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Abstract. The Arc Routing Problem is a kind of NP-hard routing prob-
lems where the demand is located in some of the arcs connecting nodes
and should be completely served fulfilling certain constraints. This paper
presents a hybrid algorithm which combines a classical heuristic with bi-
ased random sampling, to solve the Capacitated Arc Routing Problem
(CARP). This new algorithm is compared with the classical Path scan-
ning heuristic, reaching results which outperform it. As discussed in the
paper, the methodology presented is flexible, can be easily parallelised
and it does not require any complex fine-tuning process. Some prelim-
inary tests show the potential of the proposed approach as well as its
limitations.
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1 Introduction

The Arc Routing Problem (ARP) is the counterpart to the Vehicle Routing Prob-
lem (VRP). In the latter, the demand is placed in nodes (i.e. clients) whereas in
the ARP, it is located in arcs. Existing literature on ARP is not so extensive as
for the VRP, although there are approaches to the VRP which can be adapted
to the ARP, obtaining fairly good results. The objective of this research is to
adapt the general idea proposed in [15], which were proposed for the Capaci-
tated Vehicle Problem (CVRP) and apply them to the Capacitated Arc Routing
Problem (CARP).

The structure of this paper is as follows. First, the CARP problem is stated,
establishing some assumptions and the basic notation. Section 3 visits the ex-
isting literature to revise the state of the art. Later, in section 4, the proposed
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algorithm is introduced, presenting the classic Path Scanning algorithm pro-
posed by Golden et al. in [9] first. Section 5 displays and discusses some results,
and finally, section 6 states some conclusions and future work.

2 The Capacitated Arc Routing Problem

The Arc Routing Problem is a set of NP-hard problems where the objective is
to determine a routing plan on a graph to serve a given set of nodes and arcs
(also known as tasks), in contrast with the Vehicle Routing Problem, where the
customer’s demands occur in nodes and the arcs are only used to model paths
interconnecting nodes. The CARP is a particular case of the ARP in which every
vehicle serving a route has a maximum capacity.

The CARP problem is subjected to the following constraints:

(a) All routes begin and end at the depot,

(b) every vehicle has a maximum load capacity, which is considered to be the
same for all vehicles,

(c) every arc with positive demand must be satisfied,

(d) every arc is served by a single vehicle,

(e) every arc can be traversed as many times as required (though it can only be
served by a single vehicle),

(f) and the total routing cost is minimised.

2.1 Basic Notation and Assumptions

The CARP is defined over a non-complete graph G = (V,E), where V =
{0, 1, 2, . . . , n} represents the set of n nodes, and E ⊆ A,A = {(i, j)|i, j ∈
V ; i �= j} represents the set of m arcs connecting pairs of nodes, in which the
demand is located. A fleet of identical vehicles of capacity W , based on depot
node 0 must serve the set of customers denoted by E. Every edge e = (i, j) has
a traversal cost or length cij , a positive or zero demand dij and, as undirected
arc, can be traversed in both directions. Thus, a subset R of required edges E
(or tasks) must be served by the fleet, which are those with positive demands,
dij > 0.

In this scenario, the classical CARP goal is to determine a minimum length
set of vehicle trips covering all the tasks with the following constraints:

(a) Every trip leaves the depot, visits a subset of tasks whose total demand does
not exceed W and returns to the depot,

(b) and every task must be served by one and only one vehicle, though edges
can be traversed multiple times.
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3 Related work on the Capacitated Arc Routing Problem

The ARP has been widely studied, though existing publications on this field
are considerably lower in number than those for the VRP. Some authors have
published reviews of the advances performed on the ARP field. Particularly good
results are [25], [14] and [5].

The study of the ARP was introduced on 1735, when Leonhard Euler pre-
sented his solution for the Königsberg bridge problem [12]. This problem, also
known as the Euler Tour Problem, proposes, given a connected graphG = (V,E),
to find a closed tour visiting every edge in E exactly once, or to determine that
no such tour exists.

The next ARP historically proposed was the Chinese Postman Problem
(CPP), suggested on [21]. This is stated as given a connected graphG = (V,E,C)
where C is a distance matrix. The aim is to find a tour which crosses every edge
at least once and does this in the shortest possible way. When G is completely
directed or completely symmetric, it can be resolved in polynomial time [4].

Following the CPP, in [22], Orloff suggested the Rural Postman Problem
(RPP), which is formally stated as follows. Given an undirected graph G =
(V,E,C) where C is the cost matrix for the edges, find a minimum cost tour
which passes through every edge in a subset R of E at least once. It can be
proved that the RPP is NP-hard [16] and its hardness comes from determining
how the tour should connect the various components of R. After that, the Min-
Max k-Chinese Postman Problem (MM k-CPP) can be found in [7]. In this case,
given a connected undirected graph G = (V,E,C) where C is a cost matrix
with a special depot node, the aim is to find k tours, starting and ending in
the depot node, such that every edge is covered by at least one tour and the
length of the longest tour is minimised. It should be noted that for this problem
the objective is to minimise the makespan, whereas most other problems with
multiple postmen (or vehicles) seek to minimise the total distance travelled.

The CARP was introduced in [8], and was originally stated as follows. Given
a connected undirected graph G = (V,E,C,Q) where C is a cost matrix and Q
is a demand matrix, and given a number of identical vehicles with capacity W ,
find the necessary tours such that:

(a) Every arc with positive demand is served by exactly one vehicle,
(b) the sum of demands on those arcs served by every vehicle does not exceed

W ,
(c) and the total cost of the tours is minimised.

This problem is considered as the classical CARP. It can be proved that
the Capacitated Vehicle Problem (CVRP) can be transformed into a CARP [8],
and the CARP can be transformed in CVRP [1], which make the two classes of
problems equivalent, so algorithms used to solve one class can easily be adapted
to solve the other, as we intend to do with our algorithm. For the transformation
of CARP into CVRP, the resulting CVRP requires either fixing the variables or
using edges with infinite cost. Furthermore, the resulting CVRP is a complete
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graph of larger size than that of the original CARP. There also exists a problem
in half way between CARP and CVRP, which is the Stringed CVRP [20], in
which customers are to be served as in the CVRP but some of these customers
are located along the streets.

During the eighties, problem specific heuristics were the most widely used
methods for solving the CARP. They include the Construct-Strike algorithm,
the Path-Scanning and the Augment-Merge algorithms [9]. The performance
of those classical methods is generally 10% to 40% above the optimal solution.
Pearn [23] proposed modified versions for those heuristics by adding several types
of randomness, outperforming original heuristics. There exist several benchmarks
to test the performance of the algorithms against the classical CARP, which can
be downloaded from [2], and which will be used in this paper to test the proposed
algorithm.

More recently, other problem specific heuristics have been proposed. Some of
them are the Double Outer Scan heuristic [24], which combines the Augment-
Merge and the Path-Scanning methods, and the Node Duplication heuristic [24],
which uses similar ideas to those proposed in the Node Duplication Lower Bound
[11].

Recently, most advances in development of heuristics for the classical CARP
regard metaheuristics. Tabu Search algorithms have been constructed for solving
the CARP. The first, called CARPET, was proposed in [13]. In it, unfeasible
solutions are allowed but are also penalised. This algorithm outperformed the
existing ones and is still one of the best performing algorithms for CARP. Also a
combination of Tabu Search and Scatter Search to construct Tabu Scatter Search
was proposed by Greistorfer [10]. Lacomme presented both a Genetic Algorithm
[17] and a Memetic Algorithm [18]. In both algorithms crossover is performed
on a giant tour, and fitness of a chromosome is based on the partitioning of
the tour into vehicle tours. Currently these algorithms are among the very best
performing solutions for the CARP.

Another even younger generation of metaheuristics is that of the Ant Colony
Systems. Lacomme [18] proposes an algorithm where two types of ants are used,
one that makes the solution converge towards a minimum cost solution and
another which ensures diversification to avoid getting trapped in a local mini-
mum. A Guided Local Search algorithm is proposed in [3], suggesting that the
distance of each edge is penalised according to some function which is adjusted
throughout the algorithm. Computational experiments shows that this approach
is promising.

4 Proposed algorithm

In this section the proposed algorithm is detailed. To do that, first of all the Path
Scanning algorithm is reviewed to present later our approach on the Randomised
Path Scanning.
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4.1 Path Scanning algorithm

The Path Scanning algorithm [9] is a simple and efficient algorithm which aims
to get competitive results for CARP in low computational times. Its main idea is
to construct five complete solutions, every one of them following an optimisation
criterion. The final solution of the algorithm is the best —in terms of cost— of
the five obtained.

The way every route is constructed is not clearly defined in the original
Golden paper, so it allows different interpretations when trying to implement it.
The approach followed in this paper is to extend the current route by selecting
only adjacent arcs with unserved demand, selecting that which best accomplishes
the given criterion. Those five criterion consider that the vehicle is at node i and
the route through the selected arc e to the node j:

(1) Minimise the cost per unit demand (min{cij/dij})
(2) Maximise the cost per unit demand (max{cij/dij})
(3) Minimise the distance from node j back to depot.
(4) Maximise the distance from node j back to depot.
(5) If vehicle is less than half-full, minimise distance from node j back to depot,

otherwise maximise this distance.

In the case of non adjacent arcs with existing unserved demand, the closest
arc —in terms of the shortest path distance— is selected. If there exists more
than one arc at the same minimum distance, then the best arc accomplishing
the current optimisation criterion is selected.

Finally, once the vehicle capacity is exhausted, the current route is closed
by returning the vehicle to the depot through the shortest path. The original
algorithm does not state how the shortest path is computed. In our approach an
implementation of Dijkstra’s algorithm is used.

4.2 Randomised Path Scanning

Recent advances in development of high-quality pseudo-random number gen-
erators have opened perspectives regarding the use of Monte Carlo Simulation
(MCS) in combinatorial problems. As stated previously in this paper, the idea
behind our algorithm is based on that from Juan et al. [15] for the CVRP. In
that paper, a classical heuristic for the CVRP, as the Clarke and Wright Savings
(CWS) heuristic, was chosen and combined with the MCS methodology. Thus,
some random behaviour was introduced to the CWS heuristic in order to start
an efficient search process inside the space of feasible solutions, which allows to
improve original CWS results.

Notice that this general approach has similarities with the Greedy Ran-
domised Adaptive Search Procedure (GRASP) [6]. But our approach does not
contain an expensive local search phase and includes a more detailed randomised
construction step.

In the studied case, the Path Scanning heuristic for CARP has been chosen
and is combined with MCS to add randomness allowing it to reach better results.
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With that, the Randomised Path Scanning (RPS) is obtained. In the proposed
algorithm, two random processes are introduced into the original algorithm:

(1) When constructing every solution, the optimisation criterion to select the
next arc is not known beforehand. A criterion is randomly selected, with
uniform probability distribution ([23] states that it gets better results than
other probability distributions).

(2) When selecting the next arc, the arc which better accomplishes the selected
criterion is not chosen by default. All the candidate arcs are sorted following
the selected criterion and a weight is given to every one of them, following
a geometrical distribution. Thus, the next arc is selected randomly with a
geometric probability distribution.

With this randomisation, many valid solutions can be generated. An efficient
search process inside the feasible solutions is started where each of these feasible
solutions consists on a set of round-trip routes from the depot that, altogether,
satisfy the demand of the arcs.

Pseudo-code The algorithm is implemented as described next. First, the prob-
lem instance is loaded from the data files. Next, the arcs are extracted from the
problem instance and stored in a static structure. After that, all the shortest
paths between all pairs of nodes are computed using a Dijkstra implementation
for the shortest path algorithm. A loop constructing complete solutions is started
and finally the best solution among all the generated solutions, is selected.

procedure RandPS ;
begin

arp = ge t In s tance Input s ( ) ;
a r c s = getArcs ( arp ) ;
paths = const ructShorte s tPathsMatr ix ( a r c s ) ;
while s topping c r i t e r i o n not s a t i s f i e d

s o l = bui ldRandomizedSolut ion ( arcs , paths ) ;
i f s o l . c o s t < be s tSo lu t i on . co s t

b e s tSo lu t i on = s o l ;
end i f

end while
return be s tSo lu t i on ;

end

5 Results

The implementation of the RPS algorithm has been done as a Java applica-
tion, using some state-of-the-art pseudo-random number generator. In particu-
lar, some classes from the SSJ library [19] were implemented, among them the
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LFSR113 with a period of approximately 2113. To test the new algorithm, in-
stances from [2] have been used, which are based on those of [9] and will allow
the result comparison with the original Path Scanning algorithm.

Table 1 shows results obtained with the gdb instances. The Path scanning
solutions were obtained from Golden’s original article [9]. RPS results and times
are obtained from the Java implementation described in previous section, gen-
erating 10000 solutions on the loop which selects the best one.

Problem Nodes Arcs LB BKS PS PS Time RandPS RandPS Time Gap (%)

gdb1 12 22 316 316 316 0,005 316 0,61 0,00
gdb2 12 26 339 339 367 0,006 339 0,71 7,63
gdb3 12 22 275 275 289 0,003 275 0,63 4,84
gdb4 11 19 287 287 320 0,002 287 0,51 10,31
gdb5 13 26 377 377 417 0,002 383 0,76 8,15
gdb6 12 22 298 298 316 0,001 298 0,56 5,70
gdb7 12 22 325 325 357 0,003 325 0,57 8,96
gdb8 27 46 344 348 416 0,015 358 2,45 13,94
gdb9 27 51 303 303 355 0,017 324 2,74 8,73
gdb10 12 25 275 275 302 0,003 275 0,62 8,94
gdb11 22 45 395 395 424 0,003 395 1,90 6,84
gdb12 13 23 458 458 560 0,001 490 0,58 12,50
gdb13 10 28 536 536 592 0,002 536 0,68 9,46
gdb14 7 21 100 100 102 0,001 100 0,46 1,96
gdb15 7 21 58 58 58 0,001 58 0,42 0,00
gdb16 8 28 127 127 131 0,002 127 0,68 3,05
gdb17 8 28 91 91 93 0,002 91 0,66 2,15
gdb18 9 36 164 164 168 0,003 164 0,92 2,38
gdb19 11 11 55 55 57 0,001 55 0,23 3,51
gdb20 11 22 121 121 125 0,002 121 0,53 3,20
gdb21 11 33 156 156 168 0,002 156 0,89 7,14
gdb22 11 44 200 200 207 0,003 200 1,33 3,38
gdb23 11 55 233 233 241 0,005 235 1,80 2,49

Table 1. Results obtained with gdb instances. LB=Lower Bound; BKS=Best Known
Solution obtained from [18]. Times expressed in seconds. Bold indicates that it achieves
the BKS and underline that it outperforms PS solution.

6 Conclusions and future work

From the obtained results it can be seen that the classical Path Scanning is
outperformed by the new RPS. Furthermore, competitive results are obtained
in small-medium sized instances, so the new algorithm accomplishes the main
objective of this research, which is to prove if the ideas from [15] for the CVRP
are valid for the CARP.

7



Future work in this research will be to add splitting and cache techniques
to the algorithm, trying to improve results and optimize the algorithm. Due to
the independence of all the generated solutions, the algorithm could easily be
parallelised in order to improve its performance when attempting to solve larger
instances of CARP problems.

An additional future objective of the research is to apply the algorithm to dif-
ferent variants inside the ARP, specially the Arc Routing Problem with Stochas-
tic Demand (ARPSD) since having the proposed algorithm randomisation, we
think that the RPS algorithm will be well suited for this problem with random
behaviour on the arcs’ demand.
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