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Visual World eye tracking is a temporally fine-grained method of monitoring attention, making it 
a popular tool in the study of online sentence processing. Recently, while infrared eye tracking 
was mostly unavailable, various web-based experiment platforms have rapidly developed 
webcam eye tracking functionalities, which are now in urgent need of testing and evaluation. 
We replicated a recent Visual World study on the incremental processing of verb aspect in English 
using ‘out of the box’ webcam eye tracking software (jsPsych; de Leeuw, 2015) and crowdsourced 
participants, and fully replicated both the offline and online results of the original study.  
We furthermore discuss factors influencing the quality and interpretability of webcam eye 
tracking data, particularly with regards to temporal and spatial resolution; and conclude that 
remote webcam eye tracking can serve as an affordable and accessible alternative to lab-based 
infrared eye tracking, even for questions probing the time-course of language processing.
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1 Introduction
This paper presents a method study of webcam eye tracking as an alternative mode of collecting 
data in the Visual World Paradigm, a popular experimental paradigm in psycholinguistics. While 
webcam eye tracking technology has been under development and in use in some form or other 
for nearly a decade, two confluent factors have prompted several web-based experiment platforms 
creating eye tracking tools for behavioral research. One, major improvements to its accuracy and 
accessibility through the open-source browser tool WebGazer; and the other, the urgent need for 
a remote alternative to lab-based infrared eye tracking following the outbreak of COVID-19. We 
evaluate one of these tools, developed within the jsPsych library (version 6.3 De Leeuw, 2015), 
by replicating one of our own recent Visual World studies with a fully web-based experiment.

1.1 Webcam eye tracking
Most eye tracking systems used in behavioural research laboratories are infrared eye trackers: 
in brief, they project near-infrared light onto the pupils, which creates a corneal reflection (also 
known as a Purkinje image) that can be used to triangulate the visual angle of gaze. Eye trackers 
marketed towards scientists are often bundled together with proprietary stimuli presentation 
and data pre-processing software: though convenient and more user-friendly on the one hand, 
this can hinder the researcher in customizing the technology and experiment design beyond 
the options provided by the vendor, or accessing the raw data. Infrared eye trackers are also 
expensive, costing several thousand dollars at minimum; indeed, before the COVID-19 pandemic, 
innovation in eye tracking technology was mostly driven by a need to make it cheaper and 
more portable – not only for researchers, but for consumer-grade eye tracking applications and 
devices. As internet speed increased and crowdsourced workers became easily accessible through 
companies like Qualtrics and Amazon Mechanical Turk, the past decade saw the debut of many 
different ‘neuromarketing’ applications: e.g. Turkergaze (Xu et al., 2015), GazeParser (Sogo, 
2013), WebGazer (Papoutsaki et al., 2016), GazeHawk, GazeRecorder, EyesDecide, RealEye, 
EyeSee, etc. Of these, WebGazer has emerged as the clear favourite for use in browser-based 
research in cognitive science.

Unlike most other eye tracking tools, WebGazer1 maps eye features onto positions on the 
screen using dynamic, mouseclick-based calibration, taking advantage of the rule of thumb that 
users navigating a web page will look directly at where they click (Chen et al., 2001; Hauger et 
al., 2011; Huang et al., 2012). This reliance on natural browsing behaviour makes it better suited 
to User Interaction research than more ‘traditional’ behavioural research paradigms (Papoutsaki 
et al., 2017). However, WebGazer has several advantages that make it an attractive tool for 

 1 The full name is WebGazer.js, also sometimes written as webgazer.js or WebGazer.js; in this paper we will refer to it 
simply as WebGazer.
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behavioural scientists: it is fully integrated in the browser, without requiring users to download 
software; it computes and outputs gaze data in the form of [x,y,t] coordinates on the client 
browser, without transmitting video data to the experiment server; its design is modular, making 
it easy to substitute alternatives for the default facial recognition algorithm and ridge regression 
model; and the fact that it is free, open source, and actively maintained.

Semmelmann & Weigelt (2018) were the first to report a method study evaluating the 
usefulness of WebGazer in cognitive research. They conducted three common eye tracking 
tasks (fixation, pursuit, and free viewing) with custom-written experiment software integrating 
WebGazer, testing both in-lab and remote participants. They found an average spatial offset 
of, respectively, 15% (approx. 4° visual angle) and 18% of screen size, and an average saccade 
duration of 450 ms and 750 ms,2 with significantly more variance in the remote sample. For 
comparison, a commercial infrared eye tracker sampling at >120 Hz can be expected to record 
saccade durations of 200 ms or less, with spatial offsets between 0.1° and 0.5° (Ehinger et al., 
2019; Ooms et al., 2015).

However, despite the noisier, lower-resolution data, they were able to replicate a well-known 
eye tracking result: namely, that Western participants learning and categorizing human faces pay 
particular attention to the eye region (in contrast to participants from other cultural backgrounds) 
(Blais et al., 2008; and others). In the wake of their cautiously optimistic assessment, a handful 
of WebGazer-based experiments followed: Federico & Brandimonte (2019) used WebGazer in a 
lab setting through a commercial platform and a consumer-grade webcam; e.g. Yang & Krajbich 
(2021), Degen et al. (2021), and Madsen et al. (2021) integrated WebGazer into their own 
experiment code to run remote eye tracking experiments in the browser. Though their data were 
encouraging, generally replicating effects found with infrared eye tracking, they were also much 
noisier due to the differences in computer hardware, operating system, processing capacity, and 
lighting quality between participants. In addition, programming and hosting these experiments 
required considerable time, effort, and specialized skills. The incentive for cognitive scientists to 
invest in webcam eye tracking therefore remained low.

Since the outbreak of the COVID-19 pandemic, which largely precluded in-lab research and 
infrared eye tracking, several popular behavioural experiment software programs and libraries 
(at last count: PCIbex, Gorilla, jsPsych, and PsychoPy) have developed webcam eye tracking 
functionalities, most3 of which rely on WebGazer. This, in tandem with a recent proliferation 
of researcher-friendly web hosting solutions (e.g. JATOS, Pushkin) and companies that 

 2 This was not (as an anonymous reviewer supposed) a typo: Semmelmann & Weigelt (2018) use the word saccade to 
refer to the window of time during which their participants switch fixation targets, and measure its duration from 
the onset of the new fixation cross, to the moment the gaze “fully reached” the target.

 3 Not all; e.g. Labvanced (Finger et al., 2017) has its own proprietary eye tracking software; see e.g. Bánki et al. (2022) 
and Chouinard et al. (2019) for studies using LabVanced for infant eye tracking research.
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combine experiment building graphical user interfaces and web hosting (e.g. Gorilla, Pavlovia, 
FindingFive), has made conducting webcam eye tracking experiments much more accessible. 
With the new wealth of possibilities comes the need to map out its caveats and limitations: it 
is already evident that dependent measures requiring very fine-grained temporal and spatial 
resolution, such as eye movements during reading, cannot be usefully investigated using webcam 
eye tracking. But the most fine-grained resolution at which it can be useful has not yet been 
pinned down, especially as the technology improves; and one experimental method where it 
almost certainly can at least supplement infrared eye tracking, is the Visual World Paradigm 
(Degen et al., 2021; Slim & Hartsuiker, 2021b).

1.2 The Visual World Paradigm
The Visual World Paradigm is one of the most productive methods in online language processing 
research, owing to the fact that human visual attention is tightly coupled with linguistic processing 
(Cooper, 1974). Given a ‘visual world’, i.e. a display of scenes or objects, and an auditory 
linguistic stimulus, participants’ eye movements will gravitate towards those parts of the display 
that are associated in some way with what they hear (Tanenhaus et al., 1995; Allopenna et al., 
1998; see Falk Huettig & Meyer, 2011 for review). These fixations are closely time-locked to the 
linguistic stimulus, often occurring before or within 200 ms of the target word’s offset;4 they have 
also been found to reflect predictive processing, in cases where the selectional restrictions of an 
earlier word constrain the possible targets in the visual display. In Altmann & Kamide (1999)’s 
eminent example, “The boy will eat the cake” triggered looks towards a cake (the only edible 
object in the display) before onset of the noun. There are several possible linking hypotheses 
for the relationship between eye movements and linguistic processing (see e.g. Falk Huettig & 
Meyer, 2011 and Magnuson, 2019 for discussion), and the formulation of a model integrating 
visual processing, linguistic processing, eye movement mechanics and high-level discourse and 
nonlinguistic cognitive factors is a priority for this paradigm (see e.g. Huettig et al., 2020; Chabal 
et al., 2022; Degen et al., 2021). For our purposes, it will suffice to say that Visual World Paradigm 
studies have shown, to quote Magnuson (2019), that “listeners are sensitive to every potentially 
useful (i.e., predictive) constraint that has been tested as early as we can measure.” (p.134) The 
constraint that we investigated in the current studies is grammatical aspect: we give a theoretical 
motivation for this work in the section below, but readers who are interested primarily in the 
methodological results may take our word for it and proceed to section 2.

 4 200 ms being the average latency of a saccade from one visual target to another (Saslow, 1967); though see e.g. 
Magnuson et al. (2008) and Huettig & Altmann (2011) for examples of how fixations can be delayed or suppressed 
depending on task conditions.
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1.3 The original study
The experiment design is drawn from a Visual World eye tracking experiment we developed 
and conducted in Russian, English, and Spanish, with both adults and children of various 
ages, between 2018–2020 (Minor et al., 2022b). The aim of this study was a cross-linguistic 
comparison of three typologically different aspectual systems using the same picture stimuli and 
experiment design: in order to tease out subtle differences in the semantic representation of (in 
particular) the perfective verb forms in these systems, which are often grouped together under 
the same formal denotation, but are found to carve up narrative time in ways that are not easily 
captured by offline5 judgments and truth conditions alone. The version of this study that we 
chose to replicate, namely the English, exemplifies a case where online processing data can help 
illuminate a muddled semantic landscape.

We contrasted the ‘imperfective’ English Past Progressive (e.g. was baking, was painting) with 
the ‘perfective’ Simple Past (e.g. baked, painted). The imperfective/perfective contrast is not 
binary in English to the degree that it is in, for example, Slavic languages (Gvozdanović, 2012); 
its grammatical rendering is somewhat lopsided, with the Past Progressive marking imperfective 
with an inflected be-aux and a participial verb, and the Simple Past bearing only a tense suffix 
and no overt aspectual marker. The grammatical, or ‘viewpoint’, aspect of the Past Progressive is 
non-habitual continuous: it highlights the ongoing part of the event, and does not entail that the 
result state, or telos, of the event is ever reached (de Swart, 2012).

The interpretation of the Simple Past is less clear-cut: it is generally considered perfective 
(Van Hout, 2011), though stative verbs form an exception, and various semanticists recognize 
that the Simple Past does not always entail the culmination of an event (see e.g. van Hout, 
2018; Martin et al., 2020; Martin & Demirdache, 2020). De Swart (1998) analyses the English 
Simple Past as aspectually neutral, with the (im)perfectivity of the verb being determined by 
its Aktionsart. When the Aktionsart is an accomplishment, however (as it is in this study), the 
Simple Past is interpreted as a perfective – after all, “culmination entailments are typically taken 
to be a diagnostic criterion for defining this aspectual class.” (Martin & Demirdache, 2020).

This reading is supported by experimental work: Madden & Zwaan (2003), whose paper laid 
the foundation for the stimulus design of our study, found that the Simple Past constrained the 
mental representation of events. Magliano & Schleich (2000) found that the mental activation of 
events decayed faster if they were presented in the Simple Past form; and Bott & Hamm (2014) 

 5 To avoid confusion, this paper will use the terms ‘online’ and ‘offline’ only to refer to behavioral measures collected 
in real-time, and after processing has taken place, respectively. Despite the widespread use of ‘online’ to mean 
‘on the Internet’, we will refer to our webcam eye tracking study as being ‘web-based’, to mean conducted on the 
web/the Internet.
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found that coercion of a (Simple) Past accomplishment predicate into an activity reading caused 
processing difficulty in English, but not in German.

However, there is also some evidence hinting that Simple Past accomplishment predicates do 
not have to be perfective: in a pragmatics study contrasting the telicity of particle verbs (e.g. eat 
the apple up) with that of corresponding simplex verbs (eat the apple), Jeschull (2007) found that 
adults’ preference was at ceiling for a completion interpretation of particle verbs, but at chance 
for simplex verbs. In a study exploring the perfective interpretations of simple and complex verb 
forms describing change-of-state events in Hindi and English, Arunachalam & Kothari (2011) 
report that English speakers accepted partial-completion interpretations for Simple Past verbs 
approximately 50% of the time (patterning with the Hindi simple verb form, which does not 
entail event completion). In short: the jury is still out on the Simple Past, in both the theoretical 
and the experimental literature.

In order to better understand how the mental representation of accomplishment events 
is modulated by aspect in real-time, we chose to conduct a Visual World eye tracking study. 
We presented participants with two pictures of the same event: one in which the event is 
ongoing, and one where it has been completed. While viewing the pictures (the ‘Visual World’), 
participants heard a sentence describing the event, in which the grammatical aspect of the 
verb was manipulated. Participants chose which picture best matches the sentence they heard 
(the offline result), and their approximate gaze fixations were measured throughout the trial. 
Two previous studies of this kind, Zhou et al. (2014) (Mandarin) and Minor et al. (2022a) 
(Russian), found that participants reacted to aspectual morphemes by looking towards their 
corresponding pictures immediately after hearing the morpheme, without waiting to hear all 
of the verb’s arguments. In the case of Russian, this looking preference became statistically 
significant even before verb offset. This method therefore allowed us to see whether a more 
complex picture of online processing hides behind the varying offline judgments of the 
perfectivity of the Simple Past.

Our reasons for replicating this particular study were primarily practical: we were able to 
use the same stimuli and adhere to the original experimental design and data analysis as closely 
as possible, and conducting it in English allowed easy recruitment from a pool of over 40,000 
eligible participants via Prolific.ac. However, the results of this study also made it an attractive 
candidate for replication: there was a stark and statistically significant difference between the 
two aspectual conditions, and there was a somewhat unexpected and intriguing lack of an effect 
of aspect in the Simple Past condition, with no detectable preference for either event type in both 
the online and offline results. Given that all the events were accomplishments, that the Simple 
Past is commonly analysed as a perfective, and that the design of the experiment, if anything, 
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encouraged participants to interpret the Simple Past in complementary distribution to the Past 
Progressive, we were surprised by the aspectual ‘neutrality’ (or ambivalence) of the Simple Past, 
and were interested in replicating this finding for its own sake.6

Our aim was to assess whether webcam eye tracking data performs well enough, in terms 
of temporal and spatial accuracy, to serve as a viable alternative to infrared eye tracking 
for Visual World experiments. In addition, we wanted to build our replication study using 
‘out-of-box’ and open-source software tools with minimal customization, as a proof of 
concept that this kind of ‘do it yourself’ eye tracking experiment can realistically be built 
and run by anyone, without extensive programming experience or access to commercial  
platforms.

In the rest of the paper, we present a detailed Method of both studies, taking the original 
study as a default and specifying any adaptations made for the web-based version as and where 
appropriate. We then present the results, followed by a discussion of methodological factors 
affecting the temporal and spatial resolution of webcam eye tracking data, as well as participant 
retention and data quality.

2 Methods
All data, analysis scripts, materials, and experiment software are available at the Open Science 
Framework (https://osf.io/m395q/).

2.1 Materials and design
The experiment included 24 test trials and 24 filler trials, all consisting of a visual display 
and an audio stimulus. In the test trials, two pictures were presented side-by-side on a screen, 
representing two stages of the same event: one where the event is ongoing (cf. Figure 1(a), and 
one in which it is completed (cf. Figure 1(b)).

The audio stimuli included a preamble and a target sentence, and were recorded by a female 
native speaker of British English in a sound-proof booth. The preamble was a short sentence in 
the past tense meant to set up a narrative context for the subsequent target sentence (e.g. It was 
a crisp winter morning, There were many people shopping in town, etc.). The target sentence was a 

 6 Although it is arguably risky to try to replicate a null result using a novel, ‘noisier’ method, the unambiguously 
positive result in the Past Progressive condition provided us with a clear benchmark. We also had clear positive results 
in the perfective condition of our experiments in Russian and Spanish; as well as in a follow-up study contrasting the 
Past Progressive with the Past Perfect. This reassured us that the null result in the Simple Past condition reflected an 
absence of (strong) perfectivity, rather than e.g. the Ongoing Event picture generally being a better representation of 
the event than the Completed Event picture.

https://osf.io/m395q/
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transitive clause containing a subject NP (grandma, grandpa, a girl or a boy), a past-tense verb 
and an object NP consisting of an adjective and a noun (e.g. a pretty flower, a new shirt, etc.). The 
experimental manipulation was grammatical aspect, and as such there were two versions of each 
target sentence: one in which the verb had the Past Progressive form, and one in which the verb 
had the Simple Past form, cf. example 1.

(1) a. Grandpa was demolishing an old house.
b. Grandma demolished an old house.

All items in the experiment involved telic accomplishments (cf. Vendler, 1967; Dowty, 1979), i.e. 
events with a process stage and a well-defined result stage. The design of the experiment relies on 
the assumption that these two stages can be mentally represented as ‘snapshots’, and are quickly 
and easily recognized as such by participants.

In the filler items, the visual display featured two pictures of different events (e.g. Grandpa 
chopped down a tree vs Grandpa blew out a big candle), but with the same subject, in various 
combinations of ongoing event versus completed event. The preamble and target sentences in 
the fillers were similar to those in the test items. To counteract the experimental bias that would 
arise if hearing the auxiliary be would always uniquely predict the ongoing event picture, half 
of the filler items included a construction with the auxiliary be that described a completed event 
(e.g. Grandma was successful in cracking open the nut, The boy was done with taking apart the wooden 
stool); the other half of the fillers included a past tense verb describing the initial or intermediate 

Figure 1: Visual display: ‘An old man demolishing a house’.

(a) Ongoing Event (b) Completed Event
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stages of an event (e.g. The girl began to drink a glass of milk, Grandpa occupied himself in the 
strawberry patch).

Two lists were created such that each test item appeared once in each list: in the Past 
Progressive form in one list, and the Simple Past form in the other. The position of the 
ongoing/completed event picture and the target picture was balanced across lists, and  
participants were randomly assigned to one of the two lists. Each list began with a filler item in 
order to acclimate the participants to the procedure; there were no practice items.

2.1.1 Web-based replication
The materials and design of the web-based replication were kept identical where possible, and 
minimally adapted to the constraints of the browser environment where necessary. To ensure 
that the pictures would have the same relative size and placement on the screen regardless of the 
display size,7 the browser window was divided into a grid with 12 vertical columns (using the 
Bootstrap CSS framework), wherein each picture was centered in a container 5 columns wide, 
with a 2-column neutral space between them. The height and width in pixels of each container 
was recorded in the data output.

In the original infrared eye tracking study, the trial order was fixed to avoid any clustering 
of trials that could create a habituation effect; never more than two consecutive trials with the 
same target event type, or target picture presentation side, as well as alternating test and filler 
items. Because we expected the web-based replication to have a longer duration, and so possibly 
a stronger effect of boredom or habituation amid the overall higher level of noise, we pseudo-
randomized the trials by ordering them in a list such that they formed blocks of four items that 
met all the balancing criteria we used for the original study. The order between these 8 blocks 
(but not within blocks) was randomized by participant.

The experiment was programmed using jsPsych (De Leeuw, 2015), which debuted its 
WebGazer-based eye tracking functionality with the release of version 6.3, in February 2021. The 
jsPsych framework organizes the various parts and functionalities of a behavioural experiment 
into modular scripts, or ‘plugins’; the eye tracking functionality is designed as an ‘extension’ that 
can be added to and run in the background of any other plugin. Additionally, the package includes 

 7 The disadvantage of this approach is that the absolute size of the pictures will vary between participants, a noise 
factor that is all the harder to control for because display size cannot be automatically recorded through the browser 
(and screen resolution, which can, is not correlated with display size). Short of asking participants to measure the 
diagonal of their screen with a tape measure, we cannot know. However, giving the pictures the same absolute size 
and placement would likely cause them to be displayed incompletely or incorrectly on some devices. See section 
3.2.2 for further discussion. 
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a plugin that initializes the webcam and locates the face and eyes in the center of the video feed; 
a calibration plugin, which trains a regression model to predict gaze location based on eye 
position; and a validation plugin, with which the accuracy of the prediction model is assessed. 
jsPsych version 6.3.1, released in April, also includes a forked version of WebGazer which was 
adapted to improve temporal resolution (see section 4.1.3 for a more in-depth discussion). 
Wherever possible, we used jsPsych’s plugins and API ‘out-of-box’; we lightly adapted the  
audio-button-response plugin to program the trials themselves, but were otherwise able to 
use the tools provided by jsPsych without customization.

The study was hosted on a JATOS8 server owned by UiT – the Arctic university of Norway.

2.2 Procedure
2.2.1 Original infrared eye tracking study
Instructions were delivered verbally by the experimenter. Participants were calibrated once at 
the start of the experiment, using a 9-point calibration grid, which was validated by fixating 
a randomly presented succession of points on that grid. Each trial had a preamble phase and 
a target phase. During the preamble phase participants were shown a picture of a smiley face 
at the center of the screen and heard the preamble sentence. After that the trial proceeded to 
the target phase where two pictures were presented side by side on the screen. After a 500 ms 
preview the participants heard the target sentence, and chose one of the pictures by raising the 
corresponding hand (left or right). Participants’ eye movements were recorded using an SMI 
RED500 eye tracker with an integrated 22-inch monitor, at a sampling rate of 120 Hz; offline 
responses were recorded manually by the experimenter. The experiment lasted approximately 
6 minutes.

2.2.2 Web-based replication
After completing the demographic survey, granting permission to access the webcam and 
passing a browser and equipment check, participants were encouraged to ensure that they would 
be undisturbed for at least 15 minutes; their face would be brightly and evenly lit; and that 
they were sitting comfortably (see Figure 2).9 They were not instructed to sit at a particular 
distance from their screen (though see section 3.2.2 for a possible approach to managing this in 
future work.)

 8 JATOS stands for “Just Another Tool for Online Studies” (Lange et al., 2015). It is a free, open-source backend tool 
for hosting and managing web-based studies.

 9 The instructional images for head positioning, posture, and lighting were taken from Semmelmann & Weigelt (2018) 
(https://osf.io/jmz79/).

https://osf.io/jmz79/
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Participants were then directed through a calibration phase. 15 points, 30px wide, were 
presented consecutively and in random order across the entire screen (between 10–90% of 
the screen dimensions). Participants were instructed to look at and click on each point; when 
clicked, the point would vanish and the next would appear. The validation of this calibration 
phase consisted of two consecutively presented points, 30px wide, centered approximately where 
the trial pictures would later be located on the screen. Each point was visible for 3 seconds: 
participants were instructed to simply look at the points without moving their head. Gaze 
predictions were generated starting 500 ms after each point appeared, to allow the eyes to 
saccade. For the participant to ‘pass’ the calibration, >50% of gaze predictions for each point 
had to fall within a 200px tolerance radius of that point.

Following the validation, participants received visual feedback on their performance: the 
tolerance radius around each point was made visible, and the raw gaze data of the validation 
was plotted onto the screen as green (‘hit’) and red (‘miss’) dots.10 If the 50% threshold was 

 10 In the jsPsych documentation this is recommended as a testing and debugging tool, but we chose to keep it in hope 
that participants would be able to interpret the feedback and adjust accordingly (e.g., if a participant’s face is brightly 
lit on one side because they’re sat beside a window, the accuracy on that side of the screen is likely to be much lower). 

Figure 2: Instructions for posture and head positioning (the first page in the study).
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reached for both validation points, the participant could proceed to the experiment; if not, they 
were looped back to the start of the calibration phase. In addition, the sampling rate (i.e. the 
rate at which WebGazer generates gaze predictions) had to be at least 5 samples per second. If 
calibration was not successful within 5 attempts, the study was aborted.

This calibration procedure was repeated another three times throughout the experiment (once 
every 12 trials) to compensate for small head movements and resultant decay of the accuracy of 
the gaze prediction model (see section 3.2 for further discussion).

Following calibration, the experiment proceeded exactly as it had in the original study, with 
the exception that participants had to interact with the web page to advance to the next trial. 
The preamble phase of each trial began with a green fixation point at center screen, which had 
to be clicked to play the preamble audio. When the audio finished playing, the trial advanced 
automatically to the two-picture display, the target sentence started playing, and the participants’ 
cursor was hidden. When the target audio ended, the cursor reappeared, and the participant 
had to select one of the pictures by clicking on it, which triggered the start of the next trial. 
Participants’ eye movements during the target phase of the trial, and their picture choice, were 
recorded. The study duration was 15.32 minutes on average.

2.3 Participants
2.3.1 Original infrared eye tracking study
35 adult monolingual English speakers were tested in Edinburgh (Scotland), in December 2019. A 
further 31 adult monolingual English speakers were recruited and tested in Norway (Trondheim 
and Tromsø) in September 2020, giving a total of 66 participants. All the participants tested in 
Norway had spent less than 5 years in Norway prior to the experiment, and attested to having 
only elementary conversational proficiency in Norwegian.

All participants had normal or corrected-to-normal vision. Written consent was obtained 
from all the participants prior to testing; as compensation, the participants tested in Edinburgh 
received £5, and the participants tested in Norway received a cinema voucher or a gift card 
worth 120 Norwegian kroner (~$13.50).

2.3.2 Web-based replication
124 adult monolingual English speakers were recruited via Prolific.ac. The sample size was 
determined on the basis of the results of our pilot studies.11 Several filters were applied on Prolific, 

Feedback also bolsters intrinsic motivation and improves performance (see e.g. Dow et al., 2012): if participants can 
see that they have a healthy number of gaze samples, of which just under half appear to be within either tolerance 
radius, they will hopefully be motivated to keep going rather than discouraged because they failed to calibrate.

 11 Before running the replication study, we ran several smaller pilot studies in batches of 60 participants (the infrared 
study’s sample size) at a time. By merging the results of two pilots, we found that we had reached a similar standard 
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to restrict who could access the study: participants had to be English speaking monolinguals 
who had spent most of their time before turning 18 in the United Kingdom; and they could only 
participate with a desktop computer (as opposed to a tablet or phone12) and a webcam.

Consent was obtained electronically by clicking a button labeled “I agree and Start” at 
the bottom of a reloadable information and consent page. Participants were paid £4 for an 
estimated study duration of 20 minutes (the actual study duration was ~15 minutes) if they 
successfully completed the entire study; they were paid £2 if they completed part of the study 
after a successful initial calibration, but were barred from finishing it after a failed recalibration. 
If they were unable to calibrate and start the study, they received no compensation. Participants 
were informed of this conditional payment structure in the information and consent letter. In 
total, 197 people started the experiment; of these, 39 (19.8%) dropped out before calibrating, 
usually because their browser, webcam, or audio output did not work. 16 (8.1%) dropped out 
after failing their initial calibration, 8 (4%) dropped out after failing a recalibration, and 124 
(62.9%) successfully completed the experiment. The remainder refreshed the web page during 
the experiment, which blocked them from further participation.

2.4 Trial exclusions and data preparation
We inspected participants’ accuracy in their picture choices in the filler trials to determine 
whether they merited exclusion. All 124 participants were >85% accurate, and so none were 
excluded. As in the original study, we excluded trials with >50% track loss (infrared version: 2 
trials, 0.13% data loss): in the replication, this meant trials with >50% gaze predictions located 
outside the participant’s screen dimensions (47 trials, 1.6% data loss).

2.5 Analysis
We coded the selection of the Ongoing Event picture in the Progressive condition and the 
Completed Event picture in the Simple Past condition as ‘target’, and the opposite choice as 
‘competitor’. To test whether the proportion of ‘target’ picture selections was significantly above 
chance in either condition, we fit two mixed effects logistic regressions (using the R package 
lme4(Bates et al., 2014; R Core Team, 2019) estimating the log-odds of a target response in the 
Past Progressive and Simple Past trials, with random intercepts for participants and items.13

To identify the time windows in which the probability of fixating on the target picture was 
significantly above chance, we performed a cluster-based permutation analysis for each condition 

error of the mean as in the infrared results (though still a weaker overall effect): once we switched to the new version of 
WebGazer and found a much clearer gaze pattern with as little as n = 24, we decided to set the sample size at n = 120.

 12 We leave the question of whether this type of study could also be taken via tablet or phone to future research.
 13 We did not fit maximally structured random effects in our models because some failed to converge with both random 

intercepts and slopes (singular fit), so we applied only random intercepts across all models.
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(see e.g. Huang & Snedeker, 2020; Yang et al., 2020). One advantage of this analysis over the 
more common growth curve analysis is that it gives an estimate of the time window (the titular 
‘cluster’ of time bins) in which an effect is significant, without the researcher pre-defining which 
time windows to analyze (which can seriously affect the statistical outcomes; see e.g. Peelle & 
Van Engen, 2021; Huang & Snedeker, 2020).

We selected the data starting from verb onset to 2000 ms after verb onset; binned the data 
into 50 ms time bins; calculated the proportion of fixations on the target picture in each time 
bin; and then binarized that data by rounding up to 1 or down to 0. Next, we fit a mixed effects 
logistic regression for each time bin, to estimate the log-odds of fixations on the target picture. 
Items and participants were included as random intercepts, and an intercept term was included 
to represent the difference between the log-odd of fixations on the target picture and 0, which 
corresponds to chance (0.5) probability. Next, we clustered together consecutive time bins where 
the probability of fixating on the target picture was significant at α = 0.08, on the assumption 
that these all exhibit the same effect;14 and summed up their z-values to create a sum statistic for 
each cluster. Finally, we estimated how likely these clusters would be to occur by chance, under 
the null hypothesis that the probability of fixating on the target versus the competitor picture was 
at chance. We did this by creating a permutation distribution, whereby we randomly permuted 
the picture labels (target vs competitor) by participant and then repeated the regression and the 
clustering steps. This procedure was repeated 1000 times, yielding a distribution of sum statistics 
against which the statistics of the original clusters were compared. Clusters with p < 0.05 were 
considered significant.

2.6 Results
Table 1 shows the offline responses in both the original infrared eye tracking study and the 
WebGazer replication. In both studies, the preference for the ‘target’ Ongoing Event picture in 
the Past Progressive condition was almost at-ceiling, but the preference for either picture in the 
Simple Past condition hovers around chance level. The log-odds of selecting the target picture 
were significantly higher than 0 in the Past Progressive condition in both the original study 
(intercept B = 6.24, SE = 0.77, Z = 8.09, p < 0.001) and the replication (intercept B = 5.25, 
SE = 0.59, Z = 8.86, p < 0.001). In the Simple Past condition, the log-odds were not significant 

 14 We chose to set the threshold at 0.08, rather than the customary 0.05, because relaxing the criteria for identifying 
clusters in the initial stage of the permutation analysis helps to find larger contiguous clusters. When we ran this 
analysis with a ‘traditional’ alpha of 0.05, we found several clusters grouped closely together, separated only by 1 or 
2 time bins where an effect was not found: we did not find it plausible that an effect of aspect in looking preference 
(well after verb offset) should blink in and out of existence. With an alpha of 0.08, these clusters merged into one. 
The risk of false positives is sidestepped by the re-sampling portion of the analysis: the initial, “real” sum statistic is 
tested against a distribution of 1000 permuted sum statistics that were also found with alpha = 0.08, so this final 
significance test is no less strict.
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in the original study (intercept B = 0.26, SE = 0.3, Z = 0.86, p = 0.39); and although the 
proportion of selections of the competitor picture in this condition increased by 10 percentage 
points in the replication, the log-odds of selecting the target picture still did not significantly 
deviate from 0 (intercept B = –0.46, SE = 0.32, Z = –1.41, p = 0.16).

Figure 3 presents the online results from both the original study (a, b) and the WebGazer 
replication (c, d), starting from, and ending 2000 ms after, lexical verb onset. The dashed vertical 
lines mark average lexical verb offset, and the shading in (a) and (c) represents the time windows 
in which the probability of looking towards the target picture was significantly above chance. 
In these graphs, looks that fell outside either picture were filtered out: in the original study, that 
constituted 6.36% of gaze data, but in the replication, it was 27.95% (see section 4.2 for discussion).

Infrared WebGazer

Event type Prog SPast Prog SPast

Ongoing Event 95% 46% 98% 56%

Completed Event 5% 54% 2% 44%

Table 1: Offline responses in the original study and the replication.

Figure 3: Proportion of looks to the target picture in the Progressive condition ((a) and (c)), 
and in the Simple Past condition ((b) and (d)). Data in (a) and (b) were collected with an 
infrared eye tracker, data in (c) and (d) using WebGazer. The colored ribbons around the graph 
lines represent the standard error of the mean. Grey shading represents the time bins where 
probability of looks to the target picture was significantly above chance. The dashed vertical 
lines mark average lexical verb offset (559 ms in the Simple Past condition, 674 ms in the Past 
Progressive condition).
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We used a cluster-based permutation analysis (α = 0.08) to identify clusters of 50 ms time 
bins where the probability of fixating on the target picture was significantly above chance. In 
the original study, this analysis revealed one cluster from 500 to 2000 ms after lexical verb onset 
(sum Z = 103.57, p < 0.001) in the Past Progressive condition; and no clusters in the Simple Past 
condition. In the replication study, the analysis identified one cluster from 550 to 2000 ms (sum Z 
= 133.8, p < 0.001) in the Past Progressive condition, and no clusters in the Simple Past condition.

3 Discussion
We replicated a Visual World eye tracking study using browser-based experiment software and 
webcam eye tracking tools, and remote participants. We were able to fully replicate the results of 
the original study, including the approximate onset of the time window in which the probability 
of fixating on the target picture was significant (which was one time bin, or 50 ms, later in the 
replication). This is a marked improvement on the outcomes of earlier WebGazer replications 
of eye tracking tasks. In the following sections, we will try to contextualize and account for this 
improvement, discussing technical factors (particularly spatial and temporal resolution) on the 
one hand, and methodological factors affecting participant retention and overall data quality on 
the other.

3.1 Temporal resolution
Moreso than large spatial offsets (of which the Visual World Paradigm is much more forgiving 
than, say, eye tracking during reading), the primary concern with webcam eye tracking has 
been its low sampling rates and variable inter-sampling intervals – in other words, its poor 
temporal resolution. Semmelmann & Weigelt (2018) noted a higher temporal error when data 
was collected remotely, on participants’ own laptops and browsers where processing load and 
hardware performance could not be controlled for. In their WebGazer replications of Visual 
World studies, Slim & Hartsuiker (2021a) and Degen et al. (2021) found 300–700 ms delays in 
the onset of the replicated effect, which they reasonably concluded would have to disqualify this 
eye tracking technique for use in any time-sensitive experiments.

There are methodological caveats to each of these studies that may, to some extent, account 
for their sluggish effect onsets – Semmelmann & Weigelt (2018) and Calabrich et al. (2021) 
recalibrated multiple times but only analysed the data of 28 and 14 participants respectively, 
Slim & Hartsuiker (2021) and Degen et al. (2021) had large datasets but no recalibrations, and so 
on. However, we think (and several of the aforementioned authors have indeed also speculated) 
that the biggest source of temporal noise in the data of these studies may have been courtesy of 
WebGazer itself. In their replication of a decision-making task with eye tracking (Krajbich et al., 
2010), Yang & Krajbich (2021) found that as processing demands on the participant’s browser and 
hardware increased over the course of the experiment, the time interval between gaze predictions 
increased dramatically, peaking at 972 ms (SD = 107 ms). They made an adjustment to the 
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WebGazer software itself, whereby the process that generated gaze predictions was decoupled 
from the main process that updated with every new animation frame – a process that is highly 
vulnerable to timing delays when the browser has to juggle several intensive tasks. With this 
adjustment, they were able to achieve much higher and more stable sampling rates. Shortly after 
Yang & Krajbich (2021)’s results became available, an update to jsPsych was released (version 
6.3.1, April 10 2021) which included a forked and modified version of WebGazer: like Yang & 
Krajbich (2021), the developers had found that the method WebGazer relies on to generate gaze 
predictions created a processing bottleneck that caused serious temporal errors, and adjusted the 
code to resolve the problem.15

As we had been running pilots of this study using custom eye tracking plugins written in 
the jsPsych framework, we were able to switch to jsPsych v6.3.1 immediately after it came out. 
Like the other replication studies, the experimental effects in those pilots resembled those of the 
original, but slower, weaker, and noisier. The temporal resolution of our data and the onset of 
our experimental effect improved dramatically as a result of implementing the experiment in 
jsPsych v6.3.116: due to several minor methodological improvements, but mostly, we expect, due 
to the modified WebGazer code.

 15 Josh de Leeuw, the main developer of jsPsych, clarified on 15/6/2021 (discussion #1892 on the jspsych/jsPsych 
github forum): “As far as performance goes, I think we [Yang and de Leeuw] both applied similar modifications to 
webgazer. […] The major change we both made to our respective forks is that we disabled webgazer’s automatic 
loop so that webgazer is no longer trying to provide an updated prediction with every animation frame, and instead 
we just invoke webgazer’s prediction algorithm at a regular interval. This seems to actually speed up the rate at 
which calculations can be done. And, perhaps even more importantly, using requestAnimationFrame was causing 
blocking in jsPsych’s timing, so if a participant had a particularly poor computer – or even a good one – the timing 
of experiments could become really bad really quickly (see issue #1700).”

 16 A note for users of Gorilla.sc: Will Webster, a software developer at Gorilla/Cauldron Science, confirmed that his 
team is aware of this issue and is working on forking, modifying, and integrating WebGazer into Gorilla’s own timing 
system (6/8/2021, personal correspondence).

Figure 4: Webcam study gaze sampling rates. a) Histogram and density plot of participants’ 
mean sampling rates. The red vertical line represents the grand average sampling rate: 20.73 
Hz (SD = 8.99). b) Total number of gaze samples per time bin. Due to participants’ varying 
(but consistent) sampling rates, the number of gaze samples oscillates between time bins.
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By filtering out participants with a very low sampling rate (<5 Hz), and relying on jsPsych’s 
version of WebGazer, our participants had an average sampling rate of 20.73 Hz (SD = 8.99): 
about one gaze prediction per 48 ms. Though, as can be seen in Figure 4, the spread of our 
participants’ sampling rates spans 5 to 45 Hz; and as a result, the number of data points per 50 
ms time bin oscillates by as many as 2000 samples. (This oscillation could conceivably be why 
the significant effect window in Figure 3(c), as identified by the cluster-based permutation 
analysis, starts 50 ms later compared to the infrared study!)

In webcam eye tracking, the sampling rate is effectively limited by the frames-per-second 
(fps) rate of the webcam – that is, WebGazer can generate predictions at a higher rate, but 
they may not reflect a ‘real’ observation of the eyes. Most consumer-grade webcams sample 
at 15 to 30 fps (though more expensive ones can go up to 60 fps); the real-time sampling rate 
is, however, affected by the processing load of the participant’s device, so an actual fps and 
WebGazer sampling rate of 60 Hz is unlikely to occur. Semmelmann & Weigelt (2018) reported 
mean sampling rates of 18.71 fps (SD = 1.44) in their in-lab dataset, and 14.04 fps (SD = 
6.68) in their remotely collected dataset; Yang & Krajbich (2021), using their modified version 
of WebGazer, report an average of 24.85 ms between gaze predictions (SD = 12.08), which 
converts to a 40.2 Hz sampling rate.

Given that infrared eye tracking systems are usually sampling at anywhere between 100–
500 Hz, is this sampling rate sufficient? For a Visual World study, where the measure of 
interest is usually the proportion of fixations in a particular time window rather than saccadic 
eye movements, it appears that it is. The added value of very high sampling rates might even be 
doubtful in this paradigm: a fixation lasts 100–300 ms on average and even an express saccade 
will take at least 80 ms to launch, so how high a temporal resolution is really necessary? 
For instance, Dalmaijer (2014) conducted a method study with the EyeTribe eye tracker, 
which sampled at max. 60 Hz. He concluded that a 60 Hz sampling rate was good enough for 
research questions centered around fixation data. Ouzts & Duchowski (2012) compared two 
eye tracking datasets with different sampling rates, and recommend downsampling to the 
lower rate rather than upsampling to the higher rate (as is common practice); higher does not 
always equal better, especially if it means padding the data by splicing data points. Andersson 
et al., (2010) simulated various sampling rates in experiments with varying demands for 
temporal precision, and show that error resulting from lower sampling rates can be mitigated 
with higher power.

3.1.1 Temporal precision
Beyond WebGazer’s temporal resolution, there is the timing precision of the experiment itself to 
consider.
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The accuracy of the software’s timing performance is not a grave concern for studies where the 
measure of interest is the difference between two or more conditions, such as the one presented 
here: any constant timing offset, or lag (usually arising from hardware characteristics) is canceled 
out. The precision, or variable error of the timing offset, does need to be accounted for. de Leeuw 
& Motz (2016), comparing participant response times in a Javascript versus a Psychophysics 
Toolbox application, note that where there is a noticeable difference, it is mostly an increase in 
lag that’s relatively consistent across trials, and not an increase in variability between trials. In 
other words: poorer accuracy, but not poorer precision. Likewise, Slote & Strand (2016) found 
that variation in the measurement error of audio stimulus onset in a Javascript experiment 
could be limited to less than 5 ms, even when processing load was high, by using WebAudio 
API to schedule audio presentation. Bridges et al. (2020) compared the timing performance of 
several popular behavioral science software packages, both in-lab and web-based, on a range 
of operating systems and browsers. They found that jsPsych showed an inter-trial variability 
of precision in the range of 3.2–8.4 ms in all browser/operating system configurations. More 
generally, they note that a problem which seems to affect all online software packages to various 
degrees is the exact synchronization of audio and visual stimuli, a task for which Javascript is 
not ideal (cf. Anwyl-Irvine et al., 2021a for additional data).

In future work, we may be able to use the participant sound card’s own estimation of the audio 
output latency to better understand the temporal accuracy and precision of this experimental 
set-up, but with a within-subjects experimental design and a statistical model taking random 
participant effects into account, timing offsets and variation of this size should not hinder a clear 
interpretation of the data.

3.2 Spatial resolution
The other question to address in evaluating the performance of this web-based method is how 
accurately it captures gaze location. Though our results indicate that WebGazer’s spatial resolution 
is good enough to capture the expected effect in a two-picture paradigm, the fact that 28% of 
the replication data were looks outside either of the pictures (vs 6.3% in the original study) 
indicates that WebGazer remains a blunter instrument than infrared. This requires a balancing 
act: in order to minimize the risk of looks being misclassified, we had separated the two pictures 
by 20% of screen width, with the result that the majority of non-picture looks concentrated in 
this area (see Figure 5(b)).

It could be (though this is pure speculation) that, because our participants’ average screen 
size was much smaller than the display of our infrared eye tracker, they used more of their 
peripheral vision (which can and does contribute to object recognition and scene perception; see 
e.g. (Rosenholtz, 2016)) to perceive the pictures, resulting in more looks at center screen. With 
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Figures 5(c) and 5(d), we can rule out that the high density of looks towards the center is driven 
by the reappearance of the cursor at audio offset: the proportion of looks to the center is high at 
the start of the trial (as expected), then drops sharply as soon as the audio stimulus begins, and 
remains at just over 20%.17

What is evident is that spatial resolution is not equal everywhere: Semmelmann & Weigelt 
(2018), Yang & Krajbich (2021) and Slim & Hartsuiker (2021b) found that fixation targets near 
the corners of the screen had significantly higher gaze offsets, and Semmelmann & Weigelt 
(2018) report that gaze predictions for targets near the bottom of the screen have considerable 

 17 A minor but interesting note on Figures 5(c) and 5(d) is that they show very different proportions of looks to the 
target vs. the competitor picture in the first ~200 ms of the trial. This could in part be due to spillover from the 
previous trial – experimental and filler items always alternate, and the preference for the target picture is much 
greater in the fillers. But as can be seen in Figure 4(b), the first 3 time bins of the trial have much fewer gaze samples 
than the rest – as if WebGazer has to ‘warm up’ in the first 150 ms before settling into a regular sampling pattern. 
Something worth keeping in mind while designing experiments with WebGazer.

Figure 5: Density plots for (a) looks towards either Region Of Interest, and (b) looks outside 
either ROI (webcam study). Gaze and picture placement coordinates were computed as 
a percentage of the screen width and height. Two participants (#44 and #95) have been 
excluded from these graphs because their relative picture placements were not aligned with 
the others, possibly because they exited fullscreen mode and adjusted their browser window 
dimensions. Graphs (c) and (d) plot looks towards the target picture (red), the competitor 
picture (blue), the center column of the screen (yellow), and the remaining edges of the screen. 
The vertical dotted lines mark, from left to right: audio onset, verb onset, verb offset (in (c) 
only), and audio offset.
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offsets towards the top. This may be due to interference from eyelids or eyelashes, or simply a 
consequence of the positioning of the webcam (generally at the top of the screen).

Despite these caveats, replications of four-picture Visual World studies (Degen et al., 2021; 
Slim & Hartsuiker, 2021b) so far indicate that WebGazer’s spatial resolution can accommodate a 
more crowded display – but this primarily depends on the quality of the calibration.

3.2.1 Calibration
In conventional infrared eye tracking experiments, eye movement is tracked by reflecting a 
near-infrared light beam off the eye, and measuring the distance between the resulting glint 
(a.k.a. first Purkinje image) and the center of the pupil. This method is so accurate that for 
most experiments, the tracker is calibrated only once, at the start; provided the participant does 
not move and ambient light conditions remain relatively stable, recalibrations are usually not 
necessary. In eye tracking using visible light spectrum cameras, however, gaze prediction is 
inevitably less accurate: WebGazer does it by isolating the webcam image of the eyes as detected 
by a facial features recognition algorithm, reducing it to a 120-pixel grayscale eye feature vector, 
and supplying that to the gaze prediction model. This approach is more vulnerable to variable or 
uneven lighting, small head movements, etc., and so the accuracy of the gaze prediction model 
can be expected to decay significantly over the course of the experiment – see e.g. Degen et al., 
2021’s webcam replication study, in which they did not recalibrate at any point during 54 trials. 
At the other extreme sit Semmelmann & Weigelt (2018), who recalibrated their participants 
before every block of trials, leading to about half of their study’s duration (M = 43.54 minutes) 
being spent on calibrating; they noted this was a somewhat arbitrary choice which seemed to 
wear out their participants, and marked the issue of how often to recalibrate as an important one 
to answer in future work.

Rather than set a fixed number of recalibrations every n trials, Yang & Krajbich (2021) opted 
for conditional recalibrations: every 10 trials, their participants would see three validation dots 
(each visible for 2 seconds). If participants fell below the ‘hit’ threshold (70% of gaze predictions 
within 130px of the validation dot) for four dots in two validations, they would recalibrate. 
Analysing the ‘hit’ ratios of their validation trials, they found that the ratio dropped right after 
calibration, but declined very slowly at every successive validation trial.

In order to understand the rate of calibration accuracy decay in our own experiment design, 
and to determine the number of recalibrations needed for our replication experiment, we 
conducted a pilot wherein participants were calibrated only once at the start, and the calibration 
accuracy was measured with a validation after every second trial. Figure 6 presents the results 
of that pilot: the accuracy drops off immediately after calibration, and continues to decay quite 
rapidly thereafter.
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Wanting to mitigate this decay, but also to avoid exhausting our participants with frequent 
recalibrations, we chose to recalibrate 3 times, or once every 12 trials. Because it appears that 
the rate of decay varies by experiment design, we would recommend piloting any webcam eye 
tracking experiment with a similar procedure, to determine the optimal number of recalibrations.

It is worth noting that Yang & Krajbich (2021)’s approach to tracking calibration accuracy 
decay was quite different from ours, and placed more performance demands on their participants: 
the consequence of too many validation ‘misses’ was a recalibration, and validation success or 
failure was communicated through colour (the validation point turning green for a ‘hit’, and 
red for a ‘miss’). In our pilot, participants received no feedback on their performance during 
inter-trial validations, and experienced no consequences for slacking off. This could at least 
partially explain the steeper drop-off in calibration accuracy in our pilot. Having now established, 
through the collective effort of the various method studies cited here as well as our own, that 
technologically WebGazer can achieve the necessary spatial accuracy for Visual World studies, 
the development of behavioural best practices for calibration and validation during webcam eye 
tracking experiments would be a useful focus for future work.

3.2.2 Screen size and relative stimulus size
It is worth revisiting an experimental design flaw noted in footnote 6 (section 2.1.1): participants’ 
screen size was not controlled for, and because we sized the screen contents relative to the 

Figure 6: Decay of the accuracy of the initial calibration (webcam study). The shaded ribbons 
represent the standard error; in this pilot (as in the replication study), the presentation order of 
the validation points was not randomized, and left was always presented first.
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browser window dimensions (in the case of the picture stimuli) or in pixels (in the case of the 
calibration points), the absolute size of the screen contents also varied between participants. 
We cannot guess at how great this variation is: because of a bug in our experiment software, we 
unfortunately did not collect accurate information about whether participants used a laptop or a 
PC with an external monitor. In a subsequent, near-identical study (wherein this bug was fixed), 
we found that 95% of participants used a laptop, giving reasonable hope that the size variation 
is modest.

How to address this problem in future work? In the case of the calibration points: thus far, 
the jsPsych calibration and validation plugins only accept number of pixels as a measure of point 
size. (Likewise the size of the tolerance radius around validation points.) While that means that 
the absolute size of the points will differ depending on screen resolution, the question is whether 
sizing them by some measure other than pixels will help. The eye feature vector constructed by 
WebGazer to track gaze is, after all, also measured in pixels. However, it should be possible to 
adjust the plugins to allow the size of the points (and of the tolerance radius around them) to be 
computed as a percentage of screen size, or some other bespoke measure.

Stimulus size can be more easily standardized. When we ran this study, this solution was 
not yet available, but jsPsych has since introduced a plugin for the Virtual Chinrest (based on 
Li et al. 2020), which can be used to measure the distance between the participant and their 
screen, as well as standardize the the jsPsych page content to a known physical dimension. This 
could potentially be a good way to ensure all participants see pictures of the same absolute size, 
regardless of screen size. Though it does add another ‘hoop’ for participants to jump through, an 
issue we’ll discuss in the next section.

3.3 Participant retention and data quality
One of the major selling points of webcam eye tracking, as previously stated, is that data collection 
could potentially be much quicker and more efficient than its lab-based counterpart. Researchers 
no longer need to invite participants to the lab, to be tested one-by-one, or travel to reach their 
target demographic; this can also save a lot of money. Given a large remote participant pool 
(such as Prolific, particularly for English speakers), data collection may be completed within 
1–2 hours as opposed to weeks or months. However, several webcam eye tracking studies (e.g. 
Anwyl-Irvine et al., 2021b; Semmelmann & Weigelt, 2018; Yang & Krajbich, 2021; and Slim & 
Hartsuiker, 2021b) remark on their experiments’ high participant attrition rates as a cause for 
concern: 62% in Semmelmann & Weigelt (2018), 61% in Yang & Krajbich (2021), and 72% in Slim 
& Hartsuiker (2021b), which Anwyl-Irvine et al., (2021b) cited as motivating their development 
of MouseView.js.18 Not only do high attrition rates undermine the time- and cost efficiency 

 18 MouseView.js is a Javascript library which blurs the display to mimic peripheral vision, but lets participants use their 
mouse pointer to move a sharp, fovea-like aperture.
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of browser-based eye tracking for the researcher, they also suggest that the experiment is too 
difficult, uncomfortable, and/or long for the average participant – a problem worth resolving 
because the remaining sample may be skewed (‘survival bias’), but also for its own sake. For our 
experiment, we therefore sought to improve the experience of taking part on the participants’ 
side, while also filtering out participants with sub-optimal equipment set-ups as early as possible 
in the study flow. Of our 197 participants who began the study, 73 (37% attrition) did not 
complete it; if we remove the 39 participants who were prevented from advancing to the initial 
calibration because of equipment issues, the attrition rate drops to 21.5%. Here we consider a 
number of factors that we believe impact participant retention and overall data quality.19

Webcam eye tracking demands a lot more from a participant than the average survey or 
even reaction time experiment: for best results, they are asked to rest the computer on a flat 
surface, assume a posture they can comfortably maintain without moving for several minutes, 
adjust lighting if necessary, and close processing-heavy apps running in the background. For 
participants recruited via platforms such as Amazon Mechanical Turk or Prolific, wasted time 
means lower earnings; with an all-or-nothing renumeration policy (e.g. Semmelmann & Weigelt 
(2018) only paid the participants that completed the entire study, namely $4 for an average study 
duration of 43.54 minutes), participants will quickly give up if they risk earning nothing after 
failing a recalibration. By paying our participants well above minimum wage, and by offering 
50% payment if participants failed a recalibration, we hoped to convey appreciation for the 
concerted effort it takes to cooperate with the experiment design, and to incentivize that effort.

Beyond these pragmatic considerations, participants’ tolerance for boredom may be lower. 
Many of the recent articles, webinars and blog posts reviewing methods and best practices of 
online research emphasize the limited ‘patience time window’ of participants: the consensus, 
insofar as there is one, seems to be roughly 20 minutes (cf. e.g. Kochari, 2019; and a recent 
webinar on web-based eye and mouse tracking by Gorilla.sc). In a survey of 103 Germans, Sauter 
et al. (2020) found that 44% would abort an online study paying minimum wage if it took longer 
than 15 minutes; this figure rose to 79% for 30 minutes. On the other hand, Jun et al. (2017) and 
Chandler & Kapelner (2013) find that if the study is considered interesting or meaningful that 
may mitigate effort, boredom, and fatigue. Without the performance pressure induced by a lab 
environment and direct supervision, the onus is on the researcher to design an experiment that 
is both short and pleasant to interact with.

In that regard, the amount of time and effort spent (re)calibrating is probably where there is 
most room for improvement. One perk of this process is that passing a calibration accuracy threshold 
amounts to a built-in gate-keeping mechanism: few bad faith participants will struggle through 

 19 For a more general overview and cost-benefit analysis of conducting web-based behavioral studies, see e.g. Sauter et 
al. (2020), Eyal et al. (2021), and Gagné & Franzen (2021).
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repeated calibrations only to deliberately ignore the instructions for the experimental trials. 
Nonetheless, Semmelmann & Weigelt (2018) notes that ‘gamifying’ the calibration procedures 
in webcam eye tracking experiments would do much to improve participants’ enjoyment (and 
performance) – in fact, Xu et al. (2015) did just that: they developed two short video games 
based on well-known game formats. One game, based on Angry Birds, required a high degree of 
accuracy (the goal was to “train a powerful gaze-controlled gun” with which to take down the 
birds); the other, based on Whack-a-mole, had a more forgiving threshold for successful ‘hits’. Xu 
et al. (2015) used these games to advertise two versions of the same picture classification task: 
one longer, more demanding task yielding high-accuracy gaze data, and one shorter, easier task 
that yielded cruder data, but which was also much more popular on Amazon Mechanical Turk 
and attracted and retained more participants. By combining both data sets and post-hoc data 
processing, the authors were able to obtain satisfactory results. xLabs, a now-defunct company 
that offered webcam eye tracking for marketing research, calibrated users by letting them click 
on animated crawling ants or floating balloons, and validates by visualising their real-time gaze 
predictions as a ‘laser’ with which to squash or pop them.20 This kind of gamified (re-)calibration 
process would also make the experiment design more suitable for children.

Finally, our aim was to mitigate some of the increased noise that is inevitably inherent to 
remote webcam eye tracking. Where possible, we opted for the thriftier approach of rejecting 
participants with sub-optimal equipment set-ups before starting the experiment, rather than 
removing them post-hoc. Potential participants can be filtered by browser features such as 
browser type and version, screen resolution, display refresh rate, and support for essential 
software libraries such as WebAudio API before starting the experiment.21 Furthermore, the 
samples_per_sec variable in the validation plugin’s data output can be used to filter out 
participants with a low sampling rate, which we take to be a symptom of an unsuitable setup – 
whether due to aged hardware, high CPU load, sub-optimal combination of operating system and 
browser, or some other factor. We set our threshold at 5 samples per second, but e.g. Madsen et 
al. (2021) set it at 15. In experiments with an expected smaller effect size or that require a more 
fine-grained spatial or temporal resolution, filtering by a relatively high sampling rate may be a 
prerequisite for obtaining interpretable data.

With regards to data post-processing, eye movement classification and raw gaze data 
smoothing algorithms constitute their own subfield within eye tracking research, and a review 
of that literature lies outside the scope of this paper (but see e.g. Salvucci & Goldberg, 2000; 
Tafaj et al., 2012; and Hessels et al., 2017). However, we note that Xu et al., 2015 extracted 
fixations from their raw gaze data through meanshift clustering, i.e. algorithmically identifying 

 20 Much of the code behind these calibration games is still available via the company’s Github page.
 21 As of version 7.1, jsPsych has a dedicated plugin for this.
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and assigning gaze data to spatio-temporal clusters and labeling the cluster center as one fixation. 
To evaluate this approach, they selected 1000 random pairs of images and participant gaze data 
from the infrared eye tracking dataset they were using for comparison subject/image pairs (Judd 
et al., 2009), and obtained ‘ground truth’ fixation locations on the images from the gaze data. 
They then permuted that data to resemble webcam eye tracking data by subsampling it to 30 Hz 
and adding position noise; extracted fixations using their meanshift algorithm; and compared 
the results to their ground truth fixations. The algorithm was able to estimate these fixations 
reasonably well, which suggests that it is worth considering as a noise-reduction tool for webcam 
eye tracking data going forward.

Although we did not process our data beyond the procedure followed in the original infrared 
study, we suggest that there are several ways to filter out participants with low-quality data 
during data preparation: for example, by plotting and inspecting the distribution of a certain 
performance metric, and discarding participants below a certain cut-off point. Madsen et al. 
(2021)22 visualised the raw gaze data of their participants along the horizontal and the vertical 
axes, coding position as brightness and with time on the x-axis and subject on the y-axis; subjects 
were sorted top-to-bottom by their score on a comprehension test. In their plots, high-performing 
subjects clearly exhibited a stereotypical pattern of eye movements, which gradually fades out 
as performance drops. In a Visual World study such as the one we present here, with an equal or 
greater number of filler trials than experimental trials, performance on the fillers could serve as 
a similar heuristic. Though accuracy of participants’ offline responses on the filler trials was at 
ceiling, and thus less effective as a metric, one could use a summary metric of the online filler 
data instead, e.g. the proportion of looks towards any Region of Interest.

4 Conclusion
We have presented a web-based replication of a Visual World eye tracking study, demonstrating 
that it is possible to obtain results that approach laboratory-grade effect sizes and onsets, using 
free, open source and beginner-friendly software tools. We have also shown how with a few 
methodological and experiment design adjustments, the overall user experience and success of 
such a study can be improved. We thereby add to the rapidly growing body of work investigating 
the possibilities and limitations of WebGazer and remote webcam eye tracking studies, which 
in a short time has led and will undoubtedly continue to lead to better code, experimental 
protocols, participant experiences, and research outcomes.

 22 See page 9 of their Supplementary Information.
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Supplementary information and materials
Demographic data
Before the start of the web-based experiment, we administered a short demographic survey 
and recorded participants’ browser type and version,23 their operating system type and version, 
and their screen resolution. In order to limit the collection of personal data that has no well-
motivated bearing on the research question, we chose not to record sex or gender. Nor did we 
record exact age, choosing instead to bin participants into 5 age groups: 18–30, 31–43, 44–56, 
57–69, and 70+. The demographic data is given in Table 2, with the number of participants for 
each category given between parentheses.

Correlation of sampling rate and calibration accuracy
Spearman rank correlation of mean calibration accuracy (for successful calibration trials only) 
and mean sampling rate by participant (see Figure 7). Because Slim & Hartsuiker (2021b) found 
a strong correlation between their participants’ calibration scores and frames-per-second rate 
(R = 0.852, p < 0.001), we ran a similar correlation on our data. At R = 0.16, and p = 0.074, 
this correlation was not significant; but since Slim & Hartsuiker (2021b)’s minimum threshold 
for calibration success was 5% for one validation point, and ours was 50% for two points, this 
is not surprising.

 23 At the time this study was conducted, the only browser systems that it could reliably be conducted on were Chrome 
and Firefox. Likewise, Yang & Krajbich (2021) report that of their 49 participants, 45 used Chrome and 4 used Firefox. 
The software libraries that webcam eye tracking experiments rely on – particularly, WebGazer and WebAudio API – 
are now becoming available to a wider range of browsers, such as Safari, Edge, and Opera.

Age Vision Browser OS

18–30 (52) Normal, uncorrected vision (67) Chrome (113) Windows (84)

31–43 (35) Glasses (49) Firefox (11) MacOS (31)

44–56 (29) Contact lenses (4) Chrome OS (7)

57–69 (8) Abnormal, uncorrected vision (4) Linux (2)

70+ (0) 

Table 2: Number of participants per category for Age group, Vision, Browser type, and 
Operating System.
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Sentence stimuli
The sentence stimuli used in both the original and the replication study: see Table 3 for the 
experimental items, and Table 4 for the filler items.

Figure 7: Spearman rank correlation of participants’ mean sampling rate and mean calibration 
accuracy.

(Contd.)

Preamble Sentence

It was a crisp winter morning. Grandpa was building a big snowman.
Grandpa built a big snowman.

It was playtime at the school. The boy was coloring a pretty picture.
The boy colored a pretty picture.

It was time for lunch. Grandma was slicing a juicy watermelon.
Grandma sliced a juicy watermelon.

It was a bright sunny day. Grandpa was digging a deep pit.
Grandpa dug a deep pit.

It was playtime at the school. The girl was drawing a slender vase.
The girl drew a slender vase.

There were jobs to do around the house. Grandpa was drilling a big hole.
Grandpa drilled a big hole.

It was a holiday weekend. Grandpa was fixing the old fridge.
Grandpa fixed the old fridge.

It was a holiday weekend. Grandma was hanging a beautiful painting.
Grandma hung a beautiful painting.
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Preamble Sentence

There was going to be a party. Grandpa was ironing a clean shirt.
Grandpa ironed a clean shirt.

It was a crisp winter morning. Grandma was knitting a new jumper.
Grandma knitted a new jumper.

It was a crisp winter morning. Grandpa was lighting a cosy fire.
Grandpa lit a cosy fire.

It was the middle of the afternoon. Grandma was locking the side door.
Grandma locked the side door.

The weather was nice and warm. The girl was opening a big window.
The girl opened a big window.

There were jobs to do around the house. The girl was painting a high wall.
The girl painted a high wall.

It was a bright sunny day. Grandma was planting a pretty flower.
Grandma planted a pretty flower.

It was the first period (at school). The boy was sharpening a thin pencil.
The boy sharpened a thin pencil.

There was going to be a party. The boy was sweeping the narrow corridor.
The boy swept the narrow corridor.

It was early in the morning. The boy was cleaning the front room.
The boy cleaned the front room.

The weather was nice and warm. Grandma was watering a green bush.
Grandma watered a green bush.

It was a rainy day outside. Grandma was baking a lovely cake.
Grandma baked a lovely cake.

It was a dark night with no hint of 
a breeze.

The boy was burying a wooden chest.
The boy buried a wooden chest.

There were many people shopping 
in town.

The girl was buying a new phone.
The girl bought a new phone.

It was time for lunch. The girl was eating a tasty fish.
The girl ate a tasty fish.

It was the middle of the day. Grandpa was demolishing an old house.
Grandpa demolished an old house.

Table 3: Sentence stimuli (experimental trials).
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(Contd.)

Preamble Sentence

It was early in the morning. Grandpa was satisfied that the candle was 
blown out.

It was the middle of the afternoon. Grandma was successful in cracking open the nut.

There were jobs to do around the house. The boy was done with taking apart the 
wooden stool.

It was a beautiful quiet evening. Grandpa was unconcerned that the old bridge 
had been destroyed.

It was early in the morning. The girl was happy with her newly cut out 
flower.

It was the middle of the afternoon. The boy was pleased with his super tall tower.

There was going to be a party later. Grandma was impressed with the beautiful dress 
she had sewn.

It was a rainy day outside. Grandma was halfway through cutting the sleeves 
off the shirt.

The weather was nice and warm. Grandpa was tired after chopping down the tree.

It was a bright and sunny day. The girl was proud that she managed to swim 
across the river.

It was break time at the school. The girl was finished with her glass of milk.

It was the middle of the afternoon. The girl was ready to eat an orange.

The weather was nice and warm. The boy enjoyed himself photographing nature.

It was a holiday weekend. Grandpa concentrated on preparing dessert.

It was early in the morning. The girl worked on cutting out a flower.

There were jobs to do around the house. The boy wanted to take apart the old wooden stool.

It was the middle of the afternoon. Grandpa relaxed and read a book.

The weather was nice and warm. Grandpa occupied himself in the strawberry patch.

It was a beautiful quiet evening. The boy planned to saw up the log for the fire.

It was the first period at school. The boy got started on constructing a tower out 
of blocks.

It was playtime at the school. The girl wanted to put together the pretty toy castle.
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Data availability
All materials relating to this study, including the raw data files, the tidy, analysis-ready 
dataframe, the R script for the data analysis and visualisation, the stimuli, and the codebase 
for the experiment, are made available through the Open Science Framework (https://osf.io/
m395q/).
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