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ABSTRACT In this paper, we propose a new model for the multi-objective multiple allocation hub network
design and routing problem which contains determining the location of hubs, the design of hub network, and
the routing of commodities between source-destination pairs in the given network. The selected hubs are not
assumed to be fully connected, and each node and arc in the network has capacity constraints. The multiple
objectives of the problem are the minimization of total fixed and transportation costs and the minimization
of the maximum travel time required for routing. We propose a mathematical formulation for the multi-
objective problem and present a meta-heuristic solution based on a well-known multi-objective evolutionary
algorithm. Using the proposed formulation, we are able to find the optimal solution for small networks of five
nodes and seven nodes. To evaluate the performance of our heuristic approach on real data, the computational
experiments are conducted on Turkish postal system data set. The results demonstrate that our heuristic
approach can find feasible solutions to the problem in reasonable execution time, which is less than 10 min.

INDEX TERMS Capacitated hub location problem, heuristic algorithms, mathematical model, pareto
optimization, routing and network design.

I. INTRODUCTION
There are plenty of applications that need transfer of peo-
ple, commodities and data between source-destination pair
of nodes, such as, air transportation services, public postal
services, cargo delivery systems, and telecommunication sys-
tems. The network for these applications are usually designed
based on hub-and-spoke networks. In these networks, hubs
are established so as to collect and distribute the flow between
source-destination pairs, and spokes are the non-hub nodes
that are allocated to hub nodes in the network. Hub location
problem (HLP), in general, deals with the decision of hub
and spoke nodes in a given network, as well as connections
between hubs and spokes, i.e. the assignment of spokes to
hubs, and the routing of flow between each pair of nodes.

Several variations of HLP have been studied in the lit-
erature. The problem can be modelled as single allocation
HLP [1]–[3] or multiple allocation HLP [4], considering the
assignment of spokes to hubs in the network. Multiple alloca-
tion HLP allows spokes to be assigned to more than one hub,
whereas, in single allocation spokes can be assigned to only
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one of the hubs. If capacities of hubs are considered, the HLP
can be capacitated [5]–[7] or uncapacitated [8], [9]. Also, in a
HLP, the number of hubs to be established can be predeter-
mined as in p-HLP [4] or determining the number of hubs can
be among the decisions that should bemade.Most of the stud-
ies on HLP consider that the hubs are fully connected to each
other. However, in real world applications such as less-than-
truckload networks and telecommunications networks [10],
it is not practical to establish a connection between each
hub pair. The design of connections between hubs is referred
as hub network design [11] and considered within different
applications in the literature.

In this paper, a Multi-Objective CapacitatedMultiple Allo-
cation Hub Location Problem (MOCMAHLP) is addressed.
The number of hubs is not known in advance and the hub net-
work is not assumed to be fully interconnected. To the best of
our knowledge, this is the first attempt that gives a mathemat-
ical model for this variation of HLP. To contribute to fill this
gap, we propose a mathematical model for the MOCMAHLP
with objectives of (1) minimizing transportation cost and
fixed costs and (2) minimizing the maximum travel time
required for routing the commodities between all node pairs.
In most of the HLPs in the literature, the first objective,
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TABLE 1. Comparison of the literature on multi-objective HLP with the model in this paper.

i.e., theminimization of transportation cost, is used. However,
in real world applications, such as systems that transfer per-
ishable goods, rapid transportation and delivery is required.
Thus, the second objective is added to our model. The routes
between each source-destination pair should be determined
in order to calculate the second objective. Therefore, our
proposed mathematical model includes routing of commodi-
ties through network, besides determining the location of
hubs and the hub-to-hub and spoke-to-hub arcs in the whole
network.

The HLP belongs to the class of NP-complete prob-
lems [12]. The computational results show that the
MOCMAHLP can be solved optimally for specifically small
size networks. To solve the problem for a 7-node network
using brute-force method that considers every possible solu-
tion, we need approximately 3 hours, and if we increase the
number of nodes to 8, the required time is more than a day.
Therefore, to solve the MOCMAHLP for real size networks,
a meta-heuristic is needed. Since there are numerous suc-
cessful applications of genetic algorithms to solve different
versions of hub location problems [13]–[18], we propose a
meta-heuristic based on non-dominated sorting genetic algo-
rithm (NSGA-II) [19]. A novel solution representation and
proper genetic operators are designed as part of our solution.
We conducted a set of experiments using the Turkish postal
system data set considering hypervolume as comparison
metric. The results of our experimental study demonstrates
that our algorithm can find feasible solutions for a relatively
large network containing 81 nodes in less than 10 minutes.

The rest of this paper is organized as follows. In the
next section, we give a review of the related literature that
emphasizes similarities, differences and deficiencies of the
models presented. In Section 3, the proposed mathematical
model for MOCMAHLP is given. In Section 4, we present
our NSGA-II approach for the MOCMAHLP. The solution
representation and the genetic operators are explained in
detail. Section 5 and Section 6 include our experimental setup
and a discussion about computational results, respectively.
Finally, the last section highlights the conclusion and future
work.

II. RELATED WORK
O’Kelly presented the first mathematical formulation on
HLP [3]. Since then, the problem has received much

attention considering different variations and different solu-
tion approaches. The interested reader can refer to different
surveys on HLP [26]–[28].

In this paper, we concentrate on multi-objective, capaci-
tated, multiple allocation HLP; and in our mathematical for-
mulation of the given problem, we consider determining the
location of hubs, spoke-to-hub and hub-to-hub allocations,
and routing of commodities between each pair of nodes.
Although most of the models for HLP include only one
objective, real-world applications of HLP require more than
one objective. In Table 1, a complete comparison of models
presented in literature for multi-objective HLP and the model
presented in this paper is given. To the best of our knowledge,
there is no study that models this variation of HLP.

In a recent study [20], Mirzaei and Bashiri present a model
for multi-objective multiple allocation hub location problem.
However, in their model, the hub network is assumed to be
fully interconnected and no experimental result is given in
the corresponding paper. The multi-objective multiple allo-
cation hub location problem without hub network design
is solved also in [13] considering sustainable development
paradigm and using multi-objective differential algorithm.
Köksalan and Soylu [21], present two models for multiple
allocation HLP. Both models assume the fixed number of
hubs and fully-interconnected hub networks. In [22]–[24],
single allocation HLP is considered. Karimi and Setak [25]
consider the problem similar to our assumptions except the
capacities of hubs and arcs in the network.

The common objective used in most of the studies given
in Table 1 is total cost minimization. Besides this, other
objectives can be listed as the following:
• Minimization of maximum travel time [20]
• Minimization of environmental impacts like energy
cost, noise, congestion, pollution, greenhouse gas emis-
sion [13]

• Minimization of total transportation costs [21],
[22], [29]

• Minimization of the maximum delay at each hub [21]
• Minimization of total time for processing the flow col-
lected by the hubs [22]

• Minimization of the sum of waiting times [29]
• Minimization of total gas emissions [22], [29]
• Maximization of benefits of transportation and estab-
lishment of the hub facilities [24]
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• Minimization of the total transportation time [24]
• Maximization of the total amount of flow delivered in a
predefined time [25]

Costa et al. [22] present two different mathematical models
for a bi-objective capacitated single allocation HLP. In the
first model, it is aimed to minimize the total costs and to min-
imize the total time for processing the flow collected by the
hubs. In the second model, the objectives are to minimize the
total costs and to minimize the maximum service time on
the hubs. Two bi-criteria uncapacitated, multiple allocation
p-HLPs are studied in [21]. The objectives in one of their
problems are minimizing the total transportation costs and
total traveling costs between hubs and source-destination
points. In the other problem, the objectives are minimiz-
ing the total transportation costs and minimizing the maxi-
mum delay at each hub. Mirzaei and Bashiri [20] consider
a multi-objective approach for HLP to minimize the total
cost and to minimize the maximum traveling time between
nodes in the network. Ghodratnama et al. [23] formulate
a capacitated single allocation HLP with three objectives
which are minimization of total costs including the trans-
portation and installation, minimizing the sum of service time
in the hubs, and minimization of total greenhouse emission.
Karimi and Setak [25] develop a flow shipment scheduling
and incomplete hub location-routing problem using two con-
flicting objectives which are to maximize the total amount
of flow delivered in a predefined time and to minimize the
total costs. A hub location-allocation model considering con-
gestion is presented in [29], with the aim of minimizing
the total costs and minimizing the sum of waiting times.
Tavakoli et al. [13] introduce a multi-objective mathematical
model for multiple allocation HLP with multiple capacity
levels. The problem minimizes both costs and environmental
impacts.

Since HLP is NP-complete [12], optimum solutions for
small-scale problems can be found by linear programming.
Therefore, heuristics are used to find optimal or near opti-
mal solutions for large-scale problems in the domain of
HLP [26], [30]. In addition, meta-heuristics such as genetic
algorithm [9], multi-objective differential evolution [13] and
multi-objective evolutionary algorithm [15], [16], [21], [31]
are successfully applied to HLPs. In addition, the non-
dominated sorting genetic algorithm (NSGA-II) has been
successfully applied to different multi-objective facility loca-
tion problems [15], [32], [33] as well as HLPs [16], [31].
Therefore, in this paper, we propose a heuristic based on
NSGA-II for the MOCMAHLP.

III. MATHEMATICAL MODEL
In this section, we present a new model for the Multi-
objective Capacitated Multiple Allocation Hub Location
Problem (MOCMAHLP). The basic assumptions of the prob-
lem are as follows:
• The solution space is discrete and finite
• The set of nodes is known
• The number of hubs is not fixed

• Each node has a fixed cost to be established as a hub
• Each arc in the established network has a fixed cost
• Each node can be assigned to more than one hub
• There is no direct link between spokes, i.e. two spokes
can only communicate via at least one hub

• Hub network is not necessarily fully interconnected
• Each arc in the network has a flow capacity
• Each hub has a limited capacity
In the MOCMAHLP, there are three decisions to be made:

(1) hub location, (2) the hub network design and (3) the
routing of the flow. The first decision is to determine the
number and location of hubs. The second involves decision
on the allocation of spokes to hubs and then the determination
of hubs that are interconnected. We consider the multiple
allocation pattern, i.e. a spoke can be assigned to more than
one hub. The last one is the decision on how to route the
flow. Since the problem has both hub and arc capacities,
the demand may be routed through separate paths going
from its source and destination nodes. Therefore, the demand
is divided into separate packages with different amount
of flow.

Under these assumptions, we develop a mathematical
model to the MOCMAHLP based on the formulation
of Capacitated Multiple Allocation Hub Location Prob-
lem (CMAHLP) proposed by Rodríguez-Martín and Juan
José Salazar-González [6]. To the best of our knowledge, this
is the first attempt to model this variation of HLP with the
specified assumptions.

First, we introduce the notation used in the model. Given a
directed graphG = (V ,E), where V is a set of nodes and E is
a set of directed edges (or arcs), each arc (a ∈ E) is associated
with an ordered pair of nodes (a = (u, v), u, v ∈ V ). The
demand from node i to node j (dij) is called commodity and
will be denoted by a single index k where k = (i, j). The
amount of package p of commodity k is denoted as kp. All
edges incoming to vertex v is denoted by V−(v) = {(u, v) ∈
E|u ∈ V \ {v}}. Besides, all edges outgoing from vertex v is
denoted by V+(v) = {(v, u) ∈ E|u ∈ V \ {v}}.
We additionally use the following notation:
N Number of nodes (N = |V |)
H Set of possible hub locations
au The initial node of arc a ∈ E
av The terminal node of arc a ∈ E
Ta Time required to transfer over arc a ∈ E
Fa Total amount of flow traversing arc a ∈ E
Ca Unit cost of delivery on arc a ∈ E
λa Fixed cost of arc a ∈ E
Qa Capacity of arc a ∈ E
ik The source node for commodity k
jk The destination node for commodity k
Dk Total demand of flow for commodity k
Dkp Demand of flow for package p of commodity k
f ka The flow of commodity k on arc a ∈ E
κh Fixed cost of hub h ∈ H
Qh Capacity of hub h ∈ H
χ Collection discount factor
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α Discount factor of hub to hub transportation
δ Distribution discount factor
The decision variables for the MOCMAHLP are given as

follows:

Za =

{
1, if arc a is used between nodes ai and aj
0, otherwise

xi =

{
1, if node i is hub
0, otherwise

x ′i =

{
1, if node i is spoke
0, otherwise

Aakp =

1, if the flow at package p of commodity k is
routed via arc a with Za = 1

0, otherwise
Dkp = n, such that 0 ≤ n ≤ Dk

Fa =
∑
kp

DkpA
a
kp

f ka =
∑
p

DkpA
a
kp for each commodity k

Here, Za is the decision variable used for hub network design
and denotes the hub-to-hub and hub-to-spoke connections.
xi and x ′i are the decision variables used for the hub location.
The remaining decision variables (Aakp ,Dkp , Fa, and f

k
a ) are

used for the routing.
The MOCMAHLP can be formulated as follows:

minimize
∑
a

FaCa(χx ′auxav + αxauxav + δxaux
′
av )

+

∑
a

λaZa +
N∑
i=1

κixi

minimize max
kp

∑
a

TaAakp

subject to 1 ≤
∑
i

xi ≤ N (1)

Fa ≤ Qa ∀a ∈ E (2)∑
a∈V+(h)

Fa ≤ Qh ∀h ∈ H (3)

∑
p

Dkp = Dk ∀k (4)

Aakp ≤ xavQh, av 6= jk , ∀k (5)

0 ≤ f ka ≤ Fa ∀a ∈ E (6)

for each commodity k

∑
a∈V+(v)

f ka −
∑

a∈V−(v)

f ka =


Dk , if v = ik
−Dk , if v = jk
0, otherwise

(7)

The first objective is to minimize the total cost including
the cost of collection, transfer and distribution (the first part
of the objective function), the fixed arc cost (the second part)
and the fixed hub cost (the last part). The second objective

is to minimize the maximum travel time required for routing
between all node pairs. Constraint (1) ensures that there is
at least one hub. Constraint (2) and Constraint (3) are arc
and hub capacities, respectively. Constraint (4) states that
the sum of flow demand for all packages of a commodity is
equal to the total flow demand for the commodity. Constraint
(5) ensures that only hub is used for routing the demand
(xav become 1 if the terminal node of arc a (av) is selected
as a hub; 0, otherwise). Constraint (6) shows that the flow
of commodity k on arc a is less than total amount of flow
traversing arc a. Constraint (7) states the flow balancing
constraints.

IV. A HEURISTIC APPROACH FOR THE PROBLEM
The multi-objective optimization problems are problems that
consist of more than one objective function that must be
simultaneously optimized. A key goal in multi-objective opti-
mization research is to find a set of optimal solutions known
as Pareto optimal set instead of a single optimal solution.
A set of points mapped from the Pareto optimal set is referred
to as the Pareto-front.

Evolutionary algorithms have been successfully applied
to the multi-objective optimization problems. The non-
dominated sorting genetic algorithm (NSGA-II) [19] is one
of the most well-known multi-objective evolutionary algo-
rithms. NSGA-II uses genetic operators including binary
tournament selection, crossover and mutation to generate
offspring population. The individuals for the next generation
is selected according to non-dominated and crowding dis-
tance sorting procedures.

Algorithm 1 The Pseudo-Code of the Proposed Approach
1: Create an initial population (P0) and evaluate P0
2: Sort the population based on the non-domination
3: while (termination criteria not satisfied) do
4: Generate child population (Qt )
5: Apply A* algorithm for routing
6: Evaluate the child population Qt
7: Merge child and parent populations (Rt = Pt ∪ Qt )
8: Select the individuals for the next generation
9: end while

In this study, since the problem is NP-complete, we pro-
pose a heuristic approach based on NSGA-II. In this section,
the details of our algorithm are presented. The pseudo-code
of the algorithm is given in Algorithm 1. We propose a new
representation for the candidate solution and crossover and
mutation operators are adapted to the solution representa-
tion. Besides, a repair function for the infeasible solutions is
introduced.

A. SOLUTION REPRESENTATION
Each candidate solution is represented using two same length
arrays. The length of both arrays is the same and equal to the
number of nodes in the network.

VOLUME 7, 2019 90681



İ. Demir et al.: New Model for the Multi-Objective Multiple Allocation Hub Network Design and Routing Problem

FIGURE 1. An example of hub decision array for a 9-node network.

FIGURE 2. An example of link decision array for a 9-node network, with
nodes 3,4,5,6, and 7 being hubs.

FIGURE 3. The illustration of resulting network for the hub decision and
link decision arrays in Figures 1 and 2.

One of the arrays is a binary array, which is used for the hub
decision, i.e. value 1 states that the corresponding node is a
hub and value 0 states that it is a spoke. An example of hub
decision array is illustrated in Figure 1. This solution includes
five hubs out of nine nodes.

The second array, named link decision array, is just an
adjacency list representation of the network design. Each
element in the array contains the nodes that are connected
to the corresponding node. An example of link decision array
that can be generated for hub decision array in Figure 1 is
illustrated in Figure 2. In this example, node 3, which is a
hub, is connected to nodes 1, 4 and 6. Also, node 9, which is
a spoke, is connected to nodes 5 and 7.

According to the solution representation given in Figures 1
and 2, the resulting network design can be seen in Figure 3.

B. GENETIC OPERATORS AND REPAIR FUNCTION
In our approach, binary tournament selection, one-point
crossover, two different mutation operators and repair func-
tion for all infeasible solutions are applied to generate a child
population (line 4 of Algorithm 1).

One-point crossover operator is applied to both hub and
link decision arrays with a predefined probability. The same
crossover point which is randomly selected is considered for
both arrays.

After crossover, two different mutation operators are con-
sidered for the arrays used in the solution representation:
(1) bit-flip mutation is used for hub decision array, (2) swap
mutation is used for link decision array. A repair function is
applied to all the infeasible solutions generated as a result
of genetic operators. Since the operators are applied to both
arrays, a repair phase is also needed for both. In the repair
phase for the hub decision array, only the number of hubs
in the offspring is taken into account. If the offspring does
not include a hub, this offspring is discarded and a random
offspring is generated instead. The repair function used for
the link decision array considers the five cases listed:

1) A link between two nodes may not be mutually
included in the link decision array. In this case, the link
is mutually established.

2) A hub has no hub connection. In this case, the hub
becomes connected to the closest hub.

3) There is a connection between two spoke nodes. In this
case, the connection is removed.

4) A spoke node is not assigned to a hub. In this case, it is
assigned to the closest hub.

5) The resulting network may be disconnected. In this
case, an arc is added between the closest hubs of each
sub-network to make them connected.

C. ROUTING
To obtain the total amount of flow traversing each arc,
the routing of demands for all the commodities must be
determined (line 5 of Algorithm 1). Due to the hub and link
capacities, the demand of each commodity may be divided
into separate packages. Additionally, the packages may be
routed through several paths since the multiple allocation
pattern and the interconnected hub network are considered.

FIGURE 4. Routing example of three source-destination pairs for the
given 9-node network in Figure 3.

A simple scenario for routing is given in Figure 4. As seen
in the figure, the commodities from node 1 to node 2 and from
node 2 to node 8 are not divided into packages and routed

90682 VOLUME 7, 2019



İ. Demir et al.: New Model for the Multi-Objective Multiple Allocation Hub Network Design and Routing Problem

through the paths 1 → 4 → 2 and 2 → 4 → 6 → 8,
respectively. On the other hand, the commodity from node 1
to node 9 is split into two packages. The first package, which
contains three-eighth of the demand, follows the path going
through two hubs (node 4 and 5). The remaining part is sent
along the path: 1→ 3→ 6→ 7→ 9.
A* algorithm which aims to find the shortest paths in a

graph is employed for the routing of all the commodities.
In our approach, path length is identified as the travel cost
considering the discount factor of the corresponding links in
the path. First, A* algorithm searches for an augmenting path
in the residual network to route the demand of a commodity.
If there is such a path, a portion of the flow demand with the
residual capacity on this path is routed through the selected
path. The residual capacity of a path is equal to the minimum
available capacity considering the hub and link capacities
along the path. After routing, the residual network is updated
with the remaining capacities for each link and hub. If all the
demand for the current commodity is not routed, a new path is
examined for the remaining demand. This process is repeated
for each commodity. The commodity to route next is selected
randomly.

At the end of the process of routing, there may be solutions
that do not route all the commodities. The total number of
unrouted commodities is taken into account to select the
individuals for the next generation (line 8 in Algorihm 1).

V. EXPERIMENTAL SETUP
For the experimental study, we conducted two sets of exper-
iments. In the first set of experiments, we found the opti-
mal solutions for the MOCMAHLP for two different small
data sets with a brute-force method that searches the whole
solution space. We also used the same data sets to solve the
problem using our NSGA-II approach. Since our heuristic
approach was able to find optimal solutions for the problem
with these data sets, as a second set of experiments, we con-
ducted parameter tuning tests to explore the influence of
parameter setting on the performance of our approach. In the
parameter tuning tests, we used Turkish postal system data
set (will be referred as Turkish data set in the rest of this
paper) introduced in [34]–[36].

To implement the proposed approach, an open source
framework written in Java, MOEA,1 is used. Tests are con-
ducted within a computer having these hardware configura-
tions: Intel i-7 2600K processor and 8GB ram.

A. DATA SET
Turkish data set introduced in [34]–[36] is used in the tests.
It is available from OR-Library.2 The data set contains
81 nodes which correspond to the 81 cities in Turkey. In the
Turkish data set, travel distances, travel times, flow, and fixed
link costs between these 81 cities and fixed hub costs for
these cities are given. The discount factor for the hub to hub

1http://moeaframework.org/
2http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/phubinfo.html

transportation (α) is set to 0.9 as recommended in [36]. The
discount factors for collection (χ ) and distribution (δ) are
set to 1.

Two different subsets of this large data set are generated to
get optimal solutions for the problem. These subsets include
5 and 7 nodes, respectively. In the 5-node subset, we included
5 cities (Afyon, Aydın, Denizli, İzmir, Manisa) in the Aegean
region of Turkey that have the largest amount of total flow
demand within the region. In the 7-node subset, on the other
hand, we selected the most populated cities (Ankara, Antalya,
İstanbul, İzmir, Samsun, Şanlıurfa, Van) in each geographical
region.

We propose a solution approach that routes each commod-
ity considering capacity constraint on hubs and links besides
location and allocation of hubs and spokes. However, there
is no capacity information for hubs and links in the data set.
Therefore, we generated hub and link capacities for the data
set using a method explained in the next two paragraphs.

We calculated hub capacities for each city in the data set
using the population size of the corresponding city declared
by the Turkish Statistical Institute in 2018. To calculate the
hub capacities, we propose the following formulation given in
Eq. 8. In the equation, ψ denotes hub capacity multiplier and
is used for scaling. To get realistic hub capacities, the ratio
of city population (Pc) to total population of the country,
is multiplied with total incoming and outgoing flow demand
of the city (Fc) as in Eq. 8.

Qc = ψ(
Pc∑N
i=1 Pi

)Fc (8)

Fc =
∑
a

{
Fa, if au = c or av = c
0, otherwise

To calculate link (arc) capacities (Qa), distance and travel
time for the corresponding link are used. We formulated link
capacity calculation as in Eq. 9. In the equation, ω used for
scaling denotes link capacity multiplier. To get realistic link
capacities, distance required to travel through the arc (da) is
divided by time required to travel through the arc (Ta) and is
multiplied with flow demand (Fa) between the start and end
nodes of arc a.

Qa = ω(
da
Ta

)Fa (9)

The first objective ofMOCMAHLP includes summation of
three different costs, namely total transportation cost, fixed
arc cost, and fixed hub cost, each have different orders of
magnitude. In order to bring these values to the same order of
magnitude, we defined and tuned some multipliers for these
cost values as total transportation cost multiplier, fixed hub
cost multiplier and fixed link cost multiplier. In the experi-
ments, we tested the total cost multiplier with several values
between 10−8 and 10−5 and the fixed hub cost multiplier with
several values between 10−2 and 101. The fixed link cost
multiplier is set to 1 in order to use the magnitude of link
costs in the summation. As a result of tuning the values for
these multipliers, it is experienced that;
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• If total transportation cost multiplier (ξ ) is increased,
more hubs and links appeared in the solutions.

• If fixed hub cost multiplier is increased, fewer hubs
appeared in the solutions. Besides, at some point in the
execution, the number of hubs decreases to 1 hub.

• If both total transportation cost multiplier (ξ ) and fixed
hub cost multiplier are decreased, fewer links appeared
in the solutions. At some point in the execution, each
spoke is assigned to only one hub.

Similar to the costs, the capacity values in the data set
have different orders of magnitude. Therefore, another set of
multipliers are defined for capacities (ψ for hubs, ω for links)
as given in Eq. 8 and Eq. 9. ψ was tested with several values
between 100 and 104 and ω was tested with several values
between 100 and 103. As a result of tuning the values of these
multipliers, we conclude that:
• Asψ is decreased, hubs are mostly selected amongmore
populated cities.Whenψ is decreased further, then cities
which are close to each other are selected as hubs to
convey the demand through these cities.

• As ω is decreased, the number of hubs that the spokes
are allocated is increasing, thereby total capacity of
transportation on links is increasing.

For the first objective, i.e. minimizing the total cost,
we need to calculate travel cost of each arc. The unit cost
of traveling through arc a (Ca) is calculated as Ca = ξda,
where ξ denotes cost per flow per unit distance, so that by
multiplying with the distance of arc gives us cost to move
one unit flow through arc. Therefore, as in the first objective,
multiplying Ca with total flow on arc gives the true cost of
transfer through the arc.

As a result of experiments, the multipliers are set to the
following values:
• total transportation cost multiplier (ξ ) = 10−7,
• fixed hub cost multiplier = 0.2,
• fixed link cost multiplier = 1.0,
• ψ = 50,
• ω = 400.

These settings are determined empirically as a result of a set
of preliminary experiments.

B. PERFORMANCE METRIC
Since the problem we study is a multi-objective problem,
hypervolume indicator [37] which is the most used metric,
is selected to evaluate the performance of our algorithm and
to compare different test suits. Hypervolume indicates the
volume between reference point in the solution space and the
Pareto front found by the solution approach. The hypervol-
ume is calculated based on the normalized objective func-
tion values. We use the hypervolume calculation provided in
MOEA framework for the hypervolume of the Pareto front.
Figure 5 illustrates the hypervolume indicator.

Thus, to obtain a properly chosen reference point, we exe-
cuted our algorithm 5 times with the selected data set using
200000 evaluations, which is rather a long execution for the
problem. At this stage, the algorithm has been converged

FIGURE 5. Hypervolume indicator.

(see Figure 8). The worst and the best objectives of the prob-
lem are obtained for these 5 runs to determine the reference
point.

C. PARAMETER SETTING FOR OUR HEURISTIC
In the first set of tests, to evaluate the effectiveness of our
heuristic approach we used the small data sets for which
we obtained the optimum values. Unless stated otherwise,
we consider the following parameter setting for our heuristic
approach in these tests:
• Population size (popsize) is set to 200.
• Crossover probability (pc) is set to 0.8.
• Bit-flip mutation probability (pbfm) is set to 1/n where n
is the number of hubs in the network.

• Swap mutation probability (psm) is set to 0.2.
• The maximum number of fitness evaluation count is set
to 20000.

VI. EXPERIMENTAL EVALUATIONS
In this section, the results on two different small data sets and
Turkish data set are presented.

A. RESULTS ON SMALL DATA SETS
In order to examine the correctness of our mathematical
model and to observe the performance of our algorithm, first
we conducted tests with the small data sets mentioned above.
Optimal solutions are found with a brute-force method that
evaluates every possible solution and then inserts into global
non-dominated Pareto set by comparing with all solutions in
the Pareto set.

The maximum number of feasible networks that can be
generated for N number of nodes is given in Eq. 10. There
are 3 parts in the equation; the first part calculates the permu-
tation of i-hubs within division, the second part determines
the number of spoke-to-hub connections and the last part
determines the number of hub-to-hub connections.

N∑
i=1

(
N
i

)
(2i − 1)

(N−i)
(2i−1 − 1)

i
(10)
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FIGURE 6. Pareto-optimal solutions obtained by brute-force method for
5-node network (Upper solutions have 1, lower solutions have 2 hubs).

Experimental results show that, the brute-force method
finds 4 solutions in non-dominated Pareto set for the 5-node
network, with the hubs being Denizli, İzmir, İzmir-Afyon,
and İzmir-Denizli. Figure 6 shows an example optimum solu-
tion obtained for 5-node network. Also, a sample optimum
solution for 7-node network is given in Figure 7. In the non-
dominated Pareto set for this network, there are 6 solutions,

for which the hubs are selected as, Ankara, İstanbul,
İstanbul-Samsun, İstanbul-Şanlıurfa, İstanbul-Şanlıurfa, and
İstanbul-Van-İzmir.

Our NSGA-II based algorithm is also applied to these
small data sets to explore its effectiveness on the problem.
Our approach finds exactly the same Pareto set with linear
solution for 5-node network on each run (see Figure 6). For
7-node network (see Figure 7), our approach obtains exactly
the same Pareto set with linear solution in %20 of runs
(i.e., in 2 out of 10 runs). For tests with 7-node network,
average hypervolume ratio found with our heuristic to linear
hypervolume ratio is %99, 98 and the ratio of worst hyper-
volume value of our heuristic to linear hypervolume value
is %99, 91.

If we consider the execution times, our heuristic approach
obtains the results in less than 5 seconds for 7-node net-
work and it takes even less computation time for 5-node
network. The brute-force method on the other hand, finds
optimum values for 5-node network in a few seconds and for
7-node network the execution time increases to 3 hours. If we
increase the network size to 81-nodes using the complete
Turkish data set, it gets impossible to find a solution using
brute-force method, but our heuristic finds feasible solutions
in less than 10 minutes. Table 2 summarizes the approxi-
mate execution times of brute-force method and our heuris-
tic approach for different sizes of networks. These results

FIGURE 7. Pareto-optimal solutions obtained by brute-force method for 7-node network (From up-left corner to down-right corner the
number of hubs at each case is equal to 1, 1, 2, 2, 2, and 3 hubs).
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TABLE 2. Execution times of brute-force method and our heuristic for
different network sizes.

FIGURE 8. Convergence plot generated by the hypervolume values versus
generation counts.

show that our heuristic approach is very effective to solve
MOCMAHLP.

B. RESULTS ON TURKISH DATA SET
In order to explore the influence of the parameter set-
tings on the performance of our approach, a set of exper-
iments are conducted by varying values of population
size (popsize), crossover probability (pc), bit-flip mutation
probability (pbfm), and swapmutation probability (psm). In the
experiments, each run is repeated 10 times for the given
setting. The termination condition for our heuristic is selected
as number of fitness evaluations. To determine this value
for the main experiments, we ran tests for our heuristic on
Turkish data set for a long number of fitness evaluations. The
change of fitness values is plotted in Figure 8. As it can be
seen from the graph, the fitness values converge to aminimum
in approximately 20000 number of evaluations which cor-
respond to 100 generation counts. Therefore, the maximum
fitness evaluation count is set to 20000 for each run in the
experimental study.

In the result tables, the value of tested parameter(s) are
given in the first one or two columns and the corresponding
average and standard deviation of hypervolume values are
given in the last two columns. In the rows of the tables, you
can see the performance of each parameter setting. In all
tables, the row with the best setting is marked in bold.

In the parameter tuning tests, we experimented with each
combination of the following set of values for the parameters:
• Population size: popsize ∈ {50, 100, 200}
• Crossover probability: pc ∈ {0.5, 0.8, 0.9, 1.0}
• Bit-flip mutation probability: pbfm ∈ {1/n, 0.5/n}
• Swap mutation probability:

psm ∈ {0.005, 0.01, 0.02, 0.05}

TABLE 3. Hypervolume results and standard deviation for our approach
with various population sizes popsize and fixed parameter
settings (pc = 0.9, pbfm = 1/n, psm = 0.01).

TABLE 4. Hypervolume results and standard deviation for our approach
with various crossover probabilities pc and fixed parameter
settings (popsize = 200, pbfm = 1/n, psm = 0.01).

FIGURE 9. Box-plot of hypervolume values for a statistical comparison of
different parameter settings for pc .

TABLE 5. Hypervolume results and standard deviation for our approach
with various pbfm and psm and fixed values of popsize = 200 and
pc = 0.8.

In the remaining part, we give results of parameter tuning
tests. The results are given in different tables for a better
illustration of the effect of parameters. In Table 3, experimen-
tal results for various population sizes are given. We fixed
the crossover probability value to pc = 0.9, bit-flip muta-
tion probability value to pbfm = 1/n (n is the number of
nodes in the network) and swap mutation probability value to
psm = 0.01. Based on the results provided in Table 3, it can
be seen that, our approach delivers a good performance with
popsize = 200.
In Table 4, the performance of our approach is given for

different crossover probabilities, while keeping pbfm = 1/n,
psm = 0.01, and popsize = 200.
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FIGURE 10. The first Pareto optimal solution that represents a hub network with all hub-to-hub and hub-to-spoke links obtained by our
approach.

FIGURE 11. The second Pareto optimal solution that represents a hub network with all hub-to-hub and hub-to-spoke links obtained by our
approach.

Figure 9 shows the box-plot for the hypervolume values of
our approach with different pc. From Table 4 and Figure 9,
it can be observed that our algorithm performs well when
pc = 0.8.
The effect of the probability for the bit flip pbfm and swap

mutations psm is given in Table 5. From the table, we can
conclude that, the best setting for pbfm is 1/n and for psm,
it is 0.01.

After the parameter tuning tests, we conducted main
tests on Turkish data set to find solutions for the problem.
Figure 10 illustrates a Pareto optimal solution that repre-
sents a hub network including all hub-to-hub and hub-
to-spoke links obtained by our approach with the best

parameter settings. This network is chosen from the best
hypervolume valued run and according to having the lowest
crowding distance in the Pareto set. As seen in the figure,
İstanbul, Ankara and Gaziantep which are among the most
populated cities in Turkey are selected as hubs. Based on the
results, the number of assignment of a spoke to a hub is 2.8
on average. Besides, the average number of hub to spoke
connection is 73. On the other hand, Figure 11 illustrates a
Pareto optimal solution from the same Pareto optimal set.
In this solution, İstanbul, which is the most populated city and
Ankara which is the capital of Turkey are selected as hubs.
Selecting a hub at east part of Turkey, namely Gaziantep,
increases the total costs while decreasing the total traveling
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TABLE 6. Routing scenarios for some source-destination pairs in the given Pareto optimal solutions.

time according to these solutions. In addition, most cities in
the Southeastern Anatolia Region, such as Osmaniye, Kilis,
Mardin, etc., are only assigned to Ankara.

In Table 6, we list some routing scenarios for some source-
destination pairs with respect to the first Pareto solution
given in Figure 10 and the second Pareto solution given in
Figure 11. The routes for each pair may be different. For
instance, the commodity from Ordu to Antakya is routed
through Gaziantep for the first solution and Ankara for
the second solution. While the travel time for the first path
(Ordu→ Gaziantep→ Antakya) is 15 hours, it is 21 hours
for the second path. On the other hand, the commodity from
Hakkari to Edirne is routed through the same path and the
traveling time between these cities is approximately 34 hours.
Considering the solutions, we can conclude that routing of
commodities in distant cities such as Hakkari to Edirne and
Ordu to Antakya has very high impact on second objective.

VII. CONCLUSION AND FUTURE WORK
This study presents a mathematical model for a multi-
objective, capacitated, multiple allocation, and incomplete
HLP (MOCMAHLP). In the problem, the aim is to minimize
the total cost including total transportation costs and fixed
costs and to minimize the maximum travel time required
for routing the demands of all commodities. We develop a
multi-objective approach based on NSGA-II for decisions on
the number of hubs, the location of hubs, the allocations of
spokes to hubs, the hub network design, and the routing of
all demands. A new solution representation and the appro-
priate crossover and mutation operator are proposed. The
performance of our approach is tested on Turkish data set.
We explore the influence of the parameters, namely popu-
lation size, and crossover and mutation probabilities, on the
performance of the proposed approach. The results reveal that
our approach is not very sensitive to these parameters.

There are two main contributions of this study:
• To our knowledge, this is the first study that
proposes a mathematical model for MOCMAHLP.
In MOCMAHLP, the hub network is not fully intercon-
nected and hubs and arcs in the network have limited
capacity.

– The model includes location-allocation of hubs and
spokes and routing of commodities between each
pair of nodes in the network.

– Two objectives, i.e., the minimization of transporta-
tion cost and the minimization of maximum travel
time of routing the commodities, are considered.

• We develop a multi-objective approach for the problem.
Our approach is capable of finding good solutions on
large instances of the problem.

As future work, we will experiment with other meta-
heuristic algorithms, such as simulated annealing for the
proposed model in order to compare the performance of
our method. Besides, we will build a new model for the
multi-period MOCMAHLP and design new techniques as
an extension of our approach to handle the change in the
environments.
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