1,193 research outputs found

    A biophysically accurate floating point somatic neuroprocessor

    Get PDF

    SYSTEM-ON-A-CHIP (SOC)-BASED HARDWARE ACCELERATION FOR HUMAN ACTION RECOGNITION WITH CORE COMPONENTS

    Get PDF
    Today, the implementation of machine vision algorithms on embedded platforms or in portable systems is growing rapidly due to the demand for machine vision in daily human life. Among the applications of machine vision, human action and activity recognition has become an active research area, and market demand for providing integrated smart security systems is growing rapidly. Among the available approaches, embedded vision is in the top tier; however, current embedded platforms may not be able to fully exploit the potential performance of machine vision algorithms, especially in terms of low power consumption. Complex algorithms can impose immense computation and communication demands, especially action recognition algorithms, which require various stages of preprocessing, processing and machine learning blocks that need to operate concurrently. The market demands embedded platforms that operate with a power consumption of only a few watts. Attempts have been mad to improve the performance of traditional embedded approaches by adding more powerful processors; this solution may solve the computation problem but increases the power consumption. System-on-a-chip eld-programmable gate arrays (SoC-FPGAs) have emerged as a major architecture approach for improving power eciency while increasing computational performance. In a SoC-FPGA, an embedded processor and an FPGA serving as an accelerator are fabricated in the same die to simultaneously improve power consumption and performance. Still, current SoC-FPGA-based vision implementations either shy away from supporting complex and adaptive vision algorithms or operate at very limited resolutions due to the immense communication and computation demands. The aim of this research is to develop a SoC-based hardware acceleration workflow for the realization of advanced vision algorithms. Hardware acceleration can improve performance for highly complex mathematical calculations or repeated functions. The performance of a SoC system can thus be improved by using hardware acceleration method to accelerate the element that incurs the highest performance overhead. The outcome of this research could be used for the implementation of various vision algorithms, such as face recognition, object detection or object tracking, on embedded platforms. The contributions of SoC-based hardware acceleration for hardware-software codesign platforms include the following: (1) development of frameworks for complex human action recognition in both 2D and 3D; (2) realization of a framework with four main implemented IPs, namely, foreground and background subtraction (foreground probability), human detection, 2D/3D point-of-interest detection and feature extraction, and OS-ELM as a machine learning algorithm for action identication; (3) use of an FPGA-based hardware acceleration method to resolve system bottlenecks and improve system performance; and (4) measurement and analysis of system specications, such as the acceleration factor, power consumption, and resource utilization. Experimental results show that the proposed SoC-based hardware acceleration approach provides better performance in terms of the acceleration factor, resource utilization and power consumption among all recent works. In addition, a comparison of the accuracy of the framework that runs on the proposed embedded platform (SoCFPGA) with the accuracy of other PC-based frameworks shows that the proposed approach outperforms most other approaches

    Neuromorphic audio processing through real-time embedded spiking neural networks.

    Get PDF
    In this work novel speech recognition and audio processing systems based on a spiking artificial cochlea and neural networks are proposed and implemented. First, the biological behavior of the animal’s auditory system is analyzed and studied, along with the classical mechanisms of audio signal processing for sound classification, including Deep Learning techniques. Based on these studies, novel audio processing and automatic audio signal recognition systems are proposed, using a bio-inspired auditory sensor as input. A desktop software tool called NAVIS (Neuromorphic Auditory VIsualizer) for post-processing the information obtained from spiking cochleae was implemented, allowing to analyze these data for further research. Next, using a 4-chip SpiNNaker hardware platform and Spiking Neural Networks, a system is proposed for classifying different time-independent audio signals, making use of a Neuromorphic Auditory Sensor and frequency studies obtained with NAVIS. To prove the robustness and analyze the limitations of the system, the input audios were disturbed, simulating extreme noisy environments. Deep Learning mechanisms, particularly Convolutional Neural Networks, are trained and used to differentiate between healthy persons and pathological patients by detecting murmurs from heart recordings after integrating the spike information from the signals using a neuromorphic auditory sensor. Finally, a similar approach is used to train Spiking Convolutional Neural Networks for speech recognition tasks. A novel SCNN architecture for timedependent signals classification is proposed, using a buffered layer that adapts the information from a real-time input domain to a static domain. The system was deployed on a 48-chip SpiNNaker platform. Finally, the performance and efficiency of these systems were evaluated, obtaining conclusions and proposing improvements for future works.Premio Extraordinario de Doctorado U

    Demonstrating Analog Inference on the BrainScaleS-2 Mobile System

    Full text link
    We present the BrainScaleS-2 mobile system as a compact analog inference engine based on the BrainScaleS-2 ASIC and demonstrate its capabilities at classifying a medical electrocardiogram dataset. The analog network core of the ASIC is utilized to perform the multiply-accumulate operations of a convolutional deep neural network. At a system power consumption of 5.6W, we measure a total energy consumption of 192uJ for the ASIC and achieve a classification time of 276us per electrocardiographic patient sample. Patients with atrial fibrillation are correctly identified with a detection rate of (93.7±{\pm}0.7)% at (14.0±{\pm}1.0)% false positives. The system is directly applicable to edge inference applications due to its small size, power envelope, and flexible I/O capabilities. It has enabled the BrainScaleS-2 ASIC to be operated reliably outside a specialized lab setting. In future applications, the system allows for a combination of conventional machine learning layers with online learning in spiking neural networks on a single neuromorphic platform

    A general guide to applying machine learning to computer architecture

    Get PDF
    The resurgence of machine learning since the late 1990s has been enabled by significant advances in computing performance and the growth of big data. The ability of these algorithms to detect complex patterns in data which are extremely difficult to achieve manually, helps to produce effective predictive models. Whilst computer architects have been accelerating the performance of machine learning algorithms with GPUs and custom hardware, there have been few implementations leveraging these algorithms to improve the computer system performance. The work that has been conducted, however, has produced considerably promising results. The purpose of this paper is to serve as a foundational base and guide to future computer architecture research seeking to make use of machine learning models for improving system efficiency. We describe a method that highlights when, why, and how to utilize machine learning models for improving system performance and provide a relevant example showcasing the effectiveness of applying machine learning in computer architecture. We describe a process of data generation every execution quantum and parameter engineering. This is followed by a survey of a set of popular machine learning models. We discuss their strengths and weaknesses and provide an evaluation of implementations for the purpose of creating a workload performance predictor for different core types in an x86 processor. The predictions can then be exploited by a scheduler for heterogeneous processors to improve the system throughput. The algorithms of focus are stochastic gradient descent based linear regression, decision trees, random forests, artificial neural networks, and k-nearest neighbors.This work has been supported by the European Research Council (ERC) Advanced Grant RoMoL (Grant Agreemnt 321253) and by the Spanish Ministry of Science and Innovation (contract TIN 2015-65316P).Peer ReviewedPostprint (published version
    corecore