1,030 research outputs found

    Workload Equity in Vehicle Routing Problems: A Survey and Analysis

    Full text link
    Over the past two decades, equity aspects have been considered in a growing number of models and methods for vehicle routing problems (VRPs). Equity concerns most often relate to fairly allocating workloads and to balancing the utilization of resources, and many practical applications have been reported in the literature. However, there has been only limited discussion about how workload equity should be modeled in VRPs, and various measures for optimizing such objectives have been proposed and implemented without a critical evaluation of their respective merits and consequences. This article addresses this gap with an analysis of classical and alternative equity functions for biobjective VRP models. In our survey, we review and categorize the existing literature on equitable VRPs. In the analysis, we identify a set of axiomatic properties that an ideal equity measure should satisfy, collect six common measures, and point out important connections between their properties and those of the resulting Pareto-optimal solutions. To gauge the extent of these implications, we also conduct a numerical study on small biobjective VRP instances solvable to optimality. Our study reveals two undesirable consequences when optimizing equity with nonmonotonic functions: Pareto-optimal solutions can consist of non-TSP-optimal tours, and even if all tours are TSP optimal, Pareto-optimal solutions can be workload inconsistent, i.e. composed of tours whose workloads are all equal to or longer than those of other Pareto-optimal solutions. We show that the extent of these phenomena should not be underestimated. The results of our biobjective analysis are valid also for weighted sum, constraint-based, or single-objective models. Based on this analysis, we conclude that monotonic equity functions are more appropriate for certain types of VRP models, and suggest promising avenues for further research.Comment: Accepted Manuscrip

    A New Model for The Multi-Objective Multiple Allocation Hub Network Design and Routing Problem

    Get PDF
    In this paper, we propose a new model for the multi-objective multiple allocation hub network design and routing problem which contains determining the location of hubs, the design of hub network, and the routing of commodities between source-destination pairs in the given network. The selected hubs are not assumed to be fully connected, and each node and arc in the network has capacity constraints. The multiple objectives of the problem are the minimization of total xed and transportation costs and the minimization of the maximum travel time required for routing. We propose a mathematical formulation for the multiobjective problem and present a meta-heuristic solution based on a well-known multi-objective evolutionary algorithm. Using the proposed formulation, we are able to nd the optimal solution for small networks of ve nodes and seven nodes. To evaluate the performance of our heuristic approach on real data, the computational experiments are conducted on Turkish postal system data set. The results demonstrate that our heuristic approach can nd feasible solutions to the problem in reasonable execution time, which is less than 10 min

    Arc routing problems: A review of the past, present, and future

    Full text link
    [EN] Arc routing problems (ARPs) are defined and introduced. Following a brief history of developments in this area of research, different types of ARPs are described that are currently relevant for study. In addition, particular features of ARPs that are important from a theoretical or practical point of view are discussed. A section on applications describes some of the changes that have occurred from early applications of ARP models to the present day and points the way to emerging topics for study. A final section provides information on libraries and instance repositories for ARPs. The review concludes with some perspectives on future research developments and opportunities for emerging applicationsThis research was supported by the Ministerio de Economia y Competitividad and Fondo Europeo de Desarrollo Regional, Grant/Award Number: PGC2018-099428-B-I00. The Research Council of Norway, Grant/Award Numbers: 246825/O70 (DynamITe), 263031/O70 (AXIOM).Corberán, Á.; Eglese, R.; Hasle, G.; Plana, I.; Sanchís Llopis, JM. (2021). Arc routing problems: A review of the past, present, and future. Networks. 77(1):88-115. https://doi.org/10.1002/net.21965S8811577

    A bi-objective stochastic approach for stochastic CARP

    Get PDF
    The Capacitated Arc Routing Problem (CARP) occurs in applications like urban waste collection or winter gritting. It is usually defined in literature on an undirected graph G = (V, E) , with a set V of n nodes and a set E of m edges. A fleet of identical vehicles of capacity Q is based at a depot node. Each edge i has a cost (length) ci and a demand qi (e.g. an amount of waste), and it may be traversed any number of times. The edges with non-zero demands or tasks require service by a vehicle. The goal is to determine a set of vehicle trips (routes) of minimum total cost, such that each trip starts and ends at the depot, each task is serviced by one single trip, and the total demand handled by any vehicle does not exceed Q . To the best of our knowledge the best published method is a memetic algorithm first introduced in 2001. This article provides a new extension of the NSGA II (Non-dominated Sorting Genetic Algorithm) template to comply with the stochastic sight of the CARP. The main contribution is: - to introduce mathematical expression to evaluate both cost and duration of the longest trip and also standard deviation of these two criteria. - to use a NGA-II template to optimize simultaneously the cost and the duration of the longest trip including standard deviation. The numerical experiments managed on the thee well-known benchmark sets of DeArmon, Belenguer and Benavent and Eglese, prove it is possible to obtain robust solutions in four simultaneous criteria in rather short computation times

    Experimental Evaluation of Meta-Heuristics for Multi-Objective Capacitated Multiple Allocation Hub Location Problem

    Get PDF
    Multi-objective capacitated multiple allocation hub location problem (MOCMAHLP) is a variation of classic hub location problem, which deals with network design, considering both the number and the location of the hubs and the connections between hubs and spokes, as well as routing of flow on the network. In this study, we offer two meta-heuristic approaches based on the non-dominated sorting genetic algorithm (NSGA-II) and archived multi-objective simulated annealing method (AMOSA) to solve MOCMAHLP. We attuned AMOSA based approach to obtain feasible solutions for the problem and developed five different neighborhood operators in this approach. Moreover, for NSGA-II based approach, we developed two novel problem-specific mutation operators. To statistically analyze the behavior of both algorithms, we conducted experiments on two well-known data sets, namely Turkish and Australian Post (AP). Hypervolume indicator is used as the performance metric to measure the effectiveness of both approaches on the given data sets. In the experimental study, thorough tests are conducted to fine-tune the proposed mutation types for NSGA-II and proposed neighborhood operators for AMOSA. Fine-tuning tests reveal that for NSGA-II, mutation probability does not have a real effect on Turkish data set, whereas lower mutation probabilities are slightly better for AP data set. Moreover, among the AMOSA based neighborhood operators, the one which adds/removes a specific number of links according to temperature (NS-5) performs better than the others for both data sets. After analyzing different operators for both algorithms, a comparison between our NSGA-II based and AMOSA based approaches is performed with the best settings. As a result, we conclude that both of our algorithms are able to find feasible solutions of the problem. Moreover, NSGA-II performs better for larger, whereas AMOSA performs better for smaller size networks

    REVISIÓN DE LA LITERATURA DEL PROBLEMA DE RUTEO DE VEHÍCULOS EN UN CONTEXTO DE TRANSPORTE VERDE

    Get PDF
    In the efficient management of the supply chain the optimal management of transport of consumables and finished products appears. The costs associated with transport have direct impact on the final value consumers must pay, which in addition to requiring competitive products also demand that they are generated in environmentally friendly organizations. Aware of this reality, this document is intended to be a starting point for Master's and Doctoral degree students who want to work in a line of research recently proposed: green routing. The state of the art of the vehicle routing problem is presented in this paper, listing its variants, models and methodologies for solution. Furthermore, the proposed interaction between variants of classical routing problems and environmental effects of its operations, known in the literature as Green-VRP is presented. The goal is to generate a discussion in which mathematical models and solution strategies that can be applied within organizations that consider within their objectives an efficient and sustainable operation are posed. En el gerenciamiento eficiente de la cadena de suministro aparece la gestión óptima del transporte de insumos y productos terminados. Los costos asociados al transporte tienen impacto directo sobre el valor final que deben pagar los consumidores, que además de requerir productos competitivos también exigen que los mismos sean generados en organizaciones amigables con el medioambiente. Consientes de esa realidad este documento pretende ser un punto de partida para estudiantes de maestría y doctorado que quieran trabajar en una línea de investigación propuesta recientemente: el ruteo verde. En este trabajo se muestra un estado del arte del problema de ruteo de vehículos, enumerando sus variantes, modelos y metodologías de solución. Además, se presenta la interacción que se ha propuesto entre variantes clásicas de los problemas de ruteo y los efectos ambientales de su operación, denominados en la literatura como Green-VRP. El objetivo es generar una discusión donde se planteen modelos matemáticos y estrategias de solución que puedan ser aplicadas en organizaciones que consideren dentro de sus objetivos una operación eficiente y sustentable. Document type: Articl

    Revisión de la literatura del problema de ruteo de vehículos en un contexto de transporte verde

    Get PDF
    In the efficient management of the supply chain the optimal management of transport of consumables and finished products appears. The costs associated with transport have direct impact on the final value consumers must pay, which in addition to requiring competitive products also demand that they are generated in environmentally friendly organizations. Aware of this reality, this document is intended to be a starting point for Master’s and Doctoral degree students who want to work in a line of research recently proposed: green routing. The state of the art of the vehicle routing problem is presented in this paper, listing its variants, models and methodologies for solution. Furthermore, the proposed interaction between variants of classical routing problems and environmental effects of its operations, known in the literature as Green- VRP is presented. The goal is to generate a discussion in which mathematical models and solution strategies that can be applied within organizations that consider within their objectives an efficient and sustainable operation are posed.En el gerenciamiento eficiente de la cadena de suministro aparece la gestión óptima del transporte de insumos y productos terminados. Los costos asociados al transporte tienen impacto directo sobre el valor final que deben pagar los consumidores, que además de requerir productos competitivos también exigen que los mismos sean generados en organizaciones amigables con el medioambiente. Consientes de esa realidad este documento pretende ser un punto de partida para estudiantes de maestría y doctorado que quieran trabajar en una línea de investigación propuesta recientemente: el ruteo verde. En este trabajo se muestra un estado del arte del problema de ruteo de vehículos, enumerando sus variantes, modelos y metodologías de solución. Además, se presenta la interacción que se ha propuesto entre variantes clásicas de los problemas de ruteo y los efectos ambientales de su operación, denominados en la literatura como Green-VRP. El objetivo es generar una discusión donde se planteen modelos matemáticos y estrategias de solución que puedan ser aplicadas en organizaciones que consideren dentro de sus objetivos una operación eficiente y sustentable

    The Vehicle Routing Problem with Service Level Constraints

    Full text link
    We consider a vehicle routing problem which seeks to minimize cost subject to service level constraints on several groups of deliveries. This problem captures some essential challenges faced by a logistics provider which operates transportation services for a limited number of partners and should respect contractual obligations on service levels. The problem also generalizes several important classes of vehicle routing problems with profits. To solve it, we propose a compact mathematical formulation, a branch-and-price algorithm, and a hybrid genetic algorithm with population management, which relies on problem-tailored solution representation, crossover and local search operators, as well as an adaptive penalization mechanism establishing a good balance between service levels and costs. Our computational experiments show that the proposed heuristic returns very high-quality solutions for this difficult problem, matches all optimal solutions found for small and medium-scale benchmark instances, and improves upon existing algorithms for two important special cases: the vehicle routing problem with private fleet and common carrier, and the capacitated profitable tour problem. The branch-and-price algorithm also produces new optimal solutions for all three problems

    A hybrid algorithm combining path scanning and biased random sampling for the Arc Routing Problem

    Get PDF
    The Arc Routing Problem is a kind of NP-hard routing problems where the demand is located in some of the arcs connecting nodes and should be completely served fulfilling certain constraints. This paper presents a hybrid algorithm which combines a classical heuristic with biased random sampling, to solve the Capacitated Arc Routing Problem (CARP). This new algorithm is compared with the classical Path scanning heuristic, reaching results which outperform it. As discussed in the paper, the methodology presented is flexible, can be easily parallelised and it does not require any complex fine-tuning process. Some preliminary tests show the potential of the proposed approach as well as its limitationsPostprint (published version
    corecore