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ABSTRACT 

Biophysically accurate neuron models have emerged as a 
very useful tool for neuroscience research. These models 
are based on solving differential equations that govern 
membrane potentials and spike generation. The level of 
detail that needs to be presented in the model to accurately 
emulate the behaviour of an organic cell is still an open 
question, although the timing of the spikes is considered to 
convey essential information. Models targeting hardware 
are traditionally based on fixed point implementations and 
low precision algorithms which incur a significant loss of 
information. This, in turn, could affect the functionality of 
a bioelectronic neuroprocessor in an undefined way. In this 
paper, a 32-bit floating point reconfigurable somatic 
neuroprocessor is presented targeting an FPGA device for 
real-time processing. For each individual neuron, the 
dynamics of ionic channels are described by a set of first 
order kinetic equations. A dedicated CORDIC unit is 
developed to solve the nonlinear functions that regulate 
spike generation. The results have been verified using an 
experimental setup that combines an FPGA device and a 
digital-to-analogue converter. 

1. INTRODUCTION 

An organic neuron can be separated into four fundamental 
parts: somata, dendrites, axons and synapses. The soma 
plays the role of the central nonlinear processing unit, in 
which complex dynamics take place, resulting in action 
potential (spike) generation. The timing and the number of 
these action potentials are believed to carry information 
that is exchanged among neurons [1]. Although the 
literature suggests that the shape of the spike has no direct 
impact on neuronal coding, this shape still contains the 
information that regulates the change of the membrane 
voltage, such as the rise and fall slopes of the voltage curve, 
which may implicitly have an accumulating influence upon 
spike frequency. The complex interconnectivity among 
neurons is formed via a large number of synapses with a 
single neuron having in the order of tens of thousand 
synaptic connections. Although floating point arithmetic is 

the preferred option for the description of biophysically 
accurate neuron models using software approaches, such as 
the one used in the popular neuroscience tools NEURON 
[2] and GENESIS [3], hardware solutions tend to remove 
the biophysical accuracy at this level due to their 
complexity. As a result, simpler models that can be 
implemented using a limited amount of silicon resources 
are favoured.       
      The ultimate aim and motivation of the research 
presented in this paper is the realization of a bioelectronic 
neuroprocessor that combines artificial neurons grown in a 
silicon medium (FPGA) with organic cells cultivated in an 
electrolyte well, as illustrated in Fig. 1. For the artificial 
neural networks, we intend to use detailed compartmental 
models to account for different morphologies and neuronal 
plasticity. The compartments will be based on a real-time 
solution of the Hodgkin-Huxley model [4]. The Hodgkin-
Huxley model is capable of describing the behaviour of 
spiking neurons accurately, taking biophysically nonlinear 
dynamics into consideration to mimic the spike generation 
of single-compartment cells [5]. To capture the significant 
characteristics of individual neurons, we have developed a 
32-bit floating point dedicated somatic neuroprocessor 
which has been designed to meet the demands of high 
precision and real-time performance. 
 

 
Fig. 1. Schematic of bioelectronic neuroprocessor, 
consisting of organic and artificial neurons. 

2. PREVIOUS WORK 

Until now, a large number of models and methods have 
been developed to address the problem of understanding 
how neurons process data inside the brain. Neuron 
modeling ranges from using detailed membrane 
compartments to abstract black-box models based on 
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digital, analogue or general-purpose processor platforms 
[5]. Analogue neurons offer low power and minimal 
silicon footprint but they suffer from low levels of 
reconfigurability, low precision and costly ASIC 
implementation. Some neuron simulators, such as 
NEURON [2] and GENESIS [3], analyze neuron 
behaviour using detailed compartment models. However, 
their performance is well below real-time applications 
when targeting general-purpose computing platforms as 
they result in systems which use huge amounts of 
resources [6]. On the other hand, FPGA devices comprise a 
large number of logic cells with rich interconnectivity 
resources, similar to the ‘paralleling’ feature of neural 
networks. Additionally, FPGA devices offer flexibility and 
reconfigurability, thereby provide for the adaptive 
computation of neural networks [7].      
      Neuron modeling based on FPGAs has concentrated on 
the development of large-scale neural networks, which 
emphasize the scale of the network and the connectivity 
among neurons [7]. In order to enlarge the density of the 
neural network, simpler or abstract models, such as 
Integrate-and-Fire and cascade models, are used to 
describe spike generation and morphology of the system [5, 
8]. Experimental results have revealed that these models 
cannot provide an accurate description of real neurons, as 
some biophysically meaningful information, such as the 
exponential rule, are neglected to decrease the computation 
load. Neuroscience research does not fully understand how 
the details of the cell dynamics contribute to the signal 
processing in neurons and which properties are essential 
[5]. For this reason, we have initially focused on the details 
available in the Hodgkin-Huxley neuron, so simplifications 
can be done in a controlled way. 
      The availability of dedicated floating-point resources in 
modern FPGAs means that the precision loss introduced by 
conventional fixed point implementations can be avoided, 
opening a new approach for high-performance accurate 
neuron modeling. 

3. MATHEMATICAL METHODS OF NEURON 
MODELLING  

In this section, a brief introduction to the Hodgkin-Huxley 
model is presented, which is the fundamental reference 
model of our neuroprocessor. The Hodgkin-Huxley model 
is a single-compartment isopotential model which focuses 
on the effect of ionic currents on spike generation. More 
details can be found in reference [4]. The collection of 
equations for the Hodgkin-Huxley model are listed in 
equation (1)-(8).  
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where CM is the membrane capacitance, VM is the 
membrane voltage, Iin is the stimulating current, －gi   is the 
constant maximal conductance of the i-species ion channel, 
Ei is the equilibrium potential for the i-species ion. Gating 
variables m, h and p in Equation (1) are dimensionless 
which follow the first-order kinetics formula as shown in 
Equation (2) by replacing u with m, h or p. α and β are 
defined in Equation (3)-(8) with empirical parameters aj, bj, 
and θj (j=1,2...6).    
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      Equation (9) gives the integration result of the first-
order kinetics equation (2) with the assumption of constant 
membrane voltage during each integration time step. In our 
work, the exponential Euler method is used to solve the 
differential equation (1) with integration step of 0.1ms [9]. 
Since many biological behaviours obey the exponential 
change rule, the exponential Euler, in which membrane 
voltage is explicitly defined, is preferred, rather than the 
implicit solution given by the backward Euler method [10]. 
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+
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     As previously indicated, intensive computations are 
involved in the Hodgkin-Huxley model. In floating point 
format, this model can mimic the dynamics of active 
neurons accurately. However, how to find an area-efficient 
solution is a challenging problem. Modern FPGAs offer 
abundant hardware resources that can meet all the stringent 
requirements of processing speed, timing performance and 
computation precision for the hardware realization of the 
Hodgkin-Huxley model. 

4. SOMATIC PROCESSOR ARCHITECTURE 

The architecture of the somatic processor which combines 
several floating-point ALUs working in parallel is 
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presented in the following sections. It solves the set of 
differential equations with tens of parameters as previously 
described. The specific problem posed by the exponential 
function is solved by a dedicated arithmetic circuit using 
the CORDIC algorithm [11]. In this architecture, 32-bit 
floating point data format is used to execute all the 
arithmetic operations following the IEEE 754 standard. The 
greatest benefit of the floating point data representation is 
the large dynamic range, which is suitable for high-
precision neurocomputation applications. 

4.1. Architecture of the Somatic Neuroprocessor 

The architecture of the somatic neuroprocessor is based on 
4 arithmetic-logic units (ALUs) and 11 finite state machine 
controllers (FSMCs) as illustrated in Fig. 2. All ALUs 
perform the computations in the format of a 32-bit floating 
point number and are realized by means of logic cells and 
DSP48a slices. The DSP48a core is a dedicated high-
performance arithmetic component offered by Xilinx 
FPGAs, each consisting of two adders, a multiplier and 
two multiplexers [12]. The utilization of DSP48a slices 
improves computation performance of the high-precision 
ALUs. To avoid large multiplexers at input ports of the 
ALUs, all temporal variables are stored in internal RAMs 
rather than flip flops and multiplexers. The data paths 
among ALUs and RAMs are monitored by FSMCs and 
global control logic. All FSMCs are located at the input or 
output ports of the ALUs to fetch operands or dispatch 
results between internal memory and the ALUs. 

      The 4 ALUs perform addition/subtraction, 
multiplication, division and exponential functions, 
respectively. For each ALU, the operands are stored in 
their corresponding internal RAMs, and are read out in 
accordance with the current state of the FSMCs. All 
FSMCs collaborate with each other and control the 
sequence of computation according to a predefined state 
order. The state order is designed to make full use of the 
ALUs and reduce the whole computational duration, 
accounting for some cases where the operands cannot be 
provided to the ALUs in time. In doing so, the 4 ALUs run 
in parallel and are almost fully occupied during the 
computation with a small number of idle states. 
     The neuroprocessor is connected to the system bus 
through an initialization RAM, in which all parameters and 
input stimuli are stored. These parameters can be 
reconfigured by updating the contents of the RAM through 
the system bus. Once the computation is triggered, all the 
parameters are copied to a local parameter-and-result RAM 
that is updated by the neuroprocessor after each time step. 
The data feedback to the parameter-and-result RAM is 
used to compute the membrane voltage during the next 
time step. An array of internal memories is used to store 
temporary variables under the control of FSMCs. The 
control logic coordinates the operation among all the 
hardware modules. 

4.2. Exponential Function Implementation 

Traditionally, a look-up-table (LUT) approach is used to 
solve this nonlinear function using fixed point format 
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Fig. 2. Architecture of somatic neuroprocessor. 
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numbers [13]. How to realize floating-point exponential 
functions in a way amenable to hardware poses a 
challenging problem. As no multipliers or dividers are 
required, the CORDIC algorithm is an efficient approach 
to implement hyperbolic functions [13], by which the 
exponential function can be expressed as listed in Equation 
(10a)-(10d).  
                        zzez sinhcosh +=                                (10a) 
 
      For hyperbolic functions, the CORDIC scheme is 
derived from the rotation at each iteration step: 
 
                     i
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+ 21                              (10b)   
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where i is iteration integer variable, di contains the value of 
-1 and +1 to determine the direction of rotation. For 
convergence reason, some iteration steps (i=4, 13, 40,…k, 
3k+1) must be repeated [13]. It should be noted that the 
basic CORDIC scheme is only directly applicable for those 
inputs whose absolute values are in the range of 
convergence. For hyperbolic functions, the range of 
convergence is |zin| ≤ θmax ≈ 1.1182, where θi=artanh (2-i) 
[13]. Therefore, arbitrary input exponents need to be 
preprocessed until they are located in the convergence 
region.  
      We decided to develop our own CORDIC ALU instead 
of using the implementation available in the Xilinx IP 
library because that one is limited to fixed point 
applications. The architecture of the CORDIC ALU, as 
depicted in Fig. 3, consists of two parts: an exponent 
preprocessing block and a CORDIC core block. In the 
exponent preprocessing block, if the input exponent is 
positive and out of the range of convergence, it is 
translated to a fixed point number firstly to generate an 
address for LUT1, where the results of floor function p = 
floor(input exponent/convergence limit) is stored in fixed 
point format. Then this fixed point integer p is used as an 
address signal for LUT2 that contains the product of p and 
convergence limit in floating point format. Finally, this 
product is subtracted from the original input exponent to 
obtain the remainder, which is sent to the CORDIC core 
block. In the case of a negative exponent input, its 
complement is used in the preprocessing step to guarantee 
that the address signal p remains positive. In the 
preprocessing block, only one floating-point adder and 
small memories of about 8KB are employed, avoiding the 
need of a floating-point divider for the remainder operation. 
The output of the CORDIC core needs to be passed to the 
postprocessing circuit to compensate the effect of the 
preprocessing block. In doing so, an arbitrary input 
exponent is mapped within the convergence limit, making 

it suitable for the basic CORDIC algorithm. The fixed 
point number is only used as address signals of RAMs. All 
the computations are performed using 32-bit floating point 
number to avoid precision loss during the operation. Also, 
the amount of the memories required by the look-up-tables 
in the preprocessing block is limited, because the input 
exponents are in a limited range for neuronal dynamics. 

 
Fig. 3. 32-bit floating point iterative CORDIC ALU. 

5. HARDWARE IMPLEMENTATION AND 
PERFORMANCE EVALUATION 

In the previous sections, a 32-bit floating point dedicated 
somatic processor has been presented. This real-time 
computing platform can be implemented in any Xilinx 
device that supports the DSP48/DSP48a cores, such as the 
Spartan3aDsp or Virtex4/5 parts. The version targeting the 
Spartan3aDsp family has been implemented on a 
xc3sd1800a device, which achieves a clock frequency of 
100MHz. The simulation temporal step is set to 0.1 ms, 
corresponding to 10 KHz sampling frequency in other 
organic cell-chip experiments [14]. The computation 
duration needed to output a new membrane voltage is 
about 2,000 cycles, depending on the execution times of 
the CORDIC preprocessing block. This means that a new 
membrane voltage can be obtained in around 20 μs so 
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around 5 single-point real-time neurons can be mapped to a 
single processor. The exponential function is executed by 
the dedicated CORDIC hardware accelerator, in which the 
computation is iterated 9 times to obtain sufficient 
accuracy and the address signal p of LUT2 ranges from 0 
to 63. The results of the CORDIC ALU are shown in Fig. 4. 

 
Fig. 4. Result of the CORDIC ALU. The solid line depicts 
accurate values computed using the C reference software 
model. The dashed line was computed by the CORDIC 
ALU. The two waveforms almost overlap each other. 

 
      Fig. 5 shows the spike generation result of the somatic 
neuroprocessor. The inset waveform is the result of 
reference model implemented in ANSI C. The output of 
the hardware realization is sampled at the interface 
between the FPGA board and the DAC board. The outputs 
are encoded in the range from 0V to +2V due to a 
postprocessing stage for data conversion in terms of the 
features of a 16-bit DAC device (Texas Instruments 
DAC5682z). In this experiment, a stimulating current pulse 
with amplitude of 15nA was injected from 10ms to 30ms. 
The surface area of the neuron is assumed to be 0.1mm2. 
The logic resource utilization is reported in Table 1.  
Neuron parameters are summarised in Table 2. For one 
soma compartment with the simulation duration of 100ms, 
membrane voltage processing takes about 20ms with 
100MHz system clock frequency, while the ANSI C model 
running on Intel Pentium4 1.8 GHz CPU and 1GB RAM 
PC spends 592ms on the same simulation. This 
performance implies that the P4 implementation is well 
below real-time requirements. The somatic processor can 
be used to implement several somatic compartments and if 
several processors run in parallel, a neural network can be 
constructed on the FPGA. The population of neurons and 
neuron compartments can grow as the amount of available 
hardware resources increases. 
 

Table 1. Result of logic resource utilization  
Mapping to device: xc3sd1800a-4fg676 

Number of Slice Flip Flops 5,862 out of 33,280 (17.6%) 
Number of 4 input LUTs 6,490 out of 33,280 (19.5%) 

Number of DSP48a 4 out of 84 (4%) 

Table 2. The significant parameters of the HH model 
Para Value Para Value Para Value 
CM 1.0 μF/cm2 a1 0.1 a4 1.0 
ENa 45.0  mV b2 -10.0 b4 -10.0 
EK -82.0  mV θ1 -45.0 θ4 -40.0 
ECl -59.0 mV a2 4.0 a5 0.01 
Erest -70.0 mv b2 -18.0 b5 -10.0 
－gNa   120.0 mS/cm2 θ2 -70.0 θ5 -60.0 

－gK  36.0 mS/cm2 a3 0.07 a6 0.125 

－ gCl  0.3 mS/cm2 b3 -20.0 b6 -80.0 

Area 0.1 mm2 θ3 -70.0 θ6 -70.0 
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Fig. 5.  FPGA output waveform. The inset figure was 
computed using reference model in ANSI C. 
      

error

 
Fig. 6. Comparison of fixed-point and floating-point 
format. The solid line represents 32-bit floating point 
model; the dashed line is 32-bit fixed point model in the 
Q(32,15) format. 

 
      An experiment to analyze the effects of data precision 
has been conducted and the results are shown in Fig. 6. 
The solid line represents the 32-bit floating point model 
and the dashed line is the 32-bit fixed point model. It can 
be seen that the fixed-point error is accumulated, leading to 
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a significant difference of the location of the spikes. Since 
when and where the action potentials occur defines the 
functional behaviour of the neuron, the impact of this error 
could alter the principles of neural information processing, 
specially on large-scale neural networks with complex 
interconnecting patterns as it is also suggested in [8]. 

 

6. CONCLUSION AND FUTURE WORK 

In this paper, the architecture of a somatic neuroprocessor 
that mimics spike generation in organic neurons has been 
presented. The proposed system solves the Hodgkin- 
Huxley neuron model using 32-bit floating point precision. 
This model can be used as a basic building block to 
simulate complex neurons made up of hundreds of 
compartments or to construct neural network with each 
neuron represented by several compartments. In order to 
reduce hardware usage, dedicated arithmetic units are used 
in the design. Consequently, in comparison with reduced 
neuron models or fixed point algorithms, this system 
provides a more accurate description of neuronal dynamics 
and can meet the real-time performance requirements of a 
bioelectronic neuroprocessor. Furthermore, the Hodgkin-
Huxley model can be used to further study neuron 
behaviour by keeping its mathematical form but 
simultaneously interpreting the terms in Equation (1) in 
different ways [15]. For example, the channel conductance 
can be replaced by inhibitory, excitatory and passive 
channels, rather than categorizing them with ionic species. 
This approach makes this neuroprocessor suitable for 
further analysis of neuronal dynamics, especially for 
synaptic modeling. 
      An experiment setup under development at the Centre 
for Communications Research (CCR) at Bristol is shown 
in Fig. 7, which combines real and artificial neurons 
communicating through a MEA (MicroElectrode Arrays) 
device. The MEA is a neuron sensor comprising neuron-to-
silicon interface and analogue processing circuitry. The 
future work involves the extension of the artificial neural 
network by adding dedicated synaptic and dendritic 
neuroprocessors. 
 

                               
                      (a)                                           (b) 
Fig. 7. Photograph of the experiment setup under 
development. (a) the neuron cultivation well and the MEA 
board; (b) the prototype experimental setup, consisting of a 

MEA neuron sensor board, a FPGA board and a 
connection board.    
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