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Abstract
Escuela Técnica Superior de Ingeniería Informática

Departamento de Arquitectura y Tecnología de Computadores

Doctor of Philosophy

Neuromorphic audio processing through real-time embedded spiking neural
networks

by Juan Pedro Domínguez Morales

In this work novel speech recognition and audio processing systems based on a
spiking artificial cochlea and neural networks are proposed and implemented.
First, the biological behavior of the animal’s auditory system is analyzed and
studied, along with the classical mechanisms of audio signal processing for sound
classification, including Deep Learning techniques. Based on these studies, novel
audio processing and automatic audio signal recognition systems are proposed,
using a bio-inspired auditory sensor as input. A desktop software tool called
NAVIS (Neuromorphic Auditory VIsualizer) for post-processing the information
obtained from spiking cochleae was implemented, allowing to analyze these data
for further research.

Next, using a 4-chip SpiNNaker hardware platform and Spiking Neural
Networks, a system is proposed for classifying different time-independent audio
signals, making use of a Neuromorphic Auditory Sensor and frequency studies
obtained with NAVIS. To prove the robustness and analyze the limitations
of the system, the input audios were disturbed, simulating extreme noisy
environments.

Deep Learning mechanisms, particularly Convolutional Neural Networks,
are trained and used to differentiate between healthy persons and pathological
patients by detecting murmurs from heart recordings after integrating the spike
information from the signals using a neuromorphic auditory sensor.

Finally, a similar approach is used to train Spiking Convolutional Neural
Networks for speech recognition tasks. A novel SCNN architecture for time-
dependent signals classification is proposed, using a buffered layer that adapts
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the information from a real-time input domain to a static domain. The system
was deployed on a 48-chip SpiNNaker platform.

Finally, the performance and efficiency of these systems were evaluated,
obtaining conclusions and proposing improvements for future works.
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Chapter 1

Introduction

“It’s overwhelming just to think I was so blind.
The answers I’ve been searching for are already here.”

– Justin Bonitz

Human beings have tried along their history to artificially solve different
problems that had been encountered in their path and that were already solved
in nature, in order to use the same mechanisms to progress and facilitate the
execution of dangerous or heavy tasks. The inquisitiveness for the unknown has
led to the development of smart solutions to survive and evolve in environments
to which humans were not adapted.

New research fields have been opened regarding the way to process the
information that we obtain from our surrounding environment through different
sensors. Some applications have the ability to provide autonomy to artificial
devices, such as machines in order to automate processes without human
intervention and the development of new devices capable of solving problems
that are increasingly complex with a higher precision and in a more efficient way.

These advances, for instance, were clearly seen in factories, with the goal of
developing robots to perform dangerous, high-precision and repetitive tasks by
providing them with the necessary intelligence, which would not be profitable or
possible to carry out if a person performs them. Currently, and increasingly often,
the technological devices that we buy and use in our daily basis have some kind
of intelligence that helps us achieve many of the tasks and actions that previously
they could not perform. The way in which our smartphone is able to cancel
part of the ambient noise during a call in order to improve the quality of the
conversation, or how cochlear implants are able to adjust its gain and filters to
adapt the input to specific environments, improving the customer’s quality of
life, are a couple of examples, from among others.

A new learning and automatic processing mechanism inspired by the
behavior of the nervous system was born in the recent history of artificial
intelligence, known as artificial neural networks (ANN). It is an interconnected
system of neurons that process the information together in order to produce
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stimuli and generate a specific output. These algorithms have raised in
popularity and many applications can be found in which neural networks are
involved. Some of the most common uses for these networks are pattern
matching and pattern recognition based on the data used as input to the network,
generating a specific output after the information is processed. Based on this
concept, many different types of neural networks specialized in specific tasks
have appeared. Some examples are convolutional neural networks, known in
the literature as CNN, which have proved to be ideal for extracting semantic
information from the input data, and spiking neural networks, known as SNN,
which offer a bio-inspired approach when processing the information.

A new line of research called Neuromorphic Engineering was born at the
end of the 80s in relation to these matters and problems. It focuses on studying
biological and inner systems of the human neural processing (Maher et al., 1989;
Mead and Mahowald, 1988), aiming to achieve analog and digital systems able
to mimic or produce the same operating patterns of the neurons in the human
brain. New sensors and bio-inspired systems are proposed in this line of research,
targeting at becoming high-speed data transfer and processing solutions, along
with understanding the behavior of the brain by mimicking part of it. In
the recent literature, it can be found: vision sensors (Lichtsteiner et al., 2008;
Serrano-Gotarredona and Linares-Barranco, 2013), auditory sensors (Chan et al.,
2007; Jiménez-Fernández et al., 2017; Yang et al., 2016; Xu et al., 2018), motor
control systems (Jimenez-Fernandez et al., 2012; Perez-Peña et al., 2013; Gómez-
Rodríguez et al., 2016), spiking neural networks (Stromatias et al., 2015; Sen-
Bhattacharya et al., 2018), and sensor fusion (Pearson et al., 1988; Chan et al.,
2012; Ursino et al., 2016), among many others.

This work is focused on neuro-inspired processing1 of acoustic signals,
aiming to obtain an efficient, automatic, noise-immune sound recognition system.
This kind of processing is usually done in two different phases: to extract
characteristic patterns to describe the acoustic signal, and to identify the studied
sound by comparing the characteristics that were extracted in the previous step
with reference models. These two sound recognition phases are already present
in nature in real-time, even in changing environments with background noise
and tough conditions. For the first part, we have used a neuromorphic auditory
sensor (NAS) (Jiménez-Fernández et al., 2017), which mimics the functionality of
the biological cochlea and how the information is coded in the auditory nerve.
This system processes the information by means of narrow pulses, using the
time between them as a modulation mechanism (Pulse Frequency Modulation
or PFM). A novel software tool for post-processing the output information of a
NAS has been developed in this work in order to study and analyze the frequency
components of specific sets of audio samples. Regarding the sound identification
phase, this research has focused on automatic pattern recognition using different
types of NNs. We have developed three different systems: the first one is based

1It is based on how the nervous system codes and processes the information.
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on SNNs, the second one on CNNs and the third one uses a combination of
both spiking and convolutional neural networks, SCNN. These classifiers are able
to extract specific patterns from the frequency components of the information
provided by the neuromorphic sensor.

The most common tasks that can be found in the literature regarding
neuromorphic sound recognition systems are: locating the sound source (Chan
et al., 2007; Schaik et al., 2009; Chan et al., 2012; Cerezuela-Escudero et al.,
2018), determining the nature of the sound (Nielsen et al., 2006; Ding and Zhang,
2007; Jäckel et al., 2010) and understanding the sound meaning (Kim et al., 2009;
Barbancho et al., 2012; Miró Amarante, 2013; Jesus Guerrero-Turrubiates et al.,
2014).

1.1 Motivation

Sound recognition systems are needed in a wide variety of different applications,
such as music transcription, speech recognition, “speech-to-text” transcription,
in-car systems and voice commands control, language learning, helping people
with disabilities and even for medical and healthcare applications like cochlear
implants or specific diseases diagnosis based on audio signals.

Automatic speech recognition (ASR) is a difficult task because of the acoustic
signals variability. Under favorable conditions, the audio signal recognition
could perform well, but things change under real conditions. Changes in
the acoustic (noise, reverb and echo) or electric (noise and signal distortions)
environments are some of the main factors that are present in a real scenario.
Another important factor that makes this a complex task is the need for a wide
dynamic range in order to discriminate sounds by their frequency and temporal
structure. Moreover, unlike images, where the information is given in the spatial
domain (the relation between adjacent pixels), the main information of audio
signals is given in the time domain, adding another element to the complexity
of the recognition system.

Regarding the living beings’ nervous and sensory system, it is still not
known how they are capable of achieving sound recognition with such high
efficiency by using, almost exclusively, information that is based on spiking
signals (Engineer et al., 2008). Bio-inspired solutions can overcome the problems
related to sound recognition that were mentioned previously, mainly because
biological cochleae provide a wide dynamic range and immunity to noise, while
also spiking neural networks achieve good results for recognizing frequency-
based patterns.

Sound recognition can be achieved with current technology by digital
hardware and software platforms, analog platforms or even a combination of
both. In this work we use bio-inspired spiking signals based on Pulse Frequency
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Modulation (PFM), commonly used in the neuromorphic engineering field, to
solve problems related to sound recognition tasks. The auditory sensor used
to obtain the spike-based information decomposes the input sound signal into
its frequency bands. Obviously, we are not going to exactly mimic the nervous
system of living beings; however, by using artificial spiking neural systems, we
can better understand how some features related to this kind of processing are
performed in nature. On the other hand, new mechanisms and systems based
on a neuro-inspired approach could provide specific technological advantages to
diverse applications. In short, these are the two main motivations that have led
scientific research in general: understanding nature and using that knowledge
to improve technological advancement. The results presented in this work are
not only isolated results to solve specific problems, but also a way to proceed for
different sound recognition tasks and applications and a way to understand how
biology performs this kind of processing.

On the personal side, it is important to highlight the author’s inquisitiveness
for researching new ways in which spiking information obtained from audio
signals could be processed and trained for building bio-inspired classification
systems, which could be used for automatic robot navigation and decision-
making tasks based on speech recognition, among others, along with the
development of new software tools for analyzing and postprocessing this kind
of spike-based information.

This thesis is part of the research career of the Robotics and Computer
Technology group (RTC, TEP-108), to which the author belongs. This work is
focused on and aligned with different tasks that are part of national research
projects, which have served as funding, along with the Spanish Ministry
of Education, Culture and Sports, thanks to a Formación de Profesorado
Universitario scholarship (2014, BOE-A-2014-13539). These projects are:

• BIOSENSE national project: Sistema bio-inspirado de fusión sensorial y
procesamiento neuro-cortical basado en eventos. Aplicaciones de alta
velocidad y bajo coste en robótica y automoción (TEC2012-37868-C04-02).

• COFNET national project: Sistema Cognitivo de Fusión Sensorial de Visión
y Audio por Eventos (TEC2016-77785-P).

• MINERVA excellence project: Mota-Infraestructura de Sensado y
Transmisión Inalámbrica para la Observación y Análisis de la Pauta de
Animales Salvajes o en Semilibertad (P12-TIC-1300).

A detailed introduction about the main scientific fields that this thesis
comprises is presented in the following sections, starting with bio-inspired
systems, continuing with the auditory system and audio processing, and ending
with deep learning and a hardware computing system that was used in this work
to model bio-inspired networks.
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1.2 Neuro-inspired systems

Since the inception of life on Earth, living beings have spread across the planet to
colonize different habitats. One of the keys to this life expansion is the capacity of
adaptation of organisms, who develop by nature the necessary traits to survive a
specific environment. Moreover, because of the high diversity of natural habitats,
organisms have had to specialize in surviving in their closest environment and,
therefore, this has produced a very rich diversity of species. These particular
intrinsic characteristics are coded within the genetic code of each species, which
has been modified and molded since the origin of life through evolutionary
processes. Thanks to evolution, a great variety of species can be found in nature.
Thus, many efficient solutions to the adaptation problem for organisms in their
environment have been achieved.

Throughout history, engineers have observed and taken inspiration from
how different problems are solved in nature in order to solve other complex
problems. This marks the inception of bio-inspired systems, which can be
found around us more and more often. Some bio-inspired systems are: drones,
submarines, planes, humanoid robots and cochlear implants, among others.

In the last decades, a big revolution has taken place in both industry and
our daily lives, thanks to the appearance of computation and robotic systems.
Industry has progressively incorporated the use of robots to perform complex
tasks where high precision and repeatability are needed or a lot of effort has to be
made. However, this kind of robots are programmed to perform a very limited
number of tasks in a controlled environment, with a high power consumption
and without any kind of ability to learn. On the other hand, animals are able
to navigate freely within the environment and they can also provide themselves
with energy, learn, socialize with other animals, develop a unique personality,
work together to achieve a common goal, etc.; that is, animals are capable of
developing social and cognitive abilities.

Most robots are currently commanded by algorithmic behaviors that are
processed by computer-based systems. In the last years, computers have evolved
at a very high rate, achieving a vast computational capacity, as was predicted by
Moore’s Law (Moore, 2006). Even though computers have evolved considerably
in the last years, robots have not experienced such a huge evolution, improving at
a much lower rate. It is at this point when we should wonder about the possibility
of modelling the behavior of a living being or one of their functionalities with the
necessary fidelity to algorithmically code this behavior in a program and load it
into the robot. If this approach was possible, could this algorithm be executed in
a computer in a relatively low time and with at least a minimum reliability level?
Possible answers to this approach could lead to new approaches and questions,
and, among all of them, we should wonder if current computer-based systems
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are the most appropriate ones to provide robots with advanced cognitive abilities
(Penrose and Mermin, 1990).

The answer to each of these questions is currently unknown, although
one thing is clear: we should take into account how the brain processes the
information and try to mimic the “controlling system” (central nervous system)
of living beings themselves by using reverse engineering techniques. From this
idea, the concept of neuro-inspired systems was born. These systems are a subset
of bio-inspired systems, which try to solve common engineering problems by
using systems that are based on how the nervous system encodes and processes
the information. This research area is increasing in popularity thanks to the work
of neuromorphic engineers. Processors have been at a standstill for some years,
and thus, a good alternative is to explore how the brain works and processes the
information using specific purpose systems instead of general purpose systems.

This section describes the concept of neuromorphic engineering, its brief
history and the principles by which it is governed.

1.2.1 Neuromorphic engineering

The term neuromorphic engineering was first used by Carver Mead in the
California Institute of Technology (Caltech) in the late 80s, with the initial
goal of mimicking the behavior of neurons in nervous systems by means of
VLSI analog circuits or aVLSI (Liu et al., 2002). His contribution consisted
in understanding biological neural systems through silicon implementations,
which has inspired the field of analog neuromorphic circuits design (Mead,
1989). However, the research interests of neuromorphic engineers have grown
in the last years, focusing on using also digital circuits instead of only analog
circuits to model the behavior of a neural system. To achieve this goal,
it is important to understand how nature has been able to create complex,
noise-robust and very efficient neural architectures that are also capable of
learning. Neuromorphic engineering is defined as a research field that is
dedicated to design and develop artificial computing systems whose physical
properties, structures or representation of the information are based on the
biological nervous system. Researchers from many different research fields take a
place within neuromorphic engineering: physicists, mathematicians, physicians,
biologists, engineers and even psychologists.

Since its inception in Caltech and Johns Hopkins University, this community
has grown considerably. Only a few prototypes of neuromorphic systems could
be found in some laboratories during the first years since its inception, but in the
last 20 years many neuromorphic platforms have appeared. Some of them are
able to deploy and simulate neural network models with thousands of neurons
(Furber et al., 2014; Indiveri et al., 2006). Moreover, we can find neuromorphic
sensors with a high dynamic range which can be used for high performance
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FIGURE 1.1: Reproduction of an original Ramon y Cajal drawing that
shows a few neurons in the mammalian cortex that he observed under the

microscope.

applications (Chan et al., 2007; Lichtsteiner et al., 2008; Jiménez-Fernández et al.,
2017; Serrano-Gotarredona and Linares-Barranco, 2013).

Currently, two international workshops in the field of neuromorphic
engineering take place every year: one in Telluride (United States) and another
one in Capo Caccia (Italy). These two workshops are a meeting point
for researchers all over the world, in which they have the opportunity to
share their last advances and developments in this field with the rest of the
community, along with collaborating and working with people from other
research groups and sharing their neuro-inspired systems to design specific
systems for processing spiking information.

In 1906, the Spanish scientist Santiago Ramón y Cajal received a Nobel
Prize in Physiology or Medicine in recognition of his work on the structure of
the nervous system, discovering that the brain consists of a set of independent
and interconnected cells, the neurons. His studies were possible thanks to the
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advances in staining methods and microscopes. A reproduction of one of Ramon
y Cajal’s drawings is shown in Fig. 1.1.

Three different parts can be distinguished in a neuron: dendrites, soma and
axon. A scheme of the neuron and its three main parts can be seen in Fig. 1.2.
Dendrites are the “inputs” of the neuron and they collect information from other
neurons, which is then sent to the soma. The soma is the “central processing
unit” and it performs a non-linear processing of the received information. The
information that is received and processed modifies the potential that a neuron
has and, if a specific threshold is reached, a signal is generated, which will be sent
through the axon (the “output” of the neuron) to other neurons that are connected
to this one.

FIGURE 1.2: Basic scheme of a neuron.

The connection between two neurons is known as the synapse (Johnston
and Wu, 1994). Neurons have very complex physiological characteristics. In
1939, Hodgkin and Huxley (Hodgkin and Huxley, 1939) analyzed the electrical
behavior of an isolated neuron, studying how its sodium and potassium channels
behaved, which granted them the Nobel Prize in Physiology or Medicine in 1963,
demonstrating that neurons represent, communicate and process the information
by means of small electric pulses in time, known as action potentials or spikes.
The neuron that sends a spike through a synapse is called pre-synaptic neuron,
whereas the one that receives the spike is called post-synaptic neuron.

Neurons have a resting potential of about -70mV. If the opening of the
ion channel results in a net gain of positive charge across the membrane, the
latter membrane is said to be depolarized, as the potential comes closer to zero.
This process is called excitatory post-synaptic potential (EPSP), as it brings the
neuron’s potential closer to its firing threshold (about -55 mV). On the other hand,
if the opening of the ion channel results in a net gain of negative charge, this
moves the potential further from zero and is referred to as hyperpolarization.
This process is called inhibitory post-synaptic potential (IPSP), as it changes
the charge across the membrane to be further from the firing threshold. If
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FIGURE 1.3: Diagram of a spike generated by a neuron.

the membrane potential of the neuron reaches the threshold, the neuron will
depolarize abruptly, generating a spike and transmitting a nervous impulse.
After firing2 the spike and the depolarization of the neuron, it will polarize up
to the point of hyperpolarizing, being unable to emit a new spike until a specific
time period, known as refractory period, has passed. Fig. 1.3. shows the diagram
of a spike generated by a neuron.

One of the key aspects of neural processing mechanisms is the hypothesis
on how neurons represent the information (how the information is encoded into
spikes). Horace Barlow proposed different models (Barlow, 1961). One of them,
which is widely accepted within the neuromorphic engineering community,
proposes that the information is encoded in the frequency of the spikes using
PFM (Maass and Bishop, 2001; Westerman et al., 1997; Shepherd, 2003). This
way, the information can be encoded without the need of performing a temporal
discretization of the information (Hynna and Boahen, 2001; Fujii et al., 1996).
Other ways to encode the information are through the interspike interval (ISI)
(Indiveri et al., 2006), or through the reset time, where the most important events
are the ones that have been emitted first (Thorpe et al., 2010).

The spiking representation of the information is very efficient from different
points of view: its simplicity, reducing the number of communication channels

2In the neuromorphic engineering field, firing a spike is synonym to emitting a spike.
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needed to transmit spikes, and its continuity, providing a continuous flow
of information in time, instead of in a discrete way. Therefore, spiking
representation provides a minimization in the number of channels needed
for communication, allowing a high interconnectivity rate between neurons,
and, since the information is not sampled, it avoids transmitting redundant
information and saturating the communication channels in an unnecessary way
by only transmitting spikes when they are needed.

This representation is efficient not only in the communication and
connectivity point of view, but it is also very robust to noise: the information
is encoded in the time between two consecutive spikes (ISI), where it is only
important if a spike exists or not. However, analog signals are completely
defenseless against external perturbations.

In most animals, the brain is the main part of the central nervous system. It is
located in the head, close to the most important sensory organs and it is protected
by the cranium. The human brain is extremely complex and it is estimated to have
between 15 and 33 trillion neurons, where one single neuron can be connected to
another 10 thousand. Neural structures are grouped in layers, whose goal is to
process part of the information that is obtained in the input. Each layer has a
specific functionality (Shadlen and Newsome, 1994; Rakic, 1988).

TABLE 1.1: Qualitative comparative analysis between a computer and a
neural system.

Computer Neural system

High speed global clock signal. Asynchronous, without a global clock signal.

Deterministic behavior. Stochastic behavior.

High resolution information sampled at a
constant rate.

Low resolution, but adaptive. No sampling
rate; the information is encoded within the

frequency of the spikes.

Centralized computing, or slightly
distributed.

Each neuron processes a small part of the
information. The processing is highly

distributed and massively parallel.

It needs memory for the algorithm and to
store the data.

The information is encoded within the flow of
spikes. The morphological characteristics and

the interconnections of each neuron is the
algorithm itself.

Table 1.1 shows a generalized qualitative comparison between how a
computer and a neural system work. The first difference that can be appreciated
is that a computer is controlled by a global clock signal, which makes it
react continuously every clock cycle. However, for neurons the processing is
completely asynchronous and they do not have any synchronization mechanism.
Moreover, the computer is a completely deterministic element that, after a
sequence of arithmetic and logic operations, knows in which state it should be,
while neurons respond to a stochastic model, depending on their reaction to
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their dynamic probabilistic models. Computer-based systems work with high
resolution information that is sampled at a constant rate, whereas neurons, once
again, are the exact opposite: although the resolution is not that high, they are
able to adapt the characteristics of the information to improve its representation.
In current computational systems, the processing is centralized (e.g. a personal
computer), in contrast to the way in which neurons process the information: each
neuron processes a small part of the information, without depending on other
neurons, implementing a massively parallel model. Computers need memory
units to store the instructions that are going to be executed and also for the initial,
halfway and final data, while neural systems do not need memory for any of
these purposes due to the fact that the “neural algorithm” that they perform is
encoded in the connection between different neurons and in the physiological
characteristics of them. This is, the information processing is in the spike stream
itself.

1.2.2 Address-Event Representation

Most neuromorphic systems consist of one or more neuromorphic sensors and
a set of spiking neural network layers to process the information provided by
the sensor, trying to mimic the interconnection that biological neurons have.
Unfortunately, based on the physical limitations in terms of connectivity and
taking into account the high density of connections in the brain, where each of the
105/mm3 neurons could be connected to other 10 thousand generating a density
of connections up to 4km/mm3 (Braitenberg and Schüz, 1998), it is not possible to
implement such connectivity in a VLSI system. Nevertheless, a neuron presents
a firing rate that ranges between 1-10 Hz, scaling up to kHz or MHz if many
hundreds are combined together, meaning that state-of-the-art electronic circuits
are much faster than biological neurons. To solve the connectivity problem and
based on this time difference and the high-bandwidth capacity of VLSI systems,
a mechanism is proposed that multiplexes the information in time for a set of
neurons in a single communication channel, where each neuron is identified
with a unique address. This method for representing the information is known
as Address Event Representation (AER), which was proposed for the first time
in 1991 (Sivilotti, 1991; Lazzaro et al., 1993; Lazzaro and Wawrzynek, 1995;
Boahen, 2000). It is an event-driven communication protocol used originally for
transferring spikes (action potentials) between neurons in VLSI implementations
(Mahowald, 1992). However, it is also useful for transmitting and receiving large
amounts of rate-coded information through a channel with smaller bandwidth
(digital asynchronous bus). Thus, it is an event-driven asynchronous and digital
multiplexing technique.

The main functionality of AER circuits is to provide multiplexing /
demultiplexing mechanisms for spikes that are generated by / sent to a set of
neurons. Fig. 1.4 schematically shows the transmission of information between



14 Chapter 1. Introduction

FIGURE 1.4: Transmission of spiking information using AER
representation.

two neuromorphic chips using the AER protocol. This protocol uses a shared
multiplexed high-speed bus (AER bus) for transmitting the spikes that are fired
by the neurons on a chip. Each neuron is identified with a unique address. Every
time that a neuron spikes, and thanks to an arbiter circuit, the address of that
neuron will be placed in the AER bus, generating an AER event. This way, each
of the asynchronous spikes will be encoded and multiplexed by the AER circuit
in the bus in the same order as they were generated. The timestamp in which
the address of the neuron is generated corresponds to the timestamp in which it
was fired plus a small delay caused by the codification process. These coding
circuits use a specific arbitrating logic to handle the transmission of multiple
spikes simultaneously from different neurons. Many different AER encoders can
be found in the literature, based on the mechanism used to solve the conflict of
multiple simultaneous spikes and how the addresses are encoded (Cerezuela-
Escudero et al., 2013). Each of these options have their own advantages and
disadvantages depending on the neuromorphic system used. A comprehensive
study of these mechanism can be found in (Liu et al., 2015).

The address of the neuron that produced the AER event is decoded in the
receiver chip as soon as it arrives using an asynchronous decoder, sending the
initial spike to the corresponding neuron. This way, neurons of the transmitter
and the receiver are virtually connected through the AER bus using the AER
protocol. If the delay between adjacent spikes in the input is high enough, the
AER decoder will send the spikes to the corresponding neurons with a delay that
corresponds to the time that the spike takes to reach the decoder plus a small
delay caused by the decoding circuit.

The AER protocol is a 4-phase handshake protocol between the transmitter
and the receiver that guarantees the synchronization between both chips. The
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transmitter starts the communication process with a request. Then, the second
chip, the receiver, answers to this request with an acknowledgement. To conclude
the transmission, the transmitter removes the request and the receiver does the
same with the acknowledgement, resetting the system to its initial condition.
Both parts of the communication are not active until the transmitter starts a new
request. A new transmission depends on the neurons of the transmitter chip
that try to send and AER event. Thus, AER is a data-driven protocol. In this
asynchronous protocol, the activity within the communication bus depends on
the data transmissions, which is in contrast with classical discrete and periodic
systems.

In this thesis, the AER protocol is the basis of the transmission and processing
of the auditory information. The AER protocol used in this work was proposed in
the European research project CAVIAR: Convolution AER Vision Architecture for
Real-Time (IST2001-34124) (Serrano-Gotarredona et al., 2009). The characteristics
of the cable and the connector for implementing this AER protocol are described
in the AER specification document (Berge and Hafliger, 2007).

1.2.3 Software tools for processing neuromorphic information

With the increasing number of neuromorphic hardware including sensors and
systems for deploying and running SNNs in real time, a proper set of software
tools to process spiking information have become very useful for various reasons:

• Debugging neuromorphic sensors is a challenge due to the fact that the
output information that they provide is encoded in the time between two
consecutive spikes (inter-spike interval or ISI). Thus, tools for analyzing the
information from the output of these sensors are required.

• Users could only want to obtain the spiking information from the sensor
and process it using particular algorithms in order to extract useful data
from it and perform some sort of classification or study. For this purpose,
software tools able to log the information from the sensor to the computer
using common interfaces and processing it both in real time or after
recording it to the hard drive are needed.

• In order to train a neural network with the output information from a
neuromorphic sensor, a software application is needed to generate a dataset
out of the logged information, extracting the useful components and saving
them in a standard format.

• Prior to deploying a SNN implementation on a neuromorphic hardware
system, it is commonly built, trained and tested on a simulator in order to
verify that the specific model to be implemented behaves as expected for
a generalized set of input samples. Several libraries like PyNN (Davison
et al., 2009) and Nengo (Bekolay et al., 2014) allow us to build complex
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spiking networks, and simulators like NEST (Gewaltig and Diesmann,
2007), Brian (Goodman and Brette, 2008) and NEURON (Hines and
Carnevale, 2001) can simulate those models before deploying the network
in a hardware platform.

Some of these software tools for processing neuromorphic information are
presented in the following chapters.

1.2.3.1 jAER

jAER (Delbruck, 2008) is an open-source (under GNU Lesser General Public
License v2.1) framework for PCs for visualization of real-time or recorded event-
based data3, and rapid development of real-time event-based algorithms and
applications built in Java. jAER consists of an application called “jAERViewer”
that allows to plug in any AER device with USB interface and perform different
functionalities with it, e.g. view the events coming from the device in real time,
log (record) them to disk, play a logged AER stream back and process the events
using different filters.

There are many AER devices compatible with jAER, from dynamic vision
and audio sensors to AER monitor/sequencer boards, along with a servo motor
controller, among others.

The events are produced by sensors asynchronously and timestamped (with
1 µs precision). They, they are transmitted through the USB to the PC in packets,
which contain variable numbers of events, and when they are received, jAER
applies a set of filters chosen by the user. Meanwhile, the software can render
the events that are output by the final filter and add visual annotations over the
output.

In this work, jAER was used to log AER-data4 files from a Neuromorphic
Auditory Sensor (Jiménez-Fernández et al., 2017) for further processing. Fig. 1.5
shows a screenshot from AER, receiving spikes in real time from the live output
of a Neuromorphic Auditory Sensor and from a Dynamic Vision Sensor (DVS)
(Serrano-Gotarredona and Linares-Barranco, 2013).

In this thesis, a new software tool for post-processing the output spiking
information from neuromorphic auditory sensors was developed, and it is
thoroughly explained in Appendix A.

3With “event-based data” we mean address-events from systems using AER protocol which have
been timestamped.

4AER-data files have .aedat extension.
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FIGURE 1.5: DVS output representation of a hand in motion in jAER (top)
and NAS output representation of a speaker talking in jAER (bottom).

1.2.3.2 PyNN

PyNN (Davison et al., 2009) is a simulator-independent language for building
neural network models using Python programming language. PyNN lets users
build a network model by writing the code using its set of tools and functions and
then run it without applying any modification to it on any of the simulators that
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PyNN supports and on a number of neuromorphic hardware systems. Currently,
PyNN supports NEURON (Hines and Carnevale, 2001), NEST (Kunkel et al.,
2017) and Brian (Goodman and Brette, 2008) as simulators, and SpiNNaker
(Furber et al., 2013) and BrainScaleS (Furber, 2016) as neuromorphic hardware
systems.

The PyNN API provides a high-level of abstraction approach when
modelling neural networks. The user is able to code a neural network model
by only defining populations of neurons, and connections between them, using
predefined cell models and commonly-used connectivity algorithms (all-to-all,
random, one-to-one, among others) that the user does not need to implement.
On the other hand, the user can also access lower level features like details of
individual neurons and synapses when required. PyNN provides a library of
standard cell models and synapse and synaptic plasticity models, along with the
connectivity algorithms that were presented before, while still allowing users to
build their own connectivity by coding it in Python.

1.2.3.3 NEST

As was previously introduced, NEST (Gewaltig and Diesmann, 2007; Kunkel
et al., 2017) is an open-source (under GNU General Public License) spiking neural
networks simulator. It is fast, memory efficient and has minimal dependencies.
It is supported by PyNN as user interface, as well as by PyNEST. In this work it
was used to model, train and test Spiking Neural Networks for audio samples
classification before deploying them in a neuromorphic hardware platform. The
neuromorphic hardware system used was SpiNNaker, which has a package
called sPyNNaker that provides common code for PyNN implementations for
SpiNNaker. Due to the fact that both NEST and SpiNNaker are supported
by PyNN, modelling, training and testing a network in NEST and, after that,
deploying the model in SpiNNaker, can be done with very few changes in the
Python code. A more detailed description about SpiNNaker and its features is
provided in section 1.2.5.

1.3 Auditory system and audio processing

In previous chapters, neuro-inspired systems were introduced. These systems
mimic the way in which the senses and the brain process the information. Thus,
it is intended to obtain benefits in the processing that are present in living
organisms and that could be used for particular tasks like speech recognition
and sound source localization. To be able to develop this kind of systems, it is
necessary to have basic biological knowledge of the processing to be emulated.
Therefore, in this chapter, the main characteristics of the sense of hearing
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are presented, along with a state-of-the-art analysis of different bio-inspired
neuromorphic auditory systems that have already been published, emphasizing
the one that was used and that is the base of each of the classifiers that were
developed in this work.

In this chapter, the elements of the auditory system that receive, analyze and
encode the acoustic information into nerve impulses to be processed by the brain
afterwards are presented first, including the mechanisms that make this whole
process possible. Then, the key concepts of the main characteristics of a sound
(pitch, timbre and loudness) are introduced, along with the three main processes
of the analog-to-digital conversion: sampling, quantization and encoding. To
conclude, a study about the computational models that represent the propagation
of the sound through the inner ear and the conversion of the acoustic vibrations
into nerve impulses is presented, along with some implementations of these
models consisting of a study about the most relevant neuromorphic artificial
cochleae.

Thanks to the study of the information presented in this chapter, especially
on how the bio-inspired cochlea that was used works and processes the input
analog sound signal, propagating this information using the AER protocol, a
set of sound recognition systems and classifiers were developed, along with a
software tool to post-process the raw spike information. Chapter 3 and the set of
papers attached as appendices in this work detail each of the contributions that
have been made.

1.3.1 Hearing in biology

In this chapter, the anatomy and the physiology of the auditory system are
described, emphasizing the parts and structures that are more relevant for audio
processing and sound recognition.

The concept of perception consists in the detection of a stimulus by one
or more sensory receptors. The sensory receptors of the human body are
continuously sensing things that we are not even aware of (e.g. blood pressure,
blood temperature, carbon dioxide and oxygen concentration, etc.) due to the fact
that the signals that are sensed are not sent to the region in the brain cortex that is
in charge of consciousness. In other circumstances, perception leads to sensation
(or conscious perception). In these cases, the sensory receptors transmit impulses
to the brain cortex through nerves and pathways. The brain cortex is able to
integrate these signals into a sensation in the order of microseconds (Hull, 2011).

Hearing is one of the senses that are classified as special senses, which
have specialized organs devoted to them (vision has the eyes, hearing has the
ears, smell has the nose and taste has the tongue). Therefore, hearing could be
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defined as the detection of sound waves and their integration in order to generate
sensations (Hull, 2011).

Every sensation, including the ones produced by hearing, are the result of the
same sequence of events: first, a stimulus is produced. Then, the sensory receptor
detects the stimulus and converts it into an electrical signal. Next, the signal is
transmitted to the brain (through the auditory pathways in the case of hearing).
Finally, the brain integrates the signal into conscious perception (sensation).

The task of receiving the audio signal, processing it and transforming it
into impulses are carried out inside the ear, while neural processing and sound
recognition are performed in the brain. Thus, two main regions or sections can
be distinguished in the auditory system: the peripheral auditory system, where
sound waves are converted into nerve impulses, and the central auditory nervous
system, which transforms these impulses into sensations.

Different cognitive processes intervene in the central auditory nervous
system, by which context and meaning are given to the sound, i.e., they allow
the recognition of words, the classification of different musical instruments, the
localization of the sound source, distinguishing between different speakers by
their pitch and loudness, etc., among other complex tasks.

1.3.1.1 Peripheral auditory system

The peripheral auditory system, also known as the ear, is responsible for the
physiological processes of hearing. These processes allow the reception of sound,
transforming it into electrical impulses that are then sent to the brain through
the auditory nerves. The mechanical processing of the sound waves and their
transformation into impulses are non-linear processes (Zwicker and Fastl, 2013),
which hinders the characterization and modelling of the auditory perception.

The peripheral auditory system is divided into three interconnected parts:
the outer ear, the middle ear and the inner ear. Next, the anatomy and
functionalities of each of these three parts of the ear are described, along with
the propagations and the processing of the sound across them.

1.3.1.1.1 Outer ear

The outer ear is the external part of the ear and it consists of the auricle
and the ear canal. The auricle is the visible part of the ear that resides outside
the head (the word “ear” is also used to refer to this part alone) and it is also
known as pinna. Its function is to gather the sound waves and guide them
through the ear canal. When they hit the auricle, sound waves are reflected and
attenuated, which provides additional information to the brain for determining
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the direction of the sound that the auricle is receiving. The determination of the
direction of the sound depends on the outer ear anatomy. Except for specific cases
in which sounds come directly from towards, rearwards, above or below, the
sound reaches the closest ear a fraction of a second earlier and louder than in the
furthest one. If the difference is higher than 10 µs (minimum human interaural
time difference threshold), the brain is able to detect and interpret it.

FIGURE 1.6: Anatomy of the ear. Image taken from (Patton et al., 2012).

The ear canal is 2.5 cm long and it extends from the auricle to the eardrum,
also called the tympanic membrane, in the middle ear. Its main function is to
protect the middle ear and to maintain the middle ear at a stable temperature. It
conducts the vibrations gathered in the auricle to the tympanic cavity, amplifying
sounds with frequencies between 3 and 12 KHz. Each of these components are
shown in Fig. 1.6.

1.3.1.1.2 Middle ear

The middle ear is the part of the ear that is internal to the tympanic
membrane, which separates this part from the outer ear (Fig. 1.6). The eardrum
vibrates when it is hit by sound waves. The middle ear contains three small
ossicles (malleus, incus, and stapes), which propagate the sound waves from
the eardrum to the inner ear. The stapes is in contact with one of the fluids
contained in the inner ear through the oval window. Thus, the ossicular chain
acts as a mechanism to transform air vibrations into waves in the fluid and
membranes of the inner ear. In order to achieve this, the air pressure inside
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the middle ear must be the same as the atmospheric pressure, which is possible
thanks to the Eustachian tube (also known as auditory tube or pharyngotympanic
tube), connecting the middle ear with the nasopharynx and allowing pressure to
equalize between the middle ear and throat (Hull, 2011; Patton et al., 2012).

The main functions of the middle ear are:

• To increase the pressure received by the eardrum. This is very important,
since the cochlea is full of liquid, instead of air, and the density and
compressibility of the cochlear liquid (the perilymph) is almost four
thousand times lower than that of the air. If we did not have a mechanism
to increase the pressure inside the middle ear, only 0.1% of the tympanic
pressure would reach the cochlea. This acts as a sound normalization step
phase. To protect the inner ear structures from extremely loud sounds, the
stapedius (the muscle that stabilizes the stapes), stiffens the ossicular chain
by pulling the stapes away from the oval window of the cochlea, decreasing
the transmission of vibrational energy to the cochlea for sounds below 1-2
kHz and above 85-90 dB. This mechanism is known as stapedius reflex or
acoustic reflex.

• To reduce the transmission of low-frequency sounds, acting as a low-pass
filter, with an attenuation of 15 dB per octave in the 1 kHz band.

1.3.1.1.3 Inner ear

The inner ear is the innermost part of the peripheral auditory system. It
consists of the vestibular system, which is dedicated to control balance, and the
cochlea, dedicated to hearing.

The cochlea, which is shown in Fig. 1.7, is a 32-35 mm long, 4 mm2 to 1 mm2

wide (from the base to the apex) spiral-shaped cavity filled with two different
fluids. Fig. 1.8 shows a cross section of the cochlea in which three tubular ducts
can be seen. The central one is the cochlear duct (also known as scala media)
and contains endolymph. The second and third ducts, called vestibular duct and
tympanic duct (or scala vestibuli and scala tympani, respectively), contain the
same fluid, perilymph, due to the fact that they are interconnected through a
small opening in the apex of the cochlea called helicotrema. The base of the stapes
is in contact with the fluid of the vestibular duct through the oval window, while
the tympanic duct terminates at the round window in the tympanic cavity, as
shown in Fig. 1.6. The lining between the cochlear duct and the vestibular duct
is known as the Reissner’s membrane, while the lining between the cochlear duct
and the tympanic duct is called basilar membrane (Fig. 1.8) (Hull, 2011).

The basilar membrane is a structure whose width and rigidity are not
constant: it is broad and rigid near the oval window, and it gets thinner and
more flexible near the apex of the cochlea. Rigidity decays almost exponentially
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FIGURE 1.7: Inner ear. Image taken from (Patton et al., 2012).

FIGURE 1.8: Cross section of the cochlea.

with the distance from the oval window. This variation affects the propagation
speed of the sound waves across the basilar membrane, and it is responsible for
one of the most important functionalities of the inner ear: frequency selectivity.

The basilar membrane supports the Organ of Corti (also known as spiral
organ), the most important element in the cochlea, which is able to transduct from
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movement into nerve impulses’ action potential (see Fig. 1.9). The Organ of Corti
contains between 15000 and 30000 receptors called hair cells. Their name derives
from the tufts of stereocilia, known as hair bundles, which protrude from the
apical surface of the cell into the cochlear duct. Each of the “hairs” of these cells
are able to produce receptor potentials when they touch the tectorial membrane,
which is located above the basilar membrane.

FIGURE 1.9: Inner structure of the Organ of Corti.

Hair cells can be divided into two different types: the inner hair cells (IHCs)
and the outer hair cells (OHCs). There exist around 3500 IHCs and 20000 OHCs.
Both cell types have connections with the afferent nerve fibers, which propagate
action potentials towards the brain, and efferent nerve fibers, which propagate
action potentials from the brain to the cochlea. However, the fiber distribution
is very unequal: more than 90% of the afferent fibers innervate IHCs, whereas
most of the 500 efferent fibers innervate OHCs. The functionality of each type is
presented next.

The behavior of the cochlea starts with the vibrations produced by the
stapes, which generates vibrations in the fluid contained in the vestibular
duct. Oscillations in the perilymph of the vestibular duct are transmitted to
the endolymph, and then to the basilar membrane, which also propagates the
oscillations to the fluid in the tympanic duct (see Fig. 1.10). It is important to
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note that the amplitude and frequency of the vibrations are directly proportional
to the amplitude and frequency of the sound waves.

FIGURE 1.10: Effect of sound waves on cochlear structures. Image taken
from (Patton et al., 2012).

The sound wave that generates these oscillations has a peak value in its
amplitude in a specific region of the cochlea that depends on the frequency
of the wave and it tends to decrease rapidly near the apex. The lower the
frequency of the sound is, the greater the distance that the wave will travel across
the membrane before being attenuated, and vice versa. This way, the basilar
membrane scatters the different frequency components of a complex spectrum
signal in well-defined positions with respect to the oval window, as is shown in
Fig. 1.11.

The waves that are propagated through the cochlea produce a force or
pressure to the cochlear duct, and therefore to the Organ of Corti. In the Organ
of Corti, the hair cells rest upon the basilar membrane, and the external part of
the stereocilia are in contact with the tectorial membrane (see Fig. 1.9). Both
membranes have different flexibility, making each of them move in relation to
the other one when a wave travels across them. As a result, the external part of
the hair cells bend when the membranes move. This bending produces a change
in the action potential of the hair cells: depending on the bending direction, the
hair cell hyperpolarizes or depolarizes. These variations in the action potential
produce changes in the neurotransmitter release of the hair cells in the synapse
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Figura 26. Frecuencia de resonancia de la membrana basilar. 

 

Figura 27. Organización tonotópica de la cóclea. A) Distribución tonotópica de la cóclea. B) 

Localización de la respuesta coclear a altas frecuencias. C) Localización de la respuesta 

coclear a frecuencias medias. D) Localización de la respuesta coclear a bajas frecuencias. 

FIGURE 1.11: Tonotopic distribution of the cochlea (A). Localization
of high-frequency (B), medium-frequency (C) and low-frequency (D)

responses in the cochlea.

with a first order neuron. The molecules of the neurotransmitters released in the
synapse change the action potential of a neuron of the vestibulocochlear nerve,
altering the impulse frequency of the action potentials. These action potentials
travel to the brain through the vestibulocochlear nerve (Hull, 2011).

The intensity of the auditory stimulation depends on the number of action
potentials per unit of time and the number of cells that have been stimulated,
while the frequency of the signal depends on which specific populations of
nerve fibers are activated. There exists an association between the input sound
frequency and the section of the cerebral cortex that has been stimulated. The
lower the frequency of the vibration of the sound is, the closer to the apex
the maximum excitation of the basilar membrane will take place. For greater
frequencies, the maximum excitation will take place near the oval window.
Depending on the section of the basilar membrane that oscillates with higher
amplitude, the hair cells of that section will be activated in a higher proportion,
stimulating subsequent afferent neurons that will produce spikes. This process
originated the concept of characteristic frequency, to describe the way in which
neurons in the middle ear respond with a particular low threshold for sound
waves with a specific frequency, and plays an important role in the tone
discrimination of a sound. If the sound wave in the input corresponds to a pure
tone, a specific region of the basilar membrane with a particular characteristic
frequency will oscillate with a higher amplitude. On the other hand, the further
the section of the basilar membrane is from the characteristic frequency of the
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pure tone, the weaker the response will be. Thus, each of the sections of the
basilar membrane act as an auditory filter that reacts to a narrow frequency
bandwidth (critical band).

A higher amplitude sound will produce a higher amplitude wave in the
basilar membrane, increasing the number of IHCs that are excited, along with
the number of action potentials that are generated in the afferent neurons. The
difference between the IHCs and the OHCs lies on their functionality. While IHCs
are in charge of transforming the amplitude of the wave into action potentials (as
was explained in previous lines), the main functionality of OHCs is the ability
to adapt the cochlear response depending on the input stimulus received. Thus,
because of OHCs, the cochlear response is non-linear (see Fig. 1.12). The cerebral
cortex classifies tones based on the region of the cochlea that has been excited,
and their amplitudes based on the number of active neurons and their firing rate.

FIGURE 1.12: Effects of the nonlinear behavior of the cochlea on Basilar
Membrane Velocity. (left) Response of a point on the basilar membrane
without the effect of OHCs (Passive) and with OHCs (Active). (right)
Response level as a function of input level at the characteristic frequency of

the basilar membrane section.

Summarizing, two types of signal representation can be found in the
auditory nerve: the spectral representation and the temporal representation. This
duality is caused by the fact that the hair cells of the cochlea, which present a
tonotopic organization, generate a different response based on the amplitude of
the signal and its temporal envelope. Therefore, for a pure tone with a specific
frequency, it is represented in the auditory nerve by a position, based on the
position of the IHCs that are excited with that frequency, and by the periodicity
of the responses of the fibers that react to that stimulus (temporal representation).
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1.3.1.2 Central auditory nervous system

The central auditory nervous system consists of the auditory pathways and the
auditory cortex. The signals generated in the Organ of Corti inside the cochlea
are sent through the vestibulocochlear nerve to the auditory cortex. The auditory
cortex is the part of the temporal lobe of the brain that processes auditory
information in humans and other vertebrates. It represents the highest level of
the auditory system in mammals.

FIGURE 1.13: Highly schematic diagram of the bilateral central auditory
pathway. The main pathways and nuclei are shown for both cochleae.

Binaural stimulation occurs at the superior olive and all regions above.

From the vestibulocochlear nerve to the auditory cortex, the signal travels
through the ascending auditory pathway (also known as the afferent pathway),
where other important tracts and nuclei of the central auditory nervous system
exist. Fig. 1.13 shows a highly schematic and simplified diagram with only
the main components, although other nuclei exist. Almost all fibers of the
auditory nerve synapse on cells of the cochlear nucleus (comprising the ventral
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cochlear nucleus and the dorsal cochlear nucleus), where the processing of the
acoustic information begins. Signals can take different paths in their way from
the cochlear nucleus to the auditory cortex. Most of the axons of the cochlear
nucleus cells (around 70%) cross over to the opposite side (contralateral side) of
the brain, whereas only 30% of them are connected with other elements in the
same side of the brain as the ear from which the signal was received. Thus, each
of the hemispheres of the brain cortex receives auditory information from both
ears (Hull, 2011).

Both crossed and uncrossed axons of the cochlear nuclei synapse in an
area of the central auditory nervous system called the superior olivary complex,
which is the first place in the afferent pathway of the auditory system that
receives information from both ears. The superior olivary complex is divided
into three main different nuclei: the medial superior olive, the lateral superior
olive and the medial nucleus of the trapezoid body. The medial superior olive is
believed to measure the time difference of the arrival of sounds between the ears
(interaural time difference or ITD), whereas the lateral superior olive is believed
to be involved in measuring the difference in sound intensity between both ears
(interaural level difference or ILD). Both ITD and ILD are very important for
determining the azimuth of sounds, i.e. localizing the input sound.

FIGURE 1.14: Lateral view of the human brain, with the auditory cortex
exposed. The primary auditory cortex contains a topographic map of the
cochlear frequency spectrum (shown in kilohertz). Author of the image:

Chittka L, Brockmann.

Then, the impulses are transmitted to the inferior colliculus, whose main
functionalities are signal integration from various auditory nuclei, frequency
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recognition and pitch discrimination (Skottun et al., 2001; Shore, 2009). From
there, the information goes to the medial geniculate body (also known as medial
geniculate nucleus), which is part of the auditory thalamus and serves as a
connection between the inferior colliculus and the auditory cortex. Neurons in
the auditory cortex are organized based on the frequencies of the sound to which
they respond best, e.g. a frequency map (known as tonotopic map), as shown
in Fig. 1.14. The impulses generated by the hair cells in a particular section of
the basilar membrane (sensitive to a specific frequency interval) are projected in
the corresponding region in the auditory cortex. Therefore, the brain perceives
the tone received in the ear based on the area of the cortex that is stimulated.
The auditory cortex also has neurons that respond best to the action potentials
generated by high amplitude sounds, while others are more sensitive to low
amplitude sounds. Part of the auditory cortex is responsible for giving sense
to the information, discriminating between different sound patterns based on its
variations in tone, frequency, intensity and direction. The auditory cortex also
receives information from other regions of the brain such as the visual cortex and
the somatosensory cortex, collaborating in the interpretation of the signals (Hull,
2011).

The auditory system also transmits information from the auditory cortex
to the cochlea through the efferent pathway (also known as the descending
auditory pathway), giving feedback and modifying the analysis that is made in
the cochlea in the form of frequency discrimination or non-linear amplification
of quiet sounds. OHCs play an important role in this process (Cant and Benson,
2003).

1.3.1.3 Psychoacoustics

Acoustics is the branch of physics that describes the physical characteristics of the
sound, while psychoacoustics studies how the sounds are perceived. The main
goals of psychoacoustics is the study of hearing through the subjective responses
to auditory stimuli.

Hearing is not a purely mechanical phenomenon of wave propagation; it is
also a sensory and perceptual event.

In the same way as the intensity of a sound and the loudness (the intensity
with which we perceive the sound) differ, the frequency of the sound and
the frequency with which we perceive that sound can also be differentiated.
The frequency components of a sound is objective information; however, the
subjective interpretation of the frequency of a sound is called pitch. Pitch has
been defined by ANSI (American National Standards Institute) as “that auditory
attribute of sound according to which sounds can be ordered on a scale from
low to high”. For complex sounds like the ones produced by musical notes,
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which consist of a fundamental frequency and one or more harmonics, the pitch
is defined only by the fundamental frequency.

This work presents a system that classifies between different pure tones. In
this case, frequency and pitch will be considered synonyms.

Timbre is defined by ANSI as “that attribute of auditory sensation in terms
of which a listener can judge that two sounds similarly presented and having the
same loudness and pitch are dissimilar”, and by Risset and Mathews (Mathews
et al., 1969) as “the attribute that enables the listener to identify the instrument
producing the tone”. Thus, timbre is the subjective quality that allows us to
distinguish between different musical instruments that produce the same musical
note. Two musical notes with the same fundamental frequency could have a
different spectrum because of their harmonics.

Humans are able to perceive sounds in a frequency region between 20 Hz
and 20000 Hz, although we are more sensitive to the ones between 2000 Hz and
5000 Hz. This range differs between two different persons, shrinking during life,
particularly the perception of high frequency sounds (Rodríguez Valiente et al.,
2014).

The frequency resolution of the ear depends on the intensity and the
frequency of the sounds. For tones around 200 Hz we are able to discriminate
sounds with minimum frequency differences of 1 Hz. On the other hand, for
higher frequencies, the frequency resolution increases. For example, for a 10 kHz
tone, the frequency resolution is 200 Hz. The reason for this is that the auditory
system acts as a set of overlapped filters, in which lower frequencies involve
narrower filters and higher frequencies involve wider filters (Janus, 2004).

In silent environments, humans can hear sounds with an intensity range
between 0 dB-SPL (Sound Pressure Level) and 130 dB-SPL. Sounds with an
intensity greater than 130 dB-SPL could damage the ear. The minimum intensity
differential threshold between two sounds is called JND (Just-Noticeable
Difference) and has a value of 1 dB (Janus, 2004). Fig. 1.15 shows the perceived
human hearing.

Regarding the duration of the sound, it only has an inferior limit. The
shortest perceptible sound ranges between 10 and 40 ms (Bascuas, 1997). Twenty
milliseconds is a widely used value when integrating information of sounds in
auditory processing.

To represent loudness in a graphical way against the frequency and intensity
of the tones, equal-loudness contours are used. This metric was developed by
Fletcher and Munson (Fletcher and Munson, 1933). These curves calculate the
existing relation between the frequency and intensity (dB) of two sounds, in order
for these to be perceived equally loud by the ear, meaning that each dot of the
same contour have the same loudness (Janus, 2004).
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FIGURE 1.15: The absolute threshold of hearing. The curve shows the
quietest sounds a human can hear depending on the frequency and the

intensity of the sound.

There is also a relation between the duration and loudness of a sound. A
sound with a constant intensity decreases its loudness by 25% after some minutes
(Janus, 2004).

One noticeable characteristic of the auditory system is the masking effect
(O’shaughnessy, 1987). Auditory masking is the effect by which the perception
of one sound is affected by the presence of another sound. Auditory masking in
the frequency domain is known as simultaneous masking, frequency masking or
spectral masking. Auditory masking in the time domain is known as temporal
masking or non-simultaneous masking.

Frequency masking experiments led Fletcher on the hypothesis that part of
the auditory system behaves as a set of overlapped band pass filters (Fletcher,
1940). Each of these filters corresponds to a section of the basilar membrane. Each
section is 0.9 mm long approximately. The range of these filters that stimulate the
same portion of the basilar membrane is called critical band. While some studies
have described a specific number of critical bands with well-defined ranges, like
the Bark scale (Zwicker, 1961), Mel scale (Stevens et al., 1937) and ERB scale
(Equivalent Rectangular Bandwidth) (Glasberg and Moore, 1990), other studies
have suggested that the cochlea is a set of continuous filters. The next section
describes different auditory system models and how they are implemented in
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analog and digital electronic systems, where critical bands take an important role.

1.3.2 Bio-inspired electronic auditory systems

Artificial cochleae model the basilar membrane using a set of filters or resonators
with cutoff/center frequencies (depending on whether low-pass filters or band-
pass filters are implemented), which mimic the frequency distribution along
the basilar membrane. Depending of the position of the basilar membrane,
its flexibility and width changes. These changes are implemented by setting
different parameters to the filters.

As has been presented in previous sections, the biological cochlea is a very
complex part of the inner ear, which means that modelling and implementing
its functionality is not an easy task. This fact has resulted on artificial cochleae
implementations that only model part of the characteristics of the biological
cochlea. These characteristics are chosen depending on the application that
researchers want to integrate in the system. Therefore, the majority of artificial
cochleae do not achieve comparable results to the ones obtained by a biological
cochlea.

Since the first design of an artificial cochlea presented by Richard Lyon
and Carver Mead in 1988 (Lyon and Mead, 1988), activities referred to the
implementation of different mathematical models of the cochlea using analog
VLSI have increased. Digital implementations using reconfigurable logic devices
have also increased in popularity, although not as much as analog approaches.

Even three decades after the first silicon cochlea, artificial cochleae are still
far from being comparable to the biological cochlea, especially in terms of power
consumption, frequency range, dynamic range of the input or noise immunity.
Taking into account that these models aim to emulate in the same way as a system
that has evolved for hundreds of millions of years, some good approximations
have been achieved.

Fig. 1.16 shows different implementations of artificial cochleae and their
evolution in time.

Artificial cochleae can be categorized in many different ways. Generally, they
are classified based on:

• The coupling coefficient that exists between the elements of the filters.
We distinguish between one-dimensional silicon cochlea (1-D) and two-
dimensional silicon cochlea (2-D).

• The existence or lack of automatic gain control to allow filters to
dynamically adapt to the intensity changes in the input (active or passive
cochleae).
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Lyon and Mead (1988)
First silicon cochlea

Lazzaro and Mead (1989)
1D with IHCs, SG, etc.

Lyon (1991).
DIF3 filters

Summmerfield et al. (1992)
Digital, AGC

Leong, Jin et al. (2003)
Digital FPGA

Chan, van Schaik et al.. (2007)
Advanced IHC, AER

Watts, Kerns et al. (1992)
Improved 1D

Lazzaro et al. (1994)
Programmable, +

Bhadkamkar et al. (1993)
Different filters

Liu, van Schaik et al. (2010)
Q enhancement, AER

Van Chaik et al. (1998)
CLBTs for biasing

Sarpeshkar et al. (1996)
WLR, nonlinear gain

Sarpeshkar. (1998)
Offset compensation, AGC

Liu, Andreou et al. (1991)
Parallel filterbank

Liu, Andreou et al. (1992)
Parallel with BPFs

Lin, Ki et al. (1994)
Switched capacitor, parallel

Furth and Andreou (1995)
Low power, parallel

Bor and Wu (1996)
Switched capacitor, transmission line

Germanovix and Toumazou (1998)
Parallel filterbank

Jones, Meddis et al. (2000)
Digital, parallel

Graham and Hasler (2002)
C4 band-pass

Abdalla and Horiuchi et al. (2005)
Parallel, Gryo-based filters, AER

Georgiou and Toumazou (2005)
Log-domain, parallel, global ADC

Stoop, Jasa et al. (2007)
Hopf, discrete components

Watts, Lyon et al. (1991)
Bidirectional 1D

Watts (1992)
First 2D

Fragniere (1998)
Current domain 2D

Van Schaik et al. (2001)
2D peudo-voltage domain

Shiraishi (2004)
2D pseudo-voltage/current

Wen and Boahen (2006)
Active, bidirectional coupling

Hamilton, van Schaik et al. (2008)
AQC

Liu, van Schaik et al. (2014)

Yang et al. (2016)

Thakur, Hamilton et al. (2014)

Xu, Thakur et al. (2018)

Jimenez-Fernandez et al. (2017)

Model that follows directly

Elements of previous model used

Key:

FIGURE 1.16: Historical tree diagram of different artificial cochleae
developed.

In this section the most relevant developments regarding artificial cochleae
are presented, both analog and digital implementations. Each of them is based on
mathematical models that represent the propagation of the sound wave through
the inner ear and the conversion between acoustic energy and nerve impulses, for
later processing. Some of the most popular mathematical models of the auditory
system are explained in this section before describing analog and digital cochleae
implementations.

1.3.2.1 Auditory system models

As has been detailed in previous sections, part of the human auditory system
acts as a continuous and overlapped set of band pass filters, which correspond
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to a specific region of the basilar membrane. In this section, the most relevant
models that represent this behavior of the cochlea are presented. In addition to
the behavior of the cochlea, some of these models also include other parts of the
peripheral auditory system.

Based on the structure of the band pass filters that are implemented, two
different auditory models can be found: parallel (independent filters that process
the input information at the same time) or cascade (set of filters that are
connected, where the input of one of them is the output from the previous one in
the cascade).

In the response of the critical bands of the basilar membrane, a very
pronounced peak can be observed, which corresponds to the resonant frequency,
and an attenuation for frequencies above or below the resonant frequency, with
the slope being steeper for higher frequencies. This effect can be achieved with
a cascade band pass filter. A parallel band pass filter would need higher order
filters to implement that behavior.

1.3.2.1.1 ERB model

The ERB (Equivalent Rectangular Bandwidth) model (also known as
Patterson-Holdsworth model) (Slaney, 1993) is based on the research by Roy D.
Patterson and John Holdsworth about the cochlea and the inner ear (Patterson
et al., 1992). It consists of a set of band pass filters in a parallel or independent
configuration. Each of them is tuned with a different frequency. In this model,
the bandwidth of each auditory filter is set with an equivalent rectangular
bandwidth. The main idea of this approach is to approximate the critical bands
of the cochlea using band pass filters with an equivalent rectangular bandwidth
whose height is the response in magnitude of the filter and whose area is the same
as the response of the filter (see Fig. 1.17). A critical bands filter, or ERB, models
the signal that is present in only one cell of the auditory nerve. The ERB shows
the relation between the auditory filter, frequency, and the critical bandwidth. An
ERB passes the same amount of energy as the auditory filter it corresponds to and
shows how it changes with input frequency (Gelfand, 2017).

The bandwidth of a critical band was first approximated by Glasberg and
Moore (Glasberg and Moore, 1990) using ERB. At low sound levels, this value
can be approximated by the following expression (Equation 1.1):

ERB( f c) = 24.7(4.37
f c

1000
+ 1) (1.1)

Where both the ERB and fc (the center frequency) are in Hz.
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FIGURE 1.17: ERB representation.

Due to the fact that the architecture is purely parallel, there is no
dependency between successive filters, as in other approaches based on a cascade
architecture. Fig. 1.18 shows the frequency response of this model based on the
implementation of Malcolm Slaney (Slaney, 1993).

FIGURE 1.18: Frequency response of gammatone filters (order 8, N=4) for
five characteristic frequencies: 3.03, 1.83, 1.07, 0.6, 0.3 kHz. Image taken

from (Miró Amarante, 2013).
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This model consists of gammatone filters with responses to the impulse.
The significance of these filters for hearing is that they can generate a frequency
response that is very similar to the one produced by the human auditory filters.
They can represent how the basilar membranes react to a particular stimulus. The
main downside of this model is that the responses are very symmetric, i.e., there
are no differences between the slopes of the increasing and decreasing attenuation
with respect to each resonant frequency.

In this model, the frequency separation between different channels is not
specified. Automatic gain control is not implemented or taken into account in
this model.

1.3.2.1.2 Lyon’s model

A cochlear model based on the knowledge of the biological cochlea and its
main functionalities was developed by Richard F. Lyon (Lyon, 1982). This model
describes the propagation of sound in the inner ear and the conversion of acoustic
energy into neural representations. When sound reaches the cochlea, a wave
travels through the basilar membrane. The physical properties of the basilar
membrane change from the base where the oval window is to the apex, so that
the frequency components of the wave reach a maximum in a particular position
of the basilar membrane.

The cochlear model described by Lyon combines a set of filters, to represent
the waves that travel through the basilar membrane, half-wave rectifiers (HWR),
to detect the energy of the signal, acting as IHCs, and different automatic gain
control (AGC) stages, to model the behavior of the OHCs. Due to the fact that
the fundamental frequency of the basilar membrane decays exponentially from
the base to the apex, the basilar membrane is divided into sections with the same
length to obtain the frequency distribution of the auditory filters.
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Figura 3.11. Diagrama de bloques de los filtros en el modelo de Lyon 

 

Figura 3.12. Función de transferencia de los filtros usados en el banco de filtros. Imagen 

tomada de (Lyon 1982) 

En la Figura 3.13 se presenta la respuesta de este modelo de 64 secciones para 

una frecuencia de muestreo de 8 kHz. Es interesante resaltar como existe una 

diferencia clara entre las pendientes ascendentes y descendentes respecto la 

frecuencia característica. También se observa que las pendientes de las curvas 

después de la frecuencia fundamental son mayores mientras mayor es la frecuencia 

característica, esto se debe a que la eliminación de las componentes de altas 

frecuencias se produce conforme la señal recorre los filtros. La atenuación de la 

señal a bajas frecuencias se debe a incluir un filtro de preénfasis.  Este filtro de 

preénfasis es un filtro paso de alta que modela una aproximación a la respuesta en 

frecuencia del oído externo y medio.  

FIGURE 1.19: Block diagram of the filters in Lyon’s model.
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En la Figura 3.13 se presenta la respuesta de este modelo de 64 secciones para 

una frecuencia de muestreo de 8 kHz. Es interesante resaltar como existe una 

diferencia clara entre las pendientes ascendentes y descendentes respecto la 

frecuencia característica. También se observa que las pendientes de las curvas 

después de la frecuencia fundamental son mayores mientras mayor es la frecuencia 

característica, esto se debe a que la eliminación de las componentes de altas 

frecuencias se produce conforme la señal recorre los filtros. La atenuación de la 

señal a bajas frecuencias se debe a incluir un filtro de preénfasis.  Este filtro de 

preénfasis es un filtro paso de alta que modela una aproximación a la respuesta en 

frecuencia del oído externo y medio.  

FIGURE 1.20: Transfer function of the filters used in the filterbank. Image
taken from (Lyon, 1982).

FIGURE 1.21: Frequency response of Lyon’s model (64 sections) for the
following characteristic frequencies: 3.0, 2.0, 1.0, 0.6 and 0.3 kHz. Image

taken from (Miró Amarante, 2013).

At each point in the cochlea, the acoustic wave is filtered by a notch filter5.
Each notch filter operates at successfully lower frequencies so the net effect is
to gradually low-pass filter the acoustic energy. An additional resonator (or
bandpass filter) picks out a small range of the traveling energy and models
the conversion into basilar membrane motion. It is this motion of the basilar
membrane that is detected by the inner hair cells. The block diagram that
represents this cascade architecture is shown in Fig. 1.19. This way, the high
frequency components of the signal are filtered while the remaining components
of the signal travel through the cascade of filters. The rejection of the high

5The notch filter, also known as band-stop filter or band-rejection filter, is a filter that passes most
frequencies unaltered, but attenuates those in a specific range to very low levels.
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frequency components produces a steep slope in the frequency response of the
filters that correspond to low frequencies. The biological cochlea also presents
this behavior. Therefore, this model provides a good approximation to the
processing that is done in the cochlea. Fig. 1.20 shows the transfer function of
the notch filter, the resonator and the combination of both.

Fig. 1.21 presents the response of the Lyon’s model for a configuration with
64 sections and a sampling frequency of 8 kHz. It is important to highlight the
difference between the ascending and the descending slopes with respect to the
fundamental frequency. The higher the fundamental frequency, the higher the
slope immediately after. This effect is due to the rejection of the high frequency
components across the cascade of filters. The attenuation of the signal at low
frequencies is caused by the inclusion of a preemphasis filter, which roughly
models the effects of the outer and middle ear.

1.3.2.1.3 Lyon & Katsiamis’ model

Richard Lyon, together with Andreas Katsiamis and Emmanuel Drakakis,
published a research paper in 2007, in which they presented transfer functions
in the continuous domain that were designed based on gammatone filters for
auditory information processing (Katsiamis et al., 2007).

In the paper, the design of two different type of filters is presented:
the Differentiated All-Pole Gammatone Filter (DAPGF) and the One-Zero
Gammatone Filter (OZGF). These designs are characterized for having a
hardware-implementation oriented architecture; they have the same properties
and functionalities as the cochlea operation and overcome some limitations of
the gammatone filters, such as the symmetric response and the complexity in the
frequency domain (Miró Amarante, 2013).

Unlike the cascade architecture of Lyon’s model, this model is based on a
bank of filters with parallel stages that consist of blocks connected in a cascade
fashion. Fig. 1.22 shows how the basilar membrane can be modeled with both a
parallel or a cascade architecture.

1.3.2.1.4 Inner hair cells model

To create a fully neuromorphic model of the cochlea, some elements have
been added to mimic the behavior of the inner hair cells (IHC). As was presented
and detailed in section 1.2.3.1.1.3., IHCs convert the vibrations of the basilar
membrane into electrical signals (impulses).

There exist several IHC models, among which the most popular and most
used is the one proposed by Meddis in 1986. This IHC computer simulation
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high-frequency roll-off slope broadened (the selectivity de-
creased) with a shift of the peak towards lower frequencies,
in contrast to low input intensities where it became steeper
(the selectivity increased) with a shift of the peak towards
higher frequencies. Figure 2 illustrates these results.

From the engineering point of view, we seek filters whose
transfer functions can be controlled in a similar manner, that
is,

(i) low input intensity → high gain and selectivity and
shift of the peak to the “right” in the frequency do-
main;

(ii) high input intensity → low gain and selectivity and
shift of the peak to the “left” in the frequency domain.

As a first rough approximation of the above behavior,
it is worth noting that the simplest VLSI-compatible reso-
nant structure, the lowpass biquadratic filter (LP biquad),
gives a frequency response that exhibits this kind of level-
dependent compressive behavior by varying only one param-
eter, its quality factor. The standard LP biquad transfer func-
tion is

HLP(s) = ω2
o

s2 +
(
ωo/Q

)
s + ω2

o
, (1)

where ωo is the natural (or pole) frequency and Q is the qual-
ity factor. The frequency, where the peak gain occurs or cen-
ter frequency (CF) is related to the natural frequency and Q,
is as follows:

ωLP
CF = ωo

√

1− 1
2Q2

, (2)
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Figure 2: Frequency-dependent nonlinearity in BM tuning curves,
adapted from Ruggero et al. [19].

suggesting the lowest Q value of 1/
√

2 for zero CF. The LP bi-
quad peak gain can be parameterized in terms of Q according
to

HLPmax =
Q

√
1− 1/4Q2

. (3)

FIGURE 1.22: Graphical representation of the filterbank and filter-cascade
architectures in the Lyon-Katsiamis model. Image taken from (Katsiamis

et al., 2007).

model (Meddis, 1986; Meddis, 1988; Meddis et al., 1990) is widely accepted and it
was the base for subsequent models implemented in aVLSI (advanced Very Large
Scale of Integration) (McEwan and Schaik, 2003; McEwan and Schaik, 2004).

1.3.2.2 Analog implementations

A one-dimensional cascade cochlea models the propagation of the sound wave
through the basilar membrane in one unique direction (from the base of the
basilar membrane to the apex). Moreover, in this cascade architecture, each
section of the cochlea (auditory filter) processes the output of the previous
element. Even when using second-order filters, this allows a steep slope effect to
take place, which favors the frequency selectivity of the basilar membrane itself.

The first bio-inspired artificial cochlea was developed by Lyon and Mead in
1988 (Lyon and Mead, 1988) following this one-dimensional cascade topology,
the Lyon’s model, which was presented in section 1.2.3.2.1.2. (Lyon, 1982). It has
been proved that, in the human cochlea, the resonant frequency across the basilar
membrane decreases exponentially in a logarithmic scale: high frequencies near
the base and low frequencies near the apex. To implement this artificial cochlea,
the basilar membrane has been divided into different segments with the same
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length. A set of filters with a specific resonant frequency according to the resonant
frequency of each segment of the basilar membrane is used in a cascade topology.
Each of the filters is the same, only changing the resonant frequency and their
low-pass response. High frequency components are removed in the output of
each filter, which produces a steep slope in the frequency response curves. This
slope is also observed in the biological cochlea when the wave travels across the
basilar membrane. Therefore, despite the simplicity of this model, it provides a
first approximation of signal processing inside a biological cochlea.
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A continuación, resumimos las implementaciones más relevantes tanto de las 

cócleas analógicas como de las digitales. 

3.4.1. Cócleas analógicas con diseño en cascada 

El primer desarrollo de una cóclea artificial bioinspirada fue realizado por Lyon 

y Mead en 1988 (Lyon & Mead 1988). Está basada en el modelo de Lyon, descrito 

en el apartado 3.3.2 (Lyon 1982). Usa 480 secciones de filtros paso de baja de 

segundo orden en cascada, con frecuencias características distribuidas 

logarítmicamente para modelar la propagación de la onda y el análisis frecuencial 

asociado a la membrana basilar. La Figura 3.16 muestra un esquema de la 

estructura en cascada empleado por Lyon y Mead para una cóclea analógica de 100 

etapas.  

 

Figura 3.16. Estructura en cascada de los filtros que forman a la cóclea artificial de Lyon y 

Mead de 100 etapas (Lyon & Mead 1988) 

FIGURE 1.23: Floorplan of 100-stage Lyon and Mead’s cochlea chip, in
serpentine arrangement. Image taken from (Lyon and Mead, 1988).

The work developed by Lyon and Mead consists of 480 sections of
second-order low-pass filters in a cascade topology with resonant frequencies
logarithmically distributed in order to model the propagation of the wave and
the frequency analysis associated to the basilar membrane. Fig. 1.23 shows a
diagram of a 100 stage cochlea following the Lyon and Mead’s cascade structure.
This cochlea implementation successfully modeled particular characteristics of
the biological cochlea, and has provided a starting point for the research of
neuromorphic cochleae. There exist several implementations based on this first
one proposed by Lyon and Mead.

John Lazzaro added circuits to the Lyon and Mead’s cochlea in order to
model the behavior of the IHCs. These circuits encode the output spikes of the
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artificial cochlea (Lazzaro and Mead, 1989).

Another implementation based on this approach is the work by Lloyd
Watts (Watts et al., 1992), which achieves a better exponential distribution of
the resonant frequencies. This increments the linear range and eliminates the
instability of the signal. Fig. 1.24 shows the frequency response of each of the
stages of the cochlea before and after these circuits are included. In 1995, Lazzaro
and Wawrzynek (Lazzaro and Wawrzynek, 1995) proposed an improved version
of the Watts’ model, adding the AER communication protocol in the output of the
cochlea. It is the first artificial cochlea to use this kind of communication, which
currently is widely extended in neuromorphic developments.698 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 27, NO. 5, MAY 1992 
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vent excessive capacitive loading and switching noise 
which would disturb the cochlea operation. The currents 
are usually scanned out into an off-chip current-sense am- 
plifier, which converts the current into a voltage signal. 

In order to show the effectiveness of the circuit tech- 
niques in improving the performance of the silicon CO- 
chlea, results are presented for two chips-an early chip 

which used an unsophisticated layout, and a later chip with 
the improvements as described above. In the early layout, 
all transistors were 6 pm x 6 pm. In the improved layout, 
all transistors were 6 pm X 6 pm except for the bias tran- 
sistors which were 12 pm x 12 pm. 

In Fig. 13, the frequency response curves for all volt- 
age signal taps are shown for both early layout and the 

FIGURE 1.24: Frequency response of the filters in (a) Lyon’s layout and (b)
Watt’ improved layout. Image taken from (Watts et al., 1992).

In 1996, Andre van Schalk, Eric Fragniere and Eric Vittoz presented a new
artificial cochlea implementation based on Watts’ (Van Schaik et al., 1996). Fig.
1.25 shows the cutoff frequencies distribution of this implementation compared
to the cutoff frequencies distribution achieved in Watts’ work. As can be
observed, in this implementation the exponential distribution of the frequencies
is more uniform. Thanks to this improvement, this artificial cochlea allows
binaural sounds processing, as is presented in works like (Chan et al., 2007)
and (Yu et al., 2009), in which two van Schaik’s artificial cochleae with a more
advanced module to manage the output spikes by using the AER protocol are
used for echolocation tasks. The artificial cochlea that was presented in (Chan
et al., 2007) has also been used to build a classification system in order to
distinguish between two sounds: a clap and a bass drum (Jäckel et al., 2010). This
cochlea was improved in a number of channels, output event rate and frequency
range in (Liu et al., 2010) and (Liu et al., 2014).

The main downsides of the cascade topology is the low fault-tolerance. If
any of the elements of the cascade fails, this error will be propagated to the rest
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comunicación, y en la actualidad, este protocolo está altamente extendido en los 

desarrollos neuromórficos.  

En 1996, se realiza otra implementación de la cóclea artificial propuesta por 

Watts, expuesta en el trabajo (van Schaik et al. 1996). En la Figura 3.18 se 

muestra la distribución de las frecuencias de corte de esta implementación 

respecto a la distribución de las frecuencias de corte de la implementación de 

Watts. Se observa como en la implementación de van Schaik et al. existe 

uniformidad en la distribución exponencial de las frecuencias. Gracias a esta 

mejora, esta cóclea artificial permite procesamiento de sonidos biaurales, tal y 

como se muestra en los trabajos  (Chan et al. 2007) y (Yu et al. 2009), en los 

que se usan dos cócleas artificiales de van Schaik, ampliadas con módulos más 

avanzados para gestionar los spikes de salida mediante el protocolo AER, para 

hacer experimentos de localización. La cóclea artificial expuesta en (Chan et al. 

2007), también se ha usado en un sistema de clasificación entre dos tipos de 

sonidos: una palmada o bombo (Jackel et al. 2010). Esta cóclea ha sido 

ampliada en número de canales, tasa de eventos de salida y en el rango de 

frecuencias en el trabajo (Liu et al. 2010).  

 

Figura 3.18. Distribución de las frecuencias de corte (Hz) para la cóclea artificial de Watts 

et. al. (izquierda) y de van Schaik (derecha) (van Schaik et al. 1996). 

El principal inconveniente del diseño en cascada es su poca tolerancia a fallos 

ya que si un elemento falla, este error se propagará al resto de elementos 

posteriores. También, hay que destacar que cada segmento va a añadir un cierto 

retraso a la señal de entrada, que será inversamente proporcional a la frecuencia 

FIGURE 1.25: Cutoff frequencies (Hz) distribution in Watt’s artificial
cochlea (left) and van Schaik’s (right). Image taken from (Van Schaik et al.,

1996).

of the subsequent elements. Also, it is important to notice that each segment of
the cascade adds a delay, which is inversely proportional to the center frequency
of the filter. Then, filters corresponding to low frequencies will introduce more
delay than the ones corresponding to high frequencies. Therefore, the number
of sections (stages or channels) limits the frequency response of the system. The
noise that is generated by the filters is accumulated across the cascade, which
reduces the dynamic range of the system. Some of these issues can be solved
with a parallel topology or a 2-D topology.

Parallel topologies are usually chosen for their ease of implementation.
However, even though the issues of cascade topologies are not present in these
models, parallel topologies are not the best option when implementing an analog
cochlea because each filter acts independently from the rest and higher order
filters are needed to produce the same “steep slope” effect in the high frequencies
as in cascade topologies, which increments the power consumption of the system,
requiring a larger silicon area. Fig. 1.26 presents a comparison between the
outputs of a single second-order filter in a 1-D parallel topology (Fig. 1.26 (a)),
and in a 1-D cascade topology (Fig. 1.26 (b)).
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de cócleas analógicas porque cada filtro actúa de modo independiente y para crear el 

mismo efecto de ‘pendiente pronunciada’ en las altas frecuencias, se necesitaría filtros 

de un orden mayor, lo cual implica un aumento considerable en el área y consumo 

del sistema. En la siguiente figura se compara la salida de un único filtro de segundo 

orden tanto en el modelo 1-D paralelo, Figura 52.a, como en el modelo 1-D en 

cascada, Figura 52.b. 

 

Figura 52. Salida de un filtro de segundo orden, en el modelo de cóclea 

paralelo (a) y en el modelo de cóclea en cascada (b). 

La cóclea bidimensional (2-D) modela tanto la propagación de la onda a lo largo 

de la membrana basilar como el movimiento del líquido interior de la cóclea y de la 

membrana basilar. Tiene en cuenta, por tanto, el desplazamiento longitudinal y 

vertical (ejes x e y). Los filtros vecinos se acoplan a través de un sistema de 

resistencias que modelan el líquido del interior de la cóclea. Este modelo combina las 

ventajas de las dos estructuras 1-D anteriores: el acople de los filtros en paralelo 

permite generar una pendiente pronunciada en las altas frecuencias a pesar de seguir 

siendo filtros de segundo orden; además se mejora la tolerancia a fallos y se evita la 

acumulación de retrasos propio de la estructura en cascada. Las implementaciones de 

este modelo son las más recientes: en 1992, Watts presenta una implementación con 

50 etapas que mejora el rango dinámico, estabilidad y errores derivados de los 

FIGURE 1.26: Frequency response of a second order filter in a parallel
topology (a) and in a cascade topology (b).
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The implementations presented in (Liu et al., 1991) and (Liu et al., 1992)
are some examples of parallel topologies. Following the same architecture that
was implemented in these works, in 1998 a new artificial cochlea was developed
for pattern extraction in speech recognition tasks (Kumar et al., 1998). In 2016,
Minhao Yang, Chen-Han Chien, Tobias Delbruck and Shih-Chii Liu presented
a 64-channel binaural cochlea with parallel asynchronous event output (Yang
et al., 2016). In this model, each binaural channel performs feature extraction by
analog bandpass filtering and, after that, filtered signals are encoded into events
via asynchronous delta modulation (ADM).

Bidimensional (2-D) cochleae model both the propagation of the wave across
the basilar membrane and the fluid motion within the cochlea and the basilar
membrane. The structure of the filters in this type of artificial cochlea are based
in Lyon and Katsiamis’ model, which is detailed in section 1.2.3.2.1.3. Neighbor
filters are connected through a set of resistors that model the inner fluid of the
cochlea. This architecture combines the benefits of the previous 1-D architectures
presented before: the coupling of the filters in parallel allows to generate a steep
slope in high frequencies despite being second-order filters; the fault-tolerance is
improved and the delay accumulation is avoided. In 1992, Watts presented a 50
stages (channels) implementation that improved the dynamic range, stability and
errors caused by the transistors (Watts et al., 1992), achieving a uniform frequency
response and good values in the quality factors of the filters (Q).

(Fragnière, 1998) describes a 2-D cochlear model in which the pressure and
voltage are mathematically analogous to the acceleration of the basilar membrane
and the action potentials. Some authors have published recent implementations
of this model (Van Schaik and Fragnière, 2001; Shiraishi, 2003; Hamilton et al.,
2008; Wen and Boahen, 2009).

The artificial cochleae implemented in the last two works mentioned before
(Hamilton et al., 2008; Wen and Boahen, 2009), are active. An artificial cochlea is
active when filters change dynamically depending on the input signal. Generally,
the gain is increased for low frequencies and decreased for high frequencies.
This behavior aims to model the functionality of the outer hair cells (OHCs).
These implementations use automatic gain control (AGC) to change the gain of
the cochlea depending on the changes produced in the input signal. However,
in these cases, the AGC also controls the quality factor (Q) of each section of
the cochlea. This way, the gain and the bandwidth of each filter is changed
dynamically based on the changes in the characteristics of the input sound.

Table 1.2 compares different analog architectures and models presented in
this section.
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TABLE 1.2: Summary of characteristics of different analog cochleae.

Reference
No. of

sections
Frequency range

Dynamic

range
Event rate

Power

consumption

(Yang et al., 2016) 64x2 8Hz-20kHz 55 dB 100 kEvents/s. 12-22 mW

(Liu et al., 2014) 64x2 50Hz-50kHz 36 dB 10 MEvents/s. 12-22 mW

(Liu et al., 2010) 64x2
50Hz-50kHz

(adjustable)
36 dB 10 MEvents/s. 18-26 mW

(Wen and Boahen, 2009) 360 200Hz-20kHz 52 dB 33 kSpikes/s. 51.8 mW

(Hamilton et al., 2008) 64x2 200Hz-6.6kHz 46 dB — 56.32 mW

1.3.2.3 Digital implementations

The need for more efficient systems with lesser power consumption and lesser
cost led to the research and development of new digital design techniques and
architectures. FPGAs (Field-Programmable Gate Array) are a very good option
for the development of neuromorphic systems. They are flexible, robust to
temperature changes, they have a better dynamic range, a better SNR6, a simpler
computer interface, the board can be used for different applications and their
development time is much shorter compared to analog VLSI systems.

The first digital cochlea was implemented in 1992 using an application-
specific integrated circuit (ASIC) (Summerfield and Lyon, 1992), Fig. 1.27. It
contains 71 sections of cascade filters based on Lyon’s cochlear model. The
output of each filter is connected to a half-wave rectifier (HWR) that mimics
the functionality of OHCs along with an automatic gain control block (AGC).
Therefore, even though the model in which it is based is not an active cochlea (it
does not have automatic gain control), this digital implementation includes it.

The digital cochlea of (Jones et al., 2000) implemented a second-order band-
pass filter bank with 30 filters in an FPGA. This filter bank follows a parallel
architecture and it was specifically built for extracting the tone out of complex
sounds. Although this digital cochlea has a simple architecture, it implements
the model of IHCs and auditory pathways in detail.

In (Leong et al., 2003), an 88-sections cascade was implemented by using
second order infinite impulse response filters (IIR). This kind of filters are able
to obtain higher and narrower bands with less arithmetic operations. Fig. 1.28
shows the frequency response of some of the sections of the cochlea presented in
that work.

6SNR, or Signal-to-Noise Ratio, is defined as the ratio of signal power to noise power, often
expressed in decibels (dB).
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3.4.4. Cócleas digitales 

La primera cóclea digital fue implementada en 1992 usando Circuito Integrado 

para Aplicaciones Específicas (ASIC) (Summerfield & Lyon 1992). Contiene 71 

secciones de filtros en cascada siguiendo el modelo coclear de Lyon. La salida de 

cada filtro está conectada a un rectificador half-wave (HWR), que junto al bloque 

de control automático de ganancia (AGC) simulan la función de los OHCs. Por lo 

tanto, esta implementación incluye el control activo de la ganancia aunque el 

modelo en que se basa no lo contempla.  

 

Figura 3.20.Diagrama de bloques de la cóclea digital propuesta por Summerfield et.al. 

Imagen tomada de (Summerfield & Lyon 1992) 

La cóclea digital del trabajo (Jones et al. 2000) implementa el banco de filtros 

paso de banda de segundo orden en una FPGA. El banco de filtros sigue la 

estructura paralela y fue específicamente construido para extraer el tono de sonidos 

complejos. Aunque la cóclea digital tiene una arquitectura sencilla, implementa en 

detalle el modelo de los IHCs y las vías auditivas.   

En el trabajo (Leong et al. 2003) se presenta una implementación de 88 

secciones en cascada mediante filtros IIR de segundo orden (Infinite Impulse 

Response). Este tipo de filtros son frecuentemente usados porque consiguen bandas 

más altas y estrechas con menor número de operaciones aritméticas. En la Figura 

FIGURE 1.27: Block diagram of the digital cochlea proposed by
Summerfield et al. Image taken from (Summerfield and Lyon, 1992).
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(b) Impulse response (hardware).

102 103 104
−60
−50
−40
−30
−20
−10

0
10
20

Frequency (Hz)

G
ai

n
(d

B
)

102 103 104
−60
−50
−40
−30
−20
−10

0

10
20

Frequency (Hz)

G
ai

n
(d

B
)

32 30 28 26 24 22 20 18 16 14 12 10

10
12

14
16

18
20

22
24

−100

−80

−60

−40

−20

0

20

40

Q
u

an
ti

za
ti

on
er

ro
r

(d
B

)

Width of LUT
Wordlength

Figure 7: Mesh plot showing the quantization errors of implemen-
tations with varying wordlengths and DA ROM widths.

5. RESULTS

The cochlea implementation was tested on an Annapolis
“Wildstar” Reconfigurable Computing Engine [23] which
is a PCI-based reconfigurable computing platform con-
taining three Xilinx Virtex XCV1000-BG560-6 FPGAs. The
cochlea implementations were verified by comparing Synop-
sys VHDL Simulator simulations with the results produced
by a floating-point software model. Synthesis and implemen-

tation were performed using Synopsys FPGA Express 3.4 and
Xilinx Foundation 3.2i, respectively.

5.1. Trade-offs among wordlength, width of DA ROM,
and precision

The coefficients for the biquadratic filters in our implemen-
tation of Lyon and Mead’s cochlea model were obtained us-
ing Slaney’s Auditory Toolbox [24]. This Matlab toolbox has
several different cochlea models, test inputs, and visualiza-
tion tools. The same toolbox was used to verify our designs
and produce cochleagram plots.

The coefficients of these implementations were obtained
from the Auditory Toolbox using the Matlab command
DesignLyonFilters(16000, 8, 0.25), which specifies
a 16 kHz sampling rate, Q = 8, and a spacing which gives 88
biquadratic filters. A series of cochlea implementations, with
wordlengths from 10 to 32 bits and DA ROM width from 10
to 24 bits, was generated in order to present the trade-offs
among wordlengths, widths of DA ROMs, and precisions.

In order to present the improvement in precision with
increasing wordlengths and ROM width, the frequency re-
sponses of several different fixed-point implementations are
plotted in Figure 5. Figure 6 shows impulse and frequency re-
sponses obtained from a software floating-point implemen-
tation, a hardware 16-bit wordlength, and 16-bit ROM width
implementation.

It can be observed that the filter accuracy gradually im-
proves with increasing wordlength or ROM width. When

(b) Frequency response(hardware)(a) Frequency response (software)

FIGURE 1.28: Frequency response of the digital cochlea implementation by
Leong et al. Image taken from (Leong et al., 2003).

Parallel architectures achieve a higher speed in the output, but they have
a limitation in terms of the cochlea size because the resources needed increase
linearly with the number of stages in order to produce the steep slope behavior in
the filters. However, in cascade architectures, the design limits are determined by
the speed in the output, due to the fact that it decreases linearly with the number
of stages.

Some recent implementations of digital cochleae use IIR filters, and both
parallel (Dundur et al., 2008; Miró Amarante, 2013) and cascade (Gambin et al.,
2010; Mugliette et al., 2011; Thakur et al., 2014) implementations can be found.
The digital design presented in (Dundur et al., 2008) is the basis for the cochlear
implant implementations in FPGAs.

Other designs (Gambin et al., 2010; Mugliette et al., 2011; Thakur et al., 2014)
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use time multiplexing to implement the filter bank with a greater number of
sections. For example, the digital cochlea presented in (Mugliette et al., 2011)
has a cascade of 24 second-order IIR filters, and thanks to the time multiplexing,
it only requires 20 multiplier units. The architecture of this implementation is
shown in Fig. 1.29. Designs that are based on time multiplexing use less resources
in exchange of using higher clock frequencies, increasing the power consumption
of the system.

 

Figure 2 - Filter Cascade with output taps every four sections 

 

B. DECIMATION 

A sampling frequency of 80 kHz, was chosen for the ADC as 
well as the first 4 filter sections. However, this frequency is 
unpractical for use for stages operating at lower cut-off 
frequencies due to the limited precision of the resulting filter 
coefficients. A solution for this issue, which does not entail 
the use of increased hardware precision, is to use decimation 
[4], where stages operating at lower cut-off frequencies 
effectively operate at a lower sampling rate. The scheme 
adopted here was to reduce the sampling frequency by half 
after a filter stage consisting of four filters. Since the 
preceding stages effectively limit the frequency content of the 
signal input to subsequent stages, Nyquist Theorem is not 
violated.  

 

Figure 3 – Use of decimation in the fitler cascade. 

IV. DATA AQUISITION 

In the proposed system, audio analogue signals from two 
microphones are first amplified and then digitized using the 
analog capture unit, consisting of the two-channel PGA and 
ADC, available on the Spartan-3E FPGA Starter Kit board. 
Both devices are controller via an SPI bus [7]. The analogue 
capture unit accepts two inputs, derived from a preamplified 
microphone signal having a DC offset of 1.65 V.  

A. PRE-PROGRAMMABLE AMPLIFIER  

The onboard LTC6912-1 chip provides two independent 
inverting amplifiers with 4-bit SPI-programmable gain, 
which is ideal for the binaural model. The gain values for 

both amplifiers are set simultaneously via an 8-bit SPI 
command byte.  

B. ANALOGUE TO DIGITAL CONVERTER 

The onboard LTC1407-1 dual channel ADC is used to 
digitize the input signals with 14-bit representation. The ADC 
output is represented a 14-bit two’s complement digital 
output, representing the values between -213 and 213−1. The 
ADC is read in sequential order; first channel 1 and then 
channel 2, in about 34 SPI clock cycles.  

V. INNER HAIR CELL MODEL 

In proposed FPGA digital model that mimics the 
functionality of the inner hair cells of the HAS was 
developed. Basically the IHC model differentiates the filter 
output and captures the highest peak signal. The functionality 
of the inner hair cells was analyzed in Meddis’s [5] and 
Dau’s [8] IHC models. The IHC model implemented broadly 
resembles Dau’s model which was chosen due to its low 
hardware complexity requirement. . Since the inner hair cells, 
in the biological cochlea, are sensitive to the velocity of the 
incoming signal rather than displacement, a differentiation 
process is to be implemented before the rectification process. 
In the proposed model, the output from the filter cascade is 
differentiated, rectified and then passed through a peak 
detection module where the current output signal is compared 
to a previous value and if it is higher, the stored value is 
updated. The stored value decays in an exponential manner, 
however, in this implementation this was approximated by a 
linear decay. This process effectively changes the low pass 
function of the filters into a band-pass function and extracts 
the envelope magnitude of the resulting signal. 

A compromise for the decay time-constant value was 
determined so that the IHC model output adequately follows 
the signal envelope while still attenuating high frequency 
content. Full wave rectification is preferred over half wave 
rectification since this also utilizes information in the 
negative half cycle. Hence in the digital domain, the process 
of rectification is essentially obtained by ignoring the sign of 
the signal and using just the magnitude part. A block diagram 
of the proposed digital model description can be seen in 
figure 4. 

 

Figure 4 - IHC Model  

700

FIGURE 1.29: Filter Cascade with output taps every four sections of the
digital implementation proposed by Mugliette et al. Image taken from

(Mugliette et al., 2011).

Using FPGA implementations have some advantages over VLSI analog
systems: a faster design time, more robustness to power supply changes, to
temperatures and to transistor mismatch, a higher dynamic range, a higher SNR,
better stability, FPGAs can be reused for different applications and they have a
simpler interface to the PC.

Two of the most recent digital cochlea implementations in FPGA are
(Jiménez-Fernández et al., 2017) and (Xu et al., 2018). In (Xu et al., 2018), a digital
implementation of a 70-section, 44.1 kHz sampling rate Cascade of Asymmetric
Resonators with Fast-Acting Compression (CAR-FAC) (Lyon, 2017) cochlear
model is presented, where the CAR part simulates the basilar membrane’s
response to sound and the FAC part models the outer hair cells (OHC), the inner
hair cells (IHC), and the medial olivocochlear efferent system functions. The FAC
feeds back to the CAR by moving the poles and zeros of the CAR resonators
automatically, making it an active cochlea model.

The digital implementation proposed in (Jiménez-Fernández et al., 2017),
which is called Neuromorphic Auditory Sensor (NAS), is the one that has
been used throughout this thesis. The next section describes this particular
implementation.
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Table 1.3 compares different digital architectures and implementations
presented in this section.

TABLE 1.3: Summary of characteristics of different digital cochleae
implementations.

Reference
No. of

sections
Frequency range System clock

Hardware

resources

(Xu et al., 2018) 70 Up to 22.05 kHz 250 MHz 49 DSPs
5235 ALMs

(Thakur et al., 2014) 1224 20 Hz - 20.657 kHz 142 MHz 113760 slices
136975 LUTs

(Dundur et al., 2008) 16 150 Hz - 3.4 kHz — 11048 slices
20699 LUTs

(Leong et al., 2003) 88 1 kHz - 7.630 kHz

6.42 MHz
(minimum)

63 MHz
(maximum)

5770 slices
(minimum)
10771 slices
(maximum)

1.3.2.3.1 Neuromorphic Auditory Sensor

Neuromorphic Auditory Sensor (NAS) (Jiménez-Fernández et al., 2017) is
an audio sensor for FPGAs inspired by Lyon’s model of the biological cochlea
(Lyon and Mead, 1988). This sensor is able to process an excitatory audio signal
using Spike Signal Processing (SSP) techniques (Jimenez-Fernandez et al., 2010),
decomposing incoming audio in its frequency components, and providing this
information as a stream of events using the Address-Event Representation (AER)
(Boahen, 2000). As it is implemented on a reconfigurable platform, this sensor’s
configuration parameters are flexible and can be adapted to any application.

NAS decomposes two digitized signals (two in case of a binaural or stereo
NAS, or one in case of a monaural or mono NAS) into a set of sections or bands
(corresponding to particular frequencies), which are previously converted to a
spike train. The decomposition of the signals in each corresponding frequency
band is performed by a bank of spike-based SLPF7 filters (Jimenez-Fernandez
et al., 2010; Domínguez-Morales et al., 2011) connected in a cascade topology.
The output of this sensor is encoded using the AER address, as many of the
neuromorphic sensors that were presented in the previous section.

For this decomposition of the input signals (left and right ear) the same
processing is performed. The processing is modeled using a spike-based cascade
filter bank (CFB). Each CFB has many stages (as many as sections in the cochlea)

7Spike Low-Pass Filter.
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Fig. 1. (a) Global NAS architecture. (b) Filter banks with Cascade topology, CFB. (c) Single CFB stage containing an SLPF and an SH&F.

small general purpose building blocks. Each of these blocks
performs a specific primitive arithmetic operation on the spike
streams, and can be combined with others to build large spike
processing systems of the type already used in closed-loop
spike-based PID controllers [32], and trajectory generators for
object tracking [33].

A. Reverse Bitwise Synthetic Spike Generator

Digital sound samples received from a commercial audio
codec were immediately converted into a stream of spikes by
a digital synthetic spike generator (SSG) capable of converting
a discrete number (SSG input) into a fixed spike frequency
rate (SSG output). These output spikes represented the audio
information that would excite the CFB. This SSG is also
the formed part of other elements in the CFB capable of
processing spike-coded signals. This will be explained later.

Although there are several ways to design a digital
SSG [30], [34], the implementation in this paper used the
reverse bitwise method for synthetic AER event generation
[reverse bitwise SSG (RBSSG)] described in [30] and [35].

Fig. 2. RBSSG [10].

This architecture was selected mainly for its low resource
needs (a digital counter and a comparator) and closer to
uniform temporal spike distribution.

An SSG would generally be capable of generating a
synthetic spike stream with a frequency proportional to a
constant (kBWSpikesGen) and an input value (x), as in

RBSSG(x)SpikesRate = kBWSpikeGen ∗ x . (1)

Fig. 2 shows the RBSSG circuit. It uses a continuous digital
counter [Fig. 2 (top)], the output of which is reversed

FIGURE 1.30: (a) Global NAS architecture. (b) Filter banks with Cascade
topology, CFB. (c) Single CFB stage containing an SLPF and an SH&F.

Image taken from (Jiménez-Fernández et al., 2017).

and consists of a SLPF and a SH&F8 (Jimenez-Fernandez et al., 2010), which are
able to extract two different spike trains: one that is passed as input to the next
stage and another one that corresponds to the signal filtered by the current stage
of the cascade.

This kind of sensors mimic how the biological cochlea processes audio
signals. NAS is able to decompose the input audio signal into different
frequency bands (also called channels). Like in other neuromorphic cochleae
implementations based on a cascade model (Liu et al., 2010; Leong et al., 2003;
Summerfield and Lyon, 1992; Lyon and Mead, 1988), this decomposition is
carried out by a series of cascade-connected stages that subtract the information
from consecutive spike-based low-pass filters’ output spikes in order to reject out-

8Spike Hold and Fire.
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of-band frequencies, obtaining a response equivalent to that of a bandpass filter
(Jiménez-Fernández et al., 2017).

Fig. 1.30 (a) shows the global architecture of a binaural NAS. In this
architecture, the first element in the chain is an AC97 audio codec (CS5344 audio
codec), which has two analog signals as inputs (left and right) that are digitized
and multiplexed into a single output. This signal is divided in order to obtain
sampled and digitized values that correspond to each of the input signals. After
that, the information is converted from a digital domain to a spike domain by
using a synthetic spike generator RBSSG (Jimenez-Fernandez et al., 2010), which
provides a spike stream with a frequency that is proportional to the digital
amplitude. At the output spike generator, ON and OFF spikes that encode the
previously sampled digital value are obtained.

FIGURE 1.31: NAS output representation.

The generated spike train is the input to the cascaded spike-based filter
bank CFB (depending on the NAS architecture implemented on the FPGA, the
number of filters will be different). Fig. 1.30 (b) shows how these filters are
distributed, forming the bank, where the first filters of the cascade correspond
to higher frequencies, and the last ones correspond to lower frequencies. As was
previously mentioned, the filter bank is divided into different stages, where each
stage consists of a spiking low-pass filter along with a SH&F (see Fig. 1.30 (c)).
The output of each of the stages is connected to an AER monitor (Cerezuela-
Escudero et al., 2013) that encodes the activity of each stage, placing the address
of the corresponding stage in the output asynchronous AER bus every time that
an event is generated in it. Fig. 1.31 shows NAS’s output when it is stimulated
by saying the sentence “En un lugar de la Mancha” with a microphone directly
connected to the input of the sensor.



1.4. Deep neural networks 51

TABLE 1.4: Summary of NAS characteristics.

No. of

channels

Frequency

range

Dynamic range

(AC’97 + NAS)

Event

rate

Power

consumption

System

clock

Hardware

resources

64x2

(adjustable)

9.6Hz-14.06kHz

(adjustable)
75dB 2.19MEvents/s. 29.7mW 27MHz 11141 slices

Table 1.4 presents a summary of NAS characteristics.

1.4 Deep neural networks

Deep neural networks (DNN) are a type of neural network architecture that are
able to extract and analyze patterns that are deeply hidden in the input data
by using deep learning mechanisms. Deep learning (Deng and Yu, 2014) can
be defined as “a class of machine learning techniques that exploit many layers
of non-linear information processing for supervised or unsupervised feature
extraction and transformation, and for pattern analysis and classification”.

These algorithms need a vast and diverse labeled dataset to train the network
and test its performance. These data provide knowledge to the network in order
to develop the tasks they are trained for. Due to the amount of data and high
computational cost of this mechanism, it is usually used when simpler methods
are insufficient or inadequate for the task that the user aims to accomplish.

Deep neural networks have to learn and classify the whole dataset in an
adaptive fashion by using specific training algorithms (Glorot and Bengio, 2010).
From (LeCun et al., 2015): “the key aspect of deep learning is that the layers of
features are not designed by human engineers: they are learned from data using a
general-purpose learning procedure. Deep learning is making major advances in
solving problems that have resisted the best attempts of the artificial intelligence
community for many years”.

1.4.1 History

The development of Deep Learning algorithms was one of the main goals of
artificial intelligence since its inception, along with one of the main purposes
of artificial neural networks (ANN). Using the full computational capabilities of
computers to extract more and deeper information than what a human could ever
achieve, while applying different mathematical methods to such information,
was one of the main ideas behind ANNs. With the continuous advances in
computer technology, the necessary computation power has been achieved to
perform this kind of algorithms for many different applications with sufficient
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speed. Moreover, ANNs are currently being used to model certain parts of the
human brain whose functionality is already known (Graupe, 2016).

In 1975, Kunihiko Fukushima (Fukushima, 1975) proposed the Cognitron
neural network, which mimics how the retina works for visual pattern
recognition. This network was extended in 1982 in a model called Neocognitron
(Fukushima and Miyake, 1982), which was still very slow and, like its
predecessor, was limited to visual pattern recognition. These neural network
architectures are not considered to be part of the Deep Learning field, although
they served as a basis for convolutional neural networks, which are the ones
that were used as Deep Learning architectures in this work. In 1985, David
Rumelhart et al. (Rumelhart et al., 1985) showed that neural networks with many
hidden layers could be effectively trained by a simple procedure called Back-
Propagation. This would allow neural networks to get around the weaknesses
of the perceptron, since the additional layers provided the network with the
ability to learn nonlinear functions. BP9 is based on Richard Bellman’s dynamic
programming theory (Bellman, 1966) and it is still being used in most Deep
Learning architectures.

Convolutional neural networks (CNN) have become the most popular
network architecture in the Deep Learning field. Historically, CNNs were
inspired by the visual cortex model proposed by Fukushima (Fukushima and
Miyake, 1982). This, together with the work carried out by Yann LeCun (LeCun
et al., 1989), encouraged the use of CNNs for computer vision problems. In
this work from 1989, LeCun included convolutions in his 5-layer model based
on BP, achieving faster processing and obtaining more characteristics from the
input data, compared to using BP alone. Although these first models took around
three days to complete the training phase, current CNN models based on LeCun’s
LeNet-5 (LeCun et al., 1998), only take several minutes, especially when making
use of parallel processing algorithms.

Geoffrey E. Hinton used different CNN models for speech recognition tasks
and natural language processing (Hinton et al., 2012), extending their range of
applications. CNNs soon became the leading approach for image and audio
processing. Currently, CNNs can be used for many more different applications
as long as the input information is represented in a two-dimensional space or
higher (matrices commonly). Therefore, CNNs have become the most used
neural networks for solving Deep Learning complex problems.

1.4.2 Architecture of a Convolutional Neural Network

Convolutional Neural Networks (CNN or ConvNet) are a particular class of deep,
feed-forward neural networks where neurons correspond to receptive fields in a

9BP, or Backpropagation, is a method used in neural networks to calculate a gradient that is needed
for the calculation of the weights to be used in the network.
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similar way as the neurons of the primary visual cortex in a brain. Due to this
fact, CNNs have been successfully applied to analyze visual imagery. A CNN
consists of an input and an output layer, as well as multiple hidden layers. The
main difference between CNNs and other different classes of neural networks
is the application of convolution operations to extract features from the input
images. In addition to these convolution layers, CNNs have different layers that
improve and accelerate both the learning and the execution processes by reducing
and simplifying the amount of data that is generated. These networks also have
other layers dedicated to classification tasks. The most common layers that can
be found in a CNN are presented and described in the next section.

1.4.2.1 Convolution layer

Convolutional layers apply a convolution operation to the input, passing the
result to the next layer. They are the reason why CNNs are named like that.
Convolution layers require a filter (or function) to process the input data. These
filters are matrices in which their elements or values are known as weights.
These layers consist of many filters, whose values are calculated in the learning
phase. Different characteristics obtained from the previous layer are grouped
into the so-called "feature maps", which serve as input data to the next layer
and are processed using its filters (Equation 1.2), applying convolutions to this
information (Equation 1.3) to generate and output. Where Q and R represent the
input and output feature maps, respectively.

wrq ∗ xq = z (1.2)

z(m, n) =
K−1

∑
k=0

L−1

∑
l=0

wrq(k, l) ∗ xq(m + k, n + l) (1.3)

The values of each of the filters are calculated in the training phase using the
well-known Backpropagation algorithm (LeCun et al., 1998), which consists in
propagating the error calculated in the output to every previous layer, adjusting
the value of the filters to minimize the error.

Fully connected feedforward neural networks could also be used to extract
patterns and learn features, although it is not practical to apply this kind of
networks to images because of the number of neurons that would be necessary
to process them due to the very large input size. The convolution operation is a
solution to this problem, allowing the network to be even deeper while reducing
the number of parameters to learn.
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1.4.2.2 Pooling layer

This layer combines the outputs of neuron clusters at one layer into a single
neuron in the next layer. Pooling layers drastically reduce the width and height
of the input feature map, which is why they are also known as downsampling
layers. This type of layer has two main purposes: it reduces the amount of
weights considerably, lessening the computational cost, and, it decreases the
chance to over-fit due to the reduction applied to the spatial information. This
layer is not affected by the training phase due to the fact that it does not contain
any configurable parameter that needs to be adjusted. In other words, it always
applies the same function. The most common pooling functions are:

1.4.2.2.1 Max-pooling

It is the most common function used in this layer and it is usually set as
default in most frameworks and tools. It obtains the most representative value
from a region of interest, reducing its size. An example of this is shown in
Fig. 1.32, where each of the 2x2 regions are replaced with a single value that
corresponds to the maximum number inside that region. The size of the pooling
kernel (region of interest) is usually set by the user.
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FIGURE 1.32: Max-pooling example.

1.4.2.2.2 Average-pooling

In the average-pooling function (also known as avg-pooling) the arithmetic
mean of the values inside the region of interest is computed, instead of using the
maximum value. An example of the average-pooling function is shown in Fig.
1.33.
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FIGURE 1.33: Average-pooling example.

1.4.2.3 Dropout layer

The idea of the dropout function was first introduced in (Srivastava et al., 2014).
It removes a random set of activations in that layer by setting them to zero. This
helps reducing the overfitting problem, where the network does not perform well
when given new test examples as a consequence of the weights of the network
being excessively tuned to the training dataset. The dropout layer is only used in
the training phase, and not when testing the network. It is usually used in very
deep CNNs that have a high number of feature-maps both in the inputs and in
the outputs of the hidden layers. They have not been used in any of the networks
that are proposed in this work.

1.4.2.4 Fully-connected layer

The fully-connected layer is also known as the decision or classification phase.
It is used to classify the data into various classes with the information obtained
from the feature extraction process that was performed in previous layers. The
number of outputs in the last fully-connected layer of the CNN corresponds to
the number of different classes to be classified.

1.5 SpiNNaker neuromorphic platform

SpiNNaker (Spiking Neural Network Architecture) (Furber et al., 2013) is
a massively parallel multicore computing system for modelling very large
spiking neural networks in real time, optimized for neuromorphic applications.
Both the system architecture and the design of the SpiNNaker chip have
been developed by the Advanced Processor Technologies Research Group
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(APT)10, which is based in the School of Computer Science at the University
of Manchester. Each SpiNNaker chip consists of eighteen 200 MHz general-
purpose ARM968 cores, each with 64kB of tightly-coupled data memory and
32kB of tightly coupled instruction memory. The chip contains a Globally
Asynchronous Locally Synchronous (GALS) architecture with an asynchronous
packet switching network that is highly optimized for neuromorphic applications
(Plana et al., 2007). The communication between them is done via packets carried
by a custom interconnect fabric. The transmission of these packets is brokered
entirely by hardware, giving the overall engine and extremely high bisection
bandwidth. It is important to mention that one of the 18 ARM processors is used
for management, and another ARM core is reserved. Therefore, only 16 ARM
cores are involved in the neuromorphic process.

FIGURE 1.34: SpiNNaker chip layout. It contains 18 ARM processors, a
Router and SDRAM controller.

Fig. 1.34 shows the layout of the currently available SpiNNaker chip11. The
ARM cores in a SpiNNaker chip can communicate to each other and to external
links through the router represented in Fig 1.34. This router has 24 asynchronous
bidirectional links; 18 of them are connected to the 18 ARM processors and six
of them are connected to external links. Each processor can host several neurons

10The group is based in the School of Computer Science at the University of Manchester and it is
headed by Steve Furber. Website: http://apt.cs.manchester.ac.uk

11SpiNNaker2 is currently under development and in this thesis, we only used the first version of
SpiNNaker chip.

http://apt.cs.manchester.ac.uk
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and send/receive spikes to other processors through the router and the packet
switch network (Plana et al., 2008).

FIGURE 1.35: SpiNN-3 machine.

FIGURE 1.36: SpiNN-5 machine.

In this thesis, two different SpiNNaker machines were used: SpiNN-3 (Fig.
1.35) and SpiNN-5 (see Fig. 1.36). The first one is a 4-SpiNNaker-chip circuit
board (72 ARM processor cores) and the second one has 48 SpiNNaker chips (86
ARM processor cores) and 3 Spartan-6 FPGAs to communicate to other boards.
Both boards have a 100 Mbps Ethernet connection that is used as control and
I/O interface between the computer and the SpiNNaker board. SpiNN-5 has
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been used to build a million core massively parallel computer for human brain
simulation (Furber and Brown, 2009). In this thesis, these boards have been used
to deploy large spiking neural networks for audio classification tasks.
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Chapter 2

Objectives

“We share the patience of the ages.
Nothing is set in stone.”

– The Committee

At the beginning of this work, two types of objectives were proposed:
general objectives, with the aim of analyzing and studying the viability of spiking
neural networks for audio samples classification and their implementation in
real-time neuromorphic hardware platforms, in the context of automatic audio
patterns recognition, and more specific objectives, focused on solving particular
problems related to the topic introduced previously and the design of the
corresponding systems and neural networks.

General objectives: search for and study of new architectures based
on spiking systems, analogous to neural systems, for auditory information
processing.

1. Study how the human auditory system captures, analyzes and encodes
acoustic information into nerve impulses that are processed by the brain.

2. Study neuro-inspired algorithms for training systems to perform a specific
task.

3. Develop new systems for processing neuromorphic auditory signals
obtained from a NAS.

With this general objective it is intended to mimic the human nervous system
to benefit from the evolution of nature, as well as to understand new aspects of
how biological neural systems behave. These are the common general objectives
of neuromorphic engineering works and developments.

To achieve this general objective, which is broad and ambitious, the
following set of specific objectives were proposed:
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Specific objectives: implementation and analysis of different mechanisms to
perform neuromorphic auditory signals classification based on SNNs and deep
learning algorithms.

1. Neuromorphic audio processing:

(a) Study and analysis of state-of-the-art software tools for processing
neuro-inspired auditory information.

(b) Development of a new application to process this kind of information.

(c) Development of new tools for generating training datasets for SNNs
and CNNs automatically, based on the information received from a
NAS.

2. Neuromorphic audio samples classification using spiking neural networks:

(a) Study of SNNs and how they work.

(b) Study of different neuro-inspired algorithms for training this kind of
network.

(c) Evaluation and study of different spiking neural network simulators.

(d) Evaluation and study of the SpiNNaker hardware platform to
implement and run SNNs in real time.

(e) Generation of a training dataset for a first experiment with the
aim of performing a classification between different pure tones in a
SpiNNaker machine.

(f) Design of a SNN model to perform the classification.

(g) Design and modeling of a SNN for real-time pure tones classification.

(h) Validation and quantification of the obtained results.

3. Neuromorphic audio classification through deep learning mechanisms:

(a) Study of deep learning mechanisms and CNNs.

(b) Study of CNNs and how they can be adapted to use neuromorphic
auditory information as input.

(c) Generation of a training dataset for a heart murmur detection system
based on CNNs.

(d) Design and implementation of different CNN models to compare
results.

(e) Analysis of the performance of the system through different tests and
comparison of the improvements over other works.

4. Conversion from CNNs to SNNs:
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(a) Study of different mechanisms to convert a ANN model to a SNN
model.

(b) Study of state-of-the-art algorithms to translate trained weights from a
ANN/CNN using backpropagation to the connections of a SNN.

(c) Development of a mechanism for training a CNN off-line and,
subsequently, testing of a similar SNN with the weights obtained.

(d) Generation of a training and testing dataset with speech command
samples obtained from a NAS.

(e) Performance analysis and deployment of the SNN model in a
SpiNNaker machine.
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Chapter 3

Summary of results

“My work is my life, my religion and my needs all tied
together, for both good and bad.”

– Niklas Kvarforth

In this section, the main results and contributions of this thesis are presented.
These results are thoroughly described and detailed in two journal papers and
two conference contributions that are included as appendices in this thesis.

Different neuromorphic audio classification systems have been developed in
this thesis using diverse mechanisms, such as SNN, CNN and a combination of
both, including novel pre-processing techniques to adapt the spike-based audio
samples to the input of the network and for training these classifiers. To be
able to achieve those results, we had to build a software tool for processing the
neuromorphic auditory information outputted by the NAS.

Regarding audio processing, there exist many software applications that
implement a set of tools for post-processing the information. Audacity, Nero
Wave Editor, WavePad, Wavosaur, Ocenaudio, GarageBand and Adobe Audition
are some examples of audio editing software. They are able to import and export
different audio file formats, trim them, split them into different audio files, apply
different effects to the signal and perform a frequency analysis, among other
tasks. One of the most popular ones is Audacity, which is free, open-source,
cross-platform, easy-to-use and is equipped with an extensive suite of built-in
tools, along with a huge selection of third-party plugins to add versatility to this
software.

These applications are capable of working with discrete audio samples.
However, when it comes to working with spiking information obtained from
a neuromorphic sensor, new tools are required for processing this kind of
information. jAER (Delbruck, 2008), which is described in section 1.2.3.1., is an
open-source software that allows to visualize and record event-based data from
diverse neuromorphic sensors, including dynamic vision sensors and artificial
cochleae. The fact that jAER accepts a set of different sensors as input makes it a
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general purpose neuromorphic software, lacking several specific functionalities
that are needed for processing or analyzing auditory information properly.

For this reason, and taking into account that there was no other software
capable of processing spike-based audio data, a new application had to
be developed to aid neuromorphic engineers on their research in auditory
processing. This software is called Neuromorphic Auditory VISualizer (NAVIS)
(Dominguez-Morales et al., 2017b). It is free, open-source1 (under GNU General
Public License), easy-to-use and it was created with the idea of having a program
analogous to Audacity to work with spike-coded audio information instead of
discrete audio samples. This software was published in Neurocomputing journal
(3.317 Impact Factor, Q1 Journal Citation Reports), which has created a specific
track for Original Software Publications, encouraging researchers in the areas of
neural networks and learning systems to publish their software tools.

FIGURE 3.1: NAVIS main window showing the cochleogram for the "En un
lugar de La Mancha" recording. Left 64-channels represented in blue and

right ones in orange.

NAVIS (see Fig. 3.1) is able to read AER streams directly recorded
with jAER into AER-data files from a neuromorphic cochlea and perform
different functionalities for studying, analyzing and processing spike-encoded
information. A data model was designed to store and use the information
extracted from AER-data files. This model represents the information efficiently
and facilitates its subsequent access and processing. A set of tools were designed
to apply operations to the data gathered from the AER-data file and to generate
graphical results through its easy-to-use and intuitive graphical user interface
(GUI). To improve execution times and reduce resources used in memory,

1NAVIS’s project and code can be found in https://github.com/jpdominguez/NAVIS-Tool

https://github.com/jpdominguez/NAVIS-Tool
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FIGURE 3.2: Sonogram generated with NAVIS. Left 64-channels
represented on the bottom part of the image and right ones on top.

FIGURE 3.3: Histogram generated with NAVIS. Left 128-addresses
represented in the left and right ones in the right.

these functions were optimized using LINQ2 query expressions and lambda
functions. To demonstrate these software functionalities, a 64-channel binaural
NAS (Jiménez-Fernández et al., 2017) were used together with an USB-AER
interface (Berner et al., 2007). The aim of the software is to help the neuromorphic
community to work with cochleae data in order to visualize and adapt this
information to build training sets for later learning using a neural network or
other classifier systems.

Latest NAVIS version (v1.0.1.0) includes the following tools:

• Loading AER-data files generated from AER-based neuromorphic cochleae.

• Cochleogram display (see Fig. 3.1). The cochleogram is an XY graph where
X represents timestamp and Y represents AER address. Each of the spikes
produced is represented as a dot, determining its address and the time in
which it was fired.

• Sonogram generation (see Fig. 3.2). The sonogram represents the spike rate
of both cochleae in a color map, where the X axis is time, the Y axis is the
NAS channel, and the color is the relative spike rate of the channel for a
particular time period.

2Language-Integrated Query
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• Histogram generation (see Fig. 3.3). For certain applications it is important
to know which cochlea channels are the ones that have more activity.
The histogram is the appropriate chart to measure this information. In a
histogram, the X axis represents the AER address, while the Y axis is the
number of events fired.

• Disparity between the left and the right cochleae calculation in an AER-data
file obtained from a binaural cochlea. This tool lets the user know which of
the two cochleae is predominant at a specific time period in a particular
channel.

• Average activity calculation along the length of the file (see Fig. 3.4). This
tool generates a 2-axis chart, where the X axis represents time (timestamp,
µs) and the Y axis is the number of mega-events (106 events) fired per
second, calculated by counting the number of events produced between
a time period (integration period) and dividing it by this number. This
functionality, together with the previous one, could be very useful as an
example for echolocation applications.

• Stereo to mono conversion, saving the resultant recording to an AER-data
file or to a CSV (comma-separated values) file.

• Mono to stereo conversion, with the possibility of delaying one of the
cochleae by a time factor. The resultant information can be saved to an
AER-data file or to a CSV file.

• Auditory information splitter and trimmer, both manually and
automatically. NAVIS allows to manually extract a specific section of
the original file and save it separately. It also implements a splitting
function based on the channels’ average activity, Fig. 3.5. One of the main
aims of NAVIS is to split AER-Data files automatically into different files
depending on the fire rate of both channels. A division is established when
there is not enough activity to consider a sound, while removing silences.
These sections are saved as single AER-Data files. The main goal of this
utility is to build training sets for SNNs: after recording a sequence of
audio samples into one file, it is able to distinguish all individual stimuli
and store them separately.

To test the performance of the Automatic Aedat Splitter tool, a new
experiment was carried out. The experiment consisted of automatically splitting
an AER-Data file that contained eight different pure tones (different frequencies,
1 second duration each) with a second of silence between them, and then
calculating the average error by subtracting the duration of each split from the
length that they should have if the pure tone was perfectly extracted from the
audio sample. Different integration period values were used; the results can be
seen in Fig. 3.6.



Chapter 3. Summary of results 67

FIGURE 3.4: Average activity of both cochleae.

FIGURE 3.5: Automatic AER-Data splitter output.

The main contribution of this software tool is its capability to apply complex
audio post-processing treatments and representations, which is a novelty for
spike-based systems in the neuromorphic community. This software will help
neuromorphic engineers to build sets for the training of spiking neural networks
(SNN) thanks to the automatic splitting tool, as well as the rest of the graphical
results, Fig. 3.7. NAVIS has served as a basis for processing the auditory
information prior to using it for training and testing a neural network. More
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FIGURE 3.6: Average error (µs) and error/integration period percentage
obtained when automatically splitting an AER-Data file that contains 8 one-

second duration pure tones using different integration period values.
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FIGURE 3.7: Block diagram of the overall software architecture describing
the algorithms used in the main NAVIS’ functionalities.

information about NAVIS and its functionalities can be found in Appendix A.
Each of the other papers attached in this thesis (Appendix B, C and ??) make use
of this tool, proving its usefulness within this work.

As a first approach to a neuromorphic audio classification system, a
multilayer SNN was built to recognize between eight different pure tones that
correspond to specific piano key frequencies (Dominguez-Morales et al., 2016)
(Appendix B).

Along with vision, audio classification has always been a research interest
within the neuromorphic engineering field. Simulators like Nengo (Bekolay
et al., 2014), Brian (Goodman and Brette, 2008) and NEST (Gewaltig and
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Diesmann, 2007) (see section 1.2.3.3.) are rapidly increasing in popularity in the
neuromorphic community due to the ease of modeling and simulating spiking
neural network architectures with them by using a high-level programming
language (Python is commonly supported by most SNN simulators). With these
frameworks, the user is able to model even complex SNN architectures within a
short development time, set the weights and delays of the connections between
neurons, describe new cell models and run simulations for a specific time period.
However, for interfacing a neuromorphic sensor with the SNN for performing
real-time classification or processing tasks based on the spiking information
received from the sensor, using these software tools may not be the best option
and other different approaches need to be considered.

The SpiNNaker neuromorphic hardware platform (Furber et al., 2013),
which is described in section 1.5, allows deploying large SNNs using Python
language thanks to sPyNNaker and PyNN, which is a library for SNN
description. This board is capable of running SNNs and send reports or results
to the computer in real time. Thanks to the external links that the machine has,
neuromorphic sensors such as NAS and other hardware devices like FPGAs can
be connected to SpiNNaker directly to classify the sensor’s information or send
information to the external device for further processing.

Matlab’s audioplayer function was used to generate 0.5 seconds duration
pure tones with a sampling rate of 48 kHz and 1 Vpp. These signals were sent
to a 64-channel binaural NAS, generating AER streams that were received in the
computer through the USB interface of a USBAERmini2 board that was connected
to the NAS. The streams were logged in the computer as AER-data files (with
.aedat extension) by using jAER. Fig. 3.8 shows a block diagram of the system.

AER
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PC

Audio mixer
audioPlayer

Analog audio from 
PC sound card ML507 Xilinx Development Board

AC’97
codec

Virtex-5 (XC5VFX70T)
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Digital audio
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FIGURE 3.8: Block diagram of the pure tones classification system.

A three-layer SNN was built using PyNN and sPyNNaker for later
simulation in a SpiNN-3 board, consisting of four SpiNNaker chips and capable
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of implementing up to 1024 LIF3 neurons. The network configuration (see Fig.
3.9) consists of the following components:

• Input layer: it receives the stream of AER events that were logged in the
computer as AER-data files. This layer consists of 64 neurons due to the
fact that the NAS used to process this information is a 64-channel binaural
implementation, where the spiking information from the two cochleae is
combined.

• Hidden layer: this layer represents a first step of the classification of
the information contained in the pure tone signals, extracting frequency
patterns for further treatment in the output layer. Thus, since the
classification consists in recognizing between eight different pure tone
signals, this layer consists of eight neurons.

• Output layer: eight neurons shape the last layer of the SNN, which
improves the pattern extraction from the previous layer, performing the
classification and providing the final result.
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FIGURE 3.9: SNN architecture using an audio sample AER-Data file as
input.

A novel offline and supervised firing-rate based algorithm was used to train
each connection of the SNN. Two different training steps are performed:

• The weights of the connections from the input layer to the hidden layer
are obtained by normalizing the spike firing activity for each NAS channel
using a set of audio samples with the same duration, amplitude and
frequency as those to be recognized. The firing rate for a specific channel
(FRchannel_i) (Equation 3.2) is obtained by dividing the number of spikes
produced in that channel by the NAS firing rate (FRNAS) (Equation 3.1).
This value will be set as the weight for the projection between the

3Leaky Integrate-and-Fire
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corresponding input neuron and the neuron in the hidden layer that refers
to the pure tone that has been used to calculate the firing rate in that
particular channel.

FRNAS = (∑ AERevents)/Tsample (3.1)

FRchannel_i = (∑ AERevents(i))/FRNAS (3.2)

• The weights of the connections between the hidden layer and the output
layer are obtained from the firing output of each neuron in the hidden
layer when using the training set of audio samples as inputs to the network
after setting the weights that were calculated in the previous step into the
connections between the input layer and the hidden layer. These firing
outputs are normalized by dividing each of them by the maximum value.
These results are the ones that will be used as weights for the connections
between the hidden layer and the output layer.

The weights of the connections of the network using these two algorithms
were directly obtained from NAVIS after loading each of the AER-data files in
the software application.

FIGURE 3.10: First 10 ms cochleogram of the 130.813 Hz (left) and 1396.91
Hz (right) pure tones.

In this work, the SNN architecture is trained and tested using eight
different pure tones with frequencies that range from 130.813 Hz to 1396.91
Hz, logarithmically spaced (130.813, 174.614, 261.626, 349.228, 523.251, 698.456,
1046.50 and 1396.91 Hz), corresponding to C and F notes from the third to the
sixth octave. Fig. 3.10 shows the cochleograms for the 130.813 Hz and the 1396.91
Hz pure tones after logging their spike information in the computer.

Fig. 3.11 shows the normalized spike firing activity for each NAS channel
and each of the audio samples used in this experiment.

Different pure tone sets with the same frequency and properties (0.5 s and 0.5
V amplitude) as the ones used to train the network were logged and used to test
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FIGURE 3.11: Normalized spike firing activity for each NAS channel per
audio sample.

the network robustness and effectiveness. A 100 % accuracy rate was achieved for
every class when the signal was a pure sine wave. Moreover, the network was
also tested by adding a random noise signal to the pure tones original signals,
obtaining audio samples with different SNR values (from 35.2 dB to 0 dB). Table
3.1 presents the accuracy for every class using the these SNR values.

These results prove the robustness of the SNN-based classification system.
Moreover, the authors presented a demonstration of this system at the
International Symposium of Circuits and Systems (ISCAS) 2017 in Baltimore
(Maryland, USA) (Dominguez-Morales et al., 2017a) with some improvements
to the original work, including a NAS to SpiNNaker interface board that allowed
the SpiNN-3 board to receive live information directly from the NAS, making
the classification work in real time. Some applications for this system could be
robotics and automatic musical notes transcription, among others. However,
the approach considered in this work regarding the way in which the weights
of the connections of the network are set lacks a smart training mechanism,
and could not work for more complex problems. This is why new automatic
training algorithms were considered after this work. Novel neuromorphic
audio processing techniques were used along with well-known deep learning
mechanisms for classification tasks with a more relevant application in our daily
life such as the eHealth field. In particular, the next experiment was focused
on the detection of heart murmurs within heart sound recordings in order to
determine whether a person is healthy or not.

The heart is one of the most important organs in the human body and is the
one affected by a larger number of diseases4. Around 17.7 million people die

4Diseases that affect the heart are called Cardiovascular Diseases or CVDs.
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TABLE 3.1: Accuracy of the pure tones classification SNN for different SNR
values.

6 Experimental results 

Different pure tone sets with the same frequencies and properties (0.5 seconds and 0.5 

V amplitude) as the ones used in this work were captured and used to test the network 

robustness and effectiveness. A 100% hit rate was obtained for every class when the 

signal was a pure sine wave. Moreover, the network has also been tested by adding a 

noise signal consisting of random values to the pure tones original signals, obtaining 

audio samples with different SNR values (from 35.2dB to 0dB). The hit rate percentage 

for every class using the previous SNR values are listed in Table 1. 

Table 1. Hit rate percentage of the audio samples classification SNN for different SNR values. 

SNR 

(dB) 

Pure tone frequency (Hz) 

130.813 174.614 261.626 349.228 523.251 698.456 1046.5 1396.91 

No noise 100% 100% 100% 100% 100% 100% 100% 100% 

35.1993 100% 100% 100% 100% 100% 100% 100% 100% 

21.3363 100% 83% 96% 100% 100% 100% 100% 100% 

13.2273 100% 81% 92% 100% 100% 100% 100% 96% 

7.4733 100% 86% 100% 100% 100% 100% 100% 95% 

3.0103 74% 90% 100% 98% 100% 100% 100% 98% 

2 93% 88% 20% 32% 16% 92% 32% 97% 

1 10% 5% 0% 0% 0% 88% 26% 94% 

0 0% 0% 0% 0% 0% 76% 22% 91% 

The results show very high hit rate percentages when the SNR is above 3 dB. How-

ever, when the SNR falls below 3 dB and approaches zero dB (the amplitude of the 

pure tone is the same as the amplitude of the noise signal) the network is not able to 

classify every input signal as its corresponding class. 

7 Conclusions 

In this paper, a novel multilayer spiking neural network architecture for audio samples 

classification implemented in SpiNNaker has been presented. To achieve this goal, an 

optimized training phase for audio recognition has been described and specified in two 

different steps, which allow obtaining the weights for the connections between the input 

and the hidden layers and between the hidden and the output layers. The network was 

trained using eight pure tones with frequencies between 130.813 Hz and 1396.91 Hz 

and tested by adding a noise signal with SNR values between 35.1993 and 0 dB. 

The hit rate values obtained after many tests confirm the robustness of the network 

and the training, which make it possible to classify every pure tone with a probability 

over 74% even when the SNR value is 3 dB, obtaining almost a 100% probability for 

every input when the SNR is above that value. 

Finally, the SpiNNaker board has allowed to model and develop a leaky integrate-

and-fire spiking neural network for this purpose in an easy, fast, user-friendly and effi-

cient way, proving its potential, and promoting and facilitating the implementation of 

SNNs like these in real hardware platforms. The PyNN code used to test the SNN pre-

sented in this work is available at [19]. 

each year from cardiovascular diseases (CVD), which represent 31% of all deaths
worldwide (World Health Organization, 2017). Detecting CVDs at an early stage
is crucial for applying the corresponding treatment and reducing the potential
risk factors. Auscultation is one of the most used techniques for this purpose,
and can provide clues to the diagnosis of many cardiac abnormalities by listening
and analyzing the heart sound components using a stethoscope. It is very cheap
and requires minimal equipment. However, physicians need extensive training
and experience for auscultating (Roy et al., 2002). Moreover, the accuracy rate
of primary care physicians and medical students on the auscultation process
is between 20% and 40%, as reported in (Etchells et al., 1997; Mangione and
Nieman, 1997; Lam et al., 2005; Strunic et al., 2007), and only roughly 80% is
achieved by expert cardiologists (Etchells et al., 1997; Strunic et al., 2007; Ejaz
et al., 2004).

Heart murmurs are the most common abnormal finding when a patient
visits the physician for auscultation. Based on the experience in the auscultation
process, the physician must decide whether the patient is healthy or not;
however, due to the fact that the accuracy is not very high, the expert could be
wrong, making type-I or type-II errors. A type-I error is the detection of an effect
that is not present (i.e. healthy patients are sent for echocardiogram), whereas
a type-II error is the failure to detect an effect that is present (i.e., pathological
patients are sent home without medication or treatment). It is clear that, in this
case, type-II errors are more important to avoid. However, echocardiograms cost
between $750 and $1500 (Etchells et al., 1997) per patient, which makes type-I
errors also important to consider and avoid. The probability of needing this costly
procedure could be reduced for both healthy people and pathological patients if
a reliable diagnostic tool were available as an aide for physicians.

Studying heart murmurs and developing mechanisms to detect them is not
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a novel topic. Many studies have worked towards designing practical murmur
classifier systems to improve the diagnostic accuracy of physicians. Most of
them use ANNs, support vector machines (SVM) or some complex preprocessing
algorithms (Strunic et al., 2007; Ejaz et al., 2004; Rios-Gutierrez et al., 2012; Hadi
et al., 2008; Hadi et al., 2010; Jia et al., 2012; Singh and Cheema, 2013; Leung
et al., 2000; Noponen et al., 2007; Markaki et al., 2013; Perera et al., 2013; Potes
et al., 2016; Zabihi et al., 2016). However, these approaches present different
downsides: some of them have only trained the network with simulated heart
sounds without noise, obtaining bad accuracy results when testing the classifier
with real heart sounds (Strunic et al., 2007; Rios-Gutierrez et al., 2012; Hadi et al.,
2008; Hadi et al., 2010), others have used only a small amount of real heart sounds
for training the system, lacking robustness in a real scenario (Hadi et al., 2010;
Jia et al., 2012; Leung et al., 2000; Noponen et al., 2007; Markaki et al., 2013;
Perera et al., 2013), and others have presented non-automated solutions, having a
preprocessing step where a person selects the best portion of the heart sound
signal to be used as input to the system (Hadi et al., 2008; Hadi et al., 2010;
Noponen et al., 2007). A more detailed study of the literature regarding heart
sound detection and recognition is presented in Appendix C.

These downsides and approaches were analyzed in order to build a novel
heart murmur detection system to improve current state-of-the-art solutions.
This was achieved by pre-processing heart sound recordings in a bio-inspired
way using a NAS and performing the classification with different CNN models
trained with deep learning algorithms. The heart sound recordings dataset was
obtained from the PhysioNet/CinC Challenge 2016 (Goldberger et al., 2000),
which consists of 3126 heart sound recordings, ranging from 5 to over 120 seconds
in length. Each of these sounds were first segmented (see Fig. 3.12 (a)) using three
different segmentation windows of 1, 1.25 and 1.50 seconds duration, obtaining
three different datasets: 77573 1-second-long audio samples, 61518 1.25-second-
long audio samples, and 51009 1.5-second-long audio samples. Each of the
samples from each dataset were sent to a 64-channel monaural NAS, whose
output was logged to the computer using a USBAERmini2 board and Matlab
into AER-Data files (see Fig. 3.12 (b)). Fig. 3.12 shows the NAS (implemented
in the AER-Node platform) connected to the USBAERmini2. With the spiking
information contained in these files, and by using NAVIS, one sonogram image
was generated for each of the recordings (using time windows of 20 ms in length
for integrating the information) (see Fig. 3.12 (c)). Thus, three different sets
of images were obtained: 77573 images with a size of 50x64 for the 1 second-
long samples dataset, 61518 images with a size of 63x64 for the 1.25 second-long
samples dataset, and 51009 images with a size of 75x64 for the 1.5 second-long
samples dataset. Different CNN models were trained with these images in order
to improve the accuracy obtained in state-of-the-art approaches performed by
other authors. The default LeNet-5 (LeCun et al., 1998) and AlexNet (Krizhevsky
et al., 2012) CNN models, along with two modified versions of them, were
trained and tested with the three different datasets. More details about the
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FIGURE 3.12: Block diagram of the architecture of the heart murmurs
detection system and outputs of the different preprocessing steps.

modifications that were performed to the default models can be seen in Appendix
C (Dominguez-Morales et al., 2018a).

Fig. 3.2 shows the evolution of the training process through time for
each of the CNNs and each of the datasets. The best result was obtained
with the modified AlexNet model and the 1.5 second-long samples, achieving
a sensitivity of 95.12% and a specificity of 93.20%. Table 3.3 presents the best
results obtained per CNN model compared to the ones obtained in other papers.
As can be seen, the results achieved in this work improve current state-of-the-
art solutions in terms of accuracy, making it a useful tool to aid physicians in
the auscultation process. These results were achieved thanks to the use of a
bio-inspired pre-processing step using a NAS, which is also almost 4 times less
power consuming than implementing a Fast-Fourier Transform (FFT) for audio
frequencies decomposition, as other previous works have done: a 64-channel
binaural NAS has a power consumption of 29.7 mW (Jiménez-Fernández et al.,
2017) and, on the other hand, implementing the FFT in an FPGA consumes
around 125 mW (Mookherjee et al., 2015). We also have to consider the fact that
we are using a 64-channel monaural NAS, with half the number of filters with
respect to the binaural version, which means that the power consumption is even
lower than 29.7 mW.
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TABLE 3.2: Accuracy results achieved for each dataset (1s in blue, 1.25s in
green and 1.5s in red) per 10000 training iterations using the four different

CNN models.

LeNet-5 AlexNet

Using convolutional neural networks (CNN) for murmurs recognition

- Default model - Modified model

**

+ +

* +

The results for the heart murmur detection system were obtained in Caffe
Deep Learning Framework (Jia et al., 2014). This framework cannot interface
directly with NAS and, thus, this classification cannot be done in real time as
it is. In (Dominguez-Morales et al., 2018a), a hardware setup was proposed to
convert this system into a CNN-based neuromorphic stethoscope. However,
using a deep SNN instead of a deep CNN alternative can provide a machine
learning system with power saving and input noise tolerance benefits (Farabet
et al., 2012). Additionally, such deep SNNs can be trained on input data generated
from a neuromorphic spiking sensor device, unlocking the potential for a real-
time inference system on a spiking neuromorphic platform (Perez-Peña et al.,
2017). Therefore, in order to make a full neuromorphic classification system
using SNNs instead of CNNs, a new experiment was carried out, with the aim of
classifying voice commands in order to command a robot.

Voice commands are commonly used in multiple personal virtual assistants
(Cooper et al., 2004), like Cortana in Microsoft Windows, or Siri in iOS. Users
are able to control their personal computers or mobile phones by using natural
language sentences. This kind of assistants are based on a field of Artificial
Intelligence (AI) called Natural Language Processing (NLP) to identify what the
user is saying (Chowdhury, 2003; Gazdar and Mellish, 1989).
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TABLE 3.3: Accuracy, sensitivity, specificity and PhysioNet/CinC
Challenge 2016 score of the different studied approaches. Best cases for

the 1, 1.25 and 1.5 datasets are selected.

Accuracy Sensitivity (Se) Specificity (Sp) MAcc

Primary care physicians 40% - - -

Expert cardiologists 80% - - -

(Potes et al., 2016) - 94.24% 77.81% 0.8602

(Zabihi et al., 2016) - 86.91% 84.90% 0.8590

Default LeNet-5 82.39% 83.26% 78.58% 0.8092

Modified LeNet-5 93.68% 92.84% 91.48% 0.9216

Default AlexNet 90.70% 94.52% 90.48% 0.9250

Modified AlexNet 97.05% 95.12% 93.20% 0.9416

In recent years, the application of Artificial Neural Network (ANN) to
this field has become commonplace. Notably, the combination of Recurrent
Neural Networks (RNNs) and Convolutional Neural Networks (CNNs) has led
to significant progress in developing human-machine interface, as in (Williams
and Renals, 1997; McGuire et al., 2002; Russakovsky et al., 2015; Collobert et al.,
2016).

There exist several frameworks and training mechanisms to train CNNs,
making this process a relatively easy task, as can be seen from the previous work.
The most used training algorithm (for ANN and CNN training) is the well-known
Levenberg-Marquardt back-propagation algorithm (Hagan and Menhaj, 1994). In
contrast, there is no established standard training algorithm for SNNs.

Spike-Timing-Dependent Plasticity (STDP) is a biological process that is able
to adjust the strength (weights) of the connections between neurons based on the
relative timing of a particular neuron’s output and input spiking activity. This
process has been implemented in several simulators and hardware platforms,
including SpiNNaker, and has become one of the most ubiquitous approaches for
training spike-based networks especially for unsupervised learning (Diehl and
Cook, 2014). STDP has proved to be very useful and robust for static input signals
such as images (Iakymchuk et al., 2015; Kheradpisheh et al., 2016), although it is
more difficult to apply when it comes to processing time-varying signals such as
audio samples.

As an alternative to STDP, the weights of the connections between neurons
in a network could be set by hand or based on particular statistical algorithms,
as was done in Appendix B (Dominguez-Morales et al., 2016). This option is
complex because it generally needs several trial-and-error loops in order to find
the best weight configuration, which can take a long time. Also, this way of
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setting the weights of the connections is too task specific and lacks the generality
and biological plausibility of STDP.

In recent years, the difference in classification error between deep SNNs
and deep ANNs has diminished significantly (Liu and Furber, 2016). These
exciting results suggest that, if trained appropriately, a SNN can be used for
machine learning inference without introducing penalties in data classification
accuracy. The general off-line SNN training method proposed in (Liu et al., 2017)
is based on two novel activation functions: Noisy Softplus (NSP) (Liu and Furber,
2016), which closely mimics the LIF firing activity driven by current influx with
different noise levels, and Parametric Activation Function (PAF), which maps
abstract numerical numbers of activation functions to specific physical units of a
spiking neuron. Thus, the combination provides an equivalent representation of a
spiking LIF neuron with abstract activation functions of ANNs. PAF allows using
more generalized activation functions (e.g., ReLU instead of NSP) to model a LIF
neuron once its parameters are fitted by NSP. Therefore, the weights of a SNN can
be trained off-line on an equivalent ANN exactly the same way as conventional
ANNs (e.g., using Backpropagation and Stochastic Gradient Descent), although
using PAFs.

Based on this approach, an off-line SNN training tool containing the Matlab
code for ANN training and the Python code for reading trained weights,
translating into PyNN language and testing the SNN in NEST, was used to build
a neuromorphic speech command recognition system. The “left” and “right”
voice commands from the Speech Command dataset, which consists of 65000
one-second long utterances of 30 short words, were used, since one of the final
goals of the COFNET project is to drive a robot using these two voice commands
in a neuromorphic way. This dataset has 4720 “left” and “right” audio files from
thousands of different speakers. Each of the audio samples were sent to the
audio input of a 32-channel monaural NAS. An USBAERmini2 board receives
NAS’s output and sends it to the computer through the USB, where it is logged
using a MATLAB script into AER-data files (see Fig. 3.13). These files were
then converted to sonogram images using NAVIS’s algorithms (see Appendix A)
(Dominguez-Morales et al., 2017b). To do this, a bin width of 20 ms was selected
in order to calculate the firing rate for each of the NAS’s channels in every bin.
In order to make the training of the network more robust to a real scenario, in
which the core information of the audio could be presented not only in the center
of the image but in any position of it, an overlapping shifting window was used,
generating several images for each audio sample with the information centered
in different timestamps. A total of 141726 images were generated in this process,
121565 of which were used to train the network and the remaining 20161 images
to test the accuracy of the system. Sonogram images from “left” and “right”
speech commands can be seen in Fig. 3.14.

A 5C-3P-3C-2P Spiking Convolutional Neural Network (5x5 kernel-size
convolutional layer followed by a 2x2 pooling layer, another 3x3 convolutional
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FIGURE 3.13: Picture (top) and block diagram (bottom) of the hardware
setup for the dataset generation.

layer followed by a 2x2 pooling layer, and then a fully connected layer) was
trained in Matlab with the rate-based sonograms described before. An accuracy
result of 92.21% was achieved when training the CNN for 30 epochs, at a learning
rate value of 0.1 and a synaptic time constant of 0.005 ms, using the ReLU
activation function on the fully connected layer. After this, the network was fine-
tuned for one more epoch with the Noisy Softplus function. After the fine-tuning
process, the network obtained 90.80% accuracy; although this is a slightly lower
value, it will improve the performance when translating from the ANN in Matlab
to a SNN in pyNN (NEST).

The weights obtained from the training step were saved and used to build a
SNN with the same architecture as the ANN that was trained. The SNN was built
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FIGURE 3.14: Sonogram images corresponding to one "Left" (top) and one
"Right" (bottom) audio samples from the Speech Command dataset after

obtaining their spiking information from the NAS.

using PyNN and, after that, it was simulated in NEST. Then, the same SNN was
deployed in a SpiNN-5 machine (with 48 SpiNNaker chips), achieving 89.90%
accuracy. The confusion matrix is shown in Fig. 3.15.

The aforementioned developments in deep SNNs show accurate
classification of static input data (images) using a deep convolutional SNN.
This work shows that it is possible to train a similarly structured network on
time series input data from a NAS produced from a range of sound inputs by
generating a training dataset consisting of many overlapping ‘snapshots’ of the
NAS output.

To make this classification in real time by using the NAS-to-SpiNNaker
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FIGURE 3.15: Confusion matrix of the SNN test using 20161 samples (10117
"left" and 10044 "right" samples).

interface that was presented in (Dominguez-Morales et al., 2017a), Appendix
?? (Dominguez-Morales et al., 2018b) presents and describes a novel SNN
architecture for neuromorphic audio samples classification using the output from
a NAS as input to the network and a buffering layer with delayed populations
that adapts the information from a real-time domain to a static domain, in which
the SNN is trained for, based on the SNN training method that was used before.
This approach could also be used for processing time series or time-dependent
signals with SNNs in real time. This SNN architecture for real-time classification
can be seen in Fig. 3.16, and a detailed description on how the information is
processed within it can be found in Appendix ??.

To sum up, this thesis has presented different novel contributions to the
neuromorphic engineering field and, in particular, to the neuromorphic audio
processing field. First, a desktop software tool for post-processing neuromorphic
auditory information obtained from a NAS was developed. This software serves
as a basic tool for the rest of the contributions presented in this thesis, which are
different audio classification systems. The first system is used to classify between
eight different pure tone signals using a SNN implemented in SpiNNaker and
a NAS, and was extended in a demonstration for ISCAS 2017 (Dominguez-
Morales et al., 2017a), improving the system and making it work in real time.
Then, a deep-learning-based approach of the heart murmur recognition problem
was developed using neuromorphic audio processing thanks to the use of a
NAS, improving current state-of-the-art solutions and becoming a useful tool
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to aid cardiologists and primary care physicians in the auscultation process.
To conclude, a deep-learning-based training system was built in Matlab using
specific activation functions that allow to train a CNN, fine-tune the weights
obtained and export them to a SNN without modifying them, achieving almost
the same accuracy in the training phase and when testing the SNN. This
framework was used to train a network for “left” and “right” speech commands
recognition, which was later deployed on a SpiNNaker board, obtaining good
accuracy results. A novel SNN architecture is proposed to classify time-variant
signals such as speech commands in real time.
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FIGURE 3.16: Real-time NAS audio input SCNN scenario with a buffering
layer consisting of a set of delayed populations.
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Chapter 4

Discussion

“Nothing lasts forever but the certainty of change.”

– Bruce Dickinson

In the previous section, the results obtained in this thesis were presented.
In this chapter, the main contributions achieved are described comparing them
to other state-of-the-art approaches, along with future works that could be
investigated considering the works presented in this thesis as a starting point.

The development of NAVIS has led to a very important and useful tool that
has been completely necessary for performing the other works that are part of
the compendium of contributions presented in this thesis. Until the release of
NAVIS, there was no specific tool for analyzing and processing raw information
obtained from a NAS. Moreover, the functionalities that it has for generating
training datasets will certainly be used in future works. Being free and open-
source makes NAVIS easy to be used, shared and modified by anyone who wants
to use it within the neuromorphic community. NAVIS is constantly evolving
and improving, with new tools and functionalities for neuromorphic auditory
information analysis and processing being added in each update, along with
fixing minor bugs reported by the users.

With the help of this tool and the SpiNNaker platform, an SNN-based off-
line pure tone classifier system was built. This was the first time that NAS
and SpiNNaker were used together, achieving what we believe is the first
ever neuromorphic auditory classifier implemented on this hardware platform.
Thanks to the layer configuration and firing-rate-based algorithms to set the
weights of the connections, the noise tolerance achieved was high, improving
previous results (Cerezuela-Escudero et al., 2015) even when using a simpler
network configuration. This work was improved with a real-time NAS-to-
SpiNNaker interface, making the classification run in real time. This setup could
be used in future works for more complex real-time neuromorphic audio signals
classification (e.g. music transcription). With this implementation, we aim to
model the inferior colliculus of the brain, which is the point in the brainstem
where all auditory pathways traveling through the brainstem converge. It
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receives information from the cochleae and the superior olivary nuclei and
processes it before it reaches the cerebral cortex. The cells of the central nucleus of
the inferior colliculus are organized tonotopically, meaning that different neurons
respond preferentially to different sound frequencies. It is also involved in fine-
tuning auditory sensations and it might be responsible for pitch detection.

From the inferior colliculus, the information travels to the cortex. The
visual cortex consists of a set of cells that are responsible to detect borders and
orientations within visual stimuli; this is, they are able to extract information
from the spatial domain and the relation between adjacent receptive fields.
Taking into account these fundamentals of biology, heart murmur recordings
were processed with a NAS and the spiking information was integrated using
20 ms bins, generating sonogram images where the spatial information in the X
axis represents time. Although heart murmurs detection is not a novel topic,
this work was the first to use neuromorphic audio processing, which is over
four times less power consuming than using an FFT (Mookherjee et al., 2015).
This pre-processing phase, along with the training and fine-tuning of different
CNN models led to a heart murmur detection system that improved state-of-
the-art solutions to the problem. The leading approach from PhysioNet/CinC
challenge 2016 (Goldberger et al., 2000; Potes et al., 2016) was overcome by the
work presented in this thesis (Appendix C) by more than 1% sensitivity and
6% specificity, meaning that this approach is the current best option in terms
of accuracy for aiding physicians in the auscultation process. Although real-
time detection is not a constraint for this specific application, a hardware setup
was proposed in the paper in order to make this approach work in real time
(neuromorphic stethoscope), Fig. 4.1.

FPGA

NAS
PDM

microphone

Full-custom 
CNN 

accelerator
Healthy subject

Pathological patientaudio spikes Configurable real-time 
Segmentation and 

Sonogram generator

FIGURE 4.1: Block diagram of the complete system implemented on an
FPGA using a PDM microphone for real-time analysis of the heart sound

directly from the patient.

It was also achieved in this work the first neuromorphic speech
command recognition implemented in SpiNNaker using a neuromorphic
sensor. The knowledge obtained from previous works regarding SNNs, CNNs,
neuromorphic audio processing and the SpiNNaker itself were put together
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in order to develop a framework for off-line training SNNs based on deep-
learning mechanisms. The system was tested and validated, obtaining 90%
accuracy for “left” and “right” spoken commands classification. In Appendix
??, a novel SCNN model was proposed for performing the classification in real
time, along with the necessary mechanisms to train this network with any dataset
of spike-encoded information, although we focused on time-variant signals as
audio. Based on this real-time neuromorphic speech commands classification
in SpiNNaker, we would like, as a future work, to increase the number of
spoken words that the system is able to classify and command a four-wheeled
robot with them using the interface between SpiNNaker and FPGA that was
built in (Dominguez-Morales et al., 2017a). As was previously described, this
framework could also be used for training SNNs with any kind of data that can
be represented as an image, becoming an easier and faster option for training this
kind of network as opposed to using STDP.

To conclude, this thesis has presented novel contributions in the field of
neuromorphic audio processing both in real-time and off-line using different
neural networks such as SNNs, CNNs and SCNNs, which have been
implemented in embedded neuromorphic hardware platforms (SpiNN-3 and
SpiNN-5). Some of the results improve previous state-of-the-art solutions
(Appendices A and C), and others are implementations that have been developed
for the first time (Appendices A, B and ??), becoming important contributions that
have been published in high impact factor journals and conferences. Some lines
of research have been opened with these results, allowing numerous possibilities
for future works, some of which have been presented in this discussion. Fig. 4.2
shows a block diagram with the relations and connections of the papers included
as appendices in this thesis.
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Chapter 5

Conclusions

“In my last mourning I realize,
I’ve always been the nothing I feared becoming.”

– Paolo Bruno

In this work, which has been presented throughout this document, the
following contributions and conclusions are highlighted:

• An in-depth study of the human auditory system and the most relevant
models of the cochlear system behavior has been carried out.

• A study of the functioning of biological neurons and the connections
between them has been conducted, along with an analysis of the
codification of spike-based information.

• Current software tools and utilities for neuromorphic auditory information
processing have been studied and analyzed. The advantages and
disadvantages have been taken into account to develop a novel software
application called NAVIS for processing spike-encoded information
obtained from a NAS. Moreover, some new tools have been added with
the aim of generating datasets automatically for training a network.
This software was published in the Neurocomputing journal, presented
in the Capo Caccia Neuromorphic Cognitive Neuromorphic Engineering
Workshop 2017, and it is free, open and public for the neuromorphic
engineering community, both for using it and programming new
functionalities.

• The SpiNNaker neuromorphic hardware has been studied along with the
necessary Python libraries to work and communicate with the machines.
This knowledge, along with NAVIS, has been used to develop a pure
tone classification system based on an SNN that receives recorded spiking
information from a NAS. The system has been implemented on a SpiNN-
3 machine, where the performance was analyzed with noisy inputs,
achieving good accuracy in, what we believe it is, the first implementation
of a neuromorphic audio classifier to use this hardware platform. This
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work was presented in the International Conference on Artificial Neural
Networks (ICANN) 2016, and published in Lecture Notes in Computer
Science (LNCS) as a book chapter.

• A study of deep-learning mechanisms and convolutional neural networks
has been performed. This knowledge has been used to develop a heart
murmur detection system based on CNNs and spiking audio information
logged from a NAS. The audio samples were obtained from a public
dataset for the PhysioNet/CinC Challenge 2016, which were processed
using NAS and NAVIS in order to generate an image dataset. Four
different CNN models were trained and tested, achieving very good results.
These results were compared to the leading approaches from the challenge
and other state-of-the-art works, obtaining the best results in terms of
accuracy, specificity and sensitivity. This work was published in the IEEE
Transaction on Biomedical Circuits and Systems journal and presented in
the International Symposium on Circuits and Systems (ISCAS) 2018.

• During the three-month research internship in the Advanced Processor
Technologies of the University of Manchester, which is headed by Steve
Furber, a framework was developed for off-line training SNNs with deep-
learning algorithms from a CNN for neuromorphic audio information
classification. This system was tested with a “left” and “right” speech
commands dataset. The classifier was deployed in a SpiNN-5 machine in,
what we believe it is, the first implementation of a neuromorphic speech
commands recognition system using to use this approach and a SpiNNaker
hardware platform. The results have been presented in the International
Joint-Conference on Neural Networks (IJCNN) 2018 and published in the
conference proceedings.

• A novel SNN model for real-time neuromorphic audio samples
classification has been designed using the output from a NAS as input to
the network and a buffering layer with delayed populations that adapts the
information from a real-time domain to a static domain based on an off-line
training based on deep-learning algorithms.
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1. Introduction

Neuromorphic engineering is a discipline that studies, designs and
implements hardware and software that mimic the way in which nervous
systems work, focusing its main inspiration in how the brain solves
complex problems easily. Currently, the neuromorphic community has a
set of neuromorphic hardware, such as sensors [1], learning circuits [2],
neuromorphic information filters and feature extractors [3], and robotic
and motor controllers [4]. In the field of neuromorphic sensors, diverse
neuromorphic cochleae can be found [5]. These sensors are able to
decompose audio signals into frequency bands, represent them as
streams of short pulses, called spikes, using the Address-Event
Representation [6], and then make them interface with other neuro-
morphic layers. On the other hand, there are several software tools in the
community, like NENGO [7] or BRIAN [8], for spiking neural networks
simulation with or without learning; or jAER [9], for real-time visualiza-
tion and software processing of AER streams captured from the hard-
ware using specified interfaces [10]. The aim of the software presented in
this paper, called NAVIS, is to help the neuromorphic community to
work with cochleae data in order to visualize and adapt this information
to build training sets for later learning. To demonstrate these software
functionalities, a 64-channel binaural Neuromorphic Auditory Sensor
(NAS) for FPGA [5] has been used together with an USB-AER interface
[10]. NAS responses are stored as aedat files through jAER. However,
since this software works with aedat files, it can work with any cochleae
sensor connected to jAER using its aedat files.

NAVIS provides neuromorphic engineers with a set of functions: (1)
detailed data visualization through cochleograms, sonograms, histograms,
average activity and channels disparity; (2) it performs a set of algorithms
for different stream splits; (3) it can remove silences and generate a set of
new files with the most relevant auditory information; and (4) it can be a
test bed for building data sets for the training of spiking neural networks.
For example, it can reproduce an audio file, with all the cases and samples
to train a Spiking Neural Network (SNN), i.e. SpiNNaker [11], and it can
store this information into aedat files, which can be used in jAER. After
recording an aedat file, NAVIS is used to visualize features and measure
the quality of the auditory information. It can search silences between
samples and use them to split the original file into several streams with
short sentences or words; and, finally, it can store a new set of aedat files
without silences, providing one file per sample.

Other software applications that allow the post-processing of audio
information are, as an example of sample-based or event-based,
Audacity [12] and jAER [9], respectively. Audacity is a free, open
source digital audio editor that provides a set of tools for post-
processing information. These tools are mostly the same as the ones
implemented by NAVIS: sonogram, histogram, automatic split, manual
split, average activity and disparity between left and right channels;
however, Audacity is only capable of working with discrete audio
samples, instead of spiking information obtained from a neuromorphic
sensor (as jAER and NAVIS do). jAER only allows to represent the

cochleogram for spiking audio information, lacking in several func-
tionalities that are necessary when post-processing this kind of
information. NAVIS provides functionalities that are similar to those
in Audacity, but using spike-coded audio information to aid neuro-
morphic engineers, which is a novelty in the neuromorphic community.

2. Software framework

The Neuromorphic Auditory VISualizer (NAVIS) Tool is able to
read aedat files and perform a set of algorithms of the binary data
contained in order to obtain results and graphical representations
that will provide relevant information about the events communicated
during a time period. Once the file is loaded, it gives a set of functions
through the menus and the left side tool bar, which can be applied to
the data. The stream of events contained in the aedat file used in the
examples corresponds to a young woman reading the first sentence of
the famous Spanish novel The Ingenious Gentleman Don Quixote of
La Mancha: “En un lugar de La Mancha”. Fig. 1 shows the
algorithms that have been implemented for each of the main NAVIS
functionalities, whose description and result are detailed in the next
subsections.

2.1. Cochleogram

After choosing the aedat file to be loaded, the internal data decodifica-
tion process and the subsequent cochleogram calculation and representa-
tion in the main application window are launched. The main window of
the application and the output of the cochleogram can be seen in Fig. 2,
where the X axis represents time (µs) and the Y axis is the AER address
assigned to each frequency band. Each dot corresponds to an event that
has been fired in a particular AER address at a specific time. The picture
shows the AER events fired for both cochleae: the left one at the bottom
and the right one on top, embracing up to 256 addresses for the two sets
of 64 channels of the binaural NAS [5], where each channel has positive
and negative events. Lower addresses belong to the events of higher
frequency channels. The response of the events appears to be “lying”, this
is because of the cascade architecture of the internal filters (Spike Low
Pass Filter –SLPF– [3]), since each filter induces a small phase increment,
which increases as the spikes go across a SLPF [5].

2.2. Sonogram

Fig. 3 represents the spike rate of both cochleae in a color map,
where X axis is time, Y axis is the NAS channel, and the color is the
relative spike rate of the channel for a particular time period, software
settable. Each one of the words contained in the sentence “En un lugar
de La Mancha” can be clearly distinguished.
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2.3. Histogram

For certain applications it is important to know which cochlea
channels are the ones that fire more events. The histogram is the
appropriate chart to measure this information. Fig. 4 shows the
resulting histogram for the same test scenario. The X axis represents
the 256 possible AER address values, while the Y axis is the number of

events fired. An option is included for the user to choose the histogram
to be normalized or not, as shown in Fig. 4.

2.4. Disparity between left and right channels

The tool allows to know the difference between both cochleae
(searching for the predominant one in a period of time), which is very
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Fig. 1. Block diagram of the overall software architecture describing the algorithms used in the main NAVIS’ functionalities.

Fig. 2. Cochleogram representing “En un lugar de La Mancha”. Left 64-channels represented in blue and right ones in orange.(For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article).

Fig. 3. Sonogram. Left 64-channels represented in bottom and right ones in top.
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useful for source echolocation: after it, dominant events polarity and
spike rate can determine the orientation and distance of the sound
source (after a calibration or learning step).

2.5. Average activity of both channels

It is really important to know the activity of the NAS in terms of the
number of AER events fired per second in a particular time period,
either for source echolocation as the tool presented above or to quantify
the firing rate of both NAS. This tool generates a 2-axis chart (see
Fig. 5), where the X axis represents time (timestamp, µs) and the Y axis
is the number of mega-events (106 events) fired per second, calculated
by counting the number of events produced between a time period
(integration period) and dividing it by this number.

2.6. Aedat files split

One of the main aims of NAVIS is to split aedat files automatically
into different files depending on the fire rate of both channels. This
analysis is performed over a time period. A division is stablished when
there is not enough activity to consider a sound, while removing
silences. These sections are saved as single aedat files. The main goal of
this utility is to build training sets for SNNs: after recording into one
file a sequence of audio samples, it is able to distinguish all individual
stimuli and store them separately.

NAVIS allows to manually extract a specific section of the original
file and save it separately. It also implements a splitting function based
on the channels’ average activity. Two configurable parameters are
needed for this purpose: (1) Noise Threshold (% of the number of
events that an integration period needs in order to be considered as a
sound instead of a noise); and (2) Noise Tolerance (consecutive
integration periods that are needed to be detected above the Noise
Threshold in order to be considered as a real sound instead of a noise).
When a period with not enough rate is detected, a new split is created if
the process passed through Noise Tolerance consecutive times (or
more) detecting sound; otherwise, this information will be taken as
noise and will be omitted in the results of this function.

To test the performance of the Automatic Aedat Splitter tool, a new
experiment was carried out. The experiment consisted of automatically
splitting an aedat file that contained eight different pure tones (different
frequencies, 1 s duration each) with a second of silence between them,
and then calculating the average error by subtracting the duration of
each split from the length that they should have if the pure tone was
perfectly extracted from the audio sample. Different integration period
values were used and the results can be seen in Fig. 6.

3. Performance analysis

The information of each AER event is stored in an object with three
attributes: address, timestamp and ID (position within the file). The
loading process adds these objects to a list, which will contain the
entire information of the events stored in the aedat file (more
information about the software architecture and data model can be
found in the NAVIS wiki [13]). As large data size files (more than a
million of events in this example) are frequently used in this applica-
tion, software optimization techniques need to be applied in order to
work with the information in a fast way and reduce the CPU's load as
much as possible. Therefore, LINQ (Language-Integrated Query) [14]
query expressions were used. LINQ is a Microsoft .NET platform
component that offers an API called Standard Query Operator (SQO),
which allows to handle large lists (for example aedat files) in the most
optimized way.

Table 1 shows execution times for the functions that have been
implemented in the NAVIS Tool, measured with Microsoft Visual
Studio Profiling Tools. For this study, three different processors were
used, so that the scalability of the operations could be analyzed. In
addition to the total and local time of each function, the table also
presents the percentage of the total time and the time per event (TPE)
for every tool. This last number is extremely important due to the fact
that the execution time directly depends on the total number of events
that the file has. We can observe that generating the pdf report is the
function that takes the longest time to execute (around 45% of the
total), since the process to create that file needs to calculate the output
from the rest of the functions.

4. Conclusions

In this manuscript we have presented the design and development
details of a software application that is able to load AER streams stored
in aedat files obtained from a 64-channel binaural NAS, captured using

Fig. 5. Average activity of both NAS.

Fig. 6. Average error (µs) and error/integration period percentage obtained when
automatically splitting an aedat file that contains 8 one-second duration pure tones
using different integration period values.

Fig. 4. Histogram. Left 64-channels represented in the left and right ones in the right.
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jAER software and USB-AER hardware interface. A data model has
been designed to store and use the information extracted from aedat
files. This model represents the information efficiently and facilitates
its subsequent access and processing. A set of functionalities have been
designed to apply operations to the data gathered from the aedat file
and to generate graph results. To improve execution times and reduce
resources used in memory, these functions have been optimized using
LINQ query expressions and lambda functions.

Finally, the tool includes a functionality that is able to split an aedat
file into several ones, both manually and automatically, depending on
the average activity of the cochlea. This is a very useful capability for
creating training sets for spiking neural networks. The software tool
presented can help neuromorphic researchers to process and evaluate
large amounts of cochlear information in an easy and efficient way.
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Comparison on execution times per function between three different processors.
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Time (ms, %) TPE (ms) Time (ms, %) TPE (ms) Time (ms, %) TPE (ms)

Load Aedat 3346.76, 5.293% 30.96*10−4 1266.99, 5.556% 11.72*10−4 1374.54, 6.346% 12.70*10−4

Sonogram 8883.82, 14.05% 82.21*10−4 3329.38, 14.60% 30.80*10−4 3001.86, 13.859% 27.76*10−4

Histogram 70.82, 0.112% 0.657*10−4 28.96, 0.127% 0.268*10−4 35.96, 0.166% 0.33*10−4

Disparity 8668.83, 13.71% 80.11*10−4 3117.30, 13.67% 28.83*10−4 2962.22, 13.676% 27.39*10−4

Average activity 4099.83, 6.484% 37.92*10−4 1287.97, 5.648% 11.91*10−4 1287.04, 5.942% 11.90*10−4

Automatic split 10040.92, 15.88% 92.87*10−4 3557.42, 15.60% 32.91*10−4 3290.15, 15.19% 30.43*10−4

Manual split 123.93, 0.196% 0.114*10−4 54.05, 0.237% 0.499*10−4 114.36, 0.528% 1.05*10−4

Generate PDF 27998.24, 44.28% 258.9*10−4 10161.46, 44.56% 93.98*10−4 9593.86, 44.293% 88.74*10−4

Total time 63230, 100% 584*10−4 22804, 100% 211*10−4 21660, 100% 200.3*10−4
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Abstract. Audio classification has always been an interesting subject of research
inside the neuromorphic engineering field. Tools like Nengo or Brian, and hard‐
ware platforms like the SpiNNaker board are rapidly increasing in popularity in
the neuromorphic community due to the ease of modelling spiking neural
networks with them. In this manuscript a multilayer spiking neural network for
audio samples classification using SpiNNaker is presented. The network consists
of different leaky integrate-and-fire neuron layers. The connections between them
are trained using novel firing rate based algorithms and tested using sets of pure
tones with frequencies that range from 130.813 to 1396.91 Hz. The hit rate
percentage values are obtained after adding a random noise signal to the original
pure tone signal. The results show very good classification results (above 85 %
hit rate) for each class when the Signal-to-noise ratio is above 3 decibels, vali‐
dating the robustness of the network configuration and the training step.
Keywords: SpiNNaker · Spiking neural network · Audio samples classification ·
Spikes · Neuromorphic auditory sensor · Address-Event Representation

1 Introduction

Neuromorphic engineering is a discipline that studies, designs and implements hardware
and software with the aim of mimicking the way in which nervous systems work,
focusing its main inspiration on how the brain solves complex problems easily. Nowa‐
days, the neuromorphic community has a set of neuromorphic hardware tools available
such as sensors [1, 2], learning circuits [3, 4], neuromorphic information filters and
feature extractors [5, 6], robotic and motor controllers [7, 8]. In the field of neuromorphic
sensors, diverse neuromorphic cochleae can be found [2, 9, 10]. These sensors are able
to decompose the audio in frequency bands, and represent them as streams of short
pulses, called spikes, using the Address-Event Representation (AER) [11] to interface
with other neuromorphic layers. On the other hand, there are several software tools in
the community for spiking neural networks (SNN) simulation, i.e. NENGO [12] and

© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part I, LNCS 9886, pp. 45–53, 2016.
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BRIAN [13]; or jAER [14] for real-time visualization and software processing of AER
streams captured from the hardware using specific interfaces [15]. Hardware platforms
like the SpiNNaker board [16] allows to develop and implement complex SNN easily
using a high-level programming language such as Python and the PyNN [17] library.

This manuscript presents a novel multilayer SNN architecture built in SpiNNaker
which has been trained for audio samples classification using a firing rate based algo‐
rithm. To test the network behavior and robustness, a 64-channel binaural Neuromorphic
Auditory Sensor (NAS) for FPGA [10] has been used together with an USB-AER inter‐
face [15] (Fig. 1) and the jAER software, allowing to produce different pure tones with
frequencies varying from 130.813 Hz to 1396.91 Hz, record the NAS response storing
the information in aedat files through jAER and use these files as input for the SNN that
has been implemented in the SpiNNaker board.

Fig. 1. Block diagram of the system

The paper is structured as follows: Sect. 2 presents the number of neurons, layers
and connections of the SNN. Then, Sect. 3 describes the training algorithm used in every
layer for the audio samples classification. Section 4 describes the test scenario, including
information about the input files. Then, Sect. 5 presents the experimental results of the
audio samples classification when using the inputs described in Sect. 4. Finally, Sect. 6
presents the conclusions of this work.

2 Hardware Setup

The standalone hardware used in this work consists of two main parts: the 64-channel
NAS connected to the USB-AER interface for generating a spike stream for each audio
sample, and the SpiNNaker for back-end computation and deployment of the SNN
classifier.

2.1 Neuromorphic Auditory Sensor (NAS)
A Neuromorphic Auditory Sensor (NAS) is used as the input layer of our system. This
sensor converts the incoming sound into a train of rate-coded spikes and processes them
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using Spike Signal Processing (SSP) techniques for FPGA [5]. NAS is composed of a
set of Spike Low-pass Filters (SLPF) implementing a cascade topology, where SLPF’s
correlative spike outputs are subtracted, performing a bank of equivalent Spikes Band-
pass Filters (SBPF), and decomposing input audio spikes into spectral activity [10].
Finally, SBPF spikes are collected using an AER monitor, codifying each spike using
the Address-Event Representation, and propagating AER events through a 16-bit
parallel asynchronous AER port [11].

NAS designing is very flexible and fully customizable, allowing neuromorphic engi‐
neers to build application-specific NASs, with diverse features and number of channels.
In this case, we have used a 64-channel binaural NAS, with a frequency response
between 20 Hz and 22 kHz, and a dynamic range of +75 dB, synthesized for a Virtex-5
FPGA. Figure 1 shows a NAS implemented in a Xilinx development board, and a USB-
AER mini2 board, that implements a bridge between AER systems and jAER in a PC
(Fig. 2).

Fig. 2. 64-channel binaural NAS implemented in a Xilinx ML507 FPGA connected to an USB-
AER mini2 board.

2.2 Spiking Neural Network Architecture (SpiNNaker)
SpiNNaker is a massively-parallel multi-core computing system designed for modelling
very large spiking neural networks in real time. Each SpiNNaker chip comprises 18
general-purpose ARM968 cores, running at 200 MHz, communicating via packets
carried by a custom interconnect fabric. Packets are transmitted and their transmission
is brokered entirely by hardware, giving the overall engine an extremely high bisection
bandwidth. The Advanced Processor Technologies Research Group (APT) [18] in
Manchester are responsible for the system architecture and the design of the SpiNNaker
chip itself.

In this work, a SpiNNaker 102 machine was used. The 102 machine, Fig. 3, is a 4-
node circuit board and hence has 72 ARM processor cores, which are typically deployed
as 64 application cores, 4 Monitor Processors and 4 spare cores. The 102 machine
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requires a 5 V 1 A supply, and can be powered from some USB2 ports. The control and
I/O interface is a single 100 Mbps Ethernet connection.

Fig. 3. SpiNNaker 102 machine.

3 Leaky Integrate-and-Fire Spiking Neural Network

The SpiNNaker platform allows to implement a specific spiking neuron model and use
it in any SNN deployed on the board thanks to the PyNN package. Leaky Integrate-and-
Fire (LIF) neurons have been used in a 3-layer SNN architecture for audio samples
classification.
• Input layer. This layer receives the stream of AER events fired for the audio samples

captured as aedat files through jAER. The number of input neurons is equal to the
number of channels that the NAS has. As a 64-channel NAS (64 different AER
addresses) was used in this work, the input layer consists of 64 LIF neurons.

• Hidden layer. The hidden layer has the same number of neurons as the desired
number of classes to be classified in the output layer. As an example, this layer should
consist of eight LIF neurons if eight different audio samples are expected to be
classified.

• Output layer. As the previous layer, this also has as many neurons as output classes.
The firing output of the neurons in this layer will determine the result of the classi‐
fication.

Figure 4 shows the SNN architecture. Connections between layers are achieved using
the FromListConnector method from PyNN, meaning that the source, destination and
weight of the connection are specified manually. Using other connectors from this
package will result on having the same weight in all the connections between consecutive
layers, instead of a different value for each. In this architecture, each neuron in a layer
is connected to every neuron in the next layer, and the weight value is obtained from the
training step, which is described in Sect. 4. The threshold voltage of the neurons in the
hidden layer is 15 mV, while this voltage is 10 mV in the neurons in the output layer.
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Decay rate and refractory period are the same for both layers: 20 mV/ms and 2 ms,
respectively.

Fig. 4. SNN architecture using an audio sample aedat file as input.

4 Training Phase for Audio Classification

In the previous section, each of the three layers comprising the network were described.
The training phase is performed offline and supervised. The main objective of this
training is to obtain the weight values of the connections between the input and the
hidden layer and between the hidden and the output layers for further audio samples
classification. Therefore, two different training steps need to be done.

The weights of the first step of the training phase are obtained from the normalized
spike firing activity for each NAS channel using a set of audio samples similar to those
to be recognized (same amplitude, duration and frequencies). The firing rate for a specific
channel (FRchannel_i) is obtained by dividing the number of events produced in that
channel by the NAS firing rate (FRT), which is the number of events fired in the NAS
in a particular time period.

(1)

(2)

Figure 5 shows the normalized spike firing activity for a set of eight pure tones with
frequencies that range from 130.813 Hz to 1396.91 Hz, logarithmically spaced.

The weights of the second step of the training phase are obtained from the firing
output of each neuron in the hidden layer when using the set of audio samples as input
after loading the weights calculated in the previous step into the connections between
the input and the hidden layer. These firing outputs are normalized by dividing each of
them by the maximum value. The results obtained are the weight values that will be used
in the connections between the hidden and the output layer.
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5 Test Scenario

In this work, the SNN architecture and training algorithm presented are tested using
eight different audio samples. These output classes correspond to eight different pure
tones with frequencies that range from 130.813 Hz to 1396.91 Hz, logarithmically
spaced (130.813, 174.614, 261.626, 349.228, 523.251, 698.456, 1046.50 and
1396.91 Hz). These samples have a duration of 0.5 s and were generated using the
audioplayer function from Matlab with a sampling rate of 48 KHz and a peak-to-peak
voltage value of 1 V. After the signal is sent to the mixer, it propagates the sound to
NAS input and sends an AER stream to the PC through the AER-USB interface. The
jAER software running on the PC is able to capture this stream and save it as an aedat
file. Figure 6 shows the cochleograms for the 130.813 Hz and the 1396.91 Hz pure tones
after capturing them.

The first step of the training phase can be achieved by applying the equations
presented in Sect. 4 to the set of eight aedat files corresponding to each pure tone. This
will generate a CSV file containing the weights for the 64 × 8 connections between the
input and the hidden layers of the SNN based on the firing rate of the spike streams for
each audio sample. As described in the previous section, loading those weights into the
corresponding connections and using the eight pure tones as input will result on a firing

Fig. 5. Normalized spike firing activity for each NAS channel per audio sample.

Fig. 6. First 10 ms cochleogram of the 130.813 Hz (left) and 1396.91 Hz (right) pure tones.
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output on the second layer neurons that will be used for training the connections between
the second and the output layers of the SNN.

After the weights are set on these connections, new sets of the same pure tones (same
frequencies) are recorded using different Signal-to-Noise Ratio (SNR) values and tested
on the network, calculating the hit rate percentage for each class.

6 Experimental Results

Different pure tone sets with the same frequencies and properties (0.5 s and 0.5 V
amplitude) as the ones used in this work were captured and used to test the network
robustness and effectiveness. A 100 % hit rate was obtained for every class when the
signal was a pure sine wave. Moreover, the network has also been tested by adding a
noise signal consisting of random values to the pure tones original signals, obtaining
audio samples with different SNR values (from 35.2 dB to 0 dB). The hit rate percentage
for every class using the previous SNR values are listed in Table 1.
Table 1. Hit rate percentage of the audio samples classification SNN for different SNR values.
SNR
(dB)

Pure tone frequency (Hz)
130.813 174.614 261.626 349.228 523.251 698.456 1046.5 1396.91

No noise 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %
35.1993 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %
21.3363 100 % 83 % 96 % 100 % 100 % 100 % 100 % 100 %
13.2273 100 % 81 % 92 % 100 % 100 % 100 % 100 % 96 %
7.4733 100 % 86 % 100 % 100 % 100 % 100 % 100 % 95 %
3.0103 74 % 90 % 100 % 98 % 100 % 100 % 100 % 98 %
2 93 % 88 % 20 % 32 % 16 % 92 % 32 % 97 %
1 10 % 5 % 0 % 0 % 0 % 88 % 26 % 94 %
0 0 % 0 % 0 % 0 % 0 % 76 % 22 % 91 %

The results show very high hit rate percentages when the SNR is above 3 dB.
However, when the SNR falls below 3 dB and approaches zero dB (the amplitude of the
pure tone is the same as the amplitude of the noise signal) the network is not able to
classify every input signal as its corresponding class.

7 Conclusions

In this paper, a novel multilayer spiking neural network architecture for audio samples
classification implemented in SpiNNaker has been presented. To achieve this goal, an
optimized training phase for audio recognition has been described and specified in two
different steps, which allow obtaining the weights for the connections between the input
and the hidden layers and between the hidden and the output layers. The network was
trained using eight pure tones with frequencies between 130.813 Hz and 1396.91 Hz
and tested by adding a noise signal with SNR values between 35.1993 and 0 dB.
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The hit rate values obtained after many tests confirm the robustness of the network
and the training, which make it possible to classify every pure tone with a probability
over 74 % even when the SNR value is 3 dB, obtaining almost a 100 % probability for
every input when the SNR is above that value.

Finally, the SpiNNaker board has allowed to model and develop a leaky integrate-
and-fire spiking neural network for this purpose in an easy, fast, user-friendly and effi‐
cient way, proving its potential, and promoting and facilitating the implementation of
SNNs like these in real hardware platforms. The PyNN code used to test the SNN
presented in this work is available at [19].
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Abstract—Auscultation is one of the most used techniques for
detecting cardiovascular diseases, which is one of the main causes
of death in the world. Heart murmurs are the most common ab-
normal finding when a patient visits the physician for auscultation.
These heart sounds can either be innocent, which are harmless, or
abnormal, which may be a sign of a more serious heart condition.
However, the accuracy rate of primary care physicians and expert
cardiologists when auscultating is not good enough to avoid most
of both type-I (healthy patients are sent for echocardiogram) and
type-II (pathological patients are sent home without medication or
treatment) errors made. In this paper, the authors present a novel
convolutional neural network based tool for classifying between
healthy people and pathological patients using a neuromorphic
auditory sensor for FPGA that is able to decompose the audio into
frequency bands in real time. For this purpose, different networks
have been trained with the heart murmur information contained in
heart sound recordings obtained from nine different heart sound
databases sourced from multiple research groups. These samples
are segmented and preprocessed using the neuromorphic audi-
tory sensor to decompose their audio information into frequency
bands and, after that, sonogram images with the same size are
generated. These images have been used to train and test differ-
ent convolutional neural network architectures. The best results
have been obtained with a modified version of the AlexNet model,
achieving 97% accuracy (specificity: 95.12%, sensitivity: 93.20%,
PhysioNet/CinC Challenge 2016 score: 0.9416). This tool could aid
cardiologists and primary care physicians in the auscultation pro-
cess, improving the decision making task and reducing type-I and
type-II errors.

Index Terms—Audio processing, Caffe, convolutional neural net-
works, deep learning, heart murmur, neuromorphic sensor, pattern
recognition.
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I. INTRODUCTION

H EART disease is a major health problem and is one of the
main causes of death in the world. Cardiovascular dis-

ease (CVD) causes nearly half of the deaths in Europe (48%)
[1] and 34.3% in America (1 in 2.9 deaths in the United States)
[2]. Detecting CVDs at an early stage is crucial for applying
the corresponding treatment and reduce the potential risk fac-
tors. Auscultation is one of the most used techniques for this
purpose, and can provide clues to the diagnosis of many car-
diac abnormalities by listening and analyzing the heart sound
components using a stethoscope. It is very cheap and requires
minimal equipment. However, physicians need extensive train-
ing and experience for auscultating [3]. Moreover, the accuracy
rate of primary care physicians and medical students on the
auscultation process is between 20–40%, as reported in [4]–[7],
and only roughly 80% is achieved by expert cardiologists [4],
[7], [8].

Heart murmurs are sounds produced when blood flows across
one of the heart valves that are loud enough to produce audible
noise. Murmurs may be harmless (innocent), which are primar-
ily due to physiologic conditions outside the heart, or abnormal,
which may be a sign of a more serious heart condition or a
structural defect in the heart itself. The most common problems
that cause abnormal heart murmurs are mitral or aortic stenosis
and mitral or aortic regurgitation. The sounds can also be cat-
egorized by timing, into systolic and diastolic, differing in the
part of the heartbeat on which they can be heard (between the
S1 and S2 heart sounds, or starting at or after S2 and ending
before or at S1, respectively).

Heart murmurs are the most common abnormal finding when
a patient visits the physician for auscultation. A heart murmur
does not necessarily lead to having a CVD; it could be an in-
nocent murmur instead of a pathological one, which does not
represent current or future illness. The physician must decide
if the patient is healthy or not, but, due to the fact that the ac-
curacy is not great, the expert could be wrong, making type-I
or type-II errors. A type-I error (alpha error) is the detection of
an effect that is not present (i.e., healthy patients are sent for
echocardiogram), while a type-II error (beta error) is failing on
the detection of an effect that is present (i.e., pathological pa-
tients are sent home without medication or treatment). It is clear
that, in this case, type-II errors are more important to avoid.

1932-4545 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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TABLE I
COMPARATIVE STUDY BETWEEN STATE-OF-THE-ART STUDIES ABOUT HEART SOUND DIAGNOSIS SYSTEMS

However, echocardiograms cost between $750 and $1500 [4]
per patient, making type-I errors also important to avoid. The
probability of needing this costly procedure could be reduced
for both healthy people and pathological patients if a reliable
(with a high accuracy rate) diagnostic tool were available as an
aide for physicians.

The classification of heart sounds is not a new topic. Many
studies have worked toward designing practical murmur classi-
fier systems to improve the diagnostic accuracy of physicians.
Most of them use neural networks (NNs), support vector ma-
chines (SVMs) or some complex preprocessing algorithms to
carry out this task [7]–[17], [18], [19]. Many studies like [10],
[11], [15] have used a processing step where a person selects
the best portion of the sound signal that should be used as input
to the system, making this solution not ideal for a real scenario
because of the need of human interaction. Some of them have
used NNs to classify between different kinds of heart murmurs
[7], [9]–[11], but have only trained the network with simulated
heart sounds with no noise, obtaining very bad accuracy re-
sults when testing the classifier with real heart sounds (48.5%).
Others have used only a small amount of real heart sounds
[10], [12], [14]–[17], which is not representative when it comes
to testing it in a real scenario. Table I summarizes the main
information about the preprocessing and the classification steps
that have been performed in some of the state-of-the-art stud-
ies that have been discussed in this section, along with the two
leading approaches from the PhysioNet/CinC Challenge 2016.
Works like [20] use similar preprocessing techniques and classi-
fication algorithms, but focusing on cough sounds identification
instead of heart murmurs.

The main aim of this work is to develop a classifier system
using a Convolutional Neural Network (CNN) that accepts heart
sound recordings directly after preprocessing the information,

and classifies the input to identify if the person whose heart
sound is acquired, is either a healthy person or a pathologi-
cal patient. The preprocessing step automatically divides the
heart sound recordings into windows of a specific time length.
Heart murmurs are located in the 195 Hz band [7], [9], but
can reach up to 700 Hz [10], [21], which confirms that they
can be identified and extracted from the heart sound signal in
the frequency domain. For this purpose, these segments of the
original sound are sent to a Neuromorphic Auditory Sensor
(NAS) [22], which tries to mimic the way in which the inner ear
works, decomposing the audio into frequency bands, and pack-
etizes the information using the Address-Event Representation
(AER) communication protocol [23]. Then, this information
is converted to sonogram images, which are then used as in-
put to the CNN for further classification using deep learning
algorithms.

The rest of the paper is structured as follows: Section II
presents an overview of the system architecture using a block di-
agram to explain each of the components in it. Then, Section III
describes the Neuromorphic Auditory Sensor (NAS) [22] and
how its output information is saved into AEDAT files [24] in
the computer using a USBAERmini2 board [25]. After this, in
Section IV, the dataset acquisition is explained, describing the
heart sound database that has been used in this work. Section V
presents the preprocessing algorithms executed using the data
before applying them as input to the classifier system. Caffe
[26], which is one of the most used deep learning frameworks,
is described in Section VI along with the Convolutional Neural
Networks (CNNs) that have been trained and tested in order
to classify the heart sound dataset. Section VII presents the
classification results and the comparison between the different
experiments that have been carried out in this work. Finally, the
conclusions of this work are presented in Section VIII.
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Fig. 1. Block diagram of the system architecture.

Fig. 2. Mono-aural Neuromorphic Auditory Sensor for FPGA with an I2S audio ADC and AER interface.

II. SYSTEM OVERVIEW

The system consists of different modules and steps to achieve
its purpose. Most of them are carried out in the computer; how-
ever, one of the most important parts of the preprocessing is done
outside of it, on a Field Programmable Gate Array (FPGA). A
block diagram of the whole system is presented in Fig. 1.

The heart sound recordings used in this work are obtained
from the PhysioNet/CinC Challenge database [27]. It consists of
3,126 heart sound recordings, lasting from 5 to over 120 seconds.
The main idea is that, after some preprocessing functions are
applied to the information, one image is obtained for each of
the audio samples contained in the dataset, so that it could be
used as input to feed the CNN. In order to generate images
with the same width and height, the first preprocessing step is
to divide the heart sound recordings into segments of the same
length. In this work, the accuracy of the system has been tested
using segmentation windows of 1, 1.25 and 1.5 seconds (without
overlapping), which were chosen because they are large enough
to contain the information from, at least, one full cardiac cycle,
but at the same time small enough to generate as many samples
as possible.

After this process is completed (generating 77573, 61518
and 51009 samples when using a segmentation window of 1,
1.25 and 1.5 seconds length, respectively), audio samples are
sent to the audio input of an AER-Node platform [28]. A 64-
channel mono NAS (Neuromorphic Auditory Sensor) [22] is
programmed on the Spartan-6 FPGA that the AER-Node board
has, which decomposes the audio signal into frequency bands
and packetizes the information using the AER (Address-Event
Representation) protocol [23]. An USBAERmini2 board [25]
receives this information and sends it to the computer through
a USB port. Then, a script running on MATLAB collects the
AER packets received and stores them into AEDAT files [24]
(one file per audio sample), which is the standard format used
for storing this kind of information.

A grayscale sonogram image is generated for each AEDAT
file using Neuromorphic Auditory VISualizer Tool (NAVIS)
[29], which is a desktop software application that is able to
load AEDAT files and postprocess the information obtained
from the NAS, generating useful charts like the cochleogram,
sonogram, histogram, etc. The whole set of images obtained are
then divided into three different datasets: one for training the
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CNN (75% of the total amount of images), a second one for
validation (15%) and the last one to test the CNN and obtain the
accuracy ratio of the system (10%). Different CNN models have
been trained and tested using Caffe and their accuracy results
have been compared. Each of these elements and steps will be
described in detail in the next sections.

III. NEUROMORPHIC AUDITORY SENSOR

Neuromorphic Auditory Sensor (NAS) is an audio sensor for
FPGAs inspired by Lyon’s model of the biological cochlea [30].
This sensor is able to process an excitatory audio signal using
Spike Signal Proccesing (SSP) techniques [31], decomposing
incoming audio in its frequency components, and providing
this information as a stream of events using the Address-Event
Representation (AER) [23]. Current state-of-the-art of silicon
cochleae process audio in an analog way [32], using a bank
of low-pass filters (modeling the basilar membrane), and con-
vert the filters’ output to spikes (modeling the inner hair cells).
However, NAS works in the opposite way: first, it converts the
incoming audio to spikes, and directly processes these spikes
using a Spike Low-pass Filter (SLPF) bank with a cascade
topology. Due to the use of SSP filters, circuits are very simple
and do not need complex operating units or dedicated resources
(e.g. floating point ALUs, hardware multipliers, RAM memory,
etc...). As a consequence, NAS designers are able to replicate
SLPFs in low-cost FPGAs, building large scale NAS with a
low-clock frequency working fully in parallel.

To digitalize audio signals we use a commercial analog-to-
digital audio converter (CS5344, with a resolution of 24 bits
and a sample rate of 96 kSamples/sec.), that provides the audio
samples using an I2S bus. Inside the FPGA, audio samples from
the I2S bus are decoded to 24 bits digital words with two’s
complement. Digital audio samples are written in a synthetic
spike generator (SSG), which provides a spike stream with a
frequency that is proportional to the digital amplitude. These
spikes are used as input to a bank of 64 SSP filters with a
cascade topology, known as Cascade Filter Bank (CFB), which
processes audio spikes decomposing them in frequency. Finally,
output spikes from CFB are connected to an AER-Monitor [33].
This gives a unique address to the fired spikes following the
Address-Event Representation, and propagates them using an
asynchronous AER bus. Fig. 2 shows the block diagram of the
architecture of a mono-aural NAS.

A 64-channel mono-aural NAS for FPGA with a cascade
topology has been used together with a USB-AERmini2 inter-
face [25], as can be seen in Fig. 3. NAS response is stored as
AEDAT files and the output information can be seen in the sec-
ond image (b) of Fig. 4, where each dot corresponds to an event
that has been fired in a particular AER address at a specific time.

IV. DATASET ACQUISITION

The heart sound dataset used in this work contains the record-
ings used in the PhysioNet/CinC Challenge 2016 [34], [27],
which comprises nine heart sound databases from different
research groups. Heart sound recordings were sourced from sev-
eral contributors around the world from both healthy subjects

Fig. 3. NAS connected to an USBAERmini2.

and pathological patients including children and adults, and
contains a total of 3,126 heart sound recordings, lasting from
5 seconds to over 120 seconds. The heart sound recordings were
collected from different locations on the body: aortic area, pul-
monic area, tricuspid area and mitral area. These recordings are
divided into two types: normal and abnormal heart sound record-
ings. The normal recordings were from healthy subjects and the
abnormal ones were from patients with a confirmed cardiac di-
agnosis, which is not specified, but typically they are coronary
artery diseases and heart valve defects like mitral valve prolapse,
mitral regurgitation, aortic stenosis and valvular surgery.

Audio recordings were resampled to 2000 Hz and have been
divided into three different sets of mutually exclusive popula-
tions, using 75% of them to train the network, 15% for validation
and 10% to test the network. These recordings are not clean and
contain noise from various sources due to the uncontrolled en-
vironment, such as talking, breathing, stethoscope motion and
intestinal sounds, which is important to note because training
the system with these real sounds will make it more robust and
noise tolerant.

Using only 75% of the samples that this dataset has (which
is only a total of 2345 heart recordings) for training the CNN
is not sufficient if we want our system to be robust enough
for a test with different recordings that are not included in that
collection. Moreover, working with audio files with variable
lengths is neither appropriate nor optimal for training a CNN:
dividing these files into shorter ones (in terms of duration) would
generate more samples that could be used to both train and test
the network, making the system more reliable. For this purpose,
the heart recordings obtained from the PhysioNet dataset were
segmented using a fixed window length. The segmentation is
one of the steps that have been carried out in the preprocessing
phase, which is described in the next section.

V. PREPROCESSING OF THE INFORMATION

Sound recordings from the PhysioNet database do not have
the same length (each file lasts from 5 to 120 seconds) and CNNs
need the input images to have the same width and height for
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Fig. 4. Outputs of the different preprocessing steps: the first image (a) is the original audio signal after the segmentation process; the second one (b) is the AER
information obtained from the NAS’ output; and the last one (c) is the grayscale sonogram image obtained with NAVIS, where a whiter tone in a specific section
means that that section has more activity. (a) Audio signal. (b)Cochleogram. (c) Sonogram.

Algorithm 1: Sonogram calculation.
1: integPeriod = 20 ms
2: sonogram = zeros(max(in_addr), max(in_tStamp)/

integPeriod)
3: for i = 1: max(in_addr) do
4: sonogram(in_addr(i), in_tStamp(i)/integPeriod)++
5: end for

training and testing the network. For this purpose, a segmenta-
tion algorithm is applied to each of the samples before sending
the audio signal to the NAS’ audio input connector. In this work,
different experiments have been carried out, using 1, 1.25 and
1.5 second-long windows in the segmentation process, obtain-
ing 77573, 61518 and 51009 samples, respectively. This way,
the number of samples available is also increased (more than
16 times the amount of samples in the default heart recordings
database), which will provide more information in the training
process of the CNN (these algorithms need a huge amount of
images to train the system more robustly). Each of these three
datasets has been used to feed different CNN models and the
classification results are presented in Section VII.

These length values were selected due to the fact that they
can contain the information from a full cardiac cycle at least
(from the phase of relaxation diastole to the phase of contraction
systole; or, in terms of sound, the whole ”lub-dub” sequence
including S1 and S2).

As was presented in the introduction (Section I), heart mur-
murs are located in the 195 Hz band [9], but can reach up to 700
Hz [21], which confirms that they can be identified and extracted
from the heart sound signal in the frequency domain. For this
purpose, each of the audio segments obtained from the original
sound in the previous step are sent to a NAS, which mimics the
way in which the inner ear works, decomposing the audio into
frequency bands, and packetizes the information using the AER
communication protocol. These packets are sent to the computer
through a USB port using the USBAERmini2 board. A script
in MATLAB is then used to generate an AEDAT file, which is
the standard format used for storing this kind of information,
for each of the audio samples. These files contain information
about the address and timestamp of every event that has been
fired in the NAS when feeding its input with an analog audio
signal.

NAVIS is a GPL-licensed desktop software application that
allows to post-process the information obtained from a NAS.
This tool implements a set of charts that allows to represent the
auditory information as cochleograms, histograms and sono-
grams, among others. It can also split the auditory information
into different sets depending on the activity level of the spike
streams. Due to the open-source nature of the project [35], it
has been modified to automatically take the AER information
contained in the AEDAT files that were obtained after send-
ing each of the segmented samples to the NAS, and generate
grayscale sonogram images based on the activity levels of the
sound recordings in the frequency domain across the NAS’
channels.

The pseudocode shown in Algorithm 1 presents the algorithm
that has been used to calculate the sonogram’s matrix of values
(pixels of the image). These values are then normalized between
0 and 255, and a grayscale tone is set based on each value (0
being black, and 255 being white). Image (c) in Fig. 4 shows
the output sonogram from one of the 1 second-long heart sound
recordings.

The whole preprocessing step can be seen in Fig. 4. The first
image (a) shows the audio signal that corresponds to one of
the 1-second samples after being segmented from the original
heart recording. Then, the second one (b) is the cochleogram of
the information contained in the AEDAT file that was obtained
after sending the audio signal to the NAS and capturing the out-
put information using MATLAB and the USBAERmini2 board.
Each dot of the cochleogram is an event that has been fired for a
particular AER address (there are 128 addresses in a 64-channel
mono NAS: each channel has two addresses, for positive and
negative spikes) at a specific time (timestamp). The sonogram
of the AEDAT file (c) was calculated using the equation that was
previously described, resulting in a grayscale image with a width
of 50 pixels (using time windows of 20000 µs in length for inte-
grating the information) and a height of 64 pixels (the number of
both negative and positive spikes from the same channel add up).

VI. CAFFE

Caffe (Convolutional Architecture for Fast Feature Embed-
ding) is a customizable framework for state-of-the-art deep
learning algorithms. It allows to train and deploy general pur-
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Fig. 5. Block diagram of the LeNet-5 model architecture.

Fig. 6. Block diagram of the AlexNet model architecture.

Fig. 7. Accuracy results achieved for each dataset (1s in blue, 1.25 s in green
and 1.5 s in red) per 10000 training iterations using the default LeNet-5 model.
Accuracy ratios obtained after 500000 training iterations: 82.11%, 82.39% and
80.00%, respectively.

pose CNNs and other deep models efficiently and in an easy
way. Caffe is capable of processing over 40 million images a
day on a single K40 or Titan GPU (∼2.5 ms per image) thanks
to CUDA GPU computation. It has been used in many research
fields like vision, speech recognition, robotics, neuroscience and
astronomy.

Caffe provides a complete toolkit for training, testing and
deploying models, which can be described using the BSD-
licensed C++ library with Python and Matlab bindings. The
framework also provides a collection of reference models and
well-documented examples for all of these tasks, including the
“AlexNet” ImageNet model [36] and the “LeNet” MNIST model
[37]. These models can be modified, allowing to add/remove
layers to/from the network, change the input dataset format
and train it with different activation functions and parameters,
which are already implemented. Caffe model definitions are
written using the Protocol Buffer language [38], which is a
language-neutral platform-neutral and easy to use mechanism
for serializing structured data.

In this work, a modified version of the LeNet-5 CNN [37] has
been used, where the number of outputs has been changed to
two, as the goal is to distinguish between two classes: healthy
subject and pathological patient. This model was designed for
handwritten and machine-printed character recognition, but it is
also well known for its high accuracy results for image recogni-
tion and feature extraction. Many studies have used this model
for a wide variety of purposes, like freehand sketch recognition
[39], Alzheimer’s disease recognition [40] or even horse gait
classification [41], obtaining very good results.

Fig. 5 shows the block diagram representation of the LeNet-5
model. The input dataset and the input image size have been set
to match our requirements.

Several tests have been performed, using different values on
some of the parameters of the Solver Prototxt file (which is the
file that contains the network’s training configuration) for each
of the three datasets that were obtained after the preprocess-
ing step (using 1 second, 1.25 seconds and 1.5 seconds audio
length windows on the segmentation phase). The parameters that
have been changed from the Solver Prototxt file are: (1) the base
learning rate of the network (base_lr); (2) the momentum, which
indicates how much of the previous weight will be retained in
the new calculation (momentum); (3) the weight decay, which is
the factor of penalization of large weights (weight_decay); (4)
the test interval, which has been set to 10000 training iterations
(test_interval); (5) the number of test iterations that should oc-
cur per test_interval (test_iter), to match the number of samples
that the dataset has; and (6) the maximum training iterations, in-
dicating when the network should stop training, which has been
set to 500000 (max_iter). These parameters were optimized by
repetition and comparison. The solver mode has been changed
from CPU to GPU, due to the fact that the training process has
been carried out using a NVIDIA GeForce GTX 1060 with 6GB
of GDDR5 memory, and CUDA Toolkit 8.
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TABLE II
TRAINING PARAMETERS AND LAYER CONFIGURATIONS FOR EACH OF THE CNNS USED

Fig. 8. Features learned for the two convolution layers (20 and 50 filters,
respectively) with the default version of the LeNet-5 model.

Other CNNs like the AlexNet (Fig. 6), which is a much more
complex network, has also been tested for this purpose and the
accuracy results and comparison between this and the LeNet-5
models are presented in the next sections.

VII. RESULTS AND DISCUSSION

Three different window lengths have been used in the seg-
mentation process in this work: 1, 1.25 and 1.5 seconds. As
presented in the section where the preprocessing of the infor-
mation is described, using these three sample lengths leads to
obtaining up to 77573, 61518 and 51009 samples, respectively,
which is enough for training and testing a CNN. In this work,
modified versions of two widely-known CNN models have been
used. The accuracy of the network has been obtained for each
of the experiments. The sensitivity (Se), specificity (Sp) and
the PhysioNet/Computing in Cardiology Challenge 2016 score
(MAcc) have been calculated for the approaches that achieved
the best accuracy results using the equations that are defined
in [42].

A. Using the LeNet-5 Model

First, the accuracy of the system was tested using the LeNet-5
model [37]. The architecture of the model is presented in Fig. 5:
it consists of a convolutional layer followed by a pooling layer,
another convolutional layer followed by a pooling layer, and
then two fully connected layers similar to the conventional mul-
tilayer perceptrons. The classifier was trained and tested using
each of the three datasets described before without applying any
modification to the training parameters or to the configuration
of the CNN’s layers. The accuracy results can be seen in Fig. 7
for every 10000 training iterations up to a total of 500000 us-
ing a base learning rate of 0.01, the inv learning policy, 0.9 as
momentum and 0.0005 as weight decay. The inv learning policy
updates the learning rate based on the equation shown in (1),
where gamma is set to 0.0001 and power to 0.75. Table II sum-
marizes the training parameters and layer configurations (kernel
sizes and strides for each convolution and pooling layer) for each
of the CNN models used in this work.

l rate = l rate ∗ (1 + gamma ∗ i ter )(−power ) (1)

After the default LeNet-5 CNN was trained and tested,
82.11% was achieved for the 1-second dataset, 82.39% for the
1.25-seconds dataset, and 80.00% for the 1.5-seconds dataset.
Se, Sp and MAcc were calculated for the dataset that achieved
the best accuracy, obtaining 83.26%, 78.58% and 0.8092, re-
spectively. Even though the model was not modified from its
default state to improve the classification, the obtained results
were very similar to the accuracy that expert cardiologists are
able to achieve when auscultating. Fig. 8 shows the features that
the default LeNet-5 model is learning on each of its convolution
layers. It can be seen that the first layer extract vertical infor-
mation from the images and the second one is able to detect
more complex patterns. However, the results obtained could be
improved by changing the network configuration.

In this context, the next experiment consisted in modifying
the same CNN model and its training parameters to improve the
accuracy results of the system. As in the previous case, the input
layer was adapted to be able to work with the proper image size
that matches its corresponding dataset (50x64 for the 1 s sample
length dataset, 63 × 64 for the 1.25 s dataset and 75 × 64 for
the 1.5 s dataset). Moreover, kernel sizes were reduced from 5
to 3 and the stride from 2 to 1, for a more detailed analysis of
the input images, which allows the extraction of more features
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Fig. 9. Accuracy results achieved for each dataset (1s in blue, 1.25 s in
green and 1.5 s in red) per 10000 training iterations using the modified version
of the LeNet-5 model. Accuracy ratios obtained after 500000 training itera-
tions: 93.68%, 93.57% and 91.14%, respectively, which are better that the ones
obtained previously.

from them. Training parameters were optimized by repetition
and comparison until the best results were obtained for each of
the datasets.

Fig. 9 presents the accuracy results for every 10000 training
iterations up to a total of 500000 using a base learning rate of
0.013, the inv learning policy, 0.6 as momentum and 0.000875
as weight decay. As can be seen, the 1 s dataset achieves the
best result (93.68%), while the 1.25 s and the 1.5 s datasets
achieve 93.57% and 91.14% accuracy ratios, respectively. The
chart also shows that using smaller window length values in
the segmentation step makes the network take a higher number
of iterations to converge when training the CNN, due to the
fact that more images are generated in the process. Se, Sp and
MAcc were calculated for the 1.25 s dataset, obtaining 92.84%,
91.48% and 0.9216, respectively. Training the system took an
average of four hours to complete when using the default model,
and six hours (∼375 minutes) for the modified model, for each
of the experiments and datasets with a NVIDIA GeForce GTX
1060 GPU. The first approaches were carried out using the CPU
(3.2 GHz Intel i5-4460) instead of the GPU, which increased
the training process execution time more than 24 hours. An
average of 13.7% improvement over the default LeNet-5 model
was achieved in this case.

B. Using the AlexNet Model

The same experiments that were performed using the LeNet-5
model were then tested with a more complex architecture: the
AlexNet [36]. The network is made up of 5 convolutional layers,
max-pooling layers, dropout layers and 3 fully connected layers.
It was released in 2012 by Alex Krizhevsky and scaled the
insights of the LeNet-5 model into a much deeper and wider
neural network that could be used to learn much more complex
objects. It was used to win by a large margin the 2012 ILSVRC
(ImageNet Large-Scale Visual Recognition Challenge) [43].

First, the network was trained and tested without modifying
the architecture or the training parameters (only the input and
output layers were adapted to accept the image sizes that are
being used in this work, and to classify between two different
categories). The accuracy results can be seen in Fig. 10, where
a base learning rate of 0.01 is used along with the step learn-
ing policy and 0.9 and 0.0005 as momentum and weight decay,

Fig. 10. Accuracy results achieved for each dataset (1s in blue, 1.25 s in
green and 1.5 s in red) per 10000 training iterations using the default version of
the AlexNet model. Accuracy ratios obtained after 500000 training iterations:
89.61%, 90.70% and 89.91%, respectively.

Fig. 11. Accuracy results achieved for each dataset (1s in blue, 1.25 s in green
and 1.5 s in red) per 10000 training iterations using the modified version of
the AlexNet model. Accuracy ratios obtained after 500000 training iterations:
94.88%, 95.95% and 97.05%, respectively.

respectively. Se, Sp and MAcc were calculated for the dataset
that achieved the best accuracy, obtaining 94.52%, 90.48% and
0.9250, respectively. As can be seen, the results do not dif-
fer much from the ones obtained with the modified version of
the LeNet-5 model while using the default training parameters.
Other learning policies like fixed and inv (which is the one that
the LeNet-5 model uses) were used without modifying the rest
of the network, but the results did not improve significantly.
The step learning policy updates the learning rate based on the
equation shown in (2), where gamma is set to 0.1 and step to
100000.

l rate = l rate ∗ gamma( f loor (i ter/step)) (2)

In the next experiment, the AlexNet model was modified,
reducing kernel sizes and the stride value for each convolutional
layer. Training parameters were changed to the ones with whom
the LeNet5 obtained the best results, and, after that, they were
optimized by repetition and comparison. Fig. 11 presents the
accuracy results for every 10000 training iterations up to a total
of 500000 using a base learning rate of 0.013, the step learning
policy, 0.6 as momentum and 0.000875 as weight decay. In this
case, the 1.5 s dataset achieved the best result (97.05%), while
the 1s and the 1.25 s datasets achieved 94.88% and 95.95%
accuracy ratios, respectively. This could be due to the fact that
training a more complex CNN like the AlexNet allows to extract
more information from the 1.5 s images, which was not possible
with the LeNet-5 model. Se, Sp and MAcc were calculated for
the dataset that achieved the best accuracy, obtaining 95.12%,
93.20% and 0.9416, respectively.



32 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 12, NO. 1, FEBRUARY 2018

Fig. 12. Block diagram of the complete system implemented on an FPGA using a PDM microphone for real-time analysis of the heart sound directly from the
patient.

TABLE III
ACCURACY, SENSITIVITY, SPECIFICITY AND PHYSIONET/CINC CHALLENGE

2016 SCORE OF THE DIFFERENT STUDIED APPROACHES

Accuracy Sensitivity(Se) Specificity(Sp) MAcc

Primary care
physicians

40% – – –

Expert
cardiologists

80% – – –

[18] Potes et al. – 94.24% 77.81% 0.8602
[19] Zabihi et al. – 86.91% 84.90% 0.8590
Default LeNet-5 82.39% 83.26% 78.58% 0.8092
Modified LeNet-5 93.68% 92.84% 91.48% 0.9216
Default AlexNet 90.70% 94.52% 90.48% 0.9250
Modified AlexNet 97.05% 95.12% 93.20% 0.9416

Best cases for the 1, 1.25 and 1.5 datasets are selected.

An average of 65 hours for the default model and 107 hours
for the modified model were needed to train the AlexNet CNN
using the GPU. The CPU was intended to be used instead of the
GPU in the first place, but the training process was estimated
around three months (for the default version) to complete per
experiment, which is an unreasonable amount of time. However,
as can be seen in the images, the system converges after the first
150000 training iterations, approximately, which corresponds
to 20 and 32 hours, respectively. Hence, the whole system could
be trained for less than half of the iterations and obtain a very
similar accuracy while spending much less time in the training
process.

The modified version of the AlexNet model achieved the best
results. However, it is important to point out that this CNN only
improves the accuracy of the modified version of the LeNet-5
(which is a much simpler CNN model) by around 3.5%, while
taking almost eighteen times the time needed to train the
second one.

VIII. CONCLUSION

In this work the authors have presented a useful tool to aid car-
diologists and primary care physicians in the auscultation pro-
cess. The system uses heart sound recordings from both healthy
patients and pathological patients directly, which are first split
using windows with a fixed length (1, 1.25 and 1.5 seconds)
and then sent to a NAS where the frequency components of

the audio are extracted. After this, sonogram images are gener-
ated for each of the samples using NAVIS. These images were
used to feed different CNN models (LeNet-5 and AlexNet) ca-
pable of extracting interesting features from them, which have
been trained and tested with different configurations in Caffe to
classify between the two categories that were described.

The obtained results using different LeNet-5 and AlexNet
configurations achieve up to 97.05% accuracy rate in the best
case (with a modified version of the AlexNet model), and
80.00% in the worst case (with the default LeNet-5 configu-
ration). These accuracy rates include the 80% accuracy level
of an expert cardiologist (see Table III for a comparative study
of the obtained results), proving that the system could be very
useful as an aide for cardiologists and primary care physicians
in the auscultation process, reducing the number of both type-I
and type-II errors made. Thereby, the authors have presented
a reliable diagnostic tool that could improve the detection of
pathological heart murmurs when auscultating and, by aiding
the physician, achieve almost 100% accuracy between both.
Also, the results have been compared in terms of sensitivity,
specificity and the PhysioNet/Computing in Cardiology Chal-
lenge 2016 score (obtaining 95.12%, 93.20% and 0.9416 for the
best case, respectively) to the ones of leading approaches from
the competition (Se: 94.24%, Sp: 77.81%, MAcc: 0.8602, in the
best case), showing a clear improvement, especially in terms of
specificity.

Using a NAS in this context instead of a traditional digi-
tal audio processing approach allows us not only to achieve a
very good accuracy result, but also the possibility to develop a
portable diagnosis device based on the system that has been de-
scribed in this paper as the next step in this line of research. This
device would be fully implemented in an FPGA (see Fig. 12)
where a NAS, a configurable real-time segmentation and sono-
gram generator, and a full-custom CNN accelerator would be
programmed. The input to this system would be generated by
a PDM microphone that would be placed on each of the four
main auscultatory areas: Aortic area, Pulmonic area, Tricuspid
area, Mitral Area (Apex). The PDM microphone directly trans-
mits the audio signal information in a spike-based codification,
which would feed the NAS’ input. The fact that this device uses
a NAS to decompose the audio into frequency bands instead
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of using a Fourier Transform leads to having a lower power
consumption. As it is presented in [44], a low-power radix-
2 FFT accelerator for FPGA achieves a power consumption of
125 mW; however, the NAS’ is only 29.7 mW [22], which is less
than 24% of the power consumption of the FFT. Additionally,
the NAS could interface directly with Spiking Convolutional
Neural Networks (SCNN) without the need of the segmentation
of the information and the sonogram generation, processing the
auditory information in a continuous way. When connected to
an SCNN, the system would only need to compute and classify
the input signal when spikes are being fired. This means that if
there is no activity in the input, the power consumption of the
device would be even less. This “neuromorphic stethoscope”
would also consist of a button to start the analysis and two
LEDs, which would indicate the result of the CNN’s classifica-
tion result in real time as either healthy subject or pathological
patient.
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Abstract—Speech recognition has become an important task
to improve the human-machine interface. Taking into account
the limitations of current automatic speech recognition systems,
like non-real time cloud-based solutions or power demand,
recent interest for neural networks and bio-inspired systems has
motivated the implementation of new techniques.

Among them, a combination of spiking neural networks and
neuromorphic auditory sensors offer an alternative to carry
out the human-like speech processing task. In this approach,
a spiking convolutional neural network model was implemented,
in which the weights of connections were calculated by training
a convolutional neural network with specific activation functions,
using firing rate-based static images with the spiking information
obtained from a neuromorphic cochlea.

The system was trained and tested with a large dataset
that contains ”left” and ”right” speech commands, achieving
89.90% accuracy. A novel spiking neural network model has been
proposed to adapt the network that has been trained with static
images to a non-static processing approach, making it possible
to classify audio signals and time series in real time.

Index Terms—speech recognition, audio processing, Spiking
Neural Networks, Convolutional Neural Networks, neuromorphic
hardware, deep learning.

I. INTRODUCTION

Voice commands are commonly used in multiple personal
virtual assistants [1], like Cortana in Microsoft Windows, or
Siri in iOS. Users are able to control their personal computers
or mobile phones by using natural language sentences, like
”Remind me to call Robert in the afternoon”, or more directly,
”Call Robert”. This kind of assistants are based on a field of
Artificial Intelligence (AI) called Natural Language Processing
(NLP) to identify what the user is saying [2], [3]. The audio is
processed and analyzed using Digital Signal Processing (DSP)
techniques, such as speech processing [4].

Speech recognition is the interdisciplinary sub-field of
speech processing, in which spoken sentences are recognized
and translated to text (or other data representation) using
specific methodologies. Typically, these methods identify each
spoken word in isolation, applying several processing steps to
obtain features that are then mapped to a specific word [5].

In recent years, the application of Artificial Neural Network
(ANN) to this field has become commonplace. Notably,
the combination of Recurrent Neural Networks (RNNs) and
Convolutional Neural Networks (CNNs) has led to significant
progress in developing human-machine interface, as in [6],
[7], [8], [9]. Recently, the Google WaveNet system [10]
demonstrated significantly improved comprehension of entire
conversations as well as being able to generate human-like
speech from text, based on a CNN trained on raw audio voice
characterization.

Training CNNs is a relatively easy task. There exist several
frameworks and training mechanisms to achieve this. The most
used training algorithm (for ANN and CNN training) is the
well-known Levenberg-Marquardt back-propagation algorithm
[11]. In contrast, there is no established standard training
algorithm for Spiking Neural Networks.

Spike-Time-Dependant Plasticity (STDP) is a biological
process that is able to adjust the strength (weights) of the
connections between neurons based on the relative timing
of a particular neuron’s output and input spiking activity.
This process has been implemented in several simulators
and hardware platforms, including SpiNNaker [12], and has
become one of the most ubiquitous approaches for training
spike-based networks especially for unsupervised learning
[13]. STDP has proved to be very useful and robust for static
input signals like images [14], [15], but it is more difficult to
apply when it comes to processing time-varying signals such
as audio samples.

As an alternative to STDP, the weights of the connections
between neurons in a network could be set by hand or based
on particular statistical algorithms. This approach was taken
into account in papers like [16], in which the authors set the
weights using two different firing-rate based normalizations
for classifying between eight different pure tones. This option
is complex because it generally needs several trial-and-error
loops in order to find the best weight configuration, which can
take a long time. Also, this way of setting the weights of the
connections is too task specific and lacks the generality and
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biological plausibility of STDP.
Due to the increasing interest in SNNs, numerous works

have tried to develop new frameworks or methods to
automatically train SNN models. The first approach is to
develop new STDP-based algorithms, as in [17], who used
the force firing technique for incremental learning, making it
possible to learn new patterns continually in real-time using
an unsupervised learning procedure. Also, in [18], the authors
used a new learning rule, named fatiguing STDP, which
combines the long-term STDP dynamics with a mechanism
of short-term synaptic fatigue dynamics.

There are many other bio-inspired techniques for training
neural models, such as the use of evolutionary algorithms [19]
to adjust the weights of the network.

In recent time, the difference in classification error between
deep SNNs and deep ANNs has diminished significantly [20].
These exciting results suggest that, if trained appropriately,
an SNN can be used for machine learning inference without
introducing penalties in data classification accuracy. Using a
deep SNN instead of a deep ANN alternative can provide a
machine learning system with power saving and input noise
tolerance benefits [21].

Additionally, such deep SNNs can be trained on input
data generated from a neuromorphic spiking sensor device,
unlocking the potential for a real-time inference system on
a spiking neuromorphic platform [22]. We believe that only
when these are combined the true strengths of a fully spike-
based processing system will be apparent.

The aforementioned developments in deep SNNs show
accurate classification of static input data (images) using a
deep convolutional SNN. We show in this work that we are
able to train a similarly structured network on time series
input data from a Neuromorphic Auditory Sensor (NAS) [23]
produced from a range of sound inputs. By using a technique
of generating a training dataset consisting of many overlapping
‘snapshots’ of the NAS output and a ‘time-buffering’ input to
the SNN, we are able to produce a robust inference on time
varying spiking inputs.

The rest of the paper is structured as follows: section II
presents an overview of the system architecture and the speech
commands database that was used in this work along with
how the train and test datasets were generated. Then, section
III describes the whole framework that was used to train and

simulate the SNN with the audio samples dataset that was
obtained from the previous section. Then, section IV describes
the results of both the training and the simulation. Up to this
point, this setup is used for training and testing the system
with static inputs (audio samples are converted into images),
so in section V we propose a novel SNN architecture to use
the network that was previously trained with static data in real
time using a live input from a neuromorphic cochlea. Finally,
the conclusions of this work are presented in section VI.

II. SYSTEM OVERVIEW, DATASET ACQUISITION AND
PREPROCESSING OF THE INFORMATION

In audio processing, a Digital Signal Processor is usually
used to carry out large audio processing tasks, due to the
computational capabilities of these devices. The neuromorphic
approach uses bio-inspired devices that mimic the behavior
of biological senses, reproducing with greater fidelity the
individual steps by which the ear and the auditory cortex
interact to process aural information.

In recent years, several researchers have developed theo-
retical cochlea models, using either analog or digital circuits
to implement their models. As a result, many neuromorphic
hardware platforms have appeared and are being used in
research projects. There exist several models of analog [24]
[25] [26] and digital cochleae [27] [28] [29] [30].

In this work we use a Neuromorphic Auditory Sensor
[23] (NAS), which is a digital cochlea implementation. It
is a FPGA-based sensor, in which all processing modules
are spike-based. As it is implemented on a reconfigurable
platform, this sensor’s configuration parameters are flexible
and can be adapted to any application.

This kind of sensors mimic how the biological cochlea
processes audio signals. The cochlea is able to decompose
the input audio signal into different frequency bands (also
called channels). This decomposition is carried out by a series
of cascade-connected stages that subtract the information
from consecutive spike-based low-pass filters’ output spikes in
order to reject out-of-band frequencies, obtaining a response
equivalent to that of a bandpass filter [23]. The entire NAS
architecture is shown in Fig. 1. A flow of spikes coded as
AER (Address-Event Representation) [31] events is obtained
in the output, which can be either sent to the SpiNNaker board
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through the AER-SpiNNaker interface module [32] or to the
computer using a USBAERmini2 board [33].

A 32-channel mono-aural NAS was used in this work,
employing this neuromorphic approach in a speech recognition
task where spoken commands corresponding to the words
”left” and ”right” are classified. The Speech Command dataset,
which consists of 65000 one-second long utterances of 30
short words, was used in this work. This data was collected
by Google and released under a Creative Commons BY 4.0
license. Only the ”left” and ”right” voice commands of the
dataset (a total of 4720 audio files from thousands of different
speakers) were used in this work, since one of the final goals
of the COFNET project is to drive a robot by using only these
two voice commands.

Each of the audio samples were sent to the audio input
of an AER-Node platform [34], which consists of a Spartan-6
FPGA in which a 32-channel mono-aural NAS is programmed.
With this sensor the audio signal is decomposed into frequency
bands and then packetized using the Address-Event Represen-
tation protocol (AER). An USBAERmini2 board receives this
information and sends it to the computer through the USB
port. A MATLAB script is used to collect the AER packets
that are received through the serial port and to store them into

AEDAT1 files (one file is generated per audio sample), which
is a common format used for storing this kind of information.
The hardware setup used for generating the dataset is shown
in Fig. 2.

These AEDAT files were then converted to sonogram
images using NAVIS’s algorithms [35] in order to train a
CNN. To do this, a bin width of 20 ms was selected in order
to calculate the firing rate for each of the NAS’ channels in
every bin. This was done by counting the number of spikes
fired in that portion of time and dividing that value by 20 ms
(see Algorithm 1), which is the length that was selected for
this work. Fig. 3 shows images from both the ”left” and the
”right” classes after this process was carried out. In order to
make the training of the network more robust to a real scenario,
in which the core information of the audio could be presented
not only in the center of the image but in any position of it,
an overlapping shifting window was used, generating several
images for each audio sample with the information centered
in different timestamps.

Algorithm 1 Sonogram calculation
1: bin width = 20 ms
2: sonogram = zeros(max(in addr), max(in timeStamp)/bin width)
3: for i=1:max(in addr) do
4: sonogram(in addr(i), in tStamp(i)/bin width)++
5: end for
6: sonogram = sonogram/bin width

A total of 141726 images were generated in this process,
121565 of which were used to train the network and the
remaining 20161 images to test it and obtain the accuracy
ratio of the system.

III. OFF-LINE SNN TRAINING AND SNN CONSTRUCTION

The general off-line SNN training method proposed by Liu
et. al. [36] is based on two novel activation functions. One
is Noisy Softplus (NSP) [20], which closely mimics the LIF
firing activity driven by current influx with different noise
levels. The other, Parametric Activation Function (PAF), maps
abstract numerical numbers of activation functions to specific
physical units of a spiking neuron. Thus, the combination
provides an equivalent representation of a spiking LIF neuron
with abstract activation functions of ANNs. PAF allows using
more generalized activation functions (e.g., ReLU instead of
NSP) to model a LIF neuron once its parameters are fitted by
NSP. Therefore, the weights of a SNN can be trained off-line
on an equivalent ANN exactly the same way as conventional
ANNs (e.g., using Backpropagation and Stochastic Gradient
Descent), but using PAFs. The simple steps can be described as
follows: firstly, estimate the parameter of PAFs; then, train an
equivalent ANN using the PAF version of the activation func-
tions (e.g., PAF-ReLU); finally, transfer the trained weights
back to the SNN without further transformation.

The off-line SNN training tool is published in Github2. It
is comprised of two main parts: the Matlab code for ANN

1https://inilabs.com/support/software/fileformat
2https://github.com/qian-liu/off line SNN
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Fig. 3: Sonogram images corresponding to one ”Left” (top)
and one ”Right” (bottom) audio samples from the Speech
Command dataset after obtaining their spiking information
from the NAS.

training and the Python code for reading trained weights and
translating into PyNN language. The Matlab code is based
on an ANN training tool called DeepLearnToolbox3, and we
implemented the two activation functions described above. It is
worth noting that the NSP and its derivative takes two variables
as inputs: the mean of the noisy current x and its variance σ.
Therefore, the computation of both the forward and backward
paths are doubled and the state to be stored is also doubled
in size. The PAF is easily implemented by multiplying the
parameter p of the original activation function: p× f(x).

The Python code reads the network architecture of an ANN
layer-by-layer, and constructs equivalent populations of LIF
neurons accordingly. It then takes the layer-wise weights of
the ANN and translates them to the connection list between
populations of LIF neurons. After the building-up phase,
the testing code (which is simulated in NEST) generates
Poisson Spike trains based on parameter configurations and

3https://github.com/rasmusbergpalm/DeepLearnToolbox

the intensity of pixels of an input image; then, it feeds the
network with the spike trains and records the output spike
trains on the classification layer; finally, it analyses the results
where the highest firing rates determine the class to which
an image is assigned. The overall performance on the whole
testing dataset is then compared with the ANN testing result.

IV. RESULTS

A 5C-3P-3C-2P Spiking Convolutional Neural Network
(5x5 kernel-size convolutional layer followed by a 2x2 pool-
ing layer, another 3x3 convolutional layer followed by a
2x2 pooling layer, and then a fully connected layer) was
trained in Matlab with rate-based sonograms (See Fig. 3) that
contained the firing rate information obtained from a NAS
using ”left” and ”right” speech commands from a well-known
open database that was presented in section II. The CNN
architecture is shown in Fig. 4.

An accuracy result of 92.21% was achieved when training
the CNN in Matlab for 30 epochs, at a learning rate value
of 0.1 and a synaptic time constant of 0.005 ms, using the
ReLU activation function on the fully connected layer. After
this, the network was fine-tuned for one more epoch with
the Noisy Softplus activation function that was described in
section III, starting off with the weights of the connections
that were obtained from the previous step (using ReLU as the
activation function).

After the fine-tuning process, the performance of the
network was almost the same, obtaining 90.80% accuracy. As
was explained in previous sections, the trained weights were
tweaked (fine-tuned) in this process, resulting on a slightly
lower accuracy value in this case (less than 2% decrease), but
improving the performance when translating from the ANN in
Matlab to a SNN in pyNN (NEST).

The weights obtained from the ANN training and fine-
tuning in Matlab were then saved and used to test a SNN.
The SNN was built in pyNN for the NEST simulator based
on the architecture of the ANN that was trained in the previous
step. The network was tested using 20161 samples, achieving
89.90% accuracy (the confusion matrix is shown in Fig. 5).
As can be observed, the result obtained in the ”left”/”right”
classification in the SNN simulation that was run on NEST is
almost the same as the one that was obtained when training the
ANN in Matlab, meaning that, with this process, the authors
have found a proper way to train audio signals (or time series)
without compromising the accuracy of the network.

Tests were carried out using the NEST simulator and also
deploying the whole SNN model in a 48-chip SpiNNaker
hardware platform. In future works, the authors would be fo-
cusing on making use of the NAS-SpiNNaker live connection
[37] to test the speech commands recognition using a real-
time input from a microphone connected to the NAS. The
next section will describe the SNN architecture for testing this
approach in real-time.
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Fig. 4: CNN architecture used for training the ”left”/”right” commands in Matlab.

9114
45.21%

1003
4.97%

10117
90.08%
9.92%

1032
5.12%

9012
44.70%

10044
89.72%
10.28%

10146
89.83%
10.17%

10015
89.99%
10.01%

20161
89.90%
11.10%

Left

Right

Left Right
Actual value

Pr
ed

ict
ed

 va
lu

e

Fig. 5: Confusion matrix of the SNN test using 20161 samples
(10117 ”left” and 10044 ”right” samples).

V. SNN ARCHITECTURE FOR AUDIO SAMPLES
CLASSIFICATION IN REAL TIME

The accuracy result of the system achieved when using the
method described in section III proves that this mechanism
could be used to classify audio samples like the ones used in
this work or even more complex ones as long as they can be
converted into images.

This is a completely offline approach, which means that
audio samples are not being inputted in real time. These
samples have to be already recorded and converted into spikes
in order to classify them. The point on using the NAS is that,
besides of processing the sound information in a bio-inspired
way, it is able to provide a real time output with the audio
signal decomposed into frequency bands (32 bands or cochlea
channels in this case) and already converted into spikes, as the
biological cochlea would do.

Even when not making use of the real-time capabilities of
this neuromorphic sensor, using it could be useful for tasks
in which the classification does not need to be done in a
short period of time. In [38], Dominguez-Morales et al. use a

NAS to process heart sounds recordings and classify whether
it is a healthy person or a pathological patient in order to
help cardiologists in the auscultation process. Applications like
this do not require an immediate output from the classifier,
meaning that the sound could be recorded and analyzed later.

However, in tasks like robot navigation with speech com-
mands, recognizing the command and acting on the motors of
the robot are actions that need to be done as soon as possible.
Otherwise, the navigation would not feel fluid and natural. One
of the main goals of the COFNET project (TEC2016-77785-P)
is to drive a 4-wheel SUMMIT XL robot from Robotnik using
the fusion of the neuromorphic information coming from a
neuromorphic retina (Dynamic Vision Sensor) and from a NAS
(using speech commands). To accomplish this while using the
same training approach considered in this work, the authors
propose the SNN architecture shown in Fig. 6.

This architecture takes into account that the input data
has been trained using a deep Spiking Convolutional Neural
Network (SCNN) as it was a static input (image). That is, the
image is converted from a matrix (two-dimensional array) to a
single dimension array by flattening the matrix (e.g. a 28x28
MNIST image is converted to an array of 768 elements). The
whole trained SCNN is presented in the figure in a cloud
shape. To adapt the trained model in order to use real-time
input from the NAS, a new layer of spiking populations has
to be added.

These populations act as a layer between the NAS and the
trained SCNN and its goal is to adapt the spiking information
that comes out of the NAS in real time in order to serve as
input to the network. This is done by having 64 populations
(due to the fact that the network is trained with 64 20 ms-bins
images) of 64 neurons each (two neurons per NAS channel)
that are connected like a daisy chain, with delayed one-to-
one connections between every two. The delay that is set for
these connections is 20 ms, because of the bin width used.
NAS’s output is connected to the first of these populations,
propagating the same spiking information to the next one
after 20 ms. Then, each of the 64 populations of this layer
is connected to the previously trained SCNN with no delay.
This way, as soon as the speech command is sent to the NAS,
the populations between the NAS and the SCNN will start to
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Fig. 6: Real-time NAS audio input SCNN scenario with a buffering layer consisting of a set of delayed populations.

propagate the information. This ”time-buffered” architecture
allows to run real-time experiments for speech recognition and
audio samples classification with a previous step of training
the network with static audio images, which is a novelty in
the neuromorphic engineering field. Having several images
for the same speech command with the information shifted
and centered in a different bin allows not only the training
to be more robust but also the real-time test to take less time
to start providing the correct result. That is, spikes from the
NAS do not need to propagate through many populations to be
classified correctly since the network was trained to recognize
that the important information of the speech command could
also appear in the first bins (which correspond to the first
populations) instead of just in the middle section of the
sonogram.

VI. CONCLUSIONS

In this work, the authors have presented a novel mechanism
for training time series offline and testing them later in real
time in a Spiking Convolutional Neural Network with the
information obtained from the live output of a Neuromorphic
Auditory Sensor.

The results obtained in this work prove that almost the
same accuracy results ( 1% less in this case) can be achieved
when testing a deep Spiking Neural Network using the weights

obtained from a previously trained Convolutional Neural
Network with spike-rate based images, which is a novelty for
time-dependent signals like audio signals.

A database with 4720 ”left” and ”right” speech commands
from the Speech Commands Dataset was used to generate
141726 sonogram images with the spiking information ob-
tained from a neuromorphic cochlea (NAS). These images
were later used for training and testing the system, achieving
an accuracy result of 89.90% when simulating and deploying
the network in the SpiNNaker hardware platform.

The authors have also presented a novel SNN architecture
for audio samples classification in real time using the output
from a neuromorphic sensor as input to the network and
a buffering layer with delayed populations that adapts the
information from a real-time domain to a static domain, in
which the SNN is trained for. This approach could also be
used for processing time series or time-dependent signals with
SNNs in real time.
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