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ABSTRACT 

Modern competitive market demands frequent change in product variety, increased 

production volume and shorten product/process change over time. These market 

requirements point towards development of key enabling technologies (KETs) to 

shorten product and process development cycle, improved production quality and 

reduced time-to-launch. One of the critical prerequisite to develop the 

aforementioned KETs is efficient and accurate modelling of product and process 

dimensional errors. It is especially critical for assembly processes with compliant 

parts as used in automotive body, appliance or wing and fuselage assemblies. 

Currently, the assembly process is designed under the assumption of ideal (nominal) 

products and then check by using variation simulation analysis (VSA). However, the 

VSA simulations are oversimplified as they are unable to accurately model or predict 

the effects of geometric and dimensional variations of compliant parts, as well as 

variations of key characteristics related to fixturing and joining process.  

This results in product failures and/or reduced quality due to un-modelled 

interactions in assembly process. Therefore, modelling and prediction of the 

geometric shape errors of complex sheet metal parts are of tremendous importance 

for many industrial applications. Further, as production yield and product quality are 

determined for production volume of real parts, thus not only shape errors but also 

shape variation model is required for robust assembly system development. 

Currently, parts shape variation can be measured during production by using recently 

introduced non-contact gauges which are fast, in-line and can capture entire part 

surface information. However, current applications of non-contact scanners are 

limited to single part inspection or reverse engineering applications and cannot be 

used for monitoring and statistical process control of shape variation. Further, the 

product shape variation can be reduced through appropriate assembly fixture design. 

Current approaches for assembly fixture design seldom consider shape variation of 

production parts during assembly process which result in poor quality and yield.      

To address the aforementioned challenges, this thesis proposes the following two 

enablers focused on modelling of shape errors and shape variation of compliant 

parts applicable during assembly process design phase as well as production phase: 

(i) modelling and characterisation of shape errors of individual compliant part with 

capabilities to quantify fabrication errors at part level; and (ii) modelling and 

characterisation of shape variation of a batch of compliant parts with capabilities to 

quantify the shape variation at production level.  

The first enabler focuses on shape errors modelling and characterisation which 

includes developing a functional data analysis model for identification and 

characterisation of real part shape errors that can link design (CAD model) with 

manufacturing (shape errors). A new functional data analysis model, named 

Geometric Modal Analysis (GMA), is proposed to extract dominant shape error 
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modes from the fabricated part measurement data. This model is used to decompose 

shape errors of 3D sheet metal part into orthogonal shape error modes which can be 

used for product and process interactions. Further, the enabler can be used for 

statistical process control to monitor shape quality; fabrication process mapping and 

diagnosis; geometric dimensioning and tolerancing simulation with free form shape 

errors; or compact storage of shape information.  

The second enabler aims to model and characterise shape variation of a batch of 

compliant parts by extending the GMA approach. The developed functional model 

called Statistical Geometric Modal Analysis (SGMA) represents the statistical shape 

variation through modal characteristics and quantifies shape variation of a batch of 

sheet metal parts a single or a few composite parts. The composite part(s) represent 

major error modes induced by the production process. The SGMA model, further, 

can be utilised for assembly fixture optimisation, tolerance analysis and synthesis. 

Further, these two enablers can be applied for monitoring and reduction of shape 

variation from assembly process by developing: (a) efficient statistical process 

control technique (based on enabler ‘i’) to monitor part shape variation utilising the 

surface information captured using non-contact scanners; and (b) efficient assembly 

fixture layout optimisation technique (based on enabler ‘ii’) to obtain improved 

quality products considering shape variation of production parts. Therefore, this 

thesis proposes the following two applications:  

The first application focuses on statistical process control of part shape variation 

using surface data captured by in-process or off-line scanners as Cloud-of-Points 

(CoPs). The methodology involves obtaining reduced set of statistically uncorrelated 

and independent variables from CoPs (utilising GMA method) which are then used 

to develop integrated single bivariate T
2
-Q monitoring chart. The joint probability 

density estimation using non-parametric Kernel Density Estimator (KDE) has 

enhanced sensitivity to detect part shape variation. The control chart helps speedy 

detection of part shape errors including global or local shape defects. 

The second application determines optimal fixture layout considering production 

batch of compliant sheet metal parts. Fixtures control the position and orientation of 

parts in an assembly process and thus significantly contribute to process capability 

that determines production yield and product quality. A new approach is proposed to 

improve the probability of joining feasibility index by determining an N-2-1 fixture 

layout optimised for a production batch. The SGMA method has been utilised for 

fixture layout optimisation considering a batch of compliant sheet metal parts. 

All the above developed methodologies have been validated and verified with 

industrial case studies of automotive sheet metal door assembly process. Further, 

they are compared with state-of-the-art methodologies to highlight the boarder 

impact of the research work to meet the increasing market requirements such as 

improved in-line quality and increased productivity.   
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ℎ(𝑥, 𝑦, 𝑧, 𝑢, 𝑣, 𝑤) An inverse transformation kernel 

𝑇(𝑢, 𝑣, 𝑤)  A transformation coefficient 

Nn   Number of mesh node coordinates (x,y,z) 

Dn   Deviation vector at mesh node Nn 

L × M × N  Voxel grid size 

f(i,j,k)   Voxel element deviation in voxel space at (i,j,k) 

𝐶(𝑢, 𝑣, 𝑤)  3D DCT coefficient vector 

E   Energy compaction threshold 

e   Coefficient index set after energy compaction 

q    Correlation coefficient of q
th

 coefficient 

qT    Mesh node deviations associated with q
th

 coefficient 

α   Threshold for correlation criteria based coefficient selection 

c    Coefficient index set after correlation threshold 

   Truncated coefficient index set 

qwt    Least squares based weightage associated with q
th

 coefficient 

𝜀     Residue error vector 

�̃�(𝑢, 𝑣, 𝑤)  Truncated coefficient vector 

𝑓(𝑖, 𝑗, 𝑘)  Deviation after reconstruction of surface 

X   Set of orthogonal shape vectors  

b   Magnitudes of truncated coefficients 

m   Sample size of a batch of parts  

𝛽    Modal parameters set 
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p   Number of preserved modes 

wt   Weightage vector for modes 

Nv    Number of virtual parts generated 

K   Kernel function 

),
~

(ˆ hCF   Kernel density estimator function 

h   Bandwidth or smoothing parameter of KDE 

𝑅    Number of cluster 

pC
E ~    Energy compaction index 

max~ )(
pC

E   Maximum energy compaction index 

min~ )(
pC

E   Minimum energy compaction index 

max    Modal parameters set for maximum energy compacted part 

min    Modal parameters set for minimum energy compacted part 

𝐷𝑅𝑆𝑆   Optimal mesh node deviation after root sum of squares error 

LS    Modal parameters set for RSS criteria based composite part 

q   Number of modes selected per part 

2
kT    T

2
 statistic for k

th
 instance 

kQ    Residual statistic for k
th

 instance 

LC , MC , NC   Cosine basis transform matrices 

L , M , N   Matrix product operator 

N   Number of primary datum plane locators  

𝑁𝑠𝑡   Number of stitches (i.e. KPCs) 

p   Probability of joining feasibility index 

𝑃𝑇𝑚   Number of different types of parts in assembly 
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𝐶𝑃𝑇𝑚,𝑚𝑎𝑥  Maximum energy compacted composite part of part id m 

𝐶𝑃𝑇𝑚,𝑚𝑖𝑛  Minimum energy compacted composite part of part id m 

𝐶𝑃𝑇𝑚,𝑎𝑣𝑔  Average energy compacted composite part of part id m 

𝐶𝑃𝑇𝑀𝐴𝑋  Set of maximum composite parts in the assembly 

𝐶𝑃𝑇𝑀𝐼𝑁  Set of minimum composite parts in the assembly  

𝐶𝑃𝑇𝐴𝑉𝐺  Set of average composite parts in the assembly  

𝐶𝐴   Set of Composite Assembly 

𝑀𝐼𝑖,𝑗   Map Index of i
th

 KPC of j
th

 composite assembly 

𝑇𝑀𝐼𝑗   Total Map Index of j
th

 composite assembly 

𝜌𝑗,𝑘   Correlation coefficient between j
th

 and k
th

 assemblies 

𝑁𝑐𝑙   Number of clusters of composite assemblies 

𝐼𝑖,𝑗   Information (I) contained on the 𝑖𝑡ℎ MI of 𝑗𝑡ℎ assembly 

𝑝𝑖,𝑗   Probability of satisfying the joining requirements of 𝑀𝐼𝑖,𝑗 

𝐻𝑗   Entropy of  𝑗𝑡ℎ complete assembly 

𝑆𝐶𝐴   Selected Composite Assembly 
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 INTRODUCTION CHAPTER 1

1.1 MOTIVATION 

Global competitive market with increasing customer preferences requires newly 

designed quality products with enhanced features and functionality. Faster design, 

manufacturing or quality checks of these products are not trivial tasks; especially 

with higher product quality and shorter lead time to develop the product. For 

example, manufacturers need to introduce product variety with increased production 

volume, reduction in cost, and time-to-launch (or time-to-market). These market 

requirements lead to key technological challenges, such as, in-process production 

quality improvement, reduction in product and process development cycle, and early 

detection of detects etc. These key technological challenges are to be satisfied. The 

fabrication and assembly of compliant/deformable sheet metal parts are one of the 

key areas where the technological challenges are to be addressed.  Sheet metal parts 

are prone to various dimensional and geometric quality defects due to their intrinsic 

nature. As a consequence, assembly processes involving sheet metal parts are critical 

to avoid product defects or part fit-ups errors during assembly. To facilitate ease of 

assembly and achieve better product quality, there are needs for simulation models 

which can depict the product and process behaviours considering uncertainties (i.e. 

process variation) associated with the manufacturing process. Therefore, assembly 

process requires attention to develop such simulation models to reduce 

product/process variation.    
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Three dimensional compliant sheet metal parts [also under the category of ‘freeform 

shaped parts’ (Savio et al., 2007)] are extensively used for many industrial 

applications such as automotive body, aerospace wing /fuselage or home appliances. 

One of the key challenges to deal with compliant sheet metal parts is conforming to 

the dimensional and geometric quality as defined by geometric dimensioning and 

tolerancing (GD&T) during design phase. Further, dimensional and geometric/shape 

variations of sheet metal assemblies play a vital role to achieve final product quality. 

Previous studies have reported that the presence of shape variation in sheet metal 

parts contributes up to two third of the engineering changes in automotive body and 

aircraft fuselage assembly (Ceglarek and Shi, 1995; Shalon et al., 1992). Therefore, 

part shape management and shape variation control through modelling are inevitable 

prerequisite for assembly process simulation with compliant parts. The assembly 

process simulation with shape variation reduces the occurrence of defects during 

manufacturing and product usage. Therefore, shape variation modelling, analysis and 

control could be the key enabling technologies (KETs) to put manufacturer at the 

forefront of the competitive market by improving product quality, shortening product 

development time and detecting failures at early stage of assembly process.  

Currently, assembly process is designed under the assumption of ideal part which is 

being assembled under ideal process conditions. Thereafter, variation simulations are 

performed by using variation simulation analysis (VSA) which are oversimplified 

and are unable to depict the real production scenario. Further, they fail to model or 

predict the effects of geometric and dimensional variations of compliant sheet metal 

parts during joining or assembly processes. To understand the product and process 

variations and their characteristics, it is necessary to understand the geometric and 

dimensional errors associated with the real production parts which are far from the 
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ideal part assumption. Therefore, there is an urgent need for geometric shape errors 

modelling of compliant sheet metal parts for many industrial applications. Further, a 

batch of sheet metal parts, produced by forming processes (such as stamping), are 

not geometrically and dimensionally identical. As a result, their characteristics also 

vary during fixturing or joining processes and produce lower quality product and 

reduced production yield. Therefore, for robust assembly system development with 

compliant sheet metal parts, not only shape error modelling is important but also 

shape variation modelling is equally important. Thus, modelling and characterisation 

of shape variation help to identify the process behaviours for better production 

quality and yield.       

However, traditional assembly process simulation exhibits shortcomings to address 

the aforementioned shape errors and shape variation modelling requirements in the 

following way:  

i. Shape errors modelling of real part (real part also called in this thesis as 

non-ideal or non-nominal part): The assembly process simulation must be 

supported with real part model where dimensional and geometric shape errors 

are taken into consideration. Most of the works related to sheet metal part 

modelling and tolerance synthesis are based on the assumption of ideal rigid 

parts/sub-assemblies (Shen et al., 2005). On the contrary, sheet metal parts 

are compliant in nature which cannot be modelled as rigid body as it poses 

substantial limitations towards the analysis and output results. It has been 

reported that one third of automotive body parts and subassemblies cannot be 

modelled as rigid parts (Shiu et al., 1997). Camelio et al. (2004a) 

demonstrated that part error, tooling error, and assembly spring-back have 

significant impact on the quality of assembly. Therefore, part shape error 
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embedded compliant sheet metal modelling is necessary to reveal the un-

modelled interactions with fixture and joining processes during assembly for 

more accurate assembly process simulation. Hence, many industrial 

applications have tremendous need for efficient modelling of shape errors of 

3D freeform shaped part.  

ii. Shape variation modelling of a batch of real parts (batch of real parts also 

called in this thesis as non-ideal production parts): Sheet metal parts, 

produced by plastic deformation during forming processes such as stamping, 

consist of shape errors which are varying from part-to-part (i.e. production 

parts consist of shape variation). The main causes of shape variation are due 

to variation in fabrication process, tooling and material. For example, sheet 

metal stamping process shows variation of key control characteristics such as 

press tonnage, shut height, press parallelism (Zhou and Cao, 1994) as well as 

spring back problem, tool wear, material thickness variation, uneven load 

distribution or variation caused by part handling, etc. (Ceglarek et al., 2001). 

Further, a batch of sheet metal parts consists of various shape error patterns 

with changing magnitude of those shape error patterns. Subsequently, 

modelling and prediction of shape errors associated with individual non-

ideal part is not sufficient to meet current industrial needs. It emphasises to 

quantify the shape variation engraved within a batch of parts. Therefore, 

shape variation modelling of batch of parts is required to quantify accurately 

the non-ideal production parts during assembly process simulation. 

As evident from the aforementioned discussions, the assembly process must be 

supported with the two key enablers: (i) shape error model, and (ii) shape variation 

model. These models are particularly important not only for increasing product 
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performance and functionality, but also for manufacturability and ease of assembly. 

Shape variation also directly impacts on the perceived product quality, and is a 

critical quality measure of the final product. Further, these two enablers can be 

utilised for shape variation monitoring and reduction from the assembly process by 

developing: (a) statistical process control chart (based on enabler ‘i’) to monitor part 

shape variation and detect part shape errors related faults from the assembly process; 

and (b) efficient assembly fixture layout optimisation technique (based on enabler 

‘ii’) to obtain improved quality products considering shape variation of production 

parts. However, traditional statistical process control charts and assembly process 

simulation with batch of non-ideal compliant parts exhibits shortcomings to address 

the aforementioned application requirements in the following way:  

a. Statistical process control of part shape errors and detection of shape errors 

related faults to improve assembly process quality: As shape errors of 

manufactured parts or assembled products represent the important aspect of 

quality, the shape errors related defects must be monitored and detected. 

Currently, shape errors related faults can be quickly inspected by 

measurement scanners which have capability to conduct non-contact 

measurement of entire part surface and generate measurement information in 

the form of Cloud-of-Points (CoPs). These surface based non-contact 

measurement scanners based on white light or laser are also frequently used 

in industries. It has been demonstrated that these scanners are very efficient 

in capturing part surface data and also have potential to be utilised for both 

off-line (i.e. gauge is in separate measurement area away from production 

line) as well as in-line (i.e. gauge being embedded directly as part of 

production line) applications (Reinhart and Tekouo, 2009). However, current 
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use of the non-contact scanners is limited to: (a) part inspection, i.e. 

comparing the measured part with Computer Aided Design (CAD) model of 

the part (ideal part); or (b) reverse engineering applications, i.e. generating 

CAD model of a given part by using the measurement data (Son et al., 2002). 

However, recent advances in fast speed of capturing part surface data during 

off-line or in-line measurement expand the opportunities of surface scanner 

to be used for part surface quality monitoring and shape defects detection. To 

monitor the pre- and post- assembly product quality, there is a strong need 

for statistical process control method to efficiently and effectively monitor 

quality of non-linear shapes using CoP data.  

b. Assembly process simulation for assembly fixture layout optimisation 

considering production shape variation to improve production yield: Shape 

variation of production parts coupled with compliant nature exhibits variation 

in output assembly quality and it is not trivial to obtain uniform quality 

during assembly operation. As a consequence, the individual part shape error 

model is not sufficient to predict production quality. In order to reduce 

production quality variation, it is important to simulate the assembly process 

taking into consideration of batch of parts shape variation. Further, to satisfy 

the product GD&T requirements during the assembly process, shape 

variation needs to be taken into consideration upfront during jig or fixture 

design. As production yield and product quality are determined based on a 

production volume of real (non-ideal) parts, shape variation model is required 

to be considered during assembly process simulation. Therefore, assembly 

process must be supported with design of production fixtures considering 

production shape variation.  
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1.2 CURRENT LIMITATIONS AND THE PROPOSED RESEARCH 

FRAMEWORK FOR SHAPE VARIATION MODELLING, ANALYSIS 

AND STATISTICAL CONTROL  

Modelling, Analysis and statistical control of shape variation of compliant sheet 

metal parts are not trivial tasks as they involve freeform 3D shapes (i.e. 3D shapes 

having irregular contours, edges, holes, slots etc.), non-functional data (i.e. CoP 

measurement can be categorised as non-functional data as it cannot be used directly), 

extraction of shape error patterns from the CoP data (i.e. functional data analysis 

based approach is required to extract useful information from the CoP measurement). 

For efficient modelling and analysis of assembly system with compliant parts, 

compact and accurate functional data analysis based approaches are required to 

model and characterise (i) the shape errors of individual compliant part, and (ii) the 

shape variation of a batch of compliant parts. Further, these two enablers help to 

extend the current application of 3D non-contact scanners from (a) part inspection to 

statistical process control - to overcome the limitation associated with the use of 3D 

non-contact scanners for shape monitoring, and (b) reverse engineering to design 

optimisation - to extend the current practice of design optimisation from individual 

part shape errors based approach to production shape variation based approach. 

Therefore, modelling and characterisation of part shape errors and production shape 

variation as mentioned in (i) and (ii) are crucial to monitor process behaviour as in 

(a) and optimise the process with batch of compliant parts as in (b). 

To address the modelling requirements, this thesis, firstly, identifies the current 

limitations associated with shape variation modelling, analysis and statistical control 

(in Section 1.2.1); and, secondly, proposes research framework for shape variation 

modelling, analysis and statistical control (in Section 1.2.2).  
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1.2.1 Current Limitations for Shape Variation Modelling, Analysis and 

Statistical Control 

Attempts have been made to model the shape error of compliant sheet metal part and 

shape variation of batch of compliant sheet metal parts. However, the current 

available techniques raise major limitations, to address the shape error and shape 

variation modelling requirements, and subsequently, shape variation monitoring by 

using statistical process control charts and shape variation reduction by assembly 

fixture layout optimisation, in the following way: 

(i) Limitations to model shape error of compliant sheet metal part: Current 

shape error modelling approaches can be categorised into: (a) shape error 

representation – the measured CoP data is mapped with nominal CAD data to 

represent shape error by obtaining the deviation field (Gupta and Turner, 

1993; Sorkine, 2006; Franciosa et al., 2011; Wagersten et al., 2014); and (b) 

shape error decomposition – to understand and establish the relationship 

between part shape error and the source of variation, the shape error is 

required to be decomposed into a series of independent shape error modes 

(Tonks, 2002; Huang and Ceglarek, 2002; Samper and Formosa, 2006; 

Huang et al., 2014). To address shape error modelling as an enabler for shape 

variation monitoring or shape variation reduction, the current available 

techniques have the following limitations: 

─ To provide a generic model with capabilities to extract underlying 

process information from measured CoP data.  

─ To support assembly process simulation related tasks (such as design 

synthesis, tolerance allocation or root cause analysis based faults 

identification, or statistical process control with CoP data) which can 
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provide a parametric relation between nominal data (i.e. CAD data) 

and measured data (i.e. CoP data).  

─ To provide an approach to decompose shape error (measured CoP 

data) of 3D freeform shaped part into orthogonal shape error modes.  

Due to these limitations, a universal functional data analysis based model is 

required to express shape error of 3D freeform shaped part in a coherent 

manner by integrating nominal features (ideal/nominal shape information) 

with manufacturing variability (real shape information). 

(ii) Limitations to model shape variation of batch of compliant sheet metal parts: 

In assembly process, production shape variation plays significant role to 

achieve quality results. To address the production shape variation, current 

methods have following assumptions and limitations: 

─ The extracted shape error modes based on shape error decomposition 

approaches (Samper et al., 2009; Huang et al., 2014) are normally 

distributed. However, real complex process, such as sheet metal 

stamping, seldom adheres with it as stamping process exhibits 

variance shift or mean shift during within batch or batch-to-batch 

production.  

─ Data-driven approach, such as Principle Component Analysis 

(Camelio et al., 2004b), used for shape variation modelling ignores 

the underlying production behaviour of identifying process mean shift 

or variance shift in measured data set (Matuszyk et al., 2010).  

─ These methods are limited to virtual generation of production parts 

and there is no specific approach available which can quantify shape 

variation of a batch of parts.  
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Due to the aforementioned assumptions and limitations, an effective shape 

variation characterisation and quantification technique is necessary.  

(iii) Limitations to monitor part shape variation and fast detection of shape error 

related faults: Available monitoring techniques are mainly limited to point 

feature based control (Chen et al., 2004; Antory, 2007; Phaladiganon et al., 

2013) or profile feature based control (Jin and Shi, 2001; Woodall et al., 

2004; Colosimo and Pacella, 2007) and they are not able to cope with high 

dimensional CoP data to monitor non-linear shapes. Current monitoring and 

statistical control techniques are mainly suffering from: 

─ Monitoring of shape variation, as point feature or profile feature 

based control charts do not reveal all types of shape related errors.  

─ Extracting all the underlying shape error related information from the 

captured CoP data as currently used data dimensionality reduction 

techniques, such as Principal Component Analysis (PCA) or Partial 

Least Squares (PLS) are not suitable for shape error characterisation. 

─ Normality assumption of the measurement data which is a strong 

assumption for real fabrication process and it might cause problem for 

fast detection of faults.   

Due to the aforementioned limitations, a proactive shape monitoring 

technique is necessary which can detect shape related faults using CoP data. 

(iv)  Limitations to reduce product shape variation by using assembly fixture to 

improve production yield and product quality: The production yield and 

product quality are affected by shape variation and large number of Key 

Control Characteristics (KCCs - such as clamps, NC blocks, locators). The 
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current assembly fixture design does not consider production shape variation 

during assembly process simulation and exhibits lack of capability to model 

Key Product Characteristics (KPCs- such as part-to-part gap, joining 

requirements) with respect to large number of KCCs. They are mainly 

lacking the following:  

─ Assembly fixture layout optimisation considering production shape 

variation to improve product quality and production yield.    

─ Consideration of high dimensional design space, due to number of 

parts to be assembled in an assembly station and large number of 

KCCs, to achieve required product quality. 

─ Identifying the highly non-linear relationship between KPCs and 

KCCs to improve fixture design.  

Due to the aforementioned issues and limitations, an assembly fixture layout 

optimisation technique is required considering production shape variation in 

order to improve joining quality and eventually the production yield.     

As evident from the abovementioned limitations presented in this section, new 

models and methods are required for modelling shape error and shape variation, and 

subsequently, statistical process control to monitor shape variation and process 

design to reduce shape variation.   

1.2.2 Proposed Research Framework for Shape Variation Modelling, 

Analysis and Statistical Control 

Ideal CAD model based simulation is not sufficient as it represents the ideal features 

and geometry of the part. The ideal part model is essential during designing of 

assembly system as it provides vital information about ideal characteristics of the 
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system. On the contrary, real fabricated parts are not ideal and their behaviour varies 

with the type of errors contained within it. Therefore, CAD based ideal part is not 

sufficient to represent the shape errors associated with the real parts (i.e. non-ideal 

parts). Figure 1.1(a) depicts the current approach for statistical process control and 

fixture analysis which are mainly based on the ideal CAD model. Further, ideal part 

based process control fails to monitor part shape variation and fast detection of shape 

errors related faults. Similarly, ideal part based variation simulation analysis has 

limited capability to reduce product shape variation during assembly operation. 

 

Figure 1.1 Shape variation modelling, analysis and statistical control: (a) ideal CAD 

model based current approach, and (b) shape variation model (non-ideal parts) based 

proposed research framework   

The proposed research framework for shape variation modelling, analysis and 

statistical control is shown in Figure 1.1(b) where, firstly, shape variation models are 

developed to represent non-ideal part(s), thereafter, statistical process control and 

fixture analysis are carried out to monitor and reduce shape variation from the 

assembly process.    
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Ideal Part

Statistical Process Control 
 Point based or Profile based
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Fixture Layout Optimisation 
 Under Variation Simulation
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CAD Model
Ideal Part

Statistical Process Control 
 Surface/Shape based control

chart

 CoP data

Fixture Layout Optimisation 
 Under Variation Response

Method (VRM)

 Locator/Clamp layout

Measurement Data 

(CoP) for  Operating Set

Shape Variation Model
Non- ideal Part(s)

Measurement Data (CoP) 

for Model Development  

Functional Data Analysis based Model

 Geometric Modal Analysis

 Statistical Geometric Modal Analysis

Measurement Data for  
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In the context of shape variation modelling, analysis and statistical control, this 

thesis defines the following research objectives:     

(i) To model and characterise shape errors of individual compliant part: a 

functional data analysis based shape error model which characterises and 

quantifies the measured 3D free-form shape error of sheet metal part by 

decomposing into significant shape error modes.  

(ii) To model and characterise shape variation of a batch of compliant parts: an 

extension of the part shape error model, to characterise shape variation of a 

batch of parts by identifying the significant shape error modes [research 

objective (i)] and quantifying them by means of its identified magnitude.   

(iii) To detect the shape error related defects from assembly process: an 

application based extension of  shape error model [research objective (i)] to 

develop a Multivariate Statistical Process Control (MSPC) approach for 

detecting shape error related faults which has ability to process multi-

dimensional CoP data for monitoring non-linear shapes.  

(iv)  To optimise assembly fixture layout considering production batch: an 

application based extension of shape variation model [research objective (ii)] 

to develop a robust fixture layout optimisation method considering shape 

variation which improves the product quality and production yield. 

To meet the aforementioned research objectives, this thesis develops research 

methodologies for ‘Shape Variation Modelling, Analysis and Statistical Control’ to 

provide the following capabilities:   

(i) Shape error characterisation and extraction of shape error modes from 

measured CoP data: To extract the shape error modes from part 
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measurement data (CoP as non-functional data), a novel functional data 

analysis based shape error decomposition method is proposed. The extracted 

shape error modes have mathematical representation which can be further 

used for: (a) design synthesis to identify the KCCs through optimisation and 

indicates towards the possible failure of the system through root cause 

analysis; (b) monitoring and diagnosis of assembly process to identify shape 

related defects; (c) statistical tolerance simulation with shape error for 

compliant sheet metal parts; and (d) storage of  real part shape error 

information as historical data for future design and manufacturing.  

The proposed shape error model, named Geometric Modal Analysis (GMA), 

aims to develop a universal functional model which expresses shape error in 

a coherent manner by integrating design features (CAD information) with 

manufacturing variability (CoP information). The GMA model is presented 

in Chapter 4.  

 

(ii) Shape variation characterisation and quantification of batch of complaint 

parts: To characterise and quantify the shape variation, GMA model has been 

extended to Statistical Geometric Modal Analysis (SGMA). The shape 

variation model provide the capability to: (1) generate virtual production 

parts to represent the production shape variation, and (2) quantify the shape 

In this thesis, a functional data analysis based shape error modelling 

approach, named Geometric Modal Analysis (GMA), is proposed which 

allows to emulate part shape error of individual compliant part. The GMA 

method is able to identify orthogonal shape error modes from measurement 

data of 3D freeform shaped part.    
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variation by synthesising ‘composite part’ which is composed of all major 

shape error modes associated with a batch of parts. The generated virtual 

parts and composite parts can be further used for: (a) assembly process 

optimisation considering batch of parts which is pointing towards the robust 

fixture layout optimisation, such as, jig and fixture design; (b) statistical 

characterisation of the production process to predict the process capability 

aiming to produce quality products; and, (c) statistical tolerance synthesis of 

assembly system with non-ideal compliant parts. The SGMA model is 

presented in Chapter 5. 

 

(iii) Monitoring and detection of shape related faults of compliant parts: Current 

control charts cannot be used for shape-monitoring using high dimensional 

data (CoPs) captured by in-process or off-line sensors. To detect shape 

related faults and abnormal process behaviour, a novel control chart based 

monitoring approach has been developed using GMA model. The control 

chart has ability to: (a) detect global shape faults such as unwanted variance 

change or mean shift, a common occurrence for within batch or batch-to-

batch production of stamping process; (b) detect local shape defects such as 

local shift or variance change; and, (c) classify the shape faults to predict 

manufacturing quality and yield. Chapter 6 develops the control chart to 

monitor and detect shape related faults of compliant part.  

In this thesis, a GMA- based shape variation modelling approach, named 

Statistical Geometric Modal Analysis (SGMA), is proposed which allows 

statistical characterisation of shape variation and quantifies the shape 

variation of a batch of compliant parts.     
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(iv) Assembly fixture layout optimisation considering production batch: To 

develop robust fixture invariant to shape variation, a fixture layout 

optimisation method has been proposed considering production batch of 

parts. It is an extension of current application of non-contact scanners from 

reverse engineering of a single part (obtaining CAD model from the 

measurement data) to design optimisation of assembly process with batch of 

compliant parts. It provides significant improvements which are reflected in 

(a) less fixture tuning quality loop and adjustments; (b) shorter product 

development time; and (c) enhanced product quality. Chapter 7 proposes the 

assembly fixture layout optimisation method by improving the fixture 

capability to produce quality product. This work has been disseminated as a 

conference paper (Das et al., 2015).     

 

This section describes the methodologies required for shape variation modelling, 

analysis and control with their capabilities. Figure 1.2 shows the modelling and 

application requirements for shape variation modelling, analysis and statistical 

control with emerging technologies. 

. 

In this thesis, a GMA-based integrated bivariate monitoring chart is 

proposed for statistical process monitoring of non-linear shapes. The control 

chart uses high dimensional data (CoPs) captured by in-process or off-line 

sensors with ability to fast detection of shape error related defects.  

In this thesis, a novel SGMA-based fixture layout optimisation methodology 

is proposed for assembly fixture simulation considering shape variation, 

high dimensional design space and non-linear product - process interactions.  
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Figure 1.2 Pictorial representation of modelling and application requirements for shape variation modelling, analysis and statistical control 
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1.3 RESEARCH CONTRIBUTIONS 

This thesis proposes a research framework for ‘Shape Variation Modelling, Analysis 

and Statistical Control’. The proposed methodologies are motivated by the 

requirements of assembly system modelling with compliant sheet metal parts, 

especially for automotive and aerospace applications. The research contributions of 

the proposed methodologies are as follows: 

(i) Modelling and characterisation of shape error -GMA Method 

 Development of a functional data model bridging design and 

manufacturing: The functional data analysis based approach helps to 

bridge the gap between design characteristics (CAD data) and 

manufacturing characteristics (CoP measured data) and identifies major 

shape error modes produced by the fabrication process.  

 Measurement data (CoPs) based shape error decomposition: The 

proposed GMA method extracts orthogonal shape error modes from 

measured CoP data (i.e. from real fabricated part). Further, GMA 

decomposes shape error of 3D freeform shaped part where the previous 

measured data decomposition methods are limited to 1D or 2D cases.  

 Compact model representation: It is always preferable to develop a 

tractable model with mathematical representation which can be utilised 

for further applications, such as design optimisation, tolerance analysis, 

statistical process control or storage of shape error information.  

(ii) Modelling and characterisation of shape variation – SGMA Method 

 Generalisation of the obtained shape error modes by determining 

statistical characteristics: The main normality assumption of shape error 
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modes has been overcome by using Kernel Density Estimation (KDE). 

The statistical characterisation of shape error modes depicts real scenario 

of production parts by generating variational virtual parts. 

 Quantification of shape variation of a batch of parts by synthesising 

composite part(s): The quantification of shape variation of a batch of 

parts is not available in literature. The SGMA method develops a novel 

technique to quantify the shape variation into single or few composite 

part(s) which is composed of major shape error modes present in a batch 

of parts. The SGMA method acts as enabler to optimise the fixture design 

process considering not only the individual part but also a batch of parts.  

(iii) Control charts to monitor process and product quality shapes – GMA-

based integrated bivariate monitoring chart 

 New direction to obtain the reduced variable set to synthesise 

multivariate statistics: a new direction of obtaining reduced set of 

statistically uncorrelated and independent process variables by 

decomposing the data set within a single sample (GMA decomposition) 

instead of PCA- or PLS-based decomposition which is done across the 

samples. This emphasises the enhanced granularity of decomposition 

which then leads towards enhanced shape fault detectability. 

 Use of high dimensional CoP data for shape monitoring: The control 

chart has the ability to process the high dimensional CoP data captured by 

modern 3D non-contact scanners. Therefore, the proposed control chart 

can be used for shape monitoring and defects detection using CoP data.  

 Fast detection of shape error related defects: The control chart has the 

ability to detect the global mean shift or variance change. During sheet 
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metal stamping, variance change may be observed for within-batch 

production or mean shift may present for batch-to-batch production. The 

localised mean shift or variance change can also be detected using the 

proposed control chart. Further, the proposed GMA-based control chart 

has the ability to detect shape defects quickly as average run length 

reduces faster than the state-of-the-art PCA-based control chart. 

(iv)  Optimisation of  assembly fixture layout considering production batch – 

SGMA-based fixture layout optimisation 

 Part shape variation based fixture layout optimisation: The fixture layout 

optimisation considering shape variation significantly goes beyond the 

current state-of-the-art and practice as the fixture can be designed and 

optimised not only for individual part shape errors based but a batch of 

parts shape variation based. The composite parts based optimisation 

reduces the design space and it helps to eliminate thousands of variational 

assembly instances based Monte-Carlo simulation.  

 Assembled product quality improvement: As production yield and 

product quality are determined based on production volume of real parts, 

fixture simulation considering shape variation improves the product 

quality and production yield.  

 Analytical surrogate model linking KPCs and KCCs: The analytical 

relationship between the KPCs and KCCs reveals the effect of shape 

variation on product quality. The analytical surrogate model has been 

developed by linking SGMA based assembly and fixture locators, then, 

utilised to maximise the probability of satisfactory joints.  
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1.4 ORGANISATION OF THE THESIS 

The organisation of this thesis is depicted in Figure 1.3 with addressed research areas 

for shape variation modelling, analysis and statistical control. This thesis is 

organised into eight chapters with introduction being the first.  

 

Figure 1.3 Organisation of this thesis and research areas 

CHAPTER 1: 

Introduction

CHAPTER 2: 

Background 

CHAPTER 3: 

Literature review 

CHAPTER 4: 

Shape error modelling of compliant part 

CHAPTER 5: 

Shape variation modelling of batch of compliant parts 

CHAPTER 6: 

Control charts to monitor process and product quality shapes 

CHAPTER 7: 

Fixture layout optimisation considering production batch 

CHAPTER 8: 

Conclusions, critical review and future scope 
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Chapter 2 introduces the background knowledge about the major terminologies, 

basic concepts of assembly station and measurement station for compliant parts, and 

case-in-point used in this thesis. 

Chapter 3 reviews the literature related to modelling and characterisation of shape 

error and shape variation. Further, it reviews the reported work on statistical process 

control and fixture design optimisation considering the non-ideal compliant parts.  

Chapter 4 describes in details the methodology used for modelling and 

characterisation of shape error of individual compliant part. It also demonstrates the 

results with other state-of-the-art methods available in literature.  

Chapter 5 details the methodology used for modelling and characterisation of shape 

variation of a batch compliant parts by using statistical characterisation and 

synthesising composite parts. 

Chapter 6 develops a new methodology to detect shape related faults by introducing 

new multivariate statistical process control charts to take advantage from measured 

CoP data. The methodology developed in Chapter 4 has been used as base kernel to 

develop the control chart.  

Chapter 7 uses the obtained results from Chapter 5 to demonstrate the usability of 

shape variation quantification model to conduct fixture layout optimisation. It 

optimises the key control characteristics to obtain satisfied key product 

characteristics.     

Chapter 8 lists the major conclusions of the research study along with critical review, 

and future direction of research work. 
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 BACKGROUND CHAPTER 2

This chapter focuses on the background information related to the proposed work, 

with a brief introduction to the assembly process with compliant parts, measurement 

of compliant parts/subassemblies. As this thesis develops the research framework for 

‘Shape variation modelling, analysis and statistical control’, where (i) shape error 

model and (ii) shape variation model act as enablers to (a) monitor shape variation 

with capabilities to detect shape defects, and, (b) reduce shape variation with proper 

fixture design to improve product quality. The research framework involves 

compliant sheet metal parts which are assembled at assembly station and measured at 

measurement station to support many assembly related tasks and inspection checks. 

Starting with an overview of assembly station with compliant parts, special focus has 

been drawn on variation modelling of rigid ideal part modelling, compliant part 

modelling, and non-ideal (i.e. shape error) compliant part modelling for assembly 

system. Further, this chapter outlines the current industrial usage of 3D non-contact 

scanners based measurement data for quality inspection and reverse engineering 

followed by extended usage of these scanners for compliant part monitoring and 

shape defects detection. As case-in-point, this thesis uses Remote Laser Welding 

joining application for validation and verification of the developed methodologies. 

2.1 ASSEMBLY STATION WITH COMPLIANT PARTS 

An assembly station involves assembly process in manufacturing which can be 

simply defined as a method of assembling two or more parts together using various 

temporary or permanent assembly techniques. In case of compliant sheet metal 

assembly, two or more sheet metal parts are joined together using various joining 
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techniques which result in sub-assembled or final assembled product (Camelio et al., 

2003). The following subsections describe the basic concepts of assembly key 

characteristics to inspect product quality, management of assembly variation 

associated with compliant parts, assembly fixturing with complaint parts and 

assembly joining of sheet metal parts with emerging remote laser welding.     

2.1.1 Assembly Key Characteristics 

In an assembly operation, one of the most important challenges is to manage 

dimensional and geometric quality as it has direct impact on product functionality 

and performance (Camelio et al., 2003). In assembly process, dimensional and 

geometric qualities are defined with important dimensional and geometric relations 

which are referred as key characteristics (KC) (Whitney, 2004). A comprehensive 

definition of key characteristics is proposed by Thornton (1999) as ‘Key 

Characteristics are the product, subassembly, part, and process features that 

significantly impact the final cost, performance, or safety of a product when the KCs 

vary from nominal’. To obtain a good assembled product quality, KCs are to be 

achieved accurately through product and process design, monitoring and control. In 

an automotive assembly process, hundreds of sheet metal parts or subassemblies are 

joined together to obtain functional product. For example, a typical autobody 

assembly consists of 200-250 sheet metal parts assembled at 60-100 assembly 

stations with 1,700 to 2,100 fixture locators (Ceglarek and Shi, 1995; Shiu et al., 

1996). Therefore, it is of upmost requirement that the KCs should lie within the 

defined tolerance limit in order to achieve good quality functional product, especially 

for managing sheet metal assemblies such as autobody frame, closure panels etc. 

Further, assembly fixture plays a dominant role to achieve dimensional and 

geometric quality during assembly operation. These dimensional and geometric 
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qualities of a product are determined through Key Product Characteristics (KPCs) 

and Key Control Characteristics (KCCs). KPCs are the identified crucial features 

which are needed to be controlled to achieve the functionality of the product and 

KCCs are the controlling elements such as position of fixture elements, clamps, pins 

and NC blocks (Ding et al., 2002). Ding et al. (2002) also mentioned that an 

assembly system can be broken into several layers corresponding to the process-KC, 

part-KC and product-KC where Figure 2.1 illustrates the variation propagation from 

KCC to KPC for assembly station with compliant parts.  

 

Figure 2.1 Variation propagation from KCC to KPC in an assembly process by Ding 

et al. (2002) 

2.1.2 Input: Compliant Parts 

One of the major challenges associated with compliant sheet metal assembly is the 

proper characterisation of variation in the assembly process. Due to intrinsic flexible 

nature of compliant sheet metal parts, variation occurs during assembly process 

interactions among parts, holding fixtures or joining processes.  

In general, variation in manufacturing and assembly can be defined as physical 

deviation from the nominal characteristics of a part due to manufacturing, fabrication 

or assembly process errors. To quantify, analyse and tolerate the amount of variation, 

tolerance analysis and synthesis is well known in literature. Internationally 
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recognised standards, such as ISO-Geometrical Product Specification (ISO-17450-1, 

2011) or ANSI-GD&T (ASME, 2004), have been developed for tolerance 

specification which defines general terms for geometrical features of part. Many 

works related to variation modelling of part are directly linked with the tolerance 

analysis and synthesis. The variation modelling can be broadly classified into two 

categories: (i) rigid body modelling, and (ii) flexible/deformable body modelling. In 

the first category, parts are assumed to be rigid where no part deformation has been 

allowed. This is suitable for machined component modelling, jig or fixture 

components modelling. In later case, parts are deformed with additional force, 

assembly variation such as sheet metal parts. Similarly, depending on the presence of 

dimensional and geometric error components in the part model, it can be either ideal 

part model or non-ideal part model. In case of ideal part modelling, the part is 

modelled to its nominal geometry which consists of ideal features, ideal dimensions 

and ideally placed with ideal orientation. On the contrary, non-ideal part modelling 

considers the error components associated with different features in addition to the 

ideal features such as size and orientation errors, geometrical shape errors etc. As per 

the modelling trend observed in the literature, the compliant part modelling 

approaches can be divided into three categories: (i) ideal rigid part modelling, (ii) 

ideal compliant part modelling, and (iii) non-ideal compliant part modelling. 

Different approaches have been adapted in literature to model the aforementioned 

three categories.   

In the area of tolerance analysis and synthesis, the initial step is to assign variational 

features for modelling. The main efforts are given to mathematise the variational 

features to keep the features within the defined tolerance zone. Traditionally, the 

variational features are modelled by introducing small translational and rotational 
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parameters where shape errors or form errors are normally neglected. Therefore, 

these parameters mainly deal with rigid body motion to determine various 

configurations within the tolerance zone. Mainly two well-known modelling 

approaches have been identified in the literature which are based on the 

mathematical modelling of the variational features, (i) the small displacement torsor 

proposed by Clement and Bourdet (1988); and (ii) the 4×4 transformation matrix 

method proposed by Whitney et al. (1994). Using a set of parameters, these methods 

parameterise the variational features which are used for tolerance analysis mainly for 

rigid body motions. However, the shape errors are neglected in those aforementioned 

approaches of variational feature modelling. Therefore, to model shape errors, more 

sophisticated models were proposed by Samper and Formosa (2006),  Huang et al. 

(2014) where shape errors were also accounted by using a modal decomposition 

analysis based on real measurement data. 

2.1.3 Assembly Process Fixturing 

Assembly fixtures are mainly used for various type of joining operations, especially 

in automotive and aerospace industries. The role of the assembly fixture is to provide 

the accurate locating scheme for alignment of parts to be assembled during the 

joining operations. Due to the compliant nature of sheet metal parts, assembly 

fixturing with compliant parts is recognised as one of the major challenges as the 

non-ideal variational features coupled with intrinsic flexibility of part can cause part 

deformation and quality variation (Liu and Hu, 1997). Therefore, another important 

role of assembly fixture is to control the assembly variation especially during the 

sheet metal assembly operation. A number of modelling techniques has been 

developed to analyse the assembly variation with non-ideal compliant parts in single 

assembly station (Liu and Hu, 1997; Long and Hu, 1998; Liu et al., 1996; Cai et al., 



-28- 

 

2005; Hu et al., 2001). Typically, assembly system modelling with compliant parts 

in a single station involves four major steps (Liu and Hu, 1997): 

(i) Parts loading in the fixture: The parts to be assembled are loaded in the 

fixture. Due to fabrication errors and process variation, individual part errors 

contribute to initial part-to-part deviation or gap.   

(ii) Parts clamping in fixture: The initial part-to-part gap between loaded 

components or subassemblies is closed with clamping force to the nominal 

position. 

(iii) Joining operation: The clamped parts or subassemblies are joined using the 

joining methods such as riveting, welding and result in further deformation 

due to joining operation.  

(iv)  Releasing clamps and springback: After the joining operation, the clamps 

are released. The joined components take final shape due to assembly spring 

back after releasing the stored strain energy induced during clamping and 

joining operation.  

In assembly process with compliant parts, fixture plays a significant role to achieve 

desired dimensional and joining qualities (KPCs) of assembled product where fixture 

design parameters act as KCCs. Therefore, fixture has significant impact on 

productivity and product quality as a well-designed fixture reduces variation within 

assembly process. Typically, a basic fixture consists of four different components (i) 

locators, (ii) clamps, (iii) supporting blocks, and (iv) main fixture body (Nee et al., 

2004). In case of sheet metal assembly, locators are used to position the parts within 

the fixture at correct position and orientation whereas clamps and support blocks are 

used to securely hold the part by preventing deformations during assembly operation.  
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Part locating scheme is an important feature to load part(s) on the fixture by 

restricting the DoFs of the part(s). The well-known locating principle ‘3-2-1’ is 

widely used in industries to locate rigid body parts quite uniquely without creating 

locator interferences (Lowell, 1982; Shirinzadeh, 2002). Beyond the basic 

requirement of part placement and constraining the rigid body motion, the fixture 

should also be able to stop part geometrical deformation. Unfortunately, compliant 

parts like sheet metal parts cannot be controlled through ‘3-2-1’ scheme which 

require increase the number of locators to ‘N-2-1’ to minimise geometric deviation 

(N>3). For compliant part fixturing, Cai et al. (1996) proposed ‘N-2-1’ locating 

principle which allows to prevent excessive deformation of sheet metal parts and 

developed an optimal fixture design method, which can reconfigure the N locators 

on the primary datum to minimize total part deformation.  

Locator pins, clamps and NC Blocks are used as fixture elements in sheet metal 

assembly process. Locator pins are used in ‘2-1’ locating scheme by using one 4-way 

pin and one 2-way pin. The 4-way pin restricts translation in X and Y directions and 

2-way pin restricts translation in Y direction. NC blocks are usually used to support 

the flexible part against clamping force. Hence, at each clamp location one NC block 

is stationed. NC blocks restrict translation in –Z direction by surface contact when 

they are used without clamps and +Z translation is restricted by clamps (Shiu et al., 

1996). Figure 2.2 represents the types of locating elements used for sheet metal 

assembly. The ‘N-2-1’ (N=4) fixturing scheme for sheet metal part has been 

demonstrated in Figure 2.3 considering the locator pins, clamps and NC blocks as 

fixturing elements. 
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Figure 2.2 Automotive sheet metal assembly locator types (Shiu et al., 1996) 

 

Figure 2.3 ‘N-2-1’ (N=4) locating scheme for sheet metal parts (Camelio and Hu, 

2004) 
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2.1.4 Assembly Process Joining: Remote Laser Welding (RLW) as 

Case-in-Point Application 

Joining is an important step of assembly operation in which clamped parts or 

subassemblies are joined using the joining methods such as riveting or welding. 

Further, the joining operation contributes to assembly variation as it introduces 

further deformation to the assembly. The most commonly used joining operations for 

sheet metal parts are self-piercing riveting, resistance spot welding, brazing or laser 

welding.   

Recently, remote laser welding (RLW) is gaining significant industrial interests as a 

substitute to conventional joining processes such as self-piercing riveting, resistance 

spot welding. RLW is a non-contact joining process using laser beam and it has 

emerged as a response to sheet metal assembly industries where high efficiency and 

flexibility of the joining systems are required. RLW provides several benefits which 

are of great interest for sheet metal assembly process, such as, one sided non-contact 

joining, high welding speed, less floor space, less number of robots, less energy or 

lower investment and operating costs (Mori et al., 2010; Reinhart et al., 2008; 

Vaamonde Couso and Vázquez Gómez, 2012; Shibata, 2008; Ceglarek, 2011).  

Despite of having the aforementioned benefits of RLW process over the traditional 

joining processes, the main challenge to implement RLW system in vast scale is the 

part-to-part fit up problem. The part to part gap control requirement has been 

illustrated in Figure 2.4. Dimensional and geometric shape variations of part during 

their fabrication process, such as, sheet metal forming, result in gaps between them 

after they are mounted on the assembly fixture. For example, to join two galvanised 

steel parts successfully, RLW requires maintaining a gap between 0.05 mm to 0.3 
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mm and for aluminium, between 0 mm to 0.05 mm. Failure to meet the 

aforementioned part-to-part fit-up requirements, RLW results in welding defects, 

such as under-cut, porous weld, poor finishing and corrosion prone. For example, 

lower gap causes the undercut, porosity and spatter when welding galvanised steel as 

coated zinc gets vaporised and unable to find path to escape causing inclusion in the 

weld pool. Similarly, higher gap (more than 0.3 mm for steel) results in shrinkage, 

undercut and lower interface width due to excess material flow in the gap. As a 

consequence, it requires tight control of the gap which is much lower than the 

individual part shape error. This emphasises to model the randomness of the 

individual part shape error for proper understanding of part behaviour and gap 

analysis. Subsequently, as product quality and production yield depend on 

production parts, it triggers proper designing of fixture to mitigate the part fit-up 

problem considering production shape variation.  

 

Figure 2.4 RLW requirements for tight part-to-part gap control (Ceglarek, 2011) 

In this thesis, RLW joining process has been considered as case-in-point to 

demonstrate the developed methodologies and their applicability.  

 

Tight Gap

Control
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2.2  MEASUREMENT OF COMPLIANT PARTS 

In manufacturing industry, the quality of a part is evaluated by Key Product 

Characteristics (KPCs) which are defined by the quality control engineers. The 

conventional way of defining the KPCs is the physical measurement of the 

dimensional and geometric features, such as dimensions or part feature locations. 

Similarly, KPCs related to a stamped sheet metal part are defined by the part 

deviations and part features like surface point deviations, trim edge points, hole and 

slot dimensions, hole and slot locations etc. These KPCs are the indicators of the part 

quality and monitoring of the quality is the prerequisite for a good assembly. 

Conventionally, the choice of KPCs is determined by the type of measuring 

technologies available. In current industrial practice, automotive or aerospace body 

parts measurement are largely restricted to point based measurement which are 

measured by Coordinate Measuring Machine (CMM). CMMs are most widely 

utilised dimensional measurement tool. Moreover, parts to be measured with CMM 

are taken to measurement room which is in separate location from the production 

line as well as they have limited capabilities of measuring KPCs. Therefore, this is 

time consuming, off-line and costly process for compliant part measurement. Due to 

recent advancement in the field of 3D metrology scanning system development, 3D 

non-contact sensors are emerging in the industrial practice. They can capture the 

entire surface of the part in the form of Cloud-of-Points (CoP), the digital 

representation of the actual part surface. The part surface scanning process is fast, in-

line and less costly compared with CMM data. Figure 2.5 illustrates the 

measurement capability of CMM where few defined KPCs are measured vs. surface 

measurement using 3D non-contact scanners where entire surface information 

presented through CoP.  It illustrates the advantage of having 3D non-contact 



-34- 

 

measurement where whole compliant part surface information has been captured 

against few captured points through CMM. Many defects remain undetected through 

point based measurement, especially when the defects do not influence the KPCs. 

Subsequently, use of 3D non-contact type of measurement helps to overcome this 

problem since they can capture the entire product geometry. 

 

                         (a)                                                           (b) 

Figure 2.5 Compliant part measurement (a) using CMM at few specific sampled 

points, and (b) using 3D non-contact optical scanners to capture entire product 

surface information (i.e. CoP data) 

Relying on the application requirement, there are several 3D non-contact optical 

measurement systems available. Many researchers have used 3D laser scanners to 

capture surface data of part and compared the result for measurement systems 

improvements (Isheil et al., 2011).  Majeske and Hammett (2003) studied 3D non-

contact measurement system,  CogniTens Optigo 200, where the results have been 

compared with Coordinate Measuring Machine (CMM) and checked the suitability 

of the gauge towards meeting the typical requirement of industrial standards. 
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Further, Huang et al. (2008) studied the gauge repeatability and reproducibility of 

CogniTens Optigo 200 for specular machined components. 

Further, current applications of these non-contact measurement gauges are limited to 

inspection or reverse engineering application in the context of sheet metal compliant 

parts. Figure 2.6 explains the research opportunities provided by 3D non-contact 

measurement scanners in the field of shape error or shape variation modelling as 

well as statistical monitoring of shape quality and shape variation reduction through 

assembly fixture design.  

 

Figure 2.6 Current applications vs proposed applications of CoP measurement data 
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2.2.1 Measurement Data for Quality Inspection and Reverse 

Engineering of Compliant Parts 

 Part or feature inspection typically involves identifying the real part or feature 

deviation from the nominal geometry. Traditionally, it is assumed that each part 

should lies with the specification limit for ease of assembly and ideally, all the KPCs 

should be as close as the nominal target values (Montgomery, 2008). Therefore, part 

inspection plays a vital role in automotive and aerospace industries as the assembly 

composed of thousands of parts. Use of 3D non-contact scanners for part inspection 

is mainly conducted for eliminating the non-conforming parts as per the industrial 

standards. Typically, part inspection is conducted by obtaining the deviation map of 

the scanned part from the nominal geometry. Due to the advantage of quick data 

capturing through these 3D non-contact measurement scanners, a number of 

improvements have been reported in the field of inspection. Subsequently, the 

captured data can be utilised for inspecting parts for surface and feature 

abnormalities and numerous other KPCs that can reflect the product quality.  

Wells et al. (2013b) classified the current use of 3D point clouds for part inspection 

into two main categories: (i) extracting geometrical and dimensional feature 

parameters, and (ii) an ad-hoc manual process where a visual representation of a 

point cloud (usually as deviations from nominal) is analysed.  

Various works have been reported for inspecting manufactured parts or sheet metal 

parts using CoP data.  Li and Gu (2004) carried out comprehensive review regarding 

the inspection techniques for free-form surface considering both contact and non-

contact measurements. Martínez et al. (2010) inspected several canonical features as 

planes, spheres, cylinders, holes (outer and inner), and conical surfaces as part of 



-37- 

 

their non-contact measurement device goodness evaluation criteria. Further, Turley 

et al. (2014) inspected automotive body-in-white with CMM and laser based scanner 

to evaluate the measurement agreement of critical surface points using a multi-sensor 

horizontal dual arm CMM. Visual inspection is mainly related to entire surface 

deviation representation in the form of colour map to visually check the faults such 

as surface defects, dents, cracks, skin panel defects etc. Prieto et al. (1998) 

introduced a visual inspection system for manufactured parts to check visually the 

colour map to display the level of discrepancy between the measured CoP data and 

the nominal model.   

Similarly, a comprehensive review on recent reverse engineering application based 

research using non-contact measurement systems can be found in the works of 

Várady et al. (1997) and Creehan and Bidanda (2006). Generally, in reverse 

engineering, the measured CoP data is used for generating CAD model. In order to 

accurately recreate the existing part, a CAD model of the part's geometry must be 

developed. Várady et al. (1997) mentioned the requirement of reverse engineering as 

to create geometric models of existing objects for which no such nominal model is 

available. Therefore, CoP data can be used to digitise the part in reverse engineering 

process.  They divided the basic phases of reverse engineering into four major steps: 

(i) data accusation (i.e., CoP data), (ii) data pre-processing, (iii) segmentation and 

surface fitting, and (iv) CAD model creation. Hsiao and Chuang (2003) proposed a 

reverse engineering approach for designing product in shorter time using CoP data. 

Similarly, Mohaghegh et al. (2007) described a new approach to process the data 

points measured from turbine blade air-foils in order to make a valid shape via 

reverse engineering method.  



-38- 

 

Therefore, from the literature, it is clear that the current applications of non-contact 

measurement sensors/devices are mainly limited to inspection and reverse 

engineering. It should be noted that, inspection of part only provide information 

about defects or variation for single part which neglects the part-to-part variation. 

Consequently, it emphasises to develop new technique to explore the full potential of 

3D non-contact scanners in the field of part shape monitoring. 

2.2.2 Measurement Data for Monitoring and Control of Compliant 

Parts 

Traditionally, few sampling surface points are picked by the quality engineers for 

monitoring purpose which are measured by CMM and then, point based SPC control 

charts are imposed to assess the out of control signal or variation from one part to 

another (Majeske and Hammett, 2003). Also, these discrete point based 

measurement methodologies which are used for inspection and process control have 

limited 6-sigma failure root cause identification. They seldom correct operational 

defects quickly. The point coordinates (x,y,z) are measured in area of interest of 

stamped or assembled parts to evaluate the specific KPCs. However, these few KPCs 

may not capture all the information related to possible patterns of variation or shape 

related form defects as it does not provide in-depth knowledge to understand the 

manufacturing defects related to a part or assembly. Further, capturing these KPCs 

are time consuming and costly off-line process which force manufacturers to reduce 

the number of points or KPCs to be measured for monitoring purpose. Subsequently, 

it doesn’t provide compact information about the features, geometric properties or 

mating shape characteristics. Therefore, it is critical to develop better Statistical 

Process Control (SPC) method for monitoring the quality of complex part geometries 

where it can provide better understanding about the product shape. Further, the SPC 
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method should provide better indication about the quality deterioration which can 

avoid product failure or process downtime (Panagiotidou and Tagaras, 2010). 

To overcome the aforementioned challenge of limited KPCs measurement, an 

advanced measurement technology will widen the opportunity where a surface based 

measurement device can capture millions of data points (i.e. CoP) related to the part 

geometries. This high volume of data overcomes the restriction of limited KPCs 

selection and fault detection is no longer narrowed by traditional measurement 

system capabilities like CMM. In the field of quality inspection, reverse engineering 

and remote sensing, 3D non-contact type of measurement devices are progressively 

being used (Mass, 2002; Son et al., 2002). These measurement systems have the 

potential to be used for quality control, root cause analysis of faults, process 

monitoring and process parameter adjustment. Especially in automotive and 

aerospace industries, current use of CoP measurement is limited to inspection and 

reverse engineering. Son et al. (2002) explained that the current applications for 

those 3D scanners abide to inspection and reverse engineering applications which 

provide part mapping between as-build parts and their corresponding nominal 

representations. Therefore, it only provides crucial information about the individual 

part instead of process behaviours and part-to-part variation propagation. Especially 

for sheet metal production, capturing the process behaviours for within batch 

variation and batch-to-batch variation are very important. It has an urgent need in 

current manufacturing industries for accurate depiction of status of the process. 

Therefore, CoP measurement data can further be used for shape error modelling of 

individual compliant part, shape variation modelling of batch of compliant parts and 

statistical process control for compliant parts to detect shape related defects. Figure 

2.7 depicts the use of CoP measurement data for shape error modelling, shape 
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variation modelling and statistical process control. Details of literature review 

regarding shape error modelling are explained in Section 3.2  and shape variation 

modelling in Section 3.2.  

 

Figure 2.7 Use of CoPs measurement data for shape error modelling, shape variation 

modelling and statistical process control 

The non-contact 3D measurement scanners have potential to collect off-line or in-

line data directly from the production line. A shape related defects detection SPC 

chart is required which enables quality engineers to monitor the product quality by 

addressing the data rich but information poor problem as highlighted in Wang and 

McGreavy (1998) and Choudhary et al. (2009). As a result, shop-floor decision 

making and productivity can significantly be enhanced. The captured CoPs data can 

be categorised as highly data rich but extraction of useful information from the high 

volume data is still challenging. The research directions regarding the use of CoP 

data can be classified in two distinctive areas: (i) the research to develop the 3D non-

contact type of measurement systems and enhance its ability by increasing accuracy, 
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calibration, repeatability and reproducibility issues (Aguilar et al., 1996; Feng et al., 

2001; Isheil et al., 2011; Xi et al., 2001; Li et al., 2008d). (ii) the use of the high 

density point clouds to extract critical information for different modelling and 

simulation validation along with the use of SPC apart from the inspection and 

reverse engineering applications (Creehan and Bidanda, 2006; Son et al., 2002). 

Several researchers have reported the extensive use of captured data for reverse 

engineering where the real part measurement data converted to CAD models (Hsiao 

and Chuang, 2003; Mohaghegh et al., 2007). This reverse engineering conversion 

also detects the product failures by comparing with its CAD geometry and identifies 

the non-conforming areas as per the product specifications (Várady et al., 1997).  

Identifying the non-conforming areas of a part from the good part is typically based 

on the deviations of the scanned part from the nominal CAD geometry model (Shi 

and Xi, 2008; Mohib et al., 2009). But, these inspection and reverse engineering 

approaches remain unsuccessful to capture the part-to-part variation or 

manufacturing process shifts during production. In case of sheet metal parts variation 

propagation behaviour analysis, capturing within batch variation and batch-to-batch 

process shift are very crucial. Though traditional statistical process control 

techniques based on few points remain important due to its simplicity and easy to 

interpret but not efficient to capture the geometric errors associated with the parts 

and its propagation within batch or batch-to-batch. These traditional SPC charts also 

fail to accommodate the increased volume and velocity data capturing process by 3D 

non-contact scanners. Therefore, more informative shape characteristics based 

statistical process control chart needs to be developed to explore the full potential of 

3D non-contact measurement technologies as it can capture the entire surface 

information more efficiently.  
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2.2.3 Part and Assembly Measurement to Demonstrate Case Studies 

Automotive door parts are used to demonstrate the developed methodologies in this 

thesis with RLW joining as an application. Part-to-part gaps between the joining 

parts are not constant due to part dimensional and shape variation. Usually the gap is 

changing over the area of interest and it depends largely on the part dimensional and 

shape errors. Moreover, the measurement must also be fast to benefit from the five 

times faster RLW technology compared to resistance spot welding (RSW). This 

leads to surface-based measurement systems as the most suitable option for RLW 

applications. The frequency of measurement depends on the variation of parts and 

type of shape errors in the assembly line. To identify and characterise the part shape 

error, surface based measurement is necessary which provides large data points in 

terms of 3D Cloud-of-Point (CoP). 

In the context of this thesis, parts are measured with two commercial measurement 

systems: Optigo 200 (by Cognitens – Hexagon) and Romer (by Hexagon). Optigo 

200 is an image acquisition, dimensional measurement gauge which is a non-contact, 

surface-based measurement system with capabilities to quickly capture data point of 

relatively large parts. However, sources of error of Optigo 200 are mapping of CoP 

data with CAD and external light. The Romer system is an arm-based (seven degrees 

of freedom) with an end-effector. The end-effector can be a touch probe or a laser 

scanner system. In this case, laser scanner is used to capture surface data of parts. 

The system automatically aligns point clouds using the inverse kinematics of the arm 

and source of error coming from the arm joints. PolyWorks (by InnovMatric 

Software) was chosen for data post-processing analysis which includes CoP data 

cleaning, uniform subsampling of highly dense CoP data and CoP data alignment 

with nominal CAD of the part.  
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2.3 SUMMARY 

This chapter provides an overview of the modelling and technological aspects used 

for assembly station with compliant sheet metal parts. Further, it demonstrates the 

measurement requirement for compliant sheet metal parts with extended application 

towards statistical process control. The following items are explained: 

(i) Assembly station with compliant parts: Assembly station with compliant 

parts involves variation as one of the major challenges reported in literature. 

The current approaches for compliant part modelling are evolving in stages: 

ideal rigid part model, ideal compliant part model and non-ideal compliant 

part model. Further, various attempts have been made to model assembly 

system with compliant parts at a single assembly station. The assembly 

process involves four major steps: (a) parts loading in the fixture; (b) parts 

clamping in the fixture; (c) joining operation; and (d) releasing clamps and 

springback. Further, the assembly process is evaluated based on key 

characteristics where process-oriented Key Control Characteristics (KCCs) 

have direct impact on product-oriented Key Product Characteristics (KPCs).    

(ii) Assembly fixture design for compliant parts: Assembly fixture plays a 

significant role to achieve desired dimensional and joining qualities (KPCs) 

of assembled product where fixture design parameters act as KCCs. 

Therefore, proper design of assembly fixture is unavoidable when dealing 

with compliant sheet metal assembly. This chapter reviews the fixturing 

components, and N-2-1 part locating scheme to load the compliant sheet 

metal parts in the assembly fixture. 
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(iii) Assembly process joining: case-in-point application - Remote Laser Welding 

(RLW): The developed methodologies in this thesis are verified and validated 

with industrial case from remote laser welding process. In this chapter, the 

RLW advantages, current challenges, joining requirements are demonstrated 

for ease of understanding of the developed methods.   

(iv) Measurement data for quality inspection and reverse engineering of 

compliant parts: It provides an overview of measurement data usage for 

quality inspection and reverse engineering of compliant parts. Further, it 

reports the advantages of 3D non-contact sensors based entire surface 

measurement against traditional Coordinate Measuring Machine (CMM). 

However, current applications of non-contact measurement devices are 

mainly limited to inspection and reverse engineering. 

(v) Measurement data for monitoring and control of compliant parts: Quality 

control of compliant sheet metal parts is decisive to ensure increasing 

assembly functionality and reduce residual stress in the final assembly. Use 

of point-based CMM measurement data is well known for statistical process 

control for industrial application of compliant sheet metal part. However, few 

measurement points do not provide in-depth knowledge to understand the 

manufacturing defects related to a part or assembly. On contrary, surface 

based 3D measurement scanners have the potential to be used for statistical 

process control which considers entire surface information in terms of CoPs.  
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 LITERATURE REVIEW CHAPTER 3

3.1 INTRODUCTION 

Generally, modelling of assembly system with compliant parts is not a trivial task 

due to necessary trade-offs between various sources of variations which need to be 

taken into consideration and required KPIs accuracy. The sources of variations are 

mainly related to parts, tooling and joining. To ensure quality of part shape as 

defined by GD&T, a key requirement is to model CoP data representing part shape 

variation in such a way that the model can be used for (i) process design (i.e. 

fixturing); and (ii) statistical process control to detect assignable causes of shape 

variation. To develop such model(s), the following issues needs to be addressed:   

(i) Part shape error modelling: a generic model is required with capabilities to 

analyse CoP surface data of sheet metal parts or assemblies and providing 

information about shape error over a continuum of process parameters to 

reveal important aspects of the processes generating the data. For example, in 

the context of this thesis, the model should reveal important aspects of the 

process as related to SPC and also serve as a key enabler for process design 

(fixture layout optimisation for non-ideal parts). In particular, the shape error 

model should provide a parametric modal decomposition capability which 

can be further utilised in various application domains such as tolerance 

analysis and synthesis; assembly process design optimisation; shape error 

detection and process control; functional mapping of process parameters to 

correlate the root cause of the faults. As a consequence, this generic model, 
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also classified as functional data analysis in statistics, can play a crucial role 

in sheet metal parts shape error modelling and analysis.  

(ii)  Parts shape variation modelling: a functional data model of part shape error 

is a key enabler for representing and modelling parts shape variation of a 

batch of compliant sheet metal parts. The model of parts shape variation is 

based on the statistical characterisation of modal parameters coming not from 

a single part but also from a batch of parts. The model should help to 

quantify the shape variation incorporating all the significant shape error 

modes present in the production of a batch of parts. Therefore, the shape 

variation model can be used as enabler for process design which is robust not 

only to ideal (CAD) parts but also to a batch of non-ideal (real) parts.   

(iii) Parts shape variation monitoring and detection (i.e. statistical process 

control to detect shape defects): efficient approaches for statistical process 

control of non-linear shapes are required to monitor the shape errors and 

detect the shape defects efficiently using high dimensional CoP data captured 

by in-process sensor networks. At present many industrial processes are 

capable of generating massive amount of CoP data which cannot be used for 

SPC and monitoring of shape variation.  

(iv) Shape variation reduction at assembly process design (i.e. fixture layout 

optimisation): an efficient fixture modelling and optimisation method is 

required for assembly process simulation with compliant part considering the 

shape variation coming from the production parts. Fixture plays a dominant 

role in assembly system with compliant parts as it directly affects the 

dimensional and geometric quality of assembled product. Further, to mitigate 

the quality deterioration due to shape variation of compliant sheet metal 
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assembly, fixture must be modelled and optimised with shape variation. 

Therefore, it can predict the production yield of the assembly process and 

corrective actions can be taken to neutralise the high risk areas.  

As evident from the aforementioned discussions, there are lack of modelling 

approaches to address the current challenges associated with shape variation 

modelling, analysis and statistical control. This chapter reviews past research on 

modelling of part shape error and parts shape variation, and further, application of 

these models in statistical process control and process design approaches.  

The remaining part of this thesis is organised as follows: Section 3.2 reviews the 

approaches reported in literature to model part shape errors and identifies the 

research gap to model freeform shape errors. Section 3.3 reports the related work on 

shape variation modelling of a batch of compliant parts. Section 3.4 describes the 

current monitoring approaches and need of new control chart to detect shape defects. 

Section 3.5 reports the assembly fixture layout design and optimisation for compliant 

assemblies and current research gap of fixture optimisation considering production 

batch. Finally, Section 3.6 presents the summary.   

3.2 RELATED WORK ON SHAPE ERROR MODELLING OF COMPLIANT 

PART 

Most of the reported works in the field of shape error modelling are related to 

tolerance analysis, i.e. the variational feature modelling. The key principle behind 

the variational feature modelling is to model the functional features at design stage 

within the specified tolerance zone to meet the tolerance standards, such as ISO-

1101 (2013) or ASME-Y14.5M (2009).  
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Initial studies were focused on modelling variational features as parametric models 

and then included them as part of CAD modellers (Requicha and Chan, 1986; Chase 

and Parkinson, 1991; Gupta and Turner, 1993). Then, these models are used for 

tolerance analysis.  These approaches are also termed as parametric tolerancing and 

play a dominant role in current industrial design practice with application in 

tolerancing of rigid parts and assemblies. In these approaches tolerances for size, 

orientation and position are parameterised by few dimensions and modelled by 

offsetting the nominal geometry of a 3D solid model. Then, part variations are 

included into variational CAD modeller, for examples, Constructive Solid Geometry 

(CSG) with added feature-based approaches which parameterise the whole part 

geometry. In general, variations of key product features and dimensions are 

represented in statistical tolerancing as probability distribution functions. 

A well-known approach to model variational features through rigid body motion is 

classified as Topologically and Technologically Related Surfaces (TTRS). It 

provides a methodology to divide complex part geometry into simple elementary 

components such as points, lines and planes (Clément et al., 1998).  The main idea is 

to represent the position and orientation of each feature by small rigid body 

movements. Moving forward from the TTRS theory, Whitney et al. (1994) 

introduced 4×4 variational matrix to simulate rigid body translation and rotational 

movements. These approaches are limited to small displacements and only deals 

with the representation and classification of functional features for rigid body, and 

cannot reapplied to model free-form shape errors. Therefore, products like sheet 

metal part with complex geometric features cannot be modelled by only using rigid 

body movements. 
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Pioneered research work on geometric tolerance representation can be found in 

Requicha (1983), Requicha (1984) and Requicha and Chan (1986). Few research 

works have been carried out to define the variation features for representation of 

geometric tolerances (Rossignac and Requicha, 1986; Requicha, 1984; Requicha and 

Chan, 1986; Requicha, 1983; Walker and Srinivasan, 1993). By offsetting the 

nominal surface of the product, the tolerance zone has been defined by two off-set 

bounded surfaces and all the functional features within these two bounded surfaces 

are being accepted as in-tolerance variation class. Walker and Srinivasan (1993) tried 

to define mathematical relation between the tolerance zone and variation class. 

Thereafter, several CAD modellers have adapted several approaches to compute the 

off-set surfaces in CAD models. In order to reach target accuracy, efforts have been 

made to increase the number of parameters to model the variational features (Turner 

and Wozny, 1987; Guiford and Turner, 1993). Subsequently, as the complexity of 

the geometric surface to be modelled increases, the number of parameters to be 

considered rapidly grows making the approach very difficult to use. To avoid this 

situation, Gupta and Turner (1993) proposed an alternative approach based on 

Bezier’s triangle fitting and triangle patches to represent planar surface. Further, Li 

and Roy (2001) expanded Gupta and Turner’s (1993) work by developing a sixteen-

point bicubic surface interpolation method. These efforts can be classified as 

deterministic geometric tolerance (boundaries) representation with main focus on 

tolerancing of mechanical parts represented as solid models in CAD/CAM systems.  

One of the critical problems in Geometric Statistical Tolerancing (G/ST) for a 

complex assembly is not only to represent and generate the tolerance zone (TZ), but 

also the variational classes of product instances (surface variations). Therefore, there 

is a strong need for modelling and characterisation of shape errors of part surface 
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feature which can be used for variation propagation modelling, as part of design 

optimisation of assembly process with compliant parts. To model and quantify shape 

errors within individual part, a unified and adaptive way is necessary. Additionally, 

the model should also provide a platform for batch of parts shape variation 

quantification, shape errors related defect detection, shape variation reduction 

through process design and enable storage of part shape error and variation 

information for future designs. To date only limited successes have been achieved in 

this aspect. The approaches for shape error modelling of compliant part can be 

broadly classified into two categories: (i) shape error representation; and, (ii) shape 

error decomposition. Table 3.1 summarises the research work carried out by 

different researchers to model part shape error under the category of shape error 

representation (see Section 3.2.1) and shape error decomposition (see Section 3.2.2).  

Table 3.1 Literature review of part shape error modelling approaches with identified 

research gap 

 Shape error representation 

(Reverse Engineering) 

Shape error decomposition 

Nominal Data 

Decomposition 

(CAD- Based) 

Measured Data 

Decomposition 

(CoP- based) 

1D - Merkley (1998) 

Srinivasan and 

Wood (1997); 

Bihlmaier (1999) 

2D 

Capello and Semeraro (2000); 

Capello and Semeraro (2001); 

Duta et al. (2001); 

Srivastava and Jermyn (2009) 

Tonks (2002) 

Huang and Ceglarek 

(2002); 

 Huang et al. (2014) 

3D 

Gupta and Turner (1993); 

Raffin et al. (2000); 

Sorkine (2006); 

Stoll et al. (2006); 

Franciosa et al. (2011); 

Wagersten et al. (2014) 

Samper and 

Formosa (2006); 

Ungemach and 

Mantwill (2008) 

 

Proposed in this 

thesis 
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3.2.1 Shape Error Representation 

Shape error representation adapts reverse engineering approach where the 

manufactured part is measured and mapped into the CAD model to derive the shape 

errors associated with the manufactured part (Gupta and Turner, 1993; Raffin et al., 

2000; Stoll et al., 2006; Franciosa et al., 2011; Liang et al., 2012). Reverse 

engineering approach is well-known in literature to represent the part deviation from 

design nominal. A number of efforts have been made to represent the variational 

features directly from the measured parts. Gupta and Turner (1993) used constructive 

solid geometry-based (CSG) modeller and surface-based variational modelling to 

embed shape errors with nominal geometry. B-spline and NURBS patches with few 

control points were used to model simple geometry which were then integrated to 

represent the whole part (Cubélès-Valade and Riviere, 1999; Raffin et al., 2000; 

Pottmann and Leopoldseder, 2003). Raffin et al. (2000) presented a deformation 

model to represent part surface geometry based on the simple constrained 

deformation (scodef) model. This model is used for representing geometry 

modifications based on the magnitude of deformations for each point (also known as 

control point) on the part given by the user. These methods have limited applications 

in representing accurately the shape errors of the part which are composed of a set of 

patches due to large number of control point required for the constrained 

deformation.   

A comprehensive method for representation of whole part surface geometry has been 

proposed by Sorkine et al. (2004) and Sorkine (2006) which is based on the 

Laplacian mesh deformation by relative movement of each vertex to its 

neighbourhood mesh nodes. The main application domain of Laplacian mesh 

deformation is in the field of computer graphics where the method furnishes a 
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variety of processing applications, such as shape approximation and compact 

representation, mesh editing, watermarking and morphing. 

Sorkine’s (2006) work has been extended by Stoll et al. (2006) where they tried to 

reconstruct the surface from the measured data. The CAD based template surface 

mesh has been deformed by using Laplacian mesh deformation to fit measured CoP 

data. Capello and Semeraro (2000; 2001) applied harmonic fitting model to fit the 

geometrical shape with discrete measurement points for inspecting machined 

components. However, harmonic fitting model is limited to planar, cylindrical or 

conical surfaces. 

A similar approach of surface representation has been adapted where nodes of the 

mesh model are moved by morphing procedures (Franciosa et al., 2011; Liang et al., 

2012; Wagersten et al., 2014; Schleich et al., 2014). They used few control points to 

parameterise the whole geometry and deform the template mesh through morphing 

mesh procedure. Therefore, by varying the control points a number of shape errors of 

part can be created. However, morphing approach with control points struggles to 

represent shape error of free-form 3D part geometry and the number of control 

points increases significantly with increase in geometric complexity.  

The abovementioned approaches are mainly used to represent the shape error 

associated with a surface which has limited capability for statistical tolerance 

analysis by generating variational part instances. Further, in context of this thesis, the 

shape error representation is not sufficient to reveal important aspects of the process 

generating the shape error or to provide a parametric approach for tolerance analysis 

and synthesis; shape error detection and process control and assembly process design 

optimisation (fixture layout optimisation for non-ideal parts).   
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3.2.2 Shape Error Decomposition 

To satisfy the need of a generic model with capabilities to extract underlying process 

information from measured CoP data, a functional data analysis based shape error 

decomposition can play a significant role in assembly process simulation with 

compliant sheet metal parts. Previous studies reports numerical and analytical 

attempts to establish the relationship between part shape errors and the source of 

variation by decomposing shape errors into shape error modes. However, shape 

error decomposition remains a challenging problem due to unavailability of 

functional data analysis based approach relying on CoP measurement data.  

Many of the shape error models are based on geometric covariance based 

approaches. The geometric covariance defines the geometrical relation among the 

neighbouring points on the same surface to assure surface continuity and 

smoothness. Use of bounded random Bezier curves to model shape errors has been 

proposed by Merkley (1998) where the geometric covariance matrix within given the 

tolerance limit has been determined. Shape error has been parameterised by 

constraining the displacement of the control points of Bezier curves. The random 

Bezier curves provide a method of mapping profile tolerance of a curve to tolerance 

bands of the Bezier control points. The geometric covariance matrix (𝚺) can be 

calculated as  

 
1

2 TA A


     (3.1) 

where, A is a rectangular matrix related to Bernstein polynomials, defining the 

Bezier curve and 𝜎 denotes the standard deviation associated to the tolerance band of 

Bezier control points.   
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Merkley’s (1998) approach mainly focusing on one dimensional profile feature and 

potentially can be extended to rectangular Bezier patches. However, for free-form 

shapes, such as automotive sheet metal components, the parameterisation of the 

Bezier patches becomes non-trivial task and exhibits limitation for real 

implementation of variational feature modelling of real part.  

Merkley’s (1998) work has been extended by Bihlmaier (1999) to model profile as a 

finite summation of sinusoidal waves of varying magnitude and wavelength. Fourier 

transform has been used to transform the profile into frequency domain and the 

profile is decomposed into sinusoidal waves having different wavelengths and 

magnitudes.   

As an extension of the methods proposed by Merkley (1998) and Bihlmaier (1999), a 

hybrid method has been proposed by Tonks (2002) to model the two dimensional 

surface errors by using decomposition of wavelengths. The hybbrid method uses two 

modelling technique: (i) Legendre polynomial to model the long wavelengths; and, 

(ii) frequency spectrum to model the shorter wavelengths. The hybbrid method was 

by validated using experimental data. However, this approach limited to two 

dimensional cases which is also inadequate to model 3D free-form shape errors.  

Another approach has been reported in literature regarding the decomposition of 

shape errors based on the modal decomposition with main focus on geometric 

tolerancing. As per ANSI Y14.5M standard, geometric tolerances can be sub 

classified into form, orientation, location, and run-out tolerances (Walker and 

Srinivasan, 1993). Early studies related to shape error decomposition mainly focused 

on form tolerancing. One of the drawbacks of the ANSI Y14.5M standard is the lack 

of formal mathematical definition of form/shape errors. Therefore, Srinivasan and 
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Wood (1997) made an attempt to provide a mathematical representation of the form 

error tolerancing with the help of wavelet transform which is well known in the field 

of signal processing. They presented an enhanced shape error profile modelling 

method based on wavelet decomposition. The main idea is to decompose the free-

form shape error profile using fractals and wavelets by establishing the relationship 

between fractals and wavelets in order to extract the principal deformation mode 

from the profile feature which is limited to one dimensional case. This approach is 

mostly suitable for localised and non-stationary error patterns instead of global error 

patterns whereas shape errors of compliant sheet metal parts can be considered as 

stationary and mainly composed of global errors. Further, wavelet decomposed error 

patterns are difficult to explain, especially in terms of GD&T tolerances.  

Huang and Ceglarek (2002) and Huang et al. (2014) developed Statistical Modal 

Analysis (SMA) approach for 2D shape error decomposition into main deformation 

modes which are then characterised by manufacturing process parameters. The SMA 

method is based on Discrete Cosine Transform (DCT) technique and was applied to 

real measurement data. Further, the SMA method was used for quality monitoring, 

root cause diagnosis of shape errors, and process capability study in manufacturing. 

The main limitation of SMA approach is that shape error field is distributed as 2D 

rectangular space. Therefore, this approach cannot be applied to decompose real 3D 

sheet metal parts. Many sheet metal parts consist of several features such as holes, 

slots, edges which are not modelled by the SMA model. Therefore, a more generic 

approach is required to model and characterise 3D shape error associated with real 

sheet metal parts.  

To model and characterise 3D shape error associated with real part, Samper and 

Formosa (2006) developed natural mode decomposition approach which is based on 
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free vibrational modal shapes of structural mechanics. Unlike SMA method where 

the decomposition was performed directly on the shape error field, the natural mode 

decomposition in based on the nominal CAD data, and then, the decomposed modes 

are compared with measured shape error field to obtain shape error modes.   

The shape error decomposition by using natural mode decomposition approach is 

based on following steps: firstly, the nominal geometry is meshed to obtain mass and 

stiffness properties associated with the part. In linear dynamics, equations of 

conservative systems (e.g. a mass-spring system) can be written as follows 

0M q K q     (3.2) 

where the dynamic equilibrium of the system is preserved. 𝑀(𝑁 × 𝑁) and 𝐾(𝑁 ×

𝑁) represents the squared mass and stiffness matrices, respectively. The 

displacement vector for each node of the mesh is represented as 𝑞(𝑁 × 1). Solution 

to the equation (3.2) is determined by evaluating eigenvectors and eigenvalues 

related to the matrix  𝐾−1 ∙ 𝑀. The obtained eigenvectors are linearly independent to 

each other. Therefore, orthogonal modal matrix consist of main deformation modes 

is built (the column vector of the modal matrix). Secondly, the deformation modes 

are mapped with the original measurement to identify the individual shape error 

modes. The natural mode decomposition can be applied to decompose free-form 

shape errors; however, the method suffers from the accurate decomposition of global 

shape errors associated with sheet metal parts. 

A similar nominal CAD data based decomposition approach proposed by Ungemach 

and Mantwill (2008) where the part is decomposed using the buckling principle 

instead of free vibrational modal shapes as in Samper and Formosa (2006). The first 

obtained eigenvector mode has been utilised to generate the initial variational 
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geometry in assembly process simulation. The buckling modes have no physical 

significance, especially in terms of GD&T applications.  

As evident from the detail review of the reported work on shape error 

decomposition, current approaches can be classified into main two different 

categories: 

(i) Decomposition based on nominal CAD data: Firstly, the nominal CAD 

model of the part is decomposed considering the material properties of the 

part, and then, the decomposed modes are compared with the measurement 

data to obtain shape error modes (Merkley, 1998; Tonks, 2002; Samper and 

Formosa, 2006; Ungemach and Mantwill, 2008).  

(ii) Decomposition based on measured CoP data: Firstly, the part is measured as 

CoP to obtain the shape error field by computing deviation from nominal 

CAD Part, and then, the shape error field is decomposed into shape error 

modes (Srinivasan and Wood, 1997; Bihlmaier, 1999; Huang and Ceglarek, 

2002; Huang et al., 2014).  

Extraction of all types of shape error modes, which are present in the real 

measurement data, might not be possible through decomposition based on nominal 

CAD data. Due to absence of few shape error modes obtained by nominal CAD data 

decomposition, limited accuracy is achieved during reconstruction of the measured 

shape error field. Therefore, there is a need to decompose the real measurement data 

(CoP) of 3D part into main shape error modes. Additionally, the shape error 

decomposition model should have the capabilities not to be affected by various part 

features such as slots, holes, curvatures or curved edges etc. As a consequence, 

functional data analysis based measured CoP data decomposition can play a crucial 

role in sheet metal parts shape error decomposition and analysis. This thesis attempts 
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to develop a generic functional data analysis approach named Geometric Modal 

Analysis (GMA) to decompose measured part shape error into shape error modes. 

The proposed GMA methodology with industrial case application is reported in 

Chapter 4. The most relevant shape error decomposition methods available in 

literature are listed in Table 3.2 with the underlying principle and main limitations. 

Table 3.2 Major shape error decomposition approaches with applications and 

limitations 

Researchers Decomposition 

principle  

Applications Limitations 

Merkley (1998); 

Bihlmaier (1999); 

Tonks (2002) 

 

Geometric 

covariance with 

Legendre 

polynomials and 

frequency 

spectrum analysis 

Statistical 

tolerancing, 

assembly process 

simulation, 

tolerance 

allocation 

Decomposition of 1D 

profile or 2D surface 

but inadequate to 

decomposed 3D sheet 

metal part  

Huang and 

Ceglarek (2002); 

Huang et al. 

(2014) 

2D Discrete 

Cosine Transform 

(2D DCT)   

Quality 

monitoring, root 

cause diagnosis, 

and process 

capability study 

Decomposition of 2D 

rectangular part but 

insufficient for  

decomposing  3D 

sheet metal parts 

Samper and 

Formosa (2006); 

Ungemach and 

Mantwill (2008) 

Natural mode 

decomposition or 

buckling mode 

decomposition  

Geometric 

Tolerancing, 

assembly process 

simulation, 

variation analysis 

Decomposition of 3D 

part but limited 

accuracy due to 

nominal CAD based 

decomposition  

Proposed in this 

thesis 

Laplace 

interpolation of 

3D voxel space; 

decomposition 

using generalised 

3D DCT  

Statistical process 

control, design 

optimisation 

(fixture layout) 

Normal deviation 

assumption and ideal 

for global shape errors 
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3.3 RELATED WORK ON SHAPE VARIATION MODELLING OF 

COMPLIANT PARTS 

A batch of sheet metal parts or machined components, produced by forming process 

or machining process, contains numerous shape errors. The shape variation can be 

defined as aggregation of all shape error modes with their magnitude associated with 

a batch of parts which in principle represents the production shape variation. These 

shape variations are mainly results of process parameters variation, tool wear or 

spring-back in case of sheet metal stamping process (de Souza and Rolfe, 2008). 

Therefore, modelling and prediction of shape errors associated with individual non-

ideal part is not sufficient to meet industrial needs which emphasises to model and 

quantify the shape variation engraved within a batch of parts. Assembly system 

modelling which takes into consideration only one ideal or real compliant part does 

not represent the real scenario of production shape variation associated with 

production batch. Further, as production yield purely depends on the real production 

parts, part shape error model fails to depict the real shape variation of production 

parts and is not adequate for assembly system modelling. Therefore, efficient 

approach is required to model and quantify the shape variation of production batch.  

As mentioned in Section 3.2, the shape error modelling approaches are categorised 

into shape error representation and shape error decomposition. Current shape error 

representation approaches represent the shape errors through reverse engineering for 

individual part (Gupta and Turner, 1993; Raffin et al., 2000; Stoll et al., 2006; 

Franciosa et al., 2011; Liang et al., 2012). These shape error representation 

approaches either limited to reconstruct the shape errors accurately or they are 

unable to control 3D part geometries, such as sheet metal part, as they are driven by 

few control points to deform the whole part surface. Therefore, current shape error 
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representation approaches do not have capability to be extended for modelling and 

quantification of shape variation for compliant parts of production batch.  

On the other hand, shape error decomposition approaches have the potential to be 

extended for modelling and quantification of shape variation as the shape error 

decomposition extracts orthogonal shape error modes from the measured shape 

errors. These shape error modes can adapt varying modal magnitudes to fit measured 

shape errors associated with a batch of parts. Therefore, shape error decomposition 

provides a platform to obtain parametric shape error modes which can be used as 

building block for shape variation modelling. Therefore, shape error decomposition 

approaches have the potential to represent production shape variation. As mentioned 

Section 3.2.2, the shape error decomposition approaches can be classified into main 

two categories based on the types of data used for decomposition: (i) decomposition 

based on nominal CAD data; and, (ii) decomposition based on measured CoP data. A 

limited number of research works has been reported in literature addressing shape 

variation under the aforementioned two decomposition categories. Further, shape 

variation modelling involves two aspects: (i) virtual generation of shape variation, 

i.e. virtual representation of production part instances; and, (ii) quantification of 

shape variation, i.e. aggregation of the major shape error modes present within a 

batch of compliant parts. To address these two aspects of shape variation modelling, 

it is found that present research reported in literature is mainly focusing on virtual 

generation of production parts and no method can be found to address the 

quantification of shape variation. Subsequently, based on the decomposition 

category and shape variation modelling aspects, the reported methodologies are 

listed in Table 3.3 with the identified research gap.  
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Table 3.3 Literature review of shape variation modelling approaches with identified 

research gap 

 Nominal data 

Decomposition  

(CAD-based) 

Measured Data 

Decomposition  

(CoP-based) 

S
h
ap

e 
v
ar

ia
ti

o
n
 

m
o
d
el

li
n
g

 

Virtual generation 

of shape variation 
Samper et al. (2009) 

Camelio et al. (2004b) 

Huang et al. (2014) 

Proposed in this 

thesis 

Quantification of 

shape variation 
 

Proposed in this 

thesis 

 

The following section describes the available methodologies in details under the 

decomposition category with their efforts to address the two aspects of shape 

variation modelling (as per Table 3.3):  

(i) Decomposition based on nominal CAD data: The natural mode 

decomposition approach proposed by Samper and Formosa (2006) for a 

single part has been extended to shape variation model of batch of parts 

(Samper et al., 2009). Samper et al. (2009) represent shape variation 

through identifying the modal parameters with their mean and standard 

deviation. The method assumes the normal distribution of the modal 

parameters and can be used for virtual generation of variational parts (i.e. 

representation of production part instances) using the estimated mean and 

standard deviation from the measurement data. For complex fabrication 

process, such as sheet metal stamping, normality assumption is far too 

simplified and not necessarily true that the process will follow normal 

distribution. Especially, sheet metal stamping exhibits variance shift or 

mean shift behaviour for within batch or batch-to-batch production where 
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normality assumption of shape error modes is not valid. Further, virtual 

generation of variational parts is not sufficient to quantify the shape 

variation. Therefore, an efficient shape variation model is required which 

can overcome the normal distribution assumption and also quantifies the 

production shape variation.  

(ii) Decomposition based on measured CoP data: Currently, parts shape 

variation modelling approaches based on measured CoP data decomposition 

reported in literature are (a) geometric covariance decomposition based on 

Principal Component Analysis (PCA); and (b) Statistical Modal Analysis 

(SMA) based on 2D Discrete Cosine Transform (2D DCT). The first 

approach, geometric covariance decomposition has been developed by 

Camelio (Camelio, 2002; Camelio et al., 2004b) to model the assembly 

variation propagation with compliant parts. They extended Merkley’s work 

(Merkley, 1998) on geometric covariance combined with Principal 

Component Analysis (PCA) to estimate the effect of parts shape variation at 

assembly level using Finite Element Analysis (FEA). To extract the main 

shape error modes from the measurement data, PCA decomposition has 

been used to decompose geometric covariance of parts into individual 

contributions of these shape error modes. However, PCA based 

decomposition is not suitable for shape error characterisation as it is 

incapable for detection of process shift in primary data set or presence of 

different shape errors in the data (Matuszyk et al., 2010). As real process of 

part stamping clearly exhibit mean shift or variance shift of shape errors for 

within batch production and batch-to-batch production, PCA based shape 

variation is not suitable. As a consequence, the measured part errors need to 
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be decomposed independently to provide more accurate estimation of 

underlying shape errors. To decompose the shape errors into independent 

shape error modes, Huang and Ceglarek (2002) and Huang et al. (2014) 

develop the second approach named statistical modal analysis which is 

based on 2D Discrete Cosine Transform (2D DCT). The SMA method is 

mainly limited to 2D part and measurement data points are placed in regular 

rectangular grid. On the contrary, sheet metal parts used for automotive and 

aerospace body are 3D parts in nature. Therefore, SMA approach cannot be 

applied to model shape variation of 3D sheet metal parts.  

As evident from the abovementioned discussion, current shape variation modelling 

techniques have limitations which are: (i) normality assumption of shape error 

modes; (ii) shape errors decomposition into independent shape error modes; and (ii) 

virtual generation of variational parts which is not sufficient in the context of 

assembly process modelling that requires shape variation quantification model. 

Currently, there is no approach found in literature to model and quantify the shape 

variation of a batch of compliant parts. Therefore, functional data analysis based 

parametric approach is required where the decomposed shape error modes can be 

used as elementary building blocks, and further, these building blocks can be 

parameterised with their magnitude to model shape variation. To address the generic 

model requirement for shape variation, this thesis extends the part shape error 

modelling approach (GMA) to model shape variation of a batch of compliant parts 

by characterising the statistical nature of decomposed modes. Further, the normality 

assumption of decomposed modes has been eliminated by using data driven Kernel 

Density Estimation (KDE). The shape variation model can be further utilised for 

statistical tolerancing and assembly performance evaluation.     
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Till date, the shape variation modelling approaches are limited to variational virtual 

part generation by randomly selecting shape error modes from the distribution 

without quantifying the shape variation associated with production parts. Therefore, 

the following challenges are associated with shape variation modelling: 

(i) Virtual generation of shape variation: Accurate depiction of shape error 

modes is required based on measurement data to represent the real scenario 

of production parts. Further, the virtual generation of the variational parts 

will be representative of production parts. 

(ii) Quantification of shape variation: Shape variation quantification for 3D 

production parts in not a trivial task as it involves identification of major 

shape error modes from production batch and aggregation technique of the 

major shape error modes. All the major shape error modes coming from the 

production parts are to be considered in an effective way to represent the 

quantified shape variation.   

To address the aforementioned challenges, this thesis extends the previous functional 

data analysis approach Geometric Modal Analysis (developed in Chapter 4) to 

Statistical Geometric Modal Analysis (SGMA - proposed in Chapter 5) for 

modelling and characterisation of shape variation of a batch of compliant parts.  
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3.4 RELATED WORK ON SHAPE VARIATION MONITORING AND 

CONTROL OF COMPLIANT PARTS   

In the field of statistical process control, traditionally, the point-based CMM 

measurements are being used which consequently led to point-based statistical 

control charts (Montgomery, 2008). For example, 15-25 measurement points are 

used for inspecting a single automotive stamped door during production (Wells et 

al., 2012). Traditional SPC methods, such as �̅� chart, R chart, Cumulative Sum 

(CUSUM) and/or Exponential Weighted Moving Average (EWMA) are widely 

implemented in industry. However, these charts have limited capability to handle 

high dimensional CoP data and extract useful shape error related information from 

the data. Therefore, more proactive technique is required to monitor the shape 

variation related defects. However, developing a single or two control charts is not 

trivial since the entire part surface information to be monitored which is captured as 

a high volume of CoP. Further, the captured CoP data can be classified as non-

functional data as it cannot be used directly. To extract shape error information from 

the data, Ramsay and Silverman (2005) suggested functional data analysis based 

model development for non-functional data (e.g. CoP data).  

Currently, multivariate statistical process control chart uses as functional data 

analysis model either Principal Component Analysis (PCA) or Partial Least Squares 

(PLS) to remove high degree of redundancy in the measured data (such as CoP data) 

by defining a reduced set of statistically uncorrelated variables (Chen et al., 2004; 

Antory, 2007; Phaladiganon et al., 2013). The T
2
 and Q statistics are frequently used 

for multivariate statistical process control. Integrated T
2
-Q monitoring chart has 

enhanced incipient faults detection capability when dealing with multivariate process 

(Chen et al., 2004). It provides single control chart with improved sensitivity to 
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defects detection as compared to individual T
2
 or Q statistics. However, the PCA-

based T
2
-Q control chart is not capable of detecting process shift in primary data 

sets; or indicates different shape errors variance change as compared to real 

manufacturing processes. For example, PCA-based or PLS based T
2
-Q control charts 

present incorrect shape errors estimation for within-run production; or incorrect 

mean shift estimation for run-to-run production of stamped sheet metal parts. 

Similarly, classification or matching of shape-error faults (test images) to pre-

defined template images such as CAD models with GD&T requirements is critical to 

ensure product quality. PCA-based T
2
-Q control charts do not have the ability to 

distinguish between in-control process shift or variance change for shape 

measurement data which can be observed in real processes such as within-batch or 

batch-to-batch production (see case study Section 6.4). This is an important 

requirement when classifying parts based on the similar shape errors types or 

comparing image against template CAD. Therefore, the PCA based T
2
-Q control 

chart is not effective for part shape error characterisation. To overcome the identified 

challenges, this thesis proposes a new direction of obtaining reduced set of 

statistically uncorrelated and independent process variables by decomposing the data 

set within a single sample (GMA method – details in Chapter 4) instead of PCA- or 

PLS-based decomposition which is done across the samples as illustrated in Figure 

3.1. PCA- or PLS-based decomposition is done across the sample set to obtain the 

principal components (e.g. PC1, PC2, … PCn) explaining the variance within the data 

set and T
2
 statistic is determined based on the obtained principal components. On the 

contrary, functional data analysis based GMA method provides uncorrelated and 

independent modes (e.g. C1, C2, … Cp) by decomposing the correlated variables 

within a single sample and all samples are to be decomposed separately for 
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determining the T
2
 statistic. This emphasises the enhanced granularity of 

decomposition which then leads towards enhanced shape fault detectability.    

 

Figure 3.1 Current PCA- or PLS-based approaches vs. the proposed GMA-based 

decomposition approach 

Current multivariate statistical process control techniques based on functional data 

analysis models can be categorised into (i) point features based control charts; (ii) 

profile features based control charts; and (ii) surface features based control charts. 

To date, very few attempts have been made to develop monitoring techniques for 

part form defects as defined by GD&T: (a) profile errors, and/or (b) surface errors. A 

review of literature focusing on control charts to monitor point features, profile 

features and surface features is summarised in Table 3.4. It underscores lack of 

current methods for control charts to monitor part shape errors and identifies the 

research gap. 
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Table 3.4 Multivariate statistical process monitoring approaches and research gap 

for shape error related defects monitoring 

 
Multivariate Statistical Process Control  

F
u
n
ct

io
n
al

 D
at

a 
A

n
al

y
si

s 
b
as

ed
 C

o
n

tr
o
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C
h
ar

ts
 Point Monitoring and Control 

Kourti and MacGregor (1995) 

Chen et al. (2004) 

Antory (2007) 

Phaladiganon et al. (2013) 

Profile Monitoring and 

Control 

Jin and Shi (2001) 

Woodall et al. (2004) 

Woodall (2007) 

Colosimo et al. (2010) 

Huang et al. (2014) 

Surface 

Monitoring 

and Control 

Localised 

Errors 

Acciani et al. (2006) 

Du-Ming and Jie-Yu (2011) 

Du-Ming et al. (2012) 

Wang (2011) 

Shape Errors Proposed in this thesis 

 

The most popular control charts are to monitor point features. For example, the most 

popular are univariate control charts of point features monitoring which are also 

extended to multivariate control chart (Montgomery, 2008). Further, control charts 

based on variations, functional data analysis approaches such as PCA, PLS have 

been developed for multivariate data obtained from point feature measurement 

(Kourti and MacGregor, 1995; Phaladiganon et al., 2013; Chen et al., 2004). 

Woodall et al. (2004) stated that little research has been done in the statistical 

monitoring of process or product profiles with control charts. Some of the methods 

developed for profile monitoring are based on Haar wavelet transform (Jin and Shi, 

2001), Spatial Autoregressive Regression (SARX) model (Colosimo et al., 2010), 
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PCA for profile data (Colosimo and Pacella, 2007) or quantile–quantile (Q–Q) plot 

(Wang and Tsung, 2005; Wells et al., 2013a). However, profile monitoring 

techniques do not reveal all types of errors within a part as it is needed for surface or 

shape features (Woodall, 2007). 

Part surface defects can be categorised into (i) localised errors, such as scratches, 

cracks, or wear (Du-Ming and Jie-Yu, 2011); and, (ii) shape errors such as part 

bending, twisting, or more complex shape defects such as complex form defects. 

Few functional data analysis based control chart techniques have been reported for 

localised errors detection in electronics assembly. Some of the methods developed 

for localised errors based surface monitoring and defects detection are based on 

mean shift technique (Du-Ming and Jie-Yu, 2011), wavelet transform of captured 

images (Acciani et al., 2006), similarity measure (Du-Ming et al., 2012), or PCA / 

PLS (Wang, 2011). These methods are mainly focused on localised surface defects 

detection and are not suitable for shape error detection. The challenges for shape 

error related defects detection and monitoring can be classified into three categories: 

(i) freeform shaped part geometry based shape errors are needed to be parameterised, 

(ii) efficient functional data model is required (bridged with CAD model) to emulate 

real part, and (iii) extracting most significant shape error modes (can be used as 

parameters) which can facilitate quality monitoring. Current approaches of shape 

error parameterisation are either inaccurate (Samper and Formosa, 2006) or not 

applicable to 3D sheet metal part (Huang et al., 2014). Therefore, they cannot be 

used as functional model for shape error monitoring. To overcome these challenges, 

this thesis proposes a functional data analysis approach, named Geometric Modal 

Analysis (GMA), to quantify the shape errors within 3D sheet metal part. It 

decomposes the full spectrum of errors into main significant patterns.  
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In this thesis, GMA-based functional data analysis approach has been used to 

determine multivariate T
2 

statistic. The measurement uncertainties in data are kept in 

Q statistic to improve the detectability of the control chart. Combining T
2
 for the 

GMA modelled data and Q statistic for residual data (un-modelled) provides a 

bivariate scatter plot which is easier to monitor and also increases the sensitivity of 

the control chart towards fault detection than the individual T
2
 and Q monitoring 

statistics. Integrated T
2
-Q monitoring chart has enhanced incipient faults detection 

capability when dealing with multivariate process (Chen et al., 2004). Further, as the 

measurement data of 3D shapes are non-normal, the shape monitoring chart is based 

on the joint probability density estimation of the integrated two statistics using non-

parametric Kernel Density Estimator (KDE) which has enhanced sensitivity to detect 

part defects. The GMA-based integrated T
2
-Q bivariate monitoring chart is proposed 

for statistical process monitoring of non-linear shapes (proposed in Chapter 6).   
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3.5 RELATED WORK ON ASSEMBLY FIXTURE LAYOUT 

OPTIMISATION CONSIDERING PRODUCTION BATCH 

Jigs and fixtures are used to hold the parts to be assembled at correct position and 

orientation during the assembly/joining operation. The primary objective of any 

fixture is to satisfy dimensional quality requirements of the product by locating, 

supporting and providing the suitable orientation of the parts which are mainly 

restraining the rigid body motion. However, only restraining the rigid body motions 

is not sufficient when dealing with compliant sheet metal parts as shape variation 

needs to be taken into consideration to get to obtain uniform quality during assembly 

operation. To mitigate and reduce the shape variation in assembled product, proper 

fixture layout optimisation is a necessary step. For example, current emerging 

joining process like RLW requires to satisfy the requirements of tight Key Product 

Characteristics (KPCs are the quality indicators, such as part-to part gap) control. 

Failing to meet the requirement, it results in unsatisfactory weld quality. Therefore, 

to meet the part-to-part gap requirement, fixture layout optimisation is necessary as 

one of the fixture elements, i.e. clamps, control the KPCs requirement. Therefore, 

fixture plays a significant role to achieve desired dimensional and joining qualities 

(KPCs) of assembled product where fixture design parameters act as Key Control 

Characteristics (KCCs are the control parameters to satisfy the product quality, such 

as clamps, locators, support blocks). On the other hand, production quality depends 

on production parts which refer to shape variation reduction through fixture layout 

optimisation. To mitigate the quality deterioration due to shape variation of 

compliant sheet metal assembly, fixture must be modelled and optimised with shape 

variation considering production parts. 
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Several works have been reported in the field of assembly fixture design which can 

be classified into two categories based on the types of error considered during 

assembly: (a) individual part shape error based assembly – only single part instance 

(i.e. part shape error) has been considered during fixture design and optimisation; 

and, (ii) batch of parts shape variation based assembly – where the shape variation of 

the production parts has been considered during fixture design and optimisation. To 

address the shape error or shape variation of compliant sheet metal parts, researchers 

have mainly used ‘N-2-1’ locating scheme rather ‘3-2-1’ for better product quality.  

State-of-the-art approaches available in literature for fixture layout optimisation 

considering error types are listed in Table 3.5 which exhibits the research gap this 

thesis focused on.  

Table 3.5 Literature review of fixture layout optimisation approaches with identified 

research gap   

 
Fixturing  Scheme 

‘3-2-1’ Fixture ‘N-2-1’ Fixture 

Individual part shape 

error based assembly 

Rearick et al. (1993); 

Ceglarek (1998); 

Li et al. (2008c)  

Cai et al. (1996); 

Li et al. (2001); 

Camelio et al. (2004a); 

 Cai (2008);  

Li et al. (2008a); 

Yu et al. (2008);   

Li et al. (2010) ;  

Franciosa et al. (2011) 

Batch of parts shape 

variation based 

assembly 

 

- 
Proposed in this thesis 
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The well-known locating principle ‘3-2-1’ is widely used in industries to locate rigid 

body parts without creating locator interferences (Lowell, 1982; Shirinzadeh, 2002). 

Fixture analysis for sheet metal part first proposed by Youcef-Toumi et al. (1988) 

where they used a single sheet metal plate for drilling operations in order to 

minimise deflection in the part. The fixture locations determination work has been 

extended to compliant sheet metal parts by Rearick et al. (1993) where they 

proposed a technique combining the nonlinear programming and finite element 

analysis for determining the best fixture locations. In case of flexible part assembly, 

Ceglarek (1998) mentioned a systematic method of flexible/adaptive assembly 

system evaluation, based on its ability to compensate for part dimensional variability 

caused by assembly process. Further, Li et al. (2008c) proposed integrated layout 

design for a 3-2-1 fixture scheme used in sheet metal assembly to reduce variation 

cost efficiently. Though 3-2-1 fixturing scheme is less complicated and easy to 

manufacture, unfortunately, this type of fixture is not able to mitigate the risk 

associated with the shape variation of compliant parts. Therefore, for compliant sheet 

metal joining process, 3-2-1 fixturing is not sufficient which emphasise on more 

locator in primary datum plane. Compliant parts like sheet metal parts cannot be 

controlled through ‘3-2-1’ scheme which require larger number of locators to ‘N-2-

1’ to minimise geometric deviation (N>3).  

For compliant part fixturing, Cai et al. (1996) proposed ‘N-2-1’ locating principle 

which allows to prevent excessive deformation of sheet metal parts and they 

developed an optimal fixture design method, which can reconfigure the N locators on 

the primary datum to minimize total part deformation. Lee et al. (1999) also 

mentioned that ‘3-2-1’ fixture mainly used to restrained 6 degree of freedom of a 

rigid part which is not sufficiently valid for a large stamped part due to its own 
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weight or welding forces. Therefore, they Lee et al. (1999) presented a system for 

fixture design for ‘N-2-1’ scheme to hold large flexible workpiece to minimise 

geometric deformation. For sheet metal assembly process, the error budgeting can be 

classified in three different categories, part error variation, fixture error variation and 

joining process variation (Liu and Hu, 1997; Rong et al., 1999; Camelio et al., 

2004a). Camelio et al. (2004a) presented a new fixture design methodology for sheet 

metal assembly process focusing on the impact of fixture position on the 

dimensional quality of sheet metal parts after assembly considering the effect of part 

variation, tooling variation and assembly spring-back. A number of research articles 

focuses on the assembly joining process modelling considering resistance spot 

welding as joining process and parts are modelled as individual part errors (Cai, 

2008; Li et al., 2008a; Li et al., 2010; Li et al., 2008b). 

In case of laser welding, fixture plays a vital role by providing the degree of metal 

fit-up required for joining the mating parts together. Li et al. (2001) proposed a 

predictive and corrective fixture design methodology incorporated with finite 

element analysis for laser welding where the objective function is to minimise the 

degree of Metal Fit-up (DMF as maximum distance between mating nodes) in weld 

joints. Several issues related to part fit-up are mentioned in literature where the part 

error is higher than the joining process requirement by laser and showed that ‘N-2-1’ 

locating scheme is required to meet the joint quality criteria (Li and Shiu, 2001; Li et 

al., 2002b; Li et al., 2002a; Li et al., 2003). These existing methods for fixture 

layout optimisation are mainly based on individual ideal/non-ideal compliant 

assembly which are not sufficient to mitigate the shape variation associated with 

batch of assemblies. For example, one of the new emerging joining process Remote 

Laser Welding (RLW) specifically required very tight control of part-to-part gap of 
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the joining surfaces (Ceglarek, 2011). Failure to meet the part-to-part gap 

requirement, RLW results in welding defects, such as under-cut, porous weld, poor 

finishing and corrosion prone. As a consequence, a robust fixture layout optimisation 

methodology is required considering batch of parts for making the output results 

insensitive to shape variation and improving the product and process performance.  

This thesis is to develop a novel robust methodology for fixture layout optimisation 

(proposed in Chapter 7) by addressing shape variation which has been modelled and 

quantified by using Statistical Geometric Modal Analysis (SGMA – also developed 

in this thesis - Chapter 5) method.  

3.6 SUMMARY 

The literature review and discussions reported in this chapter show the limitations of 

currently available state-of-art approaches and methodologies to meet the industrial 

needs for ‘Shape Variation Modelling, Analysis and Statistical Control’ in the 

context of assembly system modelling with compliant parts. Current modelling and 

simulation requirements for shape variation modelling, analysis and statistical 

control can be enumerated into two enabling models as (i) modelling and 

characterisation of shape error of  compliant sheet metal part; and, (ii)  modelling 

and characterisation of shape variation of a batch of compliant sheet metal parts. 

Subsequently, shape variation monitoring by using statistical process control and 

shape variation reduction at process design have been identified as two important 

applications in the context of assembly system quality improvement.  

This chapter reviews the literature for shape variation modelling, analysis and 

statistical control requirements. Further, this chapter reports the research gaps as 

follows:  
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(i) Modelling and characterisation of shape error of compliant sheet metal part: 

There is a lack of modelling approach for shape error modelling of 3D 

compliant sheet metal part. The shape error modelling of compliant part can 

be broadly classified into two categories: (i) shape error representation; and, 

(ii) shape error decomposition. As shape error representation is not suitable 

for generic functional data analysis based shape error model development, 

shape error decomposition approaches have been identified as appropriate. 

However, current shape error decomposition methodologies are either 

suffering from accuracy as compared with measured part or limited to 2D 

applications. Therefore, a 3D part shape error decomposition methodology is 

required which can decompose the measured shape errors into shape error 

modes. To address this research gap, this thesis proposes a functional data 

analysis model, named Geometric Modal Analysis (GMA), to model and 

analyse the shape error of compliant part (proposed in Chapter 4).  

(ii) Modelling and characterisation of shape variation of a batch of compliant 

sheet metal parts: Current shape variation modelling approaches are 

simplified either with the normality assumption of decomposed shape error 

modes or limited to virtual generation of variational part instances. There is 

no approach found in literature to quantify the shape variation of a batch of 

compliant parts. To overcome the limitation on normality assumption and 

quantify the shape variation of a batch of compliant sheet metal parts, 

Chapter 5 develops Statistical Geometric Modal Analysis (SGMA) model as 

an extension of GMA model.      

(iii) Shape variation monitoring and control to detect shape errors related 

defects: Current non-contact metrology scanners can capture entire surface 
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information in terms of high density CoP data which has potential to be used 

for shape variation monitoring and defects detection. Current statistical 

process control techniques can be classified into (i) point monitoring and 

control; (ii) profile monitoring and control; and, (iii) surface monitoring and 

control. The available techniques for surface monitoring and control are 

mainly focused on localised errors, such as scratches, cracks, or wear which 

neglects the global shape errors such as part bending, twisting, mean shift or 

variance change. To address the requirements of shape monitoring, Chapter 6 

develops GMA-based integrated bivariate T
2
-Q monitoring chart where T

2
 

statistic is based on the GMA modelled reduced variable set and Q statistic is 

determined based on residual data.    

(iv) Assembly fixture layout optimisation considering production shape variation: 

There are many reported work in literature to develop assembly fixture 

considering compliant nature of sheet metal parts which are mainly based on 

either ideal part or individual part shape error based assembly. The literature 

survey identifies the research gap as lack of efficient simulation and 

optimisation approach to obtain an optimised N-2-1 fixture layout 

considering a batch of non-ideal sheet metal parts. Chapter 7 develops an 

assembly fixture layout optimisation methodology considering the shape 

variation (quantified using SGMA method) coming from the production 

batch.      
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 SHAPE ERROR MODELLING OF CHAPTER 4

COMPLIANT PART   

4.1 INTRODUCTION 

Prediction and modelling of shape error of compliant sheet metal parts are crucial for 

ensuring quality in assembly process. Sheet metal parts with freeform geometry and 

their assemblies play a dominant role for building car bodies, aerospace body parts 

and home appliances. Therefore, efficient modelling and analysis of shape error are 

crucial quality elements in compliant sheet metal assemblies. The shape error of the 

sheet metal part heavily influences the final quality of the assembly. Efficient control 

and reduction of shape error are important not only for increasing performance and 

functionality, but also for manufacturability and ease of assembly (Ceglarek and Shi, 

1995; Shi and Ceglarek, 1996). Subsequently, to ensure quality in assembly process, 

shape error must be simulated to predict their impact on manufacturability and 

assembly performance. Therefore, there is need of modelling shape error of 

compliant sheet metal parts.  

Further, strict quality requirements by Geometric Dimensioning and Tolerancing 

(GD&T) must also be fulfilled for 3D freeform shaped parts, such as sheet metal 

parts used for automotive and aerospace body parts. To facilitate one of the critical 

requirements of GD&T, freeform shape errors must be extracted from measured part 

data to simulate geometric tolerance requirements. Further, the 3D metrology 

sensors, such as 3D laser scanners or 3D white-light scanners represent part data by 

high dimensional Cloud-of-Points (CoP) which can be categorized as non-functional 
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data as it cannot be used directly for GD&T simulation. To extract useful 

information from the data, Ramsay and Silverman (2005) suggested functional 

model development for non-functional data (e.g. CoP data). This requirements lead 

to functional data analysis model development which can identify and characterise 

shape error of single 3D freeform shaped part. Additionally, the current advancement 

of surface based 3D metrology scanners emphasise on added requirements to 

functional data analysis model which can be used for (i) statistical process control to 

detect shape defects using CoP data (as current applications of 3D scanners are 

limited to quality inspection and reverse engineering (Son et al., 2002), and (ii) 

efficient access and compact storage of real 3D parts shape information (as CoP data 

required high volume storage space for production parts) for future design 

requirements. 

Currently, Computer-Aided Design (CAD) model represents the ideal/nominal part 

which does not take into account real part shape error. On the contrary, fabricated or 

manufactured part is inherently consisting of shape error. There is tremendous need 

for modelling and prediction of shape error of real part for many industrial 

applications. However, developing a unified shape error model that can link design 

(CAD model) with manufacturing (shape error) remains an obstacle due to major 

challenges involving part shape modelling. These challenges can be classified into 

three categories: (i) identification and characterisation of 3D freeform shaped real 

part shape error, (ii) functional data model (bridged with CAD model) to emulate 

real part, and (iii) extracting most significant shape error modes which can facilitate 

quality improvement during design and manufacturing. 

The aforementioned challenges emphasise the development of a universal functional 

model to express shape error in a coherent manner by integrating design features 
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(ideal shape information) with manufacturing variability (real shape information). 

The proper understanding of shape error information engraved on a fabricated part 

(real part) is necessary to facilitate process improvement at design and 

manufacturing phases. The problem of shape error is especially unavoidable for 

various assembly applications involve compliant parts (Das et al., 2014; Jing et al., 

2010; Franciosa et al., 2014). For example, one of the emerging joining techniques, 

Remote Laser Welding (RLW) requires maintaining very tight control of part-to-part 

gaps and the inability to meet this requirement can result in non-conforming joints. 

Part shape error contributes significantly to part-to-part gap control. Therefore, shape 

error modelling is an unavoidable prerequisite to support the aforesaid critical tasks. 

As a consequence, a unified shape error model is required for efficient part 

management by quantifying the shape error through functional data analysis. One 

way to build a unified functional model is shape error decomposition from measured 

CoP data. However, shape error decomposition of 3D freeform shaped part is not 

trivial as it involves  

(i) Transforming the 3D irregular freeform shape (such as 3D sheet metal parts 

with complex geometries, curvatures, holes and slots) to uniform 3D volumes 

structure to facilitate shape error decomposition into orthogonal shape error 

modes,  

(ii) Truncation and selection of most significant shape error modes with 

engineering importance and GD&T relevance, and  

(iii) Accurately emulate real part shape error with fewer modes such that the 

developed shape error decomposition model remains compact and tractable.  

This chapter presents a novel and efficient functional data analysis approach named 

Geometric Modal Analysis (GMA), aiming to extract dominant shape error modes 
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from the fabricated part measurement data. GMA addresses the aforesaid challenges 

by proposing the following steps: 

(i) To facilitate shape error modelling of 3D freeform shaped object (e.g. sheet 

metal part), the 3D object is enveloped in 3D volume with Laplace 

interpolation for uniform smooth voxel structure, and then, shape error field 

is decomposed into shape error modes by using 3D Discrete Cosine 

Transform (3D DCT); 

(ii) To identify the significant shape error modes, mode truncation criteria have 

been introduced based on energy compaction and correlation criteria; and 

(iii) To emulate real part more accurately with less number of modes, mode 

magnitude correction criteria have been proposed.  

The proposed GMA model decomposes the engraved shape error into significant 

shape error modes to identify and characterise real part shape error. Due to 

orthogonal nature of the decomposed shape error modes, they are independent to 

each other which pose added advantage for statistical control or process design with 

compliant parts. Further, they can be used as parameters to link nominal data with 

manufacturing / fabrication process parameters to identify the correlation among 

them. Industrial case studies are conducted to demonstrate shape error 

decomposition of sheet metal part produced by stamping process and the obtained 

decomposition result has been compared with state-of-the-art methodologies 

available in literature.  

In the next section 4.2 highlights the limitations of available shape error 

decomposition methods in literature. Section 4.3 describes the proposed GMA 

methodology through fundamental ideas of orthogonal decomposition of shape error; 
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and shape error modelling by taking into account only the dominant error modes. 

Section 4.4 describes the applicability of the proposed GMA method through 

industrial cases and compares the result with other available methods from literature, 

such as SMA decomposition or natural mode decomposition. Further, Section 4.5 

summarises the chapter. 

4.2 LIMITATIONS OF CURRENT DECOMPOSITION APPROACHES 

The related literature and limitations of the available approaches to address shape 

error modelling are described in Section 3.2 with identified research gap. However, 

the most relevant state-of-the-art functional models available in literature are (i) 

Statistical Modal Analysis (SMA) (Huang and Ceglarek, 2002; Huang et al., 2014) 

based on measured CoP data decomposition, and (ii) Natural Mode Decomposition 

(Samper and Formosa, 2006) based on nominal CAD data decomposition.  

The functional model Statistical Modal Analysis (SMA) (Huang and Ceglarek, 2002; 

Huang et al., 2014) has several limitations. A comparison between SMA model and 

proposed GMA model is summarized in Table 4.1. To overcome the limitations 

posed by the SMA model and expand the applicability to model 3D freeform shaped 

part, the present study proposes a novel functional data analysis based shape error 

decomposition method relying on part measurement data. Generalized 3D DCT is 

used as underlying decomposition principle to model the part shape error and 

identify the most significant shape error modes using mode truncation and mode 

magnitude correction criteria. 3D freeform shaped compliant part can be modelled 

using the proposed approach where most significant modes are used to predict and 

quantify the shape error of the part.  
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Further, comparison with Natural Mode Decomposition method is reported in details 

at Section 4.4.2.2 industrial case study where it compares the surface reconstruction 

using both Geometric Modal Analysis and Natural Mode Decomposition approaches.  

Table 4.1 Comparison of SMA method and proposed GMA method 

 SMA method (Huang and 

Ceglarek, 2002; Huang et al., 

2014) 

Proposed GMA method  

Problem 

Formulation 

 The shape error space is 

defined in two dimensional 

space (2D space) 

 The shape error fields are 

studied in equally spaced 

rectangular grid  

 The shape error space is 

defined in three dimensional 

space (3D space) 

 The shape error fields can be 

estimated in irregular 

sampled points  

Error 

Estimation 

 Shape error is considered as a 

function of height of the 

sampled data points, i.e. 

deviation = f(x,y) defined in 

2D domain 

 Shape error is studied as a 

function of normal deviation 

of irregular sampled data 

points, i.e deviation = f 

(x,y,z) defined in  3D domain 

Applicability  Limited to sampled error 

space in 2D domain  

 Any irregularities in the 

rectangular grid will create  

unnecessary fitting models 

and main shape error modes 

are not distinguishable   

 Modes are greatly affected by 

the features like holes, slots 

 Extended to model freeform 

part in 3D domain  

 Irregularities are taken care 

by Laplace interpolation to 

keep the main shape error 

modes unaffected 

 Part features are taken care of 

and modes remain unaltered 

 

Further, current 3D DCT cannot be applied directly to decomposed shape error of 3D 

freeform shaped part. The proposed GMA method introduces voxelisation and 
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Laplace interpolation to enable 3D DCT decomposition on the measured CoP data 

which is discussed in detail in the methodology section. At present, the application 

of 3D DCT is limited to image and video compression among the image processing 

communities. However, few applications can be found in 3D image data processing 

and face recognition. These applications can rather be classified as 2.5D DCT where 

time axis has been added with 2D DCT approach, e.g. in case of video compression, 

2D images are stacked up to make video structure. Further, for the case of face 

recognition, 2.5D data application is well established where 2.5D is a simplified 3D 

(x, y, z) surface representation that contains at most one depth value (z direction) for 

every point in the (x, y) plane (Lu et al., 2006; Gökberk et al., 2009). Therefore, a 

unique projection along the z axis provides a unique depth image, sometimes called a 

range image, which can then be used to extract features by various researchers 

(Ekenel et al., 2007; Günlü and Bilge, 2010). Table 4.2 illustrates the applications of 

2.5D DCT and the proposed application in the field of shape error characterisation. 

Table 4.2 Diversified application of 2.5D DCT vs. proposed GMA (based on 3D 

DCT) application 

Applications in literature Proposed application 

2.5D DCT applied mainly in the 

following domain 

 Image compression (Ploix and 

Vigouroux, 1999; Manjón et 

al., 2012)  

 Video compression (Lee et al., 

1997; Božinović and Konrad, 

2005) 

 Face recognition (Günlü and 

Bilge, 2010) 

Decomposition of part shape error of 

3D freeform shaped geometry to 

address shape error modelling 

requirements of compliant sheet 

metal part for various applications, 

such as statistical process control, 

process design, and root cause 

identification based assembly 

process diagnosis.  
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4.3 GEOMETRIC MODAL ANALYSIS (GMA) METHODOLOGY  

The present work focuses on the development of a functional data analysis model 

which will represent the part shape error and quantify the shape error. A part is 

composed of nominal features (represents design features - CAD) and deviation from 

the nominal (shape error) introduced during the part fabrication process. The 

proposed GMA method is an extension of the SMA method by Huang et al. (2014) 

where the limitations of SMA method have been eliminated and 3D freeform shaped 

part can be modelled. Two hypotheses are introduced to simplify the modelling 

process: 

(i) Smoothness assumption: shape error field signal has sufficient smoothness such 

that the high spatial frequency components (short wavelength error such as surface 

roughness and waviness) are small and can be ignored. This assumption implies that 

shape error is highly spatially correlated. 

(ii) Normal deviation assumption: the shape errors of a real part surface can be 

represented as a normal deviation function f(x,y,z) defined in 3D domain. Normal 

deviation calculation has limitation around the curved features. Figure 4.1 illustrates 

the normal deviation calculation from nominal features to CoP. The deviations 

calculated in the flat region are providing accurate result but, in case of curved 

regions, the matching points are away from the normal deviation. Near the curved 

region at point 1, the normal deviation calculation does not match with the actual 

direction of deviation. 

The shape error field is defined as the differences between the actual surfaces and 

nominal surfaces: f(x,y,z) = Factual – Fnominal , where, Fnominal = Fn (x,y,z) denotes the 

nominal position of the data point and Factual = Fa (x,y,z) denotes the actual position 
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of the data point. Shape error from a part population is defined as a random field 

process. The GMA methodology has been developed based on 3D DCT to model the 

random nature of the shape error. In general, part shape error field is sampled as 

discrete space signals. The sampled error data set f(x,y,z) = f (l∆x, m∆y, n∆z) where, 

l, n and m represents the sample size of the in three dimensional axes. In general, for 

three-dimensional signal (sampled data), with number of sample points equals to N
3
 

(or L×M×N, if L≠M≠N), the forward and inverse transforms (models generation and 

reconstruction, respectively) are given as follows: 

     

     

1 1 1

0 0 0

1 1 1

0 0 0

, , , , , , , , ,  forward transform

, , , , , , , , ,  inverse transform

L M N

x y z

L M N

x y z

T u v w f x y z g x y z u v w

f x y z T u v w h x y z u v w

  

  

  

  


  



 





 (4.1) 

where, T(u,v,w) are independent transformation parameters representing contribution 

of the shape error modes with space frequency of u, v and w are in three axes x, y and 

z respectively. The g(x,y,z,u,v,w) and h(x,y,z,u,v,w) are called the forward and inverse 

transformation kernels. 

 

Figure 4.1 Normal deviation calculations from nominal features to CoP 
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The GMA method comprises of three major steps: (i) Data pre-processing which 

includes generation of mesh model from nominal CAD model and measured part 

data (CoP) post-processing to obtain shape error, (ii) GMA decomposition which 

involves voxelisation of mesh model, Laplace interpolation, and 3D DCT 

decomposition, and (iii) GMA mode identification which involves mode selection 

criteria and mode magnitude correction to achieve desired model accuracy. The 

overview of the proposed GMA method is depicted in Figure 4.2. 

 

Figure 4.2 Overview of GMA based shape error decomposition methodology 
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4.3.1 Data Pre-processing 

The nominal features of the part (CAD model) are composed of B-spline or NURBS 

surfaces which are not sufficient to embed the freeform shape errors. However, the 

mesh model of the nominal features helps to easily integrate part shape errors with 

the nominal part which leads to several benefits, such as normal vector of the mesh 

nodes can be utilised to compute the shape error field. The part measurement data 

captured through 3D non-contact scanner in terms of CoP is used to calculate shape 

error (i.e. deviation at each mesh node). In this proposed method, alignment of CoP 

with nominal CAD model is highly significant for model accuracy. Let Nn be the 

number of mesh node and Dn is set of calculated deviation at Nn. Therefore, Dn 

represents the calculated shape error field. 

4.3.2 GMA-based Shape Error Decomposition 

The GMA decomposition involves three major steps: (i) Voxelisation of mesh nodes 

to envelope 3D freeform shaped part which creates non-uniform scattered voxel 

structure, (ii) Laplace interpolation to smooth the non-uniform scattered voxel 

structure, and (iii) 3D DCT decomposition to obtain the shape error modes. 

4.3.2.1 Voxelisation of Mesh Nodes 

The shape error field decomposition using 3D DCT can be applied on the uniform 

grid data. Therefore, 3D freeform shaped part cannot be used directly for 

decomposition rather discretising it into 3D uniform grid points. A structure 

containing scattered deviation has been achieved through voxelisation of mesh 

nodes. For this purpose, L × M × N voxel grid is used where each mesh node 

position of the nominal part is described as point coordinate,   
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   ,       1,2,3,...,k k
N x y z k n   (4.2) 

where, k represents the node number and  
k

x y z represents the Cartesian 

coordinates of a mesh node k .  

For constant mapping of mesh node coordinate to voxel space, a bounding box has 

been computed enveloping the part mesh model. The voxels containing the mesh 

nodes have been identified by linear mapping of the node coordinates to voxel space. 

All the voxel elements are identified which are containing the mesh nodes and 

calculated deviations at mesh nodes are allocated to the corresponding voxel 

elements. Relying on the chosen L × M × N voxel grid size, more than one mesh 

node may belong to same voxel in few cases and the allocated deviations of those 

voxels are computed as average of belonging node deviations. Therefore, shape error 

field in voxel space slightly differs from the original shape error field due to 

averaging. Optimal voxel grid size is chosen by minimising this difference. The 

basic voxelisation process has been depicted in Figure 4.3. 

 

Figure 4.3 Voxelisation process: (a) nominal mesh model and deviation calculation 

at mesh node, and (b) bounding box computation and voxel grid mapping (L×M×N) 
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4.3.2.2 Voxel Smoothing by Laplace Interpolation  

The nominal mesh nodes are enveloped with voxel grid to enable 3D DCT 

transformation on voxel structure. From the voxelisation process, it is evident that 

many voxel elements in the voxel grid do not contain mesh node deviation and 

remain as empty. This implies a non-continuous voxel deviation field, i.e. a non-

uniform scattered voxel structure. Since DCT attempts to fit a set of continuous 

cosine function to the given data field, as soon as non-continuities are detected, a 

large number of undesired fitting modes are generated. This result is no longer 

acceptable because the main shape error modes cannot be distinguished from the 

other undesired fitting modes. Therefore, in order to smooth the voxel model and 

make a continuous data field, a Laplacian smoothing is applied to assign meaningful 

value in the empty voxel elements keeping the original deviation as internal 

boundary constraints. 

In the voxel grid space of L × M × N, any voxel element deviation can be defined as 

f(i,j,k), where, i=[1,2,…L], j=[1,2,…M], and k=[1,2,…N]. To transform non-uniform 

scattered voxel structure into uniform smooth voxel structure, 3D Laplace 

interpolation has been employed. 3D Laplace interpolation equation (4.3) can be 

written as generic equation (4.4) to calculate deviation at each empty voxel element. 

2 2 2

2 2 2
0

f f f
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where, x , y  and z  represent the voxel element length in L, M and N voxel 

directions respectively. 

4.3.2.3 3D DCT Decomposition 

The 3D DCT transformation is applied on the Laplace interpolated voxel data (i.e. 

uniform smooth voxel structure) in order to decompose the shape error field into 

significant shape error modes. The 3D DCT decomposition is expressed as equation 

(4.5) where the transformed coefficients are decomposed shape error modes,   
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In the above equation (4.5), modes C(u,v,w) represent the 3D DCT coefficients 

which are class of orthogonal transformation. This transformation has high energy 

compaction property of the error signal which helps to store most of the error signal 

energy (in terms of information) of the error field using small number of significant 

transform coefficients or modes C(u,v,w) and u,v,w represent the modal position in 

voxel space.  

4.3.3 GMA Modes Identification 

It is important to include a few modes or transform coefficients in the model without 

losing much information on the shape error field to keep the shape error model 

tractable. However, the model should meet the desired accuracy of acceptable limit 

defined by the user. In order to keep dominant shape error modes which have 
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engineering importance and applicable to GD&T of sheet metal part, two criteria 

have been imposed which are mode truncation criteria and selected modes 

magnitude correction criteria.   

4.3.3.1 Modes Selection or Truncation Criteria 

To check mode significance, two criteria are proposed: (a) Energy compaction, and 

(b) Pearson’s Linear Correlation.  

(a) Energy Compaction Criterion (ECC) 

Simplified shape error field expression can be given as: 
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 (4.6) 

where, u = 0, 1, 2, ....L-1; v = 0, 1, 2, ....M-1; w = 0, 1, 2, ....N-1. 

A criterion can also be developed from Parseval’s theorem (energy preservation of 

DCT): 

 
1 1 1 1 1 1

2 2

0 0 0 0 0 0

( , , ) , ,
L M N L M N

u v w i j k

C u v w f i j k
     

     

   (4.7) 

The ratio of the energy in a selected number of significant modes to the total energy 

of the signal (sampled data) can be used to characterise the energy compaction of the 

model. To achieve a given energy compaction (threshold) of 0 ≤ E ≤ 100%, the most 

significant modes/coefficients should be included in a coefficient index set e such 

that: 
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The above truncation criterion is based on coefficients from sampled data of an 

individual part. The truncation is equivalent to selection of coefficients in case the 

magnitude of the coefficients is monotonically decaying. 

(b) Pearson’s Linear Correlation (PLC) 

All the energy compacted modes (e) are selected to evaluate correlation 

coefficients by comparing to original shape deviation, Dn. Each energy compacted 

coefficient has unique pattern of shape error distribution over the mesh node and the 

mesh node deviations corresponding to each coefficients are kept as

1 2 3[ . . ]
e enT T T T T  . The mesh node deviations corresponding to each 

coefficient are compared with original deviation to evaluate the coefficients with 

higher correlation, ρ, which are calculated as 

 
2 2

,

q n

q n

q

T D

cov T D


 
  (4.9) 

where,  eq  ,....3,2,1  the set of indices of the energy compacted modes. 

A threshold value, α, has been applied for further reduction in the number of modes. 

Only those modes are taken to model the shape error which have correlation 

coefficient higher than the given threshold, α. The truncated highly correlated modes 

are kept in the coefficients index set c (ρq>α). In case where E reaches 100% and α 

to 0, all the decomposed modes are included in the model.  

Higher energy compaction of a coefficient indicates the significance of this specific 

shape error mode which should be considered in the model. Therefore, the energy 
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compaction criterion should be used together with the Pearson’s linear correlation 

criteria simultaneously for coefficient selection (truncation). For an energy 

compaction E and given correlation threshold , the truncated shape error model 

must include the coefficients C(u,v,w),  where  is an index set in which all the 

indices of the intersection of e and c are included: 

e c    (4.10) 

where,  represents a set which includes those coefficients that are both energy and 

highly correlated. 

4.3.3.2 Modes Magnitude Correction 

The selected modes through the mode truncation criteria are mainly to recognise the 

main shape error modes which does not necessarily depict the correct magnitude 

associated with each mode. Therefore, as corrective measures, a least squares based 

mode magnitude correction method is proposed, and then, by applying 3D inverse-

DCT (3D IDCT) shape error field can be recovered.  

(a) Modes Weightage by Least squares 

To overcome the challenge associated with the magnitude of shape error field, least 

squares based mode magnitude correction has been employed to obtain proper 

weightage of the selected coefficients. The coefficients are selected from the 

coefficient index set, Ω which will satisfy the following least squares equation 







1q

qqn TwtD  
(4.11) 

where,  ,....3,2,1q  the number of selected coefficients, qwt weightage 

associated with each coefficient, and qT mesh node deviations associated with each 

coefficients. 
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(b) Error model using 3D IDCT 

Each truncated and magnitude corrected coefficient from set Ω is selected to 

represent the shape error model. 3D IDCT applied, as per equation (4.12) by 

reversing equation (4.5), on the selected set of truncated coefficients, Ω to recover 

the shape error deviation field. 
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 (4.12) 

The function  kjif ,,
~

 refers to the shape error field signals (deviation) which are 

generated by using the truncated and magnitude corrected coefficient set,  = 

( , , )C u v w . The inverse function has been applied to obtain voxel deviations which 

are applied to corresponding mesh nodes to model part shape errors with few modes.  

Therefore, by obtaining the magnitude corrected truncated coefficients and using 

(4.12), the recovered shape error field,  , ,f i j k  deviates from the original deviation 

field as 

 ( , , ) , , ( , , )f i j k f i j k i j k   (4.13) 

where, ( , , )i j k  is the residual term from the original shape error deviation to GMA 

modelled deviation. 

Aiming to understand better the methodological steps involving GMA technique, 

Figure 4.4 uses simple top hat part for explaining main GMA steps. The GMA data 

pre-processing involves nominal CAD geometry, CoP data measurement, alignment 

of CoP with CAD, mesh model representation of nominal CAD to map shape error 

comparing with CoP data as illustrated in Figure 4.4(a). Further, the pictorial 
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representation including the basic steps of GMA is shown in Figure 4.4(b). The 

actual representation by using top hat part is demonstrated Figure 4.4(c). It involves 

original deviation computation at mesh nodes, thereafter, voxelisation of nominal 

mesh nodes (voxel elements containing deviation data are represented as red 

elements and others are kept as empty voxels). In order to facilitate voxel structure 

smoothing, Laplace interpolation is applied on voxel structure to assign meaningful 

data to empty voxels (represented as green voxel elements). 3D DCT based 

decomposition is applied on Laplace interpolated voxel structure to obtain GMA 

decomposed shape error modes. Furthermore, modes selection criteria applied on 

shape error modes to keep most significant shape error modes and they are used to 

reconstruct the shape error related to top hat part as in Figure 4.4(c).      

 

Figure 4.4 GMA-based shape error modelling steps using top hat part: (a) data pre-

processing, (b) pictorial representation, and (c) actual representation  
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4.4 RESULTS OF GMA WITH INDUSTRIAL CASE STUDIES 

Results of the developed GMA method is illustrated with two industrial case studies, 

i.e. (i) Hinge reinforcement part, and (ii) Door inner panel (refer to Figure 4.5). Both 

parts are crucial in terms of shape error to achieve good quality in assembly. These 

case studies explain the capability of the GMA to model 3D freeform shaped part.  

 

Figure 4.5 Automotive door components hinge reinforcement and door inner panel 

as in assembly configuration 

4.4.1 GMA Based Mode Decomposition 

The GMA methodology has been applied to decompose shape errors of hinge 

reinforcement and door inner panel of automotive door. The hinge reinforcement is 

generally joined through Resistance Spot Welding (RSW) process with door inner to 

provide sufficient strength to hold the door with the main automotive body frame. It 

avoids deformation of the door inner panel during opening/closing of the door. The 

hinge reinforcement part has many features and curvatures on the part where the 

shape error belongs to several different normal directions. It proves that the 

developed GMA methodology can be used for 3D part and it enables modelling the 

Hinge Reinforcement

Door inner panel
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part as a whole. For example, if this assembly is to be remote laser welded, the gap 

or clearance between the two parts is required to be 0.3 mm, i.e., the gap between the 

hinge reinforcement (1.8 mm thick) and door inner panel (0.75 mm thick) should be 

within 0.3 mm to ensure satisfactory joining quality. Therefore, part shape error 

modelling is crucial to ensure the gap and quality of the welding.  

The captured CoP data is aligned with nominal CAD and deviations are calculated at 

nominal mesh nodes [nominal mesh model as represented in Figure 4.7(a)] to obtain 

the shape error field [as depicted in Figure 4.7(b)]. As per the voxelisation process, 

the mesh nodes and corresponding deviations are stored in the voxel structure with 

selected voxel grid size. The selection of voxel grid size has been made when Root 

Sum of Squares (RSS) error, between original calculated mesh node deviations and 

mesh node deviations after voxelisation, is minimum or constant with further 

increment of voxel grid. Figure 4.6 depicts that the voxelisation error is reducing 

with increment of voxel grid and becomes almost constant after grid size of 

60×60×100 which has been used for our proposed model as shows in Figure 4.7(c). 

Thereafter, Laplace interpolation has been performed on the voxel data to fill the 

empty voxel elements with meaningful data and 3D DCT applied on the interpolated 

voxel grid data. The transform coefficients are truncated based on 90% signal energy 

compaction and Pearson’s correlation test performed to identify the most significant 

coefficients related to original shape error field. Further, truncation on the 

coefficients has been performed using correlation threshold, α=0.25. A total of 12 

coefficients are selected to model the part shape error and by using least squares 

proper weightage has been applied to those selected 12 coefficients (corresponding 

shape error modes are shown in Figure 4.8). 3D IDCT applied on the weighted 

coefficients to reconstruct the part shape error field. The original shape error field, 
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GMA reconstructed shape error field and model residue plot are shown in Figure 4.9. 

A residue surface can be determined as the difference between the measured shape 

error field and GMA reconstructed shape error field. Therefore, the proposed 

methodology identifies the main shape error modes associated to the part. 

 

Figure 4.6 Voxel grid size selection 

 

Figure 4.7 Hinge reinforcement part: (a) mesh model of hinge reinforcement (b) 

measured shape error from CoP, (c) voxelisation of error data (Voxel grid size = 

20×20×40, used for visualization only), and (d) voxel elements containing error data 

only (Voxel grid size = 60×60×100) 
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Figure 4.8 GMA decomposed major shape error modes of the hinge reinforcement 

part 
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            (a)                                        (b)                                       (c) 

Figure 4.9 Shape error (i.e. deviation plot) of the hinge reinforcement: (a) original 

shape error plot, (b) GMA reconstructed shape error plot, and (c) error plot between 

original shape error and GMA reconstructed shape error. 

Similarly, GMA method is also used to decompose door inner panel which is the 

main door frame which keeps dimensional and geometric quality of the final 

assembly. This part is relatively large size and composed of many features, 

curvatures and edges as depicted in Figure 4.10(a) as nominal CAD model. The 

corresponding mesh model is represented in Figure 4.10(b). A voxel grid size of 

50x100x100 has been selected to store the computed mesh node deviations. GMA 

coefficients are truncated using coefficient truncation criteria which are based on the 

90% energy compaction and significant coefficient selection has been achieved using 

Pearson’s correlation test which facilitates to recognize the most significant modes 

represents the measured shape errors. A correlation threshold, α=0.10 has been 

implied to keep the decomposition model smooth. A total of 28 modes have been 

identified as main error modes and original deviation to decomposed modes have 

been presented in Figure 4.11.  



-102- 

 

 

                                (a)                                                            (b) 

Figure 4.10 Door inner panel of automotive door: (a) nominal door part, and (b) 

mesh model of the part 

 

Figure 4.11 GMA decomposition of door inner panel into significant shape error 

modes 

A doo inner panel has been selected for further diagnosis to identify the types of 
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centrally bended and outward twisted which give more understanding of the physical 

phenomenon. 

 

                        (a)                                                                 (b)                    

 

                (c)                                                               (d)                    

Figure 4.12 Few main shape error modes with their interpretation 

For example, looking at the first four main shape error modes (see Figure 4.12), the 

following can be concluded: 

 The first mode exhibits a predominant bending effect around the flange area 

[Figure 4.12(a)] 
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 The second mode shows a tendency to pure bending around the dotted line in 

vertical axis as represented in red dotted line [Figure 4.12(b)] 

 The third mode presents the bending of the part around the horizontal axis [Figure 

4.12(c)] 

 The fourth mode presents freeform shape error defects on the part [Figure 

4.12(d)] 

These GMA decomposed shape error modes can be utilised for freeform shape error 

simulation as per the GD&T requirements. Further, the functional data analysis 

model, GMA, can be used for statistical monitoring of shape error related defects 

based on measured CoP data.  

4.4.2 Comparison with Other Models 

The current shape error decomposition techniques similar to GMA decomposition 

are SMA method (Huang and Ceglarek, 2002; Huang et al., 2014) and natural mode 

decomposition (Samper and Formosa, 2006). The GMA method has been compared 

with both techniques to demonstrate its usefulness and applicability for shape error 

modelling. 

4.4.2.1 Comparison with SMA Model 

The SMA methodology has several limitations which are listed in Table 4.1. As the 

SMA technique fails to model shape error with complex topological structure, a 

numerical case study based on rectangular shape error field has been selected for 

comparison. The shape error field is defined by a grid of 1326 points where the part 

is bended and twisted as shown in Figure 4.13(a). The recovered shape error fields 

from SMA and GMA model using 8 modes are exactly the same as shown in Figure 

4.13(b). It authenticates the ability of GMA to decompose part shape error into 
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dominant modes and the reconstructed shape error is evident of part shape error 

modelling which has been extended to model 3D freeform shaped part. 

 

Figure 4.13 Numerically developed rectangular shape error: (a) original shape error, 

and (b) reconstructed shape error using SMA and GMA methods 

4.4.2.2 Comparison with Natural Mode Decomposition 

The GMA approach has also been compared with natural mode decomposition 

proposed by Samper and Formosa (2006). The hinge reinforcement case study has 

been selected for comparison with identical parameters chosen for both 

decomposition methods. Figure 4.14 shows the original measured shape error of 

hinge and reconstructed shape error using natural mode decomposition and GMA 

decomposition (200 modes selected to rebuild the shape error). Further, authors 

(Samper and Formosa, 2006) explicitly state that the residue surface does not 

decrease with the mode number. The possible reasons for their limitation may be due 

to predefined modes which are based on the stiffness and mass material properties. 

However, a manufacturing or forming process may not only depend on these two 

material properties but can also be influenced by a host of other factors such as, 

sliding friction, damping effect, creep effect, buckling effect, thermal distortion etc. 

The natural mode decomposition does not consider all those factors which might be 

associated with the manufacturing process; this implies that some error modes 
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cannot be modelled. Subsequently, results in higher residue surface. Due to the 

absence of these error modes, the residue surface cannot reach near zero. On the 

contrary, the developed GMA approach does not depend on the predefined modes 

and directly decomposes the measured shape error, hence, the residue surface can 

reach to near zero with addition of sufficient number of modes. It is essential to 

identify the minimum number of modes for accurate reconstruction when parametric 

modelling of shape error is important for many applications, such as  prediction of 

shape error under new process conditions; GD&T analysis for shape deviations; or 

assignable cause identification through root cause analysis. Therefore, for ease of 

analysis and applicability of the shape error model, accurate shape error 

representation with reduced number of modes is essential and unavoidable.  

 

Figure 4.14 Hinge surface deviation: (a) Original shape error, (b) Rebuild shape 

error using natural mode decomposition (200 modes), and (c) Rebuild shape error 

using GMA decomposition (200 modes) 

Root Sum of Squares (RSS) error has been selected to quantify the residue surface. 

RSS error of residue surface after surface reconstruction for same number of modes 

is typically higher for natural modes decomposition and also Standard Deviation 
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(SD) of residue surface for GMA decomposed modes are usually less in comparison 

with natural modes.  

 

Figure 4.15 Comparison of natural modes and GMA modes: (a) root sum of squares 

of the shape error of residue surface, and (b) standard deviation of the shape errors of 

residue surface 
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SD become zero. On the contrary, using natural mode decomposition the original 

shape error cannot be reconstructed even if all modes are selected. 

4.5 SUMMARY  

This chapter focuses on developing shape errors modelling approach for individual 

compliant part. Current industrial emphasis is on development of a universal 

functional model to express shape error in a coherent manner by integrating design 

features (ideal shape information) with manufacturing variability (real shape 

information). The major challenges to bridge design data (CAD model) with 

manufacturing are limited availability of appropriate shape errors modelling 

methodology which can identify and characterise shape errors to emulate real part. 

Currently existing shape error modelling approaches are mainly limited to 2D 

domain or limited accuracy in case of emulating 3D parts.  

In order to address this problem, this chapter proposed a functional data analysis 

model, named Geometric Modal Analysis (GMA), has been developed to extract 

significant shape error patterns associated with non-ideal part. It mainly takes design 

information (CAD data) and manufacturing information (part surface measurement) 

as input to extract significant shape error patters. However, building a unified 

functional data analysis model is not trivial due to irregular surface of 3D shaped 

complex part, significant error mode identification, and correct depiction of error 

model to emulate real part shape errors.  

The GMA method involves three main steps:  

(i) Data pre-processing includes generation of mesh model from nominal CAD 

model and measured part data (CoP) post-processing to obtain shape error 
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deviation field. The CAD model using nominal mesh to obtain the original 

mapping of shape error field from CoP data.  

(ii) GMA decomposition involves voxelisation of mesh model, Laplace 

interpolation, and 3D DCT decomposition. The mesh model is enveloped 

with 3D voxel grid in order to transform the 3D irregular surface model to 

uniform 3D volume structure. The calculated mesh node deviations are stored 

in the corresponding voxel element and Laplacian smoothing is applied to 

assign meaningful values in the empty voxel elements while keeping the 

original deviation as internal boundary constraints. Thereafter, 3D DCT 

decomposition performed on the Laplace interpolated uniform voxel grid 

data and main shape error modes are obtained.    

(iii) GMA mode identification involves mode selection criteria and mode 

magnitude correction to achieve desired model accuracy. GMA mode 

truncation has been achieved through (a) Energy Compaction Criteria; and 

(b) Pearson’s Linear Correlation Criteria to keep the shape error model 

controllable. The model accuracy is achieved through introducing least 

square based mode magnitude correction criteria.     

The industrial case study shows that GMA method can be applied to decompose 

measurement data of 3D freeform shaped parts. Further, comparison with state-of-art 

available methods shows advantages of GMA method for modelling shape errors of 

individual compliant part.  
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 SHAPE VARIATION MODELLING OF CHAPTER 5

BATCH OF COMPLIANT PARTS 

5.1 INTRODUCTION 

Quantification and prediction of shape variation of sheet metal parts as well as 

machined components are crucial for accurate analysis of assembly functionality and 

tolerancing. Due to inherit process variation, fabricated parts exhibit shape variation 

which is required to be quantified to predict and control the production quality. For 

example, a batch of sheet metal parts produced by metal forming process such as 

stamping consists of shape variation. Therefore, the fabricated parts are not identical 

in terms of engraved shape errors. This shape variation is mainly results of process 

parameters variation, tool wear or spring-back in case of sheet metal stamping (de 

Souza and Rolfe, 2008). The shape variation creates quality and assemblability 

issues in many sectors such as automotive body-in-white assembly, aerospace wing 

or fuselage assembly, home appliances or electronics assembly. Therefore, to predict 

the assembly quality or to understand the effect of shape variation at the end of 

assembly, part shape error model is not sufficient. Modelling of shape error 

associated with individual non-ideal part fails to quantify the production shape 

variation. Therefore, quantification of individual part errors is not sufficient enough 

to meet industrial needs which emphasise to quantify shape variation engraved 

within a batch of parts. End of line product quality variation (caused by part 

deformation due to fabrication process variation) or part fit-ups errors (caused by 

part-to-part interaction) are the result of shape variation. Further, quantification of 

these shape variation is important to generalise the type of shape errors associated 
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with batch of parts. Therefore, shape variation must be simulated upfront in order to 

predict assembly performance, product quality and production yield. As a result, 

there is a strong need for shape variation modelling of a batch of parts.  

Major challenges involving batch of non-ideal parts’ shape variation modelling and 

quantification can be categorised into 

(i) Identification and characterisation of shape variation by developing 

functional data model, and  

(ii) Quantification of shape variation by analysing the shape error modes from 

production parts. 

To meet the functional requirement of shape variation modelling, the functional data 

analysis approach (developed in Chapter 4), named Geometric Modal Analysis 

(GMA), has been used to extract the shape error modes. However, the GMA 

approach is limited to extract shape error information from individual part which is 

not able to model and quantify the shape variation associated with a batch of 

production parts. 

Therefore, the part shape error decomposition approach, GMA (proposed in Chapter 

4), has been extended to model and quantify the shape variation of a batch of 

production parts. This chapter proposes a Statistical Geometric Modal Analysis 

(SGMA) method aiming to mitigate the obstacles towards shape variation modelling 

of production parts by addressing the following: 

(i) statistical characterisation of the shape error modes (i.e. modal parameters) 

encrypted within a batch of parts, and  

(ii) quantification of production shape variation by synthesising composite parts.  
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SGMA method uses the parametric nature of decomposed shape error modes to 

model batch of parts and quantifies the shape variation by synthesising composite 

parts. By changing the magnitude of shape error modes, a large number of 

production parts can be represented. On contrary, composite part can be defined as a 

part which is composed of all the major shape error modes present in the production 

parts. In reality, the composite part may not exist but it reduces the efforts required 

for assembly process simulation by avoiding Monte-Carlo type simulation. 

Manufacturing processes which are very sensitive to part shape variation, require in-

depth understanding on the effect of shape variation to the end product quality. 

Especially in case of assembly process simulation with compliant parts, the shape 

variation modelling for production parts is unavoidable as it has direct impact on the 

achievable assembled product quality and process performance (Das et al., 2014; 

Jing et al., 2010; Franciosa et al., 2014). For example, emerging new assembly 

joining process, such as Remote Laser Welding (RLW) cannot be simulated without 

taking into consideration of compliant production parts as it requires tight control of 

both minimum and maximum part-to-part gap (Ceglarek, 2011). Thus, simulation 

conducted for ideal part results in incorrect and unreliable output (100% of 

conforming assemblies) which does not depict the real production scenario (Das et 

al., 2014). Therefore, to eliminate a large number of simulation runs with different 

shape error instances, the concept of composite part helps to (i) reduce number of 

simulation iterations without losing the performance of assembly process simulation; 

and, (ii) to predict the overall final assembly quality quickly. Therefore, the shape 

variation modelling is inevitable prerequisite as input for assembly process 

simulation with compliant parts and process performance evaluation. 
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The following sections of this chapter are arranged as follows: Section 5.2 

summarises the limitations of current shape variation modelling methods available in 

literature. Section 5.3 describes the proposed SGMA methodology to model shape 

variation through mode selection and statistical characterisation of modes. Further, 

the subsections describe the virtual generation of variational parts and synthesis of 

composite parts. Section 5.4 describes SGMA method with industrial cases for 

generating variational virtual parts and synthesising of composite parts. The chapter 

is summarised in Section 5.5. 

5.2 LIMITATIONS OF CURRENT APPROACHES 

To decompose shape errors based on measurement data, few data-driven as well as 

analytical approaches have been reported in literature. To extract shape error modes 

from a batch of parts, Camelio et al. (2004b) and Matuszyk et al. (2010) proposed 

Principal Component Analysis (PCA) based pattern recognition approach. However, 

PCA based decomposition has limitations which are discussed in Chapter 3 (refer to 

Section 3.3) towards identifying the shape error of sheet metal part. Further, Samper 

et al. (2009) extended their natural mode decomposition approach (Samper and 

Formosa, 2006) to model shape variation where they reported virtual generation of 

variational parts using estimated mean and standard deviation under normality 

assumption which is far too simplified and not necessarily true for sheet metal 

stamping. Another decomposition approach, Statistical Modal Analysis (SMA) 

proposed by Huang and Ceglarek (2002) and Huang et al. (2014) assumes normal 

distribution of shape error modes during virtual generation of variational parts and is 

limited to 2D parts. Further,  not only to generate variational virtual parts but also to 

quantify shape variation, this chapter extends the GMA approach to model batch of 
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parts (i) by characterising the statistical nature of decomposed modes to generate 

variational instances;  and (ii) by synthesising composite parts (i.e. to quantify shape 

variation). Till date, the shape variation modelling approaches are limited to 

variational virtual part generation and there is no approach found in literature to 

quantify the shape variation of a batch of parts. Table 5.1 summarises shape 

variation modelling approaches reported in literature with their limitations.  

Table 5.1 Current shape variation modelling approaches with their applications and 

limitations 

Researchers Decomposition 

principle 

Applications Limitations 

Camelio et 

al. (2004b) 

Matuszyk et 

al. (2010) 

Principal component 

analysis (PCA) based 

decomposition of 

batch of parts 

Assembly 

process 

simulation 

Normality assumption 

and shape error modes 

are not decomposed 

independently  

Huang and 

Ceglarek 

(2002); 

Huang et al. 

(2014) 

2D Discrete Cosine 

Transform (2D DCT) 

of measured data set.  

Virtual 

generation of 

variational parts  

Normality assumption 

and limited to virtual 

shape error generation 

of 2D part.   

Samper and 

Formosa 

(2006) 

Samper et al. 

(2009) 

Natural mode 

decomposition and 

then, compared with 

measured data (CoP) 

Assembly 

process 

simulation, 

statistical 

tolerancing 

Not accurate to model 

freeform shaped sheet 

metal parts and only 

limited to virtual 

generation 

Proposed in 

this thesis 

GMA based shape 

variation 

characterisation and 

quantification  

Process design, 

statistical 

tolerancing 

Sample size selection 

to develop the model 
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5.3 STATISTICAL GEOMETRIC MODAL ANALYSIS (SGMA) 

METHODOLOGY  

The Statistical Geometric Modal Analysis (SGMA) method extends the GMA model 

to extract shape error modes from a batch of parts. The present methodology focuses 

on, firstly, the statistical characterisation of shape error modes at production level to 

represent variational virtual parts; and secondly, shape variation quantification of a 

batch of parts by synthesising composite parts. These variational virtual parts are 

representative of the production volume and composite parts are the quantification of 

production shape variation. The methodology identifies the GMA decomposed 

significant shape error modes associated with a batch of parts. Subsequently, it 

describes mode selection for batch of parts and modal matrix creation for statistical 

characterisation followed by virtual generation of variational parts. It also develops 

different criteria for creating composite parts which are mainly based on maximum 

energy compaction, minimum energy compaction; root sum of squares (RSS) error.  

Figure 5.1 depicts the overview of the SGMA method to generate variational virtual 

parts and composite parts relying on the modal characteristics of the measured batch. 

The methodology is based upon the following two hypotheses to simplify the 

modelling process for a batch of parts: 

(i) Sample size selection assumption: The shape error is not of deterministic type 

but random error field process. Therefore, the number of parts selected is the 

statistical representative of the production population. The shape error modes 

obtained through GMA decomposition are the representative of the shape variation 

obtained from the production process.   

(ii) Production process stability assumption: The operating conditions under 

which the selected samples are produced remain almost same throughout the 
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production. Therefore, the shape error modes within the sample parts remain 

approximately same throughout the production without introducing completely 

different shape error modes.  

 

Figure 5.1 Overview of Statistical Geometric Modal Analysis (SGMA) method for 

shape variation modelling 

5.3.1 GMA Based Modal Matrix 

Utilising the GMA decomposition, a batch of parts (i.e. representative of production 

parts) is decomposed. The batch of parts carries the engraved process information in 

terms of shape variation. These GMA extracted modes will be further utilised for 

virtual part generation and synthesising composite parts. To identify the shape error 

modes responsible for main process variation, the energy compaction and correlation 

criteria have been employed. Therefore, the truncated shape error modes are reserved 

Product Data
(CAD specs)

Geometric Modal Analysis (GMA)

• Identification of Significant Shape Error Modes

Part Measurement
(Sample CoP set)

GMA based Modal Matrix

• Mode pre-selection from batch of parts

Variational Virtual Parts

• Statistical Characterisation using 

Kernel Density Estimator

• Random Modal Parameters 

drawing

Statistical Generation

of Virtual Batch

Synthesis of 

Composite Parts

S
ta

ti
st

ic
al

 G
eo

m
et

ri
c 

M
o

d
al

 A
n

al
y
si

s 
(S

G
M

A
)

Composite Part Synthesis

• Energy Compaction Criteria (ECC)

 Maximum ECC

 Minimum ECC

• Root Sum of Squares (RSS) Criterion



-117- 

 

for SGMA model development and the residual shape errors, occurring mainly due 

to uncertainly and noise in measurement data, are discarded. By reversing the 

equation (4.5), the original shape error field can be expressed as equation (5.1), 

where ),,(
~

wvuC contains the truncated or preserved modes and residual is expressed 

as  . The preserved shape error modes can be further reduced to Xb, where b is the 

set of energy truncated and correlation truncated coefficient values and 𝑋 is 

composed of orthogonal shape vectors.  
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Suppose, q number of modes ( 1

~
C , 2

~
C ,... qC

~
) are preserved after energy and 

correlation truncation of individual part decomposition and represents as b1 which 

can be expressed as 

 ]
~

,...
~

,
~

[ 211 qCCCb    (5.2) 

Further, considering the sample batch size m, the decomposed modal parameters can 

be expressed as 

 
T

mbbb ],...,[ 21   (5.3) 

The set 𝛽 composed of mainly two set of modal parameters: (i) Common modes: 

present in every part of the sample m, and (ii) Uncommon modes: appear only in few 

sample (<m) of the decomposed parts. Combining both common and uncommon 

modal set, p modal parameters have been preserved for shape variation modelling. 
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These p modal parameters are again extracted from m parts which forms the modal 

parameter set 𝛽, a p×1 vector, can be generalised as  

  
T

pCCC ]
~

,...
~

,
~

[ 21  (5.4) 

Evaluation of proper magnitude of the modal parameters is necessary for accurate 

shape variation modelling. As described in GMA method, magnitude correction has 

been achieved through assigning proper weightage to p number of selected modal 

parameters using least squares where the truncated coefficients multiplied with 

associated weightage wt i.e., wtCC 
~

. Therefore, modal parameter set β (selected 

based on m sampled parts) creates the modal matrix for the batch and can be 

expressed as p×m matrix.  
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  (5.5) 

The modal matrix mp will be utilised for statistical characterisation to generate 

variational virtual parts and also for synthesising composite parts. 

For example, a batch of top hat parts (sample size m) is decomposed into main 

orthogonal shape error modes by using GMA technique as explained in Figure 5.2. 

After applying the modes selection criteria, p number of modes is selected to 

generate the modal matrix. Therefore, each top hat part is decomposed and p set of 

modes is retained for shape variation modelling.  Each mode has unique deformation 

pattern, however, the magnitudes of the deformation pattern is changing from part-

to-part. Therefore, from the modal matrix created for top hat parts, it can be observed 

that each mode has varying magnitudes across the parts which pointing towards the 

statistical characterisation of modes.     
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Figure 5.2 GMA based modal matrix creation by using a batch of top hat parts 

5.3.2 Variational Virtual Parts 

Generating virtual parts involves two major steps: first, the statistical 

characterisation of modal parameters which are identified through individual part 

decomposition of the sample set.  One way to address the statistical characterisation 

is to fit proper statistical distribution to the each mode of modal matrix. Second, 

relying on the statistical distribution of the modes, a set of p modal parameters can 

be drawn for Nv times to create virtual batch of Nv parts. 

5.3.2.1 Statistical Characterisation of Preserved Modes 

The each modal parameter of modal matrix, mp , needs to be fitted with suitable 

statistical distribution. Typically, the modal parameters are characterised by mean 

modal vector and covariance matrix based on the assumption that the modal 

parameters are normally distributed (Huang et al., 2014). Samper et al. (2009) 

demonstrated virtual batch production assuming normal distribution where the modal 
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parameters are obtained by decomposing nominal CAD model of the parts. Many 

real processes, the assumption of normal distribution may not be accurate as most of 

the processes do not conform to normal distribution. GMA decomposition technique 

is based on the real measurement data where the assumption of normal distribution 

may not be accurate as sheet metal stamping does not conform to it. Therefore, use 

of Kernel Density Estimation (KDE) to estimate the Probability Density Function 

(PDF) of the modal parameters may overcome the problem if the modal parameters 

are not normally distributed.  

A parametric approach for determining the PDF assumes that the density function 

will take a particular form which needs to be specified upfront (Montgomery, 2008). 

For example, in case of normal density function, the mean value and standard 

deviation of the process variables are to be estimated first. In contrast, nonparametric 

density estimation does not require prior knowledge about form of the density 

function. KDE is a very powerful class of data driven techniques for non-parametric 

estimation of PDFs (Silverman, 1986; Wand and Jones, 1994) which fits an 

empirical distribution to a sample data set approximating the population. The density 

function is determined by summing up small bumps that are placed at the centre of 

the each observation. The shape of the bumps is defined by the kernel functions such 

as Gaussian, Triangular or Epanechnikov type (Silverman, 1986). Consider a kernel 

function K(C
~

) and a sample set for modal parameters, ]
~

,...
~

,
~

[ 21 mCCC from a 

population distribution density F( C
~

), then the density estimate (Silverman, 1986) of 

the sample can be written as 
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where, h is the window width also called as smoothing parameter or bandwidth 

parameter. In this work, the kernel function is a Gaussian kernel as the form of the 

kernel function is not important. On the contrary, the smoothing parameter or 

bandwidth determines the accuracy of the PDF. Therefore, each mode is fitted with 

PDF as per the modal matrix defined in equation (5.5) and p modal fitting 

distribution obtained as explained in Figure 5.3. Further, ranges and distributions are 

plotted in Figure 5.4. 

 

Figure 5.3 Statistical characterisation of modal parameters using top hat parts 
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Figure 5.4 Statistical characterisation of modal parameters using KDE 

5.3.2.2 Generation of Virtual Batch of Parts 

The aim is to generate a batch of virtual parts based on the PDF of fitted kernel 

density to each modal parameter of β
p×m

. Utilising this statistical characterisation, a 

number of batches can be generated which may consist of different modal 

parameters or magnitudes relying on the batch measurement data. Magnitudes of the 

p preserved modal parameters are drawn to generate variational virtual part as 

presented in Figure 5.5 and following the same, a number of parts can be generated 

which represents the virtual batch. 

 

Figure 5.5 Generation of variational virtual parts based on statistical characterisation 

of modal parameters 
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The generation of virtual batch depending upon the modal parameter characteristics 

is made as follows: 

 A set of p modal parameters is drawn for Nv times to make virtual batch of Nv 

parts. Each modal parameter follows the probability distribution obtained through 

KDE which form virtual modal matrix for Nv parts, β
p×𝑁𝑣

 consisting of p modal 

parameters.  
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 (5.7) 

 From the obtained virtual modal matrix, β
p×𝑁𝑣

, each virtual part coefficients 𝛽𝑝×𝜏, 

where 𝜏 ∀ (1,2, … , 𝑁𝑣) are applied with 3D Inverse-DCT (3D IDCT) as per the 

following equation (5.8) to obtain the shape error field. 
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(5.8) 

where, 𝛼(𝜉) = {

1

√2
2          𝑖𝑓, 𝜉 = 0

1            𝑖𝑓, 𝜉 ≠ 0
 

The function 𝑓(𝑖, 𝑗, 𝑘) refers to the shape error field (i.e. mesh node deviations) 

which are generated by using the virtually generated modal coefficients set, 𝛽𝑝×𝜏. 

The obtained deviations are applied to corresponding mesh nodes to generate 

variational virtual parts.  
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5.3.3 Synthesis of Composite Parts 

The composite part can be defined as a hypothetical part which is composed of all 

the major shape error modes present in the population. Depending on the nature of 

shape error present in the measured batch, composite part might be more than one to 

represent the whole population. To categorise the parts having similar type of shape 

error, shape error modes based clustering approach has been adapted. For clustering, 

k-means method has been applied to classify the parts with similar shape error. This 

clustering method helps to partition measured parts into mutually exclusive clusters 

and provides the index of the parts belong to each clusters. Ray and Turi (1999) 

explained intra-cluster distance and inter-cluster distance based approach which 

allows the number of clusters to be determined automatically. However, the 

graphical approach developed by Rousseeuw (1987) is very well known to check 

where the Silhouettes graph provides a measure of how close each point in one 

cluster is to points in the neighbouring clusters. This measure ranges from +1, 

indicating points that are very distant from neighbouring clusters, through 0, 

indicating points that are not distinctly in one cluster or another, to -1, indicating 

points that are probably assigned to the wrong cluster. A more quantitative way to 

compare the cluster solutions is to look at the average silhouette values. 

Through the clustering process, 𝑅 number of cluster has been obtained and 

corresponding cluster will consist of 𝑁𝑅 number of parts. Therefore, the modal 

matrix for  𝑁𝑅 number of parts which contains p modal parameters become 
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   (5.9) 

where, ∀𝑅 = (1,2, . . 𝑅) and 𝑁𝑅 ⊆ 𝑁𝑣. 
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Composite part(s) can be synthesised from the 𝛽𝑝×𝑁𝑅
 modal matrix using different 

selection criteria which are mainly based on energy compaction and root sum of 

squares. 

5.3.3.1 Energy Compaction Criteria (ECC) for Composite Part 

Energy compaction index of a mode is the ratio of the energy of the selected mode to 

the total energy of the modes (particular part) which can be used to select modes for 

energy compacted composite part generation. Therefore, energy compaction index 

can be obtained for every modal parameter of the 𝛽𝑝×𝑁𝑅
 modal matrix which can be 

determined as 
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  (5.10) 

Further, relying on the maximum and minimum energy index criteria, maximum and 

minimum set of modal parameter values can be obtained which will create composite 

parts containing maximum and minimum variation of shape error respectively. 
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Therefore, the maximum and minimum energy compaction part can be expressed as  
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  (5.12) 

Using equation (5.8) and equation (5.12), the composite parts can be created which 

are consisting of maximum and minimum energy coefficients. These composite parts 



-126- 

 

can be expressed as the maximum and minimum boundary of shape error. 

Furthermore, pictorial demonstration on synthesising top hat composite parts based 

on maximum and minimum energy compaction criteria is illustrated in Figure 5.6. 

 

Figure 5.6 Synthesis of maximum and minimum energy compacted composite parts 

based on top hat parts  

5.3.3.2 Root Sum of Squares (RSS) Criterion for Composite Part 

A RSS based composite part can be defined as the part from which root sum of 

squares measure to original shape error of all the parts belong in the cluster is 

minimum. Therefore, by determining the proper weightage associated with each 

modal parameter, RSS based composite part can be created and the weightage vector 

are computed through least squares approach. The original shape errors (i.e. mesh 
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node deviations) of 𝑁𝑅 parts are kept as 𝐷 = [𝐷1 𝐷2 ⋯ 𝐷𝑁𝑅]𝑛×𝑁𝑅
. The RSS 

based mesh node deviation [𝐷𝑅𝑆𝑆]𝑛×1 can be obtained through the following 

minimisation problem as explained in equation (5.13). 
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Each preserve modal parameter has unique orthogonal shape vector corresponding to 

unit value. Mesh node deviations of each parameter are stored as 

𝑇 = [𝑇1 𝑇2 ⋯ 𝑇𝑝]𝑛×𝑝. Therefore, using the least squares to solve the over 

determined systems which minimises the sum of squares corresponding to each part 

and provides the weighted coefficients, 𝛽𝐿𝑆. 
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The least squares estimation for the weightage associated with each modal parameter 

is computes as 𝑤𝑡 = (𝑇𝑇𝑇)−1𝑇𝑇𝐷𝑅𝑆𝑆. Therefore, the coefficient set for creating 

composite part using RSS criteria is given as 

  

 ],,[

 

],,[

21

2211

T

wtwtwtLS

T

ppLS

p
CCC

wtCwtCwtC















 (5.15) 

The coefficient set, 𝛽𝐿𝑆, is applied in equation (5.8) to obtain the shape error field 

over the voxel grid and voxel deviation is applied to mesh nodes to get the composite 

part error field deviation. 
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5.4 RESULTS OF SGMA WITH INDUSTRIAL CASE STUDY 

Results of the developed SGMA method is illustrated with an industrial case study of 

door inner panel. The case study demonstrates the two aspects of SGMA method: (i) 

generation of variational virtual parts, and (ii) synthesis of composite parts. Door 

inner panel is the main door frame on which all other reinforced components (such 

as reinforced door opening, hinge reinforcement, latch reinforcement) are welded. 

Therefore, the shape variation management of door inner panel is very crucial to 

achieve quality product. The door inner panel is of 0.75 mm thick and relatively 

large size with a number of features and curvatures on it as displays in Figure 5.7(a).  

The shape error field has been obtained by calculating the deviations at the nominal 

mesh nodes [refer to Figure 5.7(b)]. 

 

(a)                                                     (b) 

Figure 5.7 Door inner panel of automotive door: (a) nominal CAD model, and (b) 

mesh model of the part 

Initially, GMA method (developed in Chapter 4) has been applied to decompose 

original shape error of a batch of parts obtained from the measurement. To apply 

GMA methodology, a voxel grid size of 50×100×100 has been selected to store the 
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computed mesh node deviations. GMA decomposed modes are truncated using 90% 

energy compaction criterion. Further, selection of significant shape error modes has 

been achieved using Pearson’s correlation criterion which facilitates to recognise the 

most significant modes to reconstruct the original shape error. A correlation 

threshold, α=0.10 has been implied to keep the decomposition model smooth. Total 

53 modes have been identified as main error patterns, (p=53), from the batch of parts 

which are illustrated in Figure 5.8. These modal parameters are used as preserved 

modes. 

 

Figure 5.8 Main shape error modes identification of a batch of parts using GMA 

decomposition 

After identifying the main modal parameters in terms of main modes, the associated 

magnitudes are corrected using least squares as explained in GMA method. The 

identified modal parameters are stored to form the modal matrix in order to 

characterise, further, for generating variational virtual parts and composite parts. 
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5.4.1 Variational Virtual Door Inner Panel Generation 

Each modal parameter is fitted with distribution function using KDE to determine 

the PDF associated with each mode. A few significant modes with their distributions 

have been reported in Figure 5.9. 

 

Figure 5.9 Statistical characterisation of modal parameters of door inner panel by 

determining the probability density function (PDF) using KDE 

Based on the distribution obtained through decomposition of a batch of parts, a 

number of random modal parameters can be drawn from the distribution, and virtual 

modal matrix for Nv parts can be obtained,  β
p×𝑁𝑣

 consisting of p modal parameters. 

Each row of the virtually generated modal matrix represents a virtual variational 

part. Therefore, the virtual generation of parts has been generalised and random 

variational virtual parts can be generated based on the batch of measured parts data. 
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5.4.2 Synthesis of Composite Parts 

Initially, clustering has been carried out to identify the number of clusters present in 

the batch using the k-means technique. The selection of correct number of clusters is 

not a trivial task. One of the widely accepted approaches is to examine the 

Silhouettes graph with their average values for deciding proper number of clusters. 

Figure 5.10 depicts the Silhouettes plot for different cluster combinations and 

average Silhouettes values are evaluated for each occurrence for proper selection of 

number of clusters. 

 

Figure 5.10 Silhouettes graph plot for (a) 2 clusters; (b) 3 clusters; (c) 4 clusters; and 

(d) 5 clusters 

It is evident from the Silhouettes plots, the average Silhouettes values for the four 

different occurrences are below 0.3 which is an indication that the grouped parts are 

relatively close to each other. However, parts are divided into three clusters [Figure 
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clusters which are consisting of similar shape error modes. For each cluster, three 

types of composite part can be obtained based on the maximum energy compaction 

criterion, minimum energy compaction criterion, and RSS criterion. These three 

types of composite part for three clusters are presented in Figure 5.11. Therefore, the 

shape variation coming from the production can be quantified through the composite 

parts where only few composite parts can represent the whole production. It is worth 

noticing that the root sum of squares error based composite parts are exhibiting 

almost similar shape error for all the clusters while maximum and minimum energy 

compacted composite parts differ from cluster to cluster. 

 

Figure 5.11 Synthesis of composite parts (deviation in mm) for three clusters based 

on (a) maximum energy compaction, (b) minimum energy compaction, and (c) root 

sum of squares criterion 
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The composite parts are compared with original part deviations in order to evaluate 

the quality of the synthesised composite parts. The representative error map of 

residue surface (i.e. the difference from composite part to original part deviation of 

corresponding cluster) is shown in Figure 5.12. It can be observed that residue 

surfaces from RSS based composite parts are similar as the RSS based composite 

parts are representative of original average part deviation. On contrary, residue 

surfaces generated from maximum and minimum energy compacted composite parts 

are showing the areas of shape variation occurring during production run. Further, 

the average root sum of squares (RSS), mean and standard deviation (SD) of residue 

error surfaces are reported in Table 5.2.  It can be observed that RSS error of residue 

surface is higher for maximum energy compacted parts and lower for root sum of 

squares based composite parts.   

 

Figure 5.12 Average residue surface plot by using maximum, minimum and RSS 

based composite parts (deviation in mm) 
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Table 5.2 Comparative analysis between the generated composite parts and original 

part deviation by quantifying the average residue surface 

Residue Surface Variation 

Quantification 

Maximum 

Energy  

Compacted 

Part 

Minimum 

Energy 

Compacted 

Part 

Root Sum of 

Squares (RSS) 

based Composite 

Part 

Cluster 1 

RSS 72.01 65.32 19.61 

Mean 0.192 0.173 0.051 

SD 0.155 0.138 0.049 

Cluster 2 

RSS 101.97 93.299 18.15 

Mean 0.286 0.258 0.047 

SD 0.196 0.183 0.056 

Cluster 3 

RSS 92.553 79.234 16.014 

Mean 0.253 0.217 0.04 

SD 0.185 0.157 0.039 

 

5.5 SUMMARY  

This chapter develops shape variation modelling methodology to quantify the shape 

variation associated with a batch of parts which is representative of production 

population. As the product quality and production yield are determined based on the 

production volume of real parts, production shape variation modelling and 

quantification method is required for accurate depiction of production process. 

Individual part shape error quantification is not sufficient enough to meet industrial 

needs which emphasises on quantification of the shape variation engraved within a 

batch of parts. There are very few approaches available in literature and those are 

mainly focused on virtual generation of variational parts. However, no reported work 
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is available to quantify the shape variation associated with production parts. The 

challenges in the area of shape variation modelling are: 

(i) Identification and characterisation of real part shape variation, and  

(ii) Quantification of shape variation through analysing the production parts. 

To address the aforementioned shape variation modelling challenges of production 

batch, this chapter proposed Statistical Geometric Modal Analysis (SGMA) method 

which is an extension of GMA method. The main steps involve:  

(i) Identification of significant shape error modes: GMA decomposition has 

been used on a batch of parts (i.e. production parts) to identify the main shape 

error modes coming from the production volume. Further, it creates a GMA 

based modal matrix which is composed of main modal parameters with their 

varying magnitudes. 

(ii) Statistical characterisation of each mode: Statistical behaviour of the 

identified significant shape error modes has been determined using data-

driven Kernel Density Estimator (KDE). This helps to overcome the 

limitations associated with normal distribution assumption if the modal 

parameters are not normally distributed.  

(iii) Quantification of shape variation: The composite parts are synthesised to 

quantify the shape variation of a batch of compliant parts. They are 

composed of major shape errors coming from production volume. 

The SGMA method produces the following results: 
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(i) Generation of variational virtual parts: Relying on the statistical distribution 

of the modes, variational virtual parts can be generated by randomly drawing 

modal parameters from the distribution. 

(ii) Generation of composite parts: Synthesis of composite parts has been 

achieved through selection of different composition criteria. It quantifies the 

shape variation of a batch of parts.  

The industrial case study shows that SGMA method can be applied to generate 

variational virtual parts and composite parts. Depending on the type of shape errors 

present in the measured sample set, composite part might be more than one to 

represent the whole population.  
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 CONTROL CHARTS TO MONITOR CHAPTER 6

PROCESS AND PRODUCT QUALITY 

SHAPES 

6.1 INTRODUCTION 

Many industrial processes are capable of generating massive amounts of data 

increasingly captured by in-process sensor networks. At present, some of these data 

cannot be used for statistical process control, defect detection or prediction of end-

of-line product quality. For example, shapes of manufactured parts often represent an 

important aspect of quality, yet, there is lack of efficient approaches for statistical 

process monitoring of non-linear shapes. Similarly, assembly manufacturing 

processes with compliant (deformable) parts are one of the most common processes 

used in many industries such as automotive, aerospace, appliance, and electronics. 

Many of these processes are quite complex, for example, an automotive body 

assembly process includes 55-75 processing steps for around of 150-250 deformable 

sheet metal parts (Ceglarek and Shi, 1995; Shiu et al., 1996). Additionally, there are 

strict quality requirements as described by the Geometric Dimensioning and 

Tolerancing (GD&T) which must be controlled as a part of the process quality 

monitoring system. This leads to the following requirements for process monitoring: 

(i) types of defects detection: part  errors (part deformations caused by fabrication 

processes); part fit-ups errors (part-to-part interactions and interferences due to part  

errors, positioning errors or/and joining errors);  and, (ii) speed of detection: delay 

from defect occurrence to detection and correction due to high volume production 

(cycle time can be between 50-70 vehicle per hour) which can help to reduce high 
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cost of scrap, repair, vehicle warranty and service.  As a result, the above 

requirements have led to key advances in the development of modern metrology 

systems such as: (i) metrology system types: point-based measurement gauges 

(Coordinate Measuring Machines [CMM]) and the more frequently used surface-

based measurement gauges (3D laser scanners or 3D white-light scanners) which 

allow to detect part  errors (deformations) by capturing high dimensional Cloud-of-

Points (CoP); and,  (ii) metrology system distribution: due to process complexity, 

metrology sensors are used from off-line system (CMM gauges; 3D scanners placed 

in the metrology rooms) to rapidly increasing applications of in-process systems 

(end-of-line location and/or distributed metrology systems connected within a single 

network; for example 2D point-based scanners or emerging 3D surface-based white 

light scanners which capture CoP data directly during production). 

The aforementioned advances in metrology systems development expanded 

opportunities for their applications in: (i) reverse engineering (generating CAD 

models from measured CoP data); and, (ii) quality inspection (template matching – 

referential approach that compares similarity between a template image and a test 

image; or comparing test image against CAD with GD&T requirements) (Son et al., 

2002). While the capability of 3D scanner metrology systems to capture massive 

amounts of in-process data (CoP of 3D object shape images) provides a unique 

opportunity for control of assembly process with compliant parts, however, currently 

3D scanners cannot be used for statistical process control, defect detection or 

prediction of end-of-line or intermediate part errors or product shape quality. 

This chapter presents a novel approach for shape-monitoring using high dimensional 

data (cloud-of-points) captured by in-process or off-line sensors or sensor networks.  

The proposed shape-monitoring methodology is based on a functional data analysis 
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model which is then used to develop integrated bivariate T
2
-Q monitoring chart. The 

used functional data analysis model, called Geometric Modal Analysis (GMA) 

proposed in Chapter 4, aims to remove high redundancy in the data by defining 

reduced set of statistically uncorrelated and independent variables.  

The GMA-based integrated bivariate T
2
-Q monitoring chart uses both reduced 

variable sets as modelled by the GMA (T
2
-statistic) and their residuals (Q-statistic) 

as a single bivariate scatter diagram. It is based on the joint probability density 

estimation using non-parametric Kernel Density Estimator (KDE) which has 

enhanced sensitivity to detect part defects. The resulting GMA-based integrated 

bivariate T
2
-Q monitoring chart can be used for high dimensional non-normal data 

(cloud-of-points) captured by in-process or off-line sensors or sensor networks with 

the ability to: (i) detect global part shape failures such as unwanted variance change 

or mean shift, a common occurrence for batch-to-batch variation of stamped sheet 

metal parts; (ii) detect local part shape failures such as local shift or variance change; 

and, (iii) classify the shape faults to predict manufacturing quality and yield. 

Experimental and simulated cloud-of-points data from automotive manufacturing are 

used to determine the effectiveness of the proposed control chart under different 

defect conditions. 

6.2 PROBLEM IDENTIFICATION 

Due to increasing product and process complexity, 3D shape variations have critical 

impact on the final quality of the assembled product (Das et al., 2014; Hu et al., 

2011). As a result, quality control of these deformable 3D shapes is key to ensure 

increasing assembly functionality and reduced residual stress in the final assembly. 

The monitored 3D shapes need to be evaluated and compared to the CAD model and 
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linked to the GD&T requirements. Modern 3D scanner metrology systems provide 

the opportunity to capture 3D shapes efficiently in-process or off-line using high 

dimensional data (CoP). Traditionally, the commonly used multivariate control 

charts involve monitoring small numbers of individual or composite variables. 

However, these are not sufficient for many industrial processes (Bersimis et al., 

2007), including 3D shape monitoring of compliant objects. For example, it is not 

uncommon to have hundreds of process variables most of which cannot be 

monitored simultaneously and are often correlated. Therefore, novel process control 

techniques are required which can fully utilize the potential of CoP data and provide 

a small number of effective process control chart(s) (ideally one). 

Developing a single effective control chart is not trivial since the entire part shape 

information is to be monitored. In such a scenario, multivariate control chart plays a 

significant role to remove high redundancy in the data by defining reduced set of 

statistically uncorrelated and independent composite variables. For continuous 

feedback about the process in real time, these composite process variables (also 

termed latent variables) can provide a framework for continuous monitoring and 

highlight potential problems. Therefore, to obtain the relevant and effective set of 

latent variables, there is a tremendous need for 3D shape error modelling using high 

dimensional (CoP) measurement data. This model must represent the shape error in 

ways that can support further engineering analysis of 3D shape error patterns. Such 

shape error modelling can also be viewed as falling into the general area of 

functional data analysis (Ramsay and Silverman, 2005). This work involves a novel 

functional data analysis model, Geometric Modal Analysis (GMA) which aims to 

remove high redundancy in the data by defining reduced set of statistically 

uncorrelated and independent variables. The utilization of the functional data 
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analysis such as the GMA model provide significantly reduced set of latent variables 

(LVs) to represent 3D shape error. However, the GMA model of 3D shape error does 

not include residual errors caused by truncating the model, and measurement noise 

or error which might significantly affect the process control results. Additionally, the 

reduced set of LVs is often still too large (often more than 10-15 LVs; the presented 

case study of relatively complex hinge reinforcement part shape includes p>150 

LVs) which gives rise to the problem of monitoring multiple control charts.   

To avoid the aforementioned problem, GMA-based functional data analysis 

approach has been used to determine multivariate T
2 

statistic. The measurement 

uncertainties in data are kept in Q statistic to improve the detectability of the control 

chart. Combining T
2
 for the GMA modelled data and Q statistic for residual data (un-

modelled) provides a bivariate scatter plot which is easier to monitor and also 

increases the sensitivity of the control chart towards fault detection. Further, as the 

measurement data of 3D shapes are non-normal, the shape monitoring chart is based 

on the joint probability density estimation of the integrated two statistics using non-

parametric Kernel Density Estimator (KDE) which has enhanced sensitivity to detect 

part defects. The objective is to develop a statistical process control chart to detect 

shape errors using CoP data at single measurement station. 

6.3 SHAPE MONITORING METHODOLOGY  

The proposed GMA-based integrated T
2
-Q shape monitoring control chart approach 

uses 3D scanner part shape data represented as CoP with millions of measurement 

points on a single part. Extraction of Latent Variables (LVs) is necessary to capture 

significant and essential information that is being encapsulated within the high 

dimensional recorded data (Kruger and Xie, 2012). The GMA approach is used to 
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extract Latent Variables (LVs) with key part shape information which is represented 

in the form of multiple orthogonal shape error modes. These shape error modes are 

then used to determine T
2
 of the modelled shape information and Q which includes 

residual information. This gives a bivariate control chart for shape error monitoring.  

The overall shape error based monitoring methodology is depicted in Figure 6.1. 

 

Figure 6.1 Overview of shape monitoring methodology driven by GMA method 
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Compliant parts produced by fabrication processes contain shape errors which are 
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in terms of shape errors. These modes will be further utilized for process monitoring 

and diagnosis where the modes can be used to represent root cause of the problem. 

Huang et al. (2014) found that lower frequency modes are caused by locator or 

datum induced part position or orientation errors whereas higher frequency patterns 

are due to manufacturing process variations such as spring back, part twisting, 

material handling, die or fixture misalignment etc. Therefore, efficient controlling 

method is a prerequisite to track whether the process is in control or out of control. 

The GMA transformed modes, i.e., equation (4.5) can be rewritten as  

 ( , , ) , , L L M M N NC u v w f i j k C C C     (6.1) 

Where, L , M  and N  are the product operator and LC , MC  and NC  are cosine 

basis transform matrices whose entries are given by  
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In equation (6.1), modes C(u,v,w) represent the transformed coefficients/modes 

(LVs) which is the class of orthogonal transformation where (u,v,w) defines the 

transformed coefficient elements in voxel space.  

The GMA transformed modes can be classified into two categories: (i) dominant 

shape error modes which explain most of the shape error; and, (ii) residual error 

components which are mainly noise in the data, i.e., the measurement uncertainly. 

By reversing equation (6.1), the original shape error field deviation can be expressed 
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as (6.3), where ( , , )C u v w contains the truncated or preserved modes and residuals 

are expressed as  . The significant error components can be further reduced to Xb, 

where b is the set of energy truncated coefficient values and X is composed of 

orthogonal shape vectors. 

1 1 1( , , ) ( , , ) N N M M L Lf i j k C u v w C C C

Xb





      

 
 (6.3) 

Using energy compaction criteria as per GMA, p modal parameters are preserved 

after decomposing m sampled parts. Therefore, the modal parameters set or LVs set 

(β), a p×1 vector, can be generalised as 

1 2[ , ,... ]T

pC C C   (6.4) 

where, 
1C ,

2C ,... pC are the truncated modal parameters used as LVs.  

The residual coefficients are obtained for each part by considering all the remaining 

coefficients after deducting the β set from the original transform coefficient set 

C(u,v,w). The residual vector is estimated as 

( , ,w)C u v    (6.5) 

Synthesis of two statistics: (i) T
2
 statistic has been determined by considering the 

LVs set β; and, (ii) Q statistic has been computed using the residual modal 

component,  . Combining the T
2
 and Q statistics together (Chen et al., 2004) 

provides single bivariate scatter plot which is easier to monitor. Further, joint 

Probability Density Function (PDF) calculation becomes much easier as it depends 

only on two variables, additionally from a quality perspective, engineers need only 

use one single control chart for process monitoring. 
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6.3.1.1 T
2
 Statistic  

T
2
 statistic gives a measure of significant variations of the process. Simply, it is the 

summation of squared coefficient values divided by their variance. T
2
 statistic has 

been calculated as in equation (6.6) based on the modal parameters or LVs set (β), 

which are mainly result of common causes in the process.  

 
2

2

1

p

ki
k

i i

T




   (6.6) 

where, 1,2,...,k m  represents the k
th

 part in the sample. ki  and i denote the i
th

 

LV for k
th

 part and the estimated variance of i
th

 LV respectively. 

6.3.1.2 Q Statistic  

The residual variation is computed in Q statistic where the insignificant variations, 

caused mainly by measurement uncertainty are stored. The insignificant trends in the 

process are computed as  

 
2

1

L M N

k ki

i p
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    (6.7) 

where, mk ,...,2,1 represents the k
th

 part in the sample set and ki denotes the 

insignificant i
th

 LV. 

6.3.1.3 Orthogonality of T
2
 and Q Statistics  

The aforementioned T
2
 and Q statistics depends upon the orthogonality property of 

GMA modes. Basically, the GMA modes are the transformed coefficients from 

voxel data using 3D DCT. The 3D DCT transformation equation (4.5) can be 

simplified and written in matrix form (Li et al., 2013) as expressed in equation (6.1) 

and (6.2). It has been proven that each cosine bases transform matrix is an 
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orthogonal matrix (Rao and Yip, 1990; Strang, 1999), i.e. 
1T

Z ZC C , where Z = L or 

M or N.  Accordingly, 3D IDCT can be formulated as 

 

1 1 1( , , ) ( , , )

( , , ) ( , , )

N N M M L L

T T T

N N M M L L

f i j k C u v w C C C

f i j k C u v w C C C

     



   

  (6.8) 

Further, the transformation matrix may be converted into a vector by concatenating 

the rows, columns and pages. The 3D DCT and 3D IDCT shown in equation (6.1) 

and (6.8) may convert into the following vector form: 
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ˆ ˆ
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 (6.9) 

where Ĉ  and f̂ are LMN dimensional vectors, and G and H are LMNLMN 

transformation matrices. The Ĉ and f̂  are obtained by concatenating the columns 

and pages of C and f respectively, i.e. 
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  (6.10) 

It can also be derived from equation (6.1) and (6.8) that the inverse transformation 

matrix H is the transpose of G, i.e. G = H
T
. Thus, combining with equation (6.9), the 

obtained result 

  
1 TG G   (6.11) 

The equation (6.11) proves that the transformation matrix G is orthogonal. 

Therefore, the transform coefficients are also orthogonal. 

Further, it has been proved that the DCT transformed coefficients are equivalent to 

cosine based least square regression (Huang et al., 2014; Huang and Ceglarek, 
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2002). The least square estimation for the f(i,j,k) is as follows for estimated 

regression coefficients B:  
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T T

f XB

where B X X X f
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 The orthogonal cosine base yields, 
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  (6.13) 

The least square estimation with error for DCT transformation is presented in 

equation (6.3) and combining with (6.13), it gives, 

  B   (6.14) 

The T
2
 and Q statistics are based on the aforementioned orthogonally transformed 

coefficients which imply that they are also orthogonal to each other, since the 

residuals of the GMA model are orthogonal to the modal plane. The correlation 

between the residual of the transformation and the preserved variables are analysed 

for GMA as: 
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 (6.15) 

Therefore, it is proved that T
2
 and Q statistics determined in the GMA domain are 

orthogonal to each other.  
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6.3.1.4 Estimate Confidence Region of GMA based T
2
-Q Integrated 

Statistics  

In the field of multivariate SPC (MSPC) application, few frequently concerning 

issues are related to normal distribution assumption and size of the reduced process 

variables or LVs (Kruger et al., 2001). The likelihood of occurrence of a data point 

in a sampled data set is described by PDF. A parametric approach for determining 

the PDF assumes that the density function will take a particular form which needs to 

be specified upfront (Montgomery, 2008). For example, in case of normal density 

function, the mean value and standard deviation of the process variables to be 

estimated first. In contrast, nonparametric density estimation does not require prior 

knowledge about form of the density function. In the practical case of industrial 

applications, the process variables may not be normally distributed. To overcome 

this challenge, joint PDF is estimated using Kernel Density Estimator (KDE) which 

allows more accurate results when the reduced variable set is not normally 

distributed (Chen et al., 2004). The aforementioned T
2
 and Q statistics require the 

orthogonal property of functional data analysis model which need to be orthogonal 

to each other which has been proved in the previous subsection. KDE is a very 

powerful class of data driven techniques for non-parametric estimation of PDFs 

(Silverman, 1986; Wand and Jones, 1994) which fits an empirical distribution to a 

sample data sets approximating the population. The density function is determined 

by summing up small bumps that are placed at the centre of the each observation. 

The shape of the bumps is defined by the kernel functions such as Gaussian, 

Triangular or Epanechnikov type (Silverman, 1986). 
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In order to estimate the joint density function of T
2
 and Q statistics, a data driven 

technique has been adapted, where the multivariate kernel density estimator can be 

written as 

  
1

1ˆ ( , )
z

r

r

X X
F X H K

z H

 
  

 
  (6.16) 

where 
2 2

,   r
r

r

T T
X X

Q Q

  
    
   

, the Xr denotes the r
th

 instance of measurement, K = 

kernel function, and  H= the rescaling factor so the data are in the same scale in all 

dimensions. 

The confidence region of the control chart is drawn using numerical integration of 

the joint KDE function (6.16) as follows: 

   
1

ˆ ,Vol F x H dx









   (6.17) 

The graph obtained from T
2
 and Q joint PDF is a 3D graph. However, the 2D plot of 

the confidence region is more useful for identifying whether the incoming part is 

within the desired confidence region or not. Therefore, it is important to identify the 

confidence regions with (1-α)% confidence level. Using equation (6.17), it estimates 

the volume (Volα) equivalent to (1-α) under the 3D graph and the corresponding 

projection of the volume in the 2D space determines the confidence region. 

6.3.1.5 GMA based T
2
-Q Control Chart for Shape Monitoring  

The use of multivariate statistics has added advantage over the univariate statistics 

when it comes to extracting complete information of the data. Therefore, the joint 

statistics of T
2
 and Q could extract more information to enhance the detectability of 

the control chart by increasing sensitivity. Assuming the associated sensitivity of T
2
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and Q statistics are 2T
S and QS , respectively, and the T

2
-Q, joint sensitivity could be 

expressed as 

 2 21 2 QT Q T
S S S  


     (6.18) 

where, 1 and 2 are the weightage associated with T
2
 and Q statistics to the joint 

sensitivity,    is the increased sensitivity.  

 

Figure 6.2 Increased sensitivity of control chart by joint T
2
- Q statistics 

Figure 6.2 illustrates the enhanced detectability of the control chart by increased 

sensitivity of the joint T
2
-Q statistics. The green dots represent the conditions that are 

satisfied by integrated T
2
-Q statistics in the operating data. Further, red diamonds are 

not satisfied by integrated T
2
-Q joint statistics. Similarly, purple hexagon, brown 

triangle and blue square in the operating data points represent points satisfied by T
2
 

only, satisfied by Q only and not satisfied by T
2
 and Q respectively. The control 
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chart is developed in two phases: (i) Phase I which involves a preliminary charting 

procedure to discard the outliers from the initial set; and, (ii) Phase II involving the 

development of control limits based on the discarded data set. 

After constructing the control chart, a new operating part data is decomposed into 

GMA modes and the corresponding 
2 ,r rT Q  statistics is plotted in the control chart. 

Under normal operating condition, a good part (
2 ,r rT Q ) should lie within the defined 

confidence regions with 95% and 99% confidence levels with occasional outliers. 

Abnormal process or product changes may cause the shift of data points from its 

confidence regions to outside. Selection of confidence regions is determined by 

quality practitioners based on their control requirements. 

6.4 INDUSTRIAL CASE STUDY  

This case study is conducted on hinge reinforcement part of an automotive door. The 

original shape error deviation and a sample set of decomposed dominant error 

patterns (LVs) are shown in Figure 6.3. The hinge reinforcement is normally 

assembled with main door frame (i.e., door inner panel) to provide sufficient strength 

to hold the door with the side frame assembly of the automotive body. The hinge 

reinforcement part consists of several features and curvatures on the nominal part 

which raises the requirements that the parts be produced within the tight tolerance 

limits in order to minimize variations of the final door assembly. Consequently, 

developing a control chart considering the shape errors is crucial for quality of the 

part by ensuring whether it is within or outside of tolerance. Additionally, if any part 

is out of the control region (limits), the proposed control chart is also able to detect 

the type of dominant modes of the fault which is a crucial step in identifying fault 

root causes. 
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Figure 6.3 Hinge reinforcement part of automotive door: (a) original shape error 

computed from CoP, and (b) decomposed shape error modes (LVs) 

6.4.1 GMA-based T
2
-Q Control Chart Development 

A set of hinge reinforcement parts is measured, and then the parts are categorized as 

good parts by the quality engineer. Based on these good parts, a set of CoPs is 

generated through simulation. These combined set of CoPs are used to develop the 

control chart. The reported control chart is based on sample of 1000 parts data and 

computation of joint PDF for T
2
 and Q joint statistics using KDE. The estimated 

joint PDF is presented as 3D plot in Figure 6.4. However, for process monitoring 

purposes, 2D plot with control limits is more useful for faults detection which has 

been represented as 2D plot with 95% and 99% control regions in Figure 6.5. The 

confidence interval explains that only 5% and 1% data points should scatter outside 

the control regions, respectively, if the process is in normal operation conditions. If 

any process change occurs, then the process will migrate from in-control region to 

outside of the control region. 
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 Figure 6.4 Joint probability density function (PDF) of integrated T
2
-Q statistics for 

hinge reinforcement part 

 

Figure 6.5 2D plot of confidence regions estimation with 95% and 99% confidence 

intervals of integrated T
2
-Q statistics 
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6.4.2 Detection of Faulty Conditions  

The developed T
2
-Q control chart is used to detect defects or faulty conditions which 

are caused by manufacturing process parameter variations or parameter shifts. These 

fabrication process variation leads to part shape errors which may cause by sample 

mean shift or variance change. A global deformation mean shift is caused mainly due 

to fixture or die worn out whereas a local deformation mean shift can be due to part 

misalignment, or localized die worn out. Part bending and twisting which may cause 

by sample variance change are mainly results of the material spring-back, material 

handling etc. Subsequently, the part errors caused by mean shift or variance change 

can cause part fit-ups errors during assembly due to part-to-part interactions. The 

control chart also has the capability to detect the part fit-ups problem when they are 

deviating from in-control region to outside of the control region. The operating 

characteristics (OC) curve provides measure on control chart performance by 

showing that the probability of an observation will fall within the control region for a 

given state of the process. Figure 6.6 shows the probability of being within control 

region with respect to changing global mean shift. In case of part with 0.05mm 

global mean shift, the probability of accepting the part is 0.977 (green line in Figure 

6.6) whereas , the probability of accepting the part is 0.036 when mean shift reaches 

0.15 mm (red dotted line in Figure 6.6). 

The result of a global mean shift of 0.1 mm and 0.15 mm is showing that almost half 

and all of the parts are outside the confidence regions, respectively as depicted in 

Figure 6.7. Further calculations also indicate that the average run length (ARL) for 

the in-control part is 278.57 which is significantly reduced to 3.23 and 1.023 after 

introducing the 0.1 mm and 0.15 mm mean shift. This demonstrates the control chart 

capability for the purpose of fast detection of defects for high volume production. 
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Further, the GMA-based T
2
-Q control chart can efficiently process the capture CoP 

data during production.  It opens the opportunity for 3D optical scanners to be used 

for statistical process control purpose by extracting abnormal process behaviour. 

 

Figure 6.6 Control chart operating characteristics behaviour with changing global 

mean shift 

A univariate statistic can be deducted based on the probability distribution function 

from the joint statistics of T
2
 and Q, which indicates the behaviour of the process 

with time. The parts are plotted as univariate statistic against the time as abscissa 

which is depicted in Figure 6.8. It is shown that the first 1000 parts are in-control 

parts which exhibit the normal process behaviour whereas subsequent 2000 parts are 

mean shifted by 0.1 mm and 0.15 mm respectively. 
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(a) 

 

(b) 

Figure 6.7 Product data with global mean shifts of (a) 0.1 mm, and (b) 0.15 mm at 

95% and 99% confidence interval 
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Figure 6.8 Univariate chart (log scale) on joint analysis of T
2
 and Q statistics for 

global mean shift of hinge reinforcement parts 

Similarly, hinge reinforcement parts are simulated with local deformation (e.g. a dent 

type fault) by gradually increasing to 1.0 mm as depicted in Figure 6.9. Results 

indicate that the parts are scattering closer to outside of the control regions when the 

average dent deviation value reaches to about 0.5 mm as reported in Figure 6.10. A 

univariate statistic can be deducted based on the probability distribution function 

from the joint statistics of T
2
 and Q, which indicates the behaviour of the process 

with time. The univariate statistic, based on the probability density values of the joint 

PDF, has been plotted with a time-base as shown in Figure 6.11. The joint PDF 

values are plotted in logarithmic scale (inverse of original values) for visualization 

purpose. It is observed that there is a change of around 0.5 mm local deformation on 

the parts resulting in the migration of the parts out of the confidence interval. The 

localised part deformation may cause part fit-ups problem when they are mating with 

other parts due to interference with the part surfaces. 
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Figure 6.9 Product shape error with localised part deformation by 1.0 mm 

 

Figure 6.10 T
2
-Q control chart for locally deformed hinge reinforcement parts 
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Figure 6.11 Univariate chart (log scale) on joint analysis of T
2
 - Q statistics for 

locally deformed hinge reinforcement parts 

6.4.3 Comparative Analysis of GMA-Based T
2
-Q Control Chart vs. 

PCA-Based T
2
-Q Control Chart 

The comparative analysis of the developed GMA-based T
2
-Q control chart with the 

current state-of-the-art is conducted using PCA-based T
2
-Q control chart. Classical 

multivariate statistical monitoring methods based on PCA (Ku et al., 1995; Bakshi, 

1998; Phaladiganon et al., 2013) implicitly assume that the observations at one point 

of time are statistically independent of observations to another point of time and that 

latent variables follow a Gaussian distribution (Lee et al., 2004b; Lee et al., 2004a). 

However, in real industrial processes, these assumptions are invalid due to their 

dynamic and nonlinear characteristics. Moreover, PCA decomposition is incapable 

for detecting shift in data which can lead to incorrect principle component of part 
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data (Matuszyk et al., 2010). Therefore, monitoring charts based on conventional 

PCA tends to show many false alarms and poor detectability. 

The proposed approach of process monitoring with PCA-based monitoring have 

been compared. Firstly, a set of in-control parts is considered for the PCA 

decomposition which is applied on the nominal mesh node deviation of each part in 

order to evaluate the shape error field.  The obtained eigenvectors and eigenvalues 

are selected relying on the explaining variance of the data set in descending order. 

Secondly, the principle components explain 90% of the total variance is considered 

for T
2
 statistic and rest are computed in the Q statistic. Therefore, T

2
 and Q statistics 

are extracted based on the retained principal components of the data set and 

discarded principle components, respectively. To obtain T
2
 and Q statistics on new 

part data, the observed deviation on the mesh nodes are projected onto the plane 

defined by the PCA retained principal components. The Q statistic gives the residual 

between the PCA model and observed deviations. 

6.4.3.1 In-Control Mean Shift and Variance Change Detection 

During real production of stamped sheet metal parts, variance change can be 

observed for within-run production; or mean shift may present for run-to-run 

production. The GMA-based T
2
-Q control chart has the capability to decompose the 

part shape errors independently, and it can detect in-control mean shift or variance 

change present in the primary data set. Therefore, the GMA-based T
2
-Q control chart 

clearly exhibit whether the mean shift or variance change present in the primary data 

set. On the contrary, PCA-based T
2
-Q control chart fails to identify the variance 

change or mean shift present in the data set. Figure 6.12 shows that GMA-based T
2
-

Q control chart has the capability to identify if there is any variance change or mean 

shift present in the part data set when the mean shift and variance induced data sets 
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are plotted together.  In contrast, PCA-based T
2
-Q control chart fails to detect in-

control mean shift or variance change present in the data set as it can be seen in 

Figure 6.13 where the ‘blue cross’ and ‘red dots’ are mixed. 

 

Figure 6.12 GMA-based T
2
-Q control chart plot considering mean shift and variance 

induced data sets 

 

Figure 6.13 PCA-based T
2
-Q control chart plot considering mean shift and variance 

induced data sets 
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6.4.3.2 Average Run Length (ARL) Comparison 

The developed approach of process monitoring is compared with PCA-based T
2
-Q 

control chart. For this, first, PCA decomposition is applied on the mesh node 

deviation and eigenvalues are selected based on 90% of the variation. Second, T
2
-Q 

control chart developed with KDE and confidence regions are identified. ARL for 

both charts is compared with in-control data. In this study, a total of 10,000 parts 

have been simulated to estimate the average run length for PCA decomposed and 

GMA decomposed control chart. ARL is compared for increasing global mean shift 

and local deformation with PCA-based T
2
-Q control chart and GMA-based T

2
-Q 

control chart (Figure 6.14).  

 
Figure 6.14 ARL comparison between PCA-based and GMA-based T

2
-Q control 

chart: (a) global mean shift, and (b) local deformation 

PCA-based T
2
-Q control chart is unable to detect the global mean shift and ARL 

remains constant, whereas GMA-based T
2
-Q control chart detects the global mean 

shift by rapidly decreasing ARL with increasing mean shift [as depicted in Figure 

6.14(a)]. Similarly, in the case of local deformation detection, GMA-based T
2
-Q 

control chart respond quickly with rapidly decreasing out-of-control ARL as shown 

in Figure 6.14(b). In-control ARL (at 0.0 mm) is always preferred to be higher side 
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as it reduces the false alarm. It can be observed that GMA-based T
2
-Q control chart 

ARL at 0.0 mm is approximately three times higher than the PCA-based T
2
-Q 

control chart. Therefore, massive amounts of in-process CoP data captured by 3D 

scanner metrology systems can be plotted simultaneously using the control chart to 

detect the defects quickly. It demonstrates that the control chart has the capability to 

fully utilise 3D metrology scanners for in-line process control and speedy defects 

detection. 

The aforementioned three criteria: (a) in-control mean shift and variance change 

detection, (b) out-of control ARL for global, and, (c) localised mean shift detection 

have been used to compare the GMA-based and PCA-based T
2
-Q control charts. The 

obtained results demonstrate that the GMA-based T
2
-Q control chart has better 

detection power in comparison with PCA decomposed control chart. 

6.5 SUMMARY  

This chapter presents multivariate statistical process control chart for non-linear 

shape errors monitoring using high dimensional data (cloud-of-points) captured by 

in-process or off-line sensor at single station. The state-of-the-art control charts are 

not able to utilise modern 3D non-contact metrology scanners as they capture high 

dimensional and high volume data. Further, CMM based point data at key features is 

not able to reveal all shape related defects, especially if the fault does not influence 

the key feature. On the contrary, surface based measurement data can capture entire 

part surface, however, extracting useful information is not trivial. Moreover, current 

market requirements are more focused on the type of faults detection and speed of 

detection. To overcome the aforementioned limitations and meet the current market 
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demand, a more proactive control chart is required which can use high dimensional 

CoP data for fast shape related faults detection.  

This chapter developed a GMA-based integrated bivariate T
2
-Q monitoring chart 

which uses reduced variable sets as modelled by the GMA (Proposed in Chapter 4). 

The major steps to generate the control chart involve: 

(i) Part shape error decomposition: GMA aims to remove high redundancy in 

the data by defining reduced set of statistically uncorrelated and independent 

variables.  The utilisation of the functional data analysis such as the GMA 

model provides significantly reduced set of latent variables (LVs) to 

represent 3D shape error. 

(ii) Determination of T
2
/Q statistics: Often the reduced variables are still in large 

number which arises the problem of monitoring multiple control charts. To 

overcome this problem, two multivariate statistics have been computed. 

Significant variations of the process are captured through T
2
 statistic which is 

computed based on the GMA modelled LVs. The insignificant 

variations/trends, caused mainly by measurement uncertainty, are stored Q 

statistic which is determined through residual mode set.  

(iii) T
2
-Q Integration: T

2
 and Q statistics are integration with joint PDF 

estimation. Joint PDF of T
2
 and Q statistics have been evaluated through 

KDE which allows more accurate results when the reduced variable set is not 

normally distributed. The joint statistics of T
2
 and Q can extract more 

information to enhance the detectability of the control chart by increasing the 

sensitivity. This results in GMA-based integrated bivariate T
2
-Q monitoring 

chart which can be used for high dimensional non-normal data (cloud-of-

points). 
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The proposed control chart exhibits following advantages to detect faulty conditions: 

(i) Global or local shape defects detection: It detects global part shape defects 

such as unwanted variance change or mean shift, a common occurrence for 

within batch or batch-to-batch variation of stamped sheet metal parts. 

(ii) In-control mean shift or variance change detection: During real production 

of stamped sheet metal parts, variance change can be observed for within-

run production; or mean shift may present for run-to-run production. The 

GMA-based T
2
-Q control chart has the capability to handle the part shape 

errors independently and it can detect in-control mean shift or variance 

change present in the primary data sets. 

(iii) Speedy detection of defects: Average run length drops significantly when 

the process starts migrating from its normal working conditions. This 

demonstrates speedy detection of faults.  

The proposed control chart has been demonstrated with industrial case study and 

different faulty conditions. This demonstrates the ability of the control chart to use 

Cop data from 3D metrology scanners for in-line process control and speedy defects 

detection.   
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 FIXTURE LAYOUT OPTIMISATION CHAPTER 7

CONSIDERING PRODUCTION BATCH   

7.1 INTRODUCTION 

Assembly fixture plays a significant role to achieve desired dimensional and joining 

qualities (Key Product Characteristics - KPCs) of assembled product where fixture 

design parameters act as Key Control Characteristics (KCCs). It has been 

demonstrated that the assembly fixtures have significant impact on product 

dimensional and geometric / shape variation and, subsequently, on product yield 

(Phoomboplab and Ceglarek, 2008; Das et al., 2014). This is especially true for 

assembly process with sheet metal parts which lead to significant shape variation due 

to mainly spring-back, forming process parameter variations, tooling errors etc. 

Additionally, due to the compliance of sheet metal, parts can get deformed and cause 

variation in assembly process (Li et al., 2001). As a consequence, excessive variation 

in automotive closure panels may cause fundamental problems, such as, unnecessary 

closing effort, improper fit causing vibration and noise, air leakage as well as poor 

aesthetic appearance due to misalignment (Ceglarek et al., 2004; Camelio et al., 

2004a; Huang et al., 2014). Therefore, the shape variation management is a key issue 

in current industrial assembly process as it has direct impact on the product quality, 

cost and time-to-market. Shape variation management through robust fixture design 

is inevitable prerequisite to minimise the defects caused by variation during 

manufacturing and product usage.  

Additionally, new assembly joining processes require proper part-to-part interaction 

management in order to eliminate assembly shape variation and satisfy joining 
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requirements. For example, Remote Laser Welding (RLW) joining process requires 

tight control of both minimum and maximum part-to-part gap (Ceglarek, 2011) 

which emphasises proper design of fixture locators and clamps to mitigate the part-

to-part gap (i.e. KPCs) requirement. Unable to satisfy the part-to-part gap 

requirements result in unsatisfactory joint quality and low process yield. 

Subsequently, the fixturing elements such as locators and clamps are to be optimally 

configured on the part surface such that part-to-part fit-up/gap remains within the 

specified limit. Few attempts were made to optimise fixture layout considering the 

metal fit-up problem of sheet metal assembly (Li et al., 2001; Li and Shiu, 2001). 

However, research on fixture layout optimisation is limited to single compliant 

assembly due to lack of proper methodology to include shape variation associated 

with a batch of compliant assemblies. Undoubtedly, a batch of sheet metal parts, 

produced by metal forming process, contains shape variation. Consequently, fixture 

layout optimised for single assembly is not sufficient to provide optimum results for 

batch of assemblies. Therefore, fixture design optimisation of single non-ideal 

compliant assembly is not sufficient to mitigate the shape variation associated with 

batch of assemblies. Absence of proper method to optimise fixture layout 

considering batch of assemblies poses critical challenges on performance of the 

assembly fixture during production and results in poor production yield. The 

challenges in developing an optimum fixture layout considering shape variation of 

production batch can be summarised into three categories as follows: 

(1) Shape variation quantification for production batch: The part shape error results 

in part-to-part fit-ups problem during assembly. Further, the production yield and 

product quality are based on the real production parts. Thus, the shape variation 

related to production volume is required to be quantified in order to obtain 
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optimum fixture layout aiming towards increased production yield and product 

quality.  

(2) High-dimensional design space: The design space for fixture layout optimisation 

can be classified into two categories: (i) The types of part to be assembled in the 

assembly station – The design space is expanded with the types of part (e.g. door 

inner panel, hinge reinforcement and reinforces door opening) being assembled 

in a station and to represent the production shape variation of each type, number 

of parts are to be modelled. (ii) Large number of locators - The locating scheme 

for compliant sheet metal parts involves large number of locators (N-2-1 fixture 

layout where N>>3) to satisfy the dimensional and shape quality of the assembly. 

Further, number of locator increases proportionally to the types of part to be 

assembled, size of the part and complex nature of part-to-part interaction. The 

design space for each locator further increases depending upon the allowed 

position of the locator on the corresponding part surface. 

(3) Highly nonlinear relationship between KPCs and KCCs: The locations of the 

KCCs (such as clamps) have nonlinear effects on KPC variations. Further, single 

KCC might have influence on the multiple KPCs or single KPC might have 

effected by multiple KCCs. Therefore, explicit understanding of the relation 

between KCCs and KPCs is unavoidable prerequisite for sheet metal assembly 

process simulation with fixture. 

This chapter addresses the aforementioned challenges by proposing a novel robust 

fixture layout optimisation methodology considering production batch of non-ideal 

compliant assemblies. This chapter has been disseminated in a conference paper 

(Das et al., 2015). To address the first challenge, this chapter adapts the shape 

variation quantification methodology, namely, Statistical Geometric Modal Analysis 
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(SGMA) (proposed in Chapter 5) which aims to identify the main shape error modes 

from a batch of parts and quantifies the shape variation into few composite parts. 

Composite part can be defined as a part composed of all the major significant shape 

error modes present in the production population. In reality, the composite part may 

not exist but it reduces the efforts required for assembly process simulation as it 

composed of all major shape error modes. These composite parts carry the shape 

variation information associated with batch of production parts and they are utilised 

for fixture layout optimisation. Further, the design space for optimisation increases 

with (a) the number of composite parts required to explain the shape variation of 

each part type, and (b) types of part to be assembled. To reduce the number of 

composite parts required for optimisation, i.e. to reduce design space, this chapter 

proposes composite assemblies selection based on correlation and entropy based 

selection criteria. Subsequently, the locators are varied within the allowed design 

space to map the KCCs to the KPCs which addresses the aforementioned second 

challenge of high dimensional design space reduction. Thereafter, the third 

challenge of nonlinear relationship between KPCs and KCCs are identified through 

parameterisation of fixture locators and calculation of analytical surrogate model by 

linking composite assembly model and fixture locators. The optimisation is focused 

on maximising the probability of joining feasibility index which represents the 

likelihood of obtaining satisfactory joint quality. 

The following sections are arranged as follows: Section 7.2 describes the problem 

formulation for fixture layout optimisation considering production batch of sheet 

metal parts. Section 7.3 provides an overview of fixture layout optimisation 

methodology by synthesising composite parts, high dimensional design space 

reduction by composite assembly selection, and identification of analytical relation 
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between KPCs and KCCs. Section 7.4 demonstrates the applicability of the proposed 

method through industrial cases and compares with Monte-Carlo based simulation. 

Further, Section 7.5 presents the summary of this chapter.  

7.2 PROBLEM FORMULATION 

Let denote that an assembly consists of L number of KCCs, i.e. the number of 

locators. The position of a locator is denoted as 

  , , ,      1,2,l l
KCC x y z l L    (7.1) 

where,  , ,
l

x y z  represents the Cartesian coordinate of the KCC location, lKCC . 

The KCCs are allowed to move within its lower and upper limit on the defined part 

surface, i.e. the KCCs are controlled within the design space from start location to 

end location. Therefore, the KCCs can take any location within the defined design 

space and each KCC has its impact on the KPCs (e.g. part-to-part fit-ups). Therefore, 

the positions of KCCs are defined as 

 
 

 

min max

min

max

,      1,2,

,

, ,

, ,

l l l

l i i i l

l e e e l

KCC KCC KCC l L

where

KCC x y z

KCC x y z

    





 (7.2) 

The  min , ,l i i i l
KCC x y z denotes the initial start location of the KCC, 

 max , ,l e e e l
KCC x y z denotes the initial end location of the KCC and it can take any 

value in between 
min

lKCC and 
max

lKCC . 
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 Further, the KPCs can be defined as part-to-part interaction based fit-ups 

requirement at joining location. For example, the assembly consists of stN  number 

of KPCs which can be written as  

  : ,      1,2,i stKPCs KPC i N   (7.3) 

where, i represents the i
th

 KPC in the assembly.  

In the assembly station, all the locators (KCCs) are required to be placed optimally 

which will conform to the KPC specification such as part-to-part gap should be 

below the upper specification limit defined by the process requirements. In addition, 

the KPC’s conforming specification is effected by the shape variation of mating 

surfaces as excessive variation may result in higher part-to-part gap. The 

optimisation problem is formulated as satisfying the KPC requirement by defining 

the probability of joining feasibility index (p).  The probability of satisfying the KPC 

requirement is defined as 

 
No.of points satisfying the requirement at 

Total number of points defined at 

KPC
p

KPC
  (7.4) 

The optimisation is formulated as maximisation of the probability of joining 

feasibility index, as 

 1

min max  , ,   1,2,

stN

i

l l l

maximise p

sub to KCC KCC KCC where l L



 
 



    


 (7.5) 

where, KCCs are controlled within the design space (
min

lKCC = starting clamp 

position and 
max

lKCC = end clamp position) as per the product design guidelines and 

constraints. Figure 7.1 illustrates the KCC movement with respect to KPC (e.g. 



-172- 

 

clamp movement along the remote laser welded joint stitch) and also demonstrates 

the corresponding part-to-part gap distribution to calculate probability of joining 

feasibility index. 

 

Figure 7.1 Schematic representation of the KPC and KCC locations: (a) the KCC 

(clamp) movement from start to end point in the design space, (b) cross sectional 

view of part-to-part interactions along with KPC and KCC, and (c) KPC lengthwise 

part-to-part gap distribution with upper specification limit to satisfy the KPC quality 

criteria 

7.3 FIXTURE LAYOUT OPTIMISATION METHODOLOGY 

The proposed fixture layout optimisation methodology is composed of three stages. 

Firstly, a batch of parts is measured and shape variation is quantified by synthesising 

composite parts; and initial process configurations such as joint locations, initial 
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fixture locations (clamps, support blocks and locators etc.) are considered as initial 

process input. Thereafter, the finite element modelling for fixture simulation is 

performed considering composite parts, fixture elements (KCCs) and contact pairs 

using Variation Response Method (VRM) software which is a MatLab™ based finite 

element modelling software toolkit with capabilities of fast modelling specific 

features required by assembly process (Franciosa et al., 2015). VRM is a new 

comprehensive methodology for dimensional management of assembly processes 

with compliant non-ideal parts which allows to model the product-to-process 

interaction. At this stage, fewer composite assemblies have been selected based on 

developed composite assembly selection criteria which quantify the batch variation 

of assembled parts. This helps to reduce design space as fewer composite assemblies 

are selected for optimisation. Finally, analytical surrogate model is developed by 

identifying the relation between the defined KPCs (e.g. RLW stitch requirements) 

and KCCs (e.g. clamp locations) to address the nonlinear relationship between KPCs 

and KCCs. The optimisation is carried out to obtain the optimised fixture layout 

considering the KPCs by varying the KCCs (clamp locations) based on the obtained 

surrogate model. Optimiser updates the variables (i.e. KCCs) of the process to 

maximise the joining feasibility index as defined in equation (7.5). Figure 7.2 

illustrates the fixture design optimisation methodology considering the batch of parts 

shape variation modelling, composite assembly selection to reduce design space, and 

optimisation performed on the developed surrogate model under the VRM modelling 

environment.  
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Figure 7.2 Overview of fixture design optimisation considering production batch of 

sheet metal parts 

As the sheet metal parts are compliant in nature, ‘N-2-1’ fixture locating scheme has 

been adapted in this thesis to satisfy the quality criteria at KPCs. As the number of 

clamps increases with the number of KPCs and number of composite assemblies, the 

optimisation problem turns into high dimensional design space. Therefore, the KPCs 

(part-to-part gaps) are controlled with KCCs (clamps) in this high dimensional 

design space. The KPCs are evaluated by using Finite Element Analysis (FEA) in 

Variation Response Method (VRM) simulation platform which is developed by 

Franciosa et al. (2015). The proposed methodology is based on the following 

assumptions: 

Initial Process Information
(CAD specs, Locator Strategy)

Part Measurement
(Batch of Parts)

Batch of Parts Modelling (Chapter 5)

• Statistical Geometric Modal Analysis (SGMA)

• Composite Parts

Optimum Layout

SGMA based Composite Assembly Selection

• Composite Assemblies with Map Index (MI) 

• Correlation Criteria Based Clustering

• Entropy Based Assembly Selection

SGMA based Optimisation Strategy Formulation

• Analytical Surrogate model development

• Maximise Probability of Joining Feasibility Index 

VRM Modelling Environment
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 Single station assembly process is considered with multiple sheet metal parts, i.e. 

all parts are loaded into same fixture. 

 Part thickness is constant and parts are considered as shell element for the FEA 

simulation. 

 The locators such as pins are represented as frictionless point contacts to position 

the parts with respect to fixture and mating parts.  

 Clamps and part support blocks (i.e. NC blocks) are frictionless surface contacts 

and they are considered as rigid bodies.  

The fixture simulation involves locating the parts using the pins at hole and slot 

locations and contact pair is defined between the mating surfaces in order to avoid 

part-to-part penetration. Fixture modelling using VRM aims to model the elastic 

deformation of parts or assembly when the parts are loaded and clamped in the 

fixture. 

7.3.1 SGMA based Composite Assembly Selection  

Relying on the composite parts and number of parts present in an assembly, several 

composite assemblies can be created by considering the exhaustive combination of 

all types of composite parts. Therefore, the design space is expanded with the 

increased number of part types (e.g. door inner panel, hinge reinforcement, 

reinforced door opening, hinge plates) in an assembly and number of composite parts 

are to be considered to quantify the batch variation of each part type. Therefore, to 

reduce the high dimensional design space, efficient selection criteria are required to 

choose the most influential composite assemblies for the optimisation. For example, 

in an assembly operation, M number of parts (𝑃𝑇𝑚, ∀𝑚 = 1,2, ⋯ 𝑀) are to be joined 

which consists of 𝑁𝑠𝑡 number of KPCs (𝐾𝑃𝐶𝑖, ∀𝑖 = 1,2, ⋯ 𝑁𝑠𝑡), where 𝑚 represents 
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the part id and 𝑖 represents the i
th

 KPC in the assembly. The assembly consists of L 

number of KCCs. Therefore, relying on the types of shape error present in a batch, 

each part type may be grouped into 𝑁𝑚 number of clusters. For each cluster, a total 

of three composite parts can be created depending on maximum, minimum and 

average energy compaction criteria, i.e. 𝐶𝑃𝑇𝑚,𝑚𝑎𝑥, 𝐶𝑃𝑇𝑚,𝑚𝑖𝑛, 𝐶𝑃𝑇𝑚,𝑎𝑣𝑔. Therefore, 

the assembly system can be written as 
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 (7.6) 

Therefore, relying on the number of clusters to be modelled for each part type, the 

combination of composite assemblies also increases. The number of obtained 

composite assemblies, by taking exhaustive combination of all parts, can be 

formulated as 

  : MAX MIN AVGCompositeAssembly CA CPT CPT CPT    (7.7) 

Therefore, equation (7.7) indicates that even though the part shape variations are 

quantified in few composite parts, still the combination of the composite parts of one 

part type (e.g. composite parts of door inner panel) with composite parts of other part 

types (e.g. hinge reinforcement or reinforced door opening) becomes larger design 

space. As each simulation is computationally expensive, optimisation based on all 

combinations of composite assemblies become computationally inefficient. 

Therefore, aiming to reduce the design space for optimisation, it emphasises the 
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selection of fewer composite assemblies which are representative of all other 

assemblies (i.e. batch variation). In order to achieve fewer composite assemblies’ 

selection, two criteria are proposed: (i) Correlation Criteria Based Clustering and (ii) 

Entropy Based Assembly Selection. 

7.3.1.1 Correlation Criteria Based Clustering 

All combinations of composite parts are determined as per equation (7.7) to create 

complete set of composite assemblies. In order to achieve reduced number of 

composite assemblies for optimisation, a correlation threshold based clustering 

criteria is introduced. It involves clustering of composite assemblies based on similar 

KPC Map Index (MI). MI depends on the selected KPCs such as point deviation, 

part-to-part gap distribution, or surface area deformation etc. Considering the initial 

locator strategy (KCCs), such as given clamp layout and NC blocks, an initial fixture 

simulation provides part-to-part KPC map index for all the composite assemblies, 

CA. A map index of a given i
ih

 KPC ( iKPC ) of j
th

 composite assembly is defined as 

a function, 

  , ,( ,  )i j i jMI f CA KCC  (7.8) 

where, the function ‘f’ denotes the fixture simulation process which is composed of 

part-to-part interaction, boundary constraints, contact pair detection and 

part/assembly flexibility under FEA simulation. Therefore, equation (7.8) represents 

the fixture simulation process with map index as an outcome. 

Subsequently, considering all the defined KPCs in the assembly, a total MI (TMI) for 

the j
th

 composite assembly of the composite assembly set CA, is evaluated as, 
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,

1

stN

j i j

i

TMI MI


  (7.9) 

Similar shape error contained assemblies will exhibit similar MI as all other 

parameters are kept constant. The correlation coefficient ( ,j k ) between two 

composite assemblies (j and k) is estimated as, 

 
 

, 2 2

cov ,j k

j k

j k

TMI TMI


 
  (7.10) 

where, j≠k and j , k  represent the standard deviations of the total map index of j
th

 

and k
th

 assembly respectively. 

Therefore, the correlation matrix has been determined for all composite assemblies 

and a user defined correlation threshold, α, has been applied to group the assemblies 

having the similar KPC map index. By applying the correlation based clustering, the 

composite assemblies can be clustered into fewer groups consist of similar type of 

map index distribution. For example, total number of clusters created after applying 

the map index based correlation criteria is clN  and all the composite assemblies (i.e. 

CA) are grouped into clN number of groups. This implies that one assembly from the 

specific cluster can be chosen for the optimisation and the obtained result should be 

optimum for all the assemblies belong to that cluster. 

7.3.1.2 Entropy Based Assembly Selection 

To select one representative assembly from each cluster for optimisation, entropy 

based selection criterion is introduced. The analysis of the MI’s content can be 

performed by borrowing tools that have been developed in the field of information 
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theory. In particular, it is proposed first to determine the Information (I) contained on 

a MI. This is calculated for the i
th

 MI of j
th

 assembly ( ,i jMI ) as (Suh, 2005), 

 , 2 ,logi j i jI p   (7.11) 

where, ,i jp represents the probability of satisfying the joining requirements of ,i jMI . 

This is estimated as a ratio between the numbers of points in a MI satisfying the 

joining requirements over the total number of points of the MI. The I closer to zero 

indicates that the parts are more likely to be joined, i.e. the assembly will satisfy the 

upper specification. 

The entropy (H) of whole assembly having stN  number of KPCs is calculated, 

following the Shannon’s definition involving the quantification of information by 

measuring the uncertainty in a MI, as (Cover and Thomas, 2006), 

 
, ,

1

stN

j i j i j

i

H p I


   (7.12) 

The entropy of an assembly reflects the probability level of satisfying the KPC 

criteria. One the other hand, higher entropy value implies greater difficulty to satisfy 

the KPC. Therefore, to select the representative assembly from each cluster, the 

assembly with highest entropy value has been selected for optimisation. The Selected 

Composite Assembly (SCA) for optimisation for a
th

 cluster can be written as

 ,maxa a pSCA H , where, p represents the p
th

 assembly in that cluster. 

Subsequently, the total number of selected composite assembly for optimisation can 

be estimated as 

  ; 1,2,a clSCA SCA a N    (7.13) 
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where, 𝑎 represents the 𝑎𝑡ℎ cluster and 𝑁𝑐𝑙 represents the number of cluster after the 

correlation based clustering process.  

7.3.2 SGMA Based Optimisation Strategy Formulation 

The optimisation strategy is developed relying on the KPC MI satisfying criteria. All 

KPCs are to be satisfied to achieve good quality assembly, i.e. the KPCs should 

satisfy the specification limit defined by the process. Additionally, the design space 

for each KCC (e.g. clamps) is large and KCC positions have nonlinear behaviour 

with the KPCs. In order to address this challenge, three step optimisation approach is 

adapted.  

Firstly, the design space of each KCC is discretised with sampled KCC locations. 

Thereafter, finite element based fixture simulation is performed considering the 

selected composite assemblies with respect to sampled KCCs locations in the design 

space. The probability of joining feasibility index for each selected composite 

assembly has been determined.  

Secondly, the nonlinear relationship between the KPCs and KCCs has been identified 

by developing analytical surrogate model to satisfy the KPCs index, i.e. the 

probability of joining feasibility index as per equations (7.4) and (7.5).  

Lastly, genetic algorithm based optimisation has been performed to find the optimum 

KCC location by maximising the joining feasibility index (p) on the analytical 

surrogate model. Figure 7.3 illustrates the optimisation methodology based on the 

selected composite assembly by quantifying the shape variation of a batch of parts. 
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Figure 7.3 Overview of optimisation framework with objective function 

7.4 RESULTS OF FIXTURE LAYOUT OPTIMISATION WITH INDUSTRIAL 

CASE STUDY 

The proposed fixture layout optimisation methodology has been validated with 

industrial case study from automotive assembly. The hinge reinforcement part is 

assembled with main door inner frame providing sufficient strength to hold the door 

with main automotive body frame and further resists deformation of the door inner 

panel during opening/closing of the door. The assembly configuration of hinge 
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reinforcement part (1.8 mm nominal thickness) and door inner panel (0.75 mm 

nominal thickness) is shown in Figure 7.4. To enable remote laser welding (RLW) 

joining process, the required gap or clearance between the two parts is required to be 

0.35 mm, i.e. the gap between the hinge reinforcement and door inner panel should 

be within 0.35 mm to ensure the joining quality standards. As per the product design 

specification, the assembly is composed of total 13 RLW stitches with an initial 

fixture layout of 16 clamps and 14 NC blocks to support the assembly joining 

process. The part-to-part gap map (GM) along the stitch length is used as map index 

(MI). 

 

Figure 7.4 Door inner panel and hinge reinforcement assembly configuration 

7.4.1 SGMA based Composite Assembly Selection  

Composite parts are created by utilising SGMA technique for hinge reinforcement 

and door inner panel parts. The hinge component is grouped into two clusters based 

on the shape errors contained within the measured batch of parts and composite parts 
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are created for these two clusters using maximum, minimum and average energy 

compaction criteria as shown in Figure 7.5. The hinge part measurement data mainly 

has two groups of shape errors and composite parts from these groups can be utilised 

for optimisation instead of individual parts. The obtained map index (MI) for 13 

RLW stitches considering hinge composite parts of cluster 2 and individual hinge 

parts belong to cluster 2 assembled with nominal inner panel are plotted in Figure 

7.6. The upper boundary limit shows that every gap map distribution should be under 

0.35 mm to ensure good quality joint or to maximize the probability of joining 

feasibility index. It shows that the map index of maximum and minimum energy 

compacted composite parts create a boundary for the individual hinge parts where 

the average energy compacted composite part behaves more likely average gap map.   

 

Figure 7.5 Synthesis of composite parts (deviation in mm) for hinge reinforcement 

component using SGMA methodology 
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Figure 7.6 Map Index (MI) for composite parts of hinge cluster 2 and individual 

hinge parts belong to the cluster assembled with nominal door inner component 

Similarly, the door inner panel exhibits three clusters and each cluster consists of 

maximum, minimum and average energy compacted composite parts as reported in 

Figure 7.7. The obtained map index (MI) for all 13 RLW stitches considering inner 

panel composite parts of cluster 1 and individual door inner parts belong to cluster 1 

assembled with nominal hinge reinforcement are plotted in Figure 7.8. Similar to 

hinge reinforcement composite parts, door inner panel composite parts also exhibit 

alike behaviour towards the map index distribution.  It can also be observed from 

Figure 7.8 that the map index for maximum or minimum energy compacted 

composite parts creates a boundary for the individual door inner panel parts where 

the average energy compacted composite part behaves more likely average gap 

distribution. Therefore, optimisation based on the composite parts will be sufficient 

enough to optimise the all individual belongs to the same cluster. Further, maximum 

and minimum energy compacted composite parts may be selected for the 

optimisation as they satisfy the boundary gap map distribution enclosing the gap 

distribution of individual parts. 
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Figure 7.7 Synthesis of composite parts (deviation in mm) for door inner component 

using SGMA methodology 

Further, map index is generated considering assembly of variational hinge belongs to 

cluster 2 and variational inner belongs to cluster 1. A total of 30 assemblies have 

been created through randomly selecting individual variational hinge and door inner 

panel from the respective cluster and the gap map distributions are plotted with 

composite assemblies in Figure 7.9. Composites assemblies have been created by 

combining the composite parts from the cluster of hinge and door inner panel 

respectively. Therefore, these composite parts are used to create composite 

assemblies. 
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Figure 7.8 Map Index (MI) for composite parts of door inner cluster 1 and individual 

door inner parts belong to the cluster assembled with nominal hinge component 

 

Figure 7.9 Map Index (MI) for composite assemblies of inner cluster 1 and hinge 

cluster 2 with 30 randomly generated variation hinge-inner assemblies 

In Figure 7.9, map index for maximum, minimum and average composite assemblies 

is also plotted considering maximum-maximum, minimum-minimum and average-

average combination of hinge and inner composite parts respectively. The results 

again confirm that composite parts may be used instead of using every composition 
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of variational hinge or inner part for optimisation and optimisation based on these 

composite assemblies is eventually optimising all combination. Further, maximum 

and minimum energy compaction based composite parts may be used for composite 

assembly creation. In total 4 composite parts for the hinge reinforcement component 

and 6 composite parts from the door inner panel (only maximum and minimum 

energy compaction based criteria used) can be utilised for composite assembly 

creation.  Therefore, total of 24 composite assemblies can be obtained which can be 

utilised for optimisation. The number of composite assemblies depends on the 

number of types of part belong to the assembly and also the number of clusters for 

each part type. 

7.4.1.1 Correlation Criteria Based Clustering 

Relying on the number of part types belong to an assembly as well as the number of 

clusters present in each part type, the number of composite assemblies for 

optimisation also increases which is not again computationally efficient. This results 

in expanded design space for optimisation. Aiming to reduce the design space, fewer 

representative composite assemblies must be selected for optimisation. To overcome 

this challenge, correlation criteria based composite assembly grouping technique has 

been adapted and assembly entropy based selection has been introduced to select 

representative assembly from each cluster. 

For the hinge reinforcement and door inner panel assembly optimisation, in total of 

24 assemblies have been created considering maximum and minimum energy 

compaction criteria. Applying the initial clamp configuration, map index has been 

determined for all the 24 assemblies. Subsequently, the gap map based correlation 

matrix has been developed to identify the similarity among assemblies and cluster 

them according to correlation coefficient based threshold value (𝛼). For this case 
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study, the correlation threshold, 𝛼 = 0.93, has been applied to identify the similar 

gap map based assemblies and group them into clusters. The higher correlation 

threshold will increase the number of selected composite assemblies for optimisation 

which may be unnecessary as similar type of multiple composite assemblies will be 

included resulting in higher computation time. On the other hand, lower threshold 

will eliminate few assemblies from the optimisation process resulting in same 

assembly present in multiple cluster, i.e., clusters are not mutually exclusive to each 

other. Therefore, the correlation threshold has been chosen such that the composite 

assemblies are become mutually exclusive to each cluster.  

7.4.1.2 Entropy Based Assembly Selection 

Based on the correlation cut-off, a total of 7 clusters are obtained and they are 

tabulated in Table 7.1. The highest entropy base assembly of each cluster has been 

selected for optimisation. 

Table 7.1 Composite assembly clustering and entropy based assembly selection 

Cluster Assembly No Selected highest entropy (𝑯𝒋) 

1 1, 5, 9 Assembly 5: 2.14 

2 2, 6, 10 Assembly 2: 0.86 

3 3, 7, 11, 21 Assembly 3: 0.21 

4 4, 8, 12, 14, 18, 22 Assembly 4: 0.21 

5 13, 17 Assembly 13: 1.02 

6 15, 19, 23 Assembly 15: 0.21 

7 16, 20, 24 Assembly 24: 0.50 

 

Moreover, it can be observed that assemblies selected for cluster 3, 4 and 6 exhibit 

same entropy level. Consequently, further reduction in assembly selection for 

optimisation may possible when only one assembly is selected from the assemblies 
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having same entropy value. Therefore, instead of selecting total 7 composite 

assemblies, only 5 composite assemblies can be selected for optimisation which 

eventually consider batch of parts or production variation in principle. 

For this case study, relying on highest entropy, a total of 7 composite assemblies 

have been considered for optimisation with given layout to obtain optimal clamp 

location aiming to satisfy the gap requirements. Therefore, the selected composite 

assemblies can be listed as 

𝑆𝐶𝐴 =  {
𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦 5, 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦 2, 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦 3, …

 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦 4, 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦 13, 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦 15, 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦 24
} 

7.4.2 SGMA Based Optimisation  

The optimisation strategy for this case study has been illustrated in two stages, 

firstly, selection of stitches which are going out of the upper boundary specification. 

From the initial clamp simulation, it has been observed that 6 out of total 13 stitches 

are violating the upper specification limit. Therefore, for demonstrating the case 

study, those 6 stitches,  1, 2, 4, 5, 8, 9KPC RLW RLW RLW RLW RLW RLW are 

selected for optimisation as the other stitches are already satisfying the joining 

feasibility index. 

Thereafter, initial clamp sensitivity analysis has been performed to identify the effect 

of clamp movement (KCCs movement) on the stitches (KPCs). Subsequently, the 

clamps (KCCs) related to those out-of-bound stitches have been identified and they 

are made as movable clamps and rest of the clamps are kept in their original position 

as fixed clamps. For this case study, there are 5 movable clamps and 11 fixed 

clamps, summing total 16 clamps (KCCs) to ensure gap map criteria. The movable 

clamps are responsible to mitigate the risk associated with out-of-bound stitches. The 

other clamps are kept as fixed as they have already satisfied the upper specification 
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criteria for all composite assemblies. Therefore, by obtaining the optimal position of 

KCCs will satisfy the global joining feasibility index. A pictorial view of the stitches 

as well as the initial clamp location is depicted in Figure 7.11(a). The clamps are 

made to move along the flange side and parameterised in between start position (

min

lKCC ) as ‘0’ and end position (
max

lKCC ) as ‘1’ (KCC [0, 1]) as depicted in 

Figure 7.11(c). 

As the design space for each KCC (e.g. clamp) is large and KCC positions have 

nonlinear behaviour with the KPCs, analytical surrogate model has been developed 

identifying the relationship between KPCs and KCCs. In order to avoid long 

computation time, the design space has been sampled with initial sampling points, 

i.e. a sample of clamp locations have been utilised to evaluate the probability of 

joining feasibility index. Based on the initial results, an analytical function based 

fitting model has been developed using surrogate modelling technique (Forrester et 

al., 2008) and optimisation has been carried out based on the analytical model. As 

explained by Das et al. (2014), individual response function for each assembly has 

been developed initially based on the sampled points. This step is mainly to avoid 

high computation time of simulation during optimisation as optimisation on 

analytical based function is much faster. 

The optimisation has been performed based on maximisation of probability of 

joining feasibility index as per the equation (7.5). The analytical function based 

surrogate models are plotted in Figure 7.10 where the responses are quite complex in 

nature. It depicts the relationship of clamps (KCCs) to probability of joining 

feasibility index. 
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Figure 7.10 Probability of joining feasibility index plot (surrogate model) for 

selected composite assemblies (a) with respect to KCC1 and KCC2, and (b) with 

respect to KCC4 and KCC5 

Genetic algorithm has been selected as optimiser to maximise the probability of each 

RLW stitch for all selected composite assemblies. The clamp locations (KCCs) have 

been optimised to maximise the total joining probability considering all the selected 

composite assemblies (SCA). Single point crossover has been used and the crossover 

probability is considered as 0.5. The mutation probability is considered as 0.10. The 

population size has been considered as 50. The number of generation is considered 

as 1000. The total number of generations is considered as optimisation termination 

criterion i.e., optimisation terminated after 1000 generations. Figure 7.11(b) shows 

the optimised clamp layout with optimised position of clamps with the gap colour 

map of selected composite assembly 1 (SCA1). Figure 7.11(c) depicts the pictorial 

clamp movement and Figure 7.11(d) reports the optimised movable clamp location. 
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Figure 7.11 Hinge reinforcement and door inner panel composite assembly: (a) 

initial clamp layout, (b) optimised clamp layout, (c) clamp movement, and (d) 

optimised clamp location values 

The optimal clamp layout has been applied on all the selected composite assemblies 

and gap distribution of critical stitches have been plotted in Figure 7.12. The clamp 

layout results in probability of joining feasibility index as 0.949 for all stitches. From 

the gap distribution plotted in Figure 7.12, it can be observed that few gaps mainly 

for 𝑅𝐿𝑊1, 𝑅𝐿𝑊4 and 𝑅𝐿𝑊5 for few composite assemblies are not conforming to 

the maximum gap specification. The following corrective actions may be taken to 

mitigate the risk associated with non-conforming stitches 

 Based on the gap distribution of the neighbouring area of 𝑅𝐿𝑊1, the stitch 

location can be moved from its present location by which the stitch will satisfy 

the gap criteria. A small violation of 𝑅𝐿𝑊2 stitch is observed where it tends to 

out of upper boundary limit. 
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 𝑅𝐿𝑊4 and 𝑅𝐿𝑊5 both stitches are controlled with single clamp, 𝐾𝐶𝐶3. It might 

be possible to add another clamp in this region to mitigate the risk of going out 

of the tolerance zone.  

 𝑅𝐿𝑊8 and 𝑅𝐿𝑊9 are controlled by clamps 𝐾𝐶𝐶4 and 𝐾𝐶𝐶5. Both the stitches 

conforming to the upper boundary gap requirement for satisfactory weld quality. 

 

Figure 7.12 Map Index (MI) at optimised clamp location for selected composite 

assemblies (SCA) 

The state-of-the-art modelling approach for batch of parts optimisation, such as 

Monte-Carlo based optimisation requires thousands of variational assembly 

instances. This large number of assemblies implies very high dimensional design 

space and time consuming simulation process. Subsequently, the simulation time 

increases with the increase in number of clamp layouts to be evaluated for each 

variational assembly. To compare the Monte-Carlo based simulation with proposed 

methodology based simulation, the optimal clamp locations have been used with all 

other identical parameters to obtain the map index. The map index of selected 
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stitches has been plotted for 50 Monte-Carlo based assemblies in Figure 7.13 and it 

shows that the gap behaviour is same as composite assemblies. The probability of 

joining feasibility index for Monte-Carlo simulation is 0.977 based on 1000 

assemblies generation which is slightly higher than the composite assembly based 

optimisation result, i.e, 0.949. This means composite assembly based solution is 

giving higher probability to obtain satisfactory joints when applied on Monte-Carlo 

based assemblies. Therefore, the obtained result implies that composite assembly 

based optimisation provides more robust solution and it can substitute the Monte-

Carlo based simulation for sheet metal assembly fixture design optimisation 

considering batch of parts. 

 
Figure 7.13 Map index (MI) for 50 Monte-Carlo based assemblies at optimised 

clamp location 
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7.5 SUMMARY  

This chapter presents a new approach to improve the probability of joining feasibility 

index by determining an N-2-1 fixture layout optimised for a production batch of 

non-ideal sheet metal parts. Fixtures control the position and orientation of parts in 

an assembly process and thus significantly contribute to process capability that 

determines production yield and product quality. As a result, a number of approaches 

were developed to optimise a single- and multi-fixture assembly system with rigid 

(3-2-1 fixture layout) to deformable parts (N-2-1 fixture layout). These approaches 

aim at fixture layout optimisation of single ideal parts (as define by CAD model). 

Thus, major challenges involving the design of a fixture layout for assembly of sheet 

metal parts can be enumerated into three categories: 

(i) Shape variation quantification for production batch: The production yield 

and product quality are determined based on a production volume of real 

(non-ideal) parts. Therefore, shape variation quantification model is required 

to depict the real production scenario.   

(ii) High-dimensional design space: The dimensionality of design space 

increases with the number of parts to be assembled in the assembly station 

and large number of locators (‘N-2-1’ locating scheme) due to compliant 

nature of sheet metal parts.    

(iii) Highly nonlinear relationship between KPCs and KCCs: The locations of 

the KCCs (such as clamps) have nonlinear effects on KPC variations.   

To address the aforementioned challenges, this chapter proposed fixture layout 

optimisation methodology utilising the shape variation model, SGMA which is 

developed in Chapter 5.  The methodology is based on: (i) generation of composite 
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parts to model shape variation within given production batch; (ii) selection of 

composite assembly representing production batch and parameterisation of fixture 

locators; and (iii) calculation of analytical surrogate model linking composite 

assembly model and fixture locators to probability of joining feasibility index. The 

analytical surrogate model is, then, utilised to maximise the probability of joining 

feasibility index starting from initial fixture locator layout. An industrial case study 

involving assembly process of remote laser welded door assembly illustrates and 

validates the proposed methodology. 
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 CONCLUSIONS, CRITICAL REVIEW CHAPTER 8

AND FUTURE SCOPE   

This chapter provides conclusions and overall research findings which are derived 

from the research presented in the previous chapters in the context of Shape 

Variation Modelling, Analysis and Statistical Control with compliant sheet metal 

parts. Thereafter, the advantages and limitations of the proposed methodologies are 

summarised as critical review. Broader impact of the research shows the 

applicability and significance of the proposed methods in the domain of assembly 

simulation with sheet metal parts. Furthermore, future scope based on the current 

research is proposed.  

8.1 CONCLUSIONS 

In assembly system modelling, there are industrial needs to simulate assembly 

system with compliant parts in order to improve product and process quality by 

addressing shape variation modelling, analysis and statistical control. In the context 

of shape variation modelling, analysis and statistical control, this thesis, firstly, 

develops the shape error and shape variation models to represent non-ideal part(s), 

thereafter, statistical process control and fixture analysis are carried out to monitor 

and reduce shape variation from the assembly process. The major research findings 

of the developed methodologies are listed as follows:   

(i) Shape error modelling of compliant part: A functional data analysis based 

GMA method is proposed for modelling part shape error by decomposing the 

shape error field into a series of independent shape error modes. This 
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functional data analysis approach is based on the underlying principle of the 

shape error characterisation which identifies and quantifies the shape error of 

3D freeform shaped part by decomposing the measured deviation into 

significant shape error modes. The kernel used for the decomposition is three 

dimensional Discrete Cosine Transform (3D DCT) which has ability to 

decompose the measured shape error data into various orthogonal error 

modes. Currently, 3D DCT is used for (i) video compression or image 

compression - these applications require 2.5D capability (2D pictures 

presented sequentially as frames per sec); or (ii) 3D volumes with “uniform 

non-scattered voxel structure” such as used in MRI or CT data (solid with no 

voids). However, the application of 3D DCT approaches cannot be used 

directly to model 3D volumes with “non-uniform scattered voxel structure” 

such as sheet metal parts used in automotive, aerospace, appliance and ship 

building industries; or other 3D solids with genuses (holes that penetrate the 

solid) or shells (internal void of a solid).  Therefore, to apply 3D DCT on 

“non-uniform scattered voxel structure”, the data structure has been 

generalised with Laplace interpolation. To extract the main significant error 

modes, Pearson Correlation test and Least Squares correction criteria have 

been employed. Therefore, in short, to apply 3D DCT effectively on 3D 

freeform shaped geometry, total three criteria have been introduced 

 Generalisation of 3D DCT to model 3D volumes with “non-uniform 

scattered voxel structure” 

 Generalisation of 3D DCT interpretability criteria to identify 

significant shape error modes 
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 Generalisation of 3D DCT accuracy criterion to model correct 

magnitude of shape error modes of individual part 

The aforementioned three criteria have been achieved with the following: 

 Uniform smooth voxel structure: 3D sheet metal parts are in the category 

of 3D freeform shaped parts where 3D decomposition cannot be applied 

directly as they are based on 3D volume model. In order to convert the 

3D freeform shaped model to 3D volume model, voxelisation method has 

been adapted which creates non-uniform scattered voxel structure. 

Further, Laplace interpolation has been applied to this non-continuous 

voxel deviation field to smooth the voxel structure enabling the 3D 

decomposition to be applied on the smooth volume structure.  

 Mode interpretation criterion: The shape error decomposition into 

significant modes and identification of most relevant shape error modes, 

Pearson’s correlation coefficient based mode interpretation criterion has 

been introduced. This helps to reduce the number of modes for model 

development keeping the GMA model tractable.   

 Model accuracy criterion: To achieve the accuracy of the selected modes 

for compact model development, least squares based modes magnitude 

correction has been implied. This enhances the overall model accuracy to 

depicts the original part deviation field with fewer selected modes.   

The main advantage of GMA method is that it can be applied to characterise 

shape errors of 3D freeform shaped part. Voxelisation of the mesh model 

plays a dominant role in modelling and achieving accuracy of shape error 
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decomposition. Further, compactness of the shape error model is achieved by 

using mode truncation and selection criteria. Energy compaction criterion 

selects the coefficients/modes according to their global energy contribution 

(i.e. it provides a global control to model shape error), whereas the 

correlation test emphasises the important shape error modes related to 

original part shape error. Therefore, the proposed GMA methodology plays 

significant roles when exploring the following areas: 1) part shape error 

identification of freeform shaped part by using functional data model without 

application of any Finite Element Analysis (FEA); 2) identification of main 

shape error modes from real part which will allow the variation simulation in 

statistical tolerance analysis; 3) the modal decomposition pointing towards 

the characterisation of fabrication process at design stage and manufacturing 

stage; and, 4) from part shape error model to batch of parts shape variation 

model, where, the mode magnitudes can be parameterised by means of its 

values to quantify the variation associated with a batch of parts.  

(ii) Shape variation modelling of batch of compliant parts:  The functional data 

analysis approach, Geometric Modal Analysis (Chapter 4) has been extended 

to shape variation characterisation and quantification method, named 

Statistical Geometric Modal Analysis (SGMA). The GMA decomposed 

shape error modes have been used as parameters to represent shape variation 

of a batch of parts, eventually the production shape variation. SGMA method 

characterises the shape variation associated with a batch of parts by 

generalising the statistical behaviour of shape error modes, and quantifies the 

shape variation of production parts by synthesising composite parts.  
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The shape variation modelling of a batch of parts is achieved by generalising 

the statistical behaviour of shape error modes and synthesising composite 

part(s). However, statistical characterisation of shape error modes and 

creation of composite parts are not trivial tasks as they involve the following: 

(a) identification of important shape error modes not only from individual 

part but also from batch of parts, (b) the identified shape error modes might 

not be normally distributed, or (c) composition rule to synthesise composite 

part(s) considering all the major shape error modes with their magnitudes. 

Therefore, to model shape variation effectively, the following issues have 

been addressed 

 Identification of major shape error modes from a batch of parts: The 

decomposed shape error modes can be classified as common modes (i.e. 

modes are obtained from every part decomposition of the batch) and 

uncommon modes (i.e. modes are obtained only from few parts 

decomposition). To characterise shape variation, both common and 

uncommon modes are considered. 

 Non-normal distribution of shape error modes: For statistical 

characterisation of identified major shape error modes, normal 

distribution based fitting might not be accurate enough to depict real 

shape error modes distributions. Many real processes, the assumption of 

normal distribution may not be accurate as most of the processes do not 

conform to normal distribution. Therefore, non-parametric density 

estimation, such as, Kernel Density Estimation (KDE) to estimate the 

Probability Density Function (PDF) of modes, has been employed to 

overcome the problem if the modes are not normally distributed. 
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 Number of composite parts required to quantify shape variation: The 

composite part is a hypothetical part composed of all the major 

significant shape error modes from the batch. Depending on the types of 

shape error present in the measured batch, composite part might be more 

than one to represent the whole population. To classify parts into few 

groups, having similar shape error modes, k-means clustering method has 

been applied. Each cluster has been represented with composite parts 

based on energy compaction criteria and root sum of squares criteria. 

The SGMA method fulfils the following two objectives:  

 Generation of variational virtual parts: The statistical characterisation of 

extracted shape error modes helps to generate virtual parts. The statistical 

characterisation is based on batch of parts measurement data. The main 

assumption of normality distribution of modes has been overcome by 

using Kernel Density Estimation (KDE). The probability density function 

of each modes helps to generate variational virtual parts which represent 

the virtual production parts. Therefore, the virtual generation of shape 

error field can be extended to synthesise the statistical tolerance zone for 

freeform shaped parts.  

 Synthesis of composite parts: The SGMA method develops a novel 

technique to quantify the shape variation into single or few composite 

part(s) which is composed of major shape error modes present in a batch 

of parts. The SGMA method based composite parts act as an enabler to 

optimise the fixture design process considering not only the individual 

part but also a batch of parts.  
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Furthermore, the GMA and SGMA methods can be extended to model shape 

variation at early design phase. Current, Computer Aided Tolerancing (CAT) 

tools are mainly capable of modelling orientation and position tolerance 

specifications, where part shape errors are omitted. The developed Geometric 

Modal Analysis (GMA) and Statistical Geometric Modal Analysis (SGMA) 

methods provide a simulation platform where shape errors can be modelled 

and included for statistical tolerance analysis. However, GMA and SGMA 

methods are based on the measurement data which might not be available at 

early design phase. To overcome the limited or no measurement data 

availability at early design phase, a physics-driven simulation framework to 

model shape errors of compliant sheet metal parts can be proposed.  

This implementation can be carried out at three stages: (i) initial shape error 

prediction by using physic-based simulation, such as, stamping process 

simulation based on nonlinear finite element analysis (e.g. using commercial 

tools - AutoForm, HyperForm, or, DYNAFORM) to predict the initial shape 

error at early design stage; (ii) decomposition of initial shape error into 

orthogonal shape error modes by utilising GMA; and, (iii) simulation of 

shape error variation classes by assigning distribution to each orthogonal 

shape error modes by using SGMA. At this stage, the distributions may be 

assumed based on historical data or keeping the mean (decomposed mode 

magnitude) to variance ratio as constant. This proposed approach enables to 

generate shape errors at early design stage of assembly process which can be 

utilised to optimize the assembly process, including fixture design and 

joining process parameters. 
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(iii) Control charts to monitor process and product quality shapes: A GMA-

based integrated bivariate T
2
-Q control chart for monitoring and detection of 

shape defects has been developed. The shape defects may involve global and 

local mean shift or variance change. They are caused by manufacturing 

process variation. These mean shift or variance change lead to part error 

during fabrication or part fit-ups error in assembly. The current approaches 

for synthesising these two statistics (T
2
 and Q) are not sufficient to identify 

the shape error modes. The proposed multivariate control chart adapts a new 

direction of obtaining statistically uncorrelated and independent latent 

variables set by decomposing the data set within a single sample using GMA 

decomposition method (proposed in Chapter 4). This helps to achieve 

enhanced granularity of information extraction from the measured data set 

and increase the shape defects detectability. The latent variables (GMA 

modelled data) are used to determine multivariate T
2
 statistic, and residual 

data (un-modelled) gives the Q statistic. Integrating the T
2
 and Q statistics 

using non-parametric Kernel Density Estimator (KDE) provides a bivariate 

scatter plot which has enhanced sensitivity to detect shape defects. The 

proposed methodology is demonstrated with automotive sheet metal parts 

which fulfil the following critical requirements for stamped sheet metal part 

monitoring: 

 Mean shift detection: Sheet metal parts, produced with different 

runs/batches, exhibit mean shift. The obtained results successfully 

demonstrate that GMA based T
2
-Q control chart is able to detect mean 

shift effectively.  
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 Local shift detection: Local shift in stamped parts is mainly caused by 

stamping tool worn out locally, tools not bottoming out as well as uneven 

material flow during stamping. The power of detectability for local 

deformation is demonstrated with GMA based control chart and 

compared with PCA based control chart. It results in increased 

detectability for GMA decomposed T
2
-Q control chart.   

 Identification of in-control mean shift or variance change detection: The 

control chart has the ability to detect in-control mean shift or variance 

change which can be observed for within-run production or for run-to-run 

production. 

Currently, the parts can be measured using fast, in-line 3D metrology 

scanners which can capture high volume CoP data. The measured part CoP 

data, then, can be used for statistical process monitoring and shape defects 

detection using the proposed GMA-based T
2
-Q control chart. Industrial case 

study based results show the capabilities of the GMA-based T
2
-Q control 

chart for monitoring and detecting the shape defects caused by variance 

change or mean shift.  It also demonstrates advantages of the proposed 

GMA-based T
2
-Q control chart for detecting in-control mean shift, variance 

change or ARL over currently used PCA-based T
2
-Q control chart. Therefore, 

the control chart has the following capabilities:  

 New direction to obtain the reduced variable set to synthesise T
2
 and Q 

statistics: a new direction of obtaining reduced set of statistically 

uncorrelated and independent process variables by decomposing the data 

set within a single sample (GMA decomposition) instead of PCA- or 
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PLS-based decomposition which is done across the samples. This 

emphasises the enhanced granularity of decomposition which enhances 

the shape fault detectability.  

 Use of high dimensional and high volume CoP data: The control chart 

has the ability to process the high dimensional and high volume CoP data 

captured using modern 3D non-contact scanners. As these scanners have 

potential to be used for in-line to capture whole part surface information 

(CoP data) very quickly, the proposed control chart can use the CoP data 

for in-line process/product monitoring and defects detection. 

 Detection of shape based faults: The control chart has the ability to detect 

the mean shift or variance change which can cause part fit-ups errors 

during assembly due to part-to-part interactions. The localised mean shift 

or variance change can also be detected using the proposed control chart. 

During real production of stamped sheet metal parts, variance change can 

be observed for within-run production, or mean shift may present for run-

to-run production. Further, the proposed GMA-based T
2
-Q control chart 

has the ability to detect in-control mean shift, variance change and ARL 

change over state-of-the-art  PCA-based T
2
-Q control chart. 

(iv)  Fixture layout optimisation considering production batch: A new fixture 

layout optimisation methodology for non-ideal compliant assembly has been 

proposed considering the shape variation associated with a batch of parts. 

This research objective is motivated by the industrial need of fixture design 

with compliant sheet metal parts to achieve better product quality. It is an 

application based extension of batch of parts shape variation quantification 

method, i.e., SGMA method (Chapter 5) which quantifies the shape variation 
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by creating composite parts. Subsequently, fixture layout optimisation 

methodology utilises the composite parts for creating composite assemblies 

which can be used for optimisation. The proposed fixture layout optimisation 

methodology can be applied on production fixture development which 

involves non-ideal deformable sheet metal parts, applicable in various sectors 

such as automobile, aerospace, rail and home appliances. The fixture layout 

optimisation significantly goes beyond the current state-of-the-art and 

practice as the fixture can be designed and optimised not only for part shape 

error but for production shape variation. Fixturing design optimised only for 

part shape error provides significant limitations which are reflected in (a) 

large number of fixture tuning quality loops and adjustments; (b) longer 

product development time; and (c) lower product quality. 

To address the aforementioned limitations, a new fixture layout optimisation 

methodology has been developed considering the shape variation of a batch 

of production parts. By extending SGMA method, this fixture layout 

optimisation methodology proposes a novel way for selecting fewer 

composite assemblies which will represent the production shape variation. 

The fixture layout optimisation method involves: (i) composite part model of 

production batch to create composite assemblies, (ii) selection of composite 

assembly by correlation and entropy criteria, and (iii) maximisation of the 

probability of the joining feasibility index. 

The developed fixture layout optimisation methodology addresses the 

following: 

 Consideration of shape variation of production batch: As the production 

yield or product quality depends on the real shape variation of production 
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parts, the developed fixture layout optimisation methodology addresses 

this challenge by using composite parts which represent the production 

shape variation. 

 Reduction of high dimensional design space: The design space for fixture 

layout optimisation increases with number of parts to be assembled as 

well as large number of locators. The fixture layout optimisation 

methodology addresses this challenge by selecting fewer composite 

assemblies which are representative of the production shape variation and 

by restricting locator’s movement.   

 Highly nonlinear relationship between KPCs and KCCs: The nonlinear 

behaviour of KPCs and KCCs is identified through developing the 

analytical surrogate model by linking the selected composite assemblies 

and fixture locators (i.e. clamp locations) with an aim to increase the 

joining feasibility index.  

The proposed fixture layout optimisation methodology significantly explores 

the following areas: (1) Fixture layout optimisation, by addressing shape 

variation of a batch of non-ideal compliant assemblies, considers the 

production parts and identifies robust fixture layout parameters through 

optimisation; and (2) Replacement of time expensive Monte-Carlo based 

simulation by eliminating thousands of variational assembly instances based 

simulation. The industrial case study shows that the results obtained through 

the use of selected composite assemblies can replace the time consuming 

Monte-Carlo simulation with same level of joining feasibility index.  
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8.2 CRITICAL REVIEW 

The research aims to develop models for shape variation modelling, analysis and 

statistical control with compliant sheet metal parts where these models can be used 

for product and process development. This thesis discusses two new enablers for 

shape variation monitoring and reduction: (i) modelling and characterisation of 

shape errors of compliant part-GMA method; and (ii) modelling and 

characterisation of shape variation of a batch of compliant parts-SGMA method. 

These two methods provide in-depth understanding of shape errors and shape 

variation of non-ideal compliant parts. Further, these two enablers have been used to 

develop (iii) Control charts to monitor process and product quality shapes of 

compliant parts and detects the shape related faults; and (iv) optimisation of fixture 

layout considering production batch for assembly process design to reduce shape 

variation.  

This section provides a critical review of the methodologies developed in this thesis. 

Firstly, the advantages of proposed methodologies for shape variation modelling, 

analysis and statistical control in the context of assembly system with compliant 

sheet metal parts are highlighted in Section 8.2.1. Thereafter, limitations of the 

adapted approaches are listed in Section 8.2.2.  

8.2.1 Advantages of Proposed Methodologies 

The advantages of the four methods developed in this thesis for shape variation 

modelling, analysis and statistical control are summarised as follows:  

(i) Accurate shape error modelling of 3D freeform shaped compliant part which 

provides a simplified parametric functional model to achieve quality 

solutions for assembly process simulation and process diagnosis –  



-210- 

 

The developed GMA methodology has been compared with available state-

of-the-art decomposition approaches which fail to accurately extract shape 

error modes from measurement data. The proposed GMA method (in Chapter 

4) efficiently extracts significant shape error modes which can be further used 

for GD&T simulation and process diagnostics due to the parametric nature of 

the decomposed shape error modes. Industrial case studies show 

improvements between results obtained via proposed GMA decomposition 

and those obtained by state-of-the-art methods. 

(ii) Quantification of shape variation of a batch of 3D freeform shaped compliant 

parts which provides a novel approach to quantify production errors to 

achieve quality solutions when assembly process involves production parts –   

Due to unavailability of production shape variation quantification model, 

intrinsic variation of the production process cannot be considered during 

assembly process simulation which leads to significant limitation to predict 

production quality. The proposed SGMA method (developed in Chapter 5) 

characterises the statistical nature of product and quantifies shape variation to 

support assembly process simulation by depicting real scenario of production 

parts.  

(iii) Identification of shape related faults of 3D freeform shaped compliant 

part/product utilising high dimensional CoP data captured by using fast, in-

line non-contact optical measurement scanners –  

Current control charts are not able to handle high dimensional data for 

detecting shape related faults. There is a lack of efficient approach for 

statistical process monitoring of non-linear shapes. The proposed GMA-based 
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integrated bivariate T
2
-Q monitoring chart (developed in Chapter 6) can be 

used for high dimensional non-normal data (cloud-of-points) captured by in-

process or off-line sensors with the ability to: (i) detect global part shape 

failures such as unwanted variance change or mean shift, a common 

occurrence for within batch or batch-to-batch variation of stamped sheet 

metal parts; (ii) detect local part shape failures such as local shift or variance 

change; and, (iii) classify the shape faults to predict manufacturing quality 

and yield. 

(iv)  Improvement of production yield and product quality of assembly process 

with compliant parts considering production shape variation to optimise 

assembly fixture layout – 

Current approaches for assembly systems modelling with compliant parts are 

mainly limited to case-by-case which is based on individual part shape error 

instead of production shape variation. The production shape variation 

significantly affects the assembled product quality and production yield. 

Therefore, the proposed SGMA based fixture layout optimisation 

(demonstrated in Chapter 7) is focused on maximising the probability of 

joining feasibility index which represents the likelihood of any assembly will 

have satisfied quality.     

Overall benefits of assembly system modelling with compliant parts 

Current industrial practice is to develop assembly system based on the trial-and-error 

approach by experienced product and process engineers which is time consuming, 

expensive and repetitive in nature. To support product and process engineers, 

efficient and effective modelling approaches are required for early detection of 
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faults, subsequently, to take preventive actions. This thesis discusses the industrial 

needs for shape variation modelling, analysis and statistical control. Further, the 

developed methodologies provide an engineering platform for accurate depiction of 

assembly system to achieve improved product quality, early stage optimisation and 

reduced quality loops during assembly system development.  

8.2.2 Limitations of Proposed Methodologies 

Driven by industrial needs and to simulate assembly process with compliant parts, 

the proposed methodologies in this thesis address the following four critical 

modelling areas: (i) modelling and characterisation of shape error of compliant 

part; (ii) modelling and characterisation of shape variation of a batch of compliant 

parts; (iii) shape variation monitoring and detection of shape defects; and (iv) 

optimisation of assembly fixture layout considering production batch. However, 

there might be other enhancements required to support assembly process in addition 

to the proposed methodologies in this thesis.  

The limitations of the proposed techniques (developed in Chapter 4, 5, 6 and 7) are  

 As the GMA decomposition methods based on the underlying principle of 3D 

DCT which is very efficient to characterise the global errors or repetitive 

local errors. In case of non-repetitive local errors with low magnitude, the 

shape error modes might not be accurate. Further, special attention must be 

required during voxelisation (voxel size selection) of mesh model to accurate 

representation of shape error modes. 

 For SGMA method, the main assumption is the production process stability 

and selected sample parts are representative of the production population. 
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 The developed control chart can detect the shape related faults efficiently for 

global errors whereas for local errors, it fails to identify the location of the 

fault. Further, the control chart is able to process data captured from single 

measurement station. Captured data from multiple sensors at multi-station 

poses additional challenges due to further increase in data dimensionality and 

data dependency.   

 The fixture layout optimisation is based on single station which might not be 

applicable to multi-station fixture layout optimisation for batch of parts as the 

variation propagation between stations needs to be considered as well. 

Under the abovementioned conditions, there are requirement to extend the proposed 

modelling techniques to address multi-station interaction related issues. The 

following Future Scope (Section 8.3) analyses the potential extension of the 

proposed methodologies.  

8.3 FUTURE SCOPE 

The thesis has proposed a new direction of shape error and shape variation modelling 

using real measurement data. Further, both models have been applied for shape 

defects detection and robust assembly fixture layout optimisation. The proposed 

methodologies can be applied in various sectors of design and manufacturing with 

compliant sheet metal parts. The future research can be summarised as follows: 

 Geometric dimensioning and tolerancing (GD&T) together with process 

capability analysis plays a significant role in quality assurance. Tolerance 

synthesis for compliant non-ideal parts is a challenging task due to complex 

shapes and geometries. The complexity of shape errors increases with the 

increase in geometrical complexity. The developed GMA decomposition method 
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can be used for tolerance synthesis of individual part as well as assembly 

tolerancing. The GMA transform coefficients can be used for tolerance allocation 

of individual component to meet the assembly requirement. Further, their 

distribution through SGMA can help to quantify the process capability.  

 In sheet metal stamping, die tryout is an important yet iterative task to perform in 

order to make the die and punch with correct geometry. Die manufacturers are 

keen to reduce this iterative die construction process and total time required for 

die tryout. Further, the die tryout solely depends on the experience of stamping 

process engineer and the process is very time consuming. Therefore, the GMA 

transformed modes or shape error patterns can be used to reduce the number of 

iteration required for the die tryout. To reduce the rework on die tuning, the 

shape error decomposition methods can be used by identifying what to reduce 

and by how much to meet the part acceptance requirements.  

 Currently, all the design is based on the nominal geometry expressed as CAD 

model. However, there is no model available to embed the shape error patterns 

with CAD model. Therefore, it is real challenge to represent real part model with 

CAD by developing standard for variational parts. The developed GMA and 

SGMA models can be further integrated with CAD model in order to represent 

real part variation, i.e. non-ideal geometry.  

 The proposed GMA-based integrated T
2
-Q control chart (proposed in Chapter 6) 

is related to the detection of shape error based on the measurement from single 

measurement station. Captured data from multiple sensors at multi-station poses 

additional challenges to handle due to further increase in data dimensionality and 

data dependency. Therefore, there is future scope for distributed sensors based 
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multi-station process monitoring. Further, shape error detection can be linked 

with the root cause analysis to identify the cause of the defects. For example, 

stamping process parameters can be mapped with shape error modes to minimise 

the variation, to identify the cause of variation, and to adjust the process to its 

original operating state. These mode based approach can be utilised to take 

corrective actions and preventive actions related to process stabilisation.  

 Current, SGMA-based fixture layout optimisation (proposed in Chapter 7) is 

focused on single assembly station. Therefore, the work on the fixture layout 

optimisation can be further extended to multi-station considering batch of parts’ 

shape variation. Future focus will be multi-fixture optimisation at multi-station 

level where variation propagation through stations is to be considered. 

8.4 BROADER IMPACT 

The methodologies developed in this thesis for ‘shape variation modelling, analysis 

and statistical control’ with compliant parts can be considered as basic building 

blocks for carrying out engineering tasks related to assembly process considering the 

variation associated with it. They can be utilised to achieve near zero defect 

production with improved quality and reduced time-to-launch. These systematic 

approaches are especially unavoidable when increasing market requirements are to 

be met and Right First Time (RFT) is to be achieved. They are the key enablers for 

facilitating cost and time-to-launch (or time-to-market) reduction during new product 

introduction. In global market scenario, the manufacturers are in tremendous need of 

effective methods and models to simulate assembly system to achieve Right First 

Time in cost-effective way. The developed methodologies have the capabilities to 

reach near zero defects by (i) reducing the number of engineering changes during the 
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product launch stage; (ii) identifying upfront the risk regions during prototype 

building stage; and (iii) improving in-process quality during manufacturing stage. 

These aforementioned capabilities will result in increased productivity and quality 

(reduced maintenance time and scrap) to place manufacturers at the forefront of a 

rapidly developing market.  

 The developed methodologies provide a systematic analysis and synthesis 

framework when the assembly process is affected by variations, especially it holds 

true for emerging remote laser welding joining technology. Integrating RLW joining 

process with existing production system triggers new requirements of key enablers 

which can optimise and monitor assembly system aiming to achieve near zero defect 

and reduced time-to-market. Current, computer-aided engineering (CAE) tools fail to 

provide sufficient flexibility and capability to model assembly system with new 

requirements imposed by RLW joining technology. The developed methodologies in 

this thesis provide the much needed platform to meet the requirements of RLW 

joining process and overcome the modelling limitations of current CAE techniques. 

Further, current industrial practice to eliminate faults occurring at product ramp-up 

stage and/or production stage is based on trial-and-error method. As a result, it 

becomes a repetitive, time consuming and expensive process. To overcome the trial-

and-error based limitations, the methodologies developed in this thesis contribute to 

reduce development lead time (i.e. reduction in engineering changes and quality 

checks), early detection of risk regions which might occur during production, and 

monitoring of assembly quality for pre- and post- production stages.  
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