
 Zhang, Y., Nunez-Yanez, J. L., McGeehan, J. P., Regan, E. M., & Kelly, S.
(2009). A biophysically accurate floating point somatic neuroprocessor. In
International Conference on Field Programmable Logic and Applications,
2009 (FPL 2009), Prague. (pp. 26 - 31). Institute of Electrical and Electronics
Engineers (IEEE). 10.1109/FPL.2009.5272558

Link to published version (if available):
10.1109/FPL.2009.5272558

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/29025860?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/FPL.2009.5272558
http://research-information.bristol.ac.uk/en/publications/a-biophysically-accurate-floating-point-somatic-neuroprocessor(0cb849f1-d08c-490d-9b57-54dc0acd6dbb).html
http://research-information.bristol.ac.uk/en/publications/a-biophysically-accurate-floating-point-somatic-neuroprocessor(0cb849f1-d08c-490d-9b57-54dc0acd6dbb).html

A BIOPHYSICALLY ACCURATE FLOATING POINT SOMATIC NEUROPROCESSOR

Yiwei Zhang*, José Nuñez-Yañez*, Joe McGeehan*, Edward Regan†, Stephen Kelly†

Centre for Communications Research*, Faculty of Engineering, Faculty of Medicine and Dentistry†
University of Bristol

Email: Y.Zhang@bris.ac.uk, J.L.Nunez-Yanez@bris.ac.uk, J.P.McGeehan@bris.ac.uk

ABSTRACT

Biophysically accurate neuron models have emerged as a
very useful tool for neuroscience research. These models
are based on solving differential equations that govern
membrane potentials and spike generation. The level of
detail that needs to be presented in the model to accurately
emulate the behaviour of an organic cell is still an open
question, although the timing of the spikes is considered to
convey essential information. Models targeting hardware
are traditionally based on fixed point implementations and
low precision algorithms which incur a significant loss of
information. This, in turn, could affect the functionality of
a bioelectronic neuroprocessor in an undefined way. In this
paper, a 32-bit floating point reconfigurable somatic
neuroprocessor is presented targeting an FPGA device for
real-time processing. For each individual neuron, the
dynamics of ionic channels are described by a set of first
order kinetic equations. A dedicated CORDIC unit is
developed to solve the nonlinear functions that regulate
spike generation. The results have been verified using an
experimental setup that combines an FPGA device and a
digital-to-analogue converter.

1. INTRODUCTION

An organic neuron can be separated into four fundamental
parts: somata, dendrites, axons and synapses. The soma
plays the role of the central nonlinear processing unit, in
which complex dynamics take place, resulting in action
potential (spike) generation. The timing and the number of
these action potentials are believed to carry information
that is exchanged among neurons [1]. Although the
literature suggests that the shape of the spike has no direct
impact on neuronal coding, this shape still contains the
information that regulates the change of the membrane
voltage, such as the rise and fall slopes of the voltage curve,
which may implicitly have an accumulating influence upon
spike frequency. The complex interconnectivity among
neurons is formed via a large number of synapses with a
single neuron having in the order of tens of thousand
synaptic connections. Although floating point arithmetic is

the preferred option for the description of biophysically
accurate neuron models using software approaches, such as
the one used in the popular neuroscience tools NEURON
[2] and GENESIS [3], hardware solutions tend to remove
the biophysical accuracy at this level due to their
complexity. As a result, simpler models that can be
implemented using a limited amount of silicon resources
are favoured.
 The ultimate aim and motivation of the research
presented in this paper is the realization of a bioelectronic
neuroprocessor that combines artificial neurons grown in a
silicon medium (FPGA) with organic cells cultivated in an
electrolyte well, as illustrated in Fig. 1. For the artificial
neural networks, we intend to use detailed compartmental
models to account for different morphologies and neuronal
plasticity. The compartments will be based on a real-time
solution of the Hodgkin-Huxley model [4]. The Hodgkin-
Huxley model is capable of describing the behaviour of
spiking neurons accurately, taking biophysically nonlinear
dynamics into consideration to mimic the spike generation
of single-compartment cells [5]. To capture the significant
characteristics of individual neurons, we have developed a
32-bit floating point dedicated somatic neuroprocessor
which has been designed to meet the demands of high
precision and real-time performance.

Fig. 1. Schematic of bioelectronic neuroprocessor,
consisting of organic and artificial neurons.

2. PREVIOUS WORK

Until now, a large number of models and methods have
been developed to address the problem of understanding
how neurons process data inside the brain. Neuron
modeling ranges from using detailed membrane
compartments to abstract black-box models based on

*Sponsor acknowledgments for Oversea Research Student Award
(ORSAS) and Postgraduate Research Award of University of
Bristol and funding supplied by the Micron Foundation (USA).

978-1-4244-3892-1/09/$25.00 ©2009 IEEE 26

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on October 2, 2009 at 09:11 from IEEE Xplore. Restrictions apply.

digital, analogue or general-purpose processor platforms
[5]. Analogue neurons offer low power and minimal
silicon footprint but they suffer from low levels of
reconfigurability, low precision and costly ASIC
implementation. Some neuron simulators, such as
NEURON [2] and GENESIS [3], analyze neuron
behaviour using detailed compartment models. However,
their performance is well below real-time applications
when targeting general-purpose computing platforms as
they result in systems which use huge amounts of
resources [6]. On the other hand, FPGA devices comprise a
large number of logic cells with rich interconnectivity
resources, similar to the ‘paralleling’ feature of neural
networks. Additionally, FPGA devices offer flexibility and
reconfigurability, thereby provide for the adaptive
computation of neural networks [7].
 Neuron modeling based on FPGAs has concentrated on
the development of large-scale neural networks, which
emphasize the scale of the network and the connectivity
among neurons [7]. In order to enlarge the density of the
neural network, simpler or abstract models, such as
Integrate-and-Fire and cascade models, are used to
describe spike generation and morphology of the system [5,
8]. Experimental results have revealed that these models
cannot provide an accurate description of real neurons, as
some biophysically meaningful information, such as the
exponential rule, are neglected to decrease the computation
load. Neuroscience research does not fully understand how
the details of the cell dynamics contribute to the signal
processing in neurons and which properties are essential
[5]. For this reason, we have initially focused on the details
available in the Hodgkin-Huxley neuron, so simplifications
can be done in a controlled way.
 The availability of dedicated floating-point resources in
modern FPGAs means that the precision loss introduced by
conventional fixed point implementations can be avoided,
opening a new approach for high-performance accurate
neuron modeling.

3. MATHEMATICAL METHODS OF NEURON
MODELLING

In this section, a brief introduction to the Hodgkin-Huxley
model is presented, which is the fundamental reference
model of our neuroprocessor. The Hodgkin-Huxley model
is a single-compartment isopotential model which focuses
on the effect of ionic currents on spike generation. More
details can be found in reference [4]. The collection of
equations for the Hodgkin-Huxley model are listed in
equation (1)-(8).

inLML

KMKNaMNa
M

M

IEVg

EVpgEVhmg
dt

dVC

+−−

−−−−=

)(

)()(43
 (1)

 uu
dt
du

uu βα −−=)1((2)

where CM is the membrane capacitance, VM is the
membrane voltage, Iin is the stimulating current, －gi is the
constant maximal conductance of the i-species ion channel,
Ei is the equilibrium potential for the i-species ion. Gating
variables m, h and p in Equation (1) are dimensionless
which follow the first-order kinetics formula as shown in
Equation (2) by replacing u with m, h or p. α and β are
defined in Equation (3)-(8) with empirical parameters aj, bj,
and θj (j=1,2...6).

 ⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −−−= 1exp/)(
1

1
11 b

VVa M
Mm

θθα (3)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −=
2

2
2 exp

b
Va M

m
θβ (4)

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

3

3
3 exp

b
Va M

h
θα (5)

 ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+=
4

4
4 exp1/1

b
Va M

h
θβ (6)

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−= 1exp/)(

5

5
55 b

VVa M
Mp

θθα (7)

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

6

6
6 exp

b
V

a M
p

θβ (8)

 Equation (9) gives the integration result of the first-
order kinetics equation (2) with the assumption of constant
membrane voltage during each integration time step. In our
work, the exponential Euler method is used to solve the
differential equation (1) with integration step of 0.1ms [9].
Since many biological behaviours obey the exponential
change rule, the exponential Euler, in which membrane
voltage is explicitly defined, is preferred, rather than the
implicit solution given by the backward Euler method [10].

)])((exp[])([)(00 tttutu −+−
+

−+
+

= βα
βα

α
βα

α (9)

 As previously indicated, intensive computations are
involved in the Hodgkin-Huxley model. In floating point
format, this model can mimic the dynamics of active
neurons accurately. However, how to find an area-efficient
solution is a challenging problem. Modern FPGAs offer
abundant hardware resources that can meet all the stringent
requirements of processing speed, timing performance and
computation precision for the hardware realization of the
Hodgkin-Huxley model.

4. SOMATIC PROCESSOR ARCHITECTURE

The architecture of the somatic processor which combines
several floating-point ALUs working in parallel is

27

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on October 2, 2009 at 09:11 from IEEE Xplore. Restrictions apply.

presented in the following sections. It solves the set of
differential equations with tens of parameters as previously
described. The specific problem posed by the exponential
function is solved by a dedicated arithmetic circuit using
the CORDIC algorithm [11]. In this architecture, 32-bit
floating point data format is used to execute all the
arithmetic operations following the IEEE 754 standard. The
greatest benefit of the floating point data representation is
the large dynamic range, which is suitable for high-
precision neurocomputation applications.

4.1. Architecture of the Somatic Neuroprocessor

The architecture of the somatic neuroprocessor is based on
4 arithmetic-logic units (ALUs) and 11 finite state machine
controllers (FSMCs) as illustrated in Fig. 2. All ALUs
perform the computations in the format of a 32-bit floating
point number and are realized by means of logic cells and
DSP48a slices. The DSP48a core is a dedicated high-
performance arithmetic component offered by Xilinx
FPGAs, each consisting of two adders, a multiplier and
two multiplexers [12]. The utilization of DSP48a slices
improves computation performance of the high-precision
ALUs. To avoid large multiplexers at input ports of the
ALUs, all temporal variables are stored in internal RAMs
rather than flip flops and multiplexers. The data paths
among ALUs and RAMs are monitored by FSMCs and
global control logic. All FSMCs are located at the input or
output ports of the ALUs to fetch operands or dispatch
results between internal memory and the ALUs.

 The 4 ALUs perform addition/subtraction,
multiplication, division and exponential functions,
respectively. For each ALU, the operands are stored in
their corresponding internal RAMs, and are read out in
accordance with the current state of the FSMCs. All
FSMCs collaborate with each other and control the
sequence of computation according to a predefined state
order. The state order is designed to make full use of the
ALUs and reduce the whole computational duration,
accounting for some cases where the operands cannot be
provided to the ALUs in time. In doing so, the 4 ALUs run
in parallel and are almost fully occupied during the
computation with a small number of idle states.
 The neuroprocessor is connected to the system bus
through an initialization RAM, in which all parameters and
input stimuli are stored. These parameters can be
reconfigured by updating the contents of the RAM through
the system bus. Once the computation is triggered, all the
parameters are copied to a local parameter-and-result RAM
that is updated by the neuroprocessor after each time step.
The data feedback to the parameter-and-result RAM is
used to compute the membrane voltage during the next
time step. An array of internal memories is used to store
temporary variables under the control of FSMCs. The
control logic coordinates the operation among all the
hardware modules.

4.2. Exponential Function Implementation

Traditionally, a look-up-table (LUT) approach is used to
solve this nonlinear function using fixed point format

Internal
memory

ALU
ADD/SUB

Initialization memory

5

5

State
machine
Add_opa

State
machine
Add_result

State
machine
Add_opb

32

State
machine
Mul_opa

State
machine
Mul_opb

State
machine
Div_opa

State
machine
Div_opb

State
machine
Exp_opa

32

result_add

32

32

addr data_in

Internal
memory

Internal
memory

Internal
memory

Internal
memory

Internal
memory

Internal
memory

ALU
MUL

State
machine
Mul_result

ALU
DIV

State
machine
Div_result

ALU
CORDIC

EXP

State
machine
Exp_result

32

32

result_mul 32

32

result_div 32

32

result_exp

Parameter & result memory
Control logic

5

32

5 5 5 4 4 4address address address address address address address

32
32
32
32
32

32
32
32
32
32

32
32
32
32
32

32
32
32
32
32

32
32
32
32
32

result_add result_add result_add result_add

result_mul result_mul result_mul result_mul

result_div result_div result_div result_div

result_exp result_exp result_exp result_exp

address

init_parameters
32

address

init_parameters init_parameters init_parameters init_parameters

to system bus

init_parameters

32 memory
controller

32

32

32 data

addresscontrol

output data 32

control

5

5

32

32

addr data_in

32

5

5

32

32

addr data_in

32

5

5

32

32

addr data_in

32

4

4

32

32

addr data_in

32

4

4

32

32

data_in

32

4

4

32

32

data_in

32

Fig. 2. Architecture of somatic neuroprocessor.

28

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on October 2, 2009 at 09:11 from IEEE Xplore. Restrictions apply.

numbers [13]. How to realize floating-point exponential
functions in a way amenable to hardware poses a
challenging problem. As no multipliers or dividers are
required, the CORDIC algorithm is an efficient approach
to implement hyperbolic functions [13], by which the
exponential function can be expressed as listed in Equation
(10a)-(10d).
 zzez sinhcosh += (10a)

 For hyperbolic functions, the CORDIC scheme is
derived from the rotation at each iteration step:

 i

i
iii YdXX ⋅⋅+= −

+ 21 (10b)

 i

i
iii XdYY ⋅⋅+= −

+ 21 (10c)

)2(artanh1

i
iii dzz −

+ ⋅−= (10d)
where i is iteration integer variable, di contains the value of
-1 and +1 to determine the direction of rotation. For
convergence reason, some iteration steps (i=4, 13, 40,…k,
3k+1) must be repeated [13]. It should be noted that the
basic CORDIC scheme is only directly applicable for those
inputs whose absolute values are in the range of
convergence. For hyperbolic functions, the range of
convergence is |zin| ≤ θmax ≈ 1.1182, where θi=artanh (2-i)
[13]. Therefore, arbitrary input exponents need to be
preprocessed until they are located in the convergence
region.
 We decided to develop our own CORDIC ALU instead
of using the implementation available in the Xilinx IP
library because that one is limited to fixed point
applications. The architecture of the CORDIC ALU, as
depicted in Fig. 3, consists of two parts: an exponent
preprocessing block and a CORDIC core block. In the
exponent preprocessing block, if the input exponent is
positive and out of the range of convergence, it is
translated to a fixed point number firstly to generate an
address for LUT1, where the results of floor function p =
floor(input exponent/convergence limit) is stored in fixed
point format. Then this fixed point integer p is used as an
address signal for LUT2 that contains the product of p and
convergence limit in floating point format. Finally, this
product is subtracted from the original input exponent to
obtain the remainder, which is sent to the CORDIC core
block. In the case of a negative exponent input, its
complement is used in the preprocessing step to guarantee
that the address signal p remains positive. In the
preprocessing block, only one floating-point adder and
small memories of about 8KB are employed, avoiding the
need of a floating-point divider for the remainder operation.
The output of the CORDIC core needs to be passed to the
postprocessing circuit to compensate the effect of the
preprocessing block. In doing so, an arbitrary input
exponent is mapped within the convergence limit, making

it suitable for the basic CORDIC algorithm. The fixed
point number is only used as address signals of RAMs. All
the computations are performed using 32-bit floating point
number to avoid precision loss during the operation. Also,
the amount of the memories required by the look-up-tables
in the preprocessing block is limited, because the input
exponents are in a limited range for neuronal dynamics.

Fig. 3. 32-bit floating point iterative CORDIC ALU.

5. HARDWARE IMPLEMENTATION AND
PERFORMANCE EVALUATION

In the previous sections, a 32-bit floating point dedicated
somatic processor has been presented. This real-time
computing platform can be implemented in any Xilinx
device that supports the DSP48/DSP48a cores, such as the
Spartan3aDsp or Virtex4/5 parts. The version targeting the
Spartan3aDsp family has been implemented on a
xc3sd1800a device, which achieves a clock frequency of
100MHz. The simulation temporal step is set to 0.1 ms,
corresponding to 10 KHz sampling frequency in other
organic cell-chip experiments [14]. The computation
duration needed to output a new membrane voltage is
about 2,000 cycles, depending on the execution times of
the CORDIC preprocessing block. This means that a new
membrane voltage can be obtained in around 20 μs so

29

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on October 2, 2009 at 09:11 from IEEE Xplore. Restrictions apply.

around 5 single-point real-time neurons can be mapped to a
single processor. The exponential function is executed by
the dedicated CORDIC hardware accelerator, in which the
computation is iterated 9 times to obtain sufficient
accuracy and the address signal p of LUT2 ranges from 0
to 63. The results of the CORDIC ALU are shown in Fig. 4.

Fig. 4. Result of the CORDIC ALU. The solid line depicts
accurate values computed using the C reference software
model. The dashed line was computed by the CORDIC
ALU. The two waveforms almost overlap each other.

 Fig. 5 shows the spike generation result of the somatic
neuroprocessor. The inset waveform is the result of
reference model implemented in ANSI C. The output of
the hardware realization is sampled at the interface
between the FPGA board and the DAC board. The outputs
are encoded in the range from 0V to +2V due to a
postprocessing stage for data conversion in terms of the
features of a 16-bit DAC device (Texas Instruments
DAC5682z). In this experiment, a stimulating current pulse
with amplitude of 15nA was injected from 10ms to 30ms.
The surface area of the neuron is assumed to be 0.1mm2.
The logic resource utilization is reported in Table 1.
Neuron parameters are summarised in Table 2. For one
soma compartment with the simulation duration of 100ms,
membrane voltage processing takes about 20ms with
100MHz system clock frequency, while the ANSI C model
running on Intel Pentium4 1.8 GHz CPU and 1GB RAM
PC spends 592ms on the same simulation. This
performance implies that the P4 implementation is well
below real-time requirements. The somatic processor can
be used to implement several somatic compartments and if
several processors run in parallel, a neural network can be
constructed on the FPGA. The population of neurons and
neuron compartments can grow as the amount of available
hardware resources increases.

Table 1. Result of logic resource utilization
Mapping to device: xc3sd1800a-4fg676

Number of Slice Flip Flops 5,862 out of 33,280 (17.6%)
Number of 4 input LUTs 6,490 out of 33,280 (19.5%)

Number of DSP48a 4 out of 84 (4%)

Table 2. The significant parameters of the HH model
Para Value Para Value Para Value
CM 1.0 μF/cm2 a1 0.1 a4 1.0
ENa 45.0 mV b2 -10.0 b4 -10.0
EK -82.0 mV θ1 -45.0 θ4 -40.0
ECl -59.0 mV a2 4.0 a5 0.01
Erest -70.0 mv b2 -18.0 b5 -10.0
－gNa 120.0 mS/cm2 θ2 -70.0 θ5 -60.0

－gK 36.0 mS/cm2 a3 0.07 a6 0.125

－ gCl 0.3 mS/cm2 b3 -20.0 b6 -80.0

Area 0.1 mm2 θ3 -70.0 θ6 -70.0

0 10 20 30 40 50 60 70 80 90 100
0.92

0.94

0.96

0.98

1

1.02

1.04

Time (ms)

M
em

br
an

e
vo

lta
ge

 (
vo

lt)

Fig. 5. FPGA output waveform. The inset figure was
computed using reference model in ANSI C.

error

Fig. 6. Comparison of fixed-point and floating-point
format. The solid line represents 32-bit floating point
model; the dashed line is 32-bit fixed point model in the
Q(32,15) format.

 An experiment to analyze the effects of data precision
has been conducted and the results are shown in Fig. 6.
The solid line represents the 32-bit floating point model
and the dashed line is the 32-bit fixed point model. It can
be seen that the fixed-point error is accumulated, leading to

30

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on October 2, 2009 at 09:11 from IEEE Xplore. Restrictions apply.

a significant difference of the location of the spikes. Since
when and where the action potentials occur defines the
functional behaviour of the neuron, the impact of this error
could alter the principles of neural information processing,
specially on large-scale neural networks with complex
interconnecting patterns as it is also suggested in [8].

6. CONCLUSION AND FUTURE WORK

In this paper, the architecture of a somatic neuroprocessor
that mimics spike generation in organic neurons has been
presented. The proposed system solves the Hodgkin-
Huxley neuron model using 32-bit floating point precision.
This model can be used as a basic building block to
simulate complex neurons made up of hundreds of
compartments or to construct neural network with each
neuron represented by several compartments. In order to
reduce hardware usage, dedicated arithmetic units are used
in the design. Consequently, in comparison with reduced
neuron models or fixed point algorithms, this system
provides a more accurate description of neuronal dynamics
and can meet the real-time performance requirements of a
bioelectronic neuroprocessor. Furthermore, the Hodgkin-
Huxley model can be used to further study neuron
behaviour by keeping its mathematical form but
simultaneously interpreting the terms in Equation (1) in
different ways [15]. For example, the channel conductance
can be replaced by inhibitory, excitatory and passive
channels, rather than categorizing them with ionic species.
This approach makes this neuroprocessor suitable for
further analysis of neuronal dynamics, especially for
synaptic modeling.
 An experiment setup under development at the Centre
for Communications Research (CCR) at Bristol is shown
in Fig. 7, which combines real and artificial neurons
communicating through a MEA (MicroElectrode Arrays)
device. The MEA is a neuron sensor comprising neuron-to-
silicon interface and analogue processing circuitry. The
future work involves the extension of the artificial neural
network by adding dedicated synaptic and dendritic
neuroprocessors.

 (a) (b)
Fig. 7. Photograph of the experiment setup under
development. (a) the neuron cultivation well and the MEA
board; (b) the prototype experimental setup, consisting of a

MEA neuron sensor board, a FPGA board and a
connection board.

7. REFERENCES

[1] W. Gertner and W.M.Kistler, “Spiking neuron models:
single neurons, populations, plasticity,” Cambridge
University Press, 2002.

[2] M. L. Hines, N. T. Carnevale, “The NEURON simulation
environment”, Neural Computation, vol. 9, No. 6, pp. 1179-
1209, Aug. 1997

[3] JM Bower, D Beeman, “The book of GENESIS: exploring
realistic neural models with the GEneral NEural SImulation
System”, Springer-Verlag New York, Inc., 1998.

[4] A. L. Hodgkin and A. F. Huxley, “A quantitative description
of membrane current and its application to conduction and
excitation in nerve,” Journal of Physiology, Vol. 117, pp.
500–544 (1952).

[5] Andreas V. M. Herz, Tim Gollisch, “Modeling single-
neuron dynamics and computations: a balance of detail and
abstraction,” Science, vol. 314. no. 5796, pp. 80 – 85, Oct
2006.

[6] R Brette, M Rudolph, T Carnevale, M Hines, “Simulation of
networks of spiking neurons: A review of tools and
strategies”, Journal of Computational Neuroscience, vol. 23,
No. 3, pp. 349-398, July 2007

[7] Jim Harkin, F. Morgan, “Reconfigurable platforms and the
challenges for large-scale implementations of spiking neural
networks,” in Conf. Field Programmable Logic and
Applications, 2008.

[8] L.P. Maguire, T.M. McGinnity, “Challenges for large-scale
implementations of spiking neural networks FPGAs,”
Neurocomputing, vol. 71, issues 1-3, pp. 13-29, Dec 2007.

[9] SW Hughes, M Lőrincz, DW Cope, V Crunelli, “NeuReal:
An interactive simulation system for implementing artificial
dendrites and large hybrid networks,” Journal of
Neuroscience Methods, vol. 169, issue 2, pp. 290-301, Oct.
2007.

[10] Michael V. Mascagni and Arthur S. Sherman , Numerical
Methods for Neuronal Modeling in Methods in Neuronal
Modeling: From Ions to Networks, edited by Cristof Koch
and Idan Segev, MIT Press, pp 569-606, 1998.

[11] R Andraka, “A survey of CORDIC algorithms for FPGA
based computers”, International Symposium on Field
Programmable Gate Arrays, pp. 191 - 200, 1998.

[12] Xilinx UG431 XtremeDSP DSP48A for Spartan-3A DSP
FPGAs User Guide, www.xilinx.com/support/
documentation/user_guides/ug431.pdf

[13] DR Llamocca-Obregón, CP Agurto-Ríos, “A fixed-point
implementation of the neural logrithm based on the
expanded hyperbolic CORDIC algorithm,” Lat. Am. Appl.
Res. vol. 37, no.1, Mar. 2007.

[14] T. Schoenauer, S. Atasoy, N. Mehrtash, and H. Klar,
“NeuroPipe-Chip: A digital neuro-processor for spiking
neuralnetworks,” IEEE Transactions Neural Networks, vol.
13, issue 1, pp. 205-213, Jan 2002.

[15] F. C. Hoppensteadt, “An introduction to the mathmatics of
neurons”, Cambridge University Press, 1986

31

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on October 2, 2009 at 09:11 from IEEE Xplore. Restrictions apply.

