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Abstract

Foreground object detection is a fundamental task in computer vision with many appli-
cations in areas such as object tracking, event identification, and behavior analysis. Most
conventional foreground object detection methods work only in a stable illumination en-
vironments using fixed cameras. In real-world applications, however, it is often the case
that the algorithm needs to operate under the following challenging conditions: drastic
lighting changes, object shape complexity, moving cameras, low frame capture rates, and
low resolution images. This thesis presents four novel approaches for foreground object
detection on real-world datasets using cameras deployed on moving vehicles.
The first problem addresses passenger detection and tracking tasks for public transport
buses investigating the problem of changing illumination conditions and low frame cap-
ture rates. Our approach integrates a stable SIFT (Scale Invariant Feature Transform)
background seat modelling method with a human shape model into a weighted Bayesian
framework to detect passengers. To deal with the problem of tracking multiple targets, we
employ the Reversible Jump Monte Carlo Markov Chain tracking algorithm. Using the
SVM classifier, the appearance transformation models capture changes in the appearance
of the foreground objects across two consecutives frames under low frame rate conditions.
In the second problem, we present a system for pedestrian detection involving scenes
captured by a mobile bus surveillance system. It integrates scene localization, foreground-
background separation, and pedestrian detection modules into a unified detection frame-
work. The scene localization module performs a two stage clustering of the video data. In
the first stage, SIFT Homography is applied to cluster frames in terms of their structural
similarity, and the second stage further clusters these aligned frames according to consis-
tency in illumination. This produces clusters of images that are differential in viewpoint
and lighting. A kernel density estimation (KDE) technique for colour and gradient is
then used to construct background models for each image cluster, which is further used
to detect candidate foreground pixels. Finally, using a hierarchical template matching
approach, pedestrians can be detected.
In addition to the second problem, we present three direct pedestrian detection methods
that extend the HOG (Histogram of Oriented Gradient) techniques (Dalal and Triggs,
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2005) and provide a comparative evaluation of these approaches. The three approaches
include: a) a new histogram feature, that is formed by the weighted sum of both the
gradient magnitude and the filter responses from a set of elongated Gaussian filters (Leung
and Malik, 2001) corresponding to the quantised orientation, which we refer to as the
Histogram of Oriented Gradient Banks (HOGB) approach; b) the codebook based HOG
feature with branch-and-bound (efficient subwindow search) algorithm (Lampert et al.,
2008) and; c) the codebook based HOGB approach.
In the third problem, a unified framework that combines 3D and 2D background modelling
is proposed to detect scene changes using a camera mounted on a moving vehicle. The
3D scene is first reconstructed from a set of videos taken at different times. The 3D back-
ground modelling identifies inconsistent scene structures as foreground objects. For the
2D approach, foreground objects are detected using the spatio-temporal MRF algorithm.
Finally, the 3D and 2D results are combined using morphological operations.
The significance of these research is that it provides basic frameworks for automatic large-
scale mobile surveillance applications and facilitates many higher-level applications such
as object tracking and behaviour analysis.
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Chapter 1

Introduction

Most conventional computer vision problems involve building an autonomous surveillance
system with fixed cameras to detect, track, and identify object behaviours. As the scale of
the environment increases, it is not feasible to have all areas monitored by cameras due to
cost and efficiency (Lipton et al., 2002). This changes the focus from building surveillance
systems using fixed cameras to building surveillance systems with mobile cameras, enabling
monitoring of events in large and complex environments.

A recent technology, the VirtualObserver (Greenhill and Venkatesh, 2006), allows collec-
tions of large quantities of video data from mobile vehicle cameras, offering efficient footage
retrieval, and ease of visualisation. However, with the large amount of data, this kind of
surveillance is “at most partially automated” (Bradshaw et al., 1997), as it is not possible
for security personnel to monitor all data simultaneously and identify important events,
which may lead to vital information being overlooked.

Foreground object detection is one of the fundamental problems in this surveillance do-
main. It identifies objects of interest from the video data for the purposes of higher level
processing. A reliable people detection system is useful for identity recognition, threat
prevention, or analysis. In city streets, pedestrian detection system can provide useful
information for events such as road accidents. Scene change detection in an urban city can
be used to monitor environmental changes over time. Thus, foreground object detection
in these real-world applications is the focus of this thesis.

What makes foreground object detection in these applications difficult is the limitless
variability in the image that arises from viewpoint and global illumination changes, defor-
mation of articulated or non-rigid objects, intra-class appearance variations, the presence
of occlusion, and background clutter as shown in Figure 1.1 (Lazebnik et al., 2006). This
is generally caused by two factors: (1) the nature of the application, for example, fixed vs
mobile cameras, outdoor vs indoor environments, high vs low frame rates, and (2) the type
of the foreground objects, for example, human vs non-human objects, or rigid vs non-rigid
objects. In foreground object detection, these issues directly translate to the design of
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Figure 1.1: Real-world challenges for people detection.

Challenges
Applications

Passenger detection &

tracking

Pedestrian detection Scene change detection

Foreground object Upper body parts of

human

Full profile of the

human (head, body,

and limb)

General objects (cars,

vegetation, buildings)

Low frame rate
√ √

Dynamic scenes
√ √

Lighting changes
√ √ √

Crowd
√ √ √

Non-rigid objects
√ √ √

Table 1.1: Challenges in the three applications that form the focus of this thesis.

low level features and classification methods. The low level features capture distinctive at-
tributes from the local image regions, whilst the classification methods solve the problem
using mathematical models.

In this thesis, we investigate foreground object detection frameworks to address three
challenging problems shown in Table 1.1. Each framework involves designing the low level
feature and mathematical model that is suitable to deal with the problems in the specific
application.
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1.1 Aims

Previous works on foreground extraction, (Stauffer and Grimson, 2000; Elgammal et al.,
2000; Javed et al., 2002; Kim et al., 2005), cannot be applied to this data due to the
strict assumptions that the images have to be captured by fixed cameras and have similar
background lighting. Similarly, the direct pedestrian detection methods (Papageorgiou
and Poggio, 1999; Dalal and Triggs, 2005) often encounter major problems, such as high
false positives. Thus, the aim of this thesis is primarily focused on:

• The design of distinctive and robust features for each problem.

• The integration of multi-model approaches to perform the foreground object detec-
tion.

• The comparative performance evaluation with other state-of-art methods to study
the effectiveness of the proposed framework on real world datasets.

1.2 Approach and Contributions

This thesis makes two main contributions to the field of computer vision – (1) the develop-
ment of robust foreground object detection frameworks to handle challenging applications
and (2) the evaluation of each system with real-world datasets. The contributions and
their significance are detailed as follows.

1.2.1 A Bayesian Framework for Detecting and Tracking Passengers in

Bus Environment (Chapter 3)

The first major contribution of this thesis is the development and demonstration of a
Bayesian framework for passenger detection and tracking, which operates inside a moving
bus environment. The detection framework combines background-modelling (bottom-up)
and direct foreground detection (top-down) in a weighted Bayesian formulation. The
bottom-up approach models the background as a set of Scale Invariant Feature Transform
(SIFT) codebooks capturing different illumination changes, while the passenger shape is
modelled using elliptical shape templates. In addition, we propose the Reversible Jump
Monte Carlo Markov Chain (RJMCMC) tracking framework with a novel appearance
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transformation model to track multiple passengers inside the bus. The proposal distribu-
tion of RJMCMC is modelled using the passenger trajectory model. This framework offers
several advantages:

• The SIFT codebook background model is robust to different lighting conditions
and the human elliptical shape is suitable to model the upper body parts of the
passengers.

• The Bayesian framework provides an efficient way of combining the background and
foreground modelling.

• A proposal distribution that incorporates the passenger trajectory model to allow
prediction of object movements according to the bus environment. The passenger
trajectory model defines allowable seat transitions for a foreground object for two
consecutive frames under the low frame rate situations. Thus, it allows the tracker
to explore larger search spaces and, at the same time, eliminates impossible state
transitions.

• An appearance transformation model that learns the similarity measure for a pair of
objects under low frame rate and different lighting situations.

• The RJMCMC tracking algorithm allows tracking of dynamically moving passengers
(people entering and leaving the bus) and copes with occlusions.

1.2.2 Pedestrian Detection for Mobile Bus Surveillance (Chapter 4)

The second contribution of the thesis is the development of a system for pedestrian detec-
tion in scenes captured by mobile bus surveillance cameras in city streets. Our approach
integrates scene localization, foreground-background separation, and pedestrian detection
modules into a unified detection framework. The scene localization module transforms se-
quences of video data into arrays of images grouped as“view sites”. A view site is a“unique
region” storing images captured from different times, but having highly similar background
structure and lighting (i.e. they can be aligned in fixed-camera-manner), which can then be
used for foreground-background separation. The kernel density estimation (KDE) meth-
ods for colour and gradient are then used to construct the background model for each
view site to detect foreground objects. Finally, using a hierarchical template matching
approach on the foregrounds from KDE, pedestrians can be identified. This framework
has several advantages:
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• The construction of the view sites allows moving scenes to be aligned in a fixed
camera manner, which can be used for background modelling purposes. With the
large amount of data, we are able to generate a rich profile of spatially aligned images
for any view site along the bus route.

• The KDE background subtraction can be used to eliminate false positives, improving
the overall detection performance.

1.2.3 Comparative Evaluation of Pedestrian Detection Methods for Mo-

bile Bus Surveillance (Chapter 5)

The third contribution of the thesis is twofold: (1) the extensions of pedestrian detection
algorithms based on the HOG feature (Dalal and Triggs, 2005) and (2) the comparative
performance evaluation of the proposed pedestrian detection algorithms against the HOG
approach. The proposed methods and their advantages are outlined below:

• A new histogram feature that is formed by the weighted sum of both the gradient
magnitude and the filter responses from a set of elongated Gaussian filters (Leung
and Malik, 2001) corresponding to the quantised orientation, called Histogram of
Oriented Gradient Banks (HOGB) approach. The performance evaluation results
show that the HOGB approach has a comparable performance compared to the
HOG.

• To overcome the issues of computational complexity in search, we integrate code-
books based on the HOG and HOGB descriptions with the recent branch-and-bound
(efficient sub-window search) algorithm (Lampert et al., 2008), which results in faster
pedestrian detections.

1.2.4 Scene Change Detection (Chapter 6)

The final contribution of the thesis is the use of 3D information to model the background
scene and 2D spatio-temporal MRFs model for video based segmentation to detect scene
changes. This has several benefits:

• The 2D spatio-temporal MRF background modelling allows robust and consistent
segmentation results by combining information over the space and time. In addition,
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the inference problem is efficiently solved using the Gibbs sampling algorithm.

• Using the 3D scene reconstruction method, we can recover the depth information
of the scene. This has benefits over the 2D approach in clustering different classes
of objects more accurately and identifying the inconsistent clusters as the scene
changes.

1.3 Structure of the Thesis

This thesis is organised as follows. In Chapter 2, a review of the related work in the fields
of object detection and multiple target tracking is presented. Existing low level features
and classification methods are examined to provide motivation for the development of the
detection frameworks in this thesis. This is followed by a detailed overview of previous
work closely related to this thesis.

Chapter 3 presents a surveillance system for detecting and tracking onboard passengers on
public transport vehicles. The detection system is formulated using the Bayesian frame-
work, which is decomposed into seat occupancy and passenger model detection to detect
these passengers. In the second part of this chapter, the RJMCMC tracking algorithm
is presented along with the passenger trajectory and appearance transformation models.
The tracker’s ability to handle occlusions, dynamic number of targets, low frame rates,
and changing appearance is also described. Experiments on real bus footage are conducted
to demonstrate the usefulness of the proposed framework.

Chapter 4 describes our proposed pedestrian detection framework for front-facing bus cam-
eras. It consists of two main components: background modelling followed by pedestrian
detection. The background modelling approach involves scene alignment and foreground
segmentation. The segmentation results are then used to detect pedestrians. Experiments
are conducted to demonstrate the improvement of the proposed framework over other
direct pedestrian detection approaches.

Chapter 5 presents three direct pedestrian detection methods that extend the HOG ap-
proach (Dalal and Triggs, 2005) and their comparative performance evaluation in terms
of detection accuracy and speed.

Chapter 6 presents the proposed scene change detection for a moving vehicle’s camera.
This chapter starts by describing the 3D scene reconstruction and 3D background mod-
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elling. Then, it describes the 2D spatio-temporal background modelling followed by the
combination of the two approaches. Experiments using urban city street datasets are
conducted and evaluated to show the feasibility of the proposed method.

Finally, Chapter 7 concludes the thesis and formulates some directions for future work.
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Chapter 2

Literature Review

Most computer vision algorithms involve design of low level features into a high level math-
ematical model, as shown in Figure 2.1. The three fundamental techniques in computer
vision include:

1. Low level feature extraction that transforms the raw image into computer-
processable data, in the form of statistical or numerical data.

2. Feature comparison techniques to measure similarities and differences between fea-
tures.

3. Classification methods (mathematical tools) to solve the problem.

In Sections 2.1 and 2.2, we provide an overview of different low level features, feature
comparison, and classification methods. We then review relevant works related to object
detection, multiple-target tracking, and image registration. We classify the object detec-
tion methods into two categories: background subtraction and direct foreground detection.
Section 2.3 covers different ways to construct background models from sequences of im-
ages and discusses their performance in terms of memory, speed, and accuracy. Section
2.4 provides an overview of various direct foreground detection methods based on features
and classification methods, followed by Section 2.5 which discusses the background of
multi-target tracking methods. Section 2.6 covers several image registration and 3D scene
reconstruction methods. Finally, a summary of the chapter is presented in Section 2.7.
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Figure 2.1: The general framework to solve computer vision problems.

2.1 Low Level Features

Low level features can be classified into two categories: filter based features and image
features. Filter based features are designed to find certain patterns in the image using
convolution. Image features, on the other hand, take an image and transform it into a set
of interest regions descriptors. It normally has two components: a detector that extracts
the interest regions and a descriptor that stores distinctive information around the regions.

2.1.1 Filter Based Features

Local regions in an image can often be explained by shape patterns, ranging from sim-
ple to complex. In literature, researchers have proposed different dictionaries of complex
filters to respond to these patterns. Schmid (2001) introduced rotationally symmetrical
filter-banks suitable for detecting circle or riddled texture patterns. Leung and Malik
(2001) propose a set of elongated Gaussian filters that respond well to bar shapes of dif-
ferent orientations. Freeman and Adelson (1991) propose steerable filter banks to capture
directional derivative responses. Similarly, Gabor filters (Jain and Farrokhnia, 1991) are
often used to detect repetitive directional texture patterns. Oliva and Torralba (2001)
introduce Gist filters that are suitable to describe scenery images. Simoncelli and Farid
(1996) design steerable wedge filters for local orientation and junction analysis. Schaf-
falitzky and Zisserman (2001); Baumberg (2000) propose other complex filters to detect
various “ring type” patterns. Recently, Reisert et al. (2007) propose non-linear filters
called holomorphic filters, which have rotational equivariant properties. Figure 2.2 shows
the dictionaries of different filter banks.

9
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Figure 2.2: Dictionaries of different filter banks. c©IEEE

2.1.2 Image Features

Another way to describe local image regions is to use image features, also known as region
descriptors. The basic idea is to first detect a collection of interest regions, which is
also called the feature detector. Then, for each interest region, an invariant descriptor
is constructed. Sections 2.1.3 and 2.1.4 review various feature detectors and descriptors
along with their strengths and weaknesses. According to Tuytelaars and Mikolajczyk
(2008), the desired properties of image features include: (a) local invariance (rotation,
scaling, cropping, shift); (b) robustness (distinctive, quantity, accurate, repeatability); (c)
subjective relevance (illumination, object pose, background clutter, occlusion, intra-class
appearance, view point); and (d) effective representation (low dimensionality, well-defined
distance metric, and computational efficiency).

2.1.3 Feature Detector (Interest Region Detector)

In literature, feature detectors can be classified into three different classes: corner, blob,
and edgel detectors. Table 2.1 summarises some of the detectors. The Hessian corner
detector (Beaudet, 1978) searches for strong derivatives in two orthogonal directions. The
corners are identified by the determinant of the Hessian matrix. The Harris corner detec-
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Corner detector Region detector Edgelet detector

Hessian (Beaudet, 1978) Harris-Laplace, Hessian-Laplace

(Mikolajcyk and Schmid, 2002)

Edge based region (EBR)

(Tuytelaars and Gool, 2004)

Harris (Harris and Stephens,

1988)

Harris-Affine, Hessian-Affine

(Mikolajczyk and Schmid, 2004)

Pairs of adjacent segment (PAS)

(Ferrari et al., 2008)

Laplacian-of-Gaussian (LoG)

(Lindeberg, 1998)

Maximally Stable Extremal

Regions (Matas et al., 2002)

Contour fragment

(Shotton et al., 2005)

Difference-of-Gaussian (DoG)

(Lowe, 2004)

MSER colour (Forssén, 2007) Boundary fragment model

(Opelt et al., 2006)

Entropy based region (salient

regions) (Kadir et al., 2004)

Shape model

(Leordeanu et al., 2007)

Intensity based region (IBR)

(Tuytelaars and Gool, 2004)

Edgelet feature

(Wu and Nevatia, 2005)

Gestalt descriptor

(Bileschi and Wolf, 2007)

Table 2.1: Feature detectors.

tor (Harris and Stephens, 1988) algorithm is based on computing the second moment or
autocorrelation matrix and can be used to determine whether a pixel/point in an image
belongs to edge, corner, or is located in a uniform intensity region. It defines a pixel as
a corner when the local neighbourhoods have two main directions (eigenvectors). The
Laplacian-of-Gaussian (Lindeberg, 1998) computes interest points, by searching for local
maxima in the scale space of Laplacian-of-Gaussian. Lowe (2004) detects interest points
using the Difference of Gaussian (DoG). The algorithm searches for stable corner features
over a multi-scale image pyramid. It defines a pixel as a corner if it belongs to extrema
points.

In blob based detectors, Mikolajcyk and Schmid (2002) propose the Harris-Laplace detec-
tors, which are an extension to the Harris corner detector. The algorithm detects Harris
corners at multiple scales and selects points at which the Laplacian measure attains local
extrema (maxima and minima). Using a similar process and replacing the Harris detector
with Hessian detector, we obtain the Hessian-Laplace features. Mikolajczyk and Schmid
(2004) further extend the Harris and Hessian detectors to include affine invariant prop-
erties to obtain the Hessian/Harris Affine feature. The algorithm can be summarised in
four iterative steps: (1) detect multi-scale Harris corner points; (2) select the scale auto-
matically with the Laplacian; (3) adapt an affine neighbourhood shape using the second
order moment matrix; (4) repeat the estimation until convergence. Matas et al. (2002)
propose a Maximally Stable Extremal Regions (MSER) feature that has similar intuition
to the watershed segmentation algorithm (Beucher and Meyer, 1993). The algorithm finds
extremal regions that stay stable over large threshold ranges. Forssén (2007) extend the
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MSER to work on colour images. Tuytelaars and Gool (2004) propose two features, namely
edge-based regions (EBR) and intensity-based regions (IBR). The edge based region con-
structs the parallelogram formed by selecting local extrema of interest points and edges.
The intensity based region fits an ellipse to the intensity extrema regions along predefined
rays. The salient regions detector (Kadir et al., 2004) identifies local region maxima based
on the entropy method.

Table 2.2 summarises the strengths and weaknesses of each detector. According to the
performance evaluation carried out by Mikolajczyk and Schmid (2005); Mikolajczyk et al.
(2005), all detectors give relatively good performance because most of them are invariant
to intensity, rotation, scale, and affine, except the Hessian and Harris corner detectors.
The evaluation criteria is defined by the repeatability rate (percentage of corresponding
points) against the overlap error, i.e. two points/regions are corresponding if the location
error is small and the intersection area is large. In the experiment, they show that MSER
gives the best performance in many cases, while Hessian-Affine obtains the second best
performance. MSER and EBR are well adapted to structured scenes, whilst Harris-Affine
and Hessian-Affine are well adapted to textured scenes. On the other hand, Kadir’s
salient region detectors generally give low performance in terms of the repeatability. The
other disadvantage is related to the slow computation. Finally, Hessian and Harris Affine
return more corner features than other detectors. Figure 2.2 shows the different responses
obtained from different feature detectors.

12



CHAPTER 2. LITERATURE REVIEW

D
et

ec
to

rs
In

tu
it

io
n

D
et

ec
t

In
v
a
ri

a
n
t

A
d

v
a
n
ta

g
es

D
is

a
d

v
a
n
ta

g
es

Intensity

Rotation

Scale

Affine

H
es

si
a
n

S
tr

o
n

g
d

er
iv

a
ti

v
es

in
tw

o
o
rt

h
o
g
o
n

a
l

d
ir

ec
ti

o
n

s

co
rn

er
√

√
d

et
ec

t
co

rn
er

s
n

o
t

sc
a
le

a
n

d
a
ffi

n
e

in
v
a
ri

a
n
t

H
es

si
a
n

-L
a
p

la
ce

S
ta

b
le

H
es

si
a
n

co
rn

er
s

in
m

u
lt

ip
le

sc
a
le

s.
b

lo
b

√
√

√
a
ffi

n
e

in
v
a
ri

a
n
t

n
o
t

sc
a
le

in
v
a
ri

a
n
t

H
es

si
a
n

-A
ffi

n
e

A
ffi

n
e

H
es

si
a
n
-L

a
p

la
ce

b
lo

b
√

√
√

√
re

sp
o
n

d
w

el
l

to
te

x
tu

re
d

sc
en

es

H
a
rr

is
L

o
ca

l
n

ei
g
h
b

o
u

rh
o
o
d
s

th
a
t

h
a
s

tw
o

m
a
in

d
ir

ec
ti

o
n

s
(e

ig
en

v
ec

to
rs

).

co
rn

er
√

√
d

et
ec

t
co

rn
er

s
n

o
t

sc
a
le

a
n

d
a
ffi

n
e

in
v
a
ri

a
n
t

H
a
rr

is
-L

a
p

la
ce

S
ta

b
le

H
a
rr

is
co

rn
er

s
in

m
u
lt

ip
le

sc
a
le

s.
b

lo
b

√
√

√
a
ffi

n
e

in
v
a
ri

a
n
t

n
o
t

sc
a
le

in
v
a
ri

a
n
t

H
a
rr

is
-A

ffi
n

e
A

ffi
n
e

H
a
rr

is
L

a
p
la

ce
b

lo
b

√
√

√
√

st
a
b

le
u
n

d
er

im
a
g
e

b
lu

rr
in

g

L
o
G

L
a
p

la
ci

a
n

co
rn

er
√

√
√

√
re

sp
o
n

d
m

o
re

o
n

ed
g
es

th
a
n

th
e

d
et

er
m

in
a
n
t

o
f

H
es

si
a
n

D
o
G

S
ta

b
le

co
rn

er
s

o
b
ta

in
ed

fr
o
m

d
iff

er
en

ce

o
f

G
a
u

ss
ia

n
in

p
y
ra

m
id

.

co
rn

er
√

√
√

sc
a
le

a
n
d

a
ffi

n
e

in
v
a
ri

a
n
t

st
ru

ct
u

re
d

fl
a
t

im
a
g
es

.

M
S

E
R

M
a
x
im

a
l

re
g
io

n
b

lo
b

√
√

√
√

effi
ci

en
t,

h
ig

h
re

p
ea

ta
b
il
it

y
se

n
si

ti
v
e

to
im

a
g
e

b
lu

r.

E
B

R
E

d
g
e

b
a
se

d
re

g
io

n
ed

g
e

√
√

√
√

re
sp

o
n

d
w

el
l

in
st

ru
ct

u
re

d

sc
en

es
.

d
ep

en
d
s

o
n

p
re

se
n
ce

o
f

ed
g
es

IB
R

S
ea

rc
h

m
a
x
im

u
m

u
si

n
g

im
a
g
e

ra
y

b
lo

b
√

√
√

√
a
cc

u
ra

te
re

g
io

n
s

S
a
li
en

t
R

eg
io

n
M

a
x
im

u
m

en
tr

o
p
y

co
m

b
in

ed
w

it
h

in
te

rs
ca

le
sa

li
en

cy

b
lo

b
√

√
√

√
su

it
a
b

le
fo

r
o
b

je
ct

re
co

g
n

it
io

n

sl
o
w

to
ex

tr
a
ct

,
li
m

it
ed

n
u
m

b
er

o
f

re
g
io

n
s.

T
ab

le
2.

2:
C

om
m

on
fe

at
ur

e
de

te
ct

or
s

an
d

th
ei

r
pe

rf
or

m
an

ce
.

13



CHAPTER 2. LITERATURE REVIEW

Figure 2.3: The responses from different image region detectors (Mikolajczyk et al., 2005).
c©2005 IEEE

2.1.4 Feature Descriptors (Histogram Based Feature)

To capture the characteristics of local image regions, feature descriptors are often designed
to be distribution based, i.e. the local image regions are usually transformed into a his-
togram. Table 2.3 summarises various existing histogram features in the literature along
with their applications. The spin image (Lazebnik et al., 2005) is a 2D histogram of dis-
tances from the center vs the intensity value. Similarly, the RIFT descriptor (Lazebnik
et al., 2005) is a 2D histogram of the distance from the center point vs the orientation in
the log-polar axis. The SIFT descriptor (Lowe, 2004) is a 3D histogram of oriented gradi-
ents, where the contribution to the orientation bins is weighted by the gradient magnitude
and a Gaussian window overlaid over the region. The shape context (Belongie et al., 2000)
operates on a set of points sampled from the object shape contours. Again using a log-
polar grid, the algorithm creates a 2D histogram descriptor counting the number of points
that fall into each orientation bin. The Geometric blur operator (Berg and Malik, 2001)
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Authors Histogram feature Application

Descriptor based histogram

Lowe (2004) Localized orientation histogram (SIFT) Object matching, etc.

Dalal and Triggs (2005) Dense orientation histogram Pedestrian detection

Grauman and Darrell (2005) Pyramid Histogram (Pyramid Match Kernel) Object detection

Bosch et al. (2007) Pyramid HOG Object detection

Belongie et al. (2000) Polar bin histogram (Shape context) Shape correspondence

Lazebnik et al. (2005) Spin Image and RIFT descriptor Scene recognition

Ling and Jacobs (2005) Geodesic-intensity histogram (GIH) Deformable objects

Berg and Malik (2001) Geometric Blur Template matching

Mikolajczyk and Schmid (2005) GLOH Object detection

Burghouts and Geusebroek

(2009)

Local colour invariant histogram Object detection

Levi and Weiss (2004) Edge orientation histogram (EOH) Face detection

Filter based histogram

Schneiderman (2000) Localized histograms of wavelet coefficient 3D object detection

Leung and Malik (2001) Gaussian elongated histogram Texture recognition

Winn et al. (2005) Texton histogram Object categorization

Ekvall and Kragic (2005) Receptive field co-occurrence histogram Object detection

Schiele and Crowley (1996) Receptive field histogram Object recognition

Histogram with spatial

information

Birchfield and Rangarajan

(2005)

Spatiogram Head tracking

Huang et al. (1997) Correlogram Object matching

Chang and Krumm (1999) Colour co-occurrence histogram Object recognition

Pass and Zabih (1996) Colour coherent vector (CCV) histogram Image retrieval

Nilsson et al. (2008) Mapogram (a special form of spatiogram) Tracking

Wang and Makedon (2003) R-Histogram Image retrieval

Miyajima and Ralescu (1994) Angle histograms Object detection

Chalechale et al. (2004) Angular radial histogram Image retrieval

Qin and Gao (2005) Angular radial partitioning intensity

histogram

Image retrieval

Others

Swain and Ballard (1991) Colour histogram Tracking

Laptev (2009) Boosted histogram Object detection

Deselaers et al. (2006) Sparse histogram Tracking

Javed et al. (2005) Cumulative histogram Object correspondence

Table 2.3: Different type of histograms.
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Figure 2.4: State of art feature descriptors. c©IEEE

creates a histogram descriptor of spatially non-uniform blurs of the image region. The
local binary pattern (Ojala et al., 2002) operator creates a 1D histogram that counts the
pixel changes around the neighbourhood, and is invariant to monotonic gray level changes.
Figure 2.4 shows construction of different feature descriptors.

Different sampling strategies

Apart from the choice of the histogram feature, the sampling strategy is another important
factor that determines the system performance. Existing sampling strategies include dense
sampling (every pixel at different scale), rectangle or block sampling (SIFT), log polar
sampling (shape context), circular sampling (GLOH), and multi-scale model (pyramid
match kernel). Figure 2.5 shows the different sampling strategies. According to Dalal and
Triggs (2005), dense histogram of oriented gradients created using overlapped rectangle
sampling gives the best performance to detect pedestrians, as compared to using circular
HOG. For multi-scale methods, the minimum image scale at which patches can be sampled
has considerable influence on the results because the vast majority of patches or interest
points typically occur at the finest scales (Nowak et al., 2006).
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Figure 2.5: Different sampling strategies for: (a) SIFT descriptor (b) the Shape context
(log polar grid), (c) GLOH descriptor, and (d) multi-scale or pyramid model.

Scale Invariant Feature Transform (SIFT)

SIFT algorithm (Lowe, 2004) transforms an image into a set of invariant keypoints, which
can be used for image matching, object recognition, tracking, and other applications. It
is inspired by biological vision systems. The algorithm consists of 4 major stages:

Scale-space extrema detection detects interest keypoints. For this, the image is con-
volved with Gaussian filters at different pyramidal scales and the Difference of Gaus-
sian is computed. The extrema points across the different scales are selected as the
interest keypoints. Due to the blurring step, it eliminates the geometric distortion
problem (affine invariant).

Keypoint localization is the process of eliminating noisy keypoints. It first performs
interpolation of nearby data using the quadratic Taylor expansion of the Difference-of-
Gaussian scale-space function. Next, it discards low contrast keypoints by computing
the second-order Taylor expansion. Lastly, it eliminates edge responses by finding the
eigenvalues of the second-order Hessian matrix. The results of this step are a set of
stable corner keypoints that are invariant to image scale.

Orientation assignment. Dominant orientations are assigned to each corner keypoint.
For each keypoint, a local image patch of size 16× 16 pixels is extracted and rotated
against the dominant orientation to achieve invariance in rotation.

Keypoint descriptor. The 16× 16 pixels image patch is divided into 4× 4 sub-regions.
For each region, a histogram of oriented gradients of 8 bins is constructed where
the contribution to the orientation bins is weighted by the gradient magnitude and
a Gaussian window overlaid over the region. This results in 128 dimension vectors
(4 × 4 × 8). Finally, this vector is normalised to achieve invariance to illumination
changes.

Figure 2.6 shows an overview of the SIFT algorithm. From the nature of its design, SIFT
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Figure 2.6: The SIFT algorithm (Lowe, 2004).

keypoints are invariant to scale, orientation, affine distortion and is partially invariant
to illumination changes (Lowe, 2004), which makes it robust for feature matching and
object recognition. Lowe (2004) further proposed an object recognition framework using
SIFT features, which consists of four components: feature matching, cluster identification,
model verification, and hypothesis acceptance. To achieve fast feature matching, Beis and
Lowe (1997) propose the Best Bin First algorithm that efficiently finds the approximate
nearest neighbour matches between the image and the model SIFT keypoints. Once the
matches are found, (Lowe, 2004) use the Hough transform (Ballard, 1981) and linear least
square algorithms (Hartley and Zisserman, 2004) to discard outliers and find the reliable
pose models. The final decision to accept or reject the model hypothesis is formulated
using the Bayesian analysis (Lowe, 2001). Table 2.4 shows the strength of the SIFT object
recognition algorithm.

Other SIFT-like descriptors

Many methods have been proposed that either extend the functionalities or improve the
efficiency of SIFT descriptors. Table 2.5 shows the summary of the extension to SIFT
descriptors. Ke and Sukthankar (2004) reduce SIFT dimensionality by projecting the
128 local histogram gradients using PCA. (Mikolajczyk and Schmid, 2005) propose the
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Problems Techniques Advantages

Key localization Difference-of-Gaussian Accuracy, stability

Scale Scale-space pyramid Scale invariance

Orientation Orientation assignment Rotational invariance

Lighting changes Descriptor normalization Partial ligthing invariance

Geometric distortion Blurring and resampling of local

image orientation planes

Affine invariance

Indexing and matching Nearest neighbour, best bin first

search

Efficiency / speed

Cluster identification Hough transform voting Reliable pose models

Model verification /

outlier detection

Linear least squares Better error tolerance with

fewer matches

Hypothesis acceptance Bayesian probability analysis Reliability

Table 2.4: The strength of SIFT object recognition algorithm (Lowe, 2004).

GLOH descriptor that replaces the Cartesian location grid used by the SIFT with a log-
polar coordinate system, and apply PCA to reduce the size of the descriptors. Stein and
Hebert (2005) propose the alternative weighting functions using isotropic blurring when
constructing the SIFT descriptor to separate boundaries of foreground and background
objects. Abdel-Hakim and Farag (2006) and Burghouts and Geusebroek (2009) extend the
original SIFT to incorporate colour invariance features. Mortensen et al. (2005) combine
SIFT with shape context using a log-polar grid to detect symmetric objects, the application
being targeted for detecting insects. Methods that include different spatial strategies
include: Lodha and Xiao (2006), Franz et al. (2006), and (Cui et al., 2009). Tamimi and
Zell (2005); Sinha et al. (2006); Ledwich and Williams (2005); Grabner et al. (2006) are
some extensions to achieve faster SIFT computation. Stanski and Hellwich (2005) propose
an algorithm to cluster SIFT features based on region growing and the matching is done
using a group of features. Cheung and Hamarneh (2007) propose N-Dimension SIFT that
can be applied to medical applications. Ancuti and Bekaert (2007) incorporate the colour
co-occurrence features during the descriptor construction. Recently, Yu and Morel (2009)
extend the SIFT to affine invariant SIFT (ASIFT) by incorporating roll and pitch model
during the construction of the descriptor. ASIFT demonstrates that it is able to obtain
feature matching even under large affine transformation. With similar intuition to SIFT,
the SURF feature (Bay et al., 2006) replaces the DoG detector with the Hessian interest
point detector, and the descriptor is efficiently computed using 2D Haar rectangle features
and the integral image (Viola and Jones, 2002). By relying on the integral image for image
convolutions, the computation time is significantly reduced. DAISY (Tola et al., 2009) use
Gaussian convolution on predefined locations to approximate the SIFT computation. Liu
et al. (2008) propose SIFT-flow that is a combination of SIFT features in the optical flow
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Variant of SIFT Advantage over original SIFT

ASIFT (Affine invariant SIFT) (Yu and Morel, 2009) Affine invariant, can achieve affine

up to 40 percent without

BSIFT (Background invariant SIFT) (Stein and Hebert,

2005)

Background invariant

SIFT CCH (Ancuti and Bekaert, 2007) Increase the distinctness using the

colour co-occurrence

Colour SIFT (Abdel-Hakim and Farag, 2006) Colour invariant

Colour SIFT (Burghouts and Geusebroek, 2009) Colour invariant

Fast approximation SIFT (Grabner et al., 2006) Efficiency

SIFT with global context (Mortensen et al., 2005) Has global and local information

SIFT with LBP (CS-LBP) (Heikkilä et al., 2009) Combination of SIFT and LBP

GPU SIFT (Sinha et al., 2006) Fast computation

Geometric SIFT (GSIFT) (Lodha and Xiao, 2006) Preserve some geometry

information

N-Dimensional SIFT (Cheung and Hamarneh, 2007) Medical imaging

PCA SIFT (Ke and Sukthankar, 2004) Less computation

Reduced SIFT (Ledwich and Williams, 2005) Less computation

Watermark SIFT (Lee et al., 2006) Watershed effect

DAISY (Tola et al., 2009) Faster computation

GLOH (Mikolajczyk and Schmid, 2005) Faster computation

Adaptive Grid SIFT for medical (Franz et al., 2006) Has geometry information

SURF (Bay et al., 2006) Faster computation

Bags of word (codebook SIFT) (Li and Perona, 2005) Resistant against cluttered scene

SIFT flow (Liu et al., 2008) Combination of SIFT and optical

flow

SIFT with irregular grid binning (Cui et al., 2009) Reduces the negative effect of scale

error and significantly increases the

matching precision for image

features.

Table 2.5: Other SIFT-like descriptors.

formulation.

Histogram with some spatial information

Apart from distribution based histograms, some researchers also propose histograms that
preserve some local spatial information, including spatiogram (Birchfield and Rangarajan,
2005), co-occurrence matrix (Chang and Krumm, 1999), and colour correlogram (Huang
et al., 1997). The spatiogram (Birchfield and Rangarajan, 2005) keeps an additional
set of mean vectors and covariance matrices of the pixel coordinates that fall into each
bin. Figure 2.7 shows an example of a spatiogram that is used for head tracking. Colour
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correlogram (Huang et al., 1997) is a 3D histogram where the dimensions are the intensities
of two adjacent pixels and their distance, as shown in Figure 2.8. Gray level co-occurrence
matrix (Chang and Krumm, 1999) is a 2D histogram that computes the frequency of the
adjacent pixel patterns, as shown in Figure 2.9.

Figure 2.7: Spatiogram (Birchfield and Rangarajan, 2005). c©2005 IEEE

Figure 2.8: Colour correlogram (Huang et al., 1997).

Figure 2.9: Co-occurrence matrix (Chang and Krumm, 1999). c©1999 IEEE

2.2 Feature Comparison and Classification Methods

One of the key questions in object detection and tracking involves comparing two objects
to measure their similarities or differences. In this section, we review methods to compare
these features. In a simple way, the histogram feature can be directly compared using dif-
ferent comparison metrics. In a more sophisticated way, it involves classification methods
to learn the structure of the feature groups.
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2.2.1 Histogram Feature Comparison

Existing methods to compare histogram features can be summarised as: distance met-
rics (Perlibakas, 2004), earth mover distance (Rubner et al., 1998), pyramid match kernel
(Grauman and Darrell, 2005), ordinal method (Cramariuc et al., 2000), and texture mea-
surements (Chen et al., 2000).

Distance metrics

Let x and y be two histograms having n number of bins, where the index of each bin
is represented by i = 1, . . . , n, then different distance measures can be summarised as in
Table 2.6.

Earth mover distance (EMD)

The earth mover distance (Rubner et al., 1998) is a method to compute the distance
between two distributions (signatures) by finding the minimum amount of work needed to
move one distribution into another. For the discrete case, the EMD problem is equivalent
to the well-known transportation problem, which can be solved by the Hungarian algorithm
(Kuhn, 1955). Let x = {(xi, wpi), i = 1, . . . ,m} and y = {(yj , wqj ), j = 1, . . . ,m} be two
signatures, where each element of the signatures are a set of clusters with the weights,
then they can be compared using the following equation:

EMD(x,y) =

∑m
i=1

∑n
j=1 fijdij∑m

i=1

∑n
j=1 fij

where fij is the flow, and dij is the ground distance between cluster xi and yj .

Pyramid match kernel

Grauman and Darrell (2005) propose the spatial pyramid match kernel that is able to
efficiently compare histograms in high dimensions. The main idea is to map the unordered
feature sets to multi-resolution histograms. The advantage of this method is that the
computation is linear and the kernel function is positive-definite, which means it is efficient,
yet satisfies the Mercer’s condition and can be used by standard classification methods
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Distance measure Formula

Manhanttan metric (L1

norm)

|D|1 = DMn =

n∑
i=1

|xi − yi|

Euclidean metric (L2

norm)

|D|2 = DE =

√√√√ n∑
i=1

(xi − yi)2

Chebyshev metric (L∞

norm):

|D|∞ =
∑n
i=1 max(xi, yi)

Mahalanobis metric DMh(x,y) = |det Σ|−1
√

(x− y)Σ−1(x− y)T ,

where Σ is the covariance matrix.

If Σ is the identity matrix Mahalanobis distance is reduced to the

Euclidean distance.

Minkowski metric DMk = (
∑n
i=1 |xi − yi|

q)
1
q

Weighted Minkowski

metric

DMk = (
∑n
i=1 wi|xi − yi|

q)
1
q

Chi-square metric χ2 =
∑n
i=1

(xi−yi)
2

xi+yi
, when

∑n
i=1 xi =

∑n
i=1 yi = 1

Canberra metric DC =
∑n
i=1

|xi−yi|
(xi+yi)

Generalised Euclidean

metric (quadratic)

DGE = (x− y)TΣ(x− y)

Pearson correlation metric corr(x,y) =
∑n

i=1(xi−xi)(yi−yi)√∑n
i=1(xi−xi)2

∑n
i=1(yi−yi)2

, where xi = 1
n

∑
i xi

Spearman correlation

coefficient

ρ(x,y) = 1− 6
∑n

i=1(xi−yi)
2

n(n2−1)

Relative entropy

(Kullback-Leibler

divergence)

D(x||y) =
∑n
i=1 xi log xi

yi
when

∑n
i=1 xi =

∑n
i=1 yi = 1

Bhattacharrya coefficient DBh(xb, yb) =
√
xbyb√

(
∑n

i=1 xi)(
∑n

i=1 yi)

Cosine similarity cos θ = (x.y)
‖x‖‖y‖ , where (.) is the dot product.

Angular separation D =
∑

i xi.yi√∑
i x

2
i .
∑

i y
2
i

Histogram intersection D =
∑n

i=1 min(xi,yi)∑n
i=1 yi

Table 2.6: Metrics and their computation.
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such as SVM. Given two feature vectors, x and y, the pyramid match can be computed
as:

K(Ψ(x),Ψ(y)) =
L∑
i=0

1
2

(I(Hi(x), Hi(y))− I(Hi−1(x), Hi−1(y)))

where I(H(x), H(y)) =
∑r

j=1 min(H(x)j , H(y)j) defines the histogram intersection be-
tween histogram x and y, and Hi defines the current histogram and Hi−1 defines the
histogram from previous level in the pyramid.

Ordinal correlation method

Cramariuc et al. (2000) propose a new mechanism to measure the similarity of two images,
called “Ordinal Correlation”. The traditional method of Euclidean distance compares
values pixel by pixel. On the other hand, the ordinal method operates on the rank of
pixels rather than directly on the pixel values. Hence, only relative ordering between data
values will determine the distance or correlation between two images. Let Xk and Yk

represent two images to be compared, with k = 1 to n as the image pixels. The goal is to
review the pixels inside one image and to find the correlation in the other image.

From the given images, the ordinal method computes a set of ordinal relations between
each pixel to the whole images as:

SXk = {SXk,l : l = 1...n}
where

SXk,l =

{
1 if Xk < Xl

0 otherwise

(2.1)

In other words, to obtain the first ordinal set, S1, the ordinal method finds the relation
between pixel 1 to the whole image (i.e. from 1 to n), using equation 2.1. The same
process is repeated until the nth pixel. Hence, we end up with a set of ordinal relation,
S1:k. Next, S1:k are used to create a metaslice M , expressed as:

MX
j = OP ({SXk : Xk ∈ RXj })j = 1...m

where

MX
j =

∑
k:Xk∈RXj (SXk )

(2.2)
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where R is the size of one region (for example, 4 × 4 or 8 × 8), and j is the region
number, ranging from 1 to m (m is the number of regions in the whole image). The
option of choosing R depends on how high the resolution is, i.e. the smaller the R, the
higher the resolution, and vice versa. In the end, we get two sets of metaslices, MX

j =
{set of summation of Skfor object X} and MY

j = {set of summation of Sk for object Y },
j = 1 to m that corresponds to the two images X and Y . Each metaslice describes the
object appearance model. To measure the level of dissimilarity, a simple Euclidean distance
is applied, i.e. Dj =

∑m
j=1 ‖MX

j −MY
j ‖2 (Cramariuc et al., 2000). A clear illustration of

ordinal method for image correspondence is shown in Figure 2.10. Recently, the ordinal
method was extended to compare SIFT features (Toews and Wells, 2009).

Pixel Xk Pixel Yk

Region RjRegion Rj

Image X Image Y

Slice SX
k Slice SY

k

Metaslice MX
j Metaslice MY

j

OP1OP1

OP2

OP3

Metadifference

D1 D3 Dn. . .. . .

λ

Figure 2.10: A general framework for ordinal-based image correspondence (Cramariuc
et al., 2000). c©2000 IEEE

Texture measurement

Existing methods to measure texture features include entropy, energy, contrast, homo-
geneity, first, second, and third order moments (Chen et al., 2000). Table 2.7 shows a
summary on the computation of the texture measures.
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Texture measures Formula Measure

(a) Energy
∑
i

∑
j p

2
ij intensity pair concentration

(b) Entropy −
∑
i

∑
j pij × log pij disordely of intensity distribution

(c) Contrast
∑
i

∑
j(i− j)

2pij intensity strength difference

(d) Homogeneity
∑
i

∑
j

pij

1+|i−j| homogeneity of intensity variation

(e) First order moment µ = 1
MN

∑M
i=1

∑N
j=1 pij mean

(f) Second order moment σ =
[

1
MN

∑M
i=1

∑N
j=1(pij − µ)

] 1
2

standard deviation

(g) Third order moment θ =
[

1
MN

∑M
i=1

∑N
j=1(pij − µ)3

] 1
3

skewness

(h) Correlation
∑

i

∑
j(i−µx)(j−µj)pij

σxσy
intensity correlation

where, pij is the element value in the co-occurrence matrix P , i and j are the nearby intensity

pair in the co-occurrence matrix.

Table 2.7: Texture measures.

2.2.2 Classification Methods

Classification methods for object detection and tracking can be divided into two categories:
the discriminative approach, including SVM and Adaboost, and the generative approach,
such as Graphical Models.

2.2.2.1 Support Vector Machine

One of the promising methods for learning separating functions in pattern recognition
tasks is the Support Vector Machine (Cortes and Vapnik, 1995). It is a binary classifica-
tion algorithm that finds the optimal decision surface based on the concept of structural
risk minimization. Given training data, SVM maps the input vectors into a high dimen-
sional space through nonlinear mapping. The optimal separating hyperplanes are then
constructed in the high dimensional space and the classification solution is obtained in
terms of generalization error (that has the maximum margin) among the number of hy-
perplanes.

In (Dalal and Triggs, 2005), a two-class linear SVM classifier is used to trained the dense
HOG features to study the shape of the pedestrian. Serre et al. (2005) use multiple-class
linear SVM and visual cortex features to recognise different classes of objects in the Caltech
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datasets1. Grauman and Darrell (2005) introduce the pyramid match kernel which can be
used in SVM classifier to efficiently detect objects and recognise scenes. Tang et al. (2007)
propose the co-tracking algorithm that uses an online semi-supervised SVM classifier to
update target appearance at each frame. This results in a discriminative solution that is
able to locate and track the foreground objects at the same time.

2.2.2.2 Cascaded Adaboost

Adaboost (Freund and Schapire, 1996) is a machine learning algorithm that constructs
a “strong” classifier using a set of “weak” classifiers. It builds a cascaded model, where
each stage involves the process of accepting the most relevant classifiers and discarding
the unimportant ones. Although the training requires longer time as compared to SVM
training, the resultant Adaboost classifier generally gives faster decision during run time.

Viola and Jones (2002) propose a real time face detection implementation by utilising
Haar features and the integral image concepts trained using Adaboost. Similarly, Levi
and Weiss (2004) replace the Haar feature with Edge Orientation Histogram features and
train using Adaboost to achieve better accuracy in face detection results than Viola and
Jones (2002). In (Zhu et al., 2006), HOG features are trained using cascaded Adaboost to
achieve fast and accurate pedestrian detection. Li et al. (2007) propose a cascaded particle
filter using different Adaboost trained feature sets to track human face at low frame rate
conditions.

2.2.2.3 Graphical Models

Graphical models formulate the problem in a probabilistic framework and solve it through
posterior probability estimation. Bayesian statistics, Markov Random Field, Conditional
Random Field, Hidden Markov Models are methods belonging to this group. Graphical
models have been applied in many applications including object detection (Zhe et al., 2007;
Leibe et al., 2005), background subtraction (Stauffer and Grimson, 2000; Elgammal et al.,
2000), tracking (Khan et al., 2005; Smith et al., 2005), and activity recognition (İkizler
and Duygulu, 2007). Descriptions of these methods are discussed in the following sections.

1http://www.vision.caltech.edu/Image Datasets/Caltech101/
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2.3 Background Subtraction

Background subtraction is a method to detect foreground objects by finding the difference
between the current frame and the background model. The background model is generally
created by fusing a sequence of images with no foreground object present. An ideal
background model should adapt to illumination changes (gradual or sudden changes),
motion changes (camera oscillations, noisy background objects such as tree branches, sea
waves, and similar), and changes in the background geometry (Piccardi, 2004).

Stauffer and Grimson (2000) use k-Gaussian mixture models to express the distribution
of the background pixels. Despite its simplicity, the algorithm allows real-time processing
with reasonable accuracy when it does not deal with lighting changes in the environment.
Javed et al. (2002) propose a hierarchical background subtraction algorithm that consists
of pixel, region, and frame level processing to address the problem of quick illumination
changes, relocation of the background object, and initialization with moving objects. In
this framework, both colour and gradients are used as the observation features. Elgammal
et al. (2000) propose a kernel density approach to model the background distribution.
This model is able to deal with cluttered scenes, scenes that are not completely static, and
small motion noise such as tree branches and bushes. Oliver et al. (2000) apply Principle
Component Analysis (PCA) to a sequence of frames to compute the eigenbackground,
storing only the important eigenvectors that are used to detect the foreground objects.
The advantage of this approach is that the background model is compact, easy to construct,
update, and is able to run in real-time. Kim et al. (2005) model each background pixel
as a set of codewords that holds the following information: the minimum and maximum
codeword brightness, the frequency, first and last access time in which the codeword has
occurred, and the longest interval that the codeword has not recurred. This results in
an adaptive and compact background model that captures the background motion over a
long period of time with limited memory. It is also resistant to artifacts, has the ability to
cope with illumination changes, and allows initialization with moving objects. Xu et al.
(2005) propose a spatio-temporal multi-resolution MRF background subtraction that has
three MRF connections: pixels and their neighbourhood, the corresponding pixels at two
adjacent pyramid level, and pixels across time. The inference problem is solved using Gibbs
sampling. Huang et al. (2008) propose MRF based video segmentation and efficiently
solve the inference problem using the Loopy Belief Propagation (LBP) algorithm. Due
to the spatial and temporal connections, the MRF based approaches are robust to small
movements in the scene and generally produce more accurate segmentation results.
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Paper Method Speed Memory

Stauffer and Grimson (1999) Mixture of Gaussians mF mF

Elgammal et al. (2000) Kernel density estimation NF NF

Oliver et al. (2000) Eigenbackground MF NF

Javed et al. (2002) Hierarchical colour and edge F (m+ 1) +R+ F F (m+ 1)

Kim et al. (2005) Codebook approach CF CF

Xu et al. (2005) Spatio-temporal MRF FT (n+ l + t)

(
1− 1

2
l

1− 1
2

)
F (n+ t)

Table 2.8: Summary of different background subtraction methods.

We summarise the strengths and weaknesses of each method in terms of its speed and
memory complexity in Table 2.8.

Speed

The complexity for the GMM method (Stauffer and Grimson, 2000) is O(mF ), where
m is the number of Gaussians used, typically between 3 to 5, F is the image dimension
(F = width × height). The KDE approach computes the pixel differences based on the
Gaussian kernels centered on the past N frames, thus the complexity is O(NF ). The
complexity of the eigenbackground method can be estimated as O(MF ), where M is the
number of the best eigenvectors. The complexity for the codebook approach is O(C),
where C is the size of the codewords. The complexity of the spatio-temporal MRF based
approach is twofold: (1) the construction of spatial and temporal MRF connections, and
(2) the time for Gibbs sampling algorithm to compute the posterior probability. Thus, it
is estimated as O(FT (n+L+ t)), where T is the number of Gibbs sampling iterations to
solve the inference problem, n is the number of neighbourhood pixels typically 4 or 8, L is
the number of pyramid levels (it is set to 3 in the paper), and t is the number of temporal
connection, typically set to 1. The complexity for the hierarchical approach is estimated
as O(F (m+1)+R+F ), where I(m+1) is the complexity for pixel level processing, (m+1)
is the number of Gaussians plus the gradient features, R is the complexity for region level
processing, and since the frame level processing involves checking for the global thresholds,
it has complexity of at most F .

Memory

The memory requirement for GMM, KDE, and codebook approaches are O(mF ), O(NF ),
and O(C) respectively. During training, the eigenbackground requires all N training im-
ages, with complexity of O(NF ). However, in classification, it only requires memory
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requirement of O(MF ). For the spatio-temporal MRF approach, because the size of a
pyramid follows the geometric series, therefore the memory complexity can be written

as: O
((

1− 1
2

L

1− 1
2

)
F (n+ t)

)
. The memory for the hierarchical background subtraction ap-

proach that uses both mixture of Gaussians and gradient feature is O(F (m+ 1)).

2.4 Pedestrian Detection

Another way to detect the foreground object is through object learning using training
samples. In this dissertation, we only consider pedestrian detectors as this is closely
related our work. The performance of the detector usually depends on the choice of the
features, the learning algorithm, and the training samples. Tables 2.9 and 2.10 show the
summary of different pedestrian datasets and algorithms respectively. Papageorgiou and
Poggio (1999) use Haar wavelets of pedestrian foregrounds as input features to an SVM
classifier. Jones et al. (2003) propose a fast pedestrian detection method through extended
Haar features, trained using Adaboost. Figure 2.11 shows example of Haar dictionaries.
Gavrila and Philomin (1999); Zhe et al. (2007) implement a hierarchical template matching
using chamfer distances to detect pedestrians. Wu and Nevatia (2005); Sabzmeydani and
Mori (2007) study the shape of the pedestrians using edgelet and shapelet features trained
using Adaboost. Tuzel et al. (2007) build the covariance of multi-cues with the Riemannian
manifolds learning to detect pedestrians. Dalal and Triggs (2005) employ the dense 3D
orientation gradient histogram approach trained with linear SVM. Leibe et al. (2005)
present an Implicit Shape Model in a probabilistic framework to detect pedestrian crowds.
The algorithm requires creation of codebook appearance (Jurie and Triggs, 2005) followed
by Bayesian rules to obtain the final detection results. Recently, Felzenszwalb et al. (2008)
propose a multi-scale or pyramid HOG trained using latent SVM. Maji et al. (2008)
propose a multilevel HOG like feature with fast hierarchical (histogram intersection) and
efficient SVM kernel. The main contributions lie in the novel features based on pyramid
of oriented energy and the introduction of intersection kernel SVM.

Figure 2.11: Haar features: black and white areas denote the negative and positive weights,
respectively.

Previous pedestrian detection evaluations (Enzweiler and Gavrila, 2009),(Munder and
Gavrila, 2006), (Dollar et al., 2009), and (Leibe et al., 2005) have demonstrated that:
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Datasets Training samples Test samples

#
p

ed
es

tr
ia

n
s

#
n
eg

a
ti

v
e

re
so

lu
ti

o
n

#
im

a
g
es

re
so

lu
ti

o
n

#
p

ed
es

tr
ia

n
s

INRIA (Dalal and Triggs, 2005) 2416 1218 96× 160 1132 - 1132

NICTA (Overett et al., 2008) 25551 5207 32× 80 - - -

DaimlerChrysler (Munder and Gavrila, 2006) 4000 5000 18× 36 - - -

Daimler (Enzweiler and Gavrila, 2009) 15560 6744 18× 36 21790 - 56492

MIT-CBCL (Papageorgiou and Poggio, 1999) 924 0 64× 128 - - -

Caltech (Dollar et al., 2009) - - - 250000 640× 480 350000

USC-A (Wu and Nevatia, 2005) - - - 205 - 313

USC-B (Wu and Nevatia, 2005) - - - 54 - 271

USC-C (Wu and Nevatia, 2007) - - - 100 - 232

CVC (Geronimo et al., 2007) 1000 6175 variable - - -

TUD-Brussels (Wojek et al., 2009) 3552 192 64× 128 - 640× 480 1326

Table 2.9: Pedestrian datasets.

Full body detector Feature Classifier Search method

Papageorgiou and Poggio (1999) Haar Wavelets SVM (quadratic)

Sliding windows
Felzenszwalb et al. (2008)

Multi-scale or

pyramid HOG
Latent SVM

Maji et al. (2008) Multilevel HOG
Hierarchical SVM

kernel

Tuzel et al. (2007)
Covariance

feature

Riemannian

manifolds

Dalal and Triggs (2005) HOG Linear SVM

Our (Chapter 5) HOGB Linear SVM
Sliding windows,

plane estimation

Part body detector Feature Classifier Search method

Jones et al. (2003) Haar wavelets Adaboost Sliding windows

Leibe et al. (2005)
ISM (intensity

codebook)
MDL verification

Probability

search

Wu and Nevatia (2005) Edgelet Adaboost Sliding windows

Sabzmeydani and Mori (2007) Shapelet Adaboost Sliding windows

Zhu et al. (2006) Integral HOG
Cascaded

Adaboost
Sliding windows

Our (Chapter 5)
Codebook HOG

& HOGB

K-mean

clustering

Efficient

Subwindow

Search

Table 2.10: Different pedestrian detection approaches.
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(i) using INRIA dataset, HOG (Dalal and Triggs, 2005) performs the best to detect fully
visible upright persons; (ii) in crowded scenes, the method by (Leibe et al., 2005) performs
the best since it uses patch/codebook based approach that is not affected by the crowds.

2.5 Object Tracking

The problem of tracking a target using low frame rate camera can also be viewed as tracking
using non-overlapping cameras for the following reason: between two consecutive frames
in a single low-frame-rate camera, a target may have different appearances due to lighting
changes and large pose differences. This is also true for the non-overlapping cameras
situation, where a person being viewed by a camera may look different from one camera to
the next in the network. Recent work in this area includes (Jeong and Jaynes, 2006; Javed
et al., 2005) who learn the brightness transfer function (colour mapping) across pairs of
non-overlapping cameras. Using the colour mapping function, objects that move from one
camera to another can be associated correctly. In the case of single low-frame-rate camera
tracking, Porikli and Tuzel (2005) use multiple kernels to extend the mean-shift algorithm
to track multiple targets for a 1 fps single camera video. Li et al. (2007) propose a cascade
particle filters tracking algorithm where they break down the multi feature observation
likelihoods and solve them in a coarse-to-fine manner. This allows the algorithm to focus
on the relevant regions more quickly. This approach is able to track human faces at 5 fps.
It is an extension over the simple Haar based face detection by Viola and Jones (2002).
Porikli et al. (2005) propose covariance tracking where the covariance feature of the target
is updated using Lie Algebra. Because the method combines multi-cue features to form
the covariance matrix, it has the advantage of utilising the features to track objects under
low frame rate situations.

The problem becomes more complicated when multiple targets need to be tracked due
to object occlusions and similar appearances. In this area, Zhao and Nevatia (2004)
use a MCMC framework to estimate the dynamics of multiple overlapping objects. The
approach uses the 3D human shape, object appearance, and background models as the
observation model. Their experiment demonstrates promising human tracking results in
crowded environments. Khan et al. (2005) introduce an efficient MCMC based Particle
Filter framework for multiple object tracking. Since the posterior is estimated linearly
using MCMC simulation, it provides a tractable and faster solution. Smith et al. (2005),
Khan et al. (2006), and Yu and Medioni (2007)extend the approach further to handle
varying number of targets by using reversible jump MCMC techniques, which allows for
changes in dimensions between samples within a Markov Chain. Yu and Wu (2004, 2005)
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propose a decentralized tracking framework using multiple sensors to efficiently track mul-
tiple targets. They employ a set of autonomous and collaborative trackers to distribute
the computation between multiple sensors. Recently, Kembhavi et al. (2008) propose an
efficient resource allocation particle filter combined with the decentralized tracking con-
cept. It first clusters the targets based on their spatial proximity and pairwise appearance
similarity, and then efficiently assigns different numbers of particles for different groups,
which leads to better tracking performance using lesser number of particles.

2.6 Image Registration and 3D Scene Reconstruction

Image registration is the process of geometrically aligning two or more images of the same
scene taken from different viewpoints at different times by different sensors (Zitova and
Flusser, 2003). Extensive research has been done in the area of image registration, (Zitova
and Flusser, 2003; Brown, 1992) contain detailed survey of image registration methods. In
this chapter, we cover three common image registration methods: Homography (Hartley
and Zisserman, 2004), Thin Plate Spline (Bookstein, 1989), and iterative closest point
algorithm (Besl and Mckay, 1992).

Homography (Hartley and Zisserman, 2004) is a 2D projective transformation that maps
points from one plane to another plane. It is defined as a 3× 3 homogeneous matrix
such that for any point xi on plane π, and its corresponding point x

′
i on π

′
, x
′
i = Hxi.

The H defines the translation, rotation, scale, and shear transformation from the first
to the second plane.

Thin Plate Spline (Bookstein, 1989) is an interpolation method that finds a “min-
imally bended energy” of the smooth surface that passes through all given
points. In image registration, the energy function is defined as E =∫ ∫ [(∂2f

∂x2

)2
+ 2

(
∂2f
∂xy

)2
+
(
∂2f
∂y2

)2
]

dxdy, where f is the mapping function for the

corresponding point-sets {xi} and {yi}.

The iterative closest point algorithm (Besl and Mckay, 1992) is a method to fit points
in a target model to points in a source model. The final goal of the algorithm is
to find translation t and rotation R that minimizes the sums of square errors with
respect to the closest source points and their corresponding target points: E(R, t) =
1
Np

∑Np
i=1 ||xi −Rpi − t||2, where xi and pi are corresponding points.
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Camera Number of images required Methods

2D single camera 2 Homography

2D single camera 2 Thin Plate Spline

3D single camera N Structure from Motion

3D stereo cameras N Essential Matrix

3D stereo cameras N Fundamental Matrix

Table 2.11: Image registration methods.

The 3D scene reconstruction is essentially the geometry of the intersection of multiple
image planes (multiple points) using either single or stereo cameras. Structure From
Motion (Snavely et al., 2008) is a method to reconstruct the 3D scene model from a
sequence of 2D scene images from a single camera. Given feature correspondences from
all image sequences, the objective is to minimise the projection error of the 2D feature
correspondence in 3D space. Another way to reconstruct the 3D scene model is to use
stereo cameras. To calculate the depth information from stereo cameras, we need to
compute the so-called epipolar geometry. There are two types of approaches: calibrated
and uncalibrated approaches. In the calibrated approach, it is done by extracting the
essential matrix. In the uncalibrated approach, it is captured in the fundamental matrix,
which is calculated from image correspondence. Using either one of this matrix, we can
compute the 3D structure of the scene. In both approaches, the underlying principle is
that of triangulation (Hartley and Zisserman, 2004).

2.7 Chapter Summary

This chapter has summarised state of the art in low level features, multiple-target tracking,
image registration, and more specifically foreground detection. However, many of those
techniques perform poorly when applied to the challenging images acquired by mobile
cameras mounted on vehicles (taken under different lighting conditions using low frame
rate low resolution cameras). Thus, the focus of this thesis is to construct techniques for
this new and emerging dataset.
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Passenger Monitoring System

In this chapter we consider passenger detection and tracking scenarios in which cheap and
static cameras are used to monitor the inner environments of public transport vehicles,
such as trains and buses. This problem is challenging due to the following three factors:
drastic lighting changes, object complexity, and low frame rate. When the bus or train
moves, influences from external light sources like the sun and street/vehicle lighting have
a huge impact on the scene. In addition, the lighting inside changes drastically as it
travels through a series of tunnels, stations, freeways, and tree-lined streetscapes, causing
traditional assumptions of near-constant background intensity to be violated. This means
algorithms for foreground-background separation (Stauffer and Grimson, 2000; Toyama
et al., 1999; Elgammal et al., 2000; Kim et al., 2005; Noriega and Bernier, 2006; Javed
et al., 2002), which are often the first step in tracking, would fail. Crowd levels, occlusions,
complex human appearances, and irregular poses are factors that cause human detection
algorithms (Papageorgiou and Poggio, 1999; Viola and Jones, 2002; Gavrila and Philomin,
1999; Zhe et al., 2007) to fail. CCTV surveillance systems onboard buses are made to
accommodate multiple cameras onto a single recording system which impose a limited
frame capture throughput, thereby resulting in low capture frame rates for each camera.
Approaches for tracking (Comaniciu and Meer, 2002; Xiao and Shah, 2005; Khan et al.,
2005) that rely on temporal consistency and smooth tracked trajectories will fail under
these low frame rate situations.

In this chapter we propose a novel passenger detection and tracking system to tackle the
above problems. Our approach integrates a stable SIFT (Scale Invariant Feature Trans-
form) background seat modelling mechanism with a human shape model into a weighted
Bayesian framework to detect passengers inside buses. In addition, we propose an ap-
pearance transformation observation model and a proposal distribution with a passenger
trajectory model, and show how these models can be integrated into the Reversible-Jump
Markov Chain Monte Carlo (RJMCMC) framework (Smith et al., 2005) to track multiple
passengers under the low frame rate situations.

SIFT background modelling extracts local stable features in the pre-annotated background
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seat areas and tracks these features over time to build a statistical background model
for each seat. Since SIFT features are partially invariant to lighting, this background
model can be used robustly to detect the seat occupancy status even under severe lighting
changes. Flexible human configuration models based on ellipse fitting is then employed
to confirm the existence of passengers. Figure 3.1 shows an overview of the foreground
detection approach.

To deal with the problem of tracking in low frame rate video, we are motivated by previous
works in tracking across multiple non-overlapping cameras using appearance models (Javed
et al., 2005) and Particle Filters with prior information about the environment (Leoputra
et al., 2006; Smith et al., 2005). We invoke a learning phase to acquire the passenger
appearance transformations that arises due to low frame rates in a single sensor. This
training phase uses colour, texture, and spatial cues as the appearance features, and
an SVM classifier to learn the transformation. The transformation models capture how
foreground objects change across frames in low frame rate situations, which can be used
to compute object correspondence. In addition, we introduce a new sampling method
based on the allowable passenger trajectories to achieve better prediction of the object
movements. This supports robust people monitoring and tracking that is resilient to
sudden illumination changes and is suitable in low frame rate situations.

The layout of this chapter is as follows. Section 3.1 describes the estimation of seat loca-
tions using a Homography alignment method. Section 3.2 outlines the unified framework of
background-modelling and foreground-detection algorithm to detect the passengers. The
proposed tracking framework is detailed in Section 3.3. Finally, Section 3.4 shows the
experimental results that demonstrate performance of the detection and tracking system
in a real transport surveillance video footage, dealing with the problem of drastic lighting
changes and low frame rates.

3.1 Offline Background Patches Estimation

For practical reasons, the design of the CCTV configurations with regard to camera place-
ment and orientation would be common for the same model of buses. Based on this,
we can safely assume that between two similar types of buses, each of the corresponding
cameras are located almost in the same position, with only slight view-point variations
(satisfying the 2D projective assumption), as shown in Figure 3.1(a). We first define back-
ground patches for the images taken from cameras in a bus. This process is done once and
the focus is on the seat regions of the bus. For portability, we apply SIFT-Homography
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Figure 3.1: Proposed framework for passenger detection.

algorithm (Lowe, 2004; Hartley and Zisserman, 2004) to compute 2D point transforma-
tion from one camera to a corresponding camera in another bus. The SIFT algorithm is
used to find point correspondences between two images, while the Homography algorithm
performs the 2D mapping estimation.

The Homography algorithm is described as follows: Let two cameras C1 and C2 from two
different buses be directed at a point Pi on a plane π and let pi and p′i be the projections
of Pi into the image camera C1 and C2 respectively, as shown in Figure 3.1(a). Then
there exists a 3 × 3 matrix H such that p′i = Hpi, where H is called the Homography
matrix of the plane π (Hartley and Zisserman, 2004). There are a number of methods
to estimate H, such as the Direct Linear Transform (DLT) algorithm, normalized DLT,
LMedS, etc (Hartley and Zisserman, 2004). In our implementation, we perform SIFT
feature correspondence, followed by Homography-RANSAC using the normalized DLT
approach. RANSAC (Fischler and Bolles, 1981) is used to estimate the initial Homography.
Then, we refine the Homography via a normalized DLT algorithm iteratively, until the
algorithm reaches an optimal estimation of H. Figure 3.2 shows an example of the seat
alignment process.

The annotation of background information in a bus offers a number of advantages: (1)
Knowing the seat locations enables the background model for each seat to be created
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(a) (b) (c) (d) (e)

Figure 3.2: Seat alignment process. (a) The task is to “transfer” the annotated seat
configurations from bus-1 (top) to bus-2 (bottom). (b) SIFT feature extraction. (c) SIFT
feature correspondences. (d) Homography alignment. (e) The seat configurations in bus-2
can be estimated using the Homography matrix.

and used to probe its occupancy status. (2) Using the seat arrangement information, the
camera can be calibrated and used to efficiently search for possible human presence; whilst
ignoring certain areas such as windows that may cause false positives. (3) Hypotheses such
as allowable tracking trajectories can be assigned to the global bus structure, for example,
a passenger who sits close to the window has to appear in between seats before proceeding
to the aisle. The following section discusses the proposed passenger detection algorithm
for a single seat region using the seat configuration information obtained in this section.

3.2 Bayesian Formulation for Passenger Detection

We formulate the passenger detection problem in a Bayesian framework as shown in Figure
3.3. In this network, the passenger inference relies on two pieces of evidence: the fitted
human template model and the seat occupancy status.

Let I be the observed image, h is a latent variable for a seat region that defines the state of
a passenger being detected (1) or not detected (0), F = {fi}Ni=1 is the set of SIFT keypoints
extracted from a seat region, S = {si}Ni=1 is the corresponding keypoint states for being
either foreground (1) or background (0), N is the number of SIFT keypoints found in a
seat region at a particular time instance, and Γ is the SIFT codebook background model
that has been learnt. Hence, its joint probability distribution can be written as:
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Figure 3.3: A graphical model representation for the passenger detection, which is decom-
posed into probability of seat occupancy (P (h|S)P (S|F,Γ)) and probability of fitting the
best ellipse onto the observed image to infer possible passenger presence (P (I|h)).

P (h, I,S,F,Γ) = P (I|h) P (h|S)P (S|F,Γ)P (F)P (Γ) (3.1)

∝ P (I|h) P (h|s1, . . . , sn)
N∏
i=1

P (si|fi,Γ)

The first term P (I|h) computes the probability for the best fit human configuration,
while the second and third terms (P (h|S)P (S|F,Γ)) represent the probability of seat
occupancy. Intuitively, when the probability of seat occupancy is high it also implies that
a passenger is occupying the seat. From the joint probability distribution, we can compute
the probability of the passenger being detected as:

P (h|I,S,F,Γ) =
P (h, I,S,F,Γ)∑
h P (h, I,S,F,Γ)

∝ P (h, I,S,F,Γ) (3.2)

Here, we assume that the prior is uniform, and therefore the MAP estimation turns into
maximizing the joint probability.

Recently, Zhou and Huang (2006) propose a weighted Bayesian Network model and we
adopt a similar idea. Thus, the joint probability from Equation 3.1 can be re-expressed
as:
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P (h|I,S,F,Γ) ∝
(
P (I|h)

)β(
P (h|s1, . . . , sn)

N∏
i=1

P (si|fi,Γ)
)(1−β)

(3.3)

where β and (1− β) are the weight factors for the best fitted human model and the seat
occupancy respectively. The computation of P (I|h) will be described in Section 3.2.2, and
P (h|C)P (C|F,Γ) will be described in the next section.

3.2.1 Seat Occupancy Detection

3.2.1.1 SIFT Codebook Background Modelling (Constructing Γ)

The SIFT codebook background modelling algorithm is motivated by Kim et al. (2005),
in which we build codebooks of SIFT features to represent a particular seat background
model. Unlike the codebook background modelling (CB) approach (Kim et al., 2005), we
focus on extracting the statistics of SIFT features instead of intensity.

Let F = {f1, f2, . . . , fM} be a set of SIFT keypoints extracted for a pixel region during
training. Each feature fj , j = 1, . . . ,M is an individual keypoint that consists of infor-
mation about its location pj and its descriptors are ϕj ∈ R128. Intuitively, we expect the
keypoint descriptors in F to be the same because (1) the seat is rigid and the camera
is static and (2) SIFT is partially invariant to lighting (Lowe, 2004). In real situations,
however, their descriptors can still change due to severe lighting changes and the effect
of shadows. Hence, we employ the codebook background model. Let C = {c1, c2 . . . , cK}
represent the codebook for a pixel region consisting of K codewords. Each codeword
ck, k = 1, . . . ,K, consists of a SIFT descriptor ϕk and the normalised frequency of the
codeword lk. The codeword has to satisfy the following two conditions:

ϕj ∩ ϕk = ∅,∀j 6= k ∈ C
lk > 0 ,

∑
k lk = 1

(3.4)

First, each keypoint descriptor ϕk has to be unique among other keypoint descriptors in
C, capturing a distinctive background lighting characteristic. Secondly, lk represents the
likelihood for the corresponding unique keypoint descriptor belonging to the background.
Intuitively, the SIFT codebook background model consists of clusters of histogram de-
scriptors, counting how many feature points of each codeword occur.
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(a) Two input regions (red) and (blue) (b) Background model (Γ)
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Figure 3.4: An example of SIFT codebook background modelling on a seat inside a bus.

Then, the compact background model for a particular seat Γ can be written as:

Γ = {C1, . . . , CQ} (3.5)

where Cr, r = 1, . . . , Q, is a codebook for a particular region r, and Q is the total number
of background codebooks found in a particular seat for time t = 1 . . .M . Figure 3.4 shows
an example of SIFT codebook background modelling of a seat over 9 time instances under
significant changes in illumination. For illustration purposes, let F 1 = {f1

1 , . . . , f
1
9 } and

F 2 = {f2
1 , . . . , f

2
9 } be the lists of keypoint descriptors located in the red and blue regions

respectively, as shown in Figure 3.4 (a). In this example, f1
1 , f1

2 , f1
3 , f1

4 , f1
5 , f1

6 , and f1
9 ,

have similar keypoint descriptors, hence they are clustered into the first codeword c1
1 in

the first region 1; while f1
7 and f1

8 belong to second codewords c1
2 in region 1. Therefore,

the codebook for region 1 is represented as C1 = {c1
1, c

1
2}. Similarly, we obtain three

codewords to form the codebook for region 2: C2 = {c2
1, c

2
2, c

2
3}. The final background

model for the seat is shown in Figure 3.4 (b). The high-level pseudo code to construct the
SIFT codebook background model is presented in Algorithm 1.

3.2.1.2 Computing Probability of Seat Occupancy

From Equation 3.3, the problem of inferring whether a seat is occupied given the current
SIFT keypoints can be formulated as: P (S|F,Γ)× P (h|S).

41



CHAPTER 3. PASSENGER MONITORING SYSTEM

Algorithm 1: Seat background model construction.

1. Γ← ∅ (← means assignment)

2. for t = 1 to M do

(a) Let F be the set of SIFT keypoints extracted from the seat

(b) foreach fj ∈ F do

i. Find the codebook Cr in Γ = {C1, . . . , CQ} that satisfy the following
condition: dist(pj , r) < ε1

ii. Find the codeword cm in Cr = {ck|1 ≤ k ≤ K} that best matches with ρj
based on the following condition: descp(ϕj , ϕm) < ε2, where descp(., .) is
a function that computes the difference between two SIFT descriptors.

iii. If C = ∅ or there is no match, then K ← K + 1. Create a new codebook
list cK by setting
• lK ← 1
• Cr ← Cr ∪ (ϕj , lK).

iv. Otherwise, update the matched codeword cm by setting
• lm ← lm + 1
• ϕm[i] = γb × ϕj [i] + (1− γb)× ϕm[i], where γb is the background

learning rate.

(c) endfor

3. end for

4. For each codeword ck, k = 1 . . .K, normalised the histogram to 1
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The first term P (S|F,Γ) describes the local probability function to infer whether a keypoint
belongs to either foreground or background ; while the second term P (h|S) provides an
inference for the seat occupancy based on the spatial relationship of all the keypoints.

3.2.1.3 Estimating Local Keypoint Probability – P (S|F,Γ)

Locally, we treat all keypoints independently. Hence, we can obtain the probability of
each keypoint being foreground or background in Equation 3.6:

P (S|F,Γ) =
N∏
i=1

P (si|fi,Γ) (3.6)

where each P (si|fi,Γ) is defined as:

P (si=0|fi,Γ) =

{
l∗k if l∗k < ε |mindk{(lk, dk)=sd(fi, ϕk)}
0 otherwise

(3.7)

where sd(.) is a function that measures the descriptor difference dk between fi and ({ϕk} :
for each ϕk ∈ Γ). Equation 3.7 assigns the probability of a keypoint being a background

as l∗k if l∗k satisfies the minimum threshold constraint ε, and 0 otherwise.

3.2.1.4 Estimating Seat Occupancy Probability – P (h|S)

A seat occupancy probability is formulated in Equation 3.8:

P (h|S) = P (h|s1, . . . , sN ) (3.8)

One way to estimate the probability is by using the spatial information. We express this
probability as:
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P (h = 1|s1, . . . , sN ) =
Afg

Afg +Abg
(3.9)

where Afg, Abg are areas of the foreground and background respectively. To compute
the area of the foreground Afg, we first filter out noisy foreground keypoints using a mor-
phological operation. Next, we perform K-Nearest Neighbour clustering on all remaining
foreground keypoints. Once the clusters are formed, we perform a convex hull algorithm
and use the result to calculate the foreground area. If there is more than one cluster, we
add them to define the final area of the foreground. The area of the background is simply
the difference of total seat area and the area of the foreground.

With the formulation of both local and global probabilities, the seat occupancy is computed
as a product of Equations 3.7 and 3.9.

3.2.2 Human Detection

Due to the general arrangements of the seats, it is expected that only the upper parts of
passengers are generally visible to the camera, and direct pedestrian detection methods as
in (Zhe et al., 2007) cannot be employed. We therefore model each passenger using flexible
models based on two ellipses corresponding to the head and body, as shown in Figure 3.5.

Let ψ be a single human configuration model, which is decomposed into ψ =
(ehead, ebody, d, θ, r): the head and body ellipse configuration (ehead, ebody); the distance
between the centroid of head and body d; the angle between the head and body θ; and the
size ratio between the head and body r. Hence, for a candidate head pixel x in the image,
the likelihood of a human being detected in Equation 3.3 can be expression in Equation
3.10:

P (I|h) = P (I|x, ψ) =
∏
E

P (I|x, E)P (I|x, d, θ, r) (3.10)

where E ∈ {ehead, ebody}. The first term P (I|x, E) is goodness of fit for the head and body
ellipses being fitted onto the image, while the second term P (I|x, d, θ, r) penalizes large
changes in terms of the relative distance, angle, and size ratio between the head and body.
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ebody
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Figure 3.5: Human configuration model based on ellipse fitting.

The ellipse fitting score is computed as the normalized sum of the dot product between
the gradient direction image and the unit normal ellipse image similar to Birchfield (1998):

P (I|x, E) = Dellipse(x, Is, E)

Dellipse(x, Is, E) =
1
NE

∑
y∈E
|E(y) . Is(x + y)| (3.11)

where E(y) is the unit vector normal to the ellipse image at pixel y, Is(x + y) is the
gradient intensity direction of image I at the corresponding pixel (x + y), y is the pixel
that passes the perimeter of the ellipse image, (.) denotes the dot product, and NE is the
number of pixels on the perimeter of an ellipse.

The second term in Equation 3.10 is defined as the sum of all three penalty functions for
the distance, orientation, and the ratio between the head and the body:

P (I|x, d, θ, r) = exp

{∑
q

−Dq(q)

}
(3.12)

Let q ∈ {d, θ, r} be the distance, orientation, and ratio between head and body ellipses,
then Dq(.) is defined as:

Dq(q) =

{
|q − εq| if |q − εq| > αq

0 otherwise
(3.13)
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where εq is the control parameter for q ∈ {d, θ, r} relationship between head, body and αq
is the corresponding threshold. Hence, the best human model fit can be defined as follows:

ψ∗ = arg max
ψ∈Ψ

P (I|x, ψ) (3.14)

where Ψ contains the human configuration space. Intuitively, this strategy searches for
the best fitted ellipses for the head and body, as well as the optimal head-body distance
constraints. From Equations 3.3 and 3.14, the final likelihood of a human being detected
can be expressed as:

P (I|h) = P (I|x, ψ∗) (3.15)

Using Equations 3.7, 3.9, and 3.15, the joint probability for passenger detection can be
computed.

Seat occupancy and human detection output

The output of seat occupancy detection is a probability image, where each pixel contains
a probability value (0 to 1) of it being a foreground (the higher the probability value of
the pixel, the higher the likelihood that it is a foreground pixel). Figure 3.6 plots the
probability of the seat occupancy detection results alone. Areas with the peaks represent
higher likelihood that they are occupied by the foreground objects. As seen in Figure 3.6,
when a foreground exists on a particular seat, the probabilities of the areas being occupied
are also high, indicating that the seat is occupied. In Figures 3.6 (d) and (e), the seat
occupancy probability shows peaks in areas where the seat is being occupied, despite the
change in illuminations. In the same sequence illustrated in Figure 3.6, we also plot the
head detection results in Figure 3.7 (the result is after applying a threshold to eliminate
the small probability of ellipse fittings). As seen, the human detection is able to detect
the heads correctly in almost all sequences. But using the head detection alone generally
results in several false positives, especially in areas on the windows and the bus handles,
which resemble the shape of ellipses. In Section 3.4, the unified results of seat occupancy
and human detection methods will be used to represent the final output of the detection
system.
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: Output of seat occupancy probability.

(a) (b) (c)

(d) (e) (f)

Figure 3.7: Output of head detection probability.
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3.3 Object Tracking

In the previous section, we discussed a surveillance system to detect passengers in a moving
bus environment. The output of the system is a set of passengers/foreground objects with
elliptical shapes of the head and body. In this section, we aim to track these foregrounds
under low frame rates (LFR) and different lighting change situations. This problem is
complicated given that (1) the object trajectory is not smooth, (2) it may look different
between two consecutive sparsely sampled frames, and (3) the overall process involves
tracking multiple moving targets.

In the context of probabilistic tracking, this relates to the design of the proposal distri-
bution, the observation model, and the tracking framework. The proposal distribution
defines where to look for the target, while the observation model computes the likelihood
for a target being present at a certain location. Intuitively, a good proposal distribution
provides close positional estimation around the true target location, and a good foreground
observation model should possess distinctive attributes and correct scoring function that
separates different objects based on their appearances. Finally, the proposal distribution
and the observation model can be combined together in different ways, for example Parti-
cle Filter (Leoputra et al., 2006), MCMC (Khan et al., 2005), or Reversible-Jump MCMC
(Smith et al., 2005), to tackle problems suited for the application.

Under the low frame rate and different lighting situations, previous algorithms for track-
ing (Comaniciu and Meer, 2002; Xiao and Shah, 2005; Khan et al., 2005) will fail for
two reasons: (1) most proposal distributions are modelled using linear kinematic models
or second-order regressive models that have limited search space. This assumption often
does not hold in the low frame rate situations where abrupt motions exist. (2) observation
models that use colour or HSV is unable to capture distinctive attributes of target appear-
ance under varying lighting situations. To deal with these problems, we propose a new
tracking algorithm, called RJMCMC-ATMT (Reversible Jump MCMC with Appearance
Transformation and Trajectory Model) tracking. Our contributions include:

1. A proposal distribution that incorporates the passenger trajectory model to allow
prediction of the object movements according to the bus environment. The passenger
trajectory model defines the allowable seat transitions for a foreground object for
two consecutive frames under the low frame rate situations. It allows the tracker
to explore larger search spaces, and at the same time, eliminates impossible state
transitions.
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2. An appearance transformation model that learns the similarity measure for a pair of
objects under low frame rate situations. The algorithm consists of three steps: (a) it
characterises the appearance feature of tracked objects by the cumulative normalised
colour histogram (Javed et al., 2005), histogram of oriented of gradients (HOG)
(Dalal and Triggs, 2005), and its spatiogram (Birchfield and Rangarajan, 2005); (b)
for each pair of the same foreground, we compute its histogram transformation as
the feature vectors; (c) these feature vectors are trained using a probabilistic SVM
to form the appearance transformation model.

3. Besides the low frame rate and different lighting conditions, the bus environment is
generally filled with varying numbers of passengers due to occlusions, false positive
detections, people entering and leaving the bus. To handle this situation, we employ
a Reversible Jump MCMC tracking algorithm (Smith et al., 2005) and show how the
proposal distribution and observation model can be integrated into the RJMCMC
tracking framework.

3.3.1 Bayesian Filtering Distribution for Object Tracking

Given a hidden state sequence X1:t = {X1, . . . ,Xt}, Xt ∈ Rnx (for example position, size,
orientation, velocity, etc.) and an observation sequence Z1:t = {Z1, . . . ,Zt}, Zt ∈ Rnz (the
actual measurement/observations: pixel intensities, low level features, etc) as shown in
Figure 3.8, where nx and nz are the dimensions for the state and observation respectively,
the multiple target tracking problem can be expressed in Bayesian Filtering formulation.
This involves solving the prediction and update equations, which can be written as:

p(Xt|Z1:t−1) =
∫
p(Xt|Xt−1)p(Xt−1|Z1:t−1)dXt−1 (3.16)

and

p(Xt|Z1:t) =
p(Zt|Xt)p(Xt|Z1:t−1)∫
p(Zt|Xt)p(Xt|Z1:t−1)dxt

(3.17)

The denominator of Equation 3.17 is a normalising constant that can be defined as C.
By substituting Equation 3.16 into Equation 3.17, we arrive at the recursive Bayesian
Filtering distribution, which is in the form of Equation 3.18:
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X1 X2 Xt

Z1 Z2 Zt

. . .

Figure 3.8: A graphical model representation for target tracking, where Xt is the hidden
state configuration and Zt is the observation at time t.

p(Xt|Z1:t) = C−1p(Zt|Xt)×
∫
p(Xt|Xt−1)p(Xt−1|Z1:t−1)dxt−1 (3.18)

Here the motion model p(Xt|Xt−1) predicts the current state Xt given the previous state
Xt−1, the likelihood or observation model p(Zt|Xt) defines the probability we observe the
measurement Zt given the state Xt at time t, and p(Xt|Z1:t) is the posterior distribution
at time t.

3.3.2 Independent Particle Filter

Sequential Monte Carlo or Particle Filter (PF) provides an approximate solution to the
recursive Bayesian Filter distribution in Equation 3.18 by using a finite set of weighted
samples called particles, which is expressed as:

p(Xt|Z1:t) ≈ C−1p(Zt|Xt)
N∑
n=1

w
(n)
t−1p(Xt|X(n)

t−1) (3.19)

where each particle is a 2-tuple consisting of the state domains and its corresponding prob-
ability (weight), and is denoted by {X(n)

t , w
(n)
t }Nn=1, where n is the particle number (index),

and N is the number of particles. Note that the continous posterior pdf in Equation 3.18
is now approximated by a set of discrete samples in Equation 3.19 (a change from integral
into summation). In the standard Particle Filters algorithm, at each time instance, X(n)

t

represents the random target’s state that is drawn from a proposal distribution q(.):

X(n)
t ∼ q(Xt|X(n)

1:t−1,Z1:t) = p(Xt|X(n)
t−1) (3.20)
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where q(.) is normally defined according to the motion model, and the weight of each
particle is defined by the observation model.

w
(n)
t ∝ p(Zt|X(n)

t ) (3.21)

To avoid the degradation problem (Gordon et al., 1993), a resampling algorithm is gener-
ally applied. It is a procedure to initiate the large-weight particles prediction into small-
weight particles. As a result, all particles will converge to a better prediction.

In low frame rate situations, one of the challenges is poor temporal continuity, which
means the standard proposal distribution that relies only on the motion model of the
previous state is generally error prone. Next, we discuss a new proposal distribution
which incorporates the trajectory model for LFR tracking in the bus.

3.3.3 Proposal Distribution with Trajectory Model for LFR Tracking

We generalise the proposal distribution to include prior information about the environ-
ment, similar to Leoputra et al. (2006). This new proposal distribution can be expressed
as:

X(n)
t ∼ qΛ(Xt|X(n)

1:t−1,Z1:t) = p(Xt|X(n)
t−1,Λ) (3.22)

where Λ represents the environment model. Note that both the proposal distribution and
the motion model in Equation 3.22 incorporate an additional parameter Λ as compared to
the standard PF’s proposal distribution in Equation 3.20. Equation 3.22 also implies that
the environment information contributes to the behaviour (search space) of the particles
apart from the previous state information. In practice, Λ can be implemented in a number
of ways: (1) it can be used to ignore some areas in the environment which are impossible
to reach, for example, the walls between rooms where targets cannot move through, or (2)
it can define a set of allowable target trajectories in a structured environment so that the
particles move according to the path. When there is no constraint about the environment,
we return to the original proposal distribution.

Inside the bus, the passenger’s movements generally follow certain trajectories due to the
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structured nature of the environment, for example: (1) a passenger who sits close to the
window should appear in between seats or at the aisle before leaving the bus; (2) it is
unlikely that a passenger will move from one side of the bus to the other side of the bus in
two consecutive frames. Based on these characteristics, we propose a trajectory model that
defines a set of allowable passenger movements (seat transitions) inside the bus. Figure
3.9 shows the trajectory model that is used in our experiment, modelled as a directed
graph. Each node corresponds to a seat where a passenger normally exists and the edges
connecting the nodes specify the likelihood of a passenger movement in two consecutive
frames. In this model, a passenger who is currently occupying seat A is likely to stay
at seat A, or move to seat B or C on the next frame, but it is unlikely for him to reach
seat D, E, F, or G between two consecutive frames. Our new proposal distribution uses
this trajectory model to predict the target’s movement. Intuitively, the trajectory model
allows exploring larger search spaces, whilst eliminating impossible state transitions.

A B
C

D E

FG

Figure 3.9: The trajectory model defines the possible passenger movements (seat transi-
tion) between two consecutive frames. Note that each node has a loop transition to itself
that is not shown in the figure for simplicity purposes

In the implementation, let Λ be the trajectory model for the bus. Each edge (seat transi-
tion) in Λ is assigned with a prior probability defining the likelihood of the passenger to
move there between two consecutive frames. Each time the proposal distribution method
is evoked, we pick a particle X(n)

t−1, and then generate a uniform random number between
0 and 1. Based on where the random number falls, a new seat destination is chosen. We
move the particle’s location relative to the new seat destination and run the sampling dis-
tribution (e.g. Gaussian, second order regressive model, etc) to obtain a new state particle
at time t, X(n)

t . This strategy allows the particles to move according to the seat transition
defined in Figure 3.9. In the remaining subsections we will use the new proposed distri-
bution inside the tracking framework. (Note that to refer back to the standard proposal
distribution, we can simply discard the Λ notation).
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So far, we have shown the use of Particle Filter for a single object tracking. In tracking
multiple targets, the standard Particle Filter normally involves creating multiple indepen-
dent trackers that do not communicate with each other because the algorithm does not
model any form of interaction (Khan et al., 2005). This leads to high failure when multiple
targets with the same appearance model are close to each other. Next, we will discuss
Particle Filter for multiple interacting objects.

3.3.4 Particle Filter for Interacting Objects

3.3.4.1 State Definitions for Multi-object Tracking

Following the notations from Smith et al. (2005), let Xt = {Xi,t, i ∈ Ot} be the multiple-
object configuration at time t, where i defines the object index, Ot is the set of object
indexes, mt = |Ot| denotes the number of objects (mt ∈ M = {0, . . . ,M}, where M be
the maximum number of objects and |.| indicates set cardinality). Xi,t denotes a single-
object configuration and Xi,t = ∅ denotes the zero object configuration. This way, the
notation allows varying numbers of targets, as in Smith et al. (2005). Figure 3.10 shows
the graphical model for multi-object tracking.

Object 1 Object 2 Object M

X1,1 X1,2 X1,t X2,1 X2,2 X2,t XM,1 XM,2 XM,t

Z1Z1Z1 Z2Z2Z2 ZtZtZt

. . . . . .. . .. . .

Figure 3.10: A graphical model representation for multiple targets tracking, where Xt is
the multi-object configuration and Zt is the observation.

3.3.4.2 Interaction Model

To model the object interactions, Khan et al. (2005) proposed a pairwise Markov Random
Field (MRF) prior in the dynamic model. The MRF is an undirected graph where nodes
represent the objects, and edges between nodes define the connection of a pair of objects
based on their proximity (Smith et al., 2005). The joint probability of the MRF is factored
as a product of local potential functions at each node, and interactions are defined on
neighbourhood cliques (Khan et al., 2005). The dynamic model can be expressed as:
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p(Xt|Xt−1,Λ) ∝
∏
i

p(Xi,t|Xi,t−1,Λ)p0(Xt) (3.23)

where p(Xi,t|Xi,t−1,Λ) is the dynamics of the i-th object and the prior p0(Xt) =∏
ij∈C ψΛ(Xi,t,Xj,t), is a product of pairwise interaction potentials over C, the set of cliques

(i.e. pairs of connected nodes) in the graph (Smith et al., 2005). Figure 3.11 shows an
example of the MRF configuration, where the edges between the passengers represent the
MRF connection between the targets. The absence of an edge in the MRF implies that
the two targets do not influence each other’s behaviour (Khan et al., 2005). ψΛ(Xi,t,Xj,t)
is the interaction model and is defined as

ψΛ(Xi,t,Xj,t) ∝ exp(−g(Xi,t,Xj,t)) (3.24)

where g(Xi,t,Xj,t) is a penalty function. In our passenger tracking problem, the penalty
function is defined as the number of pixel overlaps between the body bounding boxes
of the two targets. Intuitively, the interaction model places constraints to avoid two or
more trackers being hijacked by a dominant object that has the highest likelihood model
amongst the others.

X1,t X2,t

X3,t

X4,t

X5,t

ψΛ(X1,t,X3,t)

ψΛ(X2,t,X3,t) ψΛ(X4,t,X5,t)

Figure 3.11: Interaction model for passengers inside the bus.

3.3.4.3 Dynamic Model for Variable Numbers of Targets

Similar to Smith et al. (2005), the dynamic model can be defined for a variable number of
targets as in:
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p(Xt|Xt−1,Λ) ∝
∏
i∈Ot

p(Xi,t|Xi,t−1,Λ)p0(Xt) (3.25)

= pV (Xt|Xt−1,Λ)p0(Xt) (3.26)

where

p(Xi,t|Xt−1,Λ) =


p(Xi,t|Xi,t−1,Λ) if object i existed in the previous frame

p(Xi,t) if object i did not exist in the previous frame

k for the zero case object (where k is a constant)
(3.27)

Based on Equations 3.23, and 3.26, the Monte Carlo approximation to the Bayesian Fil-
tering distribution in Equation 3.19 can be written as:

p(Xt|Z1:t) ≈ C−1p(Zt|Xt)
∏
ij∈C

ψΛ(Xi,t|Xj,t)
N∑
n=1

w
(n)
t−1pV (Xt|X(n)

t−1,Λ) (3.28)

Since Equation 3.28 involves computing the joint particle filter where each particle contains
the joint position of all the targets, it suffers from exponential complexity as the number
of tracked targets, n, increases (Khan et al., 2004).

3.3.5 Reversible Jump MCMC Algorithm for Variable Numbers of Tar-

gets

To solve the inference problem in Equation 3.28, Khan et al. (2004) propose a method to
approximate the posterior distribution for a fixed target number tracking through MCMC
sampling techniques using the Metropolis Hasting (MH) algorithm. The MH algorithm
improves the multi-object configuration by implementing a random walk over a long run
(iterations). To ensure that it improves the configuration, the MH algorithm keeps the best
state configuration at the end of each iteration. At a new iteration, it samples a random
state configuration from the proposal distribution q(X∗|X), where X and X∗ denote the
best and proposed state configuration respectively, and computes the acceptance ratio
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between the two configurations, which can be expressed as:

α = min
(

1,
p(Z|X∗)qΛ(X|X∗)
p(Z|X)qΛ(X∗|X)

)
(3.29)

Based on the acceptance ratio, it selects either to accept the proposed state configuration
or to stay at the best configuration from the previous iteration because the proposed con-
figuration does not improve the chain. The chosen state configuration is then inserted
into the Markov Chain and kept as the best configuration for this iteration. After several
iterations, the MH algorithm reaches a peak configuration (when no other state configu-
ration is better) and stays irreplaceable. This way, the Markov Chain is filled dominantly
with the peak configurations at the end of the iterative process. Hence, the final posterior
distribution for the multi-object configuration can be estimated by either finding the mean
or the mode of the whole state configuration chains. Note that because the initial iter-
ations of random walk generally return unstable measurements, they are discarded from
the chain; this process is called burn-in. With this formulation, the inference in Equation
3.28 can be solved efficiently.

From the above explanations, we know that the two major components in MH algorithm
are the proposal distribution and the acceptance ratio (observation model). It is important
to design them correctly because: (1) a bad proposal distribution produces samples that
do not overlap with the true location of the target, hence the tracker will fail to track the
target despite having a good observation model, and (2) a good proposal distribution with
a bad observation model will sample locations that are close to the targets, but the tracker
is unable to accurately “recognise” the target, which results in tracking failure. Hence, the
ideal tracking algorithm is to produce samples around the true target locations and to be
able to recognise them. The sooner it finds the true state configurations for all the targets,
the better the posterior estimation.

Smith et al. (2005) extended the approach further to handle varying numbers of targets
by using trans-dimensional MCMC (also known as reversible jump MCMC) techniques.
Following from the work of Smith et al. (2005), the reversible jump MCMC with Metropolis
Hasting is implemented as follows: First, we define a set of moves, denoted as Υ (indexed
by v) and its prior pv, along with the proposal distribution for each move {qv(.)}. Secondly,
the move-specific proposal distributions are functions of an auxiliary variable U. At each
MH iteration, a new move v∗ is chosen with probability pv∗ and a new state X∗ is defined
by a deterministic function of the current state, a new sample of the auxiliary variable,
and the trajectory model drawn from qv∗(U∗), X∗ = h(X,U∗). The reverse move v from
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X∗ to X is computed by sampling U from qv(U) with X = h′(X∗,U). The acceptance
ratio is then defined as:

αv = min
(

1,
p(Zt|X∗t )
p(Zt|Xt)

pv
pv∗

qv(U)
qv∗(U∗)

∣∣∣∣∂(X∗,U)
∂(X,U∗)

∣∣∣∣) (3.30)

Because one of the requirements for the reversible jump MCMC is to keep balance for each
move-specific type (i.e. by defining the reverse move for each move-specific type), it can
be shown that the Jacobian matrix is equal to 1 (Smith et al., 2005).

Similar to Smith et al. (2005), we define four types of moves to handle the varying numbers
of targets tracking. Two moves involve jumping across dimensions and two in a fixed
dimension:

1. Birth (b) of a new object implies a change in the dimension from mt to mt + 1.

2. Death (d) of an existing object implies a change in the dimension from mt to mt−1.

3. Swap (s) between two existing objects, where the dimension remains unchanged mt.

4. Update (u) of the parameters of the existing objects, where the dimension is fixed
mt.

Figure 3.12 illustrates the four different types of moves.

57



CHAPTER 3. PASSENGER MONITORING SYSTEM

X∗
2,t = U

X1,t

X1,t

X1,t

X1,t

X2,t

X2,t

X2,t

X2,t

X∗
1,t

X∗
1,t

X∗
1,t

X∗
2,t

X∗
2,t

X∗
2,t

X∗
3,t

update

birth

death

swap

Figure 3.12: The four different moves for RJMCMC: birth, death, update, and swap.

Once the prior distribution for each move has been defined ({pb, pd, ps, pu}), the RJMCMC-
PF can be summarised as in Algorithm 2.

Table 3.1 summarises the differences between independent PF, MCMC, and RJMCMC
tracking algorithms. Because RJMCMC allows change in the dimensions, it is able to
simulate varying numbers of target configurations; and with the appropriate design of
the acceptance ratio it is able to reach the best multi-object state configurations. This
advantage is not found in either the independent PF or MCMC tracking. Next we will
present the move-specific proposal distribution for RJMCMC followed by our proposed
observation model.

3.3.6 Move-Specific Proposal Distribution and Acceptance Ratio

The sampling method for the birth, death, and update can be written as follows:
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Algorithm 2: The Reversible Jump Markov Chain Monte Carlo Particle Filter (RJM-
CMC PF).

At each time step, t, the posterior distribution for the previous time step is represented1

by a set of N unweighted samples p(Xt−1|Z1:t−1) ≈ {X(n)
t−1}Nn=1. The approximation of

the current distribution p(Xt|Z1:t) is constructed as follows.
Initialise the Markov Chain by randomly selecting a sample from t− 1 with the mode2

number of objects. Apply the motion model to each object X∗ = Xn−1 and accept as
sample n = 0.
RJMCMC Sampling Step: Draw N +NB samples according to the following schedule,3

where NB is the length of the burn-in period:

1. Choose a move type by sampling from the set of moves v ∼ U [0, 1] where
Υ = {b, d, s, u}.

(a) if 0 ≤ u ≤ pb, v∗ = b.

(b) else if pb < u ≤ pb + pd, v∗ = d.

(c) else if pb + pd < u ≤ pb + pd + ps, v∗ = s.

(d) else v∗ = u.

2. Select a target i∗ (or targets i∗, k∗ for a swap) according to the target proposal
distribution qv,Λ(i) (or qv,Λ(i, k)) for the selected move type.

3. Propose a new configuration X∗t from the move-specific proposal distribution defined
for the chosen move type. For the various moves, this implies:

(a) Birth - add a new object X∗i∗,t sampled from the proposal distribution in
Equation 3.33.

(b) Death - removing an existing X∗i∗,t sampled from the proposal distribution in
Equation 3.35.

(c) Update - update the parameters of object X∗i∗,t sampled from the proposal
distribution in Equation 3.37.

(d) Swap - swap the parameters of objects X∗i∗,t sampled from the proposal
distribution in Equation 3.39.

4. Compute the acceptance ratio αv for the chosen move type (birth: Equation 3.34,
death: Equation 3.36, update: Equation 3.38, and swap: Equation 3.40).

5. Accept/Reject. Accept the proposal X∗t if α ≥ 1, and add it to the Markov Chain
X(n)
t = X∗(n)

t , otherwise add the previous sample in the Markov Chain to the
current position.

Compute MAP estimate XMAP
t .
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Proposal distribution Computing likelihood

Independent PF

(IPF)

q(Xi,t|Xi,t−1), samples the

new state according to the

previous state.

p(Zt|Xi,t), the observation model is

computed independently for each tracker

i.

MCMC trackers q(Xt|Xt−1). Here Xt is the

multi-object configuration

as compared to IPF tracker

where Xi,t is the state for a

particular object i.

min
(

1,
p(Z|tX∗

t )

p(Zt|Xt)

p0(X∗
t )

p0(Xt)

q(Xt|X∗
t )

q(X∗
t |Xt)

)
,

where the observation model is

computed based on all the multi-object

configuration and there is an interaction

model p0(Xt) =
∏
ij∈C ψ(Xi,t|Xj,t) as

compared to IPF tracker.

RJMCMC qv(Xt|Xt−1), with

additional v ∈ Υ (move

types) as compared to IPF

and MCMC trackers.

min
(

1,
p(Zt|X∗

t )

p(Zt|Xt)

p0(X∗
t )

p0(Xt)
pv
pv∗

qv(U)
qv∗ (U∗)

)
,

where there is a dimension matching

probability that allows us to move

between different dimensions, as

compared to MCMC.

Table 3.1: Difference between independent PF, MCMC, and RJMCMC for multiple target
tracking.

qv,Λ(X∗t ) =
∑
i

qv,Λ(i)qv,Λ(X∗t |i), (3.31)

over all of the appropriate object i. At each time, an index i∗ is chosen with probability
qv,Λ(i∗), and a move is chosen with probability pv. The move is applied to the object while
keeping the other multi-object configuration unchanged. The mixture component of the
new configuration X∗t is defined so that:

qv,Λ(X∗t ) =

 1
N

∑
n pV (X∗t |X(n)

t−1,Λ) i = i∗

0 i 6= i∗
(3.32)

Defining the proposal in this manner cancels out all factors involving summations over the
particles in the acceptance ratio, and keeps the algorithm computationally efficient (Smith
et al., 2005).

Birth move

Adding an object i∗ implies that O∗t = Ot ∪ {i∗}. The mixture component for the birth
move can be expressed as:

60



CHAPTER 3. PASSENGER MONITORING SYSTEM

qb,Λ(X∗t |Xt,U, i) =
1
N

∑
n

p(X∗t |X(n)
t−1,Λ)

∏
l∈Ot

p(Xl,t|X(n)
t−1)δXl,t(X

∗
l,t −Xl,t) (3.33)

When i∗ is the index of the new object, chosen from the available objects, it can be shown
that the acceptance ratio is expressed as (Smith et al., 2005):

αb = min

(
1,
p(Zt|X∗t )

∏
j∈Ci∗ ψΛ(X∗i∗,t,X

∗
j,t)

p(Zt|Xt)
pd
pb

qd(i∗)
qb(i)

)
(3.34)

Note that the interaction model for the new object is designed to discourage new births
that overlap with an existing object (Smith et al., 2005).

Death move

This is the reverse move of the birth. Removing an object i∗ implies that O∗t = Ot−{i∗}.
The mixture component for the death move can be expressed as:

qd,Λ(X∗t ,U
∗|Xt, i) =

1
N

∑
n

p(X∗t |X(n)
t−1,Λ)

∏
l∈Ot

p(Xl,t|X(n)
t−1)δXl,t(X

∗
l,t −Xl,t) (3.35)

It can be shown that the acceptance ratio for the death move can be reduced to (Smith
et al., 2005):

αd = min

(
1,

p(Zt|X∗t )
p(Zt|Xt)

∏
j∈Ci∗ ψΛ(X∗i∗,t,X

∗
j,t)

pb
pd

qb(i∗)
qd(i)

)
(3.36)

Update move

After randomly choosing an existing object index i∗, the update move samples the tar-
get movement from the previous state information and the environment p(X∗i∗,t|X

(n∗)
t−1 ,Λ)

keeping all other configurations unchanged. The mixture component for the update move
can be expressed as:
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qu,Λ(X∗t ,U
∗|Xt,U, i) =

1
N

∑
n

p(X∗t |X(n)
t−1,Λ)

∏
i 6=j

p(X∗j,t|X(n)
t−1)δXl,t(X

∗
j,t −Xj,t) (3.37)

The acceptance ratio for the update move is then written as:

αu = min

(
1,
p(Zt|X∗t )

∏
j∈Ci∗ ψΛ(X∗i∗,t,X

∗
j,t)

p(Zt|Xt)
∏
j∈Ci∗ ψΛ(Xi∗,t,Xj,t)

)
(3.38)

Swap move

This move involves a pair of objects without changing dimension. The proposal is defined
as a mixture model over all object pairs,

qs,Λ(X∗t |Xt) =
∑
i,j∈Ot

qs,Λ(i, j)qs,Λ(X∗t |Xt, i, j) (3.39)

A candidate X∗t is chosen by selecting a pair of existing object indexes i∗ and j∗ with
probability ps(i∗, j∗) and swapping their configurations. The acceptance ratio for the
swap can be reduced to:

αs = min
(

1,
p(Zt|X∗t )
p(Zt|Xt)

)
(3.40)

3.3.7 Observation Model (Appearance Transformation Model)

The observation model is used to measure the observation likelihood of the samples drawn
from the proposal distribution, and thus is an important part of object tracking. In this
work, we introduce a new observation model namely the appearance transformation model
that learns the foreground appearance changes. To do this, we build cumulative normalised
colour histograms (Javed et al., 2005), normalised Histogram of Oriented Gradient (HOG)
(Dalal and Triggs, 2005), and HOG’s spatiogram (Birchfield and Rangarajan, 2005) from
regions inside the detected foregrounds as the appearance feature vector. Then, for each
pair of the same foreground appearances, we compute its histogram transformation and
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use that as the input features to the SVM classifier to form the appearance transformation
model. This classifier is then used during run time to determine the likelihood that two
appearances belong to the same passenger.

3.3.7.1 Appearance Transformation Feature

We present the appearance transformation feature of an object as H = (H,G, S), where H,
G, and S are the cumulative colour (RGB) histogram (Javed et al., 2005), the histogram
of oriented gradients (Dalal and Triggs, 2005), and the HOG’s spatiogram (Birchfield and
Rangarajan, 2005) respectively (note that we discard the time and object index in this
subsection for simplicity purposes). Let H = {mb}, G = {nb}, and S = {µb,Σb} where
b = 1, . . . , B is the bin index of each histogram, mb is the cumulative response of the
colour histogram, nb be the frequency value in the b-th bin of the HOG, and µb and Σb be
the mean vector and covariance matrices of the image coordinates that fall into each bin
of the spatiogram. For each pair of foreground appearances, we compute the histogram
transformation and use that as the input samples to the SVM classifier. The positive and
negative samples contain transformation histograms of the same and different foregrounds
respectively. Let H and Ĥ be the appearance features of two foregrounds. We compute
the histogram transformation in three different ways:

1. Inverted cumulative histogram for colour histograms (ICH) (Javed et al.,
2005). This is written as: ZH(H, Ĥ) = ∀Bb=1H

−1(Ĥ(b)), where ZH is the trans-
formation feature of two cumulative histograms, H and Ĥ. The histogram inverse
function on bth bin is defined as:
H−1(b) = {â ∈ 1 . . . B̂ : H(â) = mb}
This can be worded as follows: the inverse of the bth bin in the first histogram is the
ath bin in the second histogram with the condition that their cumulative values are
equal, i.e. m̂a = mb.

2. Histogram differences for HOGs (DHOG) (Dalal and Triggs, 2005) using the
Bhattacharyya coefficient. This is expressed as: ZG(G, Ĝ) = ∀Bb=1ρ(nb, n̂b), where
ZG is the transformation feature of two HOGs, G and Ĝ. The Bhattacharyya coef-
ficient is defined as:
ρ(nb, n̂b) =

√
nbn̂b√

(
∑B
j=1 nj)(

∑B
j=1 n̂j)

3. Covariance distance measure for spatiograms (SHOG) (Forstner and Moo-
nen, 1999). We define ZS(S, Ŝ) = ∀Bb=1γ(Σb, Σ̂b), where ZS is the transformation
feature of two spatiograms, S and Ŝ . The distance measure is defined as:
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i Feature, Z = {ZH , ZG, ZS} Label

ICH (RGB) DHOG SHOG

1 [1 . . . 32][1 . . . 32][1 . . . 32] [1 . . . 9] [1 . . . 9] {-1,1}
. . .

L [1 . . . 32][1 . . . 32][1 . . . 32] [1 . . . 9] [1 . . . 9] {-1,1}

Table 3.2: SVM feature vectors.

γ(Σb, Σ̂b) =
√∑d

i=1 ln2 λi(Σb, Σ̂b)
where {λi(Σb, Σ̂b)}i=1...d are the generalized eigenvalues of Σb and Σ̂b.

Hence, the final appearance transformation vector can be written as:

Z = {ZH , ZG, ZS} (3.41)

Despite the simplicity of the proposed feature, the inputs to the SVM are collections of
possible foreground appearance transformations due to low sample rates and strong il-
lumination changes, making them suitable for tracking in the moving bus environment.
Intuitively, the use of inverted cumulative colour histogram captures the colour transfor-
mation of an object between two consecutive frames, and it is used by Javed et al. (2005)
to learn the Brightness Transfer Function (BTF) of a pair of cameras that have different
camera parameters. In addition, the HOG and its spatiogram transformations learn the
texture and spatial changes that have lighting and rotation invariant properties. Thus, the
colour, texture, and spatial descriptors are robust to lighting changes. After the training,
we obtain the support vectors as the appearance transformation model. Using this model,
a pair of foreground candidates can be tested to generate the tracking decisions.

In the implementation, we treat the RGB channel independently and quantise it into 32
bins per channel, resulting in a total of 96 bins. Both HOG and its spatiograms consist
of 9 bins, resulting in 18 bins in total. Note that since the orientation is sensitive to
object pose, we rotate the object against the dominant orientation before creating the
HOG to achieve rotationally invariant descriptors, similar to the SIFT descriptor (Lowe,
2004). Finally we concatenate all histogram transformations to represent the foreground
appearance descriptor. Table 3.2 shows the input SVM feature vectors, where each row
consists of 114 dimensions.
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3.3.7.2 Observation Model using The Appearance Transformation Model

If we denote H∗ = (H∗, G∗, S∗) as the reference feature model for an object and H(Xi,t)
as the candidate feature model, the likelihood that H? and H(Xi,t) belong to the same
object is measured by first computing their transformation, Zi,t, and then comparing it
against the appearance transformation model. Denote the projection of the SVM vector
as w and the SVM feature as f(Zi,t), then the observation likelihood is modelled as a
sigmoid function based on the classifier’s output:

p(Zt|Xt) ∝
1

1 + exp(sign(wT f(Zi,t)))
(3.42)

Here f(Zi,t) can be viewed as the distance from the Zi,t to the support vectors for the
appearance transformation model. That is, the probability outputs of SVMs are based on
the distance of test and support vectors. So the output reflects the inter-class likelihood.

3.3.8 Computing MAP Estimation

At the end of the RJMCMC iteration process, we obtain the entire Markov Chain config-
urations. The final task is to compute MAP estimate XMAP

t , i.e. the predicted target’s
state at time t. In the implementation, we search for the best state configurations with
the highest number of occurrences (mode).

3.4 Experimental Results

3.4.1 Perth Central Area Transit (CAT) Bus Dataset and Camera Pa-

rameters

Test video. The experimental data consists of 11 sets of video, which were recorded from
cameras mounted inside Perth Central Area Transit (CAT) buses. Videos from four dif-
ferent CAT buses are used in this experiment. Figure 3.13 shows snapshots of the empty
CAT buses along with their corresponding seat structure or seat label information. The
seat structure information is transferred from one bus to other buses using the Homogra-
phy estimation method described in Section 3.1. In Figure 3.13 (d), the seat structures
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Test video CAT NOP NOF Description

Video 1 ? 2 0 188 Empty bus with inconsistent lighting.

Video 2 ?† 1 1 3558 Single passenger, lighting changes, and multiple seat switchings.

Video 3 ? 3 8 156 Multiple crowded passengers, occlusions.

Video 4 ? 2 9 292 Multiple crowded passengers, severe lighting changes, occlusions.

Video 5 † 1 3 159 Multiple passengers, seat switchings.

Video 6 † 1 3 224 Multiple passengers, single seat switching.

Video 7 † 1 2 400 Multiple passengers, multiple seat switchings.

Video 8 1 6 473 Multiple passengers, occlusions.

Video 9 4 5 184 Multiple passengers, lighting changes, no significant motions.

Video 10 1 5 254 Multiple passengers, lighting changes, no significant motions.

Video 11 1 2 325 Single passenger, no significant motions.
?These video are used to illustrate our detection results in Section 3.4.5.
†These video are used to illustrate our tracking results in Section 3.4.6.2.

NOF = Number of frames, NOP = Number of passengers

Table 3.3: Descriptions for the CAT dataset.

are manually labelled. The corresponding estimation results for the other three buses are
shown in Figures 3.13 (a), (b), and (c). Without this calibration step, the seat topology
has to be manually defined for each bus and for each time the camera in a bus is physi-
cally adjusted, which is impractical. Table 3.3 summarises descriptions of the CAT video
covering different scenarios inside the bus.
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Figure 3.13: Using the Homography approach, the background seats information can be
automatically transferred across similar types of buses even with differing viewpoints and
lighting.

Bus camera parameters. Each camera was set up to record a video stream of size
320x240 at different frame rates. Figure 3.14 shows the existing bus surveillance camera
(the black colour camera) that is used to capture video in CAT 2, 3, and 4 and has
approximately 4–8 frames per second (fps) capture rate, while the white colour camera is
used to capture CAT 1’s video at 25 fps. The video from CAT 2, CAT 3, and CAT 4 are
captured in real bus situations as they operate in the urban city, covering different lighting
and common passenger situations. Due to the limited scenarios in the three CAT’s footage,
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additional data collection trials were carried out. These trials are captured using CAT 1’s
camera, providing a broader range of passenger behaviours. Throughout the tracking
experiment, we downsample CAT 1’s video frame capture rates to 5 fps to simulate the
low frame rate conditions. Because the frame rates do not affect the detection performance,
all detection experiments were conducted on the original frame rates.

Figure 3.14: Camera setup.

Training data (detection). Prior to testing, we collect training frames from the four
moving buses without passengers with varying lighting conditions (comprising around
200–340 frames per bus). Training images are then used to build the SIFT codebook
background model as described in Section 3.2.1.1.

3.4.2 Ground truth

To quantify the performance of our system, all ground truth associated with the test
video are provided. For each test video, we manually annotate the ground truth at two
resolutions: the high resolution ground truth (video ground truth) and the low resolution
ground truth (individual frame ground truth).

The high resolution ground truth (video ground truth) consists of the total number
of passengers and their trajectories throughout the video. It is presented as the passenger
trajectory graph (PTG) as shown in Figure 3.15 (a), where the seat and passenger anno-
tations are presented in Figure 3.15 (b) and (c) respectively. We use alphabets to label the
seats and numbers to label the passengers. The x-y axes represent the frame number and
passenger ID respectively. The trajectories of each passenger in the video are represented
by line segments. Each line segment is labelled with a seat number and the length of the
line represents durations of the passenger occupying the particular seat. By rearranging
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the PTG using the seat and frame number, we obtain the seat occupancy graph (SOG) as
shown in Figure 3.16, where the ground truth (dark colour bar segments) can be directly
compared with the detection results (light colour bar segments). The SOG is used to
assess the performance of the detection method, while the PTG will be used to evaluate
the tracking methods.

(b) Seat annotations (c) Passenger labels (d) Frame 44 (e) Frame 146
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Figure 3.15: Ground truth for video 8.

The low resolution ground truth (individual frame ground truth) consists of the
following information: (1) the number of passengers in a frame instance, (2) centroid of
their head-body locations and the bounding boxes, (3) their seat occupancies, and (4)
bounding boxes of other objects apart from passengers (e.g. suitcase, bag, or jackets, etc).
Figures 3.15 (d) and (e) show snapshots ground truth of the foreground bounding boxes in
video 8, comprising three passengers (denoted by green and brown bounding boxes) and
a bag (purple bounding box) on seat F.

3.4.3 System Output (Detection)

At the end of the detection program execution, we obtain a set of foregrounds associated
with the seat label and frame number. The summarised outputs of test video 8 are shown in
Figures 3.16 and 3.17. In Figure 3.16, the detection results (light colour bar segments) are
evaluated against the ground truth (dark colour bar segments) to measure the performance

68



CHAPTER 3. PASSENGER MONITORING SYSTEM

of the detection algorithm.

Because the detection results will be used for tracking purposes, we need to extract reliable
foreground objects. In some situations, due to the lack of edges, the probability of the
human model detection is not able to locate the passenger correctly. Hence, we use the
output of the seat occupancy results as the foreground (instead of the human detection
results). In Figure 3.17, the red ellipse represents the detected head of the passenger,
while the blue rectangle and blue ellipses represents the seat occupancy and the detected
human body respectively.

Figure 3.16: Comparison graph between the ground truth (dark colour bar) and the
detection results (light colour bar) for video 8.

Figure 3.17: The detected passengers in video 8. The different thickness of the ellipses
represent the likelihood of the human detection model (thin = low likelihood, thick = high
likelihood).
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Figure 3.18: Detection evaluation criteria.

3.4.4 Evaluation Criteria

To evaluate the detection performance, we apply three criteria: relative distance, ratio of
the cover and overlap (Leibe et al., 2005), as shown in Figure 3.18. A detected candidate
is considered to be a true positive when its relative distance from the object is less than
0.5 times the actual size of the ground truth’s bounding box, and the cover and overlap of
the bounding box are both above 40%, and anything else is considered as a false positive.
The overall detection performance for each experiment is computed as:

TP (%) =
the total number of true positives
the total number of ground truth

(3.43)

and

FP (%) =
the total number of false positives

the total number of detected candidate
(3.44)

3.4.5 Experiments (Detection)

The main objectives of the following experiments are to test the:

1. Performance of the SIFT codebook background model under severe lighting changes
with no passengers (Experiment 3.4.5.1).

2. Performance of the proposed detection algorithm under different lighting conditions
with a passenger moving and switching seats inside the bus (Experiment 3.4.5.2).
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3. Performance of the proposed detection algorithm under crowd levels, including oc-
clusion and background clutter (Experiment 3.4.5.3).

4. Performance of the proposed detection algorithm under varying crowd levels and
lighting changes (Experiment 3.4.5.4).

5. Overall accuracy of the proposed detection algorithm against two standard fore-
ground detection algorithms (Experiment 3.4.5.5).

For each experiment, snapshot images of major events are shown to illustrate the content
of the video. The corresponding snapshot of the detection results is also generated along
with the performance graph and the final detected foregrounds.

Implementation details: We set the weight factor β in Equation 3.3 to β = 0.3 to
perform all the testing.

3.4.5.1 Experiment I: Empty Bus with Lighting Changes (Video 1)
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Figure 3.19: Snapshot for video 1 (CAT 2).
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This experiment demonstrates the performance of the SIFT codebook background model
against lighting changes.

Description: Figure 3.19 shows snapshots of test video 1. It contains images of an empty
bus with frequent lighting changes. From Figure 3.19 we can see that between most of the
images, drastic ambient lighting changes occur while the bus is moving. For example: (1)
between frames 49, 50, and 51, the scenes outside the left window keep changing and seats
B, C, D, and E experience erratic lighting changes, (2) between frames 133, 134, 170, and
177, seats K and L are exposed with different lighting and shadows, (3) in frames 171 and
177, even though there is a normal lighting level, the global illuminations at the rear of
the bus are different.

In this experiment, we use the first 60% of the data (112 frames) for constructing the
background model and the remaining 40% for testing (76 frames). The goal is to test the
background model against the false positives. We compare our proposed SIFT codebook
background model against the Gaussian Mixture Model (GMM) background subtraction
algorithm (Stauffer and Grimson, 2000). For both methods, the background model con-
struction and the detection are performed for each seat region instead of the whole image.
A seat is considered occupied when 75% of its area is detected as foreground. To evaluate
the performance of each algorithm, we compute the percentage of errors (false positives)
metric, which can be expressed as: ErrRates = #false positives

#test frames×#seats . Since the bus is empty,
the ideal performance is to detect no seat occupancy (0% false positives).

Results: The performance of both methods is provided in Table 3.4, while the snapshot
results are shown in Figure 3.20. It shows the superiority of our proposed method against
the GMM algorithm. The small number of errors in our detection method is mainly caused
by the “unseen” or “rare” seat appearances (due to different lighting conditions) resulting
in most of the codewords having low likelihood values below the detection threshold. On
the other hand, the GMM method is not able to model the lighting changes correctly
due to random intensities produced by severe lighting conditions. This causes the GMM
background model to be noisy resulting in high false positives as shown in Figure 3.20
(bottom-row). In Experiment 3.4.5.4, we will use the constructed background model in
this experiment to detect the passengers.

Methods Error rates (% false positives)

SIFT Codebook Background Modelling 9.26%

GMM (3 number of Gaussians) Stauffer and Grimson 2000 87.67%

Table 3.4: Comparison results for video 1.
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(a) Frame 132 (b) Frame 133 (c) Frame 152 (d) Frame 171 (e) Frame 176

Figure 3.20: Snapshot comparisons of the SIFT codebook background model (top row)
and the GMM background subtractions (bottom row). Foreground pixels are marked with
red, while a seat that is considered occupied is drawn with a blue bounding box. The
performance is measured using the bounding boxes or seats.

3.4.5.2 Experiment II: Single Passenger with Lighting Changes (Video 2)

(b) Seat annotation (c) Passenger annotation (d) Training sample (e) Training sample

(f) Frame 323 (g) Frame 417 (h) Frame 733 (i) Frame 1776

(j) Frame 2531 (k) Frame 2946 (l) Frame 3084 (m) Frame 3142

A B
C

D E

FG

H I K L
1

Figure 3.21: Snapshots of video 2.
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This experiment demonstrates the performances of the proposed detection method under
the following two scenarios: (1) different lighting conditions and (2) a simple case of a
passenger moving and switching seats inside the bus. Since all the CAT 1’s trial data
are collected when the bus is stationary, the different lighting conditions are simulated by
switching the light on and off inside the bus.

Description: In this experiment we consider a simple scenario in which a single passenger
moves while the lighting inside the bus is adjusted. Figure 3.21 shows the annotated
snapshot images of video 2. Similar to the first experiment, we build a SIFT codebook
background model using the empty bus data with different lighting conditions. Examples
of the training images are shown in Figures 3.21 (d) and (e) respectively. In this video,
initially a passenger, wearing white striped shirt, enters the bus and occupies seat D (from
Frame 250–400), as shown in Figures 3.21 (f) and (g). He then leaves the bus and re-enters
the scene at frame 653 to 987, mostly standing in the aisle (blocking seat C). Different
lighting changes occurred in a number of instances, between Frames 1774 and 1775; Frames
2945–2946; and Frames 3085 and 3086. In summary, the passenger switched seats twice
as he moved from F to B; and from B to G.

Results: Figures 3.22, 3.23, and 3.24 show some of the detection snapshots, performance
graph, and summarised detection result of video 2 respectively. In this experiment, we
achieve 89.2% true positives detection with 10.3% false positives. As can be seen from
Figure 3.22, in most frames, for example between frames 733 and 1776; frames 2945 and
2946; and frames 3084 to 3142, our detection method is able to detect the passenger
correctly despite the sudden changes in illumination. It is also able to detect passenger
movements around the environment, this can be noted from frames 323–417; and 2946–
3084 (when the passenger moves from the seating position to the aisle). On the other hand,
there were a number of false positive detections when the passenger occludes multiple seats,
as in frames 2498, 3084, and 3142. In addition, the algorithm does not detect the head or
body location correctly in some frames, due to the weak edges around the human boundary
in frames 2960 and 3142.
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(a) Frame 323 (b) Frame 417 (c) Frame 733 (d) Frame 1776

(e) Frame 2442 (f) Frame 2498 (g) Frame 2531 (h) Frame 2946

(i) Frame 2960 (j) Frame 3084 (k) Frame 3103 (l) Frame 3142

Figure 3.22: Snapshot images of the passenger detection in video 2 (CAT 1).

Figure 3.23: Comparison of the detection results (light colour bar) and the ground truth
(dark colour bar).
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Figure 3.24: Detection results of video 2.

3.4.5.3 Experiment III: Crowded Passengers at Night Time (Video 3)

(b) Frame 123 (c) Frame 171 (d) Frame 173

(e) Frame 186 (f) Frame 189 (g) Frame 206 (h) Frame 225

(i) Frame 375 (j) Frame 422 (k) Frame 461 (l) Frame 523

Seat annotation for Vid-3

A B
C

D E

FG

H I K L

M O

1

2
3

4

5 6

7

8

9

Figure 3.25: Snapshots for video 3 (CAT 3).

This experiment demonstrates the performance of the proposed detection algorithm under
various crowd levels. The video was taken at night time where the lighting condition is
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fairly stable. The challenges in this video include background clutter and object occlusions.
Figure 3.25 shows annotated snapshots of video 3, where the passengers are annotated in
the order they appear in the video.

(a) Frame 108 (b) Frame 123 (c) Frame 171 (d) Frame 173

(e) Frame 186 (f) Frame 189 (g) Frame 206 (h) Frame 225

(i) Frame 375 (j) Frame 422 (k) Frame 461 (l) Frame 523

Figure 3.26: Snapshot images of the passenger detection in video 3 (only the head and the
seat occupancy are shown for simplicity purposes).

Results: Figures 3.26, 3.27, and 3.28 show selected snapshot results, performance graph,
and summarised detection results of video 3 respectively. In this experiment, we achieve
79.4% true positives detection with 22.8% false positives. Despite the crowded scenes in
Figure 3.26 (d), our proposed method is able to pick up 7 correct foregrounds with 1
mis-detection. From frame 171–502, we show that our method can also detect the black
suitcase object as the foreground. The reason we have a lower overall true detection
is mainly caused by occlusion. During frames 171–460, passenger 3 sitting at the rear
side of the bus was heavily occluded by passenger 7, making it difficult to be detected.
Similar situation occurs for passenger 4 who sat close to the camera and was occluded by
the bus handle bar (only half of the passenger’s body parts were visible in the camera’s
field of view). The false positives are caused by passengers occupying multiple seats,
for example, part of the body of passenger 1 simultaneously occludes seat M and G in
frames 108 and 123. This experiment demonstrates that the proposed method is able to
detect multiple targets under occlusion and background clutter situations with reasonable
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detection accuracy.

Figure 3.27: Comparison of the detection results (light colour bar) and the ground truth
(dark colour bar).

Figure 3.28: Detection results of video 3, arranged according to the seat number (from
top row to bottom, we have seat A–G)
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3.4.5.4 Experiment IV: Crowded Passengers with Lighting Changes (Video

4)

(b) Frame 108 (c) Frame 109 (d) Frame 121

(e) Frame 122 (f) Frame 210 (g) Frame 247 (h) Frame 248

(i) Frame 250 (j) Frame 252 (k) Frame 255 (l) Frame 260

Seat annotation for Vid-4

A B
C

D E

FG

H I K L

M
N O

1

2 3 4

5
6

7
8
9

Figure 3.29: Snapshots for video 4 (CAT 2).

This experiment demonstrates the performance of the detection method in a challenging
real bus scenario with crowds and severe lighting change situations.

Description: Figure 3.29 shows snapshots of video 4. This video comprises a series of
passengers entering and leaving the field-of-view of the camera at random intervals. The
scene through the window keeps changing while the bus is moving as in frames 108 and
109; 121 and 122. Between frames 247 and 248, the lighting conditions change rather
dramatically due to external lighting; between frames 255 and 260 illumination changes
exist on the rear and right seats of the bus.

Results: Figures 3.30, 3.31, and 3.32 show selected snapshot results, performance graph,
and summarised detection results of video 4 respectively. In this experiment we obtain
70.2% true positives, with 28.3% false positives. Despite failing to detect the human shape
due to weak edges at the back of the bus (for example in frames 88, 108, 109), we are able
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to detect the passengers correctly since the probability of seat occupancy is high. Simi-
larly, between frames 247-248 and 255-260, even when the lighting in the side and rear of
the bus changes drastically, the system is able to detect passengers correctly without in-
troducing false positives. This demonstrates the strength of the invariant lighting features
used to model the background comprising highly structured texture such as the seats.
Mostly, the “clothing” of passengers has very different textures from the seats, making
them distinguishable from the background.

(a) Frame 88 (b) Frame 108 (c) Frame 109 (d) Frame 121

(e) Frame 122 (f) Frame 210 (g) Frame 247 (h) Frame 248

(i) Frame 250 (j) Frame 252 (k) Frame 255 (l) Frame 260

Figure 3.30: Snapshot images of the passenger detection in video 4.
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Figure 3.31: Comparison of the detection results (light colour bar) and the ground truth
(dark colour bar).

Figure 3.32: Detection results of video 4, arranged according to the seat number (Top–
Bottom: Seat A, C, E, G, F, M, O)
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3.4.5.5 Experiment V: Comparison With Other Detection Approaches

(a) Our method (b) GMM (c) Head detector

Results TP FP TP FP TP FP

Video 2 89.2 10.3 57.3 80.3 92.3 89.5

Video 3 79.4 22.8 42.2 78.4 83.5 84.7

Video 4 70.2 28.3 40.7 72.6 78.6 76.5

Video 5 84.1 27.2 53.8 76.6 86.9 83.2

Video 6 78.8 23.4 56.2 80.2 79.1 78.4

Video 7 82.9 24.8 54.7 79.4 85.8 84.3

Video 8 83.7 25.1 46.2 72.6 87.7 93.6

Video 9 78.2 22.9 42.2 71.6 80.2 96.1

Video 10 76.2 18.7 32.6 62.1 78.4 77.2

Video 11 90.6 31.3 52.2 76.7 90.4 88.9

Average performance 81.3% 23.5% 47.8% 75.1% 84.3% 85.2%

TP = True positive rates, FP = False positive rates

Table 3.5: Summary of different method performances on the CAT video.

The performance and detection outputs of six other video are summarised in Table 3.5 (a)
and Figure 3.33. We further evaluate the performance of our proposed method against
two standard foreground detection approaches: (1) Stauffer-Grimson Gaussian Mixture
Model (background subtraction) (Stauffer and Grimson, 2000) and (2) Birchfield’s head
detector (Birchfield, 1998).

Description: For the Stauffer-Grimson background subtraction, we use 3 Gaussian dis-
tributions to create a background model from the empty bus video and use it to detect
foreground pixels during run-time. Once the foreground pixels are detected, we further
perform operations to attain the connected components on the foreground pixels and then
use morphological operations to arrive at the final results. The head detection module
is implemented to locate the best fitting ellipse to the human head on the edge image.
We first convert each image observation into an edge image, and then compute the ellipse
curvature difference by scanning through the entire image at different scales, setting a
threshold to eliminate false positives. Since the ground truth is labelled with the head and
body bounding boxes information, the evaluation of each method is performed according
to its output, i.e. since the head detection only produces the head ellipses output, it is
tested against the head bounding box. Similarly, the GMM is evaluated for both the head
and body bounding boxes.
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Results: Figure 3.34 and Table 3.5 show snapshots of the detection results and the quan-
titative comparison between the different approaches respectively. Based on the results in
Table 3.5, we see that the Stauffer-Grimson background subtraction and the Birchfield’s
head detection approaches both have relatively high false positive rates. On the other
hand, our proposed method is able to achieve balance between the true and false positive
detections. We obtain an average performance of 81.3% true positive and 23.5% false
positive detections.

From Figure 3.34 and Table 3.5, we can see that the Stauffer-Grimson background sub-
traction approach fails badly when tested on the CAT datasets. There are three main
reasons why it fails: (1) lighting changes; (2) moving scenery seen through the window;
and (3) crowded situations. From Figures 3.34 (a) and (c), when lighting changes occur,
the GMM method produces a high number of false detections and, at the same time, have
low true detection because most of the detected candidates do not fit the matching criteria
which are counted as mis-detection. Even by adjusting the number of the Gaussians (n),
it is still not able to adequately capture the variability of lighting changes. Setting n to
be a large number results in under segmentation/detection, and when n is small, the false
positive rates become high. Because passengers are generally sitting close to each other,
the GMM method generally detects multiple passengers as a single object, which results
in a lower overall true detection.

The head detection method used by itself also faces a number of problems, such as high
false detection rates and speed. Figure 3.34 shows that head detection produces a lot of
false positives. Although the head detection is done on an edge image, which is partially
invariant to lighting, this method used by itself is prone to error, as there are many
artefacts that resemble ellipses inside the bus (e.g. bus handle, corner of the window, top
part of the seat for example). Detecting a cascaded human configuration model like the
pedestrian detection approaches (Dalal and Triggs, 2005) is hard to achieve due to heavy
occlusion and irregular poses of passengers. Finally, scanning the entire image at different
scales for head detection is computationally demanding.

In contrast, our proposed method greatly reduces the false detection and at the same
time delivers a reasonable detection rate, even when severe lighting changes occur. The
advantage of our detection algorithm lies in the use of a strong background model to detect
the seat occupancy, by means of estimation we compute the statistics of the SIFT features
which are partially invariant to lighting. The resultant seat occupancy detection then helps
the human detection module to significantly reduce the amount of false positives given the
evidence of seat occupancy status. The availability of the bus internal structure provides
an effective way to disregard areas where it is not possible to detect passengers. However,
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in some instances, mis-detections occur which is the result of the lack of foreground edges
and objects that are very close to the camera. False positives occur when capturing an
insufficient variety of lighting changes during the creation of the background model or
when a passenger occupies multiple seats at the same time.

BgSub

BgSub

Head

Head

Ours

Ours

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 3.34: Comparison of the passenger detection results on the selected CAT datasets. (First
and fourth rows) Background subtraction results; (Second and fifth rows) Head detection results;
(Third and sixth rows) Passenger detection results using our proposed. Even when the light
changes, our method is still able to detect the passengers correctly, while the background subtrac-
tion result fails badly (this can be seen from the red bounding boxes indicating the foreground
objects being detected). Similarly, the head detection alone produces a lot of false positives (it
detects the bus handles and corners of the window as human heads).

3.4.6 Experiments (Tracking)

To evaluate the proposed tracking method, we conducted two experiments. The first
experiment was performed in an indoor setting to test the proposed appearance transfor-
mation technique on a conventional tracking problem involving non overlapping cameras.
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(a) Layout of the environments (b) Cameras used in this experiment

door

door

door

corridor

corridor C1

C1

C2

C2

C3

C3

C4

C4

Figure 3.35: Experimental environment.

The second experiment presents results and quantitative comparison between our proposed
method and the state-of-art tracking algorithms on the bus dataset.

3.4.6.1 Experiment VI: Non-Overlapping People Tracking (Indoor Environ-

ment)

The task of the first experiment is to track moving targets in an indoor surveillance environ-
ment installed with multiple non-overlapping cameras. In this situation, the appearance
of the target may appear differently from one camera to another due to varying target
poses, illumination, and camera parameters. Hence, the problem is similar to tracking
passengers under low frame rate and different lighting conditions inside the moving bus.

The environment under surveillance consists of rooms and corridors typifying a conven-
tional hallway surveillance installation. Figure 3.35 (a) shows the layout of this environ-
ment, while Figure 3.35 (b) shows images captured by the cameras C1, C2, C3, and C4.
In this experiment, a week’s worth of video footage was collected using these cameras.
We first implemented the Gaussian Mixture Model (GMM) segmentation by Stauffer and
Grimson (2000) and extracted a total of 16,048 people images (without the background).
From the segmented data (see Figure 3.36), we proceed to learn the appearance transfor-
mation models for all combination pairs of cameras using the proposed method stated in
Section 3.3.7. We divided the datasets into positive and negative training samples. The
positive training samples contain pairs of the same person captured by two cameras at
different time instances as shown in Figure 3.36 (c); while the negative training samples
contain two different people captured from the camera pair. Note that unlike Javed et al.
(2005) who builds the appearance model for a pair of cameras, in our case, we only build

86



CHAPTER 3. PASSENGER MONITORING SYSTEM

Camera 1

Camera 3

Camera 2

0

C1&C3
Person 1

Time slices

Person 2

C1 C1&C3

C2C1

C2

Person 3

C1C2

C2

7800

C2

DOOR

CORRIDOR

CORRIDOR

DOOR

C1 C3 C4

C2

Object Trajectories

125 743 794 34933118 4744 5163 6543

(a)

(b) (c)

C1_C3 transformation C1_C2 transformation

Figure 3.36: Example of the annotated ground truth: (a) the extracted foregrounds and
(b) the object trajectories. (c) Examples of the positive training samples used in this ex-
periment, where same foregrounds are viewed differently in two cameras. Between camera
1 and 3, same objects are viewed brighter in one camera than the other. Between camera
1 and 2, same objects have different appearance colours.

a single SVM classifier for all combination cameras. Hence our appearance transformation
model takes into account a larger appearance variation.

In order to evaluate the tracking performances of our system, we define a quantitative
measure (success and failure rates) as the performance metric, i.e. by calculating the
rate of true and false positive rates for the non-overlapped region tracking. Success and
failure rates refer to the success of the system in matching targets “leaving” and “entering”
any pair of the non-overlapped surveillance cameras. During testing we perform cross
validation with 40 iterations, with random division of the data into training and testing
samples, to validate the accuracy of the proposed method. The results of this experiment
are shown in Table 3.6.
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C1 C2 C1 C3 C1 C4

TP FP TP FP TP FP

66.31% 25.28% 86.91% 23.42% 87.53% 16.16%

C2 C3 C2 C4 C3 C4

TP FP TP FP TP FP

71.02% 23.03% 69.21% 18.92% 85.73% 22.76%

Table 3.6: System performance of the proposed appearance transformation model.

The experimental results in Table 3.6 show that our approach is able to operate on an aver-
age of 77.8% tracking accuracy and 21.6% false positives. The reason C1 C2, C2 C3, and
C2 C4 have lower true positives compared to the other camera pairs is because camera C2
has large colour variations compared to the other three cameras, and thus contributes less
training samples for the SVM during training. Hence, during testing, it has smaller weight
as compared to the other transformation features. On the other hand, between cameras
C1 C3, despite the fact that objects in camera 1 generally have a brighter appearance
model than objects on camera 3 we achieve 86.91% true positive.

The results and the success rate of the system justify our proposed appearance transfor-
mation technique as being suitable in low frame rate tracking situations with reasonable
accuracy. Based on this result, we use the appearance transformation model method on
real bus footage. The following subsection demonstrates the performance of the RJMCMC-
ATMT tracking on real bus footage

3.4.6.2 Experiment: Seat-switch Detection

We will now evaluate the ability of the RJMCMC-ATMT technique to track passengers for
detecting seat-switch events. The tracking performance is evaluated based on the number
of correctly detected seat switching instances against the number of ground truth seat
switching instances

Implementation details

RJMCMC parameters. We set the parameters for RJMCMC in a similar way as Smith
et al. (2005). In the bus scenario, we define the exit region as the seats that are close to the
end of the camera’s FOV. The move types are chosen according to the prior distribution
from the previous state. The priors for birth (p(v = birth) = [.07, 0.4]) and death (p(v =
death) = [.007, .0004]) increase when the passenger is occupying seats that are close to the
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exit region or when two passengers are close together, i.e. occlusion. Similarly, the prior
of the swapping is increased when the two objects are within a certain distance threshold
ds.

Appearance Transformation Model: Similar to the previous tracking experiment, we learn
the appearance transformation model using outputs from the passenger detection results.
We extracted a total of 1728 passenger images (without the background). Figure 3.33
shows some of the extracted passenger images. We divide this data into positive and neg-
ative training samples. The positive training samples contain pairs of the same passengers
captured under low frame rates with various motion patterns including seating-to-standing,
standing-to-seating, moving, switching seats, etc. The negative training samples contain
two different passengers. We randomly select 2542 pairs as positives samples and 3179
pairs as negative samples. Figure 3.37 shows examples of the positive training samples
used in the bus experiment.

Figure 3.37: Examples of the positive training samples used in the bus experiment.

Seat switching detection: At the end of the tracking program execution we obtain a set
of passenger trajectories (tracklets) along with their appearances during tracking, which
is stored in the “main database”. The seat-switch events can be detected by analysing
the trajectory’s results; but this information is not reliable due to noise, discontinuity of
tracklets, etc. For example, a passenger who moves from one seat to another may have
discontinuity of tracklets in the middle of the video. Therefore, we utilise the appearance
records of the passenger to detect the seat-switch activities even when the trajectories are
not smooth. When a seat is occupied by the same passenger for at least three consecutive
frames, we refer to this as the stable appearance profile of the passenger. A“main database”
is used to store all target appearance profiles. Every time a new appearance profile is
introduced, we compare it against all other appearance profiles in the main database. The
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similarity measure between two appearance profiles is performed by cross validating all
appearances inside the sets. If the average similarity is above 70%, we consider the two
appearances coming from the same target and if the seats they occupied are different, this
is identified as a “seat switch” activity.

Experimental Objectives

The following tracking experiments are used to illustrate the performance of RJMCMC-
ATMT under a series of passenger movement patterns, including normal motions, object
occlusions, merging and splitting along with various lighting conditions. The main objec-
tives of the experiments are to test the:

1. Performance of RJMCMC-ATMT on low frame rate video.

2. Performance of RJMCMC-ATMT under different lighting conditions (Experiment
3.4.6.3).

3. Performance of RJMCMC-ATMT in crowded scenes. (Experiment 3.4.6.4).

4. Performance of RJMCMC-ATMT against similar foreground appearance scenarios
(Experiment 3.4.6.5).

5. Quantitative comparison between RJMCMC-ATMT against other tracking methods
(Experiment 3.4.6.6).

3.4.6.3 Experiment VII: Different Lighting Scenario (video 2)

This experiment examines the performance of RJMCMC-ATMT to correctly track a pas-
senger under low frame rates and different lighting situations.

The key challenges in this video involve tracking a target that has different colour ap-
pearances due to lighting changes and different pose due to low frame rates. Figure 3.38
shows the snapshots of the passenger tracking while Figure 3.39 shows the comparison
between the RJMCMC-ATMT tracking results and the ground truth (targets movement).
In this experiment, we are able to detect 2 seat-switch activities correctly. RJMCMC-
ATMT successfully tracks passenger 1 despite changes in illumination between frames 84
and 85. Under the same situations, Particle Filter with HSV appearance based association
technique (Okuma et al., 2004) fails to track the passenger as shown in Figure 3.40. In
frame 124, RJMCMC-ATMT fails to associate the detected blob to passenger 1 due to a
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large change in object appearances (sitting vs standing poses). Despite failing to track
the passengers correctly in the middle of the video, we are able to detect the seat-switch
activities correctly.

            

            

            

(a) Frame 15 (b) Frame 22 (c) Frame 84 (d) Frame 85

(e) Frame 93 (f) Frame 124 (g) Frame 126 (h) Frame 131

(i) Frame 144 (j) Frame 155 (k) Frame 156 (l) Frame 158

Figure 3.38: Snapshots of the passenger tracking in video 2 (CAT 1).

Figure 3.39: Comparison between the tracking results and the ground truth.
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(a) (b) (c) (d)

Figure 3.40: Examples of the Particle Filter with HSV appearance model fails to track the
passengers when the lighting changes.

3.4.6.4 Experiment VIII: Crowded Scenario

The second set of experiments shows two types of walking patterns under crowded sce-
narios. The first type involves object occlusion, while the second type involves walking
patterns of merging and splitting. Both sets of experiments are conducted to show the
performance of RJMCMC-ATMT in handling noisy environments.

This experiment determines the performance of the RJMCMC-ATMT technique on com-
plex crowded scenes where movements of passengers cause occlusion as well as merging
and splitting scenarios.

Object occlusion’s scenario (video 5)

The sequence of movements (ground truth) for an object occlusion scenario is shown in
Figure 3.42 (b), while Figure 3.41 shows some snapshots of the tracking results. There
is a total of 5 passengers detected in this video. Throughout the video, there are no
significant movements from passengers 1, 2, 4, and 5. On the other hand, passenger 3
moves from seat D to B during frames 16–25 and from seat B to E during frames 32–
38. During these instances, passenger 2 is occluded by passenger 3 as he moves. In this
experiment, we correctly identify 2 seat-switch activities without false detection. Figures
3.41 (f) and (j) show that RJMCMC-ATMT is able to track passenger 3 when he switched
seats, and correctly returns the tracker to passenger 2. Note that in this experiment, the
birth and death moves in RJMCMC play an important role to the success of the tracking
under occlusions. We also show in Figure 3.43, that using the MCMC tracking results in
tracking failures as it does not have the dynamic model to handle a varying number of
targets. In addition, the standard Particle Filter with second-order regressive model is not
able to follow the target (see Figure 3.44). Note that passengers sitting at the rear of the
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bus are not detected due to heavy occlusion (it is hard to detect them even by a human
operator), so they are not counted in the ground truth. Finally, Figure 3.42 shows the
comparison between the final tracking results and the ground truth. Note that the false
association in frame 30 is not counted as seat-switch activity because the tracker returns
back to passenger 2 in the next frame.

            

            

            

(a) Frame 13 (b) Frame 16 (c) Frame 17 (d) Frame 19

(e) Frame 22 (f) Frame 23 (g) Frame 25 (h) Frame 32

(i) Frame 33 (j) Frame 35 (k) Frame 38 (l) Trajectories

1 2
3

4
5

Figure 3.41: Snapshots of passenger tracking in video 5 (CAT 1).

Figure 3.42: Comparison between the tracking results and the ground truth.
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(a) (b) (c) (d)

Figure 3.43: Examples of frames when the MCMC tracking technique fails to track pas-
senger 2 under occlusion situations.

(a) (b) (c) (d)

Figure 3.44: Examples of frames when Particle Filter method fails to track passenger 3
under the LFR situations.

Merge and split scenarios (video 6)

This experiment was conducted to deal with the moving pattern of merging and splitting
involving two passengers. The challenge of this experiment is to show a successful scenario
when tracking multiple targets that occlude one another for a short period of time. In
this experiment, we correctly identify 4 out of 6 seat-switch activities. Snapshots of the
tracking results are shown in Figure 3.45 while the comparison of the trajectory results
between the RJMCMC-ATMT tracking and the ground truth is shown in Figure 3.46.
The first object occlusion occurs during frames 27–29, when passenger 1 moved from seat
B to seat D and RJMCMC-ATMT is able to track the passengers correctly. The two
passengers then decided to switch their seats; merging occurs at frames 54 and 55 while
splitting occurs at frame 56. During merging, RJMCMC death configuration holds the
highest probability because one target is occluded by the other. When the targets split,
the RJMCMC birth configuration and appearance transformation model are then used to
identify each individual target, as shown in frames 56 (see figure 3.45 (l)).
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(a) Frame 24 (b) Frame 26 (c) Frame 27 (d) Frame 32

(e) Frame 36 (f) Frame 47 (g) Frame 53 (h) Frame 55

(i) Frame 56 (j) Frame 57 (k) Frame 58 (l) Frame 64

Figure 3.45: Some of the tracking results of video 6 (CAT 1).

Figure 3.46: Comparison between the tracking results and the ground truth.

3.4.6.5 Experiment IX: Similar Appearance Scenario (video 7)

This experiment investigates the tracking of four passengers undergoing seat-switch actions
under different lighting conditions. Two of them have similar appearances (brown and blue
appearances). The main objective of this experiment is to show the need of integrating
RJMCMC PF and the appearance transformation method, in order to successfully track
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two targets with similar colour profiles. Figure 3.47 shows snapshots of the tracking results
while Figure 3.48 shows a comparison of the trajectory results between the RJMCMC-
ATMT tracking and the ground truth (targets movements). In this sequence, we obtain
2 correct seat-switch activities out of 4. We can see that RJMCMC-ATMT is able to
correctly track and identify the first passenger correctly even though there is another
passenger with a similar appearance in the bus (frames 38–42 in Figures 3.47 (l–o)). This
is due to the trajectory model that provides spatial constraint. Using appearance based
association techniques alone in this scenario would fail because both trackers compete to
hijack the one with higher likelihood, which will result in tracking failure.

The overall performance of the seat-switch detection results are summarized in Table 3.7.

            

            

            

            

(a) Frame 11 (b) Frame 14 (c) Frame 17 (d) Frame 19

(e) Frame 22 (f) Frame 24 (g) Frame 26 (h) Frame 28

(i) Frame 30 (j) Frame 32 (k) Frame 34 (l) Frame 36

(m) Frame 38 (n) Frame 40 (o) Frame 42 (p) Frame 44

Figure 3.47: Some of the tracking results of video 7 (CAT 1).
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Figure 3.48: Comparison between the tracking results and the ground truth.

Test video Number of detected seat switching

instances

Number of ground truth seat

switching instances

Video 2 2 2

Video 5 2 2

Video 6 4 6

Video 7 2 4

Video 8 1 0

Video 10 1 2

Video 11 2 2

Table 3.7: Summarised seat switching detection results for all test video in CAT 1.

3.4.6.6 Experiment X: Quantitative Comparison For Different Tracking

Methods Against Low Frame Rate

The last experiment was conducted using all CAT 1’s video. We evaluate the tracking
performance by computing the normalised errors in tracking against the different frame
capture rates. We down sample the test video frame capture rates from 25 fps to 20,
15, 10, and 5 fps to simulate the low frame rate conditions. We compare our proposed
method against mean shift (colour) (Comaniciu and Meer, 2002), Particle Filter with HSV
(Okuma et al., 2004), and SURF feature tracking (texture) (Bay et al., 2006). The exper-
imental results in Figure 3.49 show an increase in errors in tracking for all methods as the
frame capture rate decreases. In addition, it shows the superiority of our approach against
standard approaches such as mean shift (Comaniciu and Meer, 2002), Particle Filter with
HSV (Okuma et al., 2004), and SURF tracking (Bay et al., 2006). The mean shift and
Particle Filter tracking algorithms do not perform well in the bus environment because
the trajectory of the passengers are not smooth, thus violating the basic principal of these
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Figure 3.49: Comparison projection errors graphs between four different tracking algo-
rithms under low frame rate situation

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.50: Examples of frames where other methods fail under the LFR situations.
(Top row): Colour Mean Shift, (Middle row): Particle Filter with HSV, and (Bottom
row): SURF tracking.
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tracking algorithms, i.e. the distance of an object between two frames must be relatively
small. The appearance model of using either colour or HSV histogram generally fails to
associate (track) the foreground correctly when lighting changes occur because these fea-
tures are not stable over different lighting conditions. Similarly, the use of SURF features
to perform object correspondence between frames generally has low success rates given the
features in the human body appear and disappear when they move (although it has the
lighting invariant properties). Figure 3.50 shows examples of the tracking failures under
low frame rates. On the other hand, our proposed tracking framework models the tar-
get movements according to the bus environment and incorporates spatiogram of oriented
gradient (with rotational invariant property) and inverted cumulative colour histogram to
represent the changes in spatial, textures, and colours under the LFR conditions. In gen-
eral we could achieve a balance between the number of true positives and false positives,
which is demonstrated from our experimental results.

3.5 Chapter Summary

In this chapter we have presented a system for passenger detection and tracking in moving
bus environments, under low frame rates and varying lighting situations. The novelty of
the detection lies on the use of prior knowledge about the environment, in this case the seat
structures of the bus. This offers a number of advantages: (1) It allows the combination
of foreground detection (best fitted human model) and background seat modelling (SIFT
codebook background modelling) in a weighted Bayesian model using the assumption that
a passenger can only occupy a single seat at one time instance. Since SIFT features
and human models are both partially invariant to lighting, the algorithm can be used to
effectively detect passengers while the bus is moving (i.e. even when different lighting
situations occur). (2) It saves the overall computational time in building the background
model and searching for head candidates. (3) It greatly reduces false detections and at
the same time has a reasonable detection rate (small numbers of mis-detections). In
addition, we propose a multi-target tracking framework that combines the prediction of
the object movement using the trajectory model and an appearance transformation model
that learns the foreground’s colour (ICH), texture (DHOG), and spatiogram (SHOG) using
SVM classifiers, which is suitable for tracking foregrounds in a low video frame rate.

We have demonstrated the results of our system performance tested on real bus footage.
The experimental results demonstrate the robustness of the proposed detection and the
tracking algorithms in dealing with low frame rates and lighting changes. It also shows
the superiority of our proposed methods against other existing techniques in these fields.
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Finally, the “switching seat” results on real world public transport systems demonstrate
the effectiveness and usefulness of our approach.

In the next chapter, we look at the pedestrian detection problem for mobile bus surveil-
lance.
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Chapter 4

Pedestrian Detection For

Mobile Bus Surveillance

In the previous chapter, we have discussed a Bayesian framework to detect and track
passengers inside moving buses. In this chapter, we consider pedestrian detection scenarios
involving scenes captured by mobile bus surveillance cameras in busy city streets. Unlike
the passenger detection problem, we are not able to construct the background model in
a traditional way, because the background scenes are constantly changing while the bus
moves. A recent technology allows the use of front facing cameras mounted on bus fleets
to collect large quantities of similar scene video over time. The VirtualObserver (Greenhill
and Venkatesh, 2006) technology allows the footage retrieval for a given GPS location and
time of interest. It returns a “time-ordered” sequence of footage acquired by a number
of sensors, in a pseudo time-line, as shown in Figure 4.1. The footage at a given GPS
location, returned by a number of buses can be different because: (a) GPS data may be
noisy, (b) The sensor in one bus may have a different view point to that in another bus,
(c) Even if the footage for a sensor is amalgamated, it may view the environment from
slightly different positions in the road (e.g. different lane). Further for each sensor, the
data is taken under differing lighting conditions, contains moving scenes, and is of low
frame rate low resolution, imposing great challenges for pedestrian detection from these
video images.

In this chapter we present a new foreground detection system that tackles these chal-
lenges. Our approach integrates scene localization, foreground-background separation,
and pedestrian detection modules into a unified detection framework. The scene localiza-
tion module transforms sequences of video data into arrays of images grouped as “view
sites”. A view site is a “unique region” storing images captured from different times, but
having highly similar background structure and lighting (i.e. they can be aligned in static-
camera-manner), which can then be used for foreground-background separation. To do
this, we first use the VirtualObserver to retrieve all video images captured at a particular
GPS location. Then, SIFT-Homography is applied on these images to effectively estimate
the scene-to-view-site mapping, measured by the scene structural similarities. For each
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Figure 4.1: A VirtualObserver. Given a location l with radius r (a) and the pseudo
time–line (b), these can be used to navigate the interested frames at the particular region
and time. (c) The snapshot images from different sensors {i, . . . , x} taken at similar GPS
location.

Figure 4.2: Overview of the proposed pedestrian detection algorithm.

view site, the images are further clustered according to their background intensities to
produce clusters of images having similar background lightings. With the large amount
of data, we are able to generate a rich profile of spatially aligned images for any view site
along the bus route. This way, the kernel density estimation (KDE) methods for colour
and gradient foreground-background separation can be used to construct the background
model for each intensity cluster and used to detect the foreground objects. Finally, using
a hierarchical template matching approach on the foregrounds from KDE, pedestrians can
be identified. The overview of our proposed framework is shown in Figure 4.2.

The rest of the chapter is organised as follows. Section 4.1 and 4.2 discuss each of the
algorithms in detail. Section 4.3 presents the experiment results. Finally, Section 4.4
concludes the chapter.
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Figure 4.3: Scene localization.

4.1 Scene Localization

The video is captured using a VirtualObserver and a two stage clustering is performed:
Level-1 extracts frames that are aligned in terms of structure for each sensor, and Level-2
further clusters these aligned frames in terms of lighting. This two stage approach caters
for differential viewpoint (Level-1 clustering) and differential lighting (Level-2 clustering).
Figure 4.3 shows the clustering stages. The clustering results at Level-2 are then used to
learn the background model for each sensor.

4.1.1 Location Based Clustering (L1)

The VirtualObserver performs geometric queries, given a GPS location l, radius r, and
time period of interest. It returns all geo-referenced tracks and associated video footage
that satisfies the query. For example, given a query location shown in Figure 4.1, the
VirtualObserver returns a “time-ordered” sequence of footage acquired by a number of
sensors in a pseudo time-line. The pseudo time-line shows that although the footage is
discontinuous, it can be navigated in an orderly fashion.

The footage at a given GPS location, returned by a bus can be different because (a)
GPS data may be noisy (b) The sensor in one bus may have a different view point to
that in another bus (c) Even if the footage for a sensor is amalgamated, it may view the
environment from slightly different positions in the road (e.g. different lane). Thus, for a
given GPS location, we define a view site as (vθ = {f1, . . . , fmθ}), which corresponds to
a region in which sensors return visually similar footage (where θ is the view-site index,
{fj : j = 1, . . . ,m} are the images in the cluster view-site vθ and any frame in a view site
can be indexed as v(θ, e), where e is the index for the frame).
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We introduce the following terminology. Let the footage from sensor i be amalgamated.
Let the pseudo time-line block index, as shown in Figure 4.1 be q, with nq number of frames
in each block. Then, any frame can be indexed as f(i, q, u) or f iqu , where 1 ≤ u ≤ nq. The
task is to find the mapping from the set of frames f iqu to the “most appropriate” view site
v from V ={vθ}θ∈Θ, where Θ defines the entire view site space. This can be done by a
process of incremental clustering. The measure of similarity between the cluster center in
a view site (cvθ) and an incoming frame f iqu is calculated as

s(cvθ , f(i, q, u)) = homog(vθ, f iqu) (4.1)

where s(.) is the similarity function, homog(.) is a function to compute a Homography
matrix, H, between a view-site vθ and an image f iqu . This function is defined as follows:
given two points b and b′, which correspond to the same point in vθ and f iqu respectively,
then there exists a 3x3 Homography matrix H such that b = Hb′ (Hartley and Zisserman,
2004). The Homography matrix can be estimated using the least square algorithm, given
at least 4 or more corresponding points. Since one would expect the illumination condi-
tions between the matching image pair to vary considerably, features that are resilient to
illumination variations are used. In the implementation, the point matching is defined as
corresponding between the stable SIFT features from the two scenes (Lowe, 2004; Hartley
and Zisserman, 2004). In order to achieve a high alignment accuracy, we impose a strict
constraint on H∗ matrix to only accept a small degree of changes between the two scenes.
In this implementation, we restrict the deviation of the scene transformation between the
scene and the view sites to just 2% before accepting them.

Given baseline view sites, this alignment process can be adopted to register further images
collected from different sensors (i.e. buses) taken at different times, therefore generating
a rich profile of spatially aligned images for any view site along the bus route.

4.1.2 Intensity Based Clustering (L2)

In a view site, since images are grouped based on the locations at different times, one
has to deal with large variations in illumination and dynamic backgrounds (e.g. a store
which is closed during early mornings and opened during afternoons). Hence, the aim
is to group images in a view site into sub-clusters of images having similar background
intensity properties.
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A typical approach for scene grouping is to compute the closeness or the differences of the
global intensities between two images, like the spatial envelope representations proposed
by Oliva and Torralba (2001) for scene recognition. If the global intensity differences are
small, then the two images are considered similar and assigned into one group. However,
this approach is limited to images that contain predominantly background information
only. But in our case, we want to avoid computing these differences when the foregrounds
are present. We overcome this problem by applying SIFT matching across scenes at
different times in a view-site set. Using SIFT matching, we can control the fact that the
corresponding pixels between two images always belong to the background, and only the
differences between these determined background pixels are computed.

Formally, the task is to break down the frames in a view site vθ into lower level sub-clusters
vθ,ψ containing images with similar global intensity values, where ψ denotes the intensity
cluster index (note that the index θ represents the first level clustering to group images by
location, whereas ψ is the image clustering based on their intensities). This again can be
achieved by incremental clustering. Let S be the set of all SIFT keypoints in the intensity
cluster center (cvθ,ψ), that correspond to keypoints in the image v(θ, e) inside a view site.
Thus, we define the measure of similarity between (cvθ,ψ) and v(θ, e) as the accumulated
differences of the region surrounding SIFT::

s(cvθ,ψ ,v(θ, e), S) =
∑

{b,b′}∈Sift
|hoi(b)− hoi(b′)| (4.2)

where b and b′ denote the same SIFT keypoints (background pixels) that appear in cvθ,ψ
and v(θ, e) respectively, hoi(.) is a function that computes the Gaussian histogram-of-
intensities (G-HOI) patches around each background pixel. In SIFT, each local keypoint
descriptor is represented as a Gaussian weighted and interpolated histogram-of-gradient
orientations (G-HOG) (Lowe, 2004; Dalal and Triggs, 2005). We adopt the same idea, but
apply it on the intensity instead (G-HOI). We divide the region into 8 patches organized
by 2 × 2 grid, each with 16 bins. The histogram is then constructed by accumulating
the weighted Gaussian kernel around the center of each keypoint. The resulting intensity
patch descriptor is a 84 dimensional vector (2×2×16). Intuitively, comparing two G-HOG
determines the similarity of the gradient-patch structure, which is partially invariant to
illumination (Lowe, 2004), while comparing two G-HOI allows us to further compute their
intensity-patch closeness.

Since our objective is to detect the foreground regions of a given scene, we will use the
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images taken from the intensity cluster from each view site, vθ,ψ, to assist in segmentation.
This foreground segmentation technique is proposed in the next Section.

4.2 Combined Foreground Background Separation and

Pedestrian Detection

We formulate the problem of foreground-background separation using a non-parametric
approach similar to (Elgammal et al., 2000).

4.2.1 KDE on Colour

Given a set of images vθ,ψ = {f1, . . . , fn} in a specific view-site index by θ and ψ, then
the background model can be estimated using the Parzen window technique (Scott, 1992)
(because these images exhibit both similar scene structure and lightings). We assume that
the background can be observed as the highest pixel occurrences and KDE method with
Gaussian function is used to construct the background model. Let x1, . . . ,xn be a sample
of intensity values for a particular pixel on the entire image set vθ,ψ, in d dimensional
space from a multi-variate distribution P (x), then an estimate of P̂ (x) of the density at
x can be calculated using

P̂H(x) =
1
n
|H|− 1

2

n∑
i=1

K(H−
1
2 (x− xi))

where K is a kernel estimator function and H is a symmetric d × d kernel bandwidth
matrix. In the case where the kernel estimator is a Gaussian with (0,Σ), i.e. H = Σ. When
dealing with colour (RGB) distribution, we can assume that each colour is independent
of each other, thus Σ is a diagonal matrix, i.e. Σ = diag[σ2

1, σ
2
2, . . . , σ

2
d]. The final density

estimation is written as

P̂σ(x) =
1
n

n∑
i=1

d∏
j=1

1√
2πσ2

j

e
− 1

2

(xj−xj
i
)2

σ2
j (4.3)
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Figure 4.4: Example of misalignment. The two images are taken from a bus at different
times. The red circle on the left image indicates a “tree” pixel that has moved to the cyan
circle in the right image.

Intuitively, Equation 4.3 can be interpreted as computing the pixel occurrence across n
samples, weighted using a Gaussian kernel around the central pixel with a fixed standard
deviation. We choose three x∗ that have highest occurrences as the possible background
pixels and the rest are set to foreground pixels. We further check if the probability score,
P̂ (x∗) is greater than a certain threshold, then they are assigned as background pixels,
else they are considered as foreground pixels.

The result of this process is a separation of foreground and background pixels. However,
false positives may be introduced as a result of image misalignment (from the scene lo-
calization process). Since these misalignments are due to camera motion, we can solve
this problem by analyzing the neighbourhood properties, as motivated by the work of
Elgammal et al. (2000). If the correlation of a pixel to its neighbourhood is high, then
it is most likely to be a background pixel that has “moved” to a new location, otherwise,
it is a foreground pixel that occludes the background. We define this probability as the
neighbourhood probability. Let xf be the observation of pixel x, that is detected as a
foreground pixel. The neighbourhood probability is defined as:

PN (xf ) = max
y∈N (x)

P (xf |By)

where By is the background model at pixel location y and P (xt|By) is computed using
Equation 4.3. Although this approach addresses the misalignment problem, it introduces
the problem of losing true detections, as mentioned by Elgammal et al. (2000). Hence we
incorporate a further constraint on the neighbourhood conditions, i.e. if a pixel is truly a
background pixel that happens to move to a new location, then some of its neighbourhood
pixels should also move since we assume that the misalignment happens not only for one
single pixel, but for a group of pixels as well, which can be seen in Figure 3. Therefore,
we define the probability of displacement as:
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PC(xf ) =
∏

y∈{xf∪N (xf )}
PN (y) (4.4)

where PC(xf ) is computed as the product over the connected components of the neighbour-
hood pixels. Therefore, a pixel x is considered as background only if both PN (x) > th1
and PC(x) > th2 .

4.2.2 KDE on Gradient

We build a gradient background model in a similar way to the colour based approach
described in Section 4.2. First, we transform the colour image into an intensity image
and then compute the edge (gradient) image using 4(I) =

√
d2
x + d2

y, where 4 is the
magnitude gradient image, dx and dy are the horizontal and vertical rates of changes of I
respectively. Once we obtain a set of gradient images, we employ the same kernel density
estimation method to search for the maximal occurrence of the edge pixels and mark them
as background edges.

4.2.3 Combined KDE Colour and Gradient

The results of the colour-based and gradient-based approaches are finally combined to
determine the foreground regions. This approach can be outlined as follows: given a set of
foreground regions in colour and gradient images respectively, we assume that a region is
a foreground if and only if they are both strong in the edge and gradient foregrounds. A
similar method has been used in (Javed et al., 2002). Therefore, we compute the combined
score of a given foreground region as:

score =
1
|G|

∑
i∈δRa

4I(i).G(i)

where I is the original gradient image, G is the foreground gradient image, Ra is the
foreground region. If the score is less than a threshold, then the region is considered as a
background.
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(a) (b) (c)

Figure 4.5: Foot-to-head calibration using Homography method. (a) An input image to
be calibrated. A set of bars are manually labelled specifying approximated human height.
(b) The corresponding 2D point mapping. (c) Given a set of foot positions, the predicted
heights are estimated automatically.

4.2.4 Pedestrian Detection

After the KDE subtraction process, areas of strong background gradient and colour have
been removed. This way, the segmentation depicts the possible area of search for the
pedestrians. The advantages are it can be efficiently computed and a lot of possible false
positive candidates have been removed.

We assume that a pedestrian walks vertically on the ground plane. Under this assumption,
we employ a similar approach for detecting pedestrians as described in (Zhe et al., 2007),
and apply it on the KDE foreground-background separation results. First, we construct
a hierarchical set of templates for head, torso, and legs. During the detection, an opti-
mized Bayesian formulation is used to find the best template configuration that matches
the pedestrian. This hierarchical template matching can be performed efficiently for three
reasons: First, using the hierarchical approach, we truncate unnecessary matches. Sec-
ondly, the result of the foreground-background separation allows us to narrow down the
search for pedestrian locations in the frame of interest. And finally, the pedestrian’s scale
(height) can be estimated using a priori information like offline foot-to-head Homography
calibration. An example of the calibration process is shown in Figure 4.5.

4.3 Experimental Results

In order to verify the performance of our proposed system for foreground detection, we
conduct a series of experiments using real world bus data. The experiments are comprised
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Figure 4.6: Perth dataset: (a) camera setup and (b) description of the dataset.

of two parts: (a) the comparison the proposed KDE approach against with Stauffer and
Grimson (2000)’s GMM approach, in terms of foreground detection (Section 4.3.3) and
(b) the performance evaluation of our system on different bus datasets (Section 4.3.4).

4.3.1 Perth Dataset

We tested our system on 4 sets of video streams taken by the outward facing cameras
mounted on buses. The selected buses were BlueCat buses plying the major routes within
the City of Perth, Western Australia, which we call the Perth dataset. The onboard GPS
records the location of the bus synchronized with video frames. Figures 4.6 (a) and (b)
show the physical camera location and the detailed information about the dataset.

Each dataset consists of video images recorded at approximately 10 fps with a resolution
of 768 × 576 pixels. Regions 1 and 2 have a coverage radius of 250 metres and each
region dataset is collected at different dates and times (one is on May 2007 and the other
is taken at November 2007) as shown in Figure 4.6 (b). We then evaluate the system
performance separately based on the region. The first region dataset captures images on
busy streets, including cluttered complex backgrounds (for example shops) and crowded
pedestrians, while less frequent pedestrian traffic occurs in the second region dataset. For
each region, we first perform the scene localization, construct the background model on
80% of the datasets (for both May and Nov), extract the foregrounds on the remaining
20%, and finally detect the pedestrians. Also, we process the video images specific to each
sensor, avoiding the variability of the different intrinsic camera parameters. For testing
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purposes, we extract 1281 frames from region 1 that contains 947 annotated ground truth
pedestrians, and 1174 frames from region 2 that contains 722 pedestrians.

Evaluation Criteria: To evaluate the detection performance we apply two criteria: rel-
ative distance and ratio of the cover (Leibe et al., 2005), as shown in Figure 4.7.

cover =
area(detected ∩ groundTruth)

area(groundTruth)
(4.5)

A detected candidate is considered to be true positive when its relative distance from the
object is less than 0.5 times the actual size of the ground truth’s bounding box and the
cover is above 50%. Anything else is considered as a false positive.

Cover = 70%

1.5

1.0

Relative distance

Figure 4.7: Evaluation criteria for comparing the ground truth (solid) bounding box with
the detected candidate bounding box (dash).

4.3.2 Scene Localization Results

From the Perth datasets, we successfully registered 189 view-sites at Region 1 and 212
view-sites at Region 2 using the Homography image registration method. At each view-
site, the data is further registered based on intensity values with the number of frames
varying from 64 to 233. Figure 4.8 shows an example of the registered results from location
to view-sites and then to intensity clusters. As can be seen, Figures 4.8 (f) and (g) show
significant image differences due to time of the day differences. One group has the store
door closed in the mornings and the other group has the door opened in the afternoons.
Similarly, Figures 4.8 (h) and (i) also show the different lighting levels in the background.
The first group has lights switched on, while the second group has the lights off. Figure
4.8 (e) shows images taken at different times can be grouped inside a similar view-site.
This can be seen from the scenes containing large variability of people and cars.
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Figure 4.8: Scene localization results (hierarchical tree representation of scene localization
process). First, images at Level-0 represent original video sequences captured from moving
bus cameras. These images are then clustered into the“appropriate”view-sites as shown in
Level-1 Clustering (L1) based on their scene-transformation similarities. The bottom layer
Level-2 Clustering (L2) is obtained by sub-clustering L1 based on their global background
intensity values. Images at L2 exhibit properties of both aligned in a static manner and
having similar background intensities, which can be used to construct background models
to detect foregrounds-of-interest.

We measure the performance of the scene localization by using known ground truth. The
accuracy of the proposed scene localization method is shown in Table 4.1.

Region True positives False positives

1. 92% 10%
2. 89% 7%

Table 4.1: Scene localization accuracy tested on two different datasets.

From Table 4.1, we see that there exists a small percentage of false positives, which are
mainly caused by light reflecting off one of the side mirrors causing the SIFT-Homography
alignment process to fail.
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Figure 4.9: Visualising the view-sites on GoogleEarth (2009).

4.3.3 Comparison Between KDE and GMM Methods

We compare the performance of Stauffer and Grimson (2000) background subtraction and
the proposed KDE-based method by computing the true and false segmentations against
the manual ground truth. We test the segmentation results on the Perth dataset. Table
4.2 shows the comparison results of the two approaches, while the snapshots of the seg-
mentation results are shown in Figure 4.10. In this figure, the background reconstruction
models are shown on the first column. Next, we see that Stauffer’s approach (third column)
produces more false positives as compared to our KDE background subtraction approach
(fourth column). The advantage of our method is evident as it reduces false positives by
incorporating the neighbourhood probability. On the other hand, the Stauffer-Grimson
approach which deals only with pixel wise background models is unable to handle the pixel
misalignment issues and results in higher false positive detections.

Stauffer-Grimson Our proposed method

True positives 86% 82%

False positives 28% 11%

Table 4.2: Comparison performance results between Stauffer-Grimson and the proposed
KDE background subtraction.
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Figure 4.10: Comparison results of the foreground detections between Stauffer-and-
Grimson’s based (third column), and our proposed KDE-based method (last-column).
The first and second column images are the reconstructed background model and the
original images to be compared.

4.3.4 System Performance

We further evaluate the performance of our proposed algorithm against the hierarchical
pedestrian detection (Zhe et al., 2007). We measure the performance of each method
using ROC curves, showing the trade-off between detection rate and false positives per
frame as shown in Figure 4.11. The blue and red solid lines represent the performance
of our proposed algorithm for regions 1 and 2 respectively, whilst the green and purple
dotted lines represent the performance of the hierarchical pedestrian detection (Zhe et al.,
2007). From the figure, we can see that our proposed algorithm outperforms the pedestrian
detection alone. This is mainly due to the high number of false positive candidates being
discarded using the KDE background subtraction approach. It can also be seen that the
performance plots for datasets in region 2 are slightly better compared to those in region
1. This is due to the complexity of the background and the degree of occlusion. Figure
4.12 shows the snapshots of the pedestrian detection results. The first three rows show the
detection results in region 1, where cluttered complex backgrounds (for example shops)
and crowded pedestrians are present. The last row of this image displays results of the
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Figure 4.11: System performance.

detected pedestrians in region 2. Instances where our system returns false foreground
detection are generally due to cluttered backgrounds or the misclassification of images
into view-sites during the scene localization, resulting in comparison with the incorrect
background model. The mis-detections are normally caused by the lack of foreground
edges, under-segmentation and relatively small foreground regions.

4.4 Chapter Summary

In this chapter we have presented an integrated system for pedestrian detection involving
mobile surveillance cameras. We have proposed a new approach to localize moving scenes
captured from the bus camera into the appropriate view-sites (location) and further cluster
them based on their global-background-intensity similarities. Over a period of time, the
resulting view-sites construct a stable background model. A KDE background model
is then employed for building the background model and is used to detect the objects
of interest. Finally, hierarchical templates for a pedestrian model are generated to detect
people. We have evaluated the performance of the system using the real world datasets, on
city streets, demonstrating the feasibility of our method. By combining the results of the
background model and the pedestrian detection we are able to achieve lower false positives
whilst maintaining a reasonable detection rate. The only drawback of the proposed method
is the computational cost of building the view sites. In the next chapter, we will evaluate
different direct pedestrian detection methods for fast detection.
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Figure 4.12: Pedestrian detection results on Perth datasets.
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Chapter 5

Comparative Evaluation of

Pedestrian Detection Methods

The previous chapter discussed a method to detect pedestrians by aligning images and
building background model for the scene. Another way to detect pedestrian is to learn
their shape through training samples. In this chapter we present three direct pedestrian
detection methods that extend the HOG approach (Dalal and Triggs, 2005). In addition,
we compare and evaluate their performance on the Perth dataset. The three approaches
are: a) a new histogram feature that is formed by the weighted sum of both the gradient
magnitude and the filter responses from a set of elongated Gaussian filters (Leung and
Malik, 2001) corresponding to the quantised orientation, called Histogram of Oriented
Gradient Banks (HOGB) approach; b) the codebook based HOG feature with branch-and-
bound (efficient subwindow search) algorithm (Lampert et al., 2008) and; c) the codebook
based HOGB approach.

The layout of this chapter is organised as follows. Section 5.1 discusses each algorithm
in detail. Section 5.2 presents the Perth pedestrian dataset. Section 5.3 provides the
comparative evaluation performance of all approaches. Finally Section 5.4 concludes the
chapter.

5.1 Different Pedestrian Detection Methods

5.1.1 Method 1: Histogram of Oriented Gradient (HOG)

The HOG algorithm Dalal and Triggs (2005) operates in two steps: 1) building of pedes-
trian model; 2) pedestrian detection.

Building of pedestrian model: Each detection window is divided into cells of 8 × 8
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pixels. For each cell, HOG computes the accumulated gradient magnitude corresponds to
a quantised orientation to form a 9-bin histogram:

{h(θi) =
∑
p∈8×8

Mp
i : i = 1, . . . , 9}

where h denotes the histogram, Mp
i refers to the gradient magnitude corresponding to a

quantized orientation θi at pixel p, which is computed using 3 × 3 Sobel kernel. Each
patch consists of 2×2 cells. The four histograms in a patch are concatenated to produce a
normalised 36-D feature vector. For a detection window of size 96×160 pixels with 7×15
patches, we obtain a total of 3780 features. These features are then used to train a linear
Support Vector Machine (SVM) classifier.

Pedestrian detection: The detection window is scanned across the entire image to
identify the pedestrians. In general, the scanning process has to take into consideration
varying scales of the pedestrian, which thus suffers from high computational cost. To relax
this problem, we assume that a pedestrian walks vertically on the ground plane and we
employ a foot-to-head calibration strategy to estimate the scale of the pedestrian for a
given point in the image. This is done using Homography similar to (Zhe et al., 2007).
Figure 5.1 shows an example of the estimation process. In our application, since the buses
travel consistently on the same bus lane on a fixed route, we only need to perform the
offline-calibration once for each bus.

5.1.2 Method 2: Histogram of Oriented Gradient Banks (HOGB)

We introduce a new feature for pedestrian detection namely Histogram of Oriented Gra-
dient Banks (HOGB). We further process the gradient image using 9 elongated oriented
Gaussian filters (Leung and Malik, 2001), and let {Rpi : i = 1, . . . , 9} be the outputs
recorded for each pixel. Figure 5.2 shows an example of the elongated Gaussian filters
(11 × 11). Then for each cell, the histogram is computed as the weighted sum of the
original gradient magnitude and the filter bank response corresponding to the orientation:

{h(θi) =
∑
p∈8×8

β ×Mp
i + (1− β)×Rpi } (5.1)
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(a) (b) (c)

Figure 5.1: Calibration process. (a) An input image to be calibrated where a set of
bars are manually labeled specifying the approximated human height at certain x and y
location. (b) The corresponding 2D point mapping specifying the x and y location. (c)
Once the calibration model is obtained, given a set of feet positions, the predicted heights
are estimated automatically.

Figure 5.2: The nine banks of elongated Gaussian filters and their orientation.

where β defines the weight of choosing between the HOG or Leung Malik features. Intu-
itively, the first and second terms in Equation 5.1 model the shape of a pedestrian at a
fine and coarse scales respectively. With the same detection window structure as HOG de-
scribed in Section 5.1.1, our final feature vector also consists of 3780 entries per detection
window, and we employ a similar training strategy to obtain the classifier for detecting
the pedestrians.

5.1.3 Method 3: Codebook HOG with ESS (CHOG)

Recently, Lampert et al. (2008) propose a fast object detection method based on an effi-
cient branch and bound algorithm. The technique is divided into two steps: 1) creation
of codebooks; 2) feature-codebook quantization followed by an efficient search for peak
responses. In this chapter we employ a similar idea but use HOG features to build the
codebook as an alternative of the Speeded Up Robust Features (SURF) (Bay et al., 2006).

Building of codebook: The codebook is created by first computing a set of 36-D HOG
descriptors from patches of size 20 × 20 pixels followed by the K-mean clustering. We
build two codebooks for positive and negative samples respectively. These codebooks
are concatenated and trained using linear SVM classifier to obtain a set of positive and
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αi ci data

Figure 5.3: Codebook for pedestrians.

negative alpha (weight), αi for each codebook entry ci. Figure 5.3 shows examples of the
codebooks.

Detection: Given an image, we extract the HOG descriptors and quantize them using
the codebook built during offline processing. Thus, each pixel can be represented as
wi =

∑
i αioi, where wi is a score of confidence (or define the probability of object presence)

and oi is the count of the codebook occurrences during training. Let the quality function
be f(I) =

∑
wci . Hence, we design a function f̂ that bounds the values of f over sets of

rectangles as:

f̂(R) = f+(Rmax) + f−(Rmin) (5.2)

where R = [T, L,B,R] is a rectangle defining the [Top, Left, Bottom, and Right] interval
coordinates, and each coordinate is defined as T = [tlow, thigh], f+(Rmax) represents the
positive weight responses for the largest rectangle and f−(Rmin) is the negative weight
responses under the smallest rectangle. Intuitively, Equation 5.2 always maintains the
maximum response for region R, as it satisfies the bound conditions in (Lampert et al.,
2008). By combining function f̂ in Equation 5.2 with the branch and bound algorithm,
we are able to detect pedestrians efficiently.

Method 4: Codebook HOGB with ESS (CHOGB)

The CHOGB approach uses the same implementation of CHOG but uses the HOGB
feature instead.
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5.2 Datasets and Evaluation Criteria

The two datasets used in our experiments are: the INRIA dataset (Dalal, 2005) and the
dataset which we collected from 5 buses operated by the Public Transport Authority in
Western Australia (Perth dataset). Figure 5.4 shows examples of the datasets used in our
experiments.

(a) Positive training images (b) Negative training images (c) Testing image

Figure 5.4: (a) Examples of the INRIA dataset and (b–c) the Perth dataset that were
used for training and testing in our experiments.

Training dataset: We divide the training dataset into positive and negative samples.
Each training image is 96 × 160 pixels in size. For positive training samples we use the
INRIA pedestrian datasets, which consists of 2416 positives images. Each image contains
a person standing against a wide variety of backgrounds including crowds. For negative
training samples, we provide a total of 3145 manually cropped background images from
the Perth dataset.

Testing dataset and evaluation criteria: We use the same testing data and evaluation
criteria mentioned in Chapter 4 (Section 4.3.1).

5.3 Experiments

This section presents a comparative evaluation of four pedestrian detectors: HOG, HOGB,
codebook HOG, and codebook HOGB. First, we present the implementation details for
each detector, including the choice of selecting the parameters and the pre-processing.
We then present discussion about the relative performances of these approaches based on
detection accuracy and computational speed.
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5.3.1 Implementation Details

HOGB: We assess the influence of different scales of the elongated Gaussian filter and
the weight (β in Equation 5.1) on the performance.

� Scale and weight: Figure 5.5 shows the detection accuracy for varying β in Equation 5.1
and for different scales: (7 × 7), (11 × 11), (15 × 15), (19 × 19). We observe that there
is a reduction in both the false alarm and true detection rates with decreasing β (HOG),
which implies that by introducing the filter banks, we obtain lower false positives, but
sacrifice detection accuracy. In addition, we also observe that (11 × 11) scale gives the
best detection performance for the Perth dataset that consists of pedestrians of height
ranging between 125-175 pixels. Based on the empirical results in Figure 5.5, we choose
β = 0.9 and scale of (11× 11) during evaluation.

� Similar to the HOG approach, we apply a Gaussian spatial mask and tri-linear
interpolation in constructing the HOGB for each patch.

CHOG: The codebook is built as follows:

� Pre-processing: We perform pre-processing on the INRIA pedestrian datasets by select-
ing patches of size 20× 20 pixels around the shape of the pedestrians (shoulders, legs, and
body, excluding the inner parts of the pedestrian) to obtain clean positive samples. We
observe an increased detection performance of 5% as a result of this pre-processing step,
as the pre-processing helps reduce false quantization during the detection process.

� Clustering: As mentioned in Dalal and Triggs (2005), the important cues for detecting
pedestrian are head, shoulder, leg, and silhouettes. During the creation of codebook, we
divide the patches based on its location into two groups: upper and lower parts of the
pedestrian (ratio of 30:70); and perform the K-mean clustering independently for each
group. This strategy helps improve the final quality of the codebook, since the codebook
for the upper body part mainly consists of high curvature features (head and shoulder),
whilst the lower part consists of more concentrated straight/vertical features (body and
leg).

� Number of clusters: During the K-mean clustering process, we set Ku = 100 and Kl =
400 for creating the positive codebook, and K = 500 for building the negative codebook,
where Ku and Kl are the number of clusters/codebook entries for the upper and lower
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parts of the pedestrian respectively. Thus, our final codebook consists of 1000 entries.

� CHOGB: The CHOGB approach uses the same implementation of CHOG, but using
the HOGB feature instead.
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Figure 5.5: Performance of HOGB: (a) detection rate (b) false positives per image.

5.3.2 Detection Performance

Figure 5.6 (a) shows the comparative performance of the HOG, HOGB, CHOG, and
CHOGB. The HOG based detector achieves the highest performance in terms of true
positive detection. The HOGB approach has a comparable performance compared to the
HOG. However, we notice a reduction in the performance for the codebook approaches, i.e.
CHOG and CHOGB. This is mainly due to the low resolution images and highly cluttered
background occurring in the video sequences, leading to false quantization when detecting
parts of the pedestrian. Unlike the codebook approach, HOG and HOGB approaches are
less sensitive to this problem, as they involve detecting a complete profile of the pedestrian.

We further present another comparative evaluation of the methods discussed in this chap-
ter against the methods being proposed in the previous chapter (KDE + hierarchical
template for pedestrian detection), since they use the same dataset and evaluation cri-
teria. Figure 5.6 (b) shows the overall evaluation results. From the figure, we can see
that the method that by combining the background subtraction method and direct fore-
ground detection approach outperforms other pedestrian methods. Thus, it justifies the
usefulness of combining both the background subtraction and direct foreground detection
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Figure 5.6: Evaluation of different pedestrian detection methods.

approaches.

5.3.3 Speed Performance

Table 5.1 shows the speed performance of the four approaches. We see that the CHOG
approach is the most computationally efficient. It performs 3 times and 4 times faster
compared to the original HOG and the HOGB approaches respectively. Central to the
efficiency is that the codebook approach allows quick search of peak responses on the whole
image rather than detection with scanning windows.

HOG HOGB CHOG CHOG

Overall speed (in secs) 45 60 14 19

Table 5.1: Speed performance for the 4 approaches.

5.4 Chapter Summary

In this chapter we present a comparative evaluation of four algorithms for pedestrian de-
tection and the implementation detail of each approach. We study the influence of various
parameters and detail their performance on each application. Results show that the HOG
based detector achieves the highest performance, the HOGB approach has a comparable
performance to the HOG, and the codebook approaches allow computationally efficient
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detection. Finally, the detection performance improves by incorporating the background
subtraction approach, as it eliminates high number of false positive candidates.
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Chapter 6

Automatic Video Scene Change

Detection

In the previous chapter we presented pedestrian detection algorithms for mobile bus
surveillance. In this chapter we aim to generalise the detection method to automatically
detect scene changes in video obtained from a mobile platform. Unlike the pedestrian
detection method, here the foreground refers to any short term changes, such as objects
that appear randomly in the scene (cars and pedestrians), or stable aspects of background
being removed, for example a house being renovated or trees being removed. This task
is challenging for the following reasons: (a) the footage is collected at different times
(different lighting conditions), (b) the camera is mobile (different camera poses), and (c)
the foreground covers various types of object classes (people, cars, buildings etc). In this
chapter we present a novel scene change detection algorithm that integrates sparse 3D
scene background modelling and dense 2D image background modelling into a unified
framework. The process consists of two major steps: data alignment followed by a change
detection process.

The first step involves transforming the input video that are time-ordered image sequences
into: (a) time-ordered 3D scene data, (b) motion-field data, and (c) 2D aligned image data
(view sites), as shown in Figures 6.1 (c), (d), and (e) respectively. In these representations,
images and features from different video are geometrically aligned together and hence can
be used for background modelling purposes.

The second step involves detecting changes on this data. Our scene change detection is
motivated by the following observations:

1. Spatial consistency. Background features should be consistent over time. This is
measured by the frequency of feature occurrence across all video. Intuitively, areas
with random feature occurrence generally translate to foregrounds, like passengers
and moving cars because they are “moveable” objects and they do not appear at
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Figure 6.1: Illustration of the aligned data. (a) Input video that are time-ordered data; (b)
GPS of the video; (c) time-ordered 3D reconstructed scene data; (d) motion field feature
data; and (e) 2D aligned image data.

the same location over time. On the other hand, buildings, vegetation, and sky are
usually background areas, with high feature spatial consistency.

2. Speed. Non-stationary objects, for example moving vehicles or pedestrians, have a
higher probability of being foreground as compared to stationary objects, for example
buildings, vegetation, and sky.

3. Appearance consistency. Background areas should have consistent structural (gradi-
ent) appearance over time. Areas with high appearance consistency normally belong
to background objects (e.g. houses, sky, etc), while low appearance consistency areas
imply changes in background.

6.1 Overview of The Algorithm

Our approach is illustrated in Figure 6.2. The 3D scene of each video is reconstructed
using the Structure-From-Motion method (Snavely et al., 2008). This provides sparse
three dimensional points of the scene relative to the camera motion. The Iterative Closest
Point method (Besl and Mckay, 1992) is then applied to align multiple 3D scenes, forming
the time-ordered 3D scene data. We formulate 3D scene change detection in a clustering

127



CHAPTER 6. AUTOMATIC VIDEO SCENE CHANGE DETECTION

framework (Ertöz et al., 2003), finding neighbourhood point correspondences or spatial
consistency in the time-ordered 3D scene data. Intuitively, points that have high neigh-
bourhood correspondence belong to background objects because it implies that the objects
do not move, whilst points that appear and disappear have a higher likelihood of being
foreground objects.

Stable features are tracked over consecutively aligned images to form the motion-field data.
Since moving objects have different velocities compared to static objects we are able to
extract different class features according to their relative speed.

Using the recovered camera geometry, images from different video can be efficiently aligned
to a fixed coordinate system to form a “sparse image matrix” (view-sites), where each row
consists of image sequences from a single video and each column consists of images with
similar scene views. Note that the column entries are generally sparse because not all 2D
images from different video cycles can be aligned together. To model the background, we
use the HOG codebook modelling approach (Dalal and Triggs, 2005) due to its robustness
against illumination changes. In addition, we incorporate a Markov Random Field spatio-
temporal framework (Xu et al., 2005) to obtain consistent image-video segmentation.

Finally, we combine all outputs using morphological operations to obtain the final scene
change detection results. This method is detailed in the following sections.

6.2 3D Scene Change Detection

The 3D scene change detection involves constructing the time-ordered 3D scene data,
determining the feature occurrence consistency and finding the final foreground clusters
from the time-ordered 3D scene data.

6.2.1 Time-ordered 3D Scene Construction

The time-ordered 3D scene data is constructed from a set of video. The process involves
iteratively aligning the 3D Structure-From-Motion (SFM) of a video to the existing time-
ordered 3D scene data using Iterative Closest Point (ICP).
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Figure 6.2: Overview of our proposed scene change detection framework.
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6.2.1.1 Structure From Motion (SFM)

Structure From Motion (Snavely et al., 2008) is a method to recover the camera geometry
and three-dimensional structure of a scene by analysing motion of images over time. To do
this, stable feature points, like SIFT (Lowe, 2004) or SURF (Bay et al., 2006), are extracted
and tracked over a number of images and the three-dimensional structure information is
obtained by minimising the sum of the squared projection error using bundle adjustment
as:

min
Tj ,Xi

n∑
i=1

m∑
j=1

e2
ij with eij = |P(Tj , Xi)− xij | (6.1)

where Xi and xij denote the 3D and 2D coordinates of feature i in image j respectively.
Function P is the projection of 3D object points to image coordinates and Tj denotes the
transformation of the camera coordinate system of image j to an arbitrary world coordinate
system. This error function can be minimised using non-linear least-square optimisation
(Horn, 1986) or linear approaches based on projective geometry (Quan and Lan, 1999).
According to Horn (1999), perspective methods should be favoured over methods based
on projective geometry as they produce more accurate results.

The results of SFM are sparse 3D cloud points relative to the estimated camera geometry
(position and orientation). Next, we use the ICP method to align multiple SFM data to
form the time-ordered 3D scene data.

6.2.1.2 Iterative Closest Point (ICP)

Instead of recomputing the time-ordered 3D scene each time a new video is introduced,
we employ the Iterative Closest Point approach (Besl and Mckay, 1992) to merge the new
SFM scene to the existing time-ordered 3D scene data. Iterative Closest Point (Besl and
Mckay, 1992) is a method to fit points in a target model to points in a source model.
The final goal of the algorithm is to find the 3D translation t vector and rotation R

matrix that minimizes the sum of square errors with respect to the source points and their
corresponding target points:
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E(R, t) =
1
N

N∑
i=1

||Xi −RYi − t||2 (6.2)

where Xi and Yi are corresponding points. The algorithm follows 4 major steps:

1. Correlate points using feature correspondence (or associate points by the nearest
neighbour criteria)

2. Estimate the parameters using a mean square cost function as in Equation 6.2.

3. Transform the points using the estimated parameters.

4. Iterate until the error is below a certain threshold.

Note that the algorithm above is similar to the Homography method discussed in Chapter
3 (Section 3.1) and the difference between the two is that t and R are in 3D for the ICP
method, instead of 2D as in the Homography problem. Since each point in the SFM
not only encodes the location, but also the SIFT descriptors, the point correspondence
between SFM can be done simply by computing the matches between these descriptors.
Table 6.1 shows an example of the 3D alignment process of multiple SFMs using the ICP
algorithm.
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6.2.2 3D Cloud Point Subtraction

Once we obtain the time-ordered 3D scene data, the task is to identify different spatial
patterns from a target scene to all other scenes. Intuitively, a feature is considered as
“background” if it appears frequently throughout the entire video, otherwise it is con-
sidered as “foreground”. This problem can be viewed as a clustering problem of finding
neighbourhood point correspondences. In this work, we employ a similar idea as the shared
nearest neighbour (SNN) clustering algorithm (Ertöz et al., 2003). Given two points (a
source and a target point) from two different scenes, we consider them as the same point
if they satisfy the following three conditions: first, the corresponding target point has to
be one of K-Nearest Neighbours from the nearest neighbours of the source point and vice
versa. Secondly, their distance must lie within a distance threshold Eps. Finally, both
points have to share minimal of MinPts to the similar nearest neighbours. The last condi-
tion enforces a tighter connection between the two points. Following this process, each 3D
point now has information about its neighbours, in other words, its occurrence frequency.
Let L(Xi) be the frequency of a feature Xi over M number of video, where L(Xi) ≤ M .
By choosing a threshold thL on L(Xi), we are able to pick objects with different lifespan.
If thL is small, we are looking for short-duration foreground changes such as vehicles or
pedestrians. As thL increases, we obtain more background objects (high number of oc-
currences). Figure 6.3 shows an example of the 3D cloud point subtraction of two scenes
based on their spatial point similarity. As the 3D features contain depth information, we
obtain different foreground results depending on the choice of the target and source.

6.2.3 Spatial Clustering to Identify Foreground Objects and Eliminate

Noise

Following the subtraction process, we obtain clusters that contain both noise and fore-
ground points (see Figure 6.3). To eliminate the noise, we apply the SNN clustering
algorithm (Ertöz et al., 2003) on the remaining 3D points. Each point in a cluster is
classified as one of the following classes: core, border, or noise. We define a point as

1. Core when its density is greater than Eps, where density of a point is computed by
counting how many of its K nearest neighbours shares at least the same M number
of nearest neighbours.

2. Noise for all non-core points which are outside the radius of Eps of a core point.

3. Border are the remaining points not classified as core or noise.
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(a)

(b) (c)

Figure 6.3: 3D cloud point subtraction based on the spatial point similarity. (a) The blue
and red scenes are created from two video data taken at different times. (b) The result of
the 3D cloud point subtraction for the blue scene. (c) The result of the 3D cloud point
subtraction for the red scene.
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In other words, a core point should satisfy two conditions: (1) it must have a high num-
ber of points that share the same nearest neighbours and (2) between the point and its
neighbours, they must also share a high number of similar neighbours. Border points are
points that share just enough nearest neighbours with core points. Noise points are all non
core points where the number of shared nearest neighbours is less than the Eps (distance
threshold).

The results of this process are clusters with different shapes and densities. In this work,
we assume that the sparse clusters are noise. To eliminate noise clusters, we compute the
mean and standard deviations of each cluster. We then eliminate clusters that are three
standard deviations from the mean. Figures 6.4 (a), (b), and (c) show results of the SNN
clustering algorithm, where the red points are noise and the rest are considered foreground
clusters. In Figure 6.4 (b), we see that the SNN clustering algorithm is able to separate
different density clusters based on their spatial characteristics. The final 3D scene change
detection results are shown in Figure 6.4 (d).

The SNN clustering algorithm is suitable for our problem for two reasons. First, because
our foreground objects include different types of objects such as pedestrians, people on
bicycles, cars, trees, etc, all having different shapes and densities, and SNN being a density
based algorithm can handle this problem. Secondly the SNN algorithm is more flexible
since it only requires prior knowledge about the number of shared nearest neighbours, as
compared to the K-means clustering algorithm (Hartigan and Wong, 1979) that requires
the number of clusters to be known before hand or DBScan (Ester et al., 1996) that
requires explicit knowledge about the distance threshold.
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(a) Results of the 3D cloud points

subtraction.

(b) Results after applying SNN algorithm to detect foreground

and eliminate noise.

(c) Results after applying SNN

algorithm.

(d) Fitting ellipsoid on the final clustering results.

Figure 6.4: SNN clustering algorithm to detect foreground and eliminate noise.

6.3 Stationary/Non-stationary Object Probability

In consecutive images, an object can be categorised as either stationary or non-stationary
based on velocity. While stationary objects can either be background or foreground, non-
stationary objects generally belong to the foreground. Examples of stationary objects
include buildings and vegetation, which are normally background, and cars parked on the
side of the road, which are foreground. On the other hand, moving objects like walking
pedestrians and moving vehicles always belong to foreground. Based on this, we assume
that the non-stationary features belong to foreground objects.

To estimate the object velocity, we need to track and compute the feature displacement
over the consecutive images. In a static camera, the feature displacement is simply the
spatial pixel differences of the same feature over two consecutive frames. The problem
becomes more complicated when the camera itself is moving, as in our case. We also need
to estimate the camera displacement over consecutive sequences. Intuitively, since we have
recovered the camera geometry from SFM, we can compute the relative distance from one
camera to the other (see Figure 6.6), which is equivalent to stitching the consecutive image
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sequences using the view frustum concept (Assarsson and Möller, 2000).

In computer graphics, a view frustum (Assarsson and Möller, 2000) is the field-of-view of
a camera or a region of space that appears on the screen, as shown in Figure 6.5. Our
proposed solution is to project all images to the far plane of the camera frustum. At
the end of the projection process we flatten all the far planes into a single plane. In this
plane all consecutive images are roughly stitched together (see Figure 6.6). The average
velocity of a feature can then be computed as the relative distance between the feature
displacement in the motion-field image. Note that although the images do not stitch
perfectly this strategy allows us to estimate the relative feature velocity, which is enough
for our problem. Figure 6.6 shows examples of the motion-field images. The larger the
average velocity of a feature, the higher the probability that it is a foreground. Feature
with average velocity that is greater than two standard deviations of the entire motion
fields are considered as foreground points. Figure 6.7 shows motion-fields of stationary
and moving objects.

Figure 6.5: View frustum points.

We then combine the motion-field and the SNN clustering results to form the final 3D scene
change detection results. The 3D result is generally too sparse to provide full segmentation
of the objects. Next, we present a Markov Random Field (MRF) framework based on
robust feature background modelling to enhance the video-image segmentation.
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Figure 6.6: Motion-field data: consecutive images are stitched together using the camera
geometry information. The feature velocity is then represented by the length of the lines
in the motion-field images.

(a) (b)

Figure 6.7: Example of two scenes with objects of different velocity. (a) A moving car has
longer motion fields compared to other objects in the scene such as houses and trees. (b)
Static objects normally have similar average velocity.
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6.4 2D Change Detection

6.4.1 2D Data Alignment

Similar to traditional methods for foreground-background modelling, it is required for
images to be aligned before the background model can be created. In Chapter 4 (Section
4.1) we scanned a large number of image sequences to find the best image alignment,
which is computationally costly. In this work, since we have recovered the camera location
and orientation from SFM, the best Homography matrix for each image can be searched
efficiently in the order of its nearest neighbour cameras. This is motivated by the fact
that the best alignment target image has no transformation changes (in terms of skew,
rotation, scale, and translation), and thus cameras that are closest to the source camera
will have a higher probability of being aligned compared to those that are far from the
camera. Once the ordering is determined we employ the same Homography method as
described in Chapter 4 (Section 4.1) to align images from different video.

6.4.2 Spatio-Temporal MRFs for Scene Change Detection

Since our problem of detecting scene changes is an image-labelling problem it can be viewed
as a problem of inferring the Maximum A Posterior (MAP) solution of a MRF model. We
employ a multi-resolution MRF background modelling approach similar to that in Xu
et al. (2005) to model the spatio-temporal connections between images in the video. The
multi-resolution model is achieved using the image pyramid. Let I lt denote the image at
pyramid level l at time t, X = {X1, . . . , XN} be the hidden state, where each pixel state
takes a class label of either foreground or background Xi ∈ {F,B}, Z = {Z1, . . . , ZN} be
the pixel observation, and Ω be the Markovian model.

According to this model, the optimal labelling can be written as:

XMAP = arg max
X

P (X|Z,Ω) (6.3)

which is equivalent to an optimization problem of minimizing the following energy function:
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E(X) =
∑
i∈V

D(Xi) +
∑
k

∑
(i,j)∈Nk

Ck(i, j) (6.4)

where V = {1, 2, . . . , N} is the pixel index set, Nk are the different edge sets connecting
the pixels, D(.) and C(.) are the unary (association) and pair wise (interaction) potential
functions respectively, and k ∈ {1, 2, 3} refers to three different spatio-temporal MRF
interaction models. The three interaction models are defined as follows:

• C1= Connection between two adjacent pixels at the same pyramid level. This is
designed to achieve coherence labelling among neighbourhood pixels, thus obtaining
smooth foreground areas.

• C2= Connection between corresponding pixels at two adjacent pyramid levels. The
motivation of using the pyramid image structure is that at the higher image reso-
lution (the smaller the size of the image) we obtain less noise. By introducing the
pixel relationship across pyramid levels, better background models can be achieved.

• C3= Connection between two corresponding pixels at consecutive time instances.
The temporal connection captures the coherence labelling among pixels for different
times. In this work, the temporal neighbours are obtained by feature correspon-
dences between frames.

6.4.2.1 MRF Model

The C1 connection defines the spatial relationship between a pixel and its neighbours at
the same pyramid level. This is motivated by the assumption that foreground areas are
continuous and smooth. C1(i, j) = 0 if i and j are not neighbouring pixels, otherwise it is
defined as:

C1(i, j) =

−λ1 if Xi = Xj

λ1 if Xi 6= Xj

(i and j are adjacent pixels at the same image pyramid level)

where λ1 is the model parameter controlling the smoothness in the image region. C1(i, j)
has positive values if there is a discontinuity in the pixel label and 0 otherwise. Figure 6.8
shows examples of the C1 and C2 connections.
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Connections

C1

C2

Level 0

Level 1

Level 2

Figure 6.8: Spatial connections.

The C2 connection defines the relationship between corresponding pixels at two adjacent
pyramid levels. The motivation is that the class labels should agree since they belong to
the same pixel in the pyramid scheme. C2(i, j) = 0 if i and j are not corresponding pixels
at two adjacent pyramid levels, otherwise it is defined as:

C2(i, j) =

−λ2 if Xi = Xj

λ2 if Xi 6= Xj

(j is the corresponding pixel of i at the adjacent pyramid level)

where λ2 is the model parameter controlling the label consistency between pyramid levels.
C2(i, j) has positive values if the pixel labels between two adjacent pyramid levels are
inconsistent.

The C3 connection defines the temporal relationship between corresponding features (pix-
els). C3(i, j) = 0 if i and j are not corresponding SIFT pixels between two consecutive
times, otherwise if the corresponding temporal features are considered as stationary fea-
tures in the motion-field data, it is defined as:

C3(i, j) =

−λ3 if Xi = Xj

λ3 if Xi 6= Xj

(j is the corresponding feature of i in the previous frame)

and if the corresponding temporal features are considered as moving features in the motion-
field data, it is defined as:
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C3(i, j) =


−λ3 if Xi = Xj = F

λ3 if Xi = Xj = B

λ3 if Xi 6= Xj

(j is the corresponding feature of i in the previous frame)

where λ3 is the model parameter controlling the label consistency between two corre-
sponding features at two consecutive time instances. C3(i, j) has positive values if the
pixel labels between robust features do not agree and 0 otherwise. The second condition
for the C3 connection is to ensure that we obtain foreground pixel labels since the motion
label categorises it as moving features. Pixels with no temporal SIFT correspondence
simply have C3 = 0. Since C3 connection exists for the neighbourhood pixels between
two consecutive frames, the MRF model is still preserved. Figure 6.9 shows the temporal
connection.

C3

t− 1

t

(a) (b)

Figure 6.9: Temporal connection. (a) SIFT flow (b) Pixels that have SIFT correspondence
between consecutive images are assigned MRF temporal connection.

6.4.2.2 Likelihood

The observation model is expressed as:

p(Zi|Xi, θ) = p(Zi|Xi, θi) (6.5)

where θi is the background model for pixel i. Next we present the MRF algorithm to
estimate the posterior probability and the details of the background model are discussed
in Section 6.4.4.
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6.4.3 Estimating the Posterior Probability

Once the prior and the likelihood models are defined, the posterior probability for the
proposed MRF configuration in Equation 6.3 can be written as:

p(X|Z,Ω) ∝ p(X|Ω)× p(Z|X,Ω)

=
∏
i,j

exp(−C(i, j))×
∏
i

P (Zi|Xi, θi) (6.6)

where X is the hidden state, Z is the observation, (i, j) is any pair of pixels in the model,
the Markov connection C(i, j) is defined as:

C(i, j) = C1(i, j) + C2(i, j) + C3(i, j) (6.7)

and Ω are the parameters of the Markov Network:

Ω = {R1, R2, R3, θ}

where R1, R2, and R3 are the set of parameters λ1, λ2, and λ3 at different pyramid levels.
θ is the background model.

Similar to Xu et al. (2005), we employ Gibbs sampling with simulated annealing to estimate
the posterior probability of the proposed Markov Random Field (MRF). Algorithm 3 shows
a summary of the Gibbs sampling algorithm used in the scene change detection.

Sampling at high temperatures reduces the difference among peaks in the probability
distribution and helps prevent the local maxima. At low temperatures, the mode of the
posterior is amplified and this causes the algorithm to converge faster(Xu et al., 2005).
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Algorithm 3: Gibbs sampling with simulated annealing algorithm for image segmenta-
tion.

1. Initialise the start configuration X(0) = (X(0)
1 , . . . , X

(0)
d ) using the MAP state

estimation of previous frame, with iteration k = 0 and temperature T = T (0) in
simulated annealing, where d is the number of nodes in the MRF.

2. At iteration k,

(a) For each node Xk
i in the MRF

i. Select a new state X+
i and let the proposed MRF configuration be

X+ = (Xk
1 , . . . , X

k
i−1, X

+
i , X

k
i+1, . . . , X

k
d )

ii. Let the old state be denoted as X−i and its MRF configuration be
X− = (Xk

1 , . . . , X
k
i−1, X

−
i , X

k
i+1, . . . , X

k
d ).

iii. Compute the acceptance ratio as follows:
α = min

{
1,
(
p(X+|Z,Ω)
p(X−|Z,Ω)

)}
where α is the acceptance ratio choosing the best between the new and
old state’s conditional posterior probability.

iv. A new label state Xi is accepted according to the following rule:

Xk
i =

{
X+
i if α ≥ 1

X−i otherwise

3. Decrease the temperature T = T (k + 1)

4. If T > 0, go to step 2
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6.4.4 Observation Model (θ)

The observation model is one of the most important elements that significantly influences
the segmentation results. Therefore, it should reflect to the characteristics of the dataset.
Due to different lighting conditions in most of the dataset, we employ a HOG codebook
based background modelling. We present each pixel of the background using the Histogram
of Oriented Gradient, built from a window region centered around the pixel. The codebook
for each pixel is constructed by grouping similar background HOG features to form a set
of codewords. The weight of each codeword is defined by the number of the feature
occurrences. The advantage of using the codebook based approach is because it preserves
the original structure of the histograms (a distinctive property of the feature), creating
more robust background models as compared to the KDE-HOG approach (Elgammal
et al., 2000) that treats each channel as independent attributes. Before constructing the
codebook background model, we perform a pre-processing step to discard uniform regions.

6.4.4.1 Discarding the Uniform Regions

The scene data consists of wide ranges of objects such as sky, houses, cars, road, vegetation
etc. We choose to discard processing uniform areas (areas having weak gradients) for two
reasons: (1) because the data is taken at different days and times, we generally encounter
different sky conditions which are typically noise (see Figure 6.10); (2) areas with weak
gradient structures do not give strong effects in the HOG formulation. To discard the
uniform regions, we convert the normal edge image into the sum of HOG image followed
by normalisation. Because we normalise the image based on its global gradient, we put
higher weights on strong gradient areas. For areas with a gradient less than a threshold,
the observation likelihood is equal to 0. Figure 6.10 shows an example of the results
after eliminating the noise. Note that by doing this, we lose detailed information of the
foreground objects with uniform colour regions. However, since our aim is to roughly
locate the objects, this strategy would help eliminating false positives whilst preserving
the gradient structure of the scene.

6.4.4.2 HOG Codebook Observation Model

Given a target image, the observation likelihood of each pixel is computed using,
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Figure 6.10: (Top) Two frames taken on different days, note that the sky has large differ-
ences. (Bottom) Results after noise elimination.

p(Zi|θi) = p(Zi) = CB(Zi, θi) (6.8)

where θi be the background model for each pixel and CB(.) is a function that returns the
probability of the current feature matching the best background codeword. The compari-
son between HOG features and the codebook background features are performed using the
Bhattacharyya coefficient. Since there is no guarantee that all the images from different
times will align perfectly, we search for maximum responses from around the neighbour-
hood and redefine the background probability of a pixel as:

PN (Zi|θi) = max
j∈N (i)

P (Zi|θj) (6.9)

where N is the neighbour pixel of i. Intuitively, this model searches for the closest candi-
date pixel around a set of neighbours, since we assume that even if misalignment exists,
it lies around the neighbours. Although this approach addresses the misalignment prob-
lem, it introduces the problem of losing true detections, as mentioned by Elgammal et al.
(2000). Hence we incorporate a further constraint on the neighbourhood conditions, i.e. if
a pixel is truly a background pixel that happens to move to a new location, then some of its
neighbourhood pixels should also move, since we assume that the misalignment happens
not for one single pixel, but for a group of pixels. Therefore, we define the probability of
displacement as:
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Iter #1 Iter #10 Iter #58 Iter #139

Figure 6.11: Spatio-temporal MRF segmentation results at different iterations. The seg-
mentation results (red colour mask) are overlaid on top of the original images

PC(Zi) =
∏

j∈{i∪N (i)}
PN (Zj) (6.10)

where PC(Zi) is computed as the product over the connected components of the neigh-
bourhood pixels.

Using Equations 6.7 and 6.10, the conditional posterior probability in Equation 6.6 can be
computed. Figure 6.11 shows the MRF scene change results at different iterations before
it converges.

6.5 Combining Results from 3D and 2D Scene Change De-

tection

The final scene change detection results are obtained by merging the 3D with 2D results
based on their connected components. We name the combined approach as SFM-HOG
scene detection. In general, although the 3D scene change detection is able to detect the
scene changes effectively, the results are often under-segmented due to the sparsity of the
features. On the other hand, the 2D scene change detection results include more details
of the foreground with some noise. To merge the two results, we first project the 3D scene
change detection results back to the 2D images using the view frustum method. Next, we
compute the connected components for both 3D and 2D results to identify blob clusters.
Finally, we find the overlap regions between the 3D and 2D results. If the number of
overlap pixels between the two connected components is larger than a certain threshold,
we assign it as a foreground object, otherwise it is assigned as background noise. In other
words, this strategy chooses the final foreground results that agree with both the 3D and
2D results.
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6.6 Experimental Results

6.6.1 Scene Changes Dataset

The experimental datasets were collected using a single front-facing camera (Nokia N951)
placed on the dash board of a moving car. Figure 6.12 shows the physical camera setup and
the GPS locations of the scene where the video was taken. The camera has the following
characteristics: it is a camera without pan/tilt/zoom functionalities, it was set up to record
a video stream of size 640x480 at 30 frames per second (fps) and was located on the left
side dash board looking to the right. During data collection, the vehicle travelled at 40–50
km/hour.

Figure 6.12: Camera setup and map where the video is recorded. The blue lines indicate
the path of the vehicle.

The experimental data consists of three different scene datasets. Figures 6.13, 6.14, and
6.15 show the three datasets where all video are taken on different days. Table 6.2 sum-
marises the descriptions of the video.

1http://www.nokia.co.uk/find-products/all-phones/nokia-n95/specifications
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Figure 6.13: Dataset 1 consists of two video. (Top) video 1.1. (Bottom) video 1.2.

Dataset Number of video Number of frames Video ID Frame index

1 2 39
1.1 1–20

1.2 21–39

2 5 176

2.1 1–36

2.2 37–54

2.3 55–85

2.4 86–112

2.5 113–176

3 5 136

3.1 1–28

3.2 29–51

3.3 52–73

3.4 74–100

3.5 101–136

Table 6.2: Descriptions of the dataset acquired from vehicle.

6.6.2 Pre-processing

We perform some pre-processing to ignore parts of the video before performing 2D scene
change detection due to the following two reasons:

• Physical placement of the camera. Because the camera is situated inside the car
some parts of the video contain partial views of the dashboard or reflections of the
windscreen (see Figure 6.16 (a)). We manually define an image mask to ignore
computing scene change detection on those parts.

• Homography alignment results. Two images from different times generally have re-
gions that do not overlap. However during the detection process we only perform the
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Figure 6.14: Dataset 2 consists of five video. From top to bottom: video 2.1 to 2.5.

Figure 6.15: Dataset 3 consists of five video. From top to bottom: video 3.1 to 3.5.
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foreground detection on the overlap image regions as shown in Figure 6.16 (b). This
information is obtained automatically during the Homography alignment results.

Figure 6.16: Pre-processing examples. (a) The red polygon defines areas to be ignored
during 2D scene change detection process due to the effects related to the car; (b) Given
a Homography alignment result of two images (the green and the pink colour frames), we
detect the scene changes only on the overlap region.

6.6.3 Parameter Settings

Choice of K, Eps, and MinPts

As outlined in the Section 6.2.2 on 3D cloud point subtraction, the size of the neighbour-
hood, K, is an important parameter that controls the resolution of the clusters (Ertöz
et al., 2003), i.e. the accuracy of the detected objects. Eps and MinPts are the threshold
density and the parameter that controls the core points respectively, which can be defined
as a fraction of K (Ertöz et al., 2003). Intuitively, K should reflect the density/size of
the object. In our experiment we set K = 25, Eps = K ∗ 0.4 and MinPts = K ∗ 0.75 as
stated in (Ertöz et al., 2003).

Choice of local feature

In this experiment, we study the performance when using different local features for back-
ground modelling purposes (this is related to the observation model in Section 6.4.4). The
performance is quantified using the true positive and false positive rates. We manually
label the image into two different classes: the positive and the negative samples. The
positive samples contain patches of same scene under different lighting conditions, while
the negative samples are any patches that are from different objects. Figure 6.17 shows
examples of the scene patches. Seven different local features were evaluated, including:
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Figure 6.17: Evaluation using different features. Each pair of patches has eight bars representing
the different features; from left to right: HOG, HOG Gauss, SIFT, Histogram of Leung Malik
filters, Histogram of Gabor filters, PHOG, PHOG Gauss. Bhattacharyya is used as the comparison
method: 1 is a perfect match while 0 is the poor match. (Top): comparison of the same objects.
An ideal graph should have all bars as high as possible since they are the same object. (Bottom):
comparison of different patches. An ideal graph should have all bars as low as possible.

1. Histogram of Oriented Gradient (HOG) (Dalal and Triggs, 2005),

2. HOG with interpolation using Gaussian kernel (Dalal and Triggs, 2005),

3. SIFT (HOG with central axis oriented to the dominant orientations and interpolated
using Gaussian kernel) (Lowe, 2004),

4. Histogram of Leung Malik Texton response (Leung and Malik, 2001),

5. Histogram of Gabor Filter response (Jain and Farrokhnia, 1991),

6. Pyramid histogram of oriented gradient (PHOG) (Bosch et al., 2007), and

7. Pyramid HOG with Gaussian interpolation (Dalal and Triggs, 2005)

Another parameter that determines the performance and the complexity is the size of
the window. As the window size gets larger, the more neighbourhoods it covers and the
computational cost increases.

Figure 6.18 shows the ROC curves for different local features by varying the thresholds
and window sizes. From the figure, we can see that the HOG and PHOG features have the
best performance compared to other features. The difference between HOG and PHOG
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Figure 6.18: ROC curve for different local features.

is that PHOG captures more detailed descriptions of a particular patch or object. The
only time PHOG has higher value than HOG is when it compares texture-less features
like skies and walls. PHOG does not deal well with image misalignment as it captures
more detailed information than HOG. Unlike the foreground detection (Dalal and Triggs,
2005), since we are modelling the background, it is preferable for the model to accept
more variations as our data is not always well aligned. In the case of direct foreground
modelling, like pedestrian detection, using PHOG should be better than HOG because it
compares both the local and global features. The global features may be different but the
local features may agree. In our case, if the global feature is different, the local feature
would most probably be different thus shrinking the overall confidence score. Based on
this evaluation we choose to use HOG as our pixel appearance feature and we set the
window size to 10× 10 pixels wide.

MRF parameters

Referring to Section 6.4.3 on MRF, we set the model parameters λ1 = 0.5, λ2 ∝ log(s),
and λ3 = 0.3 similar to Xu et al. (2005), where s is the image size.

153



CHAPTER 6. AUTOMATIC VIDEO SCENE CHANGE DETECTION

6.6.4 Evaluation Criteria

To evaluate the performance of our proposed framework, we present two quantitative
measurements in terms of pixel and bounding box measurements. Both measurements are
computed using the sensitivity(%) = TP

TP+FN and recall = FP
FP+TN metrics, where TP ,

TN , FP , FN are the true positives, true negatives, false positives, and false negatives
respectively. The bounding box measurement provides the performance evaluation on the
overall bounding box of the object, which is an adequate metric for our problem due to
the different lighting conditions. In addition, we also provide the segmentation evaluation
that measures how well the results are in terms of pixel segmentation. For the bounding
box measurement we compute the ratio of the overlap as shown in Figure 6.19. The ratio
of overlap is expressed as:

overlap =
area(detected ∩ groundtruth)

area(detected)
(6.11)

A detected candidate is considered to be a true positive when the overlap ratio between the
detected and the ground truth bounding boxes is above 40%, otherwise it is considered
as a false positive. To justify the performance of our framework we also compare the
proposed SFM-HOG approach against the 2D and 3D scene change detection.

6.6.5 Experiments

The main objectives of the following three experiments are to test the:

1. Performance of SFM-HOG against lighting changes using only two video instances
(Section 6.6.5.1).

2. Performance of SFM-HOG to detect sudden changes on multiple video instances
(Section 6.6.5.2).

3. Performance of SFM-HOG to detect more complex changes on multiple video in-
stances (Section 6.6.5.3).

For each dataset we show the results in the following order: first, we will show the time-
ordered 3D scene reconstruction results along with the estimated camera motion to sum-
marise the video sequences. Secondly, the motion field data results are used to summarise
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Figure 6.19: Evaluation criteria.

the moving and stationary objects. Thirdly, we will show the 3D scene change detection
results for each video. Finally, we compare the 2D, 3D, and SFM-HOG scene change
detection results.

6.6.5.1 Experiment I: Single Video Changes

This experiment demonstrates the performance of SFM-HOG to detect scene changes
against lighting changes using two video instances.

Description: Figure 6.20 (a) shows the scene reconstruction of the two video overlaid on
each other, whilst Figures 6.20 (b) and (c) show the motion-field data for video 1.1 and
video 1.2 respectively. In this experiment, there are three scene changes between video 1.1
and video 1.2. First, there is a white pickup car in video 1.1 that does not appear in video
1.2. Similarly, there is a white jeep parked besides the tree in video 1.1 but not in video
1.2. Finally, the red sedan beside the tree in video 1.1 is replaced by another sedan in
video 1.2. On the other hand, the background objects (scenes that remain unchanged) in
this dataset include houses, vegetation, and shadows (appear in video 1.2). Since the scene
contains stationary foreground and background objects, there are no significant differences
in the motion fields data as shown in Figures 6.20 (d) and (c).
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Results: Figure 6.21 shows some comparative results between 3D, 2D, and SFM-HOG
approaches of dataset 1. Each column represents results from different approaches. From
Figure 6.21, we can see that the high number of false detections for using either 3D or
2D result alone is greatly reduced when the two approaches are combined. The false
detections in Figure 6.21 (a) and (c) are mainly caused by the limited number of video
used in this experiment and there is large difference in lighting between these video. The
shadow in video 1.2 does not present as part of the 3D foreground because the 3D feature
density in that area is small and thus is discarded during the thresholding process. On
the other hand, the 2D approach is not able to handle the shadow noise which results in
false detections. In this experiment we achieve 66.62% true positives detection (TP) with
18.69% false positives (FP) for the SFM-HOG approach, 35.71/64.29% (TP/FP) for 3D,
and 42.52/77.35% (TP/FP) for 2D approach. The summary of the SFM-HOG results are
shown in Figure 6.22. This demonstrates the effectiveness of combining both the 2D and
3D scene detection results.
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(a) Time-ordered 3D SFM data.

(b) Motion-fields for video 1.1. (c) Motion-fields for video 1.2.

(d) (e)

Figure 6.20: Dataset 1.
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(a) 3D (b) Motion field (c) 2D (d) SFM-HOG

Figure 6.21: Scene change detection results.

Figure 6.22: SFM-HOG scene change detection results.
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6.6.5.2 Experiment II: Single Video Changes

This experiment demonstrates the performance of SFM-HOG to detect scene changes in
multiple video, where only one video contains moving foregrounds.

Description: Five video are used in the second experiment. Figure 6.23 shows the time-
ordered 3D data and the estimated camera motion for dataset 2. In this experiment, video
2.1, 2.2, 2.3, and 2.5 do not contain any change, whilst there are three scene changes in
video 2.4. The first two changes are a man and his child riding bicycles (between frames
80-89). Between frames 100 to 115 of video 2.4, there is a car driving on the opposite side
of the road. In this experiment all foreground objects are moving, which can be seen from
the motion field data shown in Figures 6.24 (b) and (d). On the other hand, objects in
video 2.1 are stationary and have equal motion-field as shown in Figures 6.24 (a) and (c).

Results: Figure 6.23 (a) shows the 3D SNN subtraction results, while Figures 6.23 (b)
and (c) show the noise eliminating process. Clusters that are not dense are considered as
noise, which leads us to the final three clusters in Figure 6.23 (d). These clusters belong
to the man, the child, and the cars respectively. This is confirmed by the results being
projected back to the image as shown in Figure 6.26 (a). In addition, Figure 6.26 shows
some comparative results between 2D, 3D, and SFM-HOG approaches. Although the
lighting differs between all video, they still share similar gradient structures, hence we also
obtain good image segmentation results as shown in Figure 6.26 (c). In this experiment, we
achieve 79.29% true positive detection with 11.23% false positives for SFM-HOG approach,
57.72/10.15% (TP/FP) for 3D approach, and 67.11/82.75% (TP/FP) for 2D approach.
In general, the SFM-HOG method is able to obtain the bounding boxes of the objects
correctly, with a small number of false positives, as shown in Figure 6.27.
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Figure 6.23: Time ordered 3D data and camera motion for experiment 2.

(a) Video 2.1 (b) Video 2.4

(c) Video 2.1 (d) Video 2.4

Figure 6.24: Comparison of different motion-field data for video set 2. (a) and (c) contain
only stationary scene, whilst (b) and (d) contain moving foreground objects.
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(a) Original scene. (b) Foreground extraction using SNN clustering.

Figure 6.25: 3D SNN subtraction results. (Note that, for explanation purposes the SNN
results in (b) are annotated. The actual results do not contains any annotations)

(a) 3D (b) Motion-field (c) 2D (d) SFM-HOG

Figure 6.26: Scene change detection results.
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Figure 6.27: SFM-HOG scene change detection results.

6.6.5.3 Experiment III: Multiple Video Changes

This experiment demonstrates the performance of SFM-HOG to detect scene changes in
multiple video.

Description: Five video are used in this experiment. Figure 6.28 shows the constructed
time-ordered 3D data and the estimated camera motion for dataset 3. Figure 6.29 shows
the motion-field data for all video. In this experiment, the tree object in front of the
house was cut off after video 3.3; therefore, it does not appear in video 3.4 and 3.5. Other
changes include (1) a white jeep parked beside the house at video 3.1; (2) two white
sedans appearing in video 3.3 but not in other video; and (3) a jeep travels in the opposite
direction of the traffic in video 3.4.

Results: Figure 6.30 shows the results of the 3D scene change detections. From Figures
6.30 (a), (b), (c), we can see that the SFM-HOG is able to detect the foreground objects
correctly, which consist of the tree and the car objects. From the projected 3D results
(see Figure 6.31 (a)) we can see that it contains less foreground information as compared
to the 2D results with a higher number of false positives, as shown in Figure 6.31 (c). By
combining the results we show that the SFM-HOG is able to extract the changes correctly
without large numbers of false positives, as shown in Figure 6.32. In this experiment,
we achieve 77.06% true positive detection with 10.94% false positives for the SFM-HOG
approach, 53.29/24.62% (TP/FP) for 3D approach, and 56.28/73.46% (TP/FP) for 2D
approach.
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Figure 6.28: Time-ordered 3D scene reconstruction and its camera motion of dataset 3.

(a) Video 3.1 (b) Video 3.2 (c) Video 3.4

Figure 6.29: Motion-fields for video in dataset 3.

(a) Video 3.1 (b) Video 3.2 (c) Video 3.4

Figure 6.30: 3D scene change detection results. (Note that, for explanation purposes the
SNN results in (a), (b), and (c) are annotated. The actual results do not contains any
annotations)
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(a) 3D (b) Motion-field (c) 2D (d) SFM-HOG

Figure 6.31: Scene change detection results.

Figure 6.32: SFM-HOG scene change detection results.

6.6.6 Discussion

Table 6.3 shows the overall performance of the different detection methods. The results
show that by using the 2D scene change detection approach alone generally results in
higher false positives as compared to SFM-HOG, while the 3D scene change detection
approach alone gives lower true positives as compared to SFM-HOG. On the other hand,
when they are combined together, the best performance is achieved. The intuitive reason
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Bounding box True positive rate (%) False positive rate (%)
Sequence 3D 2D SFM-HOG 3D 2D SFM-HOG
Dataset 1 35.71% 42.52% 66.62% 64.29% 77.35% 18.69%
Dataset 2 57.72% 67.11% 79.29% 10.15% 82.75% 11.23%
Dataset 3 53.29% 56.28% 77.06% 24.62% 73.46% 10.94%

Pixel True positive rate (%) False positive rate (%)
Sequence 3D 2D SFM-HOG 3D 2D SFM-HOG
Dataset 1 28.53% 31.62% 41.36% 60.3% 70.97% 27.98%
Dataset 2 48.57% 54.21% 57.52% 12.28% 63.20% 11.23%
Dataset 3 55.07% 60.97% 65.88% 26.66% 56.11% 16.08%

Table 6.3: Evaluation results.

for this is because the noisy results of 3D and 2D do not overlap each other due to the
different nature of the two techniques. The 2D results fill the sparse 3D results to give
more information about the foreground objects. At the same time, since the 3D results
do not contain noise, it reduces the false detections in the 2D results.

Based on the results at Table 6.3, we can also see that using less numbers of video such
as experiment 1 results in low performance. As the dataset size increases, the noise of the
dataset can be reduced by comparing multiple images and thus we obtain better overall
performance.

6.7 Chapter Summary

In this chapter we have presented a system for scene changes detection. Our proposed
framework is able to detect scene changes correctly despite the challenges in the datasets
(variability in camera pose and lighting conditions). The main contribution lies in the use
of 3D scene information to provide stable scene changes. The use of the 2D segmentation
algorithm is to provide more detailed information about the object.
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Conclusion

This thesis has investigated the problems of foreground object detection for three challeng-
ing applications. In particular, we have aimed to improve the foreground object detection
systems through the following tasks:

• Investigating state-of-art detection methods on our datasets.

• Proposing novel frameworks for foreground object detection that improve the accu-
racy rates of current approaches.

• Investigating the performance of the proposed detection frameworks in real-world
datasets.

Chapter 3 investigated a surveillance system to detect and track passengers on moving
buses. Specifically, we studied the lighting change issue and introduced a new approach
that combines SIFT background modelling and elliptical human models to deal with pas-
senger detection under different lighting conditions. In addition, we proposed the RJM-
CMC tracking algorithm with the trajectory and appearance transformation models to
deal with low frame rate issues. Experiments were conducted on real bus footages. Re-
sults have shown that our proposed framework provides the best detection performance
when compared to GMM and human detection approaches. Furthermore, the RJMCMC
framework with appearance transformation model has outperformed MeanShift, Particle
Filter, and appearance association method, demonstrating the usefulness of the proposed
framework.

Chapter 4 discussed a pedestrian detection framework for front-facing bus cameras. Some
important issues related to the moving cameras were investigated, in particular the problem
of scene localization for background modelling. In addition, we employed the hierarchical
template matching for pedestrian detection that is suitable for crowded scenes. Experi-
mentation was conducted on the Perth dataset. Results have shown that our proposed
framework significantly reduce the number of false positives as compared to the direct
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pedestrian detection alone.

Chapter 5 investigated the performance of four pedestrian detection methods, namely
HOG, HOGB, CHOG, and CHOGB. Experimentation was conducted using the Perth
dataset. Results show that the HOG based detector achieves the highest performance,
the HOGB approach has a comparable performance as compared to the HOG, and the
codebook approaches allow computationally efficient detection. The detection performance
is improved by incorporating the background subtraction approach as it eliminates high
number of false positive candidates.

Chapter 6 discussed a scene change detection framework for a moving vehicle’s camera. In
particular, we studied the use of 3D scene information to improve the results of 2D segmen-
tation approach. Experimentation was conducted on urban city street datasets. Results
have shown that the combined 3D-and-2D approach outperforms the MRF background
subtraction approach (Xu et al., 2005).

7.1 Future Work

A number of possible improvements for future research can be identified through this
research.

In Chapter 3, we have presented a surveillance system to detect and track passengers inside
moving buses. In our approach, we use a single camera as the input to the system. This
can be extended to using multiple distributed cameras, similar to (Mittal and Davis, 2003).
The advantages of using multiple camera networks are the larger surveillance coverage and
the ability to cross-check the detection results from multiple sources for reliable detection
and tracking. In addition, we can learn the distribution of crowds based on the operating
time and adjust the parameters of the algorithm accordingly, for example during peak
hours, the system expects high number of occupancies and thus relaxing the detection
rates in order to obtain high numbers of passengers, as compared to the normal hours
where we expect small numbers of passengers.

In Chapters 4 and 5, we have investigated different pedestrian algorithms for mobile surveil-
lance system. The output of this system is a set of people, which can be useful for a large
scale tracking surveillance system. Methods such as (Wang et al., 2003; Leibe et al., 2008)
can be used in conjunction to our system to localise pedestrians and track them in an
urban city. In terms of the detection, our system does not incorporate any motion or
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geometry cues such as SIFT flow (Liu et al., 2008) or 3D scene information (Snavely et al.,
2008). When this information is available, it would improve the system performance.

In Chapter 6, we introduce a new framework for scene change detection using a monocular
camera. We can improve the accuracy and speed of the 3D scene reconstruction method
by using stereo vision similar to (Leibe et al., 2008). Additional 3D cues such as the one
proposed by Brostow et al. (2008) can be integrated with our proposed model to improve
the 3D foreground detection method.
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