem of removing one knot. Inspired by [70] we rank the

knots of a curve by the discrete-L∞ distortion associated with their removal and remove the one

with the lowest one. After the removal they are ranked again by the new L∞ distortions and the

procedure is repeated. At each step we keep track of the accumulated distortion on each knot span

and stop when the removal of any knot would exceed the allowed L∞ distortion. As we mentioned

above, rational curves are processed in projective space and we need to relate the L∞ distortion in

projective space to the one in affine space. This is done by using the bound provided by Tiller [108],

which is described in Section 4.4.2. The maximum allowed L∞ distortion, or simplification factor, is

specified relative to the trimming curve coordinate quantizer ∆′
t,c. Typically simplification factors

below 0.5 are used, so that the simplification distortion is less than the coding distortion. Using a

zero simplification factor, or some very small number, will only remove the redundant knots.

Table 5.7 shows the results of applying trim curve simplification on various models with and

without prior merging. The simplification factor is 0.2. We can see that simplification is much

more effective if combined with merging. In fact, merging curves allow more opportunities for knot

removal, as previously disjoint parts are considered together. Furthermore, the constraint of C0

contact at endpoints will be less stringent as there are fewer endpoints. The achieved overall bitrate

savings are, in general, around 10% for virtually no increase in the distortion. Table 5.8 shows the

bitrate savings for different values of the simplification factors. The first column uses a very small

simplification factor and hence only redundant knots, which were either present in the original curve

or introduced by merging, are removed. We see that for many models a good part of the gain is

achieved by merging and removal of redundant knots only. We can also observe that most of the

possible gains are achieved by a simplification factor of 0.3. Beyond this value the additional gains

diminish and the simplification and quantization distortions start being comparable and hence there

is the risk of exceeding the maximum specified overall coding distortion. A special case is the fairing

140 Chapter 5. Encoder design and extensions

model, for which increasing the simplification factor can decrease the bitrate savings. Although the

simplification removes more and more knots, the resulting curve is not necessarily easier to compress.

Nonetheless, the bitrate savings are close to zero on this model and the counterintuitive behavior is

negligible.

original simplified simplified + merged savings (%)

model # knots # c.p. # knots # c.p. # knots # c.p. trim overall

camera 1817 1547 1674 1404 1133 1059 21.7 10.4

fairing 458 446 398 386 384 376 0.6 0.2

flashlight 180 140 176 136 116 106 26.6 14.7

officechair 1307 1037 1237 967 868 771 24.5 8.6

subprop 986 852 933 799 685 640 18.4 7.5

Table 5.7: The effects of trimming curve simplification, alone and combined with merging, on

various models. The simplification factor is set to 0.2. The bitrate savings are reported for merged

and simplification combined. All quantizer step sizes are set to 9.8 × 10−4 ≈ 2−10. The predictor

for the trimming curve control points is set to the first order one.

bitrate savings (%)

model 1× 10−4 0.05 0.1 0.2 0.3 0.4 0.5

camera 4.1 9.8 10.1 10.4 11.0 12.0 12.5

fairing 0.4 0.3 0.6 0.2 0.1 0.1 1.2

flashlight 10.9 14.7 14.7 14.7 14.7 14.7 14.7

officechair 7.1 8.3 8.6 8.6 8.8 8.8 8.7

subprop 3.0 6.3 6.6 7.5 8.1 8.6 9.2

Table 5.8: Bitrate savings for trim curve combined merging and simplification, for different simpli-

fication factors. All quantizer step sizes are set to 9.8×10−4 ≈ 2−10. The predictor for the trimming

curve control points is set to the first order one.

5.4 Error resilience

Up until now we have assumed an error-free transmission channel, or storage medium for that

matter. This is a fairly reasonable assumption when the network layer has strong error protection,

such as in TCP/IP. If the network layer does not provide strong error protection the decoded model

can be severely affected. The types of errors can be classified as follows [6, 116].

Random errors appear as independent and isolated single bit errors. They are, in general, due to

additive noise on the physical transmission channel. These errors are characterized by the bit

error rate (BER) which is the probability of a single bit being erroneous.

Burst errors appear as a block of erroneous bits. They are due to interference and fading.

Packet losses appear as missing blocks of bits. They are due to packets being undelivered because

of network congestion. They are applicable only to datagram network protocols, such as

UDP/IP.

5.4. Error resilience 141

Network layer protocols recur to forward error correction (FEC) [116] to reduce the channel BER

by several orders of magnitude. Depending on the amount of FEC there can be, however, a non-

negligible residual BER that can corrupt the bitstream.

Arithmetic coding is very sensible to bit errors. An erroneous bit will, at some point, affect

the interval testing and an incorrect symbol will be decoded. All subsequent symbols will also be

erroneously decoded as the arithmetic coder gets out of sync. Even if it the arithmetic coder was

removed the coefficient bit modeling, which generates the coded symbols, is also sensible to errors

and can get out of sync after a bit error. A single bit error will thus render all the following coded

data useless. For instance, if the error occurs in the middle of the bitstream half of the model

is lost. Even worse, if the error is not detected arbitrary data is decoded and a model that has

no resemblance to the original is decoded. Missing packets have a similar effect. In the following

sections we present extensions that allow to limit the extent up to which bit errors affect the model

data. These extensions are inspired by the error resilience mechanisms present in JPEG 2000 [107]

and similar image or video coding standards, which rely on data partitioning. A subset of these

extensions also enable other functionality such as random access and on-the-fly reordering, as we

later explain. We should note that the proposed extensions are intended only for modest bit error

rates (BER), such as the residual errors left by network or channel level FEC.

It should be noted that the bitstream header contains very sensible information: number of

surfaces, bounding box size and offset, codec options, predictor coefficients and quantizer step sizes.

It is therefore of paramount importance that its transmission be error free. As the size of the

header is very small (i.e., between 20 and 40 bytes) it is feasible to apply strong error correcting

codes and/or automatic repeat request (ARQ) mechanisms to guarantee proper decoding with only

minimal cost. Hereafter it is assumed that the header is transmitted without error.

5.4.1 Data partitioning

As explained above, the major problem with respect to error-prone transmission is that a model is

coded as a single unit and a single bit error makes all the subsequent data unusable. A NURBS model

has inherent data partitioning, as the different surfaces are independent. Although the surfaces are

handled independently by the prediction and coefficient bit modeling stages, they are coded in

the same arithmetic coder bitstream. This is in general beneficial, in particular for models with

small surfaces, since the adaptive arithmetic coder processes enough data to accurately learn its

statistics. For error resilience this is however catastrophic. The arithmetic coder needs therefore to

be periodically terminated and restarted. The overall bitstream will be hence made of independent

arithmetic coder bitstreams that are concatenated together.

We choose to restart the arithmetic coder every n surfaces, where n is signaled in the bitstream

header and typically small. We exploit two special features of the MQ arithmetic coder. With

adaptive arithmetic coders the initial probability distribution for each context is typically set to

uniform, but with a fast rate of adaptivity. The state machine of the MQ coder has a number of so-

called fast-attack intermediate states that provide various probability distributions with a fast rate

of adaptivity. There are also other intermediate states, that we call medium-attack, which provide

somewhat slower adaptivity. The rest of the states constitutes the steady state part of the machine

and provides accurate probability estimation with slow adaptivity. A context of the MQ coder will

start in the fast-attack part of the state machine to quickly converge to the optimum distribution

and move on to the medium-attack and steady state parts. Despite this behavior the adaptivity

bitrate cost can be considerable if the MQ coder is frequently restarted. To diminish this effect, we

initialize each context to the state in the fast-attack or medium-attack parts, as appropriate, that has

approximatively the expected symbol distribution. The exact state is determined by experimentally

142 Chapter 5. Encoder design and extensions

measuring the typical distribution for each context and refining the result until optimal results are

found. Note that these initial states are fixed, in the sense that the settings are hard coded.

The second feature of the MQ coder that we exploit is termination markers. The MQ coder

never generates 2-byte words in the range 0xFF90 to 0xFFFF, in hexadecimal. These sequences are

denoted termination markers. When the decoder encounters a termination marker it locks into

a mode where it behaves as if the bitstream continued with an infinite sequence of 1 bits. In

this mode no more bitstream data is consumed. Each time the MQ coder is to be restarted flush

its internal state and include a termination marker, just before restarting. Since the termination

markers cannot be emulated by coded data, unless a bit error synthesizes one, a decoder can identify

the individual bitstream segments generated by the MQ coder. Since there are a fair number of

different termination markers we successively use the ones in the 0xFF90 to 0xFFCF range to signal

a sequence index with period 64. When the last surface is coded we use a special marker, 0xFFF0,

to signal the end of bitstream. Note that a termination marker is also included right after the

bitstream header and before the first surface. This allows to detect packet lossless at the start of

the bitstream. The average cost of including a marker is 3.5 bytes, since two bytes are required for

the marker and 1.5 bytes are consumed when flushing the internal MQ coder state.

Whenever an error resilient decoder detects an error it will locate the next bitstream segment by

searching for the next termination marker. It can also use the sequence index and end of bitstream

markers to detect packet loss and/or markers that have been affected by bit errors.

Table 5.9 shows the overhead created by terminating and restarting the MQ coder at each

surface. Even for moderately large quantization the bitrate increase is modest, around 5%. The

bitrate increase for stingray is negligible, since it has only one surface. The granularity of this

data partitioning scheme is determined by the number of surfaces in the original model. Given a

BER p, the probability of a N bits long bitstream segment being hit by an error is 1 − (1 − p)N .

For small p and N < 1/(10p) this is approximately Np. Hence, the probability of a coded surface

being hit by an error increases linearly with the coded length, until a probability close to unity is

reached. Large surfaces are therefore more likely to be affected by errors. From the results of the

previous chapter an expected bitrate between 10 and 15 bits per control point seems reasonable. If

a surface has M control points, the probability of being hit by an error is roughly 15Mp. If this

value is larger than the application’s tolerable limit, given the channel’s BER p, the encoder should

split the surface into two or more subsurfaces so as to meet the tolerable limit. This can be easily

performed by repeated knot insertion. If the restart period n is larger than one, the surfaces should

be considered in groups of n.

model quantizer 2× 10−3 quantizer 2× 10−4

coke 4.8 3.4

gnom 3.2 1.8

killeroo-lowres 3.5 1.1

pencil 5.8 2.0

stingray 0.2 0.1

scissors 2.5 1.8

Table 5.9: Overhead (%) due to arithmetic coder termination and restart, using a restart period

of one, for two quantizer step sizes.

5.4. Error resilience 143

5.4.2 Basic error detection

Despite the NURBS coding process removing most of the redundancy in the model data, there is

still some residual redundancy that can be exploited to detect errors. A decoder should therefore

check the following things to detect errors.

• The decoded multiplicity values should not be larger than the decoded basis function degree.

• The sum of the multiplicity values should not exceed the decoded knot vector length.

• The decoded break values should form a strictly increasing sequence.

• The control net size corresponding to the decoded knot vector lengths and surface orders

should be below the maximum size handled by the decoder or specified by the application.

• The decoded weights should all be positive and not larger than one.

• The decoded control point coordinates should be within the bounding box size.

• The offsets in the duplicate map should not refer to positions outside the control point grid.

These checks should be applied on both surfaces and trimming curves. The constraint on the control

net size can seem rather arbitrary, as there is basically no limit as to how large a surface can be.

Nevertheless, the data needs to be decodable in a finite amount of memory that depends on the

resources available to the decoder. In addition, as explained in the previous section, the probability

of a surface being affected by an error is roughly proportional to its control net size and thus practical

sizes are limited. An application should thus specify a maximum control net size. Larger surfaces

are handled by splitting them at the encoder.

This very simple error detection technique proves to be surprisingly effective, in particular for

surfaces with non-uniform knot vectors, as the most severe errors are detected. Examples of decoded

models are shown in Figure 5.2 for a BER of 10−4. The decoder simply drops a surface if it detects

an error. We can see that severely distorted surfaces are in general avoided by this simple error

detection mechanism. Occasionally, some severe errors go undetected and result in highly distorted

surfaces. There is therefore a need for additional mechanisms to detect errors, as we explain in

the next section. Nevertheless, we should point that since the length of the bitstream is small for

some models (e.g., pencil, scissors) very often no errors will hit the bitstream and they will be

perfectly decoded.

5.4.3 Segment markers

The consistency checks of the previous section allow to detect a good portion of the severe bit errors

but are nevertheless insufficient. Better error detection can be achieved by including segment markers

in the coded data, as is done in JPEG 2000 [107]. A segment marker is inserted at predetermined

places by coding the 0101 bit sequence with the uniform context of the MQ-coder. The decoder

should decode the same bit sequence in the places where it is expected. If the decoded sequence is

not 0101 it means that an error has previously occurred. The sequence of alternating symbols and

the use of the uniform context maximize the likelihood of detecting an error.

Segment markers are included at the end of the surface control point data and at the end of the

trimming curve data. Including a segment marker in the knot vector data is not useful, since an

error in that part will anyhow be detected later and otherwise having the knot data but no control

point data available is useless. Likewise for the duplicate map data. As the segment marker is coded

with the uniform context, the overhead of each segment marker is approximatively four bits and

144 Chapter 5. Encoder design and extensions

(a) coke (b) coke (c) gnom

(d) gnom (e) killeroo-lowres (f) pencil

(g) pencil (h) scissors (i) scissors

Figure 5.2: Example of decoded models for a BER of 10−4, restart period of 1 and basic error

detection only. The quantizer step sizes are set to 2× 10−3.

5.4. Error resilience 145

hence negligible. Figure 5.3 shows the results for the same conditions as those in Figure 5.2. As

previously, whenever an error is detected the affected surface is dropped. As we can see, all decoded

surfaces are correct. Of all the models, killeroo-lowres is the most affected. This is the case

because given a BER of 10−4 and the average coded length of each surface (1182 bits) 12% of the

surfaces are hit by an error, in average. In fact a network layer residual BER of 10−4 is large for

this kind of application but we have used it to demonstrate the effects of error detection.

(a) coke (b) gnom (c) gnom

(d) killeroo-lowres (e) killeroo-lowres (f) pencil

(g) pencil (h) scissors (i) scissors

Figure 5.3: Example of decoded models for a BER of 10−4, restart period of 1 and with segment

markers. The quantizer step sizes are set to 2× 10−3.

In the above we have used a very simple error concealment strategy: whenever an error occurs

the corresponding surface is discarded. Better error concealment is difficult to achieve because of

146 Chapter 5. Encoder design and extensions

the lack of interleaving of control point data and the error propagation properties of DPCM. In our

coder, the control point data is coded sequentially for each coordinate: all x data, followed by all y

data, and so on. If the x, y, z and w data for each control point is interleaved within each bitplane,

one can insert a segment marker at the end of each bitplane. A decoder would then be typically

able to decode at least the most significant bitplanes and would thus recover approximate prediction

error values. The approximation error would however accumulate when the prediction is undone

and cause drift in the decoded data. This is particularly true for the parallelogram and minimum

variance predictors, which are perfect integrators. It would thus be required to use an alternative

predictor for which the influence of an error decays rapidly. Such a predictor, would however affect

the decoded rate in a very significant way for CAD-like models (see Section 5.2). Another alternative

is to abandon bitplane based coding and code all the bits of a prediction error value together. A

segment marker could then be inserted at regular intervals. In the advent of an error, a subset of

the control points would be recovered without error. Hence a portion of the surface can still be

reconstructed. Giving up bitplane coding would, however, probably incur a considerable penalty in

the coded bitrate since the magnitude information of neighbors can not be as effectively exploited.

5.4.4 Bitstream reordering

The data partitioning approach introduced in Section 5.4.1 enables another functionality at no

additional cost. Since each group of n surfaces is independently coded, where n is the restarting

period, it is possible to directly access each group of surfaces. Furthermore, all of a surface’s

data is contained in a single independent segment of the bitstream. These segments can therefore

be reordered, removed or added to a bitstream before transmission. Only the sequence indices

contained in the termination markers, and eventually the number of surfaces in the header, need to

be readjusted, which is a fairly trivial operation. The only restriction is that all segments should have

been coded using the same parameters. This can be used to optimize the transmission order based

on the client’s viewing point, so that the larger and closest surfaces arrive first. Another application

is random access to large models. When only a subset of the surfaces is to be displayed only

those surfaces need be decoded and there is no time wasted decoding data that will be immediately

discarded. As the computational complexity of entropy decoding is orders of magnitude higher than

scanning for termination markers the approach is worthwhile.

5.5 Conclusions

The performance of linear predictors for control point coordinates has been thoroughly analyzed,

where minimum variance and exhaustive search methods are compared against the simple parallel-

ogram predictor used in the previous chapter. It has been shown that the parallelogram predictor

is within a few percent of the best possible bitrate. Furthermore, for CAD-like models (i.e., with

control nets having sharp edges) the parallelogram predictor is optimal and any other predictor,

including minimum variance, suffers from a great degradation in the compression performance. For

more natural models having smoother control nets the parallelogram predictor is very close to op-

timal and achieves bitrates within less than 1% of the optimum. For extremely detailed models

having very smooth control nets the minimum variance predictors with large support (e.g., order 8

or even 12) provide the best performance. Nonetheless, the parallelogram predictor is also within a

few percent of the optimum bitrate. We can therefore conclude that the parallelogram predictor is

optimal for all practical purposes, with the possible exception of highly detailed models with smooth

control nets where it is sub-optimal but still a good approximation. Furthermore, using anything

5.5. Conclusions 147

else than the parallelogram predictor on CAD-like models can severely degrade the compression

performance.

In the previous chapter we showed that the coding of trimming curves does often consume a very

considerable part of the bitrate. We have applied two techniques, namely curve merging and simpli-

fication through approximate knot removal, that yield considerable gains in compression efficiency

at virtually no additional distortion. Curve merging is performed at G1 continuous junctions and

achieves, in general, modest bitrate savings. It enables, however, much more efficient subsequent

simplification. When the two techniques are combined, bitrate savings up to 10%, and sometimes

even larger, have been demonstrated for simplification distortions below the quantization distortion.

Curve merging does no incur any distortion.

Finally we have extended the coding system with periodic arithmetic coder restarting and ter-

mination markers to enable transmission error containment. Error detection is achieved through

checks in the residual redundancy on the coded data and insertion of segment markers. These mech-

anisms are shown to provide effective means to detect and contain transmission errors. The natural

granularity of error containment is given by the number and area of the original surfaces and it is

necessary to recur to surface splitting at the encoder to improve it. Simple heuristics are provided to

asses the required amount of splitting, given the channel bit error rate and the application tolerable

surface loss probability. Error concealment strategies more elaborate than simple surface discard-

ing, as demonstrated in examples, are proposed. Finally the application of termination markers to

bitstream reordering for optimal viewer dependent transmission and random access of large models

has been presented.

148 Chapter 5. Encoder design and extensions

Applications 6
6.1 Introduction

The applications of three dimensional content are numerous and compression is an enabling tech-

nology in many of them, as the transmission times or storage costs would otherwise be too high. So

far NURBS have not seen widespread use outside the computer aided design (CAD) realm, most

probably because there has been no widespread standard for their encoding. This situation is how-

ever likely to change with the adoption of NURBS in VRML. In this chapter we present several

applications and application scenarios where the compression of NURBS enables the effective use of

3D models.

The outline of this chapter is as follows. In Section 6.2 we look at the benefits of compressing

VRML NURBS nodes for general applications such as virtual worlds on the Internet. Section 6.3

shows how mixed reality applications can benefit from NURBS compression. Section 6.4 concentrates

on the applications in the CAD domain for network accessible models and collaborative design.

Section 6.5 examines the possibility of including 3D models in new“super-teletext” services of digital

television. Finally, conclusions are drawn in Section 6.6.

6.2 VRML coding

VRML is an established format for describing virtual reality worlds and the 3D objects in them. It

has support for a number of primitive shapes, such as spheres, cones, cylinders and boxes. Complex

shapes are however described as polygonal meshes. The widespread use of VRML has been therefore

hampered by the very large size required to describe reasonably complex models. This issue has

been addressed in the recent years by the intensive ongoing research in polygonal mesh coding, as

reviewed in Section 3.4. For detailed models the storage requirements are however still high, even if

effective compression is applied. Very recently NURBS have been added as an optional functionality

to the VRML standard [30, 113] as a means of compactly describing models. While not all 3D shapes

are suitable for NURBS based descriptions, a large class of models can be handled in this form. In

149

150 Chapter 6. Applications

addition to being compact, NURBS models require few parameters to be animated and provide

automatic scalability of the display accuracy based on viewing distance, available memory and CPU

resources, and world complexity. Furthermore, most current 3D modeling programs are NURBS

based and hence the models can be readily modified. Although compact, VRML NURBS models

can still be rather large and can thus benefit from compression. For example, the Egyptian temple

shown in Figure 6.1 has a file size of 638 kilobytes. Using a modem connection at 56 kbps, more

than 90 seconds are required for its transmission. Even if compressed with gzip nine seconds are

required. Even though this time might seem short, it needs to be considered that this object would

be one of many in a relatively complex VRML world. Compression of this model to an accuracy of

one centimeter, assuming a height of 12 meters, brings the transmission time down to two seconds, a

gain of 4.5. Even if a very high accuracy of one millimeter is required the time would be reduced to

three and a half seconds, a gain of 2.5. In Section 4.8.3 we have shown that for low distortion, average

file sizes six times smaller than gzip compressed VRML are obtained. Even for a distortion not

exceeding the precision required by VRML (i.e., 32 bit floating point), or in other words nominally

lossless compression, the average file sizes are two times smaller.

Figure 6.1: Large VRML model made of 362 surfaces and 230 trim loops, with 9827 and 3652

control points, respectively.

NURBS in VRML is however not limited to the description of surfaces. In addition to nodes

describing surfaces and trimming loops, the format defines the following extra NURBS nodes:

NurbsCurve defines NURBS curves in 3D space,

NurbsPositionInterpolator defines a NURBS based 3D interpolation function,

NurbsTextureSurface defines a two dimensional texture coordinate interpolation NURBS function,

and

CoordinateDeformer defines a volumetric NURBS function for shape deformation purposes.

6.3. Mixed reality 151

Although not considered in the coding system defined in Chapter 4, trivial extensions can accommo-

date these nodes. The definition of NurbsCurve and NurbsPositionInterpolator are analogous

to the definition of trimming curves, except that the control points are given in 3D. A NurbsTex-

tureSurface is analogous to a NURBS surface, except that the control points are given in 2D. A

CoordinateDeformer is actually a NURBS volume defined by a three-dimensional tensor product

and thus requires three knot vectors, but otherwise is defined as a NURBS surface (i.e., its control

points are in 3D). Although appropriate predictors for these data types need to be found all the

distortion bounds Chapter 4, developed for curves and surfaces, can be applied by analogy.

Another important aspect when considering the application of NURBS compression to VRML

is that the speed and footprint of the decoder needs to be acceptable so that a user agrees to

download the necessary browser plug-in. Our naive implementation of the decoder achieves a speed

of 90 thousand control points per second on a laptop computer featuring a Pentium II processor

clocked at 300MHz. The size of the executable for Linux is 45 kilobytes, which is the typical size

of a moderately complex NURBS model and therefore not problematic for the user to download. A

properly optimized implementation can probably achieve three times faster decoding for the same

footprint. In any case, the decoding speed of the naive implementation is already around three times

faster than VRML parsing. The use of compressed NURBS hence leads to an important reduction

of both transmission and loading time.

6.3 Mixed reality

In the recent years, mixed reality applications involving 3D objects have gained popularity. We

can distinguish two main approaches. Immersive environments insert real world objects in virtual

worlds. The inverse is performed in augmented reality where virtual objects are inserted in the

real world, typically through semitransparent head mounted displays or by holographic means. In

both these environments, a user can inspect the objects in a rather arbitrary way. For example,

if a user is immersed in a virtual futuristic city, vehicles will approach from a distant point and

will eventually be at a very close viewing distance. In order to optimize the utilization of graphical

rendering resources and still provide an accurate rendering, the resolution of the object should

be adjusted based on the viewing distance. This calls for resolution independent or progressive

formats. NURBS are ideally suited, since they provide natural scalability of the rendering accuracy,

which can be easily controlled in the tessellation process. For a large virtual city thousands and

thousands of different models would be required to provide a realistic variety. Figure 6.2 shows a

futuristic vehicle modeled with NURBS. When compressed with gzip the size is 82 kilobytes. If the

entire city was stored in a DVD with a capacity of 9 gigabytes and ten percent of the space was

devoted to model shape data, the rest of the space being devoted to other data such as textures,

animation information, video clips, etc., around 10 thousand such models could be stored. While

this number is high, a multitude of different object are required for a realistic city. Furthermore,

models which cannot be adequately described as NURBS would require large polygonal models,

rapidly diminishing the space available for other models. If the model is compressed to an accuracy

of 2 millimeters, for an assumed size of 5 meters, the number of such models which can be stored

increases to 80 thousand, a very comfortable number to work with.

An inverse scenario using augmented reality could be a visit of an archaeological site. Some of

the objects, such as statues, could be long missing or severely damaged. It is often not desirable,

or possible, to rebuild missing items. Using augmented reality with head mounted transparent

displays a visitor could be presented with virtual models that are embedded in the real world, so

that a convincing and realistic experience can be delivered. The head mounted unit would receive the

152 Chapter 6. Applications

Figure 6.2: Futuristic vehicle made of 137 surfaces and 284 trimming loops, with 7667 and 1743

control points, respectively.

model data through wireless means. In this scenario, resolution independence is also highly desirable

and NURBS models are a good fit. Figure 6.3 shows two statues of an hypothetical Chinese garden.

The gzip compressed sizes are 16 and 8 kilobytes. For small sites it might not be cost effective

to install a wireless LAN infrastructure, but a GPRS cellular connection with 32 kbps of available

bandwidth is realistic. Receiving the statue models would therefore take between 2 and 4 seconds

each, not accounting for eventual texture data network protocol overhead. Receiving the entire

collection of statues and other objects for a site could easily take several minutes. Compressing

both models to an accuracy of half a centimeter, assuming a height of 2 meters, yields sizes of 3.4

and 2.2 kilobytes. The download time, and thus the financial cost, would be hence reduced by a

factor between three and four.

(a) 49 surfaces, 2142 control points (b) 47 surfaces, 1310 control points

Figure 6.3: Two Chinese garden statues.

6.4. Computer aided design 153

6.4 Computer aided design

In the field of computer aided design (CAD), be it mechanical, industrial or otherwise, NURBS has

been the modeling tool of choice for a long time. CAD models are often extremely large since they

are modeled in very fine detail. This makes the use of compression particularly attractive for network

accessible data. However, CAD applications typically require higher precision when compared to

other applications. Figure 6.4 shows a large CAD model of a mountain bike. The control net shown

in Figure 6.5 attests of the complexity of the model. The uncompressed data size in VRML is 7.2

megabytes, while the gzip compressed data occupies 1.2 megabytes. Applying NURBS compression

with a precision of 60 micrometers, for an assumed bike size of 2 meters, results in a file size of 215

kilobytes. A compression factor of five and a half. Even if 32 bit floating point precision is required,

and only “nominally lossless” compression is acceptable, the compressed size is 596 kilobytes, twice

as short as the gzip compressed model, representing half a megabyte of savings.

Figure 6.4: Large CAD model made of 2262 surfaces and 1187 trimming loops, with 90855 and

43500 control points, respectively.

The size reduction achieved enables collaborative design over wide area networks (WAN) such

as the Internet. Despite the compression, a fast end to end connection would still be necessary

in order to work with acceptable transmission delays, if the whole model was coded as a unit.

However, including segment markers allows to independently transmit each (small) group of surfaces.

In the event that a remote designer modifies some surfaces only the groups containing modified

surfaces need be re-encoded and sent back, allowing to carry out interactive design sessions between

remote locations without the need for particularly fast connections. In addition, when the model is

transmitted for the first time the ordering can be modified so that the most meaningful parts are

received first and designers can start examining the objects while minor details are transmitted in

the background.

154 Chapter 6. Applications

Figure 6.5: Control net of the large CAD model of Figure 6.4.

6.5 Augmented commercials

As already proposed by Bossen [7], 3D models are a compelling way to enhance TV commercials

and advertisement in general. Compression is however essential to achieve sufficient model quality

in a reasonable transmission time. As an example scenario in the domain of digital TV, Bossen

proposes to transmit the 3D model of a product in a side channel while its advertisement plays

on the video channel. However, the large size of a polygonal mesh of sufficient detail requires the

dedication of an entire 1 Mbps side-channel for the duration of the commercial. In what follows, we

propose a similar application involving newer digital TV services, but that is enabled by the much

more compact NURBS representation.

In the past years digital TV has gained popularity and widespread deployment is taking place in

many places around the world. The family of Digital Video Broadcast (DVB) standards, built on top

of MPEG-2, has established itself as the most popular solution. DVB not only allows the broadcast

of video and audio but also allows general data. Within DVB, the Multimedia Home Platform

(MHP) [83] allows for the delivery of applications and data in what is called object carousels. These

object carousels continually and periodically broadcast a set of files to receivers, in what could be

thought of as a “super-teletext” service. The receivers can cache the files as they are received and

display them to the user on demand as if an two way interactive communication existed, with the

difference that no return link is required. A video channel typically requires between 3 and 4 Mbps of

bandwidth. It is therefore not unreasonable to think that 1 Mbps of bandwidth could be dedicated

to an object carousel. One obvious application of this “super-teletext” service is advertisement, as

is currently the case with regular teletext service. The advertisements could therefore contain 3D

models of the products being proposed. For instance, a car manufacturer could present its latest

models in 3D, so that the user might look at them from all possible angles, change color and interior,

etc. The fact that the files are continually broadcasted in a cyclic arrangement places restrictions

on the sizes of the files sent, as the cycle time should be reasonable. Consider the highly detailed

NURBS model of a car shown in Figure 6.6. Its gzip’ed VRML size is 861 kilobytes and would

require almost seven seconds to be transmitted on the 1 Mbps link, not taking into account the

6.6. Conclusions 155

Figure 6.6: Highly detailed model of a car, made of 1057 surfaces and 338 trim loops, with 60704

and 338 control points, respectively.

link’s signaling and error correction overhead. While this is not an unreasonable download time on

an interactive dedicated link, it is probably not practical in an object carousel, as that would imply

large cycle times. When compressed to an accuracy of 2 millimeters, assuming a car size of five

meters, the file size is reduced to 90 kilobytes and thus would download in less than a second. Note

also that this is comparable to the size of a 1000×1000 JPEG image. The application of NURBS

models to advertisement of products is facilitated by the fact that the 3D models used during the

industrial design would typically be already in NURBS form and thus readily available.

6.6 Conclusions

Several application scenarios that benefit, or are enabled, by the use of compressed 3-D NURBS

models have been reviewed. First we have proposed the compression of VRML NURBS nodes

and have shown that interesting compression ratios are achieved in the general case. We have

also considered other factors that affect the adoption of such a technology, as are execution speed

and decoder plug-in size. We have also reviewed more specific application scenarios and shown

how compressed NURBS can be realistically applied. In most applications the driving requirement

is compression performance. We have, however, also demonstrated how bitstream reordering and

random access can enable remote collaborative design, even in demanding CAD environments. Since

the proposed NURBS compression provides guaranteed distortion it is most suited to the field of

computer aided design (CAD), where NURBS are the modeling primitive of choice. The applicability

to other fields of computer geometry and multimedia is of course limited to the extent to which

NURBS descriptions of the models are available.

156 Chapter 6. Applications

Conclusions 7
7.1 Summary of achievements

In this chapter we review the most important issues and contributions presented in this thesis.

Following this we discuss possible future research topics.

In this thesis a system for the compression of NURBS based 3D models has been presented. The

primary objective being the best possible rate-distortion performance for a reasonable complexity

we have not only presented a coding system, but also carried out a detailed distortion analysis. The

results of this analysis have helped in finding optimal trade offs for the quantizer settings. The

major achievements can be summarized as follows.

• Encode knot vectors as two independent entities: a break vector and a multiplicity map. This

separation allows to retain the exact continuity properties of the surface, while providing data

suitable for predictive coding.

• Derived an expression relating knot quantization error to curve and surface parametric L∞
distortion. This expression handles the general case of multiple knots and provides relatively

simple bounds, given the complexity of the relation.

• Based on the relation of knot, weight and control point coordinate quantization error to sur-

face L∞ distortion we have derived the necessary relations for meaningful settings of the

quantization parameters guaranteeing a maximum overall L∞ distortion.

• Proposed simple yet efficient entropy coders for each type of prediction error: break values,

control point coordinates and weights. In particular the special handling of the uppermost

and leftmost columns of the control point grid allows for higher compression efficiency.

• Proposed a simple yet very effective way to code the duplicate points arising in closed and

degenerate surfaces. The entropy coder’s context modeling efficiently captures the structure of

the duplicate map and provides important bitrate savings for models with a significant number

157

158 Chapter 7. Conclusions

of degenerate or closed surfaces, yet leaving almost unaffected the performance on the rest of

the models.

• Experimentally validated the distortion analysis. The global distortion when all individual

quantization errors are considered has been assessed and generic rules to achieve optimal

rate-distortion performance have been derived.

• It has been demonstrated that quantization in a locally oriented basis, while being beneficial

for polygonal meshes, as reported in the literature, is not efficient for NURBS models. In

general it leads to severely degraded rate-distortion performance.

• It has been shown that the optimal linear predictor for CAD-like models is the simple parallel-

ogram predictor. This predictor is also quasi-optimal for other model classes. For models with

very smooth control nets, such as those obtained by a fitting process, optimal performance

can be achieved with minimum variance predictors of large support (i.e., order 8 to 12).

• A method for partitioning the data stream to achieve error resilience has been defined. Pro-

cesses to achieve error detection and resynchronization have been described. A simple strategy

to obtain the maximum surface size given the channel conditions and application requirements

has also been described. In addition, the partitioning enables random access and bitstream

reordering capabilities. The problem of effective concealment remains, however, unsolved.

Notwithstanding some possible solutions are outlined.

7.2 Future directions

The topic of 3D model compression has been an intense field of research for almost ten years. There

has been however little research on the coding of parametric models and even less so of NURBS

models, despite their popularity in many fields of computer graphics. As this is the first major work

addressing this problem many ways remain unexplored. Here follows a list of some of the possible

future research topics.

• Coding topology information. In this thesis we have only considered models that are a simple

collection of surfaces, without information on how the different surfaces are adjacent. This is

typically insufficient in solid modeling systems where a proper B-Rep with topology informa-

tion is required. While the problem is similar to the encoding of polygonal mesh connectivity,

several special cases arising because of curved edges need to be addressed. Encoding the B-Rep

topology could also help solve the crack problem that appears at coarse quantization levels. In

addition, better overall compression could probably be achieved, as coincident control points

between different surfaces need be encoded only once.

• Improved predictors. Adaptive and non-linear prediction schemes could potentially deliver

higher compression efficiency. It is not clear, however, that they would be able to significantly

outperform the simple parallelogram predictor on CAD-like models, where the parallelogram

is the natural predictor. One possible direction worth exploring is to exploit knot vector

information for the prediction of control points, as largely spaced break values are often related

to largely spaced control points.

• Improved error concealment. Better error protection and concealment strategies could greatly

improve the decoded quality in the event of a transmission error. Possible solutions have been

outlined in Section 5.4.3 but its performance and related trade offs would need to be assessed.

7.2. Future directions 159

• Encoding of properties. This has not been considered in this work. However, unlike polygonal

meshes, NURBS models typically do not have properties attached to each control point. They

typically have an associated tensor-product NURBS function providing color values or texture

coordinates. While the proposed NURBS coding scheme can be easily applied to these NURBS

functions, the optimality of the different design choices would have to be evaluated and possible

extensions proposed.

• Improved entropy coding. Although fairly efficient, the proposed entropy coding method for

control point prediction errors does not exploit the potential correlation existing between the

different coordinates, nor between coordinates and weights. There is therefore possible room

for improvement. It remains to be seen, however, what simple relations provide worthwhile

reductions in the entropy leading to improved compression ratios.

• Animated NURBS models. NURBS models are often used in animation, in particular of

virtual characters, as the placement of control points can be done in a physiological meaningful

way. Modifying the position of a few well chosen control points usually provides the desired

animation effect. The encoding of control point movement could be an interesting way to

efficiently compress animated models.

• Improved distortion measures. While the parametric and Hausdorff L∞ and L2 distortion

measures employed in this thesis have meaningful value and have aided in finding good trade

offs for the various quantization parameters, they do not always correlate well to visual distor-

tion. In particular, models with very dense control nets but smooth surfaces can exhibit small

ripples on the coded surface that are visible on shaded renderings. The problem resides in the

fact that although the distortion of the surface is low, the normals rapidly oscillate between

different directions. Deriving a distortion measure on the variation of the normal direction

could relate well to the visual distortion. The expression of the distortion can however get

very complicated and become intractable.

160 Chapter 7. Conclusions

Distortion induced by

knot quantization A
A.1 Introduction

The quantization error incurred by knot values in the coding process modifies the surface shape.

The L∞ distortion on the knot values is easy to derive and amounts to half the quantizer step size,

(i.e., ∆k/2). The relationship between knot quantization error and surface deviation is, however,

far from trivial and the authors are not aware of any previous work describing it. In this appendix

we demonstrate this relationship by giving upper bounds of the maximum deviation induced by the

quantization of one knot, for polynomial curves and surfaces.

Introducing the knot quantization error directly in the formulation of B-Spline functions in

Eq. (2.1) leads to difficult to solve equations. Instead of following this route, we solve the problem

through knot insertion, as explained below. We first derive the results on curves and then extend

them to surfaces.

A.2 Distortion on curves

Consider a polynomial NURBS curve C(u) of degree p with n control points {Pi} and knot vector

U ≡ {ui}. We want to know the maximum deviation of the curve incurred by quantizing the knots

with value ǔ as û = ǔ + ε. Let h be the multiplicity of ǔ in U and k its maximum index, so that

uk−h+1 = . . . = uk = ǔ, uk−h < ǔ and uk+1 > ǔ. The knot vector after quantization is thus

U ′ = {u′i} = {u0, . . . , uk−h, û, . . . , û
︸ ︷︷ ︸

h

, uk+1, . . . , un+p}

and defines, with the control points {Pi}, the curve C′(u). Hence, the maximum deviation Dk =

max ‖C(u)−C′(u)‖. Since these two curves are defined on different knot vectors it is difficult to

evaluate Dk. We solve this problem through knot insertion.

Let C̄(u) be the curve obtained by inserting knot û h times into U , obtaining the knot vector Ū

and control points {Qi}. Likewise, let C̄′(u) be the curve obtained by inserting knot ǔ h times into

161

162 Appendix A. Distortion induced by knot quantization

U ′, obtaining knot vector Ū ′ and control points {Q′
i}. The maximum deviation Dk is then given

by Dk = max ‖C̄(u)− C̄′(u)‖, since C̄(u) = C(u) and C̄′(u) = C′(u). Given that C̄(u) and C̄′(u)

are defined on the same knot vectors (i.e., Ū = Ū ′) the maximum deviation Dk is bounded by the

convex hull property. That is

Dk ≤ max ‖Qi −Q′
i‖. (A.1)

In the following we only consider ε > 0, and thus û > ǔ, the opposite case being analogous. The

augmented knot vectors are therefore

Ū = Ū ′ = {ūi} = {u0, . . . , uk−h, ǔ, . . . , ǔ
︸ ︷︷ ︸

h

, û, . . . , û
︸ ︷︷ ︸

h

, uk+1, . . . , un+p}.

The well-known formulas for knot insertion are given in Eq. (2.19). Extended to multiple knot

insertion and applied to the curves above they yield the following recursive formulas.

Qi,j = αi,jQi,j−1 + (1− αi,j)Qi−1,j−1, (A.2)

Q′
i,j = α′

i,jQ
′
i,j−1 + (1− α′

i,j)Q
′
i−1,j−1, (A.3)

where

Qi = Qi,h, Qi,0 = Pi, (A.4)

Q′
i = Q′

i,h, Q′
i,0 = Pi, (A.5)

αi,j =

1 0 ≤ i ≤ k − p+ j − 1,

û− ui
ui+p+1−j − ui

k − p+ j ≤ i ≤ k,

0 k + 1 ≤ i ≤ n+ j − 1,

(A.6)

and

α′
i,j =

1 0 ≤ i ≤ k − h− p+ j − 1,

ǔ− u′i
u′i+p+1−j − u′i

k − h− p+ j ≤ i ≤ k − h,

0 k − h+ 1 ≤ i ≤ n+ j − 1.

(A.7)

These weighting coefficients enjoy the following properties

0 ≤ αi,j ≤ 1 and 0 ≤ α′
i,j ≤ 1, (A.8)

as well as (see [19])

αi,j ≥ αi,j+1 and α′
i,j ≥ α′

i,j+1. (A.9)

Finally

u′i =

{

ui for i = 0, . . . , k − h and i = k + 1, . . . , un+p,

ǔ otherwise.

Note that Qi = Q′
i for i ≤ k − p and i ≥ k + 1. Therefore C̄(u) = C̄′(u) for u ≤ ūk−p+1 and

u ≥ ūk+p+1, since a control point Pi affects a curve only for u ∈ [ui, ui+p+1). Transposing this back

to the original curve yields

C(u) = C′(u) u /∈ (uk−v+1−p, uk−v+1+p).

A.2. Distortion on curves 163

In other words, the curve deviation is non-zero only between the pth knot before and after the first

quantized knot (i.e., uk−v+1).

Let us now analyze where the deviation is non-zero. Consider the point to point distance between

the ith control points of these two curves at the jth step in the knot insertion process, namely

di,j = ‖Qi,j −Q′
i,j‖. (A.10)

Let Dk,j = maxi{di,j}. Note that di,0 = 0 and Dk,0 = 0. From Eq. (A.1) and Eqs. (A.4) and (A.5)

we have

Dk ≤ max
i
{di,h} = Dk,h. (A.11)

Inserting Eqs. (A.2) and (A.3) into Qi,j −Q′
i,j and rearranging we obtain

Qi,j −Q′
i,j = (αi,j − α′

i,j)(Qi,j−1 −Qi−1,j−1)

+ α′
i,j(Qi,j−1 −Q′

i,j−1) + (1− α′
i,j)(Qi−1,j−1 −Q′

i−1,j−1)

and therefore

di,j ≤ |αi,j − α′
i,j | ‖Qi,j−1 −Qi−1,j−1‖+ |α′

i,j |di,j−1 + |1− α′
i,j |di−1,j−1

= |αi,j − α′
i,j | ‖Qi,j−1 −Qi−1,j−1‖+ max{di,j−1, di−1,j−1},

since |α′
i,j |+ |1− α′

i,j | = 1 by Eq. (A.8), and finally

di,j ≤ |βi,j | ‖Hi,j−1‖+ max{di,j−1, di−1,j−1} (A.12)

by defining

βi,j = αi,j − α′
i,j , (A.13)

Hi,j = Qi,j −Qi−1,j , (A.14)

where Hi,0 = Pi −Pi−1.

Now let us derive bounds for βi,j and Hi,j . Applying Eqs. (A.6) and (A.7) to Eq. (A.13) and

simplifying yields

βi,j =

0 0 ≤ i ≤ k − h− p+ j − 1,
ε

ε+ ǔ− ui
<

ε

ǔ− ui
=

ε

ui+p+1−j − ui
k − h− p+ j ≤ i ≤ min{k − p+ j − 1, k − h}

1 k − h+ 1 ≤ i ≤ k − p+ j − 1
ε

ui+p+1−j − ui
k − p+ j ≤ i ≤ k − h

ε

ui+p+1−j − ǔ
=

ε

ui+p+1−j − ui
k − h+ 1 ≤ i ≤ k

0 k + 1 ≤ i ≤ n+ j − 1

Note that βi,j ≥ 0. The case βi,j = 1 can only arise if j ≥ p−h+2, which implies h ≥ dp/2e+1 ≥ 2.

We delay dealing with this particular case until a later point. For all the other cases

βi,j ≤
ε

ui+p+1−j − ui
i /∈ [k − h+ 1, k − p+ j − 1], (A.15)

βi,j = 0 i /∈ [k − h− p+ j, k].

164 Appendix A. Distortion induced by knot quantization

We are now in position to give the deviation bound in the case where the knot uk = ǔ is simple

(i.e., h = 1). In this case we have

di,1 =

{
ε

ui+p−ui
‖Hi,0‖ k − p ≤ i ≤ k,

0 otherwise,

by substituting Eq. (A.15) into Eq. (A.12). The deviation bound is thus

Dk ≤ Dk,1 ≤ max
k−p≤i≤k

{‖Pi −Pi−1‖
ui+p − ui

}

ε if h = 1 , (A.16)

by Eq. (A.11). Comparing to Eq. (2.17) we see that the deviation bound for h = 1 is proportional

to the maximum norm, over the relevant interval, of the first derivative of the original curve.

Let us return to the general case h > 1. Rearranging Eq. (A.14) from Eq. (A.2) yields

Hi,j = αi,j(Qi,j−1 −Qi−1,j−1) + (1− αi−1,j)(Qi−1,j−1 −Qi−2,j−1)

= αi,jHi,j−1 + (1− αi−1,j)Hi−1,j−1

and therefore

‖Hi,j‖ ≤
{

‖Hi,j−1‖ i = 1,

|1− αi−1,j + αi,j |max{‖Hi,j−1‖, ‖Hi−1,j−1‖} 2 ≤ i ≤ k,

Introducing the fact that (αi,j − αi−1,j) ∈ [−1, 0] by Eqs. (A.8) and (A.9) and expanding the

recursion

‖Hi,j‖ ≤ max
0≤j≤min{j,i−1}

{‖Hi−l,0‖} ≤ max
0≤j≤min{j,i−1}

{‖Pi−l −Pi−l−1‖}

From Eqs. (A.12) and (A.10)

di,h ≤

βi,h‖Hi,h−1‖+ max{di,h−1, di−1,h−1} k − h− p+ 1 ≤ i ≤ k − h or k − p+ h ≤ i ≤ k,
‖Qi,h −Q′

i,h‖ k − h+ 1 ≤ i ≤ k − p+ h− 1 if h ≥ d p2e+ 1,

0 otherwise,

(A.17)

where the definition of di,j has been used in the case βi,h = 1 instead of Eq. (A.12). Expanding the

recursion in the first case above, we have

di,h ≤
h−1∑

t=0

max
0≤l≤min{t,t+i+p−k}

{βi−l,h−t‖Hi−l,h−t−1‖}

=

h−1∑

t=0

max
0≤l≤min{t,t+i+p−k}

{

βi−l,h−t max
0≤τ≤l−t+h−1

{‖Hi−τ,0‖}
}

(A.18)

≤ max
0≤τ≤min{h−1,i−k+h+p−1}

{‖Hi−τ,0‖}
h−1∑

t=0

max
0≤l≤min{t,t+i+p−k}

{βi−l,h−t}

≤ max
0≤τ≤min{h−1,i−k+h+p−1}

{‖Hi−τ,0‖}
h−1∑

t=0

max
0≤l≤min{t,t+i+p−k}

{ ε

ui−l+p−h+1+t − ui−l
}.

Note that none of the βi−l,h−t equals 1 in the expansion above. Defining

φl = min{ui+l − ui}
k − h− l + 1 ≤ i ≤ k − h

k − l + 1 ≤ i ≤ k

A.2. Distortion on curves 165

we obtain

di,h ≤ max
0≤τ≤min{h−1,i−k+h+p−1}

{‖Pi−τ −Pi−τ−1‖}
p
∑

l=p+1−h

1

φl
ε. (A.19)

For the cases where βi,h = 1 in Eq. (A.17), where k − h+ 1 ≤ i ≤ k − p+ h− 1, we obtain

Qi,h −Q′
i,h = Qi,i+p−k −Q′

k−h,k−i

by exploiting the fact that many of the αi,j and αi−l,j−l are 1 and 0, respectively. Rearranging the

above

Qi,h −Q′
i,h = αi,i+p−kHi,i+p−k−1 + (1− α′

k−h,k−i)H
′
k−h,k−i−1 + Ti (A.20)

where H′
i,j is defined analogously to Hi,j in Eq. (A.14) and

Ti = Qi−1,i+p−k−1 −Q′
k−h,k−i−1.

Solving for αi,i+p−k and α′
k−h,k−i in Eq. (A.20) above yields

Qi,h −Q′
i,h =

ε

uk+1 − uk
Hi,i+p−k−1 +

ε

ε+ uk − uk−h
H′
k−h,k−i−1 + Ti

and therefore

di,h ≤ ε
(‖Hi,i+p−k−1‖

uk+1 − uk
+
‖H′

k−h,k−i−1‖
uk − uk−h

)

+ ‖Ti‖. (A.21)

By recursively expanding Qi−1,i+p−k−1 and Q′
k−h,k−i−1 from Eqs. (A.2) and (A.3) and analyzing

the resulting expression for Ti one can demonstrate that

‖Ti‖ ≤ max
k−2h+3≤i≤k−h

{‖Pi −Pi−1‖}
p
∑

l=p−h+3

1

φl
ε h ≥ 3

and ‖Ti‖ = 0 for h ≤ 2. Combining with Eq. (A.21) we have

max
k−h+1≤i≤k−p+h−1

di,h ≤ max
k−2h+2≤i≤k−h

{‖Pi −Pi−1‖}
p
∑

l=p−h+1

1

φl
ε.

Combining with Eqs. (A.11), (A.17) and (A.19) we finally obtain the following two overall bounds:

Dk ≤ Dk,h ≤ max
k−h−p+1≤i≤k

{‖Pi −Pi−1‖}
p
∑

l=p+1−h

1

φl
ε (A.22)

and

Dk ≤ Dk,h ≤ max
k−h−p+1≤i≤k

{‖Pi −Pi−1‖}
h

φp−h+1
ε ;

the former being tighter.

Note that when compared to Eq. (A.16) these bounds are not as tight. In fact, in order to obtain

a general bound that holds for h ≥ dp/2e + 1 we had to relax some of the bounds. For the case

where h ≤ dp/2e we can derive a rather complicated but tighter bound directly from Eq. (A.18) and

obtain

Dk ≤ Dk,h ≤ max
k−h−p+1≤i≤k

h−1∑

t=0

max
0≤l≤min{t,t+i+p−k}

{
max0≤τ≤l−t+h−1{‖Pi−τ −Pi−τ−1‖}

ui−l+p−h+1+t − ui−l

}

ε

if h ≤ dp
2
e.

(A.23)

166 Appendix A. Distortion induced by knot quantization

Note that setting h = 1 gives the same bound as Eq. (A.16). All these bounds indicate that the

maximum deviation Dk is proportional to ε, the maximum distance between pairs of adjacent control

points and the knot multiplicity h, and inversely proportional to the minimum knot spacing between

p− h+ 1 and p positions apart.

A.3 Distortion on surfaces

The distortion bounds derived in the previous section are trivially extended to surfaces by considering

the distortions induced by quantizations of u and v knots as additive. Consider a polynomial surface

S(u, v) with n ×m control points, of degree p and q and with U and V knot vectors. Let Du
k be

the maximum deviation if knot uk is quantized as uk + ε and Dv
k the one if knot vk is quantized as

vk + ε. Let h be the multiplicity of the quantized knot.

If the quantized knot is simple (i.e., h = 1) the bound of Eq. (A.16) becomes

Du
k ≤ Du

k,1 ≤ max
k−p≤i≤k

{
max0≤j≤m−1{‖Pi,j −Pi−1,j‖}

ui+p − ui

}

ε if h = 1

and

Dv
k ≤ Dv

k,1 ≤ max
k−q≤j≤k

{
max0≤i≤n−1{‖Pi,j −Pi,j−1‖}

vj+q − vj

}

ε if h = 1.

The more general bounds of Eq. (A.23) become

Du
k ≤ Du

k,h ≤ max
k−h−p+1≤i≤k

h−1∑

t=0

max
0≤l≤min{t,t+i+p−k}

max0≤τ≤l−t+h−1
0≤j≤m−1

{‖Pi−τ,j −Pi−τ−1,j‖}

ui−l+p−h+1+t − ui−l

ε

if h ≤ dp
2
e

and

Dv
k ≤ Dv

k,h ≤ max
k−h−q+1≤j≤k

h−1∑

t=0

max
0≤l≤min{t,t+j+q−k}

max 0≤i≤n−1
0≤τ≤l−t+h−1

{‖Pi,j−τ −Pi,j−τ−1‖}

vj−l+q−h+1+t − vj−l

ε

if h ≤ dq
2
e.

Finally the completely general bounds of Eq. (A.22) become

Du
k ≤ Du

k,h ≤ max
k−h−p+1≤i≤k

0≤j≤m−1

{‖Pi,j −Pi−1,j‖}
p
∑

l=p+1−h

1

φul
ε

and

Dv
k ≤ Dv

k,h ≤ max
0≤i≤n−1

k−h−q+1≤i≤k

{‖Pi,j −Pi,j−1‖}
p
∑

l=p+1−h

1

φvl
ε,

where

φul = min{ui+l − ui}
k − h− l + 1 ≤ i ≤ k − h

k − l + 1 ≤ i ≤ k

and

φvl = min{vj+l − vj}
k − h− l + 1 ≤ j ≤ k − h

k − l + 1 ≤ j ≤ k

Bibliography

[1] P. Alliez, M. Desbrun (2001). Progressive compression for lossless transmission of triangle

meshes. In Proc. of the International Conference on Computer Graphics and Interactive Tech-

niques, SIGGRAPH’01, pp. 195–202, Los Angeles, CA, USA.

[2] P. Alliez, M. Desbrun (2001). Valence-driven connectivity encoding for 3D meshes. Com-

puter graphics forum 20(3):480–489. Presented at EUROGRAPHICS 2001, 4-7 Sept. 2001,

Manchester, UK.

[3] N. Aspert, D. Santa-Cruz, T. Ebrahimi (2002). Mesh: Measuring errors between surfaces

using the hausdorff distance. In Proc. of the IEEE International Conference in Multimedia

and Expo (ICME) 2002, vol. 1, pp. 705–708, Lausanne, Switzerland.

[4] C. L. Bajaj, V. Pascucci, G. Zhuang (1999). Progressive compression and transmission of

arbitrary triangular meshes. In Proc. of IEEE Visualizetion’99, pp. 307–316, San Francisco,

CA, USA.

[5] R. Bar-Yehuda, C. Gotsman (1996). Time/space tradeoffs for polygon mesh rendering. ACM

Transactions on Graphics 15(2):141–152.

[6] D. Bertsekas, R. Gallager (1992). Data Networks. Prentice Hall, Englewood Cliffs, NJ, USA,

2nd edn.

[7] F. Bossen (1999). On the art of compressing three-dimensional polygonal meshes and their

associated properties. Ph.d. dissertation, École Polytechnique Fédérale de Lausanne, Lausanne,

Switzerland. No. 2012.

[8] L. Bottou, P. G. Howard, Y. Bengio (1998). The Z-coder adaptive binary coder. In Proc. of

the Data Compression Conference, 1998. DCC ’98, pp. 13–22.

[9] F. M. Burgos, M. Kitahara, C. Joslin (2002). SNHC FAQ 9. ISO/IEC JTC1/SC29/WG11

N4972.

[10] M. S. Casale (1987). Free-form solid modeling with trimmed surface patches. IEEE Computer

Graphics and Applications 7(1):33–43.

[11] E. Catmull, J. Clark (1978). Recursively generated b-spline surfaces on arbitrary topological

meshes. Computer Aided Design 10(6):350–355.

[12] M. M. Chow (1997). Optimized geometry compression for real-time rendering. In Proceedings

of IEEE Visualization’97, pp. 347–354.

167

168 Bibliography

[13] P. Cignoni, C. Rocchini, R. Scopigno (1998). Metro: measuring error on simplified surfaces.

Computer Graphics Forum 17(2):167–174.

[14] W. Dahmen, C. Micchelli, H.-P. Seidel (1992). Blossoming begets b-spline bases built better

by b-patches. Mathematics of Computation 59(199):97–115.

[15] M. Deering (1995). Geometry compression. In Proceedings of the 22nd annual conference on

Computer graphics and interactive techniques, SIGGRAPH’95, pp. 13–20, ACM Press, Los

Angeles, California.

[16] R. A. DeVore, B. Jawerth, B. J. Lucier (1992). Surface compression. Computer Aided Geo-

metric Design 3(9):219–239.

[17] D. Doo, M. Sabin (1978). Behavior of recursive division surfaces near extraordinary points.

Computer Aided Design 10(6):356–360.

[18] N. Dyn, D. Levine, J. A. Gregory (1990). A butterfly subdivision scheme for surface interpo-

lation with tension control. ACM Transactions on Graphics 9(2):160–169.

[19] M. Eck, J. Hadenfeld (1995). Knot removal for B-spline curves. Computer Aided Geometric

Design 12(3):259–282.

[20] G. Farin (1992). From conics to NURBS: A tutorial and survey. IEEE Computer Graphics

and Applications 12(5):78–86.

[21] G. Farin (1996). Curves and surfaces for computer aided geometric design. Academic Press,

4th edn.

[22] G. E. Farin (1999). NURBS: from projective geometry to practical use. A K Peters, Ltd.,

Natick, Massachusetts, 2nd edn.

[23] J. D. Foley, A. van Dam, S. K. Feiner, J. F. Hughes (1996). Computer graphics: principles

and practice. Addison-Wesley, 2nd C edn.

[24] D. R. Forsey, R. H. Bartels (1988). Hierarchical b-spline refinement. In Proceedings of the 15th

annual conference on Computer graphics, SIGGRAPH’88, pp. 205–212, Atlanta, GA USA.

[25] Y. Furukawa, H. Masuda (2002). Compression of NURBS surfaces with error evaluation. In

NICOGRAPH International 2002, Tokyo.

[26] M. Galassi et al. (2002). GNU Scientific Library Reference Manual, 1.3 edn.

http://sources.redhat.com/gsl/ref/gsl-ref_toc.html.

[27] A. Gersho, R. M. Gray (1992). Vector quantization and signal compression. Kluwer Academic

Publishers, Boston, MA.

[28] W. J. Gordon, R. F. Riesenfeld (1974). B-spline curves and surfaces. In R. E. Barnhill, R. F.

Riesenfeld (eds.), Computer aided geometric design : proceedings of a conference held at the

University of Utah, pp. 95–126, Academic Press, New York, Salt Lake City, Utah.

[29] W. J. Gordon, R. F. Riesenfeld (1974). Bernstein-Bézier methods for the computer aided

design of free-form curves and surfaces. Journal of ACM 21(2):293–310.

[30] H. Grahn, T. Volk, H. J. Wolters (2000). Nurbs in VRML. In Proc. of the Web3D-VRML

2000 fifth symposium on Virtual reality modeling language, pp. 35–43, ACM Press, Monterey,

CA, USA.

http://sources.redhat.com/gsl/ref/gsl-ref_toc.html

Bibliography 169

[31] M. H. Gross, L. Lippert, O. G. Staadt (1999). Compression methods for visualization. Future

Generation Computer Systems 15(1):11–29.

[32] A. Guéziec, F. Bossen, G. Taubin, C. Silva (1999). Efficient compression of non-manifold

polygonal meshes. Computational Geometry 14(1-3):137–166.

[33] A. Guéziec et al. (1998). Converting sets of polygons to manifold surfaces by cutting and

stitching. In Proc. of Visualization ’98, pp. 383–390, Research Triangle Park, NC, USA.

[34] A. Guéziec et al. (2001). Cutting and stitching: converting sets of polygons to manifold

surfaces. IEEE Trans. on Visualization and Computer Graphics 7(2):136–151.

[35] S. Gumhold (1999). Improved cut-border machine for triangle mesh compression. In Proc. of

the Erlangen Workshop’99 on Vision, Modeling and Visualization.

[36] S. Gumhold, W. Strasser (1998). Real time compression of triangle mesh connectivity. In

Proc. of the International Conference on Computer Graphics and Interactive Techniques, SIG-

GRAPH’98, pp. 133–140, Orlando, FL, USA.

[37] H. Hoppe (1996). Progressive meshes. In Proc. of the International Conference on Computer

Graphics and Interactive Techniques, SIGGRAPH’96, pp. 99–108, New Orleans, LA, USA.

[38] H. Hoppe (1998). Efficient implementation of progressive meshes. Computer & Graphics

22(1):27–36.

[39] IGES/PDES (1998). The Initial Graphics Exchage Specification (IGES) Version 6.0 - Draft.

http://www.iges5x.org/archives/version5x/.

[40] M. Isenburg (2000). Triangle strip compression. In Proc. of Graphics Interface 2000, pp.

197–204, Montreal, Que., Canada.

[41] M. Isenburg (2002). Compressing polygon mesh connectivity with degree duality prediction.

In Proc. of Graphics Interface 2002, pp. 161–170, Calgary, Canada.

[42] M. Isenburg, P. Alliez (2002). Compressing polygon mesh geometry with parallelogram pre-

diction. In Proc. of Visualization 2002, pp. 141–146, Boston, MA, USA.

[43] M. Isenburg, J. Snoeyink (2000). Face Fixer: Compressing polygon meshes with properties.

In Proc. of the International Conference on Computer Graphics and Interactive Techniques,

SIGGRAPH 2000, pp. 263–270, New Orleans, LA, USA.

[44] M. Isenburg, J. Snoeyink (2001). Spirale Reversi: Reverse decoding of the Edgebreaker en-

coding. Computational Geometry 20(1-2):39–52.

[45] A. Iske, E. Quak, M. S. Floater (eds.) (2002). Tutorials on Multiresolution in Geometric

Modelling. Mathematics and Visualization. Springer-Verlag, Berling Heidelberg.

[46] ISO/IEC (1993). ISO/IEC 11544:1993 Information technology — Coded representation of

picture and audio information — Progressive bi-level image compression.

[47] ISO/IEC (1998). ISO/IEC 14772-1:1998 Information technology — Computer graphics and

image processing — The Virtual Reality Modeling Language (VRML) — Part 1: Functional

specification and UTF-8 encoding.

http://www.iges5x.org/archives/version5x/

170 Bibliography

[48] ISO/IEC (1999). ISO/IEC 14496-2:1999: Information technology — Coding of audio-visual

objects — Part 2: Visual.

[49] ISO/IEC (2000). ISO/IEC 14496-2:1999/Amd 1:2000: Visual extensions.

[50] ISO/IEC (2002). Study on PDAM of ISO/IEC 14496-1 / AMD4. ISO/IEC

JTC1/SC29/WG11 N4627, Jeju.

[51] ISO/IEC JTC 1/SC 29/WG 1 (1999). ISO/IEC FCD 14492: Information technology — Coded

representation of picture and audio information — Lossy/Lossless coding of bi-level images

[WG 1 N 1359]. http://www.jpeg.org/public/jbigpt2.htm.

[52] A. K. Jain (1989). Fundamentals of Digital Image Processing. Prentice Hall, Englewood Cliffs,

New Jersey.

[53] N. S. Jayant, P. Noll (1984). Digital Coding of Waveforms. Prentice Hall, Englewood Cliffs,

NJ.

[54] Z. Kami, C. Gotsman (2000). Spectral compression of mesh geometry. In Proc. of the In-

ternational Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2000,

pp. 279–286, New Orleans, LA, USA.

[55] A. Khodakovsky, P. Alliez, M. Desbrun, P. Schröder (2002). Near-optimal connectivi-

ty encoding of 2-manifold polygon meshes. Graphical Models Submitted for publication,

http://www.multires.caltech.edu/pubs/ircomp.pdf.

[56] A. Khodakovsky, P. Schröder, W. Sweldens (2000). Progressive geometry compression. In

Proc. of the International Conference on Computer Graphics and Interactive Techniques, SIG-

GRAPH 2000, pp. 271–278, New Orleans, LA, USA.

[57] D. King, J. Rossignac (1999). Guaranteed 3.67v bit encoding of planar triangle graphs. In

Proc. of the 11th Canadian Conference on Computational Geometry (CCCG), pp. 146–149,

Vancouver, Canada.

[58] D. King, J. Rossignac, A. Szymczak (1999). Connectivity Compression for Irregular Quadri-

lateral Meshes. Tech. Rep. GVU-GIT-99-36, Georgia Tech, GVU Center, Georgia, GA, USA.

[59] B. Kronrod, C. Gotsman (2000). Optimized compression of triangle mesh geometry using

prediction trees. In Proc. of the 8th Pacific Graphics 2000 Conference, pp. 602–608, Padova,

Italy.

[60] B. Kronrod, C. Gotsman (2001). Efficient coding of nontriangular mesh connectivity. Graphical

Models 63(4):263–275.

[61] S. Kumar, S. Han, D. Goldof, K. Bowyer (1995). On recovering hyperquadrics from range

data. IEEE Trans. on Pattern Analysis and Machine Intelligence 17(11):1079–1083.

[62] S. Kumar, D. Manocha, A. Lastra (1996). Interactive display of large NURBS models. IEEE

Trans. on Visualization and Computer Graphics 2(4):323–336.

[63] G. G. Langdon (1988). Compression of Multilevel Signals. Patent Nr. 4,749,983, United States.

[64] H. Lee, P. Alliez, M. Desbrun (2002). Angle-analyzer: A triangle-quad mesh codec. Computer

Graphics Forum 21(3):383–392.

http://www.jpeg.org/public/jbigpt2.htm
http://www.multires.caltech.edu/pubs/ircomp.pdf

Bibliography 171

[65] J. Li, C.-C. J. Kuo (1998). Progressive coding of 3-D graphic models. Proceedings of the IEEE

86(6):1052–1063.

[66] C. Loop (1994). Smooth spline surfaces over irregular meshes. In Proceedings of the 21st

annual conference on Computer graphics and interactive techniques, SIGGRAPH’94, pp. 303–

310, ACM Press, Orlando, Florida.

[67] H. Lopes et al. (2002). Edgebreaker: A simple compression for surfaces with handles. In Proc.

of the seventh ACM symposium on Solid modeling and applications, pp. 289–296, Saarbrücken,

Germany.

[68] M. Lounsbery, T. D. DeRose, J. Warren (1997). Multiresolution analysis for surfaces of arbi-

trary topological type. ACM Transactions on Graphics 16(1):34–73.

[69] W. L. Luken (1996). Tessellation of trimmed nurb surfaces. Computer Aided Design 13(2):163–

177.

[70] T. Lyche, K. Mørken (1987). Knot removal for parametric B-spline curves and surfaces.

Computer Aided Geometric Design 4(3):217–230.

[71] S. Malassiotis, M. G. Strintzis (1999). Optimal biorthogonal wavelet decomposition of wire-

frame meshes using box splines, and its application to the hierarchical coding of 3-D surfaces.

IEEE Trans. on Image Processing 8(1):41–57.

[72] S. Mallat (1999). A wavelet tour of signal processing. Academic Press, San Diego, CA, 2nd

edn.

[73] W. S. Massey (1967). Algebraic Topology: An Introduction. Harcourt, Brace & World, Inc.,

New York, NY.

[74] J. R. Miller (1986). Sculptured surfaces in solid models: Issues and alternative approaches.

IEEE Computer Graphics and Applications 6(12):37–48.

[75] J. Montagnat, H. Delingette, N. Ayache (2001). A review of deformable surfaces: toppology

geometry and deformation. Image and Vision Computing 19(14):1023–1040.

[76] R. Pajarola, J. Rossignac (2000). Compressed progressive meshes. IEEE Trans. on Visualiza-

tion and Computer Graphics 6(1):79–93.

[77] W. B. Pennebaker, J. L. Mitchell (1992). JPEG: Still Image Data Compression Standard. Van

Nostrand Reinhold, New York.

[78] W. B. Pennebaker, J. L. Mitchell, G. G. Langdon, R. B. Arps (1988). An overview of the

basic principles of the Q-coder adaptive binary arithmetic coder. IBM Journal of Research

and Development 32(6):717–726.

[79] J. Peters (1995). C1-surface splines. SIAM Journal of Numerical Analysis 32(2):645–666.

[80] L. Piegl, W. Tiller (1997). The NURBS Book. Springer-Verlag, Berlin, Germany, 2nd edn.

[81] L. A. Piegl, A. M. Richard (1995). Tessellating trimmed NURBS surfaces. Computer Aided

Design 27(1):16–26.

[82] L. A. Piegl, W. Tiller (1998). Geometry-based triangulation of trimmed NURBS surfaces.

Computer Aided Design 30(1):11–18.

172 Bibliography

[83] J. Piesing (1999). The DVB multimedia home platform – “mhp”. In Interactive Television

(Ref. No. 1999/200), IEE Colloquium on, vol. 2, pp. 1–6.

[84] H. Qin, D. Terzopoulos (1997). Triangular NURBS and their dynamic generalizations. Com-

puter Aided Geometric Design 14(4):325–347.

[85] G. V. V. Ravi Kumar, P. Srinivasan, K. G. Shastry, B. G. Prakash (2001). Geometry based

triangulation of multiple trimmed NURBS surfaces. Computer Aided Design 33(6):439–454.

[86] L. M. Reissell (1996). Wavelet multiresolution representation of curves and surfaces. Graphical

Models and Image Processing 58(3):198–217.

[87] R. F. Riesenfeld (1972). Application of B-Spline approximation to Geometric Problems of

Computer Aided Design. Ph.d. dissertation, Syracuse University, Syracuse, NY. Also available

as University of Utah UTEC-CSc-73-126, March, 1973.

[88] D. F. Rogers (2001). An Introduction to NURBS: with Historical Perspective. Morgan Kauf-

mann, San Francisco, CA.

[89] J. Rossignac (1999). Edgebreaker: Connectivity compression for triangle meshes. IEEE Trans.

on Visualization and Computer Graphics 5(1):47–61.

[90] J. Rossignac (2001). 3D compression made simple: Edgebreaker with zip&wrap on a Coner-

Table. In Shape Modeling and Applications, SMI 2001 International Conference on, pp. 278–

283, Genova, Italy.

[91] J. Rossignac, A. Szymczak (1999). Wrap&Zip decompression of the connectivity of triangle

meshes compressed with Edgebreaker. Computational Geometry 14(1-3):119–135.

[92] J. Rossignac et al. (2002). Edgebreaker: A Simple Compression for Surfaces with Handles.

Tech. Rep. GIT-GVU-02-03, Georgia Tech, GVU Center, Atlanta, GA, USA.

[93] I. J. Schoenberg (1946). Contributions to the problem of approximation of equidistant data

by analytic functions, Part A: On the problem of smoothing or graduation, a first class of

analytic approximation formulas. Quart. Appl. Math. 4(1):45–99.

[94] I. J. Schoenberg (1946). Contributions to the problem of approximation of equidistant data

by analytic functions, Part B: On the problem of osculatory interpolation, a second class of

analytic approximation formulae. Quart. Appl. Math. 4(2):112–141.

[95] J. M. Shapiro (1993). Embedded image coding using zerotrees of wavelet coefficients. IEEE

Trans. on Image Processing 41(12):3445–3462.

[96] M. J. Slattery, J. L. Mitchell (1998). The Qx-coder. IBM Journal of Research and Development

42(6):767–784.

[97] O. G. Staadt, M. H. Gross, R. Weber (1997). Multiresolution compression and reconstruction.

In Proc. of IEEE Visualization’97, pp. 337–346, Phoenix, AZ, USA.

[98] A. J. Stoddart, M. S. Baker (1998). Progressive splines. In Proceedings of IMDSP’98 10th

Image and Multi-dimensional Digital Signal Processing Workshop, pp. 295–298, Alpbach, Aus-

tria.

Bibliography 173

[99] A. J. Stoddart, M. S. Baker (1998). Surface reconstruction and compression using multires-

olution arbitrary topology G1 continuous splines. In Proceedings Fourteenth International

Conference on Pattern Recognition, vol. 1, pp. 788–791, Brisbane, Qld., Australia.

[100] Sun Microsystems (2000). The Java 3D API Specification, version 1.2. Palo Alto, CA, USA.

http://java.sun.com/products/java-media/3D/forDevelopers/J3D_1_2_API/.

[101] A. Szymczak (2002). Optimized edgebreaker encoding for large and regular triangle meshes.

In Proc. of the Data Compression Conference (DCC), 2002, p. 472, Snowbird, UT, USA.

[102] A. Szymczak (2002). Optimized Edgebreaker Encoding for Large and Regular Tri-

angular Meshes. Tech. rep., Georgia Tech, GVU Center, Georgia, GA, USA.

http://www.cc.gatech.edu/fac/Andrzej.Szymczak/papers/prac.pdf.

[103] A. Szymczak, D. King, J. Rossignac (2001). An Edgebreaker-based efficient compression

scheme for regular meshes. Computational Geometry 20(1-2):53–68.

[104] G. Taubin, A. Guéziec, W. Horn, F. Lazarus (1998). Progressive forest split compression.

In Proc. of the International Conference on Computer Graphics and Interactive Techniques,

SIGGRAPH’98, pp. 123–132, Orlando, FL, USA.

[105] G. Taubin, W. P. Horn, F. Lazarus, J. Rossignac (1998). Geometry coding and VRML.

Proceedings of the IEEE 86(6):1228–1243.

[106] G. Taubin, J. Rossignac (1998). Geometry compression through topological surgery. ACM

Transactions on Graphics 17(2):84–115.

[107] D. S. Taubman, M. W. Marcellin (2002). JPEG2000: image compression fundamentals, stan-

dards and practice. Kluwer Academic Publishers, Norwell, MA.

[108] W. Tiller (1992). Knot-removal algorithms for NURBS curves and surfaces. Computer Aided

Design 24(8):445–453.

[109] C. Touma, C. Gotsman (1998). Triangle mesh compression. In Proc. of the 24th Conference

on Graphics Interface (GI-98), pp. 26–34, Morgan Kaufmann, San Francisco, CA, USA.

[110] W. T. Tutte (1962). A census of planar triangulations. Canadian Journal of Mathematics

14:21–38.

[111] K. J. Versprille (1975). Computer-aided Design Applications of the Rational B-spline Approx-

imation Form. Ph.d. dissertation, Syracuse University, Syracuse, NY.

[112] G. K. Wallace (1992). The JPEG still picture compression standard. In IEEE Trans. on

Consumer Electronics, vol. 38, pp. xviii – xxxiv.

[113] Web3D Consortium (2001). ISO/IEC 14772-1:1997/Amd.1:2002 Information Processing Sys-

tems - Computer Graphics The Virtual Reality Modeling Language Part 1 — Functional spec-

ification and UTF-8 encoding Amendment 1 — Enhanced interoperability.

[114] Web3D Consortium (2002). Information technology – Computer graphics and image processing

– eXtensible 3D (X3D) – Part 1: Architecture and Base Components, Final Working Draft.

http://www.web3d.org/TaskGroups/x3d/specification-milestone4/index.html.

[115] E. W. Weisstein (2003). Eric weisstein’s world of mathematics.

http://mathworld.wolfram.com.

http://java.sun.com/products/java-media/3D/forDevelopers/J3D_1_2_API/
http://www.cc.gatech.edu/fac/Andrzej.Szymczak/papers/prac.pdf
http://www.web3d.org/TaskGroups/x3d/specification-milestone4/index.html
http://mathworld.wolfram.com

174 Bibliography

[116] R. G. Winch (1993). Telecommunication transmission systems: microwave, fiber optic, mobile

cellular radio, data, and digital multiplexing. McGraw-Hill.

[117] W. D. Withers (1997). A rapid entropy-coding algorithm. Dr. Dobb’s Journal 22(4):38–43.

ftp://www.pegasusimaging.com/pub/ELSCODER.PDF.

[118] I. H. Witten, R. M. Neal, J. G. Cleary (1987). Arithmetic coding for data-compression.

Communications of the ACM 30(6):520–540.

[119] M. Woo, J. Neider, T. Davis, D. Shreiner (1999). OpenGL Programming Guide. Addison-

Wesley, Reading, Massachusetts, 3rd edn.

[120] L. Zhou, C. Kambhamettu (2001). Extending superquadrics with exponent functions: Mod-

eling and reconstruction. Graphical Models 63(1):1–20.

[121] D. Zorin, P. Schröder, W. Sweldens (1996). Interpolation subdivision for meshes with arbitrary

topology. In Proceedings of the 23rd annual conference on Computer graphics and interactive

techniques, SIGGRAPH’96, pp. 189–192, ACM Press, New Orleans, Louisiana.

ftp://www.pegasusimaging.com/pub/ELSCODER.PDF

Curriculum Vitæ

Name: Diego Santa Cruz Ducci

Citizenship: Chilean / Italian

Birthdate: July 24, 1973

Birthplace: Santiago, Chile

Marital status: Married

Contact information

Address: Rue Chaponnière 7

1201 Genève

Switzerland

Phone: +41 79 419 56 71

Email: Diego.SantaCruz@epfl.ch

Work experience

• March 1998 – present : research assistant, Swiss Federal Institute of Technology (EPFL),

Lausanne, Switzerland

– Development of image compression, watermarking and 3D model compression algorithms.

– Project management: technical manager and lead developer of JJ2000 (JPEG 2000 ref-

erence software, 4 persons, 1999-2000) and NexImage (advanced image compression, 3

persons, 1998-1999).

– Technical consultant: Swiss delegate to ISO JPEG 2000 standardization (1998-2000);

development of region-of-interest functionality in JPEG 2000 (1998).

– Teaching: JPEG 2000 instructor at IEEE’s International Conference in Image Processing

2001; supervision of 3 full time (4 to 6 months) and 4 part time (4 months) student’s

projects; teaching assistant for image and video processing course (1 semester).

• May 1998 - December 1998 : IT consultant at Cambridge Technology Partners – NatSoft

S.A. (CTP), Geneva, Switzerland.

– Analysis and definition of sales and help desk processes (Bobst S.A. and Phillip Morris,

Switzerland).

– Analysis of a project planification, evaluation and tracking system (UNAIDS, Switzer-

land).

– Analysis of a vehicle leasing system (GE Capital Fleet Services, Holland).

175

176 Curriculum Vitæ

Education

• March 1998 – May 2003 : PhD student in electrical engineering, Swiss Federal Institute

of Technology (EPFL), Lausanne, Switzerland.

• October 1992 – March 1997 : Diplôme d’Ingénieur Electricien EPF, equivalent of Master

of Science in Electrical Engineering.

• August 1994 – May 1995 : exchange student at Carnegie Mellon University (CMU), Pitts-

burgh, PA, USA; exchange fellowship awarded by EPFL.

• October 1991 – June 1992 : Cours de Mathématiques Spéciales, Swiss Federal Institute of

Technology (EPFL), Lausanne, Switzerland.

• January 1989 – December 1990 : Baccalaureate, specialization in Engineering, Sagrado

Corazón College, Montevideo, Uruguay.

Awards

• VCIP 2002 Best Student Paper, Compression of parametric surfaces for efficient 3D model

coding, Visual Communications and Image Processing (VCIP) 2002.

Skills

Languages

Spanish: mother tongue

English: fluent oral and written

French: fluent oral and written

Italian: basic oral

Computing

Operating systems: Linux, Unix, Windows, MacOS

Programming languages: C, C++, Java, Perl, Unix shell

Other: HTML, LaTeX, Matlab, CVS

Publications

Journal papers

• Diego Santa-Cruz and Touradj Ebrahimi. Coding of 3D virtual objects with NURBS. Signal

Processing, special issue on image and video coding beyond standards, pp. 1581–1593, vol. 82,

no. 11, November 2002.

• Diego Santa-Cruz, Raphaël Grosbois and Touradj Ebrahimi. JPEG 2000 performance evalu-

ation and assessment. Signal Processing: Image Communication, pp. 113–130, vol. 17, no. 1,

January 2002.

Curriculum Vitæ 177

Conference papers

• Nicolas Aspert, Diego Santa-Cruz and Touradj Ebrahimi. MESH: Measuring Errors between

Surfaces using the Hausdorff distance. In Proc. of the IEEE International Conference in

Multimedia and Expo (ICME) 2002, vol. 1, pp. 705–708, Lausanne, Switzerland, August 26–

29, 2002.

• Diego Santa-Cruz and Touradj Ebrahimi. Compression of parametric surfaces for efficient 3D

model coding. In Visual Communications and Image Processing (VCIP) 2002, Proc. of SPIE,

vol. 4671, pp. 280–291, San Jose, CA, USA, January 21–23, 2002.

• Raphaël Grosbois, Diego Santa-Cruz and Touradj Ebrahimi. New approach to JPEG 2000

compliant region of interest coding. In SPIE’s 46th annual meeting, Applications of Digital

Image Processing XXIV , Proc. of SPIE, vol. 4472, pp. 267-275, San Diego, California, July

29–August 3, 2001.

• Franck Leprévost, Raphaël Erard, Touradj Ebrahimi, Martin Kutter and Diego Santa-Cruz.

How to Bypass the Wassenaar Arrangement: A New Application for Watermarking. In Proc.

on ACM multimedia 2000 workshops, pages 161–164, Los Angeles, CA, USA, October 30–

November 3, 2000.

• Diego Santa-Cruz, Touradj Ebrahimi, Joel Askelöf, Mathias Larsson and Charilaos Christo-

poulos. JPEG 2000 still image coding versus other standards. In Proc. of the SPIE’s 45th

annual meeting, Applications of Digital Image Processing XXIII , vol. 4115, pp. 446–454, San

Diego, California, July 30–August 4, 2000.

• Diego Santa-Cruz and Touradj Ebrahimi. An analytical study of JPEG 2000 functionalities.

In Proc. of the IEEE International Conference on Image Processing (ICIP), vol. 2, pp. 49–52,

Vancouver, Canada, September 10–13, 2000.

• Diego Santa-Cruz and Touradj Ebrahimi. A study of JPEG 2000 still image coding versus

other standards. In Proc. of the X European Signal Processing Conference (EUSIPCO), vol. 2,

pp. 673–676, Tampere, Finland, September 5–8, 2000.

• Diego Santa Cruz, Touradj Ebrahimi, Mathias Larsson, Joel Askelöf and Charilaos Cristopou-

los. Region of Interest Coding in JPEG2000 for interactive client/server applications. In

Proc. of the IEEE Third Workshop on Multimedia Signal Processing (MMSP), pp. 389–394,

Copenhagen, Denmark, September 13–15, 1999.

• Maryline Charrier, Diego Santa Cruz and Mathias Larsson. JPEG2000, the next millenium

compression standard for still images. In Proc. of the IEEE International Conference on

Multimedia Computing and Systems (ICMCS), vol. 1, pp. 131–132, Florence, Italy, June 7–

11, 1999.

Non refereed

• Diego Santa Cruz, Touradj Ebrahimi and Charilaos Cristopoulos. The JPEG 2000 Image

Coding Standard. In Dr. Dobb’s Journal, vol. 26, no. 4, pp. 46–54, April 2001.

178 Curriculum Vitæ

Patents

• Partial retrieval of images in the compressed domain. Swedish pat. #9803593-4.

• Entropic encoding method and device. US pat. Application # 09/796455, French pat. appli-

cation #00.02700.

	Acknowledgments
	Version abrégée
	Abstract
	Introduction
	Context
	Approach
	Main contributions
	Outline

	3D model representation
	Introduction
	Polygonal meshes
	Parametric curves and surfaces
	B-Splines
	B-Spline functions
	B-Spline surfaces
	B-Spline curves
	Fundamental NURBS algorithms
	Trimmed NURBS

	Other surface modeling techniques
	Other parametric surfaces
	Subdivision surfaces
	Implicit surfaces

	Model properties
	Solid modeling
	Regularized Boolean set operations
	Boundary representation
	Constructive solid geometry

	Conclusions

	3D model coding
	Introduction
	Entropy coding
	Entropy
	Huffman coding
	Arithmetic coding

	Quantization and distortion
	Rate distortion
	Scalar quantization
	Differential pulse code modulation
	Distortion in 3D models

	Coding of polygonal meshes
	Uncompressed meshes
	Geometry Compression
	Topological Surgery
	Triangle Mesh Compression
	Edgebreaker
	Edgebreaker derivatives
	Edgebreaker for polygonal meshes
	Triangle Mesh Compression derivatives
	Angle analyzer
	Other methods
	Coding of non-manifolds
	Progressive methods

	Coding of parametric surfaces
	Conclusions

	Parametric surface coding
	Introduction
	Uncompressed NURBS
	General coder structure
	Knot vectors
	Prediction and quantization
	Distortion analysis
	Entropy coding

	Control points
	Prediction and quantization
	Distortion analysis
	Entropy coding

	Degenerate and closed surfaces
	Trimmed surfaces
	Knot vectors
	Control points
	Trim distortion in 3D space

	Performance analysis
	Distortion measurement
	Quantizers and rate distortion
	Comparative compression ratios
	Global and local quantizer bases
	Coded bit distribution
	Comparison with polygonal meshes

	Conclusions
	Summary
	Achievements

	Encoder design and extensions
	Introduction
	Optimal linear predictors
	Trimming loop optimization
	Curve merging
	Curve simplification

	Error resilience
	Data partitioning
	Basic error detection
	Segment markers
	Bitstream reordering

	Conclusions

	Applications
	Introduction
	VRML coding
	Mixed reality
	Computer aided design
	Augmented commercials
	Conclusions

	Conclusions
	Summary of achievements
	Future directions

	Distortion induced by knot quantization
	Introduction
	Distortion on curves
	Distortion on surfaces

	Bibliography
	Curriculum Vitæ

