2,394 research outputs found

    Manoeuvring drone (Tello Talent) using eye gaze and or fingers gestures

    Get PDF
    The project aims to combine hands and eyes to control a Tello Talent drone based on computer vision, machine learning and an eye tracking device for gaze detection and interaction. The main purpose of this project is gaming, experimental and educational for next coming generation, in addition it is very useful for the peoples who cannot use their hands, they can maneuver the drone by their eyes movement, and hopefully this will bring them some fun. The idea of this project is inspired by the progress and development in the innovative technologies such as machine learning, computer vision and object detection that offer a large field of applications which can be used in diverse domains, there are many researcher are improving, instructing and innovating the new intelligent manner for controlling the drones by combining computer vision, machine learning, artificial intelligent, etc. This project can help anyone even the people who they don¿t have any prior knowledge of programming or Computer Vision or theory of eye tracking system, they learn the basic knowledge of drone concept, object detection, programing, and integrating different hardware and software involved, then playing. As a final objective, they can able to build simple application that can control the drones by using movements of hands, eyes or both, during the practice they should take in consideration the operating condition and safety required by the manufacturers of drones and eye tracking device. The concept of Tello Talent drone is based on a series of features, functions and scripts which are already been developed, embedded in autopilot memories and are accessible by users via an SDK protocol. The SDK is used as an easy guide to developing simple and complex applications; it allows the user to develop several flying mission programs. There are different experiments were studied for checking which scenario is better in detecting the hands movement and exploring the keys points in real-time with low computing power computer. As a result, I find that the Google artificial intelligent research group offers an open source platform dedicated for developing this application; the platform is called MediaPipe based on customizable machine learning solution for live streaming video. In this project the MediaPipe and the eye tracking module are the fundamental tools for developing and realizing the application

    A Differential Approach for Gaze Estimation

    Full text link
    Non-invasive gaze estimation methods usually regress gaze directions directly from a single face or eye image. However, due to important variabilities in eye shapes and inner eye structures amongst individuals, universal models obtain limited accuracies and their output usually exhibit high variance as well as biases which are subject dependent. Therefore, increasing accuracy is usually done through calibration, allowing gaze predictions for a subject to be mapped to his/her actual gaze. In this paper, we introduce a novel image differential method for gaze estimation. We propose to directly train a differential convolutional neural network to predict the gaze differences between two eye input images of the same subject. Then, given a set of subject specific calibration images, we can use the inferred differences to predict the gaze direction of a novel eye sample. The assumption is that by allowing the comparison between two eye images, annoyance factors (alignment, eyelid closing, illumination perturbations) which usually plague single image prediction methods can be much reduced, allowing better prediction altogether. Experiments on 3 public datasets validate our approach which constantly outperforms state-of-the-art methods even when using only one calibration sample or when the latter methods are followed by subject specific gaze adaptation.Comment: Extension to our paper A differential approach for gaze estimation with calibration (BMVC 2018) Submitted to PAMI on Aug. 7th, 2018 Accepted by PAMI short on Dec. 2019, in IEEE Transactions on Pattern Analysis and Machine Intelligenc

    A gaze-contingent framework for perceptually-enabled applications in healthcare

    Get PDF
    Patient safety and quality of care remain the focus of the smart operating room of the future. Some of the most influential factors with a detrimental effect are related to suboptimal communication among the staff, poor flow of information, staff workload and fatigue, ergonomics and sterility in the operating room. While technological developments constantly transform the operating room layout and the interaction between surgical staff and machinery, a vast array of opportunities arise for the design of systems and approaches, that can enhance patient safety and improve workflow and efficiency. The aim of this research is to develop a real-time gaze-contingent framework towards a "smart" operating suite, that will enhance operator's ergonomics by allowing perceptually-enabled, touchless and natural interaction with the environment. The main feature of the proposed framework is the ability to acquire and utilise the plethora of information provided by the human visual system to allow touchless interaction with medical devices in the operating room. In this thesis, a gaze-guided robotic scrub nurse, a gaze-controlled robotised flexible endoscope and a gaze-guided assistive robotic system are proposed. Firstly, the gaze-guided robotic scrub nurse is presented; surgical teams performed a simulated surgical task with the assistance of a robot scrub nurse, which complements the human scrub nurse in delivery of surgical instruments, following gaze selection by the surgeon. Then, the gaze-controlled robotised flexible endoscope is introduced; experienced endoscopists and novice users performed a simulated examination of the upper gastrointestinal tract using predominately their natural gaze. Finally, a gaze-guided assistive robotic system is presented, which aims to facilitate activities of daily living. The results of this work provide valuable insights into the feasibility of integrating the developed gaze-contingent framework into clinical practice without significant workflow disruptions.Open Acces

    A Modular and Open-Source Framework for Virtual Reality Visualisation and Interaction in Bioimaging

    Get PDF
    Life science today involves computational analysis of a large amount and variety of data, such as volumetric data acquired by state-of-the-art microscopes, or mesh data from analysis of such data or simulations. The advent of new imaging technologies, such as lightsheet microscopy, has resulted in the users being confronted with an ever-growing amount of data, with even terabytes of imaging data created within a day. With the possibility of gentler and more high-performance imaging, the spatiotemporal complexity of the model systems or processes of interest is increasing as well. Visualisation is often the first step in making sense of this data, and a crucial part of building and debugging analysis pipelines. It is therefore important that visualisations can be quickly prototyped, as well as developed or embedded into full applications. In order to better judge spatiotemporal relationships, immersive hardware, such as Virtual or Augmented Reality (VR/AR) headsets and associated controllers are becoming invaluable tools. In this work we present scenery, a modular and extensible visualisation framework for the Java VM that can handle mesh and large volumetric data, containing multiple views, timepoints, and color channels. scenery is free and open-source software, works on all major platforms, and uses the Vulkan or OpenGL rendering APIs. We introduce scenery's main features, and discuss its use with VR/AR hardware and in distributed rendering. In addition to the visualisation framework, we present a series of case studies, where scenery can provide tangible benefit in developmental and systems biology: With Bionic Tracking, we demonstrate a new technique for tracking cells in 4D volumetric datasets via tracking eye gaze in a virtual reality headset, with the potential to speed up manual tracking tasks by an order of magnitude. We further introduce ideas to move towards virtual reality-based laser ablation and perform a user study in order to gain insight into performance, acceptance and issues when performing ablation tasks with virtual reality hardware in fast developing specimen. To tame the amount of data originating from state-of-the-art volumetric microscopes, we present ideas how to render the highly-efficient Adaptive Particle Representation, and finally, we present sciview, an ImageJ2/Fiji plugin making the features of scenery available to a wider audience.:Abstract Foreword and Acknowledgements Overview and Contributions Part 1 - Introduction 1 Fluorescence Microscopy 2 Introduction to Visual Processing 3 A Short Introduction to Cross Reality 4 Eye Tracking and Gaze-based Interaction Part 2 - VR and AR for System Biology 5 scenery — VR/AR for Systems Biology 6 Rendering 7 Input Handling and Integration of External Hardware 8 Distributed Rendering 9 Miscellaneous Subsystems 10 Future Development Directions Part III - Case Studies C A S E S T U D I E S 11 Bionic Tracking: Using Eye Tracking for Cell Tracking 12 Towards Interactive Virtual Reality Laser Ablation 13 Rendering the Adaptive Particle Representation 14 sciview — Integrating scenery into ImageJ2 & Fiji Part IV - Conclusion 15 Conclusions and Outlook Backmatter & Appendices A Questionnaire for VR Ablation User Study B Full Correlations in VR Ablation Questionnaire C Questionnaire for Bionic Tracking User Study List of Tables List of Figures Bibliography Selbstständigkeitserklärun

    EyeSite: A Framework for Browser-Based Eye Tracking Studies

    Get PDF
    The growing use of the web browser in HCI and data visualization presents an opportunity for advancement in eye tracking experiment software. Interactive experiments with features such as dynamic areas of interest and scrolling are difficult and time consuming to analyze with existing tools. EyeSite builds on open-source eye tracking software by communicating in real time with the web browser. This communication is used to transform screen-space gaze coordinates into coordinates on the web page. Point-to-element mapping is performed using DOM elements. EyeSite supports a wide variety of eye tracking hardware and software, remote experimental trials, and easy integration with common research workflows

    Answering a Questionnaire Using Eyetracking

    Get PDF
    The beginning of eye tracking research lies far back in the past. Since eye tracking costs decreased over the past years, the usage of an eye tracker for everyday matters, like the interaction with a personal device, becomes more and more attractive. In the present work, the realization of interacting with a computer interface with only the help of an eye tracker is illustrated. The conducted study examines the acceptance and usability of such a system. Therefore, three different interaction methods have been implemented. In a study, the participants had to complete a questionnaire with those interaction methods using a Windows application and a low-cost eye tracking device. All in all, the study results imply that the number of negative aspects about this system outweigh the positive ones. The biggest issue was the restriction of mobility during the usage of the tracking device. In addition, the usage of the system turned out to be rather exhausting for the eyes. Generally speaking, among the three implemented interaction methods, the interaction method that combines gaze with a second input modality (a keyboard) scored best in terms of interaction speed and usefulness considering the completion of a questionnaire

    Comparing infrared and webcam eye tracking in the Visual World Paradigm

    Get PDF
    Visual World eye tracking is a temporally fine-grained method of monitoring attention, making it a popular tool in the study of online sentence processing. Recently, while infrared eye tracking was mostly unavailable, various web-based experiment platforms have rapidly developed webcam eye tracking functionalities, which are now in urgent need of testing and evaluation. We replicated a recent Visual World study on the incremental processing of verb aspect in English using ‘out of the box’ webcam eye tracking software (jsPsych; de Leeuw, 2015) and crowdsourced participants, and fully replicated both the offline and online results of the original study. We furthermore discuss factors influencing the quality and interpretability of webcam eye tracking data, particularly with regards to temporal and spatial resolution; and conclude that remote webcam eye tracking can serve as an affordable and accessible alternative to lab-based infrared eye tracking, even for questions probing the time-course of language processing
    corecore