

MASTER THESIS

TITLE: Manoeuvring Drone (Tello Talent) Using Eye Gaze and or Fingers
Gestures

MASTER DEGREE: Master's degree in Applications and Technologies for
Unmanned Aircraft Systems (Drones) (MED)

AUTHOR: Bouazza Berarache

PROFESSIONAL ADVISOR:
ACADEMIC ADVISOR: Miguel Valero García

DATE: October, 23rd 2023

Abstract

The project aims to combine hands and eyes to control a Tello Talent drone
based on computer vision, machine learning and an eye tracking device for
gaze detection and interaction.

The main purpose of this project is gaming, experimental and educational for
next coming generation, in addition it is very useful for the peoples who cannot
use their hands, they can manoeuvre the drone by their eyes movement, and
hopefully this will bring them some fun.

The idea of this project is inspired by the progress and development in the
innovative technologies such as machine learning, computer vision and object
detection that offer a large field of applications which can be used in diverse
domains, there are many researcher are improving, instructing and innovating
the new intelligent manner for controlling the drones by combining computer
vision, machine learning, artificial intelligent, etc.

This project can help anyone even the people who they don’t have any prior
knowledge of programming or Computer Vision or theory of eye tracking
system, they learn the basic knowledge of drone concept, object detection,
programing, and integrating different hardware and software involved, then
playing.

As a final objective, they can able to build simple application that can control
the drones by using movements of hands, eyes or both, during the practice
they should take in consideration the operating condition and safety required
by the manufacturers of drones and eye tracking device.

The concept of Tello Talent drone is based on a series of features, functions
and scripts which are already been developed, embedded in autopilot
memories and are accessible by users via an SDK protocol.
The SDK is used as an easy guide to developing simple and complex
applications; it allows the user to develop several flying mission programs.

There are different experiments were studied for checking which scenario is
better in detecting the hands movement and exploring the keys points in real-
time with low computing power computer. As a result, I find that the Google
artificial intelligent research group offers an open source platform dedicated for
developing this application; the platform is called MediaPipe based on
customizable machine learning solution for live streaming video.

In this project the MediaPipe and the eye tracking module are the fundamental
tools for developing and realizing the application.

CONTENTS

INTRODUCTION .. 1
A- Motivation and goals .. 1
B- Structures .. 2

CHAPTER 1. TOOLS HARDWARE AND SOFTWARE 3
1.1 Hardware involved in this project. ... 3
 1.1.1 Drone……………………………………………….. 3
 1.1.2 Eye tracking device…………………………………………………… 4
 1.1.3 Computing machine……………………………………. ... 4
1.2 Software tools .. 5
 1.2.1 Programing code for hand recognition gesture………….. ... 5
 1.2.2 Cross platform for hand movement detection………. .. 5
 1.2.3 DjitelloPy and SDK……………………………………… ... 6
 1.2.4 Tobii Dynavox PCEye 5 software driver……………… ... 6

CHAPTER 2. OBJECTIVES AND WORK PLAN ... 8
2.1 Project goals .. 8
2.2 Time plan for 33 weeks ... 8
2.3 Methodologies applied during the preparation .. 10
2.4 Relation with the supervisor .. 10

CHAPTER 3. EYE TRACKING SYSTEM .. 11
3.1 Introduction to eye tracking system ... 11
3.2 Description of eye tracking system ... 12
3.3 Types of eye-tracking devices ... 12
 3.3.1 Remote eye tracking devices ... 12
 3.3.2 Mobile or head-mounted devices…………………….. .. 12
 3.3.3 Head-stabilized…………………………………………., ... 13
 3.3.4 Integrated or Embedded eye tracking device .. 13
3.4 Operating method for eye tracking system ... 14
 3.4.1 How the eye tracking system work…………………. ... 14
 3.4.2 Basic hardware used in tracking system……………. .. 15
 3.4.3 Model of calibrating the tracking system……… .. 15

CHAPTER 4. HAND DETACTION AND GESTURE RECOGNITION 17
4.1 Hand gesture recognition definition .. 17
4.2 Mediapipe Overview ... 17
4.3 Mediapipe Hands Description and system components ... 18
 4.3.1 Palm Detection Model ... 19
 4.3.2 Hand Landmark Model………………………………… ... 19
4.4 Hand gesture recognizer ... 21
4.5 Method used for developing a user guide of hand gestures 22

CHAPTER 5. TELLO TALENT DRONE .. 24
5.1 Introduction and description of Tello Talent drone ... 24
5.2 Components and technical specifications of the Tello talent. 24
 5.2.1 Description of components of the Tello Talent drone .. 24
 5.2.2 Technical specifications of the Tello Talent drone .. 25
 5.2.3 Expansion kit……………………………………….. .. 26
5.3 Detail in flying and operating ... 28
5.4 Vision Positioning System ... 29
5.5 Basic tools for operating the Tello talent drone .. 29
5.6 SDK .. 29

5.7 Mobile Application on Phone and Tablet .. 30
5.8 Introduction to Tello Python programing .. 30
 5.8.1 Simple script for the basic drone maneuvering .. 31
 5.8.2 Simple script for reading the battery level…………………. .. 32
 5.8.3 Simple script for recording video…………………… ... 32

CHAPTER 6. EYE TRACKING TOOLS DYNAVOX PCEYE 34
6.1 Overview about the Dynavox ... 34
6.2 Description ... 34
6.3 Technical specifications of the Dynavox PCEye ... 35
 6.3.1 Dimension and characteristic of Dynavox PCEye .. 35
 6.3.2 Gaze specifications………………………………. ... 35
6.4 The operating system required .. 36
6.5 User positioning required... 36
6.6 Calibration requirement .. 37

CHAPTER 7: INTEGRATION OF TELLO TALENT AND DYNAVOX EYE 5 .. 39
7.1 Introduction ... 39
7.2 The hardware and software setting used in this solution ... 39
7.3 Setting and calibrating Dynavox PCEy5 .. 40
7.4 Developing the programming code .. 41
7.5 Initial set-up and recommendation ... 43
7.6 Running, Operating and controlling Tello talent by eyes .. 43
7.7 Survey and results for this experiment.. 45
7.8 Voluntaries description ... 45

CHAPTER 8. INTEGRATION OF HAND GESTURE TO CONTROL TELLO
TALENT ... 46
8.1 System architecture .. 46
8.2 Prerequisite for this part of the project .. 47
8.3 Software installation steps .. 47
8.4 Proposed system architecture for this application .. 48
8.5 Preparing the code for hand detection and fingers gesture recognition 48
8.6 implementing the main application for drone Control with Hand Gestures 55
8.7 Run and Play ... 58
8.8. Results and analysis .. 60

CHAPTER 9. COMBINING EYE TRACKING SYSTEM AND HAND GESTURE
TO CONTROL TELLO TALENT .. 61
9.1 System architecture ... 61
9.2 Implementation .. 62
9.3 Results and analysis .. 65

CONCLUSION ... 66

ACRONYMS .. 67

REFERENCES..68

ANNEXES..69

Introduction 1

INTRODUCTION

A- Motivation and goals

Scientists today are searching for a new way to make the human interactions
with digital content feel more natural and fluid, by exploring the movement of
eyes and hands that enable users to move more easily through the digital world.

Hand and eye tracking technics are an attractive topic for many developer and
manufacturer and are increasingly being used for educational and instrumental
purpose by several universities and companies.
The main motivation for exploring hand and eye tracking can be summarized in
the following points:

- Hand tracking can be integrated into a control function that allows the

user can send commands by moving their hands in a specific space

instead of touching and maneuvering.

- Hand tracking offers the ability to react faster by detecting the position,

orientation, and velocity of the hand.

- The speed of collecting data by eyes and hands movements can be an

effective solution for replacing the habitual system control based on

maneuvering by fingers. An object can be looked or pointed faster than it

can be reached by hand or other tools so this scenario increases the

velocity of the user input.

- The eyes are naturally pointed to look at the objects of interest, no

require any specific training for the eyes orientation.

- The data collected are able to be streamed and create real-time

interactions with virtual real for different filed of use.

The use of gaze data can be an effective solution to replace the control by

hands in some situations where the use of hands is prohibited and also for the

people who are not able to use their hands.

In addition to the eye and hand tracking system, the project also focuses on the
Drone which is a topic science for developers and used for educational and
experimental purpose.

In this project, we will only discuss the positive and useful aspects of drone
applications, in contrast to non-humanitarian operations such as military
operations including intelligence gathering, target identification, precision
strikes, force protection, surveillance and reconnaissance, combat operations,
anti-drone operations.

B- Structures

This document is organized in ten chapters to help for better understanding the

different steps done during the project preparation.

 Chapter 2: discus the Hardware and Software tools involved in the project,

Tello Talent drone and Tobii Dynavox PCEy5 eye tracking device are available

in the market, and both can be customized and programmed according to the

application requirements.

Chapter 3: explains the rollout of the project and giving detailed work plan with

tasks, goals and deadlines.

Chapter 4: is focused on explaining the method of the eye tracking system and

providing further details on calibration procedure.

Chapter 5: describing the proposed system for hand detection, gesture and

recognition, the processing method used by MediaPipe for hand detection.

Chapter 6: is focused on the in-depth explanation of Tello Talent Drone as it is

the heart of the project.

Chapter 7: is discussing in details the Tobii Dynavox Eye 5 device.

Chapter 8, 9 and 10: are focused on the developing the main application,

integration and simulation of drone control by eye tracking, hand tracking or a

combination of both, the details of these chapters are based on the knowledge

gained from the previous chapters.

A final conclusion and future work are described in chapter conclusion.

Finally, in appendix there are the additional contributions of this work, such as

references, publications, research papers and software.

CHAPTER 1.TOOLS HARDWARE AND SOFTWARE 3

CHAPTER 1.TOOLS HARDWARE AND SOFTWARE

This chapter focuses on the hardware and software used for developing an
application that control drones only by eyes and or hands movement.
It states the essential tools and platform used to build the basic platform and
bringing new features such as Pycharm, mediaPipe, Python, Tkinter and etc.

1.1 Hardware involved in this project.

The hardware used for in this project are drones, eye tracking device and
computing machine (Laptop) as described in this table.

Table 1.1 Hardware used in the project

Hardware Device type Manufacturer Specifications / Model

Drone Tello talent

 DJI RoboMaster TT tello
talent (GL)

Eye tracking Dynavox

Tobii AB PCEYE5 Gn, Driver
Gaze-Point

Processing
unit

Laptop

Hewlett Packard HP Laptop with Intel i7
2.80 GHz CPU, 8GB
RAM, 512 GB SSD,
Windows 10. 64 bit
HD full screen

1.1.1 Drone

There are various drones available in the market and many of them are
dedicated for educational and experimental purposes, these drones have been
studied during the preparation of this project and understanding how the people
and organizations used them.

Several drones have similar characteristics and specifications which can be
suitable for this project but in the end the Tello talent drone have been
selected for this task as it is being used for experimental and educational
purposes by several companies, organizations and universities and also
recommended by many developers in the forum TelloPilot.

This Tello Talent drone has an easy, simple, and reliable platform that can be
integrated with all operating system; it can be used by beginners to start
learning and also by expert for developing complexes applications.

The drone used in this project is provided by the Universitat Politecnica de
Catalunya campus “Castelldefels School of Telecommunications and
Aerospace Engineering (EETAC)”
More details about the Tello Talent drone are available in chapter 6.

 4

1.1.2 Eye tracking device

At the beginning of this project, we began exploring the possibility of using a
regular camera to capture gaze data based on eye movements, similar to a
hand tracking system, This scenario has not been tacked due to the
interoperability gap between different dependencies, which requires
downgrading and upgrading some features like Dlib which is mostly used for
face recognition purposes, using camera for detecting gaze is still under
development and need improving more the accuracy and precision.

There are a few companies in the market that manufacture eye tracking
devices. During the background and study phase, the devices produced by
GazePoint and Tobii have been examined; both are intended for experimental
and educational purposes, are suitable for this project.

Tobii offers various eye tracking devices such as Pro Fusion, Pro Spectrum, Pro
Spark, Pro Nano and Dynavox, each device has a specific features and tutorial
that make them ideal for researchers and easy for users who want to measure
gaze data. These devices are still considered new technology and their price is
not compatible with the budget.

In the end, the Dynavox PCEye5 device (see figure 2.2) is used because it is
readily available in the ETTAC.

Figure 1.2 Dynavox PCEye 5

For more details about the Dynavox PCEye5 device, see Chapter 7.

1.1.3 Computing machine

The basic computing hardware required is:

- Operating System 64-bit Windows 10
- Processor 2.0 GH or faster
- Memory 4.0 GB RAM
- Availability of 450 MB free in Hard Disk

In this project the HP Laptop with Intel i7 2.80 GHz CPU, and operating system
Windows 10- 64 bit are used.

 5

1.2 Software tools

The Tello Talent drone supports multiple computer programming software. After
exploring different combinations of operating system, platform and coding
languages to select the simple and available configuration on the open sources,
In the end the following software configuration was chosen for this project
based on their characteristics easy to use, open source and compatible with
Tello Talent software.

- Windows 10 as an operating system,
- Pycharm as a platform
- Python as coding language

1.2.1 Programing code for hand recognition gesture

In this project the Python programing platform have been used for different
reasons as:

- It is simple and easy for learning and developing the complex data
structure

- It is used for educational and general programing purpose
- It is an interpreted programming language
- It is a multipurpose coding language and supports object oriented

programming approach and procedural coding styles for creating and
developing different applications

- It is an ideal coding language for fast developing applications
- It is an open-source and utilized in several sectors and disciplines
- And others …

In addition to the above advantages, Python provides more specifications which
help for developing and implementing modules in our application such us:

- It provides a large libraries for various fields such as machine learning
MediPipe and image processing OpenCV

- It is equipped with several Graphical User Interface libraries, such as
Tkinter GUI library, that is used for developing different application

- It is a cross-platform language; the same code can run on different
platform such as Windows, Linux, UNIX, Macintosh, etc.

In the project, The Tkinter Graphical User Interface library is used for creating
graphical user interface (GUI) such as button, frames and windows on the
control screen which are used for eye movement interaction with control
commands.

1.2.2 Cross platform for hand movement detection

There are various 2D and 3D open source models or frameworks for eye
detection such as CPN (Cascaded Pyramid Network), Deep CNN, Random

 6

Forest, ANN. Each model has some advantages and disadvantages as well as
streamed data output options that can be used in different applications.

For this project, while researching on the Internet, forums and research papers,
many developers recommend exploring the lightweight 2D and 3D real-time
hand gesture estimation framework developed by Google and used for
educational purposes.
This framework is an open source and is updated regularly. It belongs to the
field of computer vision for augmented and virtual reality technology.

This Google framework is called MediaPipe. It supports cross-platform
compatibility (i.e. Android, iOS, Web, Edge devices). MediaPipe methodology
provides better detection results compared to the other traditional method.

The output result obtained by using MediPipe for hand detection model and the
recognition method is match the specification of this project in Computer Vision
Image Processing , then the MediPipe cross platform have been used.
Moreover, MediaPipe also provides several frameworks and machine learning
models like Face Detection, Object Detection, Auto Flip, Automatic video
cropping pipeline, Pose Detection and more. It is not used only for detecting it
also able to track the behavior of gestures.
MediaPipe provides an interface API (Application Programming Interface)
compatible to Python coding platform, it contains lightweight palm detector
model and hand landmark detector model that are tailored to work in real-time,
high performance and less processing.
In Chapter 5, there are more details about Mediapipe

1.2.3 DjitelloPy and SDK

Since the Tello Talent drone was chosen for this project, the software of this
drone includes a Python interface called DjiTelloPy, which contains a function
library using the Tello SDK protocol to perform the following tasks:

 Implementing Tello commands in python program

 Recording and retrieving a video stream and pictures

 Receive and parse state packets

 Control a swarm of drones

DJiTelloPy interface support only Python language released 3.6 or higher.

The version of the SDK implemented in the Tello Talent drone is SDK3 and
contains several packages and functions as well a list of predefined commands
that make it easier to explore the data and methods to control the drone.

1.2.4 Tobii Dynavox PCEye 5 software driver

The Tobii Dynavox PCEye 5 is using several drivers such as Magic Eye FX,
Sono Flex, Windows control, Gaze-Point and etc. Each driver is used for
specific application.

 7

In this project, the driver called Gaze-Point has been used because it allows the
eye control of the mouse cursor to make single click, comparing to the others
driver, are offering multi-choice for making single click then need to scroll more
option for selecting the desired one then to increase the probability to reduce
the accuracy.

The Gaze-Point driver allows the user to perform the parameters setting and
calibration.

CHAPTER 1.TOOLS HARDWARE AND SOFTWARE 8

CHAPTER 2.OBJECTIVES AND WORK PLAN

This chapter is stating the time plan and methodology followed to achieve the
project objective, it discusses the steps and chronology used to create a
concept for drone control and monitoring through an application without using
the usual human-computer interface such as keyboard or mouse.

2.1 Project goals

The initial objective of the project is to develop and integrate a basic platform
that allows anyone, even people with no prior knowledge of hand-eye tracking
systems, to perform basic flying missions using only hand interaction or eyes
movement or a combination of both.

Users can operate and maneuver the drones for taking off, Landing, rotating
etc. even creating special mission.

As we progress further in the project, we are thinking to create more
applications for circus, games, etc. However, the main objective of this project is
to control the drone through eyes movement and or hand emotions.

Other reason behind creating this application is that it can be used by the
people who cannot use their hand or bedridden patients who need long-term
care in hospitals for restarting to move their body.

The main objective of the project is to design and create new functionalities that
control the drones without basing on console or Keyboard and mouse.

The objectives of the applications:
- Help patient who cannot use hand for operating drones
- Make a player game where you can pilot the drone through the eyes and hand

The work consists of designing a hardware architecture which includes drone,
eye tracking device, controlling screen system, camera and computer.
In addition, software architecture is designed that allows communication
between different modules and processes the data received from the eye and
hand movement to the commands which are sent to drone.

2.2 Time plan for 33 weeks

At the beginning of the project, the work was focused on exploring eye tracking
system for an eventual use for controlling and operating drones.

Week eleven starting the project
After three weeks, getting the first eye tracking device manufactured by Tobii
AB model Tobii Eye Tracker 5, this device cannot help for the project it is
dedicated for creating a fast interactive atmosphere for gamming by eyes,
Week sixteen, getting the Tobii Dynavox PCEye5 device and the Tello Talent
drone which are used as main component of the project.

 9

Week 24, starting the first simulation by eye tracking device
Week 25, adding hand tracking for operating the drone to the object
Week 26, starting implementation and integration
Week 35, the first version of the application was developed
Week 37, starting writing the project

Some timeslot was left, due to some interoperability and eye tracking module
calibration issues and also we have to improve some functionality and to add
new alternative scenario.
The month of June and August was left free
The project planned to be delivered in October
In the next diagram (Figure 3.1) there is a time plane which summarizing the
tasks, targets and also the estimated deadline.

This figure provides a board table of the works done for realizing the timeline
and associated task, offering an idea about how this project was managed and
accomplished.

Table N° 2.1 work plan

Task N° Research phase Objectives Deadline
1 Background

research
-Studying the theory of Eye and
hand tracking system
-Researching the technology
available for the eye tracking and
Drones
- Studying some case of applications
realized for controlling drone in
hosting platform like GitHub and
other available information on open
sources
- Improving my knowledge in Tkinter
and Python

15 April

2 Technical Details
of the hardware
and software
involved for
designing the
project

-Operating and maneuvering Tello
talent (DJ xxxx) and Dynavox eye
tracking Eye5 (Tobii AB)
- Mediapipe
- SDK
- Visual basic
- Pycharm and etc.

15 May

3 Implementing and
coding

-Creating the first basic platform for
controlling drone by eye
-Adding in the same application the
possibility to use hand movement

15 June

4 Data analysis and
result

-Improving and adding new
functionalities
Passing by several version
-Adopting the last version
-Final demonstration.

30 June

5 Writing Text , diagram, photos, snaps, etc. 30 September

6 Revision and
reviewing

 21 ctober

 10

2.3 Methodologies applied during the preparation

As illustrated on the time plan paragraph, practically the project is divided into
six steps as mentioned in figure 3.1
The first two months was dedicated to understand deeply the eye tracking
system, the drone engineering, etc.
Since the goal was to know firstly the possibility to design a software and
hardware architecture for drone control and monitor through an application that
developed by Python, Java, C++ or others involving others cross platform like
Tkinter , Pycharm , etc..; and based on the information collected, I decide to go
the next step.

Step 2, the necessaries hardware were selected like Dynavox Eye5 eye
tracking device, Tello Talent drone, and Standard laptop.
In this step also, the choice to use the Mediapipe for processing the video
generated by the hand movement was decided.

Step 3, focused for preparing the first design for the basic platform, using
Python, Tkinter and Tobii SW for Dynavox and running a demo without
including the talent drone.
 Adding the first design the functionality that using hand movement to be
combined with eye for control and monitor the drones.

Step 4, Starting to run the first platform in real demo, some problems appear
during to flying and collecting videos, updating the code for Improving all the
functions and adding new functionalities like monitoring the status of the drone;
In this step many scenarios was tested before adopting the last version of the
code.

Step 5, starting to writing the thesis based on what documented.
Step 6, double check and verification, adapting new figures to pages size etc.

2.4 Relation with the supervisor

The relationship with the supervisor of this project, Miguel Valero, has been the
fundamental for the progress of the project; the work was done in full
cooperation.
The collaboration was characterized by constructive interactions by e- email

and also by regular meeting.

CHAPTER 1.TOOLS HARDWARE AND SOFTWARE__11

CHAPTER 3.EYE TRACKING SYSTEM

This chapter describes the eye tracking system, including different categories of
devices available on the market; we will take an in-depth look at the key
component of the eye tracking system and the calibration procedures required.

3.1 Introduction to eye tracking system

Eye tracking is a process of detecting and measuring the movement and
position of the eyes. It can be viewed as a human machine interface.

The retina has naturally an area of dense nerves and high visual acuity that
called the fovea. The lens of the eye focuses light on the fovea, and a person
moves their eyes to direct the lens and fovea where they want to look.

Historically, Eye tracking methodology has more than one hundred years; it was
originally used for basic research into vision and neurophysiology.

The figure 3.1 shows the geometric position of lens and retina relatively to the
eye direction.

 Figure 3.1 Retina and lens

The field of research and manufacturing has experienced much progress in the
last twenty years, increasing the versatility and flexibility of the computer vision
technology, and therefore opened the field to new applications beyond eye
tracking technology; alternatively, eye movements can provide an alternate
method for interaction with different environment and used as a computer
interface, or introduced in virtual reality technology.

Recent advances in eye tracking technology have expanded the applications
field of using eye movement to include many different areas, as a tool for
research and as a source of real-time data for interaction.

https://www.bitbrain.com/blog/brain-computer-interface-using-eeg-signals
https://www.bitbrain.com/blog/brain-computer-interface-using-eeg-signals

 12

3.2 Description of eye tracking system

The eye tracking is based on the data collection that focuses on a user’s gaze.
 It gives the possibility to determine how the gaze is moving based on eye
patterns which are associated with the point at which the eye is looking.
The processing consists tracking data of pupil dilation and gaze direction. The
information collected is:

- Movement (how the user gaze moves around a specific space which can

help for determining the orientation)

- Duration (how long the user looks at the same object)

- Fixations (points where the user gaze paused or lingered, which can help

to track the overall gaze pattern and focus.

3.3 Types of eye-tracking devices

There are four categories of eye tracking systems devices available on the
market; each type was developed for a specific application but the methodology
used for data collection is the same.

3.3.1 Remote eye tracking devices

The remote series (see figure 3.2) of eye tracking devices does not require

direct contact with users; it must be placed closed to the control screen; this

series is the typical tools used today for educational and experimental purpose.

It is equipped with a camera and a light or laser source,

Generally, it is configured via a driver that is properly developed by the

manufacturer.

Figure 3.2 Model of Remote eye tracking device

3.3.2 Mobile or head-mounted devices

This category of eye tracking usually has the form glasses (see figure 3.3).
This system requires placing a mirror or camera in the visual path of the eyes
 and an additional camera that records the field of view and scene, It is very
 comfortable for the user compared to the mobile eye tracking series, This type
is used mostly for video gaming; the user can play as longer as they want.

 13

Figure 3.3 Model of Mobile eye tracking device

3.3.3 Head-stabilized,

This type of head stabilized tools(see figure 3.4) is designed to immobilize the
head of the user and required a high level of stability; this series is mostly
applicable in neurophysiology and vision experimentations where the accuracy
and precision are highly required than the user comfort.

Figure 3.4 Model of head stabilized eye tracking device

3.3.4 Integrated or Embedded eye tracking device

This type of integrated device (see figure 4.5) includes Virtual Reality and

Augmented Reality features and can be used as an intuitive control method to

navigate via eyes movements when the user is moving and could not use

mouse or keyboard.

 14

 Figure 3.5 Model of Integrated eye tracking device

Each category for eye tracking devices has its pros, cons, and data output
which can be used in various applications. For this project the remote category
device have been used.

3.4 Operating method for eye tracking system

Typically the remote eye tracking device is a sensor that can detect eyes and
track their movement in real-time. In practice, an eye tracking system collects
information about eye movement such as pupil position and the gaze direction
for both eyes, and then converts this information to a useful data stream.
An eye tracking system consists of one or more cameras, some light sources
and computing capabilities that include a control screen.

3.4.1 How the eye tracking system work

In theory, an eye tracking system works as the following steps:

1. The user has to look to the target point on the control screen for a few

seconds or the time required by the processing mechanism for taking the

information.

2. An infrared light source is directed toward the center of the eyes (pupil)

causing detectable reflections in both the pupil and the cornea.

3. These reflections represent the vector between the cornea and the pupil

and are picked up by the camera.

4. Computing algorithms translate the camera feed into a scientific useful

data streaming with the help of advanced image processing like machine

learning and also the algorithm input is referenced to the calibrating

points, user position, camera and control screen.

The data streamed at the output of the system can be used as an input modality
in a wide range of application such us video gaming, virtual reality, medicine,
health carry for the people who can use their hand or lost the ability to move the
mouse with hands, etc.

 15

Additionally, gaze tracking is an excellence and fast pointer than using a
mouse; it can be involved as extra complimentary manual inputs for human
machine interaction.

3.4.2 Basic hardware used in tracking system

Next figure 3.4 gives an overview about the eye tracking system in a simple
way.

Figure 3.4 Bloc diagram of Eye tracking system

Practically, there are three devices involved in the eye tracking system.

- A special eye tacking camera includes lights sources mounted below or

over the control screen and this camera is pointed to user’s eyes.

- A control screen in which the user operates the system by looking at cells

that are displayed on the screen for activating or pressing the cell, the

user looks at the cell for a specific time, Typically, the gaze duration

required to visually activate a key is about half second, can be adjusted

by the user. Arrays of menu keys that are visible on the screen allow the

user to navigate independently without using hands and mouse.

- A sophisticated Computer with images processing software analyzes

continually the images piqued by the camera and determines which cell,

the user is looking at on the control screen.

3.4.3 Model of calibrating the tracking system

The eye tracking systems do require a calibration, which is a method of
algorithmically associating the physical position of the eye with the point in the

 16

screen that the user is looking at. The calibration procedure as shown in figure
3.5 is used to compensate the variations in eye size, gaze position, control
screen size and the distance between user and control screen.

The calibration procedure is required to set up the system and the user position.
The user looks at a small calibration circles that have a fixed position and
known on the control screen, generally the number of circles is 5, 9 or 13 and
distributed on the border and center of the screen.

Figure 3.5 General processing flow for eye tracking

Practically, the calibration software tools is delivered with the eye tracking
device and consist of pointing the eyes to the calibration circles one by one for
very short time accordingly to the pop up message generated around the
screen.

The calibrations require some degree of cooperation and ability from the user,
There is a measuring the accuracy of the calculated gaze to validate the
success of the calibration, The validation results expressed in degrees of visual
angle for each measuring points.
The accuracy tolerance is depending on the application, an error of degrees
between 0.25 and 0.5 degrees is considered acceptable if more than this range,
the calibration considered failed and requires another attempt and improves,

The calibration procedures must be done for each user, if the same user moves
away from the screen and returns in this case no need to recalibrate.

To achieve a good precision and accuracy in eye tracking system, the user
needs to take the lack of alignment between the optical and visual axes into
consideration.

CHAPTER 4. HAND DETACTION AND GESTURE RECOGNITION 17

CHAPTER 4. HAND DETACTION AND GESTURE
RECOGNITION

This chapter discus about hand detection and gesture recognition, and it is
focused on the MediaPipe frameworks method and programming tools for the
hand gesture to create command for different controlling use, this method is
used for educational background.

4.1 Hand gesture recognition definition

Hand gesture recognition is a part of research areas in the field of human-
computer interface, it is used to develop a system that can read and interpret
hand movement as commands to control devices without touching any buttons
or screens.

A gesture recognition system works with a camera or sensor pointed at a
specific three-dimensional space, capturing frame-by-frame images of hand
positions and motions in this space. Those images are analyzed in real time by
computer vision and machine learning technologies, which allows translating
the hand movements and finger motions into commands, based on a
predetermined library of signs.

The commands generated after processing become an input that similar to
pressing a button, mouse or touching a screen.

Gesture recognition can be used in a variety of applications such as video
game, virtual and augmented reality, healthcare, automotive, controlling a
presentation, commanding devices.

Next paragraphs discussed the MediaPipe and the gesture recognition.

 4.2 Mediapipe Overview

MediaPipe [3] is an open source cross-platform framework developed by
Google to build a pipeline for processing perceptual data from image, video and
audio.

The solutions used in MediaPipe include multiple frameworks such as hand
landmark tracking, posture estimation, face recognition and etc. In this project
we focus only to the MediaPipe Hand Landmark, which allows the user to detect
the landmarks of the hands in real time.

The MediaPipe operates on the image frame received from simple picture,
video or live streaming as an input, the machine learning perform the
processing then the output is the localization of the hand landmarks in real time.

https://www.aptiv.com/en/insights/article/what-is-automotive-i-o

 18

In simple terms, the supported data for input and data output capabilities are as
follows:

The input needed for detecting the
landmarks can be:

- Simple image
- Recorded video frame
- Life streaming video

 The output for the detected hand are:
- Handedness (right or left)
- Landmarks in image coordinates
- Landmarks in world coordinates

4.3 Mediapipe Hands Description and system components

MediaPipe Hands is a tool that has a high-fidelity hand and finger tracking

solution with less processing, and it can work in a normal Laptop with standard
configuration.

 It employs machine learning to infer twenty one 3D landmarks of a hand from a
single frame picture received from a camera or extracted from a continuous
stream.

MediaPipe Hands use a machine learning pipeline solution which consists of
multiple models working together such as palm detection model and hand
landmark model (see figure 4.1)

- The palm detection model operates on the full image received and
returns an oriented hand bounding box.

- The hand landmark model operates on the cropped image region defined
by the palm detector for locating the palm and defines the region of
interest (ROI) then returns high-fidelity 3D hand key points, subsequently
predicts all twenty one hand Knut from this ROI.

Figure 4.1. Palm and Landmark perception in Pipeline technology

 19

4.3.1 Palm Detection Model

The palm detection model is designed to detect continually the palm locations
on the image frame captured by the camera or extracted from video streaming
and have to compute across a variety of hand sizes (see figure 4.2) and be
able to detect occlude and self-occluded by performing a large scale span up to
twenty times of the image frame.

Figure 4.2. Palm detector model architecture

The detection process works by estimating the bounding boxes of rigid objects
which supposed the palm then use only the first square bounding boxes that
can be modeled and ignoring other aspect ratios and therefore allows reducing
the number of anchors that resulting from the high scale variance by a factor
varying between three and five depending to the complexity of the image and
allows the system to dedicate most of its capacity towards coordinate prediction
accuracy.

For improving the detection precision an encoder/decoder extractor are used for
bigger scene context awareness including very small objects.

This detecting method used is able to offer an average precision of 95.7% in
palm detection.

4.3.2 Hand Landmark Model

The hand landmark model uses the bounding box produced by the palm
detector as an input and performs precise landmark localization of the key
points or finger knuckles inside detected hand regions via regression.

The hand landmark model learns a consistent internal hand pose representation
basing on prediction method in Mediapipe tools; the model has three outputs
(see figure 4.3).

 20

- Hand presence
- 21Keys points 3D landmarks
- Handedness (Right or Left)

A hand flag indicating the probability of hand presence in the input image;
Each output is trained by their corresponding datasets in Mediapipe

Figure 4.3 Hand landmark model architecture

At the end, this two processing steps Palm detector model and Hand Landmark
detector model allow achieving precise twenty one 3D, key points coordinate as
shown in figure 4.4 and figure 4.5.

Figure 4.4. Landmark, numbering. Figure 4.5 Hand landmarks on image.

A convention numbering and naming is defined for each finger knuckle and can
be used for different applications, in the bellow table 4.1.the key points are
numbered from 00 to 20.

 21

Table 4.1. Landmark, conventional numbering and naming

N° Description N° Description

00 Wrist 11 Middle finger distal interphalangeal joint

01 Thumb carpometacarpal joint 12 Middle fingertip

02 Thumb metacarpophalangeal joint 13 Ring finger metacarpophalangeal joint

03 Thumb interphalangeal joint 14 Ring finger proximal interphalangeal joint

04 Thumb tip 15 Ring finger distal interphalangeal joint

05 Index finger metacarpophalangeal joint 16 Ring fingertip

06 Index finger proximal interphalangeal joint 17 Little finger metacarpophalangeal joint

07 Index finger distal interphalangeal joint 18 Little finger proximal interphalangeal joint

08 Index fingertip 19 Little finger distal interphalangeal joint

09 Middle finger metacarpophalangeal joint 20 Little fingertip

10 Middle finger proximal interphalangeal joint

Each key point detected has three coordinates x, y, and z in the frame,
respectively x (width), y (height) and z denotes the landmark depth, more the
hand is closed to the camera , the value of Z becomes smaller,
The value of X and Y is normalized to [0.0, 1.0]
Additionally, each landmark has world relative coordinate.

4.4. Hand gesture recognizer

Gesture recognition provides real-time data to a computer,
There are different approaches that can be used to acquire information of hand
gestures recognition starting from simple use till a complex application.

This project focuses on simple interaction interface using an algorithm that
compute gestures based on a predetermined library of signs, this library is built
by a group of fingers states such as bent finger, straight finger, finger direction
angle, etc., each element of this group can be labeled, and generates a list of
commands that based initially on a set of gestures, generally each specific
gesture is corresponding to specific task based on its own purpose.

In Figure 4.6 show an example of five hand gesture codes, those allow to build
a simple interface for remote control application.

This method works on manipulating the fingers in objective to establish the right
form as indicated in the gesture code list and the programming code generate
the control command accordingly.

It is noticeable that each gesture has a specific configuration of fingers states
such as straight, bent and crossed that can be used for the recognition through
a certain type logic and condition.

 22

Figure 4.6 Example of hand gesture code

4.5 Method used for developing a user guide of hand gestures

This paragraph discusses the steps that the system takes by identifying hand
gestures and converting the gesture into a specific command that allows the
user to develop an user guide application through MediaPipe framework and a
programming language.
This guide that performs hand gesture recognition is based on the captured
hand pose and the twenty one key points as detailed in the previous paragraph.

Figure 4.5 Workflow of hand gesture recognition system.

 23

This figure 4.5 [15] show the implementation used for creating a user guide
based on the hand motion and the workflow is summarized in the following tree
steps:

- The image captured by the camera in real time is the input for the
process, Mediapipe (Palm and landmark detector) will read the image
and processing at the output the twenty one 3D keys points as explained
above

- Those twenty one 3D key points are used as input in the hand gesture
recognition module and will be computed and initialized as a tool for
reading in real time

- The user guide is developed by an algorithm or programing code such as
Python, C++, and etc. which is identifying the poses of the hand basing
on the 21 key points coordinates X and Y (Z not used)

As the twenty-one key points and their corresponding coordinates are
normalized, the X and Y values that are kept and tracked in real time are used
as an input.
The algorithm or coding program is used to determine the finger of the hand
condition relatively to the landmark coordinate, It compares the coordinate of
the twenty one key points based on the position of the X (horizontal) and Y
(vertical) and reads the pre-programed condition for each case, if the condition
has been fulfilled then the result is true.

CHAPTER 5. TELLO TALENT DRONE 24

CHAPTER 5. TELLO TALENT DRONE

This chapter discussed the Tello talent drone including drone elements,

technical specification and operating mode and in the last paragraph 6.8 there

some basic example for programming the drone mission by Python.

5.1 Introduction and description of Tello Talent drone

The Tello,Tello EDU and Tello Talent drones [8] [9] are a perfect

programmable drones for educational valuable learning materials and also for

hobby use, It sit in the education division of DJI product, They are

manufactured by Shenzhen Ryze Technology and are equipped with Intel

processors and DJI flight control technology.

The drones have the same size and are distinguishable by the top color

respectively white, black and red.

Historically, Tello is the first drone developed, then Tello EDU and Tello Talent

is the latest version with few more features and capabilities which allow the

users to configure in a simple way than the previous versions.

The Tello Talent is delivered with an extension kit that includes an Open source
controller, a Dot-matrix led screen, a Distance sensing module and Extension
board.

Figure 5.1 Tello, Tello EDU and Tello Talent drones

5.2 Components and technical specifications of the Tello talent.

The main components and the principal characteristic of the Talent drone are

summarized in the following items.

5.2.1 Description of components of the Tello Talent drone

The Tello talent drone is a small quad-copter which includes an expansion kit

and can hover in place and is suitable for flying indoors,

 25

Main components Expansion kit (11 & 12)

Figure 5.2 Diagram of Talent drone

The list of component is:

 1. Propellers 8. Battery
 2. Motors 9. Micro USB port
 3. Drone Status Indicator 10. Propeller protectors
 4. Camera 11. Open-Source Controller
 5. Power Button
 6. Antennas
 7. Vision Positioning System

 12. Dot-Matrix Display &
 Distance Sensing Module

5.2.2 Technical specifications of the Tello Talent drone

5.2.2.1 Physical characteristic

There dimensions and characteristics make it very manageable and easy to

transport, see the specific in table 5.1.

Table 5.1 Physical characteristic

Descriptions Values or type

Weight(Propeller Guards Included) 87 g

Dimensions 98×92.5×41 mm

Propeller 3 inches
Port USB battery charging port

Operating temperature range from 0º to 40º C

Operating frequency range from 2.4 to 2.4835 GHz

Transmitter (EIRP)

<20 dBm (FCC)
<19 dBm (CE)
<19 dBm (SRRC)

5.2.2.2 Flight battery specification

The battery can be charged directly with an USB cable, or with a charging hub.

The battery is totally protected by the following features and the specifications

are in table 5.2.

 26

1. Overcurrent/Overvoltage Protection: The battery stops charging if an

excessive current/voltage is detected.

2. Over discharge Protection: Discharging stops automatically to prevent

excessive discharge.

3. Short Circuit Protection: The power supply is cut automatically if a short

circuit is detected.

Table 5.2 Battery Technical specification

Descriptions Values or type

Battery LiPo

Energy 4.18 Wh

Net Weight 25±2 g

Charging Temperature Range 41° to 113° F (5° to 45° C)

Capacity 1100 mAh

Voltage 3.8 V

Max Charging Power 10 W

5.2.2.3 Camera specification

The camera is located at the front of the drone and is capable to record HD

videos and images, the specifications are in table 5.3

Table 5.3 Camera Technical specification

Descriptions Values or type

Field of view

82.6°

Max Image Size 2592×1936 / 5MP

Video Recording Modes HD: 1280×720 30p

Video Format MP4

Image format JPG

5.2.3 Expansion kit

The expansion kit includes an open source controller, a dot matrix display,

distance sensor module and an expansion board.

5.2.3.1 Open source controller
The open-source controller contains a Wi-Fi module dual frequency, a Bluetooth
module and an Arduino open-source platform.

 27

Figure 5.3 Open Source Controllers

1. Input and Output Expansion port used to connect the dot-matrix display and
 distance sensoring module.
2. Micro USB cable used to connect to a power source 5V/2A
3. Switch used select between direct Wi-Fi Connection mode or via router
 mode through SDK.
4. Customizable Button used to activate the Bluetooth link.
5. Programmable RGB light used to show the status of Bluetooth connection.
6. Micro USB port used to connect to a computer for offline programming.

Table 5.4 Open source controller specification

Descriptions Values or type

Weight

12.5 g (including the open source controller
and ranging dot-matrix screen)

Dimensions

49.5×32×15.2 mm

Operating mode

Direct Connection mode and Router mode

Wi-Fi frequency band

2.4 GHz and 5.8 GHz

Bluetooth

2.4 GHz

MCU

ESP32-D2WD, dual-core at 160 MHz, 400
MIPS

Open source

Supports SDK development, Arduino,
graphical programming, and MicroPython
programming.

Scalability

14-pin extended interface (for I2C, UART,
SPI, GPIO, PWM, and power supply)

Programmable LED indicator Full-color LED

5.2.3.2 Dot-Matrix Display & Distance Sensing Module

This block integrates two modules an 8x8 dot-matrix display and a distance

sensing, and allows the users to generate different graphics and pattern colors

through programming. The below table summarize the specifications.

 28

Table 5.5 Technical specification Dot-Matrix and Distance sensing module

Descriptions Values or type

Dimensions 35.3×31.5×8.6 mm

Programmable dot-matrix LED
indicator

8×8 red-and-blue indicator

Dot matrix driving function

IIC interface, automatic dot matrix
scanning, 256-level adjustable overall
brightness, and 256-level adjustable
single-LED brightness

Ranging module Infrared distance sensor (ToF)

Maximum distance measured 1.2 m (indoor with white targets)

5.2.3.3 Adapter extension board
The extension board consists of 14-pin extension port that that allows to ability
Integrates external sensors.

. Table 5.6 Characteristic of the extension board

 DIY adaptation
14-pin extended interface to the 2×7-
pin 2.54-mm in-line pad, 2 power
indicator positions, and 2 debugging
indicator positions

5.3 Detail in flying and operating

Practically this drone is designed for indoor use, it can be used also outdoors

application but the surrounding environment factors such as wind speed,

weather, etc. affect the operating performance of the vision positioning system

then limit the outdoor flying.

Table 5.7 flying mode parameters

Descriptions Values or type

Max Speed 17.8 mph (28.8 kph)

Minimum speed 6.7 mph (10.8 kph)

Max Flight Time 13 minutes (0 wind at a consistent 9
mph (15 kph))

Maximum Sensing Distance of TOF 1.2 m (indoors with white wall)

Maximum distance of the flight 100 meters

Maximum flight height 30 meters

 29

5.4 Vision Positioning System

The Tello drone is equipped with a Vision Positioning System which helps the
aircraft maintain its current position and fly indoors or outdoors in windless
conditions.
In addition The Vision Positioning System allows the drone to hover in place
more precisely.
The main components of the Vision Positioning System are a camera and a 3D
infrared module located on the underside of the aircraft.

Figure 5.4 Vision Positioning System

5.5 Basic tools for operating the Tello talent drone

The Tello Talent drone supports several computers programming software,
There are different operating system, platform and coding language for free or
on the market to be used for operating and programing the drone.

Operating system Windows, Mac, Linux, etc.

Platform PyCharm, Anaconda, Visual code etc.

Coding languages Python, Java, C++, Scratch, etc.

In this project, Windows, Pycharm and Python have been used due to easy
availability.

5.6 SDK

The Tello talent drone incorporate last version of SDK 3.0 [6] which is more

widespread than the previous version. This feature facilitates controlling the

drone with predefined commands.

When the communication is established between drone and PC, Mac or Mobile

device via Wi-Fi or Bluetooth, The SDK mode start to secure the logic

connection between the Tello application and the drone by sending command in

plaintext and waiting the device to reply (Ok, Error, Values, etc.)

 30

5.7 Mobile Application on Phone and Tablet

There is an application developed by Shenzhen RYZE for Tello drone series,
which allows controlling the drone manually over Bluetooth or Wi-Fi link.
 This app is used to control the camera and other aircraft functions. It offers the
possibility to viewing and managing photos and videos.

This application displays [10] all the necessary information related to drone and
the flying status such as Battery Level, Wi-Fi Status, Bluetooth Status, Flight
Speed, and Flight Altitude.
The applications allows configuring some parameters like Takeoff/Landing,
Intelligent Flight Modes, Flight speed, VR , Bluetooth , and Wi-Fi settings
In addition, the Tello app can be used for activation and firmware update.

Figure 5.5 Tello application display screen

The app has various predefined intelligent flight modes such as Bounce mode,
8D Flips, Throw & Go, Up & Away, and EZ Shots which allow the used to
perform various flying tasks and different basic missions,

5.8 Introduction to Tello Python programing

In this project, the Tello Python script which has been used is provided by

DJITelloPy and it is available on https://github.com/cocpy/Tello-Python or other

platform.

In the following paragraphs, there are some examples used for creating scripts

to control drone Tello Talent.

https://github.com/cocpy/Tello-Python

 31

5.8.1 Simple script for the basic drone maneuvering

As shown in the python code script, the first steps are importing all the classes
from DJITelloPy package and Tello class and establish the Wi-Fi connection
between the drone and the computer by the command tello.connect,
The second step is initializing the objects and parameters, and then sending the
commands to the drone. In this example of simple flaying, the commands are
takeoff, then move forward, rotate counterclockwise, and landing the code is in
figure 5.6.

 “Importing the class”
from djitellopy import Tello

“Establish the connection drone – Computer”
tello.connect

"Create Tello object"
tello.command = Tello()

"Create the commands"
tello.command.takeoff()
tello.command.move_forward(100)
tello.command.rotate_counterclockwise(90)
tello.command.rotate_clockwise(90)
tello.command tello.land()

 print("Connect to Tello Drone")
 tello.connect()

 battery_level = tello.get_battery()
 print(f"Battery Life Percentage: {battery_level}")

 print("Takeoff!")
 tello.takeoff()

 print("Sleep for 5 seconds")
 time.sleep(5)

 print("landing")
 tello.land()
 print("touchdown.... goodbye")

Figure 5.6 Script for maneuvering drone Tello Talent

The “tello.command”, is only the name of the object of Command function used
in this script, the user can use any other names for initializing the object of the
function. Then associate the name with the commands by their function such as
takeoff, rotate, move and land.

 32

5.8.2 Simple script for reading the battery level

In this script, the reading battery percentage level is added; bellow the battery
level script in figure 6.7.

“Importing the class”
from djitellopy import Tello

“Establish the connection drone – Computer”
tello.connect

"Create Tello object"
tello.command = Tello()

"Create the bettery level object"
 battery_level = tello.get_battery()

“ read the battery percentage level”
print(f"Battery Life Percentage: {battery_level}")

Figure 5.7 Script for reading battery level

5.8.3 Simple script for recording video

In this script, we initialize the Drone cam to capture a picture and record a video
then save them in the drive located on the autopilot.

In this case we have to import the clock, CV2, Thread and Stream class and
initialize the file where the steaming will be recorded. See the figure 5.8.

import time, cv2
from threading import Thread
from djitellopy import Tello

tello = Tello()
tello.connect()

keepRecording = True
tello.streamon()
frame_read = tello.get_frame_read()

def videoRecorder():
create a VideoWrite object, recoring to ./video.avi
height, width, _ = frame_read.frame.shape
video = cv2.VideoWriter('video.avi',
cv2.VideoWriter_fourcc(*'XVID'), 30, (width, height))

while keepRecording:
video.write(frame_read.frame)
time.sleep(1 / 30)

 33

video.release()

we need to run the recorder in a seperate thread,
otherwise blocking options
would prevent frames from getting added to the video
recorder = Thread(target=videoRecorder)
recorder.start()

tello.takeoff()
tello.move_up(100)
tello.rotate_counter_clockwise(360)
tello.land()

keepRecording = False
recorder.join()

Figure 5.8 Script for capturing photos and video

CHAPTER 6. EYE TRACKING TOOLS DYNAVOX PCEYE 34

CHAPTER 6. EYE TRACKING TOOLS DYNAVOX PCEYE

This chapter is focused on Tobii Dynavox eye tracking device, and contains a

description of this product , the operating mode, technical specification and

calibration procedure.

6.1 Overview about the Dynavox

The Dynavox eye tracking device (figure 6.1) is developed and manufactured by
Tobii AB [1] Company, It is designed to replace the standard keyboard and
mouse by the eye tracking, allowing the user to navigate and control the
computer using only eyes movements.

 The Dynavox solutions empower the user to individually create the most
efficient way of computer interaction then allowing controlling all equipment
connected to this computer.

In this project the Tobii Dynavox PCEye 5 have been used due to the
availability but the desired device is Tobii Pro series which incorporate SDK
Python technology and allow there integrations in the Tello applications with
more features than the Dynavox.

Figure 6.1 Dynavox PCEye 5 tracking device

The Dynavox is delivered with all necessary accessories for physical installing
and configuring such as magnetic mounting, USB-C to USB-A adapter and
Tobii Dynavox Gaze point software.

6.2 Description

The Dynavox eye tracking device allows the user to explore all the functions of

the computer with using only the eyes.

It is a clip-on eye tracker that lets the user interact in real time with the windows,
button, etc; which are displayed on the screen, simply look at the screen and
select commands by dwelling, zooming and/or clicking a switch. Alternatively, it
is allow fully the control of the mouse cursor directly with eye movements.

 35

The Dynavox gives a fast, accurate and hands free way of accessing to the
computer menu and bring greater independence for the person who cannot use
their hands.
It is not complicated for operating or installing, it is delivered with some
accessories that allow an easy installation closed to the screen,
For the operating, it is provided with a pack of software plug and play, and
requires calibration before starting to navigate.
It can be used by several people, it is offer the possibility to create a profile
individual for each person and the profile store calibration parameters and
preferred setting for each user.

6.3 Technical specifications of the Dynavox PCEye

The technical specification for DYnavox PCE eye are detailed in next tables

6.3.1 Dimension and characteristic of Dynavox PCEye

There dimensions and characteristics make it very manageable and easy to
transport. The standard specification and dimension are in this table 6.1

Table 6.1 Dimension and characteristic of Dynavox PCEye

Description Values or types

Depth 8.2 mm

Height 15 mm

Width 285 mm

Weight 93 gms

Power Consumption 2.2 W typical average

Maximum Screen Size Recommended up to 27″

Interface USB Type C connector

Distance from user to the Eye
Tracker

50 cm - 95 cm

Processing Unit Tobii EyeChip™ with fully embedded
processing

6.3.2 Gaze specifications

The following table 6.2 containing the gaze specification

Table 6.2 Gaze characteristic for Dynavox PCEye

Description Values or types

Gaze Data Rate 33 Hz

Gaze Sample Rate 132 Hz

Data Streams Gaze point, user position guide, Presence
Primary camera image stream 33 Hz

Detected Gaze
Interaction >30 Hz

98% for 95% of population

 36

Data Flow and Data Rate
Gaze Latency
Gaze Recovery
Low Resolution Stream

25 ms (worst case image to signal latency)
50 ms
280×280

6.4 The operating system required

The Dynavox PCEye software is compatible to all gaze viewer and others like
TD Control, TD Snap, Communicator 5, Magic EyeFX, Snap Scene, Compass,
etc.
In addition is compatible with Microsoft Windows 10 Eye Control and the
applications which using Windows 10 eye tracking APIs. In table 7.3 resume the
minimum required software and hardware configuration needed for operating
the Dynavox PCEye.

Table 6.3 Operating system required by Dynavox PCEye

Description Values or types

Computer and Processor 2.0 gigahertz (GHz) or faster, 6th
generation Intel Core (i5/i7–6xxx) and
later, or equivalent AMD 64 bit
processor

Memory 8 GB

Hard Disk 450 megabyte (MB) available

USB USB-C (USB-A vía adapter)

Operating System Windows 10 (64-bit)
Windows 11 or newer

Eye tracker HID compatible

In this project, Windows 10 64-bit have been used.

6.5 User positioning required

Eye tracking, or gaze interaction, is a technology used to see where a person is

looking at on a computer screen. It can also be used to control a computer with

your eyes instead of using a traditional keyboard and mouse, enabling

individuals with physical and cognitive conditions to live richer and more

independent lives.

The position of the user, screen and Dynavox device is fundamental for that the

system works properly see figure 6.2.

The fixation of The Dynavox PCEye is designed to work optimally when it is

parallel to the user’s eyes at a distance from about 50 — 95 cm.

The optimal distance that user’s position should be from the Dynavox PCEye

differs and depending on the size of the screen. The user should be positioned

at the optimal distance to allow for the best possible Computer Control.

 37

Horizontal view Front view

Figure 6.2 User, Screen and Dynavox positioning

The Dynavox is installed on the middle of lower part of the screen.

The user’s eyes should be at the same level of the control screen center and

the axe between eyes and center must be perpendicular to the screen surface.

6.6 Calibration requirement

For using The Dynavox eye tracking device with maximum accuracy possible, it
requires to precede a calibration profile for each,

The calibration parameters are selectable and modifiable by the user as bellow:

- Calibration type , if it is accurate , simple or customized

- Number of Calibration points are from selectable from 1 , 2,5 or 9

- Stimulus gaze speed when moving from point to another

- Stimulus size

- Track eye used can be both, left or right

 38

Figure 6.3 Calibrating points for Dynavox positioning

In addition, after launching the calibration, a windows pop up , the user have to
look at each points demanded by the system, at the end the results of
calibrating are displayed indicating the calibration status for each point such as
Great, Good or No data, if it is needed to perform again the calibration as
shown in this figure 6.3.

CHAPTER 7 INTEGRATION OF TELLO TALENT AND DYNAVOX EYE 5 39

CHAPTER 7. INTEGRATION OF TELLO TALENT AND
DYNAVOX EYE 5

In this section, we are going to implement and operate the knowledge that we

have gained in the previous chapter’s number 4 and 7, for developing a basic

platform for controlling drones via the eyes,
This platform allows any person to be able to perform simple missions, even
who don’t have any prior knowledge of operating and maneuvering the Tello
talent drone and also this chapter includes a survey for evaluating this work.

7.1 Introduction

For an interaction system, as discussed in the previous chapter, eye gaze
tracking works the same way as human computer interaction (HCI), such as
pointing on an abject with the mouse and selecting by clicking.
In practice, eye gaze is used to move a circle overlay on a computer screen.
The computer screen is divided into several restricted areas of interaction (AOI),
and once the circle is on the target or on the desired button, the user must
continue look at the target for a few seconds and then the Tobii pre-configured
icons appears and confirm selection.

In the figure 7.1 there is an example of repartition of areas of interest (AOI) for
performing the basic drone maneuver, in this case the screen is divided into six
areas.

Figure 7.1 Example of controlling screen repartition

7.2 The hardware and software setting used in this solution

The hardware configuration involved in this solution is:

- Dynavox PCEy 5 device

 40

- Tello Talent drone

- Laptop HP, Intel i7 2.80 GHz CPU running with Windows 10

The Software and packages [4] [5] used are:

1. Pycharm version 2023.2.2
2. Python version 3.8.8
2. OpenCV version 4.5
5. Tkinter version 3.9.17

In addition, to complete the all software installation, the GazePoint driver from
Tobii Dynavox must be supported by Windows and installed correctly.

The diagram in figure 7.2 shows the logic connection between different
hardware.
The drone is connected to Computer via Wi-Fi or Bluetooth both are supported.
The Dynavox PCEye 5 is connected to Computer by USB cable supplied by
Tobii,
The light source generated by Dynavox PCEye 5 is directed to the eyes and the

gaze is tracked by the camera and the control screen,

Figure 7.2 Hardware diagram

7.3 Setting and calibrating Dynavox PCEy5

Dynavox PCEy5 is delivered with a pack of drivers for different uses; in this
project the pack GazePoint is used for detecting de device by Windows and

performing the basic configuration as discussed in chapter 7.

7.3.1 Setting basic parameters for Dynavox PCEy5

There are some step to follow for installing and operating the Dynavox PCEy5
properly,

- Dynavox should be fixed correctly and positioned under the computer

screen.

 41

- Dynavox should be detected by the windows

- Installing the Gaze point software driver delivered by Tobii for Dynavox

PCEy5, can be downloaded from Tobii web site

- Creating a user profile on the Dynavox application for each user

- Setting the parameters for the desired configuration for each user

according to their ability

- Perform the calibration procedure

7.3.2 Calibration the position of the user, Laptop and Dynavox.

The Dynavox needs to be calibrated [1] for each user and the result of
calibration should be successful as described in chapter 7- for achieving the
greatest possible accuracy. Each user has a setup profile and the calibration
data is stored in Tobii application,
Nine calibration points are used in this demo.

7.4 Developing the programming code.

On the code programming side, to develop the interaction program that convert
the eyes movement into a command to control the Tello talent drone, Python an
Tkinter programming language are used in the cross-platform PayCharm
environment.
The program (see figure 7.3) consists of importing a pre-set image (see Figure
8.4) containing a certain number of buttons and each button is labeled with an
action and this action corresponds to the basic order for maneuvering the
drone. The user looks at the desired button to activate the corresponding action.

More the button size is larger more we get the better accuracy, for some
particular user who cannot concentrate their gaze to a smaller object, it is
possible to use a limited number of button with large size and increase the
accuracy.

For preparing this code, the picture ImageDemo is used as a screen
background,
It has two coordinates Y and X representing respectively height (Max is 600)
and width (Max is 800), the coordinate (0.0) is on the top and left of the screen.

This code is organized in three parts:

1. Import necessary packages.

- Tkinter for creating button zone and adjusting the background

picture

- Djitellopy , this package is developed by Tello and used to define

the drone command functions

2. Initializing the areas of interaction (AOI) for command

- Delimiting the perimeter for each command

- Labeling the command

- Associating the command to the definition action

3. Creating the Tello definition action

 42

- This parts used for creating the command and action for

maneuvering drone

import tkinter as tk

from PIL import Image, ImageTk

from djitellopy import Tello

def scroll_start(event):

 print ('scroll ', event.x, event.y)

def scroll_move(event):

 if event.x >= 250 and event.x <= 450 and event.y >= 50 and event.y <= 150:

 print ('takeoff')

 command=action0()

 elif event.x >= 450 and event.x <= 650 and event.y >= 250 and event.y <= 450:

 print ('right')

 command=action1()

 elif event.x >= 50 and event.x <= 250 and event.y >= 250 and event.y <= 350:

 print ('left')

 command=action2()

 elif event.x >= 250 and event.x <= 450 and event.y >= 450 and event.y <= 550:

 print ('land')

 command= action3()

 else:

 print ('nada')

def action0():

 global tello

 tello = Tello()

 tello.connect()

 tello.takeoff()

def action1():

 global tello

 tello.move_right(50)

def action2():

 global tello

 tello.move_left(50)

def action3():

 global tello

 tello.land()

root = tk.Tk()

root.geometry('800x600')

root.title('Canvas Demo')

image = Image.open("ImageDemo.png")

image = image.resize((600, 800), Image.ANTIALIAS)

bg = ImageTk.PhotoImage(image)

canvas = tk.Canvas(root, width=800, height=600, bg='white')

canvas.create_image(0, 0, image=bg, anchor="nw")

canvas.pack(anchor=tk.CENTER, expand=True)

canvas.bind("<ButtonPress-1>", scroll_start)

 43

canvas.bind("<Motion>", scroll_move)

root.mainloop()

Figure 7.3 Represents the code developed

The outputs of the code are:

- Pop up the “ImageDemo.png”

- Detect eye gaze and read the action button

- Send command to drone

7.5 Initial set-up and recommendation

After performing the steps mentioned in paragraph 8.3 and 8.4, the system is
ready to integrate the Tello Talent drone into the scheme.

There are three steps to consider before running the script, The first step is to
connect the drone Wi-Fi with the computer it a play and plug functionality for the
talent drone, the second step is that the user should Keep the head position in
the same level during the period of this exercise and thirdly, it is necessary to
perform a new system calibration as explained above for taking account the
new positions of the control screen and Dynavox PCEy5 relatively to the head
of the user.

7.6 Running, Operating and controlling Tello talent by eyes

Switch the drone button to ON, wait few seconds until the Wi Fi connection
between drone and Laptop establishes.

Now the drone is ready for flaying.

In this code we are using 4 commands that are corresponding to the labeled
button by a text of the desired instruction to do.
Command 0: has double action to connect the laptop to drone, the second is to
takeoff
Command 1: is used to order the drone to move right
Command 2: is used to command the drone to move left
Command 3: is used for landing

After launching the code, the picture “ImageDemo” pop up on the screen

containing the buttons(see figure 8.4) that are corresponding to the programed
coordinate on structure picture and the user looks at buttons and sends order to
drone.

 44

Fig 7.4 represents the action button on the ImageDemo in the controlling
screen

The user can direct their gaze to any button, wait a few second, the button is
activated and the command is sent to the drone accordingly.

 In this programm, the drone is controlled as follows:

- While the user is looking at Takeoff button, the drone hovers.

- While looking at rotate left button, the drone moves to left at a pre-set

constant translational velocity.

- While looking at rotate right button, the drone rotates right at a pre-set

constant rotational velocity.

- While looking at landing button, the drone ascends at a preset constant

translational velocity.

7.6.1 Upgrading the code for taking picture

For taking photos, we need to initialize the Drone camera, capture a picture and
save it in the drive.

We need to import the OpenCV or cv2, create a Stream class and initialize a
steaming address. Then adding new button “Taking photo” with the same
manner as the previous buttons, and creating the action for recording photos,
After takeoff, the user read the frame or picture from the live feed of the drone
camera and save the frame as “frameX.jpg” into the drive by looking to “Taking
photo” button.

 45

7.7 Survey and results for this experiment.

Since this platform can be used by anyone, a survey was conducted to evaluate
this work, and what was the user's reaction after using their eyes to control the
drones.7.8 Voluntaries description
12 people, 4 men and 8 women participated in this experiment; the majority of
them are student with an average age of 22 years as it was done in a public
bibliotheca. Nine of these participants performed the eye-tracking activity with
their naked eyes, and three wore corrective glasses.
The test criteria is preforming a takeoff; a turn right, a turn left and a landing.
Only six persons who participated in this experiment successfully met the four
test criteria. Four participates perform successfully three test criteria, and two
are accomplishing two tests criteria.
The user gap for failed criteria is resumed on three points:

- Users are not familiarized with gaze movement tracking for taking into

consideration the alignment between the optical and visual axes

- For selecting target require period and constant fixation of gaze on the

target

- Users’ eyes cannot keep the optimal distance from the eye tracking

hardware

There is always a possibility that an eye movement may be done totally different
from person to another, a person may move their head for pointing the gaze
instead of only looking at the target and keeping the performance added by
calibration parameters in the predefined norm.

For improving the accuracy of this application, it is recommended that the users
must be familiarized to use the system in a proper way such as calibration,
keeping head position fixe and etc.

7.8.2 Experiment data

The summary of this survey and experiments is presented in this table 7.1.

Table 7.1 Survey result

Descriptions Experiment data

Gender
 Male
 Female

4
8

Conditions when moving the drone
 With naked eyes
 With a corrective glass

9
3

Person impression of the experiment
 Enjoy/fun
 Not enjoy
 Neutral

8
2
2

CHAPTER 8. INTEGRATION OF HAND GESTURE TO CONTROL TELLO TALENT 46

CHAPTER 8. INTEGRATION OF HAND GESTURE TO
CONTROL TELLO TALENT

In this chapter, we are going to implement and operate all the knowledge that
we have gained in the previous chapters, to build a hand gesture recognizer
code using OpenCV and Python, the MediaPipe framework are used for the
hand detection and gesture recognition respectively. After that, we move further
to integrate hand recognition to control the drone and to perform various
missions by using hand movements.
This project concentrates on how a system could detect, recognize and interpret
the hand gesture recognition through computer vision.

8.1 System architecture

The general structure for any system to detect the hands and recognize the
gestures can be schematized as shown in this figure. There are a user, camera
and computer.
The user manipulate their fingers in order to generate the desired gestures; the
camera takes the video frames of this gesture and the computer perform the
processing and return the status of the gesture and convert it to a command.

Figure 8.1. General structure of the hand gestures recognition system

 47

8.2 Prerequisite for this part of the project

The hardware, software and packages needed for developing and running the
application are summarized in next paragraphs.

8.2.1 Software and packages

The pycharm software and packages must be installed correctly without error,
The package such as Python, OpenCV, MediaPipe and Numpy are
preconfigured in Pycharm platform and are part of their dependencies.

- Pycharm version 2023.2.2 - Windows (exe)
- Python version 3.8.8
- OpenCV version 4.5
- MediaPipe version 0.8.5
- Numpy version 1.19.3
- Tkinter version 3.9.17

8.2.2 Hardware required

The minimum hardware configuration required is:

- 64-bit version of Windows 10

- 2 GB free RAM minimum, 8 GB of total system RAM recommended

- 3.5 GB hard disk space

- 1024x768 minimum screen resolution

In this project the Laptop HP have been used with this configuration:

Intel i7 2.80 GHz CPU, 16 GB system RAM, 350 GB hard disk space,
1024x 768 screen resolution and running with Windows 10, 64-bit.

8.3 Software installation steps

First step install Pycharm cross platform, which is a dedicated Python
Integrated Development Environment (IDE) providing a various tools for
developers, tightly integrated to create a convenient environment for productive
Python and data science development.
Pycharm is available in two editions:

- Professional edition which is dedicated for companies and organization

use and it is commercial; it provides an outstanding set of tools and

features.

- Community edition which is an open-source project and has fewer

features, it is the famous edition for educational and instrumental

purpose.

The Pycharm software is available and downloadable from www.jetbrains.com
Second step install the packages Open CV, MediaPipe and Numpy by running
the following instructions:

https://docs.python.org/3.9/library/tkinter.html

 48

Run “pip install opencv-python” to install OpenCV
Run “pip install mediapipe” to install MediaPipe
Run “pip install numpy” to install Numpy

After installing packages, need to confirm if the pack version is compliant to the
system operating requirements as discussed in paragraph 9.2.1.

8.4 Proposed system architecture for this application

The proposed software architecture used for hand gesture recognition consists
of four phases, the figure 8.2.shows the block diagram for the solution.

Figure 8.2 block diagram of the proposed system

8.5 Preparing the code for hand detection and fingers gesture
recognition

Steps 1 – Importing the necessary packages.

First, we need to import all the relevant libraries necessary for building this code
(see figure 8.3), we need to import the MediaPipe and some other python
libraries Python, OpenCV, etc. as described in paragraph 9.2.

 49

import cv2
import numpy as np
import mediapipe as mp
import djtellopy as tello

Figure 8.3 codes for importing libraries

Step 2 – Creating and initializing finger detector class in Mediapipe

In this step, we create an object-oriented FingerDetector class, and then we
create some Constructors inside of this class (see figure 8.4); Constructors are
used to initializing the state of the object and to assign values and parameters
for this class.

- The self.mp_hands variable is assigned to the mp.solution.hands module

that performing the hand detection functionality from MediaPipe. This

line is for creating the object and stores it in self.mp_hands cell.

- The self.mpHands.Hands is used to assign the value for the model

complexity, minimum detection confidence and minimum tracking

- The self.mp_drawing variable is assigned the mp.solutions.drawing_utils

module which used to draw the detected 21 key points and connections

for each hand.

- The self.hands variable creates an instance of the Hands class from

npHands. This is where hand detection and tracking will be performed

based on the specified parameters.

class FingerDetector:
 def __init__(self):
 self.mp_drawing = mp.solutions.drawing_utils
 self.mp_drawing_styles = mp.solutions.drawing_styles
 self.mp_hands = mp.solutions.hands
 self.hands = self.mp_hands.Hands(
 model_complexity=0,
 min_detection_confidence=0.5,
 min_tracking_confidence=0.5)

Figure 8.4 Class

- The model complexity of the landmark is 0 or 1, Landmark accuracy and

inference latency generally go up with the model complexity by default

the value is set to 1.

- For the minimum detection confidence value for the hand detection

model is between 0.0 and 1.0, by default the value is set to 0.5 which is

considered successful in palm detection model.
- For the minimum tracking confidence value ([0.0, 1.0]), this value is

related to the bounding box threshold between hands in the current

frame and the previous frame from the landmark-tracking module, if the

 50

tracking fails, Hand Landmark triggers hand detection otherwise, it skips

the hand detection, the default value is set 0.5.

Step 3 – Reading frames from a webcam and creating landmarks table

 In this part the coding consist capturing images, creating and processing as

defined in the first part of the code (see figure 9.5),

- The VideoCapture is used to create an object and pass an argument (0) that

is the camera identification. In this case, we have only one webcam

connected so the argument value is by default set to zero,

- The image.flags.writeable function is used to read each frame received from

the webcam.
- The cv2.cvtCOLOR() function is used to convert the frame from BGR to

RGB format because the MediaPipe works with RGB images but OpenCV

reads images in BGR format.

- leftHandLandmarks and rightHandLandmarks are used for containing a lists
of the landmark identifications for the fingertips (as described in chapter 5),
each landmark has two values X and Y being normalized to [0.0,1.0] and
corresponding to the coordinate in image. These landmarks lists will be
used later for additional hand analysis or gesture recognition.

Step 4: Implementing hand detection and extracting hand landmark
positions

In this step, the palm detector and hanlandmark detector are applied in real time
on the video frames received from the camera for localizing the 21 keys point for
each hand and extract the positions of individual hand landmarks, and store them
in the leftHandLandmarks and rightHandLandmarks lists which are created above
in step 3. At the end of this step, it returns the hand image detected with drawing
connection and the list of landmarks coordinates, see second part of the code (see
figure 9.5),

- The “results” variable is assigned to self.hands.process(image) function

that is used to detect the hand on the image, the input for this function

is the image or frames of the video.

- If results.multi_hand_landmarks , this loop is used to identifying the

Handedness Left and right in case of two hands are detected on the

image, then it returns two hands.

- handLabel is used to contain the Handedness it can be “right” or “left”

- The rightHandLandmarks.append ([landmarks.x, landmarks.y]) is

used to detect landmark positions and store them in the list.

- Self.mp_drawing.draw_landmarks is used to draw all the landmarks in

the frame knuckles with connection lines.

- The return “leftHandLandmarks, rightHandLandmarks, image” is used to

display the image with the drawing of the keypoints and the list of X, Y

that corresponding to handmarks position.

 51

image.flags.writeable = False
 image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
 results = self.hands.process(image)
 image.flags.writeable = True
 image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
 leftHandLandmarks = []
 rightHandLandmarks = []
 if results.multi_hand_landmarks:
 for hand_landmarks in results.multi_hand_landmarks:
 handIndex =
results.multi_hand_landmarks.index(hand_landmarks)
 handLabel =
results.multi_handedness[handIndex].classification[0].label
 if handLabel == "Left":
 for landmarks in hand_landmarks.landmark:
 leftHandLandmarks.append([landmarks.x,
landmarks.y])
 if handLabel == "Right":
 for landmarks in hand_landmarks.landmark:
 rightHandLandmarks.append([landmarks.x,
landmarks.y])
 self.mp_drawing.draw_landmarks(
 image,
 hand_landmarks,
 self.mp_hands.HAND_CONNECTIONS,

Self.mp_drawing_styles.get_default_hand_landmarks_style(),

self.mp_drawing_styles.get_default_hand_connections_style())
 return leftHandLandmarks, rightHandLandmarks, image

Figure 8.5. Code for reading frame, detecting hand and extracting landmark

position

The figure 8.6 and table 8.1 are representing the output of this coding step, is to

display the leftHandLandmarks and the rightHandLandmarks in the image with the

connection drawing and the list of X, Y, Z that corresponding to landmarks position

in the image frame coordinate.

The coordinate X is the landmark position in the horizontal axis, coordinate Y is

the landmark position in the vertical axis, and Z is the landmark depth from the

camera.

 52

This result will be used as an input of next step.

Table 8.1, The values (X,Y,Z) of landmarks on

 picture coordinates;

The 21 keys points are localized

on the hand picture and the

values of landmarks are

extracted

Figure 8.6, landmarks are
localized on the hand picture

Step 5 – Recognizing the hand gestures

In this step we will see how to create certain numbers and sign languages of
hand gesture that are suitable to be used for one hand in a time.

A list of criteria can be defined by comparing the position of each landmark
according the drawing of landmark on image coordinate as shown in figure 3
and 4 and using as input the list of X, Y of hand landmark positions extracted in
step 4.
Each hand landmark is identified by a number and a values (X, Y) that
corresponding to the image frame coordinate and addition information
specifying if it is the right or left hand , example “leftHandLandmarks[8][1]” is

 53

the coordinate X and Y of land mark number 8, [1] is for specifying the hand
right.

The variable “fingerCount” is used to contain the value corresponding to the
sum of criteria values; if the condition is fulfill with criteria the value of
“fingerCount” is incremented by one otherwise zero.
The initial value of “fingerCount” is set to zero and it is common for right or left
hand,
In this code we are using only the 8 landmark for right and 8 of left hand,
leftHandLandmarks[8][1] < or > leftHandLandmarks[6][1]
leftHandLandmarks[12][1] < or > leftHandLandmarks[10][1]
leftHandLandmarks[16][1] < or > leftHandLandmarks[14][1]
leftHandLandmarks[20][1] < or > leftHandLandmarks[18][1]

and the same for right hand, In this combination The values of “fingerCount” can
be between 0 till 8, so we can create 9 signs of hand gesture.

This hand gesture recognition will cover nine poses which are very simple and
can be manipulated by any person without prior training only maneuvering the
fingers index, middle, ring and pinky for both hands, the finger thumb and twist
are not involved, then the code allows creating nine sign languages of hand
gesture.

The main objective of this step is to associate a state with each finger and then
create the gesture through some expression predefined based on finger states
as straight, bent and crossed, each hand gesture directly set a command out for
controlling drones, the table 8.2 is summarizing the gestures that a user can
chose through a statues of the index, middle, ring and pinky fingers..

Table 8.2. Hand gesture recognition 1

G
e

s
tu

re

n
a
m

e

Gestures description Left and Right landmarks
conditions

Finger

Count

Hands gesture

Right
Hand

Left
Hand

A

Left hand, The index,
middle, ring and pinky
fingers, all are bent.
Right hand is not on the
scene

leftHandLandmarks[8][1]< [6][1]
leftHandLandmarks[12][1]<[10][1]
leftHandLandmarks[16][1]<[14][1]
leftHandLandmarks[20][1]<[18][1]

0
0
0
0

Right hand
is out of
picture

FingerCount 0 Pose number 1

B

Left hand, The index is
straight and the middle, ring
and pinky are bent.
Right hand is not on the
scene

leftHandLandmarks[8][1] > [6][1]
leftHandLandmarks[12][1]<[10][1]
leftHandLandmarks[16][1]<[14][1]
leftHandLandmarks[20][1]<[18][1]

1
0
0
0

Right hand
is out of
picture

 FingerCount 1 Pose number 2

 54

Table 8.2. Hand gesture recognition 2

G
e

s
tu

re

n
a
m

e

Gestures description Left and Right landmarks
conditions

Finger

Count

Hands gesture

Right
Hand

Left
Hand

C

Left hand, The index and
middle are straight and the
ring and pinky are bent.
Right hand is not on the
scene

leftHandLandmarks[8][1] > [6][1]
leftHandLandmarks[12][1]>[10][1]
leftHandLandmarks[16][1]<[14][1]
leftHandLandmarks[20][1]<[18][1]

1
1
0
0

Right hand
is out of
picture

FingerCount 2 Pose number 3

D

Left hand, The index,
middle and ring are straight
and the pinky is bent.
Right hand is not on the
scene

leftHandLandmarks[8][1] > [6][1]
leftHandLandmarks[12][1]>[10][1]
leftHandLandmarks[16][1]>[14][1]
leftHandLandmarks[20][1]>[18][1]

1
1
1
0

Right hand

is out of
picture

FingerCount 3 Pose number 4

E

Left hand, The index,
middle, ring and pinky are
straight.
Right hand is not on the
scene

leftHandLandmarks[8][1] > [6][1]
leftHandLandmarks[12][1]>[10][1]
leftHandLandmarks[16][1]>[14][1]
leftHandLandmarks[20][1]>[18][1]

1
1
1
1

Right hand
is out of
picture

FingerCount 4 Pose number 5

F

Left hand, The index,
middle, ring and pinky are
straight.
Right hand, The index is
straight and the middle, ring
and pinky are bent

leftHandLandmarks[8][1] > [6][1]
leftHandLandmarks[12][1]>[10][1]
leftHandLandmarks[16][1]>14][1]
leftHandLandmarks[20][1]>8][1]
rightHandLandmarks[8][0] > [6][0]
rightHandLandmarks[12][0]<[10][0]
rightHandLandmarks[16][0]<[14][0]
rightHandLandmarks[20][0]<[18][0]

1
1
1
1
1
0
0
0

FingerCount 5 Pose number 6

G

Left hand, The index,
middle, ring and pinky are
straight.
Right hand, The index and
middle are straight and the
ring and pinky are bent.

leftHandLandmarks[8][1] > [6][1]
leftHandLandmarks[12][1] > [10][1]
leftHandLandmarks[16][1] > [14][1]
leftHandLandmarks[20][1] >[18][1]
rightHandLandmarks[8][0] > [6][0]
rightHandLandmarks[12][0]> [10][0]
rightHandLandmarks[16][0]< [14][0]
rightHandLandmarks[20][0]< [18][0]

1
1
1
1
1
1
0
0

FingerCount 6 Pose number 7

 55

Table 8.2. Hand gesture recognition 3

The user interface created has been designed to be not complicated and user
friendly, it is for everybody even who does not have a prior knowledge in this
domain; the functionalities that have been included are intended to make the
controlling operation process as simple as possible for the user.

8.6 implementing the main application for drone Control with
Hand Gestures

In this section, We merge the classes created in the previous steps with the
Tello talent classes for developing main program based on the nine gestures for
drone controls,
This main programming code consists of using different state related to
djitellopy functions and the program created for fingers gesture recognition see

figure 8.7,
At the end the solution allows users to control the Tello drone only by
maneuvering their fingers.

G
e

s
tu

re

n
a
m

e

Gestures description Left and Right landmarks
conditions

Finger

Count

Hands gesture

Right
Hand

Left
Hand

H

Left hand, The index,
middle, ring and pinky are
straight.
Right hand, The index,
middle and ring are straight
and the pinky is bent.

leftHandLandmarks[8][1] > [6][1]
leftHandLandmarks[12][1] > 10][1]
leftHandLandmarks[16][1] > [14][1]
leftHandLandmarks[20][1] > [18][1]
rightHandLandmarks[8][0] > [6][0]
rightHandLandmarks[12][0]> [10][0]
rightHandLandmarks[16][0]> [14][0]
rightHandLandmarks[20][0]< [18][0]

1
1
1
1
1
1
1
0

FingerCount 7 Pose number 8

I

Left hand, The index,
middle, ring and pinky are
straight.

Right hand, The index, middle,
ring and pinky are straight

leftHandLandmarks[8][1] > [6][1]
leftHandLandmarks[12][1] > [10][1]
leftHandLandmarks[16][1] > [14][1]
leftHandLandmarks[20][1] > [18][1]
rightHandLandmarks[8][0] > [6][0]
rightHandLandmarks[12][0]> [10][0]
rightHandLandmarks[16][0]> [14][0]
rightHandLandmarks[20][0]> [18][0]

.
 1

1
1
1
1
1
1
1

FingerCount 8 Pose number 9

 56

Connect

Move back

Take OFF

Flip

Move right

Stop

Move left

Landing

Move forward

Figure 8.7 Gesture vocabulary used in this application

In this step, we associate to each FingerCounter value an action to do for
controlling drone, see figure 8.8.

 57

def setDirection(code):
 if code ==0
 return ’Connect’
def action0():

 global tello

 tello = Tello()

 tello.connect()

 global tello

 if code == 1:
 return 'Takeoff'
 def action1():

 global tello

 tello = Tello()

 tello.takeoff()

 elif code == 2:
 return 'Move right'
 def action2():

global tello

 tello.move_right(50)

 elif code == 3:
 return 'Move left'
def action3():

global tello

 tello.move_left(50)

 elif code == 4:
 return 'Move forward'
def action4():
global tello
 tello.move_forward(50)
 elif code == 5:
 return 'Move back'
def action5():

global tello

 tello.move_back(50)

 elif code == 6:
 return 'flip'
def action6():

global tello

 tello.flip50)

 elif code == 7:
 return 'Stop'
def action7():

global tello

 tello.stop()

 elif code == 8:
tello.land()

 return 'Landing'
def action8():

global tello

 tello.landing(50)

 else:
 return ''

Figure 8.8. Associating the FingCont to a predefined djitellopy action

 58

Step 7- Implementing the solution

 When the user changes the pattern, before starting to establish the new
pattern, the system waits some time and ignores the 8 video frames received,
see figure 9.8.

def practising():

 prevCode = -1
 cont = 0
 running = True
 cap = cv2.VideoCapture(0)
 print ('camara preparada')
 while running:
 success, image = cap.read()
 if not success:
 print("Ignoring empty camera frame.")
 # If loading a video, use 'break' instead of 'continue'.
 continue
 code, img = detector.detect(image)
 img = cv2.resize(img, (800, 600))
 img = cv2.flip(img, 1)
 # if user changed the pattern we will ignore the next 8 video frames
 if (code != prevCode):
 cont = 4
 prevCode = code
 else:
 cont = cont - 1
 if cont < 0:
 # the first 8 video frames of the new pattern (to be ignored) are done
 # we can start showing new results
 direction = setDirection(code)
 cv2.putText(img, direction, (50, 450),
cv2.FONT_HERSHEY_SIMPLEX, 3, (0, 0, 255), 10)
 if code == 7:
 running = False

 cv2.imshow('video', img)
 cv2.waitKey(1)
 cv2.destroyWindow('video')
 cv2.waitKey(1)

practising()

Figure 8.9 Operating code

8.7 Run and Play

After setting up the setup, you can run the program and enjoy the main application
of the hand gestures for controlling drone as showed in figure 8.9. All the codes
related to this project are available on GitHub (see Annex), the user can access via
the link that stated in the annex.

 59

Figure 8.10 Work and test setup

8.7.1 Material and tools required

The material and tools needed for performing the simulation of the drone control by
hand gesture are:

- 1 X Tello Talent

- 1 X Laptop as described in 9.1.2 paragraph

- Software tools and packs as described 9.1.1 paragraph

8.7.2 Some steps to be followed.

- Switch Drone to ON

- The Wi-Fi connection between drone and Laptop is established

automatically

- Prepare the hand gesture recognition table (Table 8.1)

- Run the program and play according to the hand gesture defined in the

table

 60

8.8. Results and analysis

The nine gestures recognized in this paper are used to generate the actions of
drone control. The simulation and result are performed by ten volunteers and
done in different background light intensity, see table 8.3. it has given the best
results when the background is clear and the light is medium, the rate of
recognition reached 100%. When the background brighter than skin color, the
recognition is about 85%,
This smaller degradation is caused by lighting environment and condition and
also possible that the users don’t fully respect the gesture form required for
each code.
In the general, using MediaPipe for implementing machine learning on finger
detection and gesture recognition through a python coding program and
creating a user guide application using hand gestures as a command for display
information and controlling drones achieves good performance.

Table 8.3 Hand Gesture Recognition Rate.

Gesture name
as defined in
previous table

Corresponding
drone action

Number of
volunteer

Number of
recognized
gestures

Recognition
rate (%)

Total
recognition
rate (%)

Gesture A connect 10 8 80%

85%

Gesture B Takeoff 10 10 100%

Gesture C Move right 10 10 100%

Gesture D Move left 10 9 90%

Gesture E Move forward 10 10 100%

Gesture F Move back 10 9 90%

Gesture G Flip 10 10 100%

Gesture H Stop 10 9 90%

Gesture I landing 10 10 100%

CHAPTER 9. COMBINING EYE TRACKING SYSTEM AND HAND GESTURE TO CONTROL TELLO TALENT 61

CHAPTER 9. COMBINING EYE TRACKING SYSTEM
AND HAND GESTURE TO CONTROL TELLO TALENT
This chapter describes a method to combine the use of eye gaze and hand
tracking to provide a way to control a drone,
The main objectives that will be achieving for this project, is to establish a
complete system for interpreting hand gesture recognition through computer
vision and a gaze tracking thought an eye tracking device using Python and
others packs and libraries.

9.1 System architecture

In this interaction system, the eye gaze is used to move a circle overlay in the
picture window called area of interaction (AOI) that containing a list of button
corresponding to commands, on a computer screen as described in chapter 8,
the hand gesture is used to create the signs of commands and the return is
displayed on the hand picture windows.
The control commands is mapped in both windows, area of interaction for gaze
tracking and hands picture for gesture tracking, At starting the control is done by
hand tracking, If there is no hand detected at the input or gesture no performed
successfully, the control commands are handovered to gaze tracking, when the
hand finger is detected again, the hand tracking take over de control,
When the gaze is out-of- AOI, the hand finger takes over till the hand is not
detected.
The solution is based on the priority for hand tracking.
The communications between different devices [11] are showed in figure 9.1

 62

Figure 9.1 Proposed system architecture

9.2 Implementation

The same basic hardware and software which are used in chapter 8 and
chapter 9 are needed for the global solution as.

- Dynavox PCEy 5 device

- Tello Talent drone

- Laptop HP, Intel i7 2.80 GHz CPU running with Windows 10 with

1620x1080 pixels

9.2.1 Eye Gaze Tracking

For eye gaze tracking hardware, we use a commercial Tobii Dynavox PCEye 5
eye tracking device which has a typical optical axis, it is used because it is
readily available in the university lab.
It is positioned directly under the laptop screen with an upward vertical tilt of 25°
approximated.

The Dynavox needs to be calibrated for every user in order to achieve its
potential accuracy. We implement a 9 points calibration; the calibration tool is
delivered with the device driver.

 63

9.2.2 Hand Tracking

For hand tracking hardware, we use laptop camera.

9.2.3 Area of interest (AOI) Design

The window of AOI is not the full size of the screen because we reserved some
margin for left, right, top and bottom and also the camera window so that:

- The user can maneuver their hands and maintaining the detection.

- Hand movements have minimal impact on users head and eyes position

not influence by hand movement.

Generally, a bigger AOI can affect hand movement, It is recommended to adjust
the position of Camera, eye tracking device and user hands and eyes, this is
can proved by a rigorous calibration.

9.2.4 Software Design

On the software side, to develop the interaction system program, using python
programming language in Pycharm platform.

Figure 9.2 software architecture

When combining two type of tracking, we need to have a modular and
systematic way to code the interaction system program, to manage the inputs

 64

from gaze tracking and hand tracking , and implementing the rules on the
determine which type of tracking is in effect as well as accommodation feature
expandability and change of hardware. The overall view of the software model
is shown in Figure 10.2.

The algorithm consists of privileging the commands received from the hand
gesture, if the gesture is not detectable or not able to generate the FingerCont
values, the application switch the commands received from the gaze, when the
gesture redetected again correctly, the gesture command take over the rule.
See figure 9.3.

Figure 9.3 flow concept for selecting the between gaze tracking and fingers
gesture

9.2.5 The interaction system and the screen display

In Screen shot of the interaction system in figure 9.4, there are two main
windows, the first window is for streaming the hands gesture, the second
window is the area of interest (AOI) that containing the buttons

 65

Figure 9.4 Screen display

9.3. Results and analysis

We have presented a system for human computer interacting using eye gaze
and hand tracking. This method of combining two types of tracking has been
tested and proven to be more accurate than just using only hand tracking
method.
The system is able to utilize the advantage of gaze moving speed in eye
tracking while overcoming the lack of eye tracking accuracy by switching to the
hand tracking.
The hand tracking method also did not have much accuracy due the light
intensity and background clearance or darkness but by combining with gaze
tracking, the overall system accuracy increases. This makes the tracking
system more robust than using only one of them.

CONCLUSION 66

CONCLUSION

Based on the result of the project and as a conclusion, it can be seen that
developing a main application that merging hand gesture recognition and gaze
tracking using Python and OpenCV. This application is implemented by
applying tools such as MediaPipe library developed by Google for fingers
gesture recognition and gaze tracking device proposed by Tobii AB for eye
movement detection.

To summarize result, this system has accomplished the objective defined in this
project:

- To establish a system for gaze detection and tracking through eye

tracking device using Python, OpenCV, Tkinter

- To create a template or region of interest(ROI) that containing the button

corresponding to commands

- To establish a system for detecting, recognizing and interpreting hand

gesture recognition through computer vision using Python and OpenCV

- To create certain numbers and sign languages of hand gesture for

controlling drones

At the end we arrive to establish the main control system that combine gaze
tracking and gesture recognition for preforming different commands that can be
sent to the drone with more flexibility, the user can manipulate by hands or by
eyes or both.
This combination of two type of tracking has been proven be more accurate
than just using only eye or hand tracking method, This combination improves
the accuracy of the global system, as the gaze alone is appropriate for choosing
target by moving the pointer but for selecting target still required button clicks
required period and the hand tracking is no efficient on hand skin color and
background clearance or darkness.

For the future recommendation, this system could be extended to include
additional gestures that will allow any users with different need to perform more
functions easily specially for people who play games which require a very fast
atmosphere of interaction or cannot use their hands.

 In addition, the gaze detection could be based on low-cost hardware such as
commercial camera or embedded Laptop camera without involving any eye
tracking device, by improving the gaze detection software available but not
efficient.

 In the future, it is possible to implement a special Graphical User Interface for
extending this application after the users know how to translate the gesture from
its meaning to the sign or number and vice versa for different uses not only in
drone domain such as pointing, clicking, swiping and scrolling.

ACRONYMS 67

ACRONYMS

API Application Programming
Interface

SDK Software Development Kit
mph/MPH Miles Per Hour
kph/KPH Kilometre Per Hour
mAh Milliamp Hours
LiPo Lithium-Ion Polymer Battery
Wh Watt-hour
W Watt
HD High Definition
MP Mega Pixels
IR Infrared
ML Machine Learning
ROI Region of Interest
PCK Percent of Correct Keypoints
FPS Frame Per Second
GPU Graphics Processing Unit
IDE Integrated Development

Environment
OS Operating Software
GB Gigabyte
RAM
3D

Random-access memory
Three Dimension

REFERENCES 68

REFERENCES

[1] (2023) Dynavox PCEye 5 website. [online] Available: https://www.tobii.com

[2] DJITelloPy: DJI Tello drone python interface using the official Tello SDK. Feel
free to contribute! (github.com)

[3] (2023) MediaPipe. [online] Available: Landmarks - MediaPipe
(https://developers.google.com/)

[4] (2023) OpenCV website. [online] Available: https://opencv.org/

[5] (2023) Tkinter GUI toolkit . [online] Available:
https://docs.python.org/3/library/tkinter.html

[6] (2023) SDK 2.0 User Guide. [online] Available: https://dl-
cdn.ryzerobotics.com/downloads/Tello/Tello%20SDK%202.0%20User%20Guide.p
df

 [7] (2023) DroneBlocks website. [online] Available: https://www.droneblocks.io/

[8] (2023) Tello FPV [online] Available:
https://play.google.com/store/apps/details?id=com.volatello.tellofpv&hl=en&gl=US&
pli=1

 [9] (2023) Tello spec. [online] Available: Tello (ryzerobotics.com)

[10] (2023) Tello EDU spec. [online] Available: Página Oficial de Tello - Shenzhen
Ryze Technology Co., Ltd (ryzerobotics.com)

[11] (2015) Combining Eye Gaze and Hand Tracking for Pointer Control in HCI
https://ieeexplore.ieee.org/document/6504305

[12] (2020) An efficient hand gestures recognition system
https://iopscience.iop.org/article/10.1088/1757-899X/745/1/012045

[13] (2020) Hand gesture recognition on python and opencv
https://iopscience.iop.org/

[14] (2021) Survey of Hand Gesture Recognition Systems
https://iopscience.iop.org/article/10.1088/1742-6596/1294/4/042003

[15] (2021) Applying Hand Gesture Recognition for User Guide Application Using
MediaPipe https://www.atlantis-press.com/proceedings/issat-21/125963795

https://opencv.org/
https://ieeexplore.ieee.org/document/6504305
https://iopscience.iop.org/article/10.1088/1757-899X/745/1/012045
https://iopscience.iop.org/
https://iopscience.iop.org/article/10.1088/1742-6596/1294/4/042003

ANNEXES 69

ANNEXES

[A] (2023) Tello-Python GitHub. [online] Available
https://github.com/b_berarache

