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Abstract

Life science today involves computational analysis of a large amount and variety of

data, such as volumetric data acquired by state-of-the-art microscopes, or mesh data

from analysis of such data or simulations. The advent of new imaging technologies,

such as lightsheet microscopy, has resulted in the users being confronted with an

ever-growing amount of data, with even terabytes of imaging data created within a

day. With the possibility of gentler and more high-performance imaging, the spa-

tiotemporal complexity of the model systems or processes of interest is increasing as

well. Visualisation is often the first step in making sense of this data, and a crucial

part of building and debugging analysis pipelines. It is therefore important that

visualisations can be quickly prototyped, as well as developed or embedded into

full applications. In order to better judge spatiotemporal relationships, immersive

hardware, such as Virtual or Augmented Reality (VR/AR) headsets and associated

controllers are becoming invaluable tools.

In this work we present scenery, a modular and extensible visualisation framework

for the Java VM that can handle mesh and large volumetric data, containing multiple

views, timepoints, and color channels. scenery is free and open-source software,

works on all major platforms, and uses the Vulkan or OpenGL rendering APIs. We

introduce scenery’s main features, and discuss its use with VR/AR hardware and in

distributed rendering.

In addition to the visualisation framework, we present a series of case studies,

where scenery can provide tangible benefit in developmental and systems biology:

With Bionic Tracking, we demonstrate a new technique for tracking cells in 4D

volumetric datasets via tracking eye gaze in a virtual reality headset, with the potential

to speed up manual tracking tasks by an order of magnitude. We further introduce

ideas to move towards virtual reality-based laser ablation and perform a user study

in order to gain insight into performance, acceptance and issues when performing

ablation tasks with virtual reality hardware in fast developing specimen. To tame the

amount of data originating from state-of-the-art volumetric microscopes, we present

ideas how to render the highly-efficient Adaptive Particle Representation, and finally,

we present sciview, an ImageJ2/Fiji plugin making the features of scenery available to

a wider audience.
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Overview and Contributions

Current Trends and Challenges in Biology

In the last three decades, biology has gone through a remarkable development from

being a discipline that is mostly wetlab-based to one utilising the tools and methods

of mathematics, physics, and computer science, becoming more and more reliant

and intertwined with them:

To just highlight a few, developments on the experimental side like light-sheet

fluorescence microscopy [Huisken, 2004a], optogenetics [Boyden et al., 2005, Li et al.,

2005], or Cryo-EM [Adrian et al., 1984] have opened new venues for investigation,

while theoretical contributions, e.g. to active matter theory [Mietke et al., 2018] now

shed more light on these results and provide analytical guidance.

Investigating biological systems in two dimensions has already led to fascinating

and important results in the past (Drosophila embryonic genes, etc.). Building on

these, and utilising the mathematical, physical, and computational techniques men-

tioned above, we are now able to investigate biological systems in three dimensions,

and over time, and at high speed, enabling in-depth observation and reasoning about

spatiotemporal processes.

Even more recent developments, like CRISPR/Cas9 [Jinek et al., 2012] or gene

drives enable us to manipulate specimen in ways and on fast timescales thought

impossible before.

What these developments lack to a certain extent, are ways to again bring the

experimenter into the loop, both during the experiment, and during analysis, to

enable new and flexible ways of interacting the large and complex amounts of data

state-of-the-art experiments create, and also with the scientific instruments producing

this data.

Virtual and Augmented Reality

With the advent of the first small-enough computers, and small-enough cathode-ray

tubes (CRTs), the development of devices that give the user the ability to inhabit a

virtual environment or use more than just a keyboard for input of data started. Early

examples of such systems — from the 1960s — are The Sword of Damocles[Suther-

land, 1968] or the Sketchpad system[Sutherland, 1963], made famous as TheMother
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of All Demos. In the meantime, and over the course of two Virtual Reality Revolu-

tions — with important developments like the CAVE (CAVE Automatic Virtual

Environment, [Cruz-Neira et al., 1992]) — head-mounted displays (HMDs) have

now become a commodity and can be bought for about 400$, bringing a once highly

specialised and expensive device into the homes or offices of potential users.

Complimentary to these display devices, new input methods are also on the

rise, such as free-air gesture input (e.g. the widely available Microsoft Kinect or the

Leap Motion), free-air controller input (e.g., HTC Vive controllers), touch input

(multitouch screens in nearly every contemporary mobile phone) or even devices

controlled by the gaze of the user (such as eye trackers from Tobii or Pupil Labs). Such

devices and their interaction modalities are commonly called Natural User Interfaces.

Despite the common availability of VR display devices, or NUI input device,

many of the analysis and visualisation tasks in bioimaging are still done on a 2D

screen, using a keyboard and a mouse, while VR might actually provide tangible

benefits, beyond just a quick “wow” effect.

Scope of this thesis and contributions

In this thesis, we aim to demonstrate that the inclusion or Virtual Reality and asso-

ciated input devices, and advanced realtime rendering techniques can enhance the

biologist’s workflow, and enable new kinds of experiments, in vivo and in silico.

To achieve this, we develop an open-source realtime rendering and interaction

framework named scenery that enables rapid prototyping of visualisations of geo-

metric and volumetric biological data, and interaction with such on the basis of

Natural User Interfaces. The framework supports rendering on regular desktop

screens, virtual reality headsets (like the Oculus Rift or HTC Vive), and augmented

reality headsets (like the Microsoft HoloLens).

We will detail the architecture of the framework and demonstrate its necessity,

utility and comprehensiveness on a set of case studies, and show further contributions

made possible by the use of the framework.

Specifically, we will detail the following contributions:

• scenery, a framework for creating visualisation and interaction interfaces with both

volumetric and geometric data, supporting virtual and augmented reality, and

clustered rendering.

• Bionic Tracking, an algorithm for utilising the user’s gaze to solve tracking prob-

lems involving moving particles and objects or tracing of neurons, implemented

on top of scenery.

• Towards interactive laser ablation, where laser-based complex microsurgical pro-

cedures on microscopic specimens are enhanced and simplified by the use of

virtual reality and natural user interfaces. A simulation of this workflow is also

implemented on top of scenery and a user study performed to show benefits and

challenges, as well as identify issues.
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• Rendering the Adaptive Particle Representation, where we introduce ideas how

to render the highly-efficient, particle-based Adaptive Particle Representation

(APR) [Cheeseman et al., 2018] of volumetric data. The APR can be displayed

as point-based graphics, as maximum intensity projection (MIP), or full volume

rendering. All rendering algorithms are implemented on top of scenery.

• sciview, a plugin for the ImageJ2/Fiji ecosystem, make scenery’s flexible visualisa-

tion solutions available to the end user.

Publications

Some of the results presented in this thesis have already been published :
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• Günther, U., Harrington, K.I.S.: Tales from the Trenches – Developing sciview, a

new 3D viewer for the ImageJ community. VisGapworkshop at Eurovis 2020, Nor-

rköping, Sweden. arXiv preprint 2004.11897, DOI 10.2312/visgap20201112.

• Günther, U., Pietzsch, T., Gupta, A., Harrington, K.I.S., Tomancak, P.,

Gumhold, S., and Sbalzarini, I.F.: scenery: Flexible Virtual Reality Visualization

on the Java VM. IEEEVIS 2019, Vancouver, Canada. arXiv preprint 1906.06726,

DOI 10.1109/VISUAL.2019.8933605.

• Daetwyler S., Günther, U. , Modes, Carl D., Harrington, K.I.S., and Huisken,

J.: Multi-sample SPIM image acquisition, processing and analysis of vascular

growth in zebrafish. Development, 2019. bioRxiv preprint 478149, DOI

10.1242/dev.173757.

• Cheeseman, B.L., Günther, U., Susik, M., Gonciarz, K., and Sbalzarini, I.F.:

Adaptive Particle Representation of Fluorescence Microscopy Images. Nature

Communications, 9(5160), 2019. bioRxiv preprint 263061, DOI 10.1038/s41467-

018-07390-9

• Royer, L.A., Weigert, M., Günther, U., Maghelli, N., Jug, F., Sbalzarini, I.F.

and Myers, E.W.: ClearVolume: open-source live 3D visualization for light-sheet

microscopy. NatureMethods, 2015. DOI 10.1038/nmeth.3372.

Submitted Papers

• Günther, U., Harrington, K.I.S., Dachselt, Raimund, Sbalzarini, I.F.: Bionic

Tracking: Using Eye Tracking to Track Biological Cells in Virtual Reality. Sub-

mitted to BioImageComputing at ECCV 2020. arXiv preprint 2005.00387.

• Arshadi, C., Eddison, M., Günther, U., Harrington, K.I.S., Ferreira, T.A.: SNT:

A Unifying Toolbox for Quantification of Neuronal Anatomy. Submitted to

NatureMethods. bioRxiv preprint 2020.07.13.179325.

Conference Abstracts

• Gupta, A., Günther, U., Incardona, P., Aydin, A.D., Dachselt, R., Gumhold, S.,

Sbalzarini, I.F.: A Framework for Interactive Virtual Reality In Situ Visualisation

of Parallel Numerical Simulations. The 9th IEEE Symposium on Large Data
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https://arxiv.org/abs/1906.06726
https://doi.org/10.1109/VISUAL.2019.8933605
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https://doi.org/10.1038/s41467-018-07390-9
https://doi.org/10.1038/nmeth.3372
https://arxiv.org/abs/2005.00387
https://www.biorxiv.org/content/10.1101/2020.07.13.179325v1
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Analysis and Visualization at IEEE VIS, 2019. arXiv preprint 1909.02986, DOI

10.1109/LDAV48142.2019.8944368.

• Günther, U., Pietzsch, T., Rueden, C., Daetwyler, S., Huisken, J., Elicieri, K.,

Tomancak, P., Sbalzarini, I.F., Harrington, K.I.S.: sciview - Next-generation 3D

visualisation for ImageJ & Fiji, FromImages toKnowledgewith ImageJ andFriends,

EMBL Heidelberg, 2018

• Günther, U., Harrington, K.I.S., Sbalzarini, I.F.: Exploring the scenery of light-

sheet microscopy with virtual reality, LSFM2018, Dresden, 2018.

• Royer, L.A., Weigert, M., Günther, U., Maghelli, N., Jug, F., Sbalzarini, I.F. and

Myers, E.W.: ClearVolume - from microscope to visualisation in seconds, VizBi,

EMBL Heidelberg, 2016.

• Royer, L.A., Weigert, M., Günther, U., Maghelli, N., Jug, F., Sbalzarini, I.F. and

Myers, E.W.: ClearVolume - open-source 4D live visualisation for light-sheet

microscopy. Focus onMicroscopy, Göttingen, 2015.

• Günther, U., Cheeseman, B.L., Tomancak, P., Sbalzarini, I.F.: dive into data —

immersive 3D particle visualisation, BioImageInformatics, Leuven, 2014.

Papers in Preparation

The following papers containing material from this work are currently under prepa-

ration:

• Günther, U., Pietzsch, T., Rueden, C., Daetwyler, S., Huisken, J., Elicieri, K.,

Tomancak, P., Sbalzarini, I.F., Harrington, K.I.S.: sciview - Next-generation 3D

visualisation for ImageJ & Fiji.
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Supervision
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thesis:
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• Aryaman Gupta, intern and master student, June - December 2017.

• Luke J. Hyman, intern, August - September 2018.

What follows

In the following, first part of the thesis we are going to introduce the basic concepts and

technologies as the Preliminaries that have ultimately led to the challenges addressed

in this thesis. We start with fluorescence microscopy, describing the developments from

first light microscopes to modern lightsheet volumetric microscopes, followed by

a chapter about visual processing, detailing the detection and processing of visual

information in the human nervous system. The visual processing chapter is followed

by the XR chapter, describing the historic and current developments in virtual and

https://arxiv.org/abs/1909.02986
https://doi.org/10.1109/LDAV48142.2019.8944368
https://doi.org/10.1109/LDAV48142.2019.8944368
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augmented reality, together termed as cross reality, or XR. The final chapter of the

preliminaries part introduces Eye Tracking and Gaze-based interaction, going into

detail how a mode of perception can also be used for control purposes. At the end of

each of preliminaries chapters, we state specific challenges that will be addressed in

theCase Studies in Part Three of this thesis. In Part Two, we describe our visualisation

framework scenery in detail, which is the enabling technology for the case studies

described in Part Three. Finally, in Part Four, we are going to conclude our findings

and provide an outlook to future work.





In theory, there is no difference between

theory and practice

—Yogi Berra

Part I:

Introduction





Chapter 1:

Fluorescence Microscopy

Fluorescence microscopy is one of the major techniques used in cell, developmen-

tal and systems biology. In the most basic version, a fluorescent molecule is intro-

duced into the biological specimen, staining it. The early fluorescent markers used

(e.g. FITC, Hoechst), are however highly cytotoxic and incompatible with life, and

can therefore only be used for fixed specimen. Newer developments led the the intro-

duction of fluorescent proteins into to organism of interest via genetic engineering.

These fluorescent proteins are biocompatible and can therefore be used to study

processes in a living organism.

A fluorescent protein emits photons of wavelength 𝜆illumination after being illu-

minated with a shorter excitation wavelength 𝜆detection. One of the most popular

fluorescent proteins is GFP, or green fluorescent protein, was originally isolated from

the jellyfish Aequorea victoria [Heim et al., 1995]. GFP has a quantum yield of 0.79

photons per excitation photon. The emission of photons in the fluorescent protein it-

self originates from an active chromophore, usually located in the center of the protein

(see Figure 1.1 for a cartoon of the structure). The chromophore can emit a certain

number of photons after excitation before stopping (photobleaching). This leads

to the problem that in each microscopy application, one has to take into account

the available photon budget, resulting from the interplay of excitation intensity and

quantum yield.

Figure 1.1: The green fluorescent protein

GFP, with the beta barrel cut away on the

right sight, revealing the chromophore. Im-

age courtesy of Raymond Keller, Public Do-

main.

In widefield fluorescence microscopy, the full specimen is illuminated at once with

the excitation wavelength, leading to a single 2D image of the specimen. The res-

olution of a microscope is defined via its point spread function (PSF), which is not

directly observable, but measurable as its square |ℎ(𝑥, 𝑦, 𝑧)|2. The intensity 𝐼(𝑥, 𝑦, 𝑧) of

an object 𝑂(𝑥, 𝑦, 𝑧) in the image plane is then its convolution with the PSF,

𝐼(𝑥, 𝑦, 𝑧) = 𝑂(𝑥, 𝑦, 𝑧) ⊗ |ℎ(𝑥, 𝑦, 𝑧)|2. (1.1)

In the widefield microscope, illumination and detection are done through the

same optical path. Were this not the case, the total PSF would be a product of both

the illumination and detection PSFs,
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|ℎfull|2 = |ℎi|2 ⋅ |ℎd|2. (1.2)

For more complex specimen, and to study three-dimensional structures, more

advanced techniques are used, which we will introduce in the following.

1.1 Confocal Microscopy

Figure 1.2: Z projection of a phalloidin-

labeled osteosarcoma cancer cell, making

actin filaments visible. Image taken on a

Zeiss LSM780 confocal microscope. Im-

age (cc) by Howard Vidin, Wikimedia Com-

mons

The confocal microscope was developed in the 1960s by Marvin Minsky, one of the

pioneers of Artificial Intelligence (AI), in order to investigate neural connections in

the central nervous system of mammals, and draw conclusions for AI from that. The

confocal microscope enables optical sectioning by illuminating the sample sample

with a coherent light source, nowadays lasers, and rejecting the emitted fluorescence

with a pinhole. With this principle, it is possible to scan the specimen point-wise

in X and Y directions, and provide optical sectioning by also moving it in the Z

direction. Occurring fluorescence that was not rejected as background by the pinhole

gets collected point-wise by a photomultiplier, and an image or volume reconstructed

from that. The principle of operation is also pictured in 1.3. An example of an image

taken with a confocal microscope is shown in Figure 1.1

Figure 1.3: Confocal microscope operating
principle, 10: Arc lamp (laser, nowadays),
12: Illumination pinhole, 16: Dichroic mir-
ror, 22: specimen, 26: Pinhole, 28: Photo-
multiplier diode (Public Domain, from Mar-
vin Minksky’s original patent application).

1.1.1 Image formation

The confocal microscope uses a single lens for illumination and detection, achieves

focused illumination through beam scanning, and detects photons from fluorescence

via its pinhole. As the illumination and detection wavelengths differ, the confocal’s

PSF is given as the product of the illumination and the detection PSF. However, when

illumination and detection wavelengths nearly coincide, e.g. for GFP 𝜆illumination =

488nm and 𝜆detection = 520nm, the total PSF is approximately equal to the square of

the PSF of the widefield microscope, resulting in a ≈ 1/√2 better resolution.
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1.1.2 Shortcomings

Though a very useful instrument with a higher resolution than a widefield microscope,

the confocal microscope has a few issues, namely:

• A lot of the photon yield is discarded, due to the pinhole. For fast acquisitions,

this can lead to images with a very low signal-to-noise ratio.

• Due to scanning the laser over each point to be imaged, the specimen is exposed

to high levels of light. In addition, the scanning process can be quite slow, up to 1

or 2 seconds per image. Spinning Disk Confocal Microscopes alleviate this issue

to some extent, leading to much higher acquisition speeds by multiplexing the

illumination process.

In the next section, we will explain lightsheet microscopy, which aims to alleviate

these shortcomings.

1.2 Lightsheet Microscopy

In lightsheet, or similarly, selective plane illumination microscopy [Huisken, 2004a]1, 1 Throughout the remainder of this work,
for the sake of brevity, we are going to refer
to both lightsheet microscopy and SPIM mi-
croscopy simply as “lightsheet microscopy”.

the specimen is illuminated by a coherent light source in a 90º angle to the detection

plane. The illumination light is focused into a thin sheet of light by means of a

cylindrical lens (selective plane illumination microscopy, SPIM), or by scanning a

Gaussian laser beam (digitally scanned lightsheet microscope, DSLM). This means

that a full-frame 2D image of the specimen can be acquired at once, without point

scanning, lowering the required light intensity by a substantial amount. Further,

many 2D acquisitions can happen sequentially, enabling the capture of fast biological

processes in 3D and 4D, such as the beating of the zebrafish Danio rerio’s heart

[Mickoleit et al., 2014].

1.2.1 Image formation

In the lightsheet microscope, illumination and detection are again separate, leading to

separate PSFs for illumination and detection. The microscope’s lightsheet thickness

should be optimised for the detection optics, choosing the numerical aperture of the

illumination such that the lightsheet has a uniform thickness across the entire field of

view [Huisken, 2004b]. However the lightsheet can usually not be made completely

uniform, and will be thinnest at the focus. One possible compromise is to choose

the NA so that the lightsheet is twice as thick at the edges of the field-of-view as it

is in the middle. The PSF of the SPIM can finally be approximated with Gaussians,

yielding [Huisken, 2004b]:

|ℎSPIM(𝑥, 𝑦, 𝑧)|2 ∝ exp⎛⎜⎜
⎝

−
2𝑥

𝑤2
lat

−
2𝑦

𝑤2
lat

−
2𝑧

𝑤2
axial

⎞⎟⎟
⎠

(1.3)

, where 𝑤lat is the lightsheet thickness.

The lightsheet microscope also has the benefit that samples can be mounted in a

movable way, and imaged from multiple directions, finally fusing the best parts of the
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image together for optimal image quality [Preibisch et al., 2014]. Furthermore, the

sample can also be illuminated from multiple directions [Weber and Huisken, 2012].

Many realisations of lightsheet microscopes enable the user to move the sample in X,

Y, and Z directions, and additionally rotate it at high speeds.

1.2.2 Data rates

24 h

CLSM 85 GB

5 TBSPIM
with EM-CCD

480 GB solid state drive

4 TB ha rd drive

2,000,000 images

90 TBSPIM
WITH sCMOS 8,600,000 images

45,000 images

1 M
B/

s
60

 M
B/

s
1 G

B/
s

Figure 1.4: Comparison of the data pro-

duced by different microscope types within

24 hours. Adapted from [Reynaud et al.,

2014].

Confocal microscopes equipped with EM-CCD cameras produce an image data rate

of about 1MB/s. Lightsheet microscopes however, play in a different league, as they

are usually equipped with state-of-the-art sCMOS cameras (which offer about 60%

quantum efficiency, a low readout noise, and high readout speeds of about 100fps

at full frame size, which is usually 4 to 6 megapixels). These cameras, running at

full speed, can easily produce data rates of 1𝐺𝐵/𝑠 [Reynaud et al., 2014], filling up a

500GiB SSD drive in less than 10 minutes, and amounting to nearly 90TiB of data

per day, if running at full speed. For a visual comparison, have a look at Figure 1.4.

This deluge of data now poses a large problem both for the scientists using the

lightsheet microscopes and producing that data, and also for the support staff that has

to take care of data storage, compute clusters, and so on. This has led to approaches

where microscopy data is acquired and processed in an interleaved way, with e.g. 10

minutes of data acquisition followed by 10 minutes of processing, such as in the case

of imaging the zebrafish heart [Mickoleit et al., 2014].

Furthermore, effective processing of long developmental timelapses, the parade

discipline of lightsheet microscopes, is not possible without a cluster.

The high data rate combined with the high spatiotemporal quality of the data

leads to interesting challenges regarding data storage and processing, and instrument

interaction for current and future lightsheet microscopes:

1.3 Challenges and Opportunities

1.3.1 Taming the data

Data compression alone is not going to solve the data deluge issue posed by lightsheet

microscopy: While the compression step requires time, but can nowadays, utilising

efficient algorithms and multi-core processors or graphics cards, be made very quick,

it also requires a decompression step, again taking time and restoring the data to it’s

original, unwieldy size. While successful efforts have already been made to democratise

the use of lightsheet microscopes [Jahr et al., 2016, Pitrone et al., 2013, Gualda et al.,

2013], the expensive data processing requiring the use of clusters hinders users from

effectively deploying one or multiple lightsheet microscopes.

To really tame the data, one has to think of an alternative data representation,

that could have a compression step, but without necessary decompression — instead,

processing should happen on the alternative data representation.

Such a representation has been developed [Cheeseman et al., 2018], named the

Adaptive Particle Representation (APR). The APR non-uniformly resamples images
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and stores information only where it actually is, saving a lot of storage space, especially

for sparsely populated images, such as from fluorescence microscopes.

In Chapter 13, Rendering the Adaptive Particle Representation, we are going to

talk about how to use this representation for fast and efficient rendering of lightsheet

microscopy data.

1.3.2 Smart microscopy requires smart interactions

Scherf and Huisken [Scherf and Huisken, 2015] have made the case in 2015 for smart

and gentle microscopes, that not only know how to image a specimen, but also take

great care in not disturbing the normal development of it, treating it as gently as

possible, by means of adaptive laser power, imaging times and windows, and dynamic

determination of regions of interest.

Royer has developed a microscope for long-term Drosophila imaging [Royer et al.,

2016] that constantly measures image sharpness and embryo drift, and optimises the

microscope’s optical components in-between each stack of a timelapse for optimal

image quality, fit for high-quality tracking and lineage tree creation for the whole

time of embryo development.

Guignard, et al., have developed a microscope [Guignard et al., 2017] that com-

bines adaptive lightsheet imaging with single-cell transcriptomics, yielding simulte-

neous insight into both gene expression and the spatiotemporal consequences of

it.

All these microscopes, envisioned, and already existing, have in common that they

require a very low to no level of human intervention during the imaging session, there-

fore allowing developmental imaging with unprecented precision, but no options to

interfere with the specimen interactively, may it be via optogenetic manipulation, or

laser microsurgery. Such tools are however invaluable for the biophysical investigation

of tissue mechanics, and the combination of smart microscopy with smart, natural,

and intuitive interaction techniques in 3D can open the door for new experiments

leading to even deeper insight into both developmental and biophysical processes,

such asDrosophilawingdisc formation, or retinal development [Matejčić et al., 2018]:

• In the case of Drosophila wingdisc formations, investigations of tissue tensions

and mechanics have so far been focused only on flat pieces of tissue, which do

not constitute the main part of development, and are actually hard to find in the

developing embryo. 3D interaction in that scenario can provide the user with easy

access to more complex geometries to perform ablation experiments in.

• In the case of retinal development, which takes place on highly curved surfaces

and in complex volumes, additional 3D interactions for ablation and optogenetics

can lead to more insight into defects in retinal development, of which human

medicine might ultimately benefit.

For these use cases, we are going into deeper detail in Chapter 12, Towards In-

teractive Virtual Reality Laser Ablation, developing an interactive demo of how

such interactions might take place in the future, on a microscope, equipped with 3D
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virtual reality glasses, or from a room-scale virtual reality system. Additionally, in

Chapter 11, Bionic Tracking: Using Eye Tracking for Cell Tracking, we discuss a new

way to approach tracking and tracing problems on images resulting from fluorescence

microscopy by utilising eye tracking.



Chapter 2:

Introduction to Visual Processing

Optic nerve
Crossed fibers
Uncrossed fibers
Optic chiasma

Optic tract
Commissure of Gudden

Pulvinar
Lateral geniculate nucleus
Superior colliculus
Medial geniculate body

Nucleus of oculomotor nerve

Nucleus of trochlar nerve

Nucleus of abducent nerve

Visual Cortex

Sphere of the eye

Retina

Figure 2.1: Schematic overview of the paths
from the eye to the visual cortex, with the
parts discussed in this chapter highlighted
in italics. Adapted from Anatomy of the Hu-
man Body [Gray and Lewis, 1878], Public
Domain.

In this chapter, we introduce the human visual system, the anatomy of the human

eye and its physical capabilities and movements, as well as the processing happening

to incoming photons in the retina and further downstream, in the central nervous

system.

The goal of this chapter is to give the reader an understanding of the physiological

processes that ultimately enable both eye-based natural user interfaces and cross reality

applications, and introduce implications from physiology for such. In the end of the

chapter, we will introduce some challenges and questions in the context of visual

processing which will be addressed in later chapters of this thesis.
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2.1 A Short Tour of the Human Visual System

The processing of visual stimuli happens in multiple stages: In Figure 2.1 we show an

overview sketch of the nerve pathways involved in visual processing. We will discuss

the following parts in deeper detail:

1. The Optical Path — Collection and accumulation of incoming photons by the

optical system consisting of the cornea, iris, and lens onto the retina, and especially

the most sensitive part of the retina, the fovea.

2. The Retina — Collection and translation of incoming photons into nerve pulses,

and compression of the nerve signals for further processing,

3. The Lateral Geniculate Nucleus (LGN) — situated in the thalamus part of the

forebrain, which serves as a relay for the information coming directly from the

retina (interestingly, the left LGN processes information from the right eye, and

vice versa — a pattern common in the human brain), and

4. The Primary Visual Cortex — Final processing of the signals in the primary visual

cortex of the occipital lobe on the back of the brain.

2.2 Optical Path

Pupil

Iris
Posterior chamber

Lens

Cornea(aqueous humour)

Ciliary
body

Sclera
Choroid

Retina

Suspensory
ligament
of lens

Optic discOptic nerve

Fovea

Retinal
blood

vessels

Vitreous
humour

Uvea

Macula

Anterior chamber
Visual axis Optical axis

Figure 2.2: Anatomy of the human eye

— Image (cc) by Rhcastilhos and Jmarchn,

Wikimedia Commons.

Light enters the anterior chamber of the eye, travelling through the iris, then traversing

the the vitreous humour (a gelatineous substance filling the interior of the eye) to the

retina.

Evolution has optimised the refractive index of the human cornea to yield an

optimal air/cornea boundary, rendering the final image sharp on the retina. The lens,

held in place by the ciliary body, and the suspensory ligaments, focuses the incident

light onto the retina, and especially on the most sensitive part of the retina, the fovea.

The fovea is about 1.5mm in diameter and contains the most photoreceptor-dense

region — 300000/mm2 compared to ≈ 100000/mm2 in the periphery [Duchowski,

2017, Snowden et al., 2011].

Foveal, or central vision only makes up about 5º of the field of vision. In the most

central part of the fovea, the foveola, about 133 cones per degree of visual angle lead

to a resolvable frequency of 66 cycles/º, while at the fovea, the frequency already drop

by about half, to 35 cycles/º [Duchowski, 2017]. In Figure 2.2, we show a scheme of

the different ranges of vision in humans, with the region below 30º being the field of

useful vision. The movements of the eye, described in Section 2.2.1, Eye movements,

are able to make up for the small field of useful vision by constantly scanning a scene.

Figure 2.3: Ranges for peripheral and cen-

tral vision in humans. Central or foveal vi-

sion offers the highest acuity. Image (cc) by

Zyxwv99, Wikimedia Commons.

Apart from movements, the eye is also able to adapt itself internally to different

viewing conditions. This adaption to visible objects happens in two ways:

• the iris size can be modulated, changing the amount of light reaching the retina

by a up to a factor of 16. This contraction and expansion is not only due to

light stimuli, but can also be triggered by drugs or hormonal changes, e.g. due to

excitement, and

https://commons.wikimedia.org/wiki/File:Schematic_diagram_of_the_human_eye_en.svg
https://commons.wikimedia.org/wiki/File:Schematic_diagram_of_the_human_eye_en.svg
https://commons.wikimedia.org/wiki/File:Peripheral_vision.svg
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• ciliary muscles can modulate the lens thickness: when they relax, leading to tense

zonules, the vision is adapted for distance, when they contract, the zonules get

more slack, and the vision is adapted for closer objects — these are called vergence

movements.

Vergence however is only one kind of the movements the eye can perform, so let’s

get into more detail about the other forms of movement.

2.2.1 Eye movements

Figure 2.4: Muscles of the human eye. Im-

age (cc) by Patrick Lynch, Wikimedia Com-

mons.

Following the classifications from [Snowden et al., 2011] and [Duchowski, 2017],

eye movements fall into one of five categories:

• Saccades are quick and jumpy movements of the eye to reposition the fovea to a

new area of interest. As such, they can be voluntary or involuntary. In natural

environments saccades occur with high speeds, and several times per second. Their

peak angular velocity can exceed 900∘/s, take approximately 200ms to initiate, and

then last for about 10 − 200ms. Saccades are stereotypical and ballistic: Stereotypi-

cal movement means they always follow the same pattern of fast initial acceleration

after an initial processing delay of about 200ms, followed by movement with max-

imum velocity, and concluded by a rapid slowdown as the eye reaches the target

area (see Figure 2.2.1 for example time series). Ballistic movement means they

are planned and, once initiated, cannot be stopped. During execution of the

movement there is no visual perception, rendering the subject temporarilly blind.

This effect is called saccadic suppression1 [Snowden et al., 2011]. 1 The most visible effect of saccadic suppres-
sion in humans is the lack of motion blur
during saccadic eye movements, opposed to
e.g. fast head movements.

• Smooth pursuits occur when a subject is tracking a moving stimulus, where the

eye’s angular velocity is matched to the movement of the image of the stimulus on

the retina. These are the only smooth movements the eyes perform. While they

are voluntary, they cannot be initiated without a moving stimulus [Cullen, 2016].

• Fixations, tremors, and jitters occurs when a subject focuses on a particular object

of interest. Counterintuitively, these movements do not completely fix the image

on the retina, but jitter around it within about 5∘ of visual angle. If they would

not do that, the image would disappear within seconds, due to adaption of the

receptors to overstimulation. This suggests that a different system is involved with

fixations than with saccades or pursuits. Fixations last for about 150 − 600ms

and humans spend over 90% of viewing time with this kind of eye movement.

It has also been found that miniature movements enhance the perception of

high-frequency detail in a stimulus [Rucci et al., 2007].

• Vergence movements occur when a subject is moving its attention between near

and far objects, with the eyes then moving in opposite directions.

• The Optokinetic reflex (OKR) is a compensatory reflex that stabilises moving

objects on the retina, and moves the eyes back to the original position, in case the

object moves outside the field of view (for example, when looking out of a train

window).

• The Vestibo-ocular reflex (VOR) is another compensatory reflex that induces com-

pensating eye movements during rotational and translational head movements,

in order to stabilise the image on the retina. Often, the OKR and VOR work in

http://patricklynch.net
http://patricklynch.net


18

concert [Cullen, 2016].
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Figure 2.5: Example time series of saccadic

eye movements: The movement starts after

an initial processing delay of about 150ms,
followed by fast movement for about 50 −
100ms. Image reproduced from [Snowden

et al., 2011].

In the context of 2-dimensional localisation of gaze directions, fixations, saccades,

and smooth pursuits are the most important eye movements. Vergence movements

in turn can be used for 3-dimensional gaze estimation, e.g. by detecting independent

gaze directions for each eye, and finding the intersection [Mlot et al., 2016]. Future

developments in display technology, where focus points can be modulated [Huang

et al., 2015, Jang et al., 2017, Sun et al., 2017] will probably make that even more

interesting.

All of the described movements are optimisations to provide the best image possi-

ble, using “the world’s worst camera” [Duchowski, 2017]. We continue our discussion

with the retina, the translator of photons to neural impulses.

2.3 The Retina — Retinal Architecture and Processing

Basal Memb.
Pigment 
Epithelial
Cell

Rod

Horizontal 
Cell
Bipolar Cell
Müller
Cell
Amacrine
Cell

Ganglion
Cell
Axon

Incident Light

Cone

Figure 2.6: Inverted retinal architecture of

mammals. Adapted from original illustra-

tion, (cc) by Marc Gabriel Schmid, Wikime-

dia Commons.

At the retina, the processing of incident photons starts in the true sense of the word,

as so far we have only been concerned with transmission, modulation, and focussing.

The retina of mammals has a somewhat odd architecture, seen in Figure 2.3: The

light is entering from the bottom of the image, so the light has to travel through a

dense forest of neurons before reaching the photoactive rods and cones. This kind

of architecture is called inverted retina architecture. What the true benefits of an

inverted architecture are remains a matter of debate.

There are good reasons for the inverted architecture, such as easier supply of blood

to the back side of the retina, rather than the front, which is very much needed by the

(in terms of chemical energy) power-hungry photoreceptor cells. The neural tissue

of the eyes has also been shown to act as waveguide for incoming photons, probably

a mechanism to counter photon scattering through it [Franze et al., 2007]. One

tradeoff is the existence of the blind spot where the optic nerve exits the eye, mended

in most cases by the presence of two eyes, the Section 2.2.1, Eye movements described

before, and the upstream neural processing.

After traversing this neuronal maze, photons reach the true actors of photon

reception, the rods and cones.

2.3.1 Rods and cones

These are the workhorses of the retina, responding in different lighting intensity

conditions: While rods are highly sensitive in dim conditions, the scotopic regime, even

responding to single-photon stimuli (rhodopsin is responsible for the actual reception

in rods, and absorbs green light most strongly), cones respond more sensitively in

high-intensity conditions, the mesopic regime. While cones exist in long-wavelength,

middle-wavelength, and short-wavelength flavours, often called red, green, and blue,

rods only exist in a single flavour.

Coming back to the distribution of photoreceptors among the retina, both types

also follow different patterns: While most — 150000/mm2 — of the rods exist around

https://commons.wikimedia.org/wiki/File:Retina_layers.svg
https://commons.wikimedia.org/wiki/File:Retina_layers.svg
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12∘ − 15∘ of visual angle, the density of cones peaks at the fovea at 0∘ of visual angle,

also with about 150000/𝑚𝑚2. The cone density falls off sharply outside the fovea,

reaching a density as low as ≈ 15000/𝑚𝑚2 at 15∘.

There are no rods at the fovea, and their falloff is not as sharp, slowly waning to

about 50000/𝑚𝑚2 in the periphery at 80∘[Snowden et al., 2011]. See Figure 2.7 for a

graph of the distribution.
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Figure 2.7: The distribution of rods and

cones in dependence of the visual angle.

While the distribution of cones sharply

peaks around the fovea, the distribution

of rods falls off slower in the periphery,

and rods do not exist entirely at the fovea.

Adapted from [Duchowski, 2017].

The perceptual consequences of this distribution are interesting: While the sen-

sitivity to color changes in the periphery sinks quite drastically due to the reduced

number of cones, contrast sensitivity due to rods is still quite high.

2.3.2 Retinal ganglion cells

Retinal ganglion cells are responsible for wiring the photoreceptors of the retina to

the lateral geniculate nucleus (LGN) in the thalamus, and are actually dendrites of

the optic nerve. What they are doing can already be described as image processing:

They are wired to the photoreceptors in a layout that is essentially circular, with the

area of responsibility called a receptive field.

A receptive field contains about 100 photoreceptors and consists of an inner and

an outer ring that act in competition with each other: starting from their baseline

neuronal activity, ON-center cells fire more when the center is stimulated, and the

outside is not, while OFF-center cells fire more when the center remains unstimulated,

but the outside is stimulated (center-surround decorrelation).

Instead of acting like the pixels of a camera sensor, this behaviour makes ganglion

cells basically edge detectors, transmitting mostly the edge information downstream,

which results in a large reduction in the amount of data that needs to be transmitted.

Let’s do an example calculation of the effect this has:

Retinal ganglion cells receive input from about about 128000000 cells — about

120000000 rods and 8000000 cones — assumed to carry, for simplicity, or 8bit of data,

equivalent to 256 shades of gray. Assuming a “refresh rate” of 30 Hz, this amounts to

≈ 4GiB/s(!). The ganglion cells however only have about 1000000 outputs connecting

to the next processing area, the LGN, reducing the necessary data rate to the LGN

to about 30MiB/s [Brenner et al., 2000, Koch et al., 2006]. Would the optic nerve

carry through all the neural connections from the rods and cones, it would not

have an average 3.5mm diameter, but about 20mm, severely restricting the possible

movements of the eye.

2.4 The Lateral Geniculate Nucleus

First, the axons from both eyes cross over at a point called the optic chiasm. There,

the axons from the nasal side of each retina cross to the other side of the brain, while

the axons from the temporal side do not cross. The part of the nerves between the

optic chiasm and the LGN is called the optic tract.

The LGN itself has a 6-layer, staggered architecture: Projections from the same
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side (ipsilateral) end up in layers 2, 3, and 5, while projections from the opposite side

(contralateral) end up in 1, 4, and 6 — and projections from the same visual area

connect to the same place in all the layers. In the LGN, three types of cells are found,

that in some cases refine the receptive field structure of the retinal ganglion cells:

• magnocellular (M) cells, large, fast-responding cells connected to rods, to be found

in the first two layers,

• parvocellular (P) cells, small, slow-responding cells, connected to the cones, and

found in layers 3-6,

• koniocellular (K) cells, consisting of very small, heterogeneous cells, connected to

only blue cones, to be found between the M and P layers.

The M and P cells have complimentary functional characteristics, with certain

similarities to the photoreceptors they connect from (from [Kiley and Usrey, 2016]

and [Duchowski, 2017]):

Characteristic Magnocellular cells Parvocellular cells Koniocellular cells

Cell body size Large Small Small

Receptive field size Large Small unknown

Transmission time Fast Slow unknown

Receptive fields Large Small unknown

Sensitivity to small objects Poor Good unknown

Sensitivity to change in light levels Large Small unknown

Sensitivity to contrast High Low unknown

Sensitivity to motion High Low Low

Color discrimination Broadband Red/Green Blue/Yellow

The function of the K cells remains a bit nebulous: They might play a role in

motion detection and where-and-when processing [Eiber et al., 2018] and regulate

other visual pathways [Martin and Solomon, 2019], and most likely are heterogeneous

and form subpopulations [Casagrande, 1994]. Many details about the K cells remain

unknown and are subject to current investigations [Kiley and Usrey, 2016].

Another striking fact about the LGN is that it does not receive most of its input

from the retinal ganglion cells, but actually from the visual cortex itself. Through this

feedback loop, the LGN is able to play a vital role in the direction of visual attention,

focussing, and vergence of the eyes, as well as in stereoscopic mapping of the visual

field.

Just as the retinal ganglion cells provide a spatial coding of their inputs by forming

receptive fields, the LGN provides a temporal coding, resulting in an even more

efficient transmission of information.

In terms of functional relevance to eye movements, the LGN plays an important

role in the execution of saccades [Krebs et al., 2010], as well as indirectly controlling

the ciliary muscles for vergence and focus described in Section 2.2, Optical Path.
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2.5 The Superior Colliculus

The Superior Colliculus again has a layered structure, with 7 layers in total. The

first three layers are called superficial layers and connect mainly to the retina and the

LGN. The remaining intermediate and deep layers receive connections from a variety

of sources, such as somatosensory inputs and the cerebral cortex in general. The

superficial layers also have outputs to the LGN.

The Superior Colliculus is heavily involved in the control of the eye movements.

Each of the colliculi, which are located on the left and right side of the brain, can

be mapped to respective halves of the visual field. Experiments with electrical mi-

crostimulation in monkeys have shown that, depending on the site of the stimulus,

either saccades or fixations can be evoked [Klier et al., 2001]. The coordinate system

used by the Superior Colliculus is also not world coordinates, but retinal coordinates,

where the area of the colliculus covered corresponds with the receptor counts in the

visual field (see Figure 2.2).

2.6 The Visual Cortex

Figure 2.8: Correlation of the layered archi-

tecture in the LGN (lower half) with the

cell layers in the Primary Visual Cortex (up-

per half): Neurons from the magnocellular,

parvocellular and koniocellular LGN layers

project into similar sublayers of the cortex.

Observe that V1 layer L6 also projects back

to the LGN. Reproduced from [Thomson,

2010].

The axons leaving the LGN are called the optic radiation, and enter the primary visual

cortex (also called or V1 or striate cortex) in the occipital lobe of the brain.

In Figure 2.8, we can appreciate the — again — layered architecture of the primary

visual cortex: A crucial difference this time is that the contralateral and ipsolateral

projections arrive in the same layer. Additionally does layer 6 provide a feedback

connection to the LGN, while layers 2, 3, and 5 also connect to areas outside the

primary visual cortex. Large parts of the primary visual cortex are solely responsible

for the fovea, and with increasing visual angle (compare again Figure 2.2), there are

less and less cells associated.

But what does the primary visual cortex then do with the input? The cells in the

primary visual cortex are tuned to orientation, and organised in orientation columns,

meaning that cells responsible for a particular orientation are in the same column. A

collection of orientation columns, called a hypercolumn then encodes all the possible

orientations occurring in one visual area.

The hypercolumns can contain three different types of cells:

• Simple Cells: Not only does the layered architecture continue, but also the division

in receptive fields. In contrast to the LGN’s center-surround architecture, simple

cells in V1 form bar structures, with either two or three areas that can be excitatory

or inhibitory, and thereby form either bar or edge detectors.

• Complex Cells: They add together (e.g. with a mathematical or operation) the

outputs of multiple simple cells, resulting in a receptive field that is not only

sensitive to the orientation of the stimulus, but also to its relative position within

the field.

• Finally, Hypercomplex cells or End-stopped cells wire together multiple complex

cells, to additionally provide inhibition if a stimulus exceeds the receptive field —
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complex cells would continue to fire there, and are thereby able to detect curved

stimuli [Yazdanbakhsh and Livingstone, 2006, Snowden et al., 2011].

These types of cells can now be tuned to a multitude of properties: Some respond

to high spatial frequencies, some to low, others are sensitive to size, or temporal

frequency.

2.7 Beyond the Visual Cortex

Beyond the visual cortex, further processing of visual signals is done in areas called

extrastriate cortical areas. Neurons in these areas are responsible for, e.g., motion

tracking. Some of these areas are responsible for visiomotor integration, the derivation

of motor signal from visual stimuli. We briefly want to discuss how the saccades,

smooth pursuits, and the VOR/OKR are elicited by the visual system and the motor

system [Prsa and Thier, 2016, Cullen, 2016]:

For saccades, both the amplitude and direction are controlled by the superior

colliculus, which contains a neuronal map in terms of amplitude and direction. The

neuronal inputs to this map stem from a wide population of neurons. The delay to

saccade onset is about 100ms.

In the case of smooth pursuits, the eye movements are controlled by an interplay of

neurons in the visual cortex, the brainstem, and the cerebellum. Cerebellar neurons

in the floccular lobe and the vermis project to the motoneurons of the eye muscles. In

addition, extra-visual signals, e.g., from anticipation of movement, are integrated into

the process. While the cerebellum does not directly execute movements, it provides

information to motoneurons and is constantly re-calibrated [Cullen, 2016]. The

interplay of these systems allows accurate tracking of objects with speeds of more

than 50º/s, starting only 100ms after motion onset. However, if the target’s velocity

changes direction frequently, this performance degrades.

Compared to the two eye movements just mentioned, the Vestibuloocular Reflex

(VOR) has a remarkably fast response time of only about 5ms. It integrates informa-

tion from the vestibular organs (the semicircular canals and otolith organs) in the

inner ear, which respond best to relatively fast translational and rotational movements

(>0.1 Hz). Slower movements are compensated by the Optokinetic Reflex (OKR),

which is evoked by information of visual origin instead of vestibular origin. For the

OKR, similar circuits as for smooth pursuits are involved. In addition, the OKR

is controlled by the Accessory Optic System, which receives inputs from the Medial

Superior Temporal Cortex (MST) and the Middle Temporal Cortex (MT).

2.8 Consequences for the Design of Eye-based

Interfaces

In extension of [Duchowski, 2017], from the architecture and the physiological

features of the visual system and its integration with the motor systems, we can draw

a series of consequences for the design of gaze-based user interfaces:
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Physiological Feature Consequence

Cones fall off sharply outside the foveal region,

high number of rods still exists in the periphery.

Color information (chrominance) can fall off as sharply outside the foveal

region, while brightness (luminance) should not degrade as fast.

Magnocellular ganglion cells respond most

strongly to stimuli in the periphery.

Contrast changes should only happen on purpose in the periphery, as the vi-

sual system can react strongly to objects appearing suddenly in the periphery,

responding e.g. with a saccade to the new highly salient object. Interfaces

where gaze is used as selection modality, or where gaze is used more passively,

e.g. to indicate current attention (gaze-contingent interfaces, see Section 4.3)

or which actively manage the users attention (attentive user interfaces) need

to take special care about this.

Saccades lead to temporary blindness (saccadic

suppression).

Eye tracking information correlated with e.g. saliency during a saccade might

not be useful.

Smooth movements are not possible without

smooth pursuit movements.

The limited possibility of voluntary, smooth movement needs to be taken

into consideration e.g. when designing eye gesture-based interfaces.

Smooth pursuits are cannot track all move-

ments equally well.

While smooth pursuits can easily track movements in excess of 50º/s, their

reliability decreases with oscillatory movements faster than 1 Hz. However,

if the motion can be anticipated, reliability is increased again.

Eye movements have characteristic velocities

and durations.

Needs to be taken into consideration for systemic modelling of eye move-

ments. As consequence, gaze-contingent or attentive user interfaces must

not react too fast or require too swift user interaction.

Eye movements have processing delays. While the VOR/OKR only incurs a processing delay of about 5ms, both

saccades and smooth pursuits take 100ms, so fully-instant reaction from the

user cannot be expected.

Eye tracking is not instant. The processing delay of eye tracking hardware and software also needs to be

taken into account.

2.9 Summary

In this chapter, we have summarised the machinery and neural circuitry behind the

human visual system. We described the human eye and its movements, the structure

of the retina, and the neural structures following downstream, such as the superior

colliculus and the primary visual cortex. We have described the major eye movements

and briefly discussed the interactions of the visual system with the motor control

systems of the brain controlling the eye movements. Finally, we drawn conclusions

for the design of eye-based user interfaces.

While this chapter aims to provide a concise introduction to the visual system and

its integration with the motor systems, it is far from complete. For more detailed de-

scriptions of the human visual system, we refer the interested reader to the book Basic

Vision [Snowden et al., 2011], the series Neuroscience in the 21st century, especially

the chapters about the Retina: Neuroanatomy and Physiology [Reichenbach and

Bringmann, 2016],Cortical Processing ofVisual Signals [Kiley and Usrey, 2016],Cere-

bellum: EyeMovements [Prsa and Thier, 2016], and Visiomotor Integration [Cullen,
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2016]. In addition to these books, Duchowski’s book, Eye TrackingMethodology:

Theory and Practise [Duchowski, 2017], provides another introduction to the visual

system, with special emphasis on the relevant parts and systems for eye tracking.

2.10 Challenges and Opportunities

2.10.1 Efficient representation of volumetric data

Adaptive sampling and by that, data reduction is done very efficiently already by the

retinal ganglion cells. In Section 2.3.2, Retinal ganglion cells, we discussed that by

the formation of receptive fields, these cells already reduce the data that has to be

transmitted through the optic nerve from 4 GiB/s to about 30 MiB/s. Is it possible

to use a similar approach for data reduction in the processing of volumetric data?

In Chapter 13, Rendering the Adaptive Particle Representation we discuss a data

reduction technique, the Adaptive Particle Representation [Cheeseman et al., 2018]

inspired exactly by that.

2.10.2 Object tracking with support of the visual system

A task often encountered in image-based developmental and systems biology is the

tracking of objects in volumetric data. One example is to identify cells in consecutive

volumetric images that correspond to each other. Another example is the tracing of

neurons from large still images, to ultimate generate a connectome — a representation

of which neuron connects to which — in an effort to identify functional connections

and correlations (see e.g. [Swanson and Lichtman, 2016] for a review). In the chapter

Chapter 11, Bionic Tracking: Using Eye Tracking for Cell Tracking for a prototype of

how to use smooth pursuit eye movements for cell tracking. Solving such tracking

problems via eye tracking further requires robust eye tracking algorithms, a topic we

also briefly touch in that chapter.

2.10.3 Optimal Viewpoint Determination by Modelling Visual

Attention

Models for modelling visual attention based on image content have already been

proposed [Itti and Koch, 2001, Gao et al., 2014]. In the context of image analysis

and visualisation of large datasets it is becoming more important to find optimal

viewpoints, e.g. for exploration, education or presentation purposes. A computa-

tional model of visual attention can help here to select the visually most interesting

or salient images and viewer positions. One could imagine feeding the model with a

random selection of viewpoints on the dataset, and evolving them in a manner they

converge to the most salient points. Another option would be a combination of eye

tracking and saliency modelling: The area the user is looking at could be analysed for

the most salient neighbourhood, and the dataset translated or rotated accordingly.

Both are however beyond the scope of this work, but might be pursued in the future.



Chapter 3:

A Short Introduction to Cross Reality

Cross reality, or XR, encompasses everything on the spectrum between fully virtual

environments, and fully real environments. This includes especially virtual reality

(VR), augmented reality (AR), and augmented virtuality.

In this chapter we give a brief overview of existing technology and current devel-

opments in the areas of virtual and augmented reality. We will explain the benefits of

VR and AR, and outline associated challenges and opportunities offered, with an

emphasis on biology and imaging. In the end we will sketch issues addressed in this

thesis.

3.1 Virtual Reality, Augmented Reality, Mixed Reality

“Virtual Reality is the computer-generated simulation of a three-dimensional

image or environment that can be interacted with in a seemingly real or physical

way by a person using special electronic equipment, such as a helmet with a

screen inside or gloves fitted with sensors.” — Oxford Dictionary of English

With the termVirtual Reality we describe environments that simulate parts of the

real-world experience of human beings, such as the visual surroundings, auditory per-

ception, and sometimes even proprioception1 in an interactive, computer-generated 1 Proprioception is the sense of relative mo-
tion and positioning of one’s own body
and/or its parts.

three-dimensional environment. The world exterior to the simulated environment

plays no role here, such that the user can become shut off from her real surroundings

and fully immersed in the simulation, if it is convincing enough.

If the surroundings of the user are actually visible, e.g. via a set of glasses that

are transparent and show the outside environment (or show them via cameras) and

overlay information on top of it that extend or augment the capabilities or information

content of the environment, we speak of augmented reality.

In the case of a mix of both, where there is a direct connection or overlap between

the virtual, simulated world, and the real world, the setting is termed mixed reality.

Mixed reality might take place anywhere in the virtuality continuum, except the

extremal points of fully real environments, or fully virtual environments, while cross

reality encompasses the full spectrum [Milgram et al., 1995].



26

Reality VirtualityAugmented 
Reality

Augmented
Virtuality

Mixed Reality

…

Figure 3.1: Virtuality continuum according
to [Milgram et al., 1995], where mixed real-
ity encompasses all settings that are not the
extremal points, and cross reality encloses
the extremal points as well.

3.2 Historic Perspective — 1800s to 1990s

The first virtual reality “glasses” have been introduced in the 1850’s, as so-called stereo-

scopes, looking not unlike contemporary head-mounted displays. In the stereoscopes,

the user would insert a postcard that is split in the middle in two parts, showing the

subject of the postcard from two slightly different perspectives corresponding the

capturing an image with two eyes, as in the human visual system.

Figure 3.2: A Holmes-type stereoscopes to

view left/right-eye images as single image.

Public Domain.

In the early 1950, the Sensorama was introduced, an immersive movie theater,

that not only included stereoscopic visuals, but also wind, sound, and even smell.

The machine is shown in Figure 3.3.

Figure 3.3: The sensorama. Image repro-

duced from Sensorama, Inc. Advertisement,

1962.

With computer graphics still in it’s infancy, the first steps towards a head-mounted

display mainly for military purposes, were made in 1968 by Ivan Sutherland [Suther-

land, 1968]. Sutherland developed a glasses-based virtual reality system (actually,

augmented reality) that consisted of cathode-ray tubes mounted on the users head,

with images being directed to the eyes by the means of mirrors. The tracking system

for the contraption was suspended from the ceiling, looming over the user, hence the

name of the system, The Sword of Damocles. The Sword of Damocles could display

wireframe models of geometric objects overlaid onto the user’s surroundings, and

adapted to the viewpoint that had been calculated by the tracking system.

Figure 3.4: The Sword of Damocles. Note

the cathode-ray tubes mounted to the sides

of the user’s head, and the mirrors direct-

ing the image to the eyes. Reproduced from

[Sutherland, 1968].

Big steps towards the current state of virtual and augmented reality were taken

in the 1980s and 1990s by the University of Southern California’s Mixed Reality

Lab, and the company VPL, a spin-off of the lab. The lab developed not only head-

mounted displays, but full-body virtual reality suits, providing the user with a force-

feedback system, and gloves developed for NASA that would react to virtual objects

and the user’s grip [Zimmerman et al., 1987]. In addition to the personal systems

based on head-mounted displays, room-scale systems such as the CAVE [Cruz-Neira

et al., 1992] — a backronym for CAVE Automatic Virtual Environment — were

developed in the mid-1990s. In contrast to the HMDs, these systems use the tracking

of the user not to display a perspective-corrected image on a screen attached to the

user’s head, but on a (front or back-)projected wall or display at a distance to the user.

Compared to HMDs, such CAVEs have the benefit that multiple people can use it

simultaneously, with the constraint that only a single person will see the fully correct

three-dimensional, immersive image. CAVE systems have found a large user base in

the automative industry, and in architecture and design [DeFanti et al., 2010].

In the 1990s, interesting applications for various VR settings were explored in

the research field. Especially UNC Chapel Hill’s Virtual Reality Lab created a lot
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of solutions for diverse areas such as pharmaceuticals [Brooks et al., 1990], electron

microscope control [Taylor et al., 1993], or architecture [Airey et al., 1990], with the

example of VR protein docking supported by haptics shown in 3.2.

Figure 3.5: Protein docking example us-

ing the haptic GROPE-III system. Users

reported a radically improved situational

awareness from using the system. From

[Brooks et al., 1990].

Another fascinating idea from the 90s is the omnidirectional treadmill for explor-

ing virtual worlds [Darken et al., 1997], where a moving 2D conveyor belt would

compensate the user’s movement in the virtual environment. These developments

have led to the First Virtual Reality Revolution, aiming at ubiquity of virtual real-

ity devices and their usage, sprouting movies and conferences focused on VR, and

companies channeling R&D money into VR technology. Nicholas Negroponte

conjectured in 1993 a widespread use of VR devices, and a company that “will soon

introduce a VR display system with a parts cost of less than US$25”2, while Fred

2 See wired.com/1993/06/negroponte-11/.

Brooks estimated in 1994 “we will see high-resolution, low-lag systems doing serious

applications within 3 years”, although acknowledging that display technology back

then was so bad it made the user “legally blind” [Bryson et al., 1994].

Unfortunately, the First Virtual Reality Revolution was not successful, at least

from a commercial point of view — and most of the companies betting on its success

went out of business until 1998 [Jerald, 2015]. Some reasons for the failure were:

• Due to the high cost of the systems, few people and labs were able to afford them,

and often the systems remained only in research use,

• ergonomics issues arising both from the size and weight of the systems prevented

usage for more than a short period of time, with Randy Pausch stating, “ap-

proximately 10% of the visitors adamantly decline the opportunity to wear a

head-mounted display” [Bryson et al., 1994], and

• the visual fidelity then-contemporary computers could produce when rendering

digital 3-dimensional imagery were simply neither good enough nor fast enough

to provide a fully convincing, not sickness-inducing, experience.

3.3 Current Developments

Figure 3.6: An early Oculus Rift pro-

totype. Image reproduced from Engad-

get, https://www.engadget.com/2012/08/

16/oculus-rift-hands-on/.

The currently ongoing Second Virtual Reality Revolution has been enabled — at least

in part — by the development of low-cost, high-resolution displays that are used in

smart phones, and the gyroscopic sensors used alongside them.

The displays used in mobile phones form the ideal basis for ergonomic and

lightweight head-mounted displays, as they feature both a low physical footprint, low

energy use, and the right size and resolution to be put right in front of the eyes.

Figure 3.7: The Oculus Rift Virtual Reality

HMD. Public domain.

After showing several prototypes of head-mounted displays, Palmer Luckey, a

former employee of the Mixed Reality Lab, produced the Oculus Rift in 2016 (see

Figure 3.3 for the prototype, and Figure 3.3 for the final product), a translational

and rotational tracking HMD complete with tracking system, based on full-HD

smartphone displays. Soon after the Rift, other manufacturers presented similar

devices, such as HTC’s Vive, Sony’s Playstation VR, Samsung’s GearVR, or the set

of Microsoft’s Windows Mixed Reality glasses (a slight misnomer, being actually

virtual reality glasses).

https://www.wired.com/1993/06/negroponte-11/
https://www.engadget.com/2012/08/16/oculus-rift-hands-on/
https://www.engadget.com/2012/08/16/oculus-rift-hands-on/
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On the side of augmented reality, Microsoft has been selling the developer kit of

the HoloLens since 2016. The HoloLens is an untethered headset with its own CPU,

GPU, and HPU (holographic processing unit, apparently used for tracking tasks,

etc.). The HoloLens features inside-out tracking, where no external tracking hardware

is needed, apart from the cameras inside the HMD itself. On the software side, the

HoloLens supports rendering directly on the device via Direct3D11, or via low-

latency remote rendering (named Holographic Remoting) on a separate computer,

and streamed image transfer, with the images encoded as H264 video stream, and

corrected by the HoloLens on-the-fly with affine transformations for rotations and

translations, to compensate for network latency. In early 2019, Microsoft announced

theHoloLens 2, with improved field of view, latency, and physical footprint (see Figure

3.8).

Figure 3.8: The HoloLens 2. Pro-

motional picture, from microsoft.com/en-

us/hololens.

Another available AR headset (as of 2019) is the Magic Leap One, featuring

advanced optics, with three planes of focus, and a dedicated processing unit (dubbed

light pack) featuring 8 GiB RAM and an ARM-architecture Nvidia Tegra X2 with

an integrated Pascal-generation GPU with 256 CUDA cores, tentatively providing

more compute power than the HoloLens. Also on contrast to the HoloLens that

runs Windows 10, the Magic Leap One runs a custom Linux distribution named

Lumin OS.

Figure 3.9: The Magic Leap AR Headset.

Promotional picture, from magicleap.com.

Both the HoloLens and the Magic Leap One provide a glimpse of what will be

possible, comfortable, and easy with mixed reality devices at some point in the near

future. Both still suffer from a lack of resolution, field of view, and computational

power, such that the impression these headsets leave in actual reality are still a bit of a

stretch from their promotional materials.

In contrast, current-generation Virtual Reality HMDs are able to display con-

vincing virtual reality environments to the user, with a high frame rate, and a large

field of view, given a potent-enough CPU and GPU are used to produce the images.

Compared to the First VR Revolution, performance of the rendering computers, and

even more importantly, the tracking systems, has increased tremendously, the form

factors and weights of the HMDs have gotten to usable and ergonomic dimensions,

and their price has been reduced substantially, such that a VR-capable computer

system, including the HMD, can be bought for as little as about €1500 in early 2019.

Current research topics in the usage of virtual reality include how people explore

virtual environments [Sitzmann et al., 2018], the combination of multiuser virtual

reality with physical systems on top of 5G low-latency networks [Bastug et al., 2017],

or foveated rendering to gain significant speed-ups [Patney et al., 2016]3. Clinicians 3 In foveated rendering, only the part of the
image seen by the user’s fovea, the part of the
retina with the highest spatial resolution, is
rendered at full resolution.

have renewed interest in the usage of VR technologies in psychology and psychiatry,

such as for treatment of anxiety disorders [Maples-Keller et al., 2017] or for the

rehabilitation of stroke victims [Laver et al., 2017]. In the context of biology, VR has

recently been used to sample molecular conformations in a multiuser environment

[O’Connor et al., 2018], combining rendering on VR HMDs with cloud-based

simulations of molecular structures, or for the visualisation of endocytosis datasets

from electron microscopy [Johnston et al., 2018].

http://microsoft.com/en-us/hololens
http://microsoft.com/en-us/hololens
http://magicleap.com
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For augmented reality, the visualisation of complex data, such as large graphs

is an active area of research [Büschel et al., 2019], and it is also being explored as a

new modality for neuronavigational systems in neurosurgery [Meola et al., 2017].

Utilising AR in combination with cyber-physical systems, such as human-robot

collaborative assembly systems [Makris et al., 2016] or for debugging distributed

systems [Reipschläger et al., 2018] is also investigated.

3.4 Issues

3.4.1 Motion Sickness or Simulator Sickness

Motion or Simulator sickness can occur when there is a disparity between the motion

seen by the eyes, and the motion perceived by the vestibular system. There are several

hypothesis why it arises [Jerald, 2015]:

• sensory conflict theory — motion sickness arises due to a conflict of the visual,

vestibular, or proprioceptive systems that cannot be reconciled,

• evolutionary theory — the disparity of sensations from the different system is

assumed by the body to originate in being poisoned, which is counteracted by the

need to lie down, vomiting (to get rid of ingested poison), and nausea, to prevent

the consumption of more poison,

• postural instability theory postulates that one of the main goals of animals is

maintaining a stable posture, and sickness is a reaction to incomplete or inexistent

learning — which also means people using VR systems for a while may experience

a lessening in the intensity of their motion sickness, or

• eye movement theory/nystagmus theory — motion sickness arises from unnatural

eye movements that would be required to stabilise the image on the retina. Both

the vestibulo-ocular reflex (VOR) and the optokinetic reflex (OKR) are involved

in stabilising images and the lack of saccadic suppression might also play a role

(see the chapter [Visual Processing] for details on eye movements and processing).

Whatever the actual reason for motion sickness might be, it has to be kept in check

for a user to be able to comfortably use a VR system. For that, several defences can be

used:

• the system should run with a frame rate of 60fps, or better 90fps to maintain

a fluid appearance, as everything below will be perceived as stuttering and can

increase motion sickness — it is advisable to rather sacrifice realistic rendering

instead of frame rate (see [Visual Processing] on more information about what

movements are perceived as fluid),

• certain kinds of movement, such as lateral movements should be avoided, as they

do not occur in the real world, and teleportation should be the preferred way

of moving, with fading transitions at start and end4, alternatively, dynamically 4 See developer.ocu-
lus.com/design/latest/concepts/book-bp/.

reduce the field of view during fast movements [Fernandes and Feiner, 2016],

• the system should be set up to use the correct inter-pupillary distance (IPD) of

the user, to provide the same image convergence as in the real world [Ukai and

Howarth, 2008],

https://developer.oculus.com/design/latest/concepts/book-bp/
https://developer.oculus.com/design/latest/concepts/book-bp/
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• the tracking system used should be well-calibrated and work with low latency to

avoid stuttering and jerky movements [Mania et al., 2004, Jerald, 2015].

Furthermore, there has also been research into other ways to prevent motion

sickness, which has produced fascinating results: In [Whittinghill et al., 2015], the

authors report on the addition of a “virtual nose” to the rendered scene, which reduces

the occurrence of motion sickness and enabled their users to use their system for

longer amounts of time without getting sick.

This list is of course far from exhaustive: In addition to the countermeasures just

described, [Jerald, 2015, Chapter 19] offers a very comprehensive list of guidelines to

counter adverse health effects when designing and using VR systems. In addition,

[Clift, 2018] provides a review of both software and hardware solutions against

motion sickness in VR.

3.4.2 Lack of Vergence

Current, commercially-available HMDs do not provide focus cues for the eye. This

not only completely precludes the use of vergence for user evaluation or control, but

also makes the issue of simulator sickness, described in the section before, worse.

Research-grade HMDs try to solve this now using light-field rendering [Wetzstein

et al., 2013], to provide focus cues for the eye. In [Huang et al., 2015] for example, a

three-layered HMDs is described, providing focus cues for foreground, background,

and the area in-between.

Actually giving focus cues to the user would bring detection of the depth the user

is looking at, and therefore 3D eye tracking, one step closer.

3.4.3 Hygienic Issues

In settings where a head-mounted display is used by many different people, such as

for demo purposes, or at conferences, hygienic problems arise. To be comfortable,

a HMD needs some cushioning, usually provided by a foamy insert on the HMD,

which over time accumulate dirt and can also harbour germs. One solution to this is

to provide washable inserts, as companies like VRCover5 now offer. Museums using 5 See vrcover.com

VR systems have also started to use disposable face masks to combat this problem6. 6 See museumnext.com/2019/01/how-
museums-are-using-virtual-reality/

3.5 Challenges

• Can we use VR/AR for visualising microscopy data after acquisition, and provide

a measurable benefit for the user from that? — Visualisation might occur both

at the time of acquisition (e.g. for checking correct imaging parameters), or later

on, at the time of evaluation of the data. Both cases have in common that the

user will most probably need to interact with the outside environment to adjust

the microscope, or just to take notes. It would therefore be not beneficial to

encumber the user inside a fully virtual environment, but rather augment the

existing environment with the data that has been acquired. Intuitive interactions,

https://vrcover.com/
https://www.museumnext.com/2019/01/how-museums-are-using-virtual-reality/
https://www.museumnext.com/2019/01/how-museums-are-using-virtual-reality/
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in which the users e.g. sifts through a set of time points of a microscopy dataset

much alike to sifting through a pile of papers, would enhance the acceptance of

such modalities.

• Can we use VR/AR to control microscopes and do e.g. laser ablation experiments

more efficiently? — This use case can make use of both augmented and virtual

reality settings: While augmented reality would benefit the user at design time

of the instrument, e.g. by overlaying rulers, angles, and component descriptions

on the optical table. Virtual reality on the other hand could be beneficial while

performing e.g. laser ablation or optogenetic experiments undisturbed, in a fully

immersive environment, fully concentrated on the specimen.





Chapter 4:

Eye Tracking and Gaze-based Interaction

Eye tracking is the process of following the direction of the user’s eyes in order to

determine what the user is looking at, and deriving information, context, and actions

from that.

4.1 Eye Tracking Technologies

In this section, we’re introducing common eye tracking technologies, and in the end

compare them for user-friendliness and applicability for practical usage scenarios.

4.1.1 Search Coil Contact Lenses

Figure 4.1: Scleral search coil contact lens

eye tracking schematic, reproduced from

[Robinson, 1963].

Search Coil Contact Lenses constitute the earliest[Robinson, 1963] and probably

most invasive form of eye tracking. For this form of eye tracking, a contact lens fitted

with a coil is put directly on the user’s sclera, who has to sit in a uniform magnetic

field. Movements of the coil then cause an electric current, which is measured and

correlated with the user’s eye angle. This kind of eye tracking yields high spatiotem-

poral precision (< 1ms temporal resolution, <1º spatial resolution). See Figure 4.1

for a sketch of the principle.

4.1.2 Electrooculography

Figure 4.2: Electrooculography in use, still

image reproduced from Biopac Student Lab,

youtu.be/QXGiZBDkUw

In electrooculography, the user’s eyes are tracked by measuring potential changes

on its skin. The technology employed is very similar to electroencephalography

(EEG) or electromyography (EMG) — electrodes are placed around the eyes, and

from the registered signal, the horizontal and vertical orientations of the eye ball

are inferred. Additionally, a scalp electrode can be placed to also measure radial

movements, yielding highly precise timings for the onset of saccadic movements

[Keren et al., 2010]. Albeit EOG is plagued by the same issues as EEG/EMG —

namely drift over time, and not entirely reproducible signal amplitudes, leading to

inaccuracies for the generation of absolute eye positioning data — it does not rely

on the user’s eyes being visible, which can be a plus depending on the usage scenario.

EOG can yield a horizontal resolution of 1-2º, while the vertical accuracy is usually

less due to artifacts from lid movements [Heide et al., 1999]. Compared to contact

lenses it is much less invasive, and compatible with wearers of both glasses and regular,

https://www.youtube.com/watch?v=-QXGiZBDkUw
https://www.youtube.com/watch?v=-QXGiZBDkUw
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correcting contact lenses. See Figure 4.2 for an exemplary electrooculography setup.

4.1.3 Videooculography and Purkinje Imaging

Figure 4.3: A videooculography setup, the

Pupil Pro headset. Reproduced from [Kass-

ner et al., 2014].

In videooculography, the user’s eyes are imaged by one camera per eye, focused on

the pupil. Contemporary devices use infrared light to either track the pupil directly,

or to image reflections created by the anterior and posterior surfaces of the cornea —

the Purkinje images, see Figure 4.5 — which can then be used to calculate a vector

between the pupil’s center and the reflection to determine the point the user is looking

at [Gneo et al., 2012]. This technique requires calibration in the beginning, and might

also drift in longer tracking sessions. Yet, it is very unintrusive, and only requires a

camera mounted to either an existing or new set of glasses (see Figure 4.3), or a set

of two cameras mounted inside a HMD (see Figure 4.4). VOG yields a high spatial

accuracy (~1º), while temporal accuracy suffers a bit due to camera and processing

latencies (~3-5ms).

Figure 4.4: Videooculography using a
HMD-based eye tracker from Pupil Labs,
mounted on an HTC Vive. Image repro-
duced from pupil-labs.com/vr-ar.

Figure 4.5: The physical origin of Purkinje

images P1 to P4: P1, reflection on anterior

corneal surface; P2, reflection on the pos-

terior corneal surface; P3, reflection on the

anterior surface of the lens; P4, reflection on

posterior surface of the lens. Image (cc) by

Z22, Wikimedia Commons.

In addition to the regular videooculography modalities, a recent study from Wang,

et al. [Wang et al., 2016] makes use of thermal video imaging of the cornea, which is

about 0.5ºC cooler than the limbus. They segment the thermal image, and locate the

position of the cornea in the segmentation. They achieved a fair accuracy of ~2.3º,

mostly limited by the resolution of the thermal sensor.

With Pupil[Kassner et al., 2014] andOculomatic [Zimmermann et al., 2016], now

open-source, open-hardware solutions exist for videooculagraphy-based eye tracking.

4.1.4 Comparison

https://pupil-labs.com/vr-ar/
https://commons.wikimedia.org/wiki/File:Diagram_of_four_Purkinje_images.svg
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Table 4.1: Comparison of eye tracking modalities.

Modality

Setup

Effort

Intrusive-

ness Comfort

Spatial

Accuracy

Temporal

Accuracy

Scleral

Contact

Lenses

Very High Very high Low <1º <1ms

Electroocu-

lography

High Medium High 1-2º >2º

Videoocu-

lography

Low Low High 1º 2-5ms

From the discussion of the various modalities, we conclude:

• Search Coil Contact Lenses remain the gold standard for eye tracking in clinical

settings, where the highest spatiotemporal precision is required, and precision

outweighs their low user comfort and high setup effort.

• Electrooculography is the most useful technique if relative eye coordinates are

sufficient, or if the application might include the user’s eyes not being visible,

e.g. as it is the case in sleep analysis applications.

• Videooculography is the most useful technique when it comes to day-to-day use,

due to its easy setup and low to inexistent user discomfort. Also, both software and

hardware for such a setup is readily available [Kassner et al., 2014, Zimmermann

et al., 2016].

4.2 Common issues

There exist some issues common to eye tracking applications: In this section, we are

going to detail the Midas Touch Problem and the Double Role of Gaze, Accuracy and

Reliability, Availability, and Privacy.

4.2.1 Midas Touch Problem and the Double Role of Gaze

The notion of the Midas Touch Problem was introduced by Jacob in 1990 [Jacob,

1990], and describes the issue that by looking at an object, the user inadvertently

triggers an action. It is named after the Greek fable of King Midas, who, after wishing

that everything he touches would turn to gold, ultimately starved to death.

The Midas Touch Problem is intimately linked with the Double Role of Gaze:

while visual attention can be actively directed, it is also often influenced by visual

distractions that carry a high saliency, such as flashing lights, fast moving objects, or

even input from other senses, such as loud bangs. A shift towards passive attention

may cause a disruption of the workflow of the user, or can, in the sense of the Midas

Touch Problem, lead to wrong inputs. The issues are especially pronounced in the

case that one wants to emulate mouse-based input with gaze input.
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Both issues can be addressed e.g. by providing the user with an additional means

to confirm that the selection action is actually the one she intends to perform. This

can be achieved with a variety of means:

• dwell time-/blink-based selection, where an action is only triggered after the user

has rested her gaze on the object [Jacob, 1990], or blinked once or multiple times

as confirmation [Jacob, 1993, Ashtiani and MacKenzie, 2010]. These solutions

lead to additional delays for the input, which, depending on the intent might or

might not be a problem: If fast interaction is intended, e.g. for selecting highly

salient objects in fast succession, dwell/blink-based confirmation is problematic,

while when interacting e.g. with locked-in patients, it may provide an excellent

way for communicating [Ashtiani and MacKenzie, 2010].

• multimodal interaction, where the user can utilise an additional device to confirm

her intent, for example by pressing a button on a keyboard[Castellina and Corno,

2008], using an additional touchpad [Meena et al., 2017], a foot pedal or foot mat

[Klamka et al., 2015, Hatscher et al. [2017]], or free-air pinch gestures [Pfeuffer

et al., 2017].

• computer vision techniques, where visual attention and saliency [Itti and Koch,

2001] is modelled computationally, to determine which is the most probably

object of attention at the moment [Wu and Wang, 2015, Theis et al., 2018].

4.2.2 Accuracy and Reliability

Due to individual differences between users, and also between different spike trains in

EOG, measurement of gaze cannot be 100% correct. For cursor-based applications,

filtering approaches can be used to weed out erratic recognitions [Zhang et al., 2008],

and adjusting the interface shown to the user, e.g. via magnifying it or exaggerating

details (see [Cockburn et al., 2009] for a review).

HMD-based eye tracking here has the benefit that the lighting situation can be

controlled, and it’ll mostly be dark inside the eye piece of the HMD, leading to more

predictable and reliable gaze detection. For screen-mounted or mobile eye trackers

however, the situation is a bit more difficult, as they might be used in many different

lighting scenarios.

In terms of recognition reliability, advances have been made in recent years towards

model-free determination of gaze, e.g. via artificial neural networks [Gneo et al.,

2012]. One can expect this trend to continue, leading to more reliable algorithms.

Pupil [Kassner et al., 2014] for example uses a combination of image segmentation

combined with model-based gaze estimation.

4.2.3 Availability

Still back in 2014, eye tracking hardware was very expensive, with both screen-

mounted and HMD-mounted trackers costing in excess of 10000 EUR.

Since then, new projects have emerged that provide either low-cost or open-source

eye trackers, or even both. Examples of such projects are:
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• Pupil [Kassner et al., 2014], where ready-to-use eye trackers for glasses, mobile

or HMD use can be bought, but the bill of materials, construction manual,

and software are open-sourced (see github.com/pupil-labs/pupil and docs.pupil-

labs.com).

• Oculomatic [Zimmermann et al., 2016], which provides an open-source toolkit,

as well as schematics for high-speed eye tracking, primarily for use in oculomotor

research.

• aGlass, which has recently announced the availability of a low-cost, full-FOV

eye tracking development kit for the HTC Vive, mainly to facilitate foveated

rendering [Pohl et al., 2016].

These developments lead us to believe that widespread and cost-effective use of

eye-tracking hardware will soon become a reality.

4.2.4 Privacy

With eye movements being an additional data point that can be used to fingerprint

persons and track them through different media and situations, privacy is of course a

concern when employing eye tracking.

This concern becomes even more important, as Hoppe, et al. have recently shown

that tracking eye movements in daily activities is able to predict four of the Big

Five personality traits [Hoppe et al., 2018] — namely neuroticism, extraversion,

agreeableness, and conscientiousness —, and additionally, also perceptual curiousity

[Collins et al., 2004]. The possibility of doing that makes it absolutely clear that

acquired eye tracking data has to stay with the user, and must not leave the computer

for outside processing, as the misuse potential is very high.

With e.g. Facebook also evaluating eye tracking for foveated rendering for their

next-generation Oculus headsets1, it remains to be seen whether eye tracking will 1 See e.g. uploadvr.com/oculus-is-working-
on-eye-tracking-technology-for-next-
generation-of-vr/ or uploadvr.com/oculus-
patented-new-eye-tracking-device-days-
acquiring-eye-tribe/.

turn into a privacy nightmare, or stay user-governed as a very promising and useful

technology for future human-computer interaction.

4.3 Classification of Gaze-based User Interfaces

Several classifications of gaze-based user interfaces have been proposed:

• [Duchowski, 2017] proposes a distinction between interactive and diagnostic eye

tracking systems, and further discerns the interactive systems into selective and

gaze-contingent systems. Gaze-contingent systems, where the user’s gaze is utilised

to determine e.g. the current area of interest, are then divided into screen-based

and model-based systems. See Figure 4.6L for a depiction.

• [Stellmach, 2013] extends on Duchowski’s classification, keeping the distinction

between interactive and diagnostic eye tracking, but discerning the interactive part

into gaze-directed pointing, eye-based clicking, and eye gestures. Pointing is further

distinguished into by precision (precise, coarse) or abstraction (point, target, or

area-based). Gaze-contingent interaction is included in the gaze-directed pointing

https://github.com/pupil-labs/pupil
https://docs.pupil-labs.com
https://docs.pupil-labs.com
https://uploadvr.com/oculus-is-working-on-eye-tracking-technology-for-next-generation-of-vr/
https://uploadvr.com/oculus-is-working-on-eye-tracking-technology-for-next-generation-of-vr/
https://uploadvr.com/oculus-is-working-on-eye-tracking-technology-for-next-generation-of-vr/
https://uploadvr.com/oculus-patented-new-eye-tracking-device-days-acquiring-eye-tribe/
https://uploadvr.com/oculus-patented-new-eye-tracking-device-days-acquiring-eye-tribe/
https://uploadvr.com/oculus-patented-new-eye-tracking-device-days-acquiring-eye-tribe/
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Figure 4.6: Classification of gaze-based in-
teraction. Left: According to [Duchowski,
2017], Right: according to [Stellmach,
2013]. Figure reproduced from [Stellmach,
2013].

branch. The gaze-based input modalities are optionally combined with another

input device (multimodal input). See Figure 4.6R for a depiction.

• [Hirzle et al., 2019] introduces another classification scheme, specialised for the

use with head-mounted AR or VR displays. Their scheme aims at both at the

classification of existing applications, and at an ideation tools to create new inter-

actions. Hirzle’s approach classifies based on the use of device type (VR or AR),

display type (monoscopic or stereoscopic), world knowledge (based on [Milgram

et al., 1995], full or none). World knowledge deserves more explanation: It de-

scribes how much the computer knows about the surrounding world of the user

— none means no knowledge, and full means complete knowledge of geometry

and also semantics. In the case of VR, the computer can only have full informa-

tion about the user’s surroundings, while in AR, only an overlay image could be

presented to the user, or the device could have almost complete knowledge of the

surroundings by scanning it, such as state-of-the-art devices such as the HoloLens

or the MagicLeap do.

Figure 4.7: Gaze-based interaction classifi-
cation according to [Hirzle et al., 2019]. In
this figure, the interaction-centric view on
the classification is shown, with specific in-
teraction tasks classified into the respective
fields. Figure reproduced from [Hirzle et al.,
2019].
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For a more in-depth discussion of gaze-based input and its categorisation, see

[Stellmach, 2013]. For the remainder of this chapter, we want to discuss two types of

gaze-based input specifically, namely gaze-contingent user interfaces and attentive user

interfaces.

4.3.1 Gaze-contingent user interfaces

The paradigm of gaze-contingent user interfaces is based on adjusting the displayed

information depending on where the user is gazing. It is not a selection modality,

but one that rather uses the context of the gaze. As described above, Duchowski

[Duchowski, 2017] categorises gaze-contingent interaction into the model-based

approach and the image-based approach:

• image-based: an image or video is modified based on the user’s gaze

• model-based: the information presented to the user is modified before it is actually

rendered, e.g. by adjusting the level of detail of a 3D model, reducing the total

polygon count.

An interesting example is foveated rendering, a development based on the non-

uniform and fovea-focused resolution of the human visual system (discussed in the

chapter [Visual Processing]). In foveated rendering, only the area where the user is

gazing is rendered at full resolution, while the surrounding area is rendered with less

resolution, or may even lack color information at all, because there are no cones in

the periphery of the retina to detect such. An early example of foveated rendering is

[Levoy and Whitaker, 1990], where the authors adapted a volume rendering software

to only render the area that will be projected onto the fovea in full resolution, while the

remainder is rendered at reduced resolution. A more recent example is [Bruder et al.,

2019], where the authors propose expand on the original idea of foveated volume

rendering by modelling visual acuity and optimise their sampling strategy according

to that (although their approach comes at the cost of requiring heavy pre-processing).

Images from both publications are shown in Figure 4.8.

a b c d

Figure 4.8: Foveated volume rendering evo-
lution: a, b: Foveated and unfoveated vol-
ume renderings from [Levoy and Whitaker,
1990]. c, d: Foveated and unfoveated vol-
ume renderings from [Bruder et al., 2019].

Aside from volume rendering, Nvidia’s recent Turing GPUs (RTX 20xx series)

support variable-rate shading, which can be used to implement foveated rendering

for regular rasterized or ray-traced graphics.

Considering that more and more, and also more complex data needs to be visu-

alised in science and industry, gaze-contingent interaction is sure to stay very relevant
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in the future, especially if combined with computational models of saliency like

proposed in [Itti and Koch, 2001, Gao et al., 2014].

4.3.2 Attentive User Interfaces

Attentive User Interfaces aim to develop less intrusive and more sociable interface to

computers: By detecting what the user is currently occupied with and how important

that is, the algorithm will determine whether or not the user should be disturbed. For

example in [Shell et al., 2003] the authors describe an attentive cell phone that can

detect whether the user is currently engaged in a conversation (in the slightly intrusive

manner of attaching a camera to the conversation partner). The cellphone will only

proceed to interrupt the user when this is not the case. Another interesting example

is the work presented in [Singh et al., 2018], where the authors describe a framework

for estimating the users emotional state from eye tracking and physiological data, in

order to present a user interface that is most suited in a given life-critical situation.

In [Bulling, 2016], the author argues for the necessity of ubiquity of attentive user

interface, in order to cope with the problem of continuous distraction in a multi-

billion display world.

4.4 Summary

In this chapter, we have introduced the various modalities that can be used for eye

tracking, with their positive and negative aspects, and came to the conclusion that

for most applications that should come in widespread use, videooculography is most

probably the best, due to being unobtrusive and fast. We have further briefly surveyed

the landscape of gaze-based interaction and associated issues, and introduced gaze-

contingent and attentive user interfaces in more detail. We will conclude the chapter

by stating challenges and opportunities ahead, with one opportunity being addressed

later in this work.

4.5 Challenges and Opportunities

4.5.1 Gaze-based object tracking

At the end of Chapter 2, Introduction to Visual Processing, in Section 2.10.2, Object

tracking with support of the visual system we have already introduced the idea to utilise

the power of the human visual system to follow objects for the purpose of tracking

them. Such a system would fall into the category of gaze-contingent interaction.

Furthermore, it would go beyond what is proposed in e.g. [Bruder et al., 2019], in the

sense that it would need to handle multi-timepoint images on-the-fly, and combine

it with an extension of the Radial Pursuit technique presented in [Piumsomboon

et al., 2017]. See Chapter 11, Bionic Tracking: Using Eye Tracking for Cell Tracking

for details.
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4.5.2 Robust Pupil Segmentation

If eye tracking were to become a widely-used and reliable input modality, the first

step, the detection of the pupil from a video stream, would need to be highly reliable.

While beyond the scope of this work, we have started preliminary work on auto-

matic realtime segmentation of pupil images using genetic algorithms. This work

was motivated by the algorithm for pupil segmentation proposed in [Kassner et al.,

2014] and used in the Pupil software failing in the case of pupil images larger than

640x480 pixels, as it relies on Canny edge detection, which produces way too many

false positives at high resolution.





What the computer in virtual reality enables

us to do is to recalibrate ourselves so that we

can start seeing those pieces of information

that are invisible to us but have become

important for us to understand.

—Douglas Adams

Part II:

VR and AR for Systems Biology





Chapter 5:

scenery — VR/AR for Systems Biology

The work presented in this part has been partially published in:

Günther, U., Pietzsch, T., Gupta, A., Harrington, K.I.S., Tomancak, P., Gumhold,

S., and Sbalzarini, I.F.: scenery: Flexible Virtual Reality Visualization on the Java

VM. IEEE VIS, Vancouver, 2019. arXiv preprint 1906.06726, DOI 10.1109/VI-

SUAL.2019.8933605.

In the chapters before, we have highlighted the needs of systems biology for

flexible ways of harnessing human-computer interaction, high-fidelity, customisable

visualisations, and reproducibility.

In order to address these needs, we have chosen to develop our own visualisation

framework: scenery, enabling prototyping and the delivery of multimodal, customis-

able, and interactive scientific visualisations, running on top of the Java Virtual

Machine (JavaVM/JVM). scenery can be used on both desktop machines, and on

distributed setups, such as the ones commonly used for CAVE systems or Powerwalls.

In this chapter, we are going to introduce the framework, starting with the devel-

opment of ClearVolume [Royer et al., 2015], which later ignited the development of

scenery. Subsequently, we outline the exact design goals and decisions made along

the way, and compare scenery to existing frameworks and related works, followed by

a high-level description of its components.

After this chapter, we will introduce scenery’s subsystems in more detail.

5.1 ClearVolume

The work presented in this section has been developed in collaboration with Loïc

Royer, Martin Weigert, Nicola Maghelli, and Florian Jug, Myers Lab, MPI-CBG,

and has been published in:

Royer, L.A., Weigert, M., Günther, U., Maghelli, N., Jug, F., Sbalzarini, I.F. and

Myers, E.W.: ClearVolume: open-source live 3D visualization for light-sheet mi-

croscopy. NatureMethods, 2015.

https://arxiv.org/abs/1906.06726
https://doi.org/10.1109/VISUAL.2019.8933605
https://doi.org/10.1109/VISUAL.2019.8933605
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Figure 5.1: ClearVolume running inside
Fiji, showing a multicolour Drosophila
melanogaster brain dataset (courtesy of
Tsumin Lee, Howard Hughes Medical Insti-
tute, Janelia Farm Research Campus), with
a by-slice viewer inset. Reused from [Royer
et al., 2015].

ClearVolume is a visualisation library enabling live, realtime visualisation of light-

sheet microscopy data, with the capability of being integrated directly into an existing

microscopy setup — ClearVolume can be used in conjunction with commonly-used

microscopy control software, like MicroManager[Edelstein et al., 2010] or National

Instruments LabVIEW.

The discerning features of ClearVolume are:

• Local and remote visualisation — the data acquired on the microscope can be

visualised right on the instrument’s control computer, or on a remote machine,

with the data transferred over the network, albeit uncompressed. Especially when

working with genetically modified organism, where the instrument has to be lo-

cated in an access-controlled S1 or S2 area, remote viewing proved to be a practical

tool to check on an experiment’s progress, or on specimen health.

• Source/sink architecture — the data acquired in ClearVolume can be sent through

a processing pipeline on the GPU, with the visualisation part at the end of the

pipeline, and a number of processing steps before. These processing steps can

include, e.g., image sharpness measurement, sample drift measurement, or Lucy-

Richardson deconvolution.

• Multipass maximum projection (developed by Martin Weigert) — rendering large

datasets in full resolution can be quite taxing on GPUs. To alleviate this prob-

lem, we have developed a new way of sampling along a traced ray, based on low-

discrepancy sequences (such as the Fibonacci sequence). When multipass maxi-

mum projection rendering is active, the first samples along the ray are taken very

coarsely, while subsequent samples are placed in a way to fill “holes” along the ray

most efficiently, yielding a significant speedup (see Figure 5.2 for a sketch of the

principle).
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• Sample tracking (developed by the author) — utilising the source/sink architecture

for data, we developed a simple center-of-mass tracking algorithm that stabilises

the sample in the center of the user’s field of view. The tracking can be enabled or

disabled at any point in time (see Figure 5.3c).

• Image quality measurement (developed by Martin Weigert and Loïc Royer) —

again utilising the source/sink architecture for data, we added a flexible evaluator

of image sharpness to the system, where in the default settings the Tenengrad

image sharpness measure is used (see Figure 5.3c), and

• Fiji & KNIME integration (developed by Florian Jug) — as ClearVolume sup-

ports visualising volumetric data from a microscope or any other source, we have

developed plugins for Fiji[Schindelin et al., 2012] and KNIME, in addition to the

integration with MicroManager[Edelstein et al., 2010] and National Instruments

LabVIEW (see Figure 5.1).

n

naive

q1 = 1

q2 = 2

q3 = 3

q4 = 4

q5 = 5

q6 = 6

q7 = 7

q8 = 0

Fibonacci

q1 = 5

q2 = 2

q3 = 7

q4 = 4

q5 = 1

q6 = 6

q7 = 3

q8 = 0

Figure 5.2: Multipass maximum projection
— In the naive approach, consecutive sam-
ples along a ray are taken in single-step in-
crements. With low-discrepancy sampling
based on the Fibonacci sequence, not-yet
sampled intervals along the ray are filled
in most efficiently. In the figure, consecu-
tive samples are shown top-to-bottom, with
the current sample being highlighted in red.
Reused from [Royer et al., 2015].

In the time since its publication, ClearVolume has proven to be a useful tool for a

multitude of use cases, such as microscope development and usage [Royer et al., 2016,

Kumar et al., 2018], method development for live imaging [Boothe et al., 2017], and

the visualisation of correlative light microscopy/electron microscopy data [Russell

et al., 2016].

However, ClearVolume only supports the visualisation of a single — although

multicolour — registered volumetric dataset, which moreover needs to fit into GPU

memory. With the ongoing foray of more complex computational methods into

systems biology and imaging, however, volumetric data is not the only kind of data

that needs to be visualised: segmentations, graph data, textual information, etc. need

to be supported as well. In addition, infrastructure to support volumetric data that

does not fit into the GPU memory fully needs to be supported. This in turn requires

different rendering architecture, supporting complex scenes, filled with volumetric,

geometric, and custom kinds of data. Furthermore, we also recognised the need for

integration of various interaction hardware, such as head-mounted displays (HMDs)
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In light of the needs we have identified in the previous section, we have added the

following design goals for scenery that go beyond the capabilities of ClearVolume:

• Mesh rendering — segmentation results or simulation results are also often pro-

duced in a mesh format, so the software also has to support these. Furthermore,

localisation microscopy produces collocation points, which can also be interpreted

as vertices and rendered as such.

• Out of core volume rendering— the size of volumetric data produced in imaging

experiments or simulations is constantly growing, while e.g. bandwidth — be it

network or memory bandwidth — and graphics memory do not grow at the same

rate. As a result, the software has to support datasets that do not fit into the GPU

memory anymore.

• Distributed Rendering — the software needs to be able to run on multiple ma-

chines in order to distribute the rendering workload, and synchronise scene con-

tent, e.g. for running on Powerwall systems[Woodward et al., 2001, Papadopoulos

et al., 2015] or CAVE systems[Cruz-Neira et al., 1992].

• Cross Reality — the software has to support both virtual and augmented reality

rendering modalities, such as head-mounted displays (HMDs).

• Vulkan/OpenGL support— To harness the power of current GPUs, the software

should support the state-of-the-art rendering APIs Vulkan, and also provide a

fallback to OpenGL 4.0+ in case Vulkan is not supported on the platform1. 1 A higher OpenGL version than 4.1 would
also be desirable, but macOS only supports
up to 4.1, unfortunately. OpenGL, together
with OpenCL, is actually deprecated since
macOS 10.14Mojave. As Apple does not na-
tively support the Vulkan API, we are going
to use a wrapper, MoltenVK, that translates
Vulkan calls to Apple’s proprietary Metal
API to support future development on the
macOS platform.

5.3 State of the Art

Table 5.1 shows a comparison of scenery with other state-of-the-art software packages

in terms of our design goals.

We find that none of the existing software packages satisfy our design goals fully,

though VTK comes closest. VTK is widely used and stable, and actually provides

wrapper code for use from the Java VM. The wrappers are, however, difficult to build

and maintain. VTK also does not offer straightforward modifications of the rendering

code. VTK’s rendering routines have been updated recently to use OpenGL 2.1

[Hanwell et al., 2015], but that OpenGL version does still enable the use of modern

technologies like compute shaders to fully exploit of current GPUs.

The CAVE development libraries Vizard and CAVElib offer out-of-the-box vir-

tual reality support, but are not able to render volumetric data, nor are they extensible

enough to add such functionality as a plugin. They also do not integrate with the Fiji

ecosystem and the Java VM and are closed-source software, with significant license

costs for all users.

The game engines Unity and Unreal in turn offer a wide variety of plugin-based

extensions, albeit most of them are neither free nor open-source software. Both can

be extended enough to facilitate volume rendering, but out-of-core volume rendering

has not been shown yet. Both also support virtual reality and distributed rendering,

although distributed rendering is an experimental feature at the time of writing. They

also do not offer integration into the Fiji ecosystem or the Java VM.
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Vaa3D and it’s extension, TeraFly, does offer plugin-based extensibility, rendering

of volumetric data — even out of core — but falls short on the virtual reality and

distributed rendering support. Vaa3D also does not offer Fiji/Java VM integration,

although there exists a Fiji plugin that can import Vaa3D data.

The commercial big data microscopy packages, Amira, Arivis, and Imaris all offer

similar feature sets, with support for out-of-core volume rendering, mesh data sup-

port, even virtual reality. With the exception of Imaris, they use older graphics APIs

than DirectX12/Vulkan or OpenGL 4.x and do not support distributed rendering

setups. Imaris also offers Fiji integration, which the other two do not. However, non

of them are open-source software and they do not support changes to their rendering

routines.

Zeiss ZEN and is Zeiss’ default microscopy acquisition software. It supports

volumetric data and rendering of it, although not out-of-core. Since recently, ZEN

also offers plugin-based extensibility, but is not open-source software and does not

integrate with Fiji or the Java VM.

Finally, BigDataViewer has introduced an open-source architecture for access

to large image datasets that do not fit into the main memory of a given machine,

and are loaded on-the-fly from hard drives or even over the network. BigDataViewer

supports by-slice rendering of volumetric data (thereby excluding VR rendering), but

no meshes, and is tightly integrated with Fiji. We are going to use BigDataViewer’s

technology to implement out-of-core volume rendering in scenery.

Table 5.1: scenery compared to other software packages.

Software Type

F
re

e/
o

p
en

-s
ou

rc
e

V
ol

u
m

es

O
u

t-
of

-c
or

e
re

n
d

er
in

g

M
es

h
es

D
is

tr
.

R
en

d
er

in
g

V
R

E
xt

en
si

b
le

C
ro

ss
-p

la
tf

or
m

O
G

L
4.

1/
D

3D
12

/V
u

lk
an

F
iji

in
te

gr
at

io
n

Amira Big data, Microscopy - • • • - • - - - -

Arivis Big data, Microscopy - • • • - • • - - -

BigDataViewer [Pietzsch et al., 2015] Big data, Microscopy • • • - - - • • - •

Imaris Big data, Microscopy - • • • - • • - • •

Vaa3D [Bria et al., 2016] Big data, Microscopy • • • • - - • • • -

ClearVolume [Royer et al., 2015] Microscopy • • - - - - • • • •

Zeiss ZEN Microscopy - • - - - - • - - -

Unity Game engine - - - • • • • • • -

Unreal Engine Game engine - - - • • • • • • -

Vizard CAVE software - - - • • • • - • -

Mechdyne CAVELib CAVE software - - - • • • • • • -

VTK [Hanwell et al., 2015] Scivis engine • • - • • • • • - -

scenery Scivis engine • • • • • • • • • •
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Of the mentioned software packages, Amira, Arivis, Imaris, ZEN, Vizard, and

CAVELib only run on a subset of our list of target platforms (Windows, macOS,

Linux).

5.4 Implementation Challenges

5.4.1 Language

The first implementation challenge is finding the right programmings language. The

obvious choice for graphics applications would be C/C++, or newer/safer alternatives,

such as Rust2. 2 Rust is a new multi-paradigm program-
ming language focused on memory safety,
see rustlang.org.One of our goals, however, is tight integration with the ImageJ ecosystem, which is

targeting the JavaVM. While the JavaVM itself does not have the reputation of being

a harbour for high-performance applications, which usually resort to C/C++, it offers

a less steep learning curve for new users, and extremely well-designed abstractions,

e.g. for multithreading between the different platforms we are targeting, making

platform-specific code unnecessary in most cases.

We additionally view our framework as an interesting experiment on how to bring

high-performance graphics to the JavaVM — a task that should now not be as difficult

as before anymore, owing to pipelined graphics/compute APIs such as OpenCL,

CUDA, and Vulkan.

We aim for excellent interoperability with the ImageJ ecosystem, yet want to use

a functional language to make it easy to reason about the code, and avoid the large

amounts of boilerplate code usually necessary in pure-Java projects. Within the realm

of JavaVM-based languages, the contenders3 therefore are 3 As of early 2016, when the project was
started. Since then, other languages, such
as Ceylon, have matured a lot — and would
probably now be considered as well.• Clojure, a Lisp dialect,

• Scala, a functional and object-oriented language developed at EPFL,

• Kotlin, a language using both functional and object-oriented paradigms by the

company JetBrains.

Clojure unfortunately has a very steep learning curve, resulting in a small pool

of experts, and Scala makes usage from existing Java code difficult. Kotlin on the

other hand provides a useful functional feature set, as well as low entry barriers,

and a well developed, open-source and commercially maintained IDE 4. Kotlin is 4 see kotlinlang.org.

additionally useable as a scripting language (see https://github.com/hbrandl/kscript).

Since 2017, Kotlin is also a first-class citizen on the Android platform, which has since

significantly boosted its popularity, making it one of the most popular newcomer

languages, as determined by the PyPL index (PopularitY ofProgrammingLanguages,

pypl.github.io).

Finally, returning to our previous remark about native languages vs. the JavaVM:

In addition to targeting the JavaVM, Kotlin also offers to transpilation to JavaScript

and to actual native code (via LLVM [Lattner and Adve, 2004]), making our design

choice more future-proof, in the case that the JavaVM should at some day present

https://rust-lang.org
https://kotlinlang.org
https://github.com/hbrandl/kscript
https://pypl.github.io
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unsurmountable issues, or should we decide to include the web browser in our list of

deployment targets.

5.4.2 Graphics APIs

The graphics API is the API that makes talks to the GPU. Historically — and before

graphics cards were actually called GPUs — the developer would manipulate the

geometry to be shown on screen on the CPU, and the graphics card executes hard-

wired in-silicon graphics functions that could not be changed. OpenGL is an example

for an API that originated in this era, back when graphics cards did not offer actual

programmability, but would just execute a fixed set of instructions quicker than a

regular processor could.

OpenGL has originally been developed by Silicon Graphics (SGI) in the early

1990’s for their graphics workstations. Originally intended for CAD/CAM applica-

tions, OpenGL soon became the go-to API for developing cross-platform graphics

applications and games.

Since the early days of OpenGL, and also after further development had been

handed over to the Khronos Group, OpenGL’s development model has been based

around the definition of a standard, augmented by extensions approved by the

Khronos Group’s Architecture Review Board (ARB). New versions of the stan-

dard were then essentially made out of sets of mandatory ARB extensions a GPU

would have to support to be declared compatible with OpenGL x.y.

Shader-based rendering, and with that, more programmability of the graphics

pipeline, has been introduced into OpenGL fully with OpenGL 2.1, with further

extensions made with 3.3 and 4.1. What has not changed since the beginning though,

is the basic programming model, where the programmer modifies a global state, and

render objects either directly (in the ancient days of OpenGL 1.x), or with the help

of vertex buffer objects (VBOs). This programming model mapped very well to the

early, fixed-function graphics cards.

Unfortunately, this programming model does not map well to current-generation

GPUs, which have become massively parallel computing machines, with some sport-

ing 4000 individual cores and more. These cores do not have the flexibility of regular

CPUs, but eclipse them easily in specialty disciplines, such as the floating-point com-

putations needed for matrix and vector math operations heavily used in both graphics

and machine learning.

In 2016, the Khronos Group has published a new graphics API named Vulkan

solving the issues with OpenGL, and essentially starting with a clean slate. Vulkan

provides a much deeper, close-to-metal access to the GPU than OpenGL does, with

the main differences being:

• More verbose code with less checks done by the driver, leading to more clarity

about what is done, when, and how. Now, however, the developer needs to take

greater care in adhering to the specification, as it clearly states that the driver is

allowed to crash an application in case it is behaving out-of-specification.
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• Better options for validation on the developer side. While the driver does not

do many checks anymore, they can be activated on the application side by the

Validation Layers, which can impact performance quite badly, but provide highly

detailed information about where and when a problem occured, giving the devel-

oper quicker insight how to fix that problem.

• Possible higher performance by caching command buffers containing rendering

commands, instead of scene iteration and draw call issuing with every frame.

Command buffers can also be created by multiple threads in parallel, but need to

be submitted serially.

• Resources, such as textures and buffers, and their descriptors, have to be allocated

and managed on a much more fine-grained level than with OpenGL, but can be

accessed directly, and do not need to be bound to texture units like in OpenGL.

• Vendor-independent (Homogeneous) Multi-GPU support (since Vulkan 1.1).

• A Conformance Test Suite (CTS) for the graphics drivers, ensuring that a Vulkan-

based application behaves identically on all drivers.

• Shaders are not loaded from OpenGL Shading Language (GLSL) text files, but

compiled SPIR-V byte code, with interesting new possibilities for introspection

and reflection, e.g. via the tool/library spirv-cross.

From this list, it is clear that with great power comes great responsibility — with

more effort required by the developer when writing Vulkan code, although that

typically is more than compensated by better performance and much better debugging

options.

During early development, we recognised that the OpenGL and Vulkan APIs do

not map very well onto each other, as Vulkan operates on a much lower level. For

this reason, scenery has been written with flexibility regarding the rendering backend

in mind: It should be easy for the developer to replace one of the existing rendering

backends with an entirely new one.

scenery now includes both an OpenGL 4.1 backend for use on the macOS oper-

ating system, and a Vulkan backend for use on Windows and Linux. The contract

between the core library and the rendering backend is thin, making it very easy to

create new rendering backends, with offline rendering via an external raytracing soft-

ware, such as Embree[Wald et al., 2014], OSPray[Wald et al., 2017] or OptiX [Parker

et al., 2013] being a future possibility.

5.4.3 Interfacing with Graphics API on the Java VM

Current versions (8.0+) of the Java Virtual Machine do not provide Java-native

bindings to graphics APIs like Direct3D, OpenGL or Vulkan, but 3rd-party libraries

exist to bridge this gap. We have chosen two projects for developing the OpenGL

and Vulkan backends of scenery:

• JOGL (www.jogamp.org) provides an object-oriented Java interface to the

OpenGL API in all of its current versions. In that, JOGL’s interfaces are written

in a very idiomatic way, which partially diverge quite far from the original

OpenGL C API. They do, however, simplify the use for the developed software,

https://jogamp.org
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especially in situations where it has to be embedded into an existing GUI

application. JOGL is used for the OpenGL backend in scenery.

• LWJGL3 (www.lwjgl.org) provides a Java interface to the OpenGL and Vulkan

APIs in all of their current versions. In contrast to JOGL, LWJGL3 keeps its API

very close to the original, and does not wrap a normal C API in an object-oriented

manner, but leaves that aspect to the developer, in case desired. This approach

results in more flexibility, at the cost of higher effort for embedding into existing

applications. LWJGL3 is used to develop the Vulkan backend in scenery. Mem-

ory management for Vulkan-related structures is mostly manual, but off-heap:

Off-heap memory is memory that is not managed by the JavaVM. In the case of

LWJGL3, on Windows malloc() is used for allocations, while on Linux and

macOS, the high-performance memory allocator jemalloc (jemalloc.net](http://-

jemalloc.net)) is used. Both allocators provide a better alternative to using Java’s

Direct Byte Buffers that incur a large performance penalty over raw malloc()

calls, and are also a sparse resource, available only in a size determined at program

startup. In LWJGL3, a thread-local memory stack is provided in addition, en-

abling high-speed temporary allocations. For details about memory allocation

strategies in LWJGL3, see blog.lwjgl.org/memory-management-in-lwjgl-3/. In

short, management of that memory is up to the developer.

Unfortunately, JOGL is not actively maintained anymore, and we aim to fully

switch to the LWJGL3-powered Vulkan backend in the future.

5.5 Component overview
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Figure 5.4: A high-level overview of
scenery’s components.

https://lwjgl.org
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At the outermost architectural layer, the scenery framework consists of seven main

software components:

• the Scene, represents the content that needs to be visualised as directed acyclic

graph (scenegraph),

• the Renderer, taking care of the visual representation of the scene’s contents,

• the Input Handler for responding to input events triggered by the user,

• the External Hardware Handlers, for handling, e.g., head-mounted displays or

tracking systems,

• thePublishers andSubscribers, which track changes, e.g. to a Scene, and disseminate

them to connected clients over the network in a distributed rendering setup,

• the Hub, tying all these systems together and allowing the system to query infor-

mation about each components state, and

• the Settings, an instance-local database of default and user-defined settings that

may also change during runtime.

The construction and interplay of all the components is handled by the class

SceneryBase, which a user can directly subclass to create own applications.

In the next chapters, we are going to introduce the most important subsystems

of scenery, namely those for rendering, input handling and integration of external

hardware, and for distributed rendering. These chapters are followed by a brief

description of the remaining subsystems in scenery. We conclude the description of

scenery with Chapter 10, Future Development Directions.

5.6 Software Availability

scenery is available as free and open-source software under the LGPL 3.0 license at

github.com/scenerygraphics/scenery.

https://github.com/scenerygraphics/scenery




Chapter 6:

Rendering

After having introduced a high-level overview of scenery in the previous chapter, in

this chapter, we are diving deeper into the framework, describing each of its compo-

nents. We start with scenegraph-based rendering and traversal:

6.1 Scenegraph-based rendering

A scenegraph is a data structure that organises objects in a hierarchical manner, in

a tree or graph structure, where each node in the graph has its own transformation

properties. In that way, it is very easy to describe spatial and organisational relations

between objects, such as a car tyre belonging to a car, and the tyre moving with the

parent object car (inheriting its transformations), when it moves.

In general, a scenegraph can contain connections between multiple nodes. In

scenery, we use a scenegraph approach that is closer to a tree representation, because

that structure more easily enables parallel scene element discovery [Boudier and

Kubisch, 2015].

If bounding boxes are stored along with the nodes, the scenegraph can easily be

extended to also include bounding volume hierarchies that can enable more efficient

collision detection1 or frustum culling2. 1 For general collision detection without
additional acceleration data structures like
bounding volume hierarchies, the whole
scenegraph has to be traversed for each ob-
ject that is checked for collisions, leading to
a 𝒪(𝑛2) complexity. In BVHs, objects are
guaranteed not to overlap, if their parent
bounding volumes to not overlap, which can
greatly lower the candidate pool, speeding
collision detection up tremendously.
2 Frustum culling is the process of determin-
ing the objects that are currently in the cam-
era’s view frustum, and rendering only those.
Acceleration data structures can help with
determining the inside set in the same man-
ner as in collusion detection.

6.1.1 Traversal

Scenegraphs can be traversed in a variety of ways, such as depth-first traversal. Depth-

first traversal is also used by default in scenery. The renderer can make further opti-

misations, such as drawing it in front-to-back order, where spatial sorting is applied

after gathering nodes, e.g. to draw transparent objects in the correct way.

The exception to normal scenegraph traversal is instancing (described in detail

in Section 6.2.7, Instancing), where copies of a node are not added as children, but

to the special instances property as performance optimisation. See the section on

instancing for details.
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6.1.2 The Nodes

Nodes are the elements of the scenegraph, and most of them are entities that can

be rendered on-screen. These nodes are organised into an ordered, acyclic graph of

parent-child relationships. Operations, such as mathematical transformations —

such as translations, rotations, or scalings — are automatically propagated to a Nodes

children.

For actually organising nodes into a scene, a special node type exists, the Scene.

Nodes attached to a top-level Scene element as children become the top-level

elements of the scene, and can in turn have their own children.

As a short example, aScenemight contain aNodeCell, which has childrenNucleus

and ER. The transformations of Nucleus and ER are then relative to Cell, and when

the Cell moves or rotates, so will Nucleus and ER.

6.1.3 Transforms

A Node can have the following transforms:

• position – the position of the Node in 3D space

• scale – scaling along the X, Y, and Z axis

• rotation – a quaternion3 describing the Nodes orientation in space. 3 Quaternions are a 4-dimensional extension
of complex numbers, that can describe rota-
tions in space. While rotations may as well
be represented as matrices, such representa-
tions suffer from two problems: a) matrices
cannot be smoothly interpolated and b) they
may lead to gimbal locking, where the sine
or cosine of an angle in a rotation matrix
lead to a zero entry, making the transforma-
tion loose a degree of freedom — further
multiplications will not be able to achieve a
non-zero rotation around this axis. Quater-
nions do not suffer from both problems,
they are however not as intuitive as other ro-
tation representations such as Euler angles.
In scenery, helper routines are provided to
convert Euler angles or matrices to quater-
nions for user convenience.

• model – local transforms how this Node is positioned with respect so its parent

• world – global transforms that include the model transform, as well as the

parents world transform

The transforms are calculated by a Nodes updateWorld(recursive:

Boolean, force: Boolean) routine, and stored to the model and world

properties. If recursive is specified, the routine will descend to all children,

calculate their transforms, and mark them as updated. If any of the transforms of a

Node change during runtime, it will get its needsUpdate and needsUpdateWorld

flag set, to be picked up on the next update run.

Some nodes might want to construct their own model and world matrices,

overriding the behaviour of updateWorld: this can be achieved by setting the

wantsComposeModel flag to false.

6.2 The Rendering Procedure in scenery

In scenery, the contract with the renderer is thin. A renderer needs to:

• be able to render something (render() function),

• initialize a scene (initializeScene() function),

• take screenshots (screenshot() function),

• resize a (eventually existing) viewport (reshape() function),

• become embedded inside an existing window, e.g. from JavaFX or Swing

(embedIn property),

• change the rendering quality (setRenderingQuality() function),
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• toggle push mode (pushMode property, also see Section 6.2.3, PushMode),

• hold settings (settings property),

• hold a window (window property), and

• close itself.

This design decision was made such that scenery can support a variety of different

rendering backends, after discovering that OpenGL — which scenery started with as

only renderer — and Vulkan do not map well to each other. With this architecture

we are more easily able to extend rendering support in the future to e.g. software

renderers, or external ray tracing frameworks.

The Renderer interface in scenery is defined as:

1 abstract class Renderer : Hubable {
2 abstract fun initializeScene()
3 abstract fun render()
4 abstract var shouldClose: Boolean
5 abstract var initialized: Boolean
6 protected set
7 abstract var settings: Settings
8 abstract var window: SceneryWindow
9 abstract var embedIn: SceneryPanel?

10 abstract fun close()
11 fun screenshot() {
12 screenshot(””)
13 }
14

15 abstract fun screenshot(filename: String = ””)
16 abstract fun reshape(newWidth: Int, newHeight: Int)
17 abstract fun setRenderingQuality(quality: RenderConfigReader.↩

RenderingQuality)
18 abstract var pushMode: Boolean
19 abstract val managesRenderLoop: Boolean
20

21 abstract var lastFrameTime: Float
22 abstract var renderConfigFile: String
23

24 // more functions follow here
25 ...
26 }

Listing 6.1: Renderer interface definition.

A renderer may also run in its own thread, but must indicate that properly by

setting managesRenderLoop, as e.g. done by the OpenGL renderer. Otherwise, the

renderer will run synchronous with scenery’s main loop.

A renderer may store its own metadata related to a Node in its metadata field.

This field is cleared upon the removal of a Node from the scene. The metadata must

be uniquely named, such that renderers — which could be running in parallel — do

not interfere with each other’s metadata.

At the time of writing, scenery includes a high-performance Vulkan renderer,

used by default on Windows and Linux, and an OpenGL renderer, used by default

on macOS.
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6.2.1 Windowing Systems

On the Java VM, the main options for drawing (to) windows and related elements are

AWT, Swing, and JavaFX. In scenery, the currently supported mode for embedding

into existing windows is Swing, which is supported by both the OpenGLRenderer

and the VulkanRenderer.

In development, we had originally started out with using JavaFX, the most modern

UI toolkit for the Java VM. JavaFX however has the problem that it works entirely

GPU-based, but unfortunately does not allow the developer to directly access GPU

resources, keeping them hidden and inaccessible. The consequence: Images already

generated on the GPU have to be transferred to main memory, and are then again

uploaded to the GPU as a texture by JavaFX’s internal mechanisms. As bandwidth

is usually a limited resource, this leads to severe performance issues, especially when

rendering at higher resolutions beyond full HD (1920x1080). Recently, a new project

named DriftFX 4 appeared, which aims to solve this issue by introducing operating 4 The DriftFX project (github.com/eclipse-
efx/efxclipse-drift/) provides an extension
for JavaFX to allow direct use of OpenGL.
As this project appeared only very recently,
we have not yet evaluated it.

system-native OpenGL rendering surfaces into JavaFX, circumventing the double-

transfer issue just described. Our hope is we can harness this project in the future,

and eventually extend it to support Vulkan as well.

6.2.2 Uniform Buffer Serialisation and Updates

Uniforms are properties that are communicated to the shader program, and are very

similar to C-style structs. Before the advent of OpenGL 4.x and Vulkan, single

uniform variables had to be stored and updated individually, leading to a large API

overhead. Since OpenGL 4.x and Vulkan, Uniform Buffer Objects (UBOs) are

available — instead of storing and updating single uniforms, UBOs are buffers of

uniforms, which are updated together, and sent to the GPU. In contrast to single

uniforms, this provides two main benefits:

• less API overhead by being able to serialise many uniforms into a single buffer,

and uploading them to the GPU in one API call, and

• multiple-rate updates of different UBOs — before, uniforms had to be set every

time they were used in a shader, now they can be updated only when needed, and

for different UBOs, this can mean different update rates, further reducing the

original overhead.

In scenery, UBOs belonging to a Node are tentatively updated with each frame

before the main rendering loop, guaranteeing that a Node that has been added to the

scene graph will have its transformations and properties ready at render time.

Serialisation of a Node’s transformations and properties are handled by the class

UBO. In that class, member variables of the UBO are stored as a LinkedHashMap of

a string (for the property name), and a lambda of type () -> Any for the value of

the property. This mechanism enables determining values of properties that change

during runtime, without rewriting the contents of the map. Order in the struct does

matter, which is why a linked map is being used. The actual order of the properties

is determined via shader introspection. For common data types (floats, doubles,

https://github.com/eclipse-efx/efxclipse-drift/
https://github.com/eclipse-efx/efxclipse-drift/
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integers, shorts, booleans, vectors, and matrices), UBO will determine the necessary

size and offset of a certain property, and write the contents of the property to a

ByteBuffer, according to OpenGL’s and Vulkan’s std140 buffer rules, storing

data in the same memory layout as C-style structs.

After an UBO has been serialised for the first time, a hash is calculated from its

current members. Upon revisiting this UBO, the previous member hash is compared

with the current one, to determine whether re-serialisation is necessary or not. In case

re-serialisation is not necessary, the buffer backing the UBO will remain untouched

and continued to be used in that state. If it needs to be re-serialised, it will also be

re-uploaded to the GPU.

6.2.3 Push Mode

Push Mode is a rendering optimisation especially for viewer-type applications, where

continuous scene changes are not expected. In push mode, the renderer will keep

track of updated UBOs (as described in Section 6.2.2, Uniform Buffer Serialisation

and Updates) and modified scene contents, and only render a frame in the following

cases:

• an UBO has been updated,

• an object has been added or removed from the currently visible objects, or

• an object that is visible has changed it’s properties (e.g. uses a different material or

texture now)

Buffer swaps may however still take place, so that special care is taken to update all

swapchain images before stopping to actively render. This mechanism is implemented

using a JDK-provided CountDownLatch that starts with the number of swapchain

images, and is counted down by one for each render loop pass. When the latch reaches

zero, rendering is discontinued until the next update happens.

The push mode mechanism also guarantees that all updates to the scene’s content

are obeyed, as it is not tied to e.g. input events, which might be caused by a myriad of

devices, but the actual updates of scene contents or UBOs.

6.2.4 Configurable Rendering Pipelines

scenery provides configurable rendering pipelines which can contain multiple passes

over the scene’s geometry, or postprocessing (fullscreen) passes.

The renderpasses are read from a YAML file. A simple example for a forward

shading pipeline with HDR postprocessing can be seen in Listing 6.2: In this simple

pipeline, the scene contents are rendered in a single pass into the 16bit RGBA floating

point rendertarget HDR (line 5) by the Scene rendering pass (line 11). The HDR

postprocessing is done in the PostprocessHDR pass (line 18), which outputs to the

viewport.

1 name: Forward Shading
2 description: Forward Shading Pipeline, with HDR postprocessing
3
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4 rendertargets:
5 HDR:
6 size: 1.0, 1.0
7 attachments:
8 HDRBuffer: RGBA_Float16
9 ZBuffer: Depth32

10

11 renderpasses:
12 Scene:
13 type: geometry
14 shaders:
15 - ”Default.vert.spv”
16 - ”Default.frag.spv”
17 output: HDR
18 PostprocessHDR:
19 type: quad
20 shaders:
21 - ”FullscreenQuad.vert.spv”
22 - ”HDR.frag.spv”
23 inputs:
24 - HDR
25 output: Viewport
26 parameters:
27 Gamma: 1.7
28 Exposure: 1.5

Listing 6.2: Simple forward shading rendering pipeline definition.

In the render config file, both rendertargets and renderpasses are defined. A ren-

dertarget consists of a framebuffer name, a framebuffer size, and a set of attachments

of the framebuffer that can have different data types. A renderpass consists of a pass

name, a type – geometry or quad (for postprocessing) –, a set of default shaders, and

defined inputs and outputs. The renderpass may also define a set of shader parameters,

which are handed over to the shader via the UBO mechanism, and supports all the

data types supported by UBO.

The definition must contain one renderpass that outputs to Viewport, otherwise

nothing will be rendered.

From the definition in the YAML file, RenderConfigReader will try to form a

directed acyclic graph (DAG). The resulting graph for the forward shading example

in Listing 6.2 is shown in Figure 6.1.

Scene PostprocessHDR Viewport

Nodes

HDR:
HDRBuffer
ZBuffer

Figure 6.1: The graph representation of the
ForwardShading rendering pipeline. Scene
passes are shown with red background, post-
processing passes with orange background.
Light blue parallelograms are framebuffers.
Solid black arrows signify transition from
one pass to the next, grey arrows show data
dependencies, with squares standing for
writes, and circles for reads. Dotted arrows
show scenegraph accesses.

If a DAG cannot be formed from the given definition, RenderConfigReader

will emit an exception.
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Render configs are switchable during runtime and switching will cause the ren-

derer to destroy and recreate its rendering framebuffers — while all other loaded

textures and resources are preserved. This mechanism is e.g. used to toggle stereo ren-

dering during runtime, and can facilitate rapid prototyping. In addition, the renderer

can watch used shader files actively for changes, try to compile them, and, if com-

pilation and linking is successful, replace them on-the-fly. To toggle this behaviour,

Renderer.watchShaders() can be called.

1 name: Deferred Shading
2 description: Deferred Shading, with HDR postprocessing and ↩

FXAA
3 sRGB: true
4

5 rendertargets:
6 GeometryBuffer:
7 attachments:
8 NormalsMaterial: RGBA_Float16
9 DiffuseAlbedo: RGBA_UInt8

10 ZBuffer: Depth32
11 ForwardBuffer:
12 attachments:
13 Color: RGBA_Float16
14 AOBuffer:
15 size: 0.5, 0.5
16 attachments:
17 Occlusion: R_UInt8
18 AOTemp1:
19 size: 1.0, 1.0
20 attachments:
21 Occlusion: R_UInt8
22 AOTemp2:
23 size: 1.0, 1.0
24 attachments:
25 Occlusion: R_UInt8
26 HDRBuffer:
27 attachments:
28 Color: RGBA_Float16
29 Depth: Depth32
30 FXAABuffer:
31 attachments:
32 Color: RGBA_UInt8
33

34 renderpasses:
35 Scene:
36 type: geometry
37 renderTransparent: false
38 renderOpaque: true
39 shaders:
40 - ”DefaultDeferred.vert.spv”
41 - ”DefaultDeferred.frag.spv”
42 output: GeometryBuffer
43 AO:
44 type: quad
45 parameters:
46 Pass.displayWidth: 0
47 Pass.displayHeight: 0
48 occlusionRadius: 1.0
49 occlusionSamples: 4
50 occlusionExponent: 2.0
51 maxDistance: 1.0
52 bias: 0.1
53 algorithm: 0
54 shaders:
55 - ”FullscreenQuadFrustum.vert.spv”

56 - ”HBAO.frag.spv”
57 inputs:
58 - GeometryBuffer
59 output: AOTemp1
60 AOBlurV:
61 type: quad
62 parameters:
63 Pass.displayWidth: 0
64 Pass.displayHeight: 0
65 Direction: 1.0, 0.0
66 Sharpness: 40.0
67 KernelRadius: 8
68 shaders:
69 - ”FullscreenQuad.vert.spv”
70 - ”HBAOBlur.frag.spv”
71 inputs:
72 - GeometryBuffer.ZBuffer
73 - AOTemp1
74 output: AOTemp2
75 AOBlurH:
76 type: quad
77 parameters:
78 Pass.displayWidth: 0
79 Pass.displayHeight: 0
80 Direction: 0.0, 1.0
81 Sharpness: 40.0
82 KernelRadius: 8
83 shaders:
84 - ”FullscreenQuad.vert.spv”
85 - ”HBAOBlur.frag.spv”
86 inputs:
87 - GeometryBuffer.ZBuffer
88 - AOTemp2
89 output: AOBuffer
90 DeferredLighting:
91 type: lights
92 renderTransparent: true
93 renderOpaque: false
94 depthWriteEnabled: false
95 depthTestEnabled: false
96 shaders:
97 - ”DeferredLighting.vert.spv”
98 - ”DeferredLighting.frag.spv”
99 inputs:

100 - GeometryBuffer
101 - AOBuffer
102 output: ForwardBuffer
103 parameters:
104 debugLights: 0
105 reflectanceModel: 0
106 Global.displayWidth: 0
107 Global.displayHeight: 0
108 ForwardShading:
109 type: geometry
110 renderTransparent: true
111 renderOpaque: false
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112 blitInputs: true
113 shaders:
114 - ”DefaultForward.vert.spv”
115 - ”DefaultForward.frag.spv”
116 inputs:
117 - ForwardBuffer.Color
118 - GeometryBuffer.ZBuffer
119 output: HDRBuffer
120 HDR:
121 type: quad
122 shaders:
123 - ”FullscreenQuad.vert.spv”
124 - ”HDR.frag.spv”
125 inputs:
126 - HDRBuffer.Color
127 output: FXAABuffer
128 parameters:
129 TonemappingOperator: 0
130 Gamma: 1.8
131 Exposure: 1.0
132 WhitePoint: 11.2
133 FXAA:
134 type: quad
135 shaders:
136 - ”FullscreenQuad.vert.spv”
137 - ”FXAA.frag.spv”
138 parameters:
139 activateFXAA: 1
140 showEdges: 0
141 lumaThreshold: 0.125
142 minLumaThreshold: 0.02
143 mulReduce: 0.125
144 minReduce: 0.0078125
145 maxSpan: 8.0
146 Global.displayWidth: 0
147 Global.displayHeight: 0

148 inputs:
149 - FXAABuffer
150 output: Viewport
151

152 qualitySettings:
153 Low:
154 AO.occlusionSamples: 0
155 FXAA.activateFXAA: 0
156 AO.shaders:
157 - ”FullscreenQuadFrustum.vert.spv”
158 - ”SSAO.frag.spv”
159 Medium:
160 AO.occlusionSamples: 8
161 FXAA.activateFXAA: 1
162 AO.shaders:
163 - ”FullscreenQuadFrustum.vert.spv”
164 - ”SSAO.frag.spv”
165 High:
166 AO.occlusionSamples: 4
167 FXAA.activateFXAA: 1
168 AO.shaders:
169 - ”FullscreenQuadFrustum.vert.spv”
170 - ”HBAO.frag.spv”
171 Ultra:
172 AO.occlusionSamples: 8
173 FXAA.activateFXAA: 1
174 AO.shaders:
175 - ”FullscreenQuadFrustum.vert.spv”
176 - ”HBAO.frag.spv”

Listing 6.3: Deferred Shading rendering pipeline
definition, with forward shading for transparent geometry
as separate step, HDR, and FXAA antialiasing as
postprocessing steps.

A more complex rendering pipeline definition is shown in Listing 6.3. In this

rendering pipeline configuration, we apply the following techniques:

• Deferred Shading [Deering et al., 1988], for being able to render a large number

of lights by splitting geometry processing and lighting into two separate passes:

for every pixel, first, surface normals (with an efficient normal storage, where 3D

unit vectors are compressed into a 2D octogon [Cigolle et al., 2014]), surface

material properties, and depth are stored into separate buffers in the Scene pass

(line 35), second, the final shading of the pixel is determined from these buffers in

the DeferredLighting pass (line 90).

• Ambient Occlusion via the HBAO algorithm [Bavoil et al., 2008] in the AO pass,

with horizontal and vertical blurring in the AOBlurV and AOBlurH passes (lines

43, 60, and 75),

• tone-mapping of the 16bit HDR color output of the DeferredLighting pass

in the HDR pass, using the ACES tone mapping operator5 (line 120), and 5 ACES, the Academy Color Encoding
System, defines a particular curve for
mapping from HDR to LDR color, see
github.com/ampas/aces-dev/tree/v1.0.3 for
details.

• Anti-aliasing of the final image via the Fast approximate anti-aliasing algorithm

[Lottes, 2009] in the FXAA pass (line 130).

This rendering pipeline configuration also showcases shader properties

(see e.g. Direction or Pass.displayWidth in the parameters section of

https://github.com/ampas/aces-dev/tree/v1.0.3
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the AOBlurH pass). These are explained in more detail in the section [Shader

Introspection and Shader Properties].

This more complex rendering pipeline can also be represented as a graph, as shown

in Figure 6.2.

Scene

FXAA

Viewport

Nodes

GeometryBuffer:
NormalsMaterial
DiffuseAlbedo
ZBuffer

AOBuffer

AOTemp1

AOTemp2

ForwardBuffer HDRBuffer

FXAABufferAO

AOBlurV

AOBlurH

DeferredLighting

Lights

ForwardShading

Nodes

HDR

Figure 6.2: The graph representation of the
DeferredShading rendering pipeline. Scene
passes are shown with red background, post-
processing passes with orange background.
Light blue parallelograms are framebuffers.
Solid black arrows signify transition from
one pass to the next, grey arrows show data
dependencies, with squares standing for
writes, and circles for reads. Dotted arrows
show scenegraph accesses.

6.2.5 General Rendering workflow

In scenery, scene object discovery (determining which objects are to be rendered),

and updating the UBO’s contents are done in parallel using Kotlin’s coroutines.

The main rendering loop will proceed after the visible objects have been deter-

mined:

The main loop then proceeds as follows:

1. Loop through the flow of renderpasses, except Viewport pass:

a. determine the kind of pass

b. bind framebuffers for output

c. blit contents of inputs into output framebuffer (if configured)

d. set pass configuration and blending options

e. iterate through scene objects (if scene pass or light pass) or draw fullscreen

quad (if quad/postprocessing pass), and bind UBOs and buffers for each object

as necessary

2. Run the viewport pass in the same way as (5), but siphon out data for third-party

consumers (video recording, screenshots,…) if necessary

3. Swap buffers.
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6.2.6 Shader Introspection, Shader Properties, and Shader

Parameters

scenery’s renderers by default perform introspection on the shader files they ingest, by

using the spirvcrossj6 library (github.com/scenerygraphics/spirvcrossj). Shader files 6 spirvcrossj is a wrapper of the Khronos
Group’s spirv-cross reflection library and the
glslang reference compiler we have devel-
oped.

are loaded via the Shaders class, which can provide both source code and SPIRV7

7 SPIRV or SPIR-V is a binary bytecode for-
mat for shader files, specified by the Khronos
Group. It serves as the primary provider of
shader programs for Vulkan, but can also
be used from OpenGL via vendor-specific
extensions, and can be decompiled to plain
GLSL or even HLSL.

bytecode, either from file sources, or from procedurally generated shaders, and po-

tentially other sources. Shaders will try to provide both versions of a shader, but

can be instructed to prioritise either the source code version or the SPIRV version of

the shader.

By adding the @ShaderProperty annotation to a member variable of a Node-

derived class, this variable can be made accessible from the shader via the same name.

Supported data types are Java’s default elementary types, as well as the GLVector

vector type and the GLMatrix matrix type. Additionally, the @ShaderProperty

annotation can be added to a hash map of type HashMap<String, Any> to provide

even more flexibility (e.g. for procedurally-generated shaders). scenery discovers

shader properties in the following way:

When loading the shader, construct a list of all the properties that are part of the

ShaderProperties UBO in the shader file, e.g.

layout(set = 0, binding = 0) uniform struct ShaderProperties {

float scale;

mat4 model;

vec3 color;

}

Metadata for each member in the form of an offset and a length are stored along

the with the property, and follow GLSL’s std140 rules for alignment.

When updating UBOs for a Node, scenery performs reflection (and caches that in-

formation) on all properties that carry the@ShaderProperty annotation: first, prop-

erties with the given name are checked, and if not found, the shaderProperties

hash map is consulted as fallback. Not providing a shader property in the class that is

required by the shader will result in an exception. The other way around, a shader

property defined in the class, but not used in the shader will only trigger a warning.

Shader properties defined in the UBO, but not used in the shader will not be skipped

upon serialisation.

Shader parameters provide another way to hand parameters over to shader pro-

grams: These are defined in the rendering pipeline configuration, e.g. as (see Sec-

tion 6.2.4,Configurable Rendering Pipelines for full examples of such configurations):

AO:

type: quad

parameters:

Pass.displayWidth: 0

Pass.displayHeight: 0

https://github.com/scenerygraphics/spirvcrossj
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occlusionRadius: 1.0

occlusionSamples: 4

occlusionExponent: 2.0

maxDistance: 1.0

bias: 0.1

algorithm: 0

The shader parameters here are all the key-value pairs below parameters: The

ones starting with Pass or Global are filled in automatically by the renderer, and are

used e.g. for framebuffer sizes. All others are derived from scenery settings, and can be

modified on-the-fly, enabling e.g. an easy way to switch between different algorithms

in a shader, or turn functionality in the shader on and off. The corresponding

declaration in the shader file looks the following (ordering does not matter and is

resolved automatically):

layout(set = 2, binding = 0, std140) uniform ShaderParameters {

int displayWidth;

int displayHeight;

float occlusionRadius;

int occlusionSamples;

float occlusionExponent;

float maxDistance;

float bias;

int algorithm;

};

6.2.7 Instancing

Instancing can be done by defining a Node’s instanceMaster property as true and

adding other Nodes to its instances property. Instances are not part of the regular

scene graph for improved discovery performance, but their transformation matrices

are updated in the same manner. Instanced properties can be added to the master

node’s instancedProperties hash map, and are serialised in the same manner as

UBOs. As instances are not allowed to depend on each other, the serialisation is done

in parallel in a number of worker threads using coroutines, such that hundreds of

thousands of instances can be updated at interactive frame rates.

To use instancing, the user needs to provide a custom shader that declares the

properties set in instancedProperties, e.g. as in

layout(location = 0) in vec3 vertexPosition;

layout(location = 1) in vec3 vertexNormal;

layout(location = 2) in vec2 vertexTexCoord;

layout(location = 3) in mat4 iModelMatrix;

where the location 3 defines the instanced model matrix. For both Vulkan and

OpenGL, scenery will automatically derive a fitting vertex description.
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It is important to note here that a matrix occupies more than a single vertex input,

such that the next available location after the 4x4 matrix iModelMatrix would be

location 7.

6.3 Rendering of Volumetric Data

Figure 6.3: Volume raycasting schematic, 1.
casting a ray through the volume, 2. defining
sampling points, 3. calculation of lighting
at the sampling points, 4. accumulation of
the lit samples into a single pixel and alpha
value

Volume rendering in scenery is done via volume raycasting, where a ray for each

screen pixel, originating at the camera’s near plane is shot perspectively correct through

the piece of volumetric data, accumulating color and alpha information along the

way. The accumulation function is customisable and can be used to realise e.g. the

following compositing options:

• maximum intensity projection (MIP), where each voxel data point along the way

is compared to the previous, and the maximum kept,

• local maximum intensity projection (LMIP), where each voxel data point along the

way is compared to the previous, and the maximum kept, but only after reaching

a user-defined threshold, and

• alpha blending, where the attenuation of light entering the volume is simulated

in a physically plausible manner.

The first two of those, MIP and LMIP, are commutative in the sense that volumes

superimposed on top of each other will lead to the same result, no matter in which

order they are being rendered.

For alpha blending, the ordering of the volumes does matter, and accurate visu-

alisation is only possible if all the volumes occupying the same space are rendering

in the same moment. Alpha blending is based on a physical model, and in the next

subsection we are going to derive the front-to-back compositing equations used in

scenery, and then discuss options going beyond alpha compositing for added realism:

6.3.1 Alpha compositing

In general, the total spectral radiance 𝐿0( ⃗𝑝, ⃗𝑣) — the quantity rendering determines

for a pixel — at a point ⃗𝑝 in direction ⃗𝑣 is given by the rendering equation [Kajiya,

1986], where ⃗𝑙 is the light direction, and ⃗𝑛 the surface normal:
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𝐿0( ⃗𝑝, ⃗𝑣) = 𝐿𝑒( ⃗𝑝, ⃗𝑣) (6.1)

+ ∫
𝑙∈Ω

d ⃗𝑙𝐿0(𝑟( ⃗𝑝, ⃗𝑙, − ⃗𝑙)( ⃗𝑛 ⋅ ⃗𝑙)+, (6.2)

or,

Spectral radiance at ⃗𝑝 in direction ⃗𝑣 = Emission at ⃗𝑝 in direction ⃗𝑣

+ Reflected radiance from hemisphere Ω.

As this integral is recursive — the reflected radiance at a given point ⃗𝑙 depends

on previous surface bounces subject to the same integral — it is in general very hard

to solve accurately. For this reason, [Sabella, 1988] introduces an extension and

simplification of the rendering equation for volumetric data: In this volumetric

rendering equation, we compute 𝐿(𝑥), which is the spectral radiance at a point 𝑥

along a ray, ignoring previous surface bounces:

𝐿(𝑥) = ∫
𝑦

𝑥
d𝑥′𝜖(𝑥′) exp(− ∫

𝑥′

𝑥
d𝑥″𝜏(𝑥″)) . (6.3)

The spectral radiance here depends on 𝜖(𝑥′), the emission, and 𝜏(𝑥′), the absorp-

tion function, describing the probability of absorbing a photon along unit distance on

the ray. Note here that this emission-absorption model completely ignores scattering.

Eq. 6.3 can be discretised as Riemann sum,

𝐿(𝑥) = ∑
𝑖

𝜖𝑖Δ𝑥 ⋅ exp⎛⎜⎜
⎝

−
𝑖−1
∑

𝑗
𝜏𝑗Δ𝑥⎞⎟⎟

⎠
(6.4)

= ∑
𝑖

𝜖𝑖Δ𝑥 ⋅
𝑖−1
∏
𝑗=0

exp (−𝜏𝑗Δ𝑥) . (6.5)

.

This discretisation gives natural rise to interpretations of color (pre-multiplied by

the alpha value), and opacity:

𝛼𝑖𝐶𝑖 = 𝜖𝑖Δ𝑥 (color) (6.6)

𝛼𝑖 = 1 − exp (𝜏𝑖Δ𝑥) (alpha). (6.7)

With these equations, we can then derive the front-to-back compositing formula

for alpha blending: Let 𝑇𝑠′
𝑠 be the composite transparency of front-to-back samples

𝑠, 𝑠 + 1, …, 𝑠′,
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𝑇𝑠′
𝑠 =

𝑠′

∏
𝑖=𝑠

𝑇𝑖, then, (6.8)

𝐶𝑠 = 𝛼𝑠𝐶𝑠 (6.9)

𝑇𝑠 = 1 − 𝛼𝑠, and (6.10)

𝐶𝑠′+1
𝑠 = 𝐶𝑠′

𝑠 + 𝛼𝑠′+1𝐶𝑠′+1𝑇𝑠′
𝑠 (6.11)

𝑇𝑠′+1
𝑠 = (1 − 𝛼𝑠′+1) 𝑇𝑠′

𝑠 . (6.12)

Figure 6.4: A volume rendered in scenery us-

ing alpha compositing, showing the Game

of Life in 3D with volumetric ambient oc-

clusion.

Front-to-back compositing has the benefit that cast rays can be terminated early

once 𝑇𝑠′
𝑠 falls below a given threshold (or 0).

An example of an alpha-composited volume rendering is shown in Figure 6.4.

6.3.2 Out-of-core rendering

Figure 6.5: A Drosophila dataset rendered

by-slice in BigDataViewer. Image courtesy

of Tobias Pietzsch.

Out-of-core (OOC) rendering describes techniques for rendering volumetric data

that does not fit into the GPU memory or main memory of a computer, and is

therefore out-of-core.

BigDataViewer [Pietzsch et al., 2015] has introduced a HDF5 [Group, 1997]-

based pyramid image file format that is now widely used. The program itself displays

single slices that can be arbitrarily oriented to the user, and loads them on-the-fly

from local or remote data sources (see Figure 6.3.2 for an example).

scenery also includes support for loading these data sets, and for that makes use of

a BigDataViewer-provided library. An example of multiple volumes rendered using

this technique is shown in Figure 6.6.

Figure 6.6: scenery rendering an out-of-core,
multiview Drosophila dataset consisting of
three different views (color-coded) using the
BigDataViewer integration. volume render-
ing using maximum intensity projection.
On the left-hand side, the transfer function
has been adjusted to make boundaries be-
tween the different subvolumes visible more
clearly.

Volumetric data for out-of-core rendering is stored in tiles of up to 231 voxels. Tiles

are addressed with 64bit, leading to a theoretical maximum data size of 294 voxels, or

about 20000 Yottabyte. Tiles are stored in a GPU cache. The cache is organised into

small, uniformly-sized blocks storing a particular tile of the volume in the resolution

pyramid. All tiles are padded by one voxel to avoid bleeding artifacts [Beyer et al.,

2008]. To render a particular view of a volume, we determine the base resolution,
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such that the screen resolution is matched for the voxel closest to the observer. We

then prepare a 3D lookup texture (LUT) where each voxel corresponds to a volume

block at base resolution. Each voxel in the LUT stores the coordinates of a tile in the

in cache, as well as the resolution level relative to the base level, encoded as RGBA

quadruple. For each visible volume tile, we determine the ideal resolution by the

distance to the observer.

If a tile requested is already present in the cache, we encode its coordinates in

the corresponding LUT voxel. Should a tile not yet be present in the cache, we

enqueue the missing block for asynchronous loading through the cache layer of

BigDataViewer. Recently-loaded blocks are inserted into the cache texture. The

cache has least-recently used (LRU) behaviour, such that the oldest tiles are the first

ones to be replaced. Missing blocks are substituted by lower-resolution data while

not yet available. This technique is a combination of hierarchical blocking [Beyer

et al., 2008, LaMar et al., 1999] and the missing data scheme introduced in [Pietzsch

et al., 2015].

Scan this QR code to go to a video demo of

out-of-core volume rendering in scenery. For

a list of supplementary videos see https://ul-

rik.is/writing/a-thesis.

When the LUT is prepared, volume rendering proceeds by raycasting, while adapt-

ing the step size along the ray depending on distance to the observer. The correct

coordinates for each voxel are determined by scaling its coordinate down to coincide

with the voxel in the LUT. Nearest-neighbour sampling from the LUT then yields a

block offset and scale in the cache texture. The final voxel value is then sampled from

the cache texture, after reversing the scaling and translation operations.

This approach enables to render multiple volumes simultaneously, by adding

additional LUTs for each volume. Non-out-of-core volumes can be rendered as well,

such then do not require additional LUTs.

To produce the correct shader for multiple volumes, which can also change in

number, we make use of a custom ShaderFactory that can ingest the shader code

generated by BigVolumeViewer, and transform it to scenery’s conventions. Shader-

Factories are created for a particular number of volumes, e.g., 3 out-of-core (OOC)

volumes, mixed with 2 regular ones, and cached up to a count of 8 factories. A sketch

of the workflow is shown in Figure 6.7.

ShaderFactory

BigVolumeViewer

Translation to 
scenery 
conventions:
Adding 
@ShaderProperty 
annotations,
Creating UBOs

generates
GLSL

for no OOC, 
nr regular volumes 

(no, nr) in cache
(no,nr) 

ShaderPackage

yes

no

Compilation to 
SPIRV

(no,nr) 
ShaderPackage

Figure 6.7: Workflow for translating be-
tween BigVolumeViewer and scenery.

https://ulrik.is/thesising/supplement/OutOfCoreRendering.mp4
https://ulrik.is/writing/a-thesis
https://ulrik.is/writing/a-thesis
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6.4 Rendering with OpenGL

In this section, we will introduce how a scene is rendered with OpenGL, to compare

it with Vulkan lateron.

6.4.1 Initialisation

When using OpenGL, the initialisation of the renderer proceeds in the following

way:

1. the presence of a virtual reality HMD is checked.

2. the RenderConfig is parsed from a file.

3. it is checked whether the renderer will be embedded in a SceneryPanel for

rendering with JavaFX, or if a drawable surface already exists. If both are not the

case, a window owned by the renderer is created. After this, a separate animator

thread takes over the initialisation.

4. an OpenGL 4.1 context is initialised.

5. a default set of buffers is initialised for:

• Uniform Buffer Objects (UBOs)

• light parameters

• rendering parameters

• Shader Properties

• Shader Parameters

6. a default set of textures is initialised to provide textures in case a Node’s textures

cannot be found.

7. the render passes defined by the RenderConfig are created, with the necessary

framebuffers and attachments.

8. a heartbeat timer is initialised to record GPU usage (only on Nvidia cards running

on Windows) and record performance data.

The renderer then proceeds with scene initialisation, initialising each Node in the

scene in this way:

1. The Node is locked.

2. a new instance of OpenGLObjectState is attached to the Node’s metadata field

3. vertex buffers8 and vertex array objects9 are created. 8 Vertex Buffer Objects are the buffers on
the GPU that actually contain the ver-
tices of a Node’s geometry. In scenery,
they are stored in a strided format, mean-
ing that vertices and normals are not
stored as V1V2V3N1N2N3..., but rather as
V1N1V2N2V3N3, for improved cache local-
ity.
9 Vertex Array Objects describe which
buffers a rendered object in OpenGL uses,
and what the data layouts of these buffers
are.

4. custom shaders and material properties are initialised.

5. UBOs for transformations and material properties are initialised.

6. the renderer checks whether theNode’s definition includes any@ShaderProperty

annotations, for which an additional UBO would be created (see Section 6.2.2,

Uniform Buffer Serialisation and Updates for details).

7. The Node is marked as initialised and unlocked.

6.4.2 Rendering loop with OpenGL

The rendering loop in the OpenGL-based renderer in turn works as follows. In the

section about rendering with Vulkan, we will highlight the differences to OpenGL.



r e nde rin g 73

1. Early exit conditions are checked, e.g. for renderer shutdown, or for switching to

fullscreen rendering.

2. UBOs are updated, and the existence of changes is recorded.

3. For all nodes that are rendered in a geometry pass:

1. The Node is initialised if not seen before

4. If push mode is active and no changes have been recorded, the loop will return

now. If push mode is not active, command buffer re-recording will commence.

5. For all render passes, draw commands are issued. Drawing proceeds in the follow-

ing way:

• if blitted images from the output of the previous pass are required, they are

blitted into the current rendertargets, either by copying (if source and target

formats are compatible), or actual blit.

• geometry pass: viewport and blending parameters are set, and all nodes are iter-

ated over, grouped by shader pipeline used in order to minimise state switches.

Textures, custom shaders, and geometry are updated if necessary. With shader

pipeline and vertex/instance buffers bound, the node is rendered.

• quad/postprocessing pass: Viewport parameters are set, then the shader pipeline

for the pass is bound, then a fullscreen quad is drawn using this pipeline.

6. Images created in the viewport pass are submitted to a possibly-connected HMD,

stored as screenshots, or submitted to the video encoder.

6.5 Rendering with Vulkan

After having introduced the rendering steps in OpenGL, in this section we do the

same for the newer, high-performance Vulkan API.

6.5.1 Initialisation

Compared to OpenGL, Vulkan provides much leaner, close-to-metal access to the

GPU’s resources. It is therefore more verbose, but does not do as much validation as

OpenGL during runtime.

Instead in Vulkan, a validation layer provides guidance to adherence to the stan-

dard. While in OpenGL, all state and state changes are continuously checked for

sanity, incurring a performance hit, Vulkan skips these checks, and outsources them

to validation layers, that may be activated during startup, and usually only used

during development or debugging. Compared to OpenGL error messages, Vulkan

validation layers provide highly detailed error messages, thus enabling the developer

to quickly pinpoint the source of a problem.

When using Vulkan, the initialisation of the renderer proceeds as follows:

1. the presence of a virtual reality HMD is checked, and window dimensions set

accordingly.

2. The RenderConfig is parsed from a render config YAML file.
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3. The renderer checks whether the user has requested the activation of validation

layers, and activates them if indicated.

4. the renderer checks whether the output will be embedded in a SceneryPanel.

If this is not the case, the renderer will request surface rendering extensions, and

create a Vulkan instance10, if not, the instance will be created without the exten- 10 A Vulkan instance is the basic building
block of a Vulkan application.

sions. Further extensions might be required by the presence of an HMD, e.g. for

memory sharing.

5. A VulkanDevice11 is created, the renderer defaults to the first device found, but 11 A Vulkan device contains all the informa-
tion about a device and its capabilities, and
all allocations and executions are made with
respect to a particular device, also enabling
parallel runs on multiple devices.

this can be overridden by the user.

6. At least one device queue12 is created. Multiple queues might be created

12 Work, may it be rendering or compute
work, is submitted to a queue in Vulkan,
and executed asynchronously by the GPU.
A queue may be asked for work completion
and can be waited on.

for rendering, compute work, and data transfers, if supported by the selected

VulkanDevice.

7. A SwapchainRecreator is created. This object is responsible for all resources

that are resolution-dependent, such as framebuffers and rendering surfaces. It also

takes care of initialising the render passes defined by the RenderConfig, with the

necessary framebuffers and attachments. The swapchain is be one of:

• OpenGLSwapchain: creates an OpenGL context and enables the Vulkan ren-

derer to draw into that. Necessary for frame-locked rendering e.g. on CAVE

systems.

• HeadlessSwapchain: creates a swapchain without any rendering surfaces,

e.g. for server use.

• SwingSwapchain: create a swapchain for rendering into a Swing panel. Em-

ploys permanently mapped buffers and native surfaces for efficiency, and in-

herits from VulkanSwapchain.

• VulkanSwapchain: creates a regular, window-based swapchain with GLFW.

This is the standard case.

8. the default vertex descriptors13 are created. 13 Vertex descriptors describe the vertex lay-
out for rendering and are somewhat compa-
rable to OpenGL’s Vertex Array Objects.

9. descriptor pools are created, from these, the default descriptor set layouts and

descriptor sets14 are prepared. 14 Descriptor set layouts describe the mem-
ory layout of UBOs and textures in a shader,
while descriptor sets contain their actual re-
alisation, and link to a physical buffer, or
texture.

10. a default set of textures is initialised to provide textures in case a Node’s textures

cannot be found.

11. a heartbeat timer is initialised to record GPU usage (only on Nvidia cards running

on Windows) and record performance data.

12. a dynamically-managed memory pool for Node geometry is allocated.

Note here that the Vulkan renderer does not perform explicit scene initialisation

on startup, but discovers the Nodes of a scene during the rendering loop.

6.5.2 Rendering loop with Vulkan

For comparison with the sketch of the OpenGL rendering loop above, we high-

light differences to OpenGL with bold typeface here, and add an explanation of the

particular difference right after that in italics.

1. Early exit conditions are checked, e.g. for renderer shutdown, or for switching to

fullscreen rendering.

2. UBOs are updated, and the existence of changes is recorded.
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3. Node data is updated, for all nodes that are rendered in a geometry pass (in

Vulkan, this is executed before iterating over all Nodes for rendering, such that the

command buffers recorded there can be reused and do not contain geometry updates,

etc., which are usually only executed once.):

1. The Node is initialised if not seen before,

2. geometry is updated if necessary,

3. textures are updated if necessary,

4. custom shaders are reloaded if necessary.

4. If push mode is active and no changes have been recorded, the loop will return

now. If push mode is not active, command buffer re-recording will commence.

5. For all render passes, except the viewport pass, command buffers are recorded

(in Vulkan, work for the GPU is not directly executed as in OpenGL, but enqueued

in command buffers instead. These can be reused later on for increased performance,

as one does not need to iterate over scene contents again, if nothing changed in

between.). For each pass, as many command buffers as there are swapchain images

are prepared, such that multiple frames can be in-flight in parallel to ensure optimal

GPU occupancy. Recording happens as follows:

1. If the currently-recording command buffer is still in-flight, it will be

waited on using a fence (in Vulkan, synchronisation operations between

CPU-GPU, or GPU-GPU, are more explicit than in OpenGL, giving the

developer greater control over what happens when; here, we might need to wait

for the command buffer to not overwrite its contents while still in use and thereby

cause undefined state. The synchronisation here is done using a fence.).

2. The command buffer for the respective pass type is recorded:

• if blitted images from the output of the previous pass are required, they

are blitted into the current rendertargets, either by copying , or actual blit

(while OpenGL only knows actual blit operations, Vulkan can perform copies

between images, which incur a lower overhead, if source and target formats

are compatible).

• geometry pass: A new Vulkan renderpass is started (in Vulkan, it is possi-

ble to describe state and dependencies between different passes using Vulkan

renderpass objects, this information can be used by the driver for optimisa-

tions, e.g. if certain attachments of a framebuffer will not be reused, or if a

renderpass has no execution dependencies, and can be executed in parallel

to another one), viewport parameters set, and all nodes are iterated over,

grouped by shader pipeline used in order to minimise state switches. With

the corresponding descriptor sets (see 15) and vertex/instance buffers for 15 Descriptor set layouts describe the mem-
ory layout of UBOs and textures in a shader,
while descriptor sets contain their actual re-
alisation, and link to a physical buffer, or
texture.

the pipeline bound, the node is rendered.

• quad/postprocessing pass: A new Vulkan renderpass is started (see above),

viewport parameters set, then the shader pipeline for the pass is bound,

together with the corresponding descriptor sets, then a fullscreen quad is

drawn using this pipeline.

3. The command buffer is submitted to the rendering queue.

6. The viewport pass is recorded in the same way as above, submitted, and pre-

sented using the swapchain (in contrast to glSwapBuffers() in OpenGL to

finish a frame, this is done in Vulkan by presenting to a Swapchain, which can be
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tied to an window surface, or can be headless, Vulkan here is also less coupled to

the windowing system than OpenGL, making integration with Swing, JavaFX, or

headless rendering much easier).

7. Images created in the viewport pass are submitted to a possibly-connected HMD,

stored as screenshots, or submitted to the video encoder.

6.6 Performance

The Java Virtual Machine is quite an unorthodox choice for realtime rendering. One

reason might be that the JVM is still perceived as slow, especially when compared to

close-to-metal languages like C or C++.

In this section, we compare performance of matrix multiplications on the Java VM

with native code. Matrix multiplications in our context are particularly representative,

as they occur in large amounts when doing scene graph traversals, in order to compute

node positioning, scaling, and rotation in space.

6.6.1 Performance of Matrix multiplications on the Java Virtual

Machine

The code for the performance comparison canbe foundat github.com/skalarproduktraum/java-

autovectorisation-test

Recent studies in the Computer Languages Benchmark Game16, which bench- 16 See benchmarksgame-team.pages.de-
bian.net/benchmarksgame/.

marks different languages in scenarios such as computing Mandelbrot sets or n-body

simulations, have shown that the performance of JVM-based software is on par with

other VM-based languages (such as C# or Julia), or even Intel Fortran, and does not

lag behind C/C++ much — usually a factor of two (see also Figure 6.8, benchmarking

with “toy example” should however always be taken with a grain of salt, as real-world

performance may be influenced by a variety of other factors).
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High-performing code on the JVM is usually written by understanding what

optimisations the JVM does in which case, and not trying to outsmart the JVM. For

parts of the code the JVM determines as performance hotspots, the bytecode is taken

https://github.com/skalarproduktraum/java-autovectorisation-test
https://github.com/skalarproduktraum/java-autovectorisation-test
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/which-programs-are-fastest.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/which-programs-are-fastest.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/which-programs-are-fastest.html
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and compiled to native code just-in-time, usually leading to near-native performance.

In this subsection, we will investigate a specific performance case, namely matrix

multiplications. For any transformations in 3D, matrix multiplications play a crucial

role, and are often executed thousands of times per second for a moderately complex

scene.

For our comparison, we consider three different ways to do matrix multiplications,

defined as 𝐶𝑖𝑗 = ∑𝑘 𝐴𝑖𝑘𝐵𝑘𝑗:

• loop-based, where the two sums are implemented as loops over the floating-point

numbers stored in float arrays,

• loop-based with FMA, where the two sums are implemented as loops over the

floating-point numbers stored in float arrays, and the summation is done by the

FMA (fused multiply-add) instruction, which executes a 𝑎 ⋅ 𝑏 + 𝑐 operation in one

CPU cycle (supported since Java 9), and

• unrolled loop-based, where the loops in the first two cases has been unrolled by

hand.

  0x0000000119878f4c: cmp    %ecx,%r14d 
  0x0000000119878f4f: jae    0x00000001198790f9 
  0x0000000119878f55: lea    (%r12,%rdi,8),%rdx 
  0x0000000119878f59: vmovss 0x10(%rdx,%r14,4),%xmm0 
  0x0000000119878f60: vmovss (%rsp),%xmm8 
    0x0000000119878f65: vfmadd231ss %xmm0,%xmm1,%xmm8  ;*invokestatic fma {reexecute=0 rethrow=0 return_oop=0} 
;   {static_stub} 
                        ; - is.ulrik.autovectorisationtest.MultiplyMatrices::multiplyMatricesLoopFMA@59 (line 104)

Fused Multiply-Add Scalar Single Precision FP (AVX)

Figure 6.9: Generated assembly for the loop-
based matrix multiplication with FMA, ran
on JDK 9.0.4, macOS 10.12.6, Intel Core
i7-4980HQ CPU @ 2.80GHz.

By using the hsdis utility of the Java Development Kit, it is possible to glimpse

into the assembly code that gets generated by the JVM, after passing the flags

-XX:+UnlockDiagnosticVMOptions -XX:+PrintAssembly to the JVM on

startup.

In the loop case, we arrive at very inefficient assembly containing a lot of jumps, but

also AVX512 SIMD (single instruction, multiple data) instructions mixed with SSE

SIMD instructions — although they are only scalar operations, while ideally they’d

be vectorised. In addition, the mixing of AVX and SSE registers incurs a performance

penalty (the assembly is not shown here due to its length). In contrast, the FMA-

based and unrolled loop version (see Figures 6.9 and 6.10) yield better assembly code

with less jumps, and more AVX512 commands, leading to less CPU cycles needed

for the matrix multiplication. The AVX512 commands however operate only on the

128bit SSE registers (xmm0-15), while for optimal performance they should use the

512bit AVX512 registers zmm0-31, or at least the 256bit AVX registers ymm0-15.

The following table shows the results for the different routines for matrix mul-

tiplications, with the benchmarks run on JDK 9.0.4, macOS 10.12.6, Intel Core
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callq    0x0000000122136441: vmovaps %xmm15,%xmm0 
0x00000001099efe10  0x0000000122136446: vmulss %xmm8,%xmm0,%xmm0 
  0x000000012213644b: vmovaps %xmm14,%xmm11 
  0x0000000122136450: vmulss %xmm9,%xmm11,%xmm11 
  0x0000000122136455: vaddss %xmm11,%xmm0,%xmm0 
  0x000000012213645a: vmovaps %xmm13,%xmm11 
  0x000000012213645f: vmulss %xmm10,%xmm11,%xmm11 
  0x0000000122136464: vaddss %xmm11,%xmm0,%xmm0 
  0x0000000122136469: vmovaps %xmm12,%xmm11 
  0x000000012213646e: vmulss 0x40(%rsp),%xmm11,%xmm11 
  0x0000000122136474: vaddss %xmm11,%xmm0,%xmm0 
  0x0000000122136479: cmpl   $0x8,0xc(%rcx) 
  0x0000000122136480: jbe    0x000000012213693a 
  0x0000000122136486: vmovss %xmm0,0x30(%rcx)   ;*fastore {reexecute=0 rethrow=0 return_oop=0} 
                                                ; - com.jogamp.opengl.math.FloatUtil::multMatrix@188 (line 1577)

Add Scalar Single Precision FP (AVX)

Multiply Scalar Single Precision FP (AVX)

Move Aligned Packed Single Precision FP (AVX)

Move/Merge Scalar Single Precision FP (AVX)

Figure 6.10: Generated assembly for the
loop-unrolling matrix multiplication, ran
on JDK 9.0.4, macOS 10.12.6, Intel Core
i7-4980HQ CPU @ 2.80GHz.

1 #include <immintrin.h>
2 #include <intrin.h>
3

4 union Mat44 {
5 float m[4][4];
6 __m128 row[4];
7 };
8

9 void matmult_AVX_8(Mat44 &out, const Mat44 &A, const Mat44 &B)
10 {
11 _mm256_zeroupper();
12 __m256 A01 = _mm256_loadu_ps(&A.m[0][0]);
13 __m256 A23 = _mm256_loadu_ps(&A.m[2][0]);
14

15 __m256 out01x = twolincomb_AVX_8(A01, B);
16 __m256 out23x = twolincomb_AVX_8(A23, B);
17

18 _mm256_storeu_ps(&out.m[0][0], out01x);
19 _mm256_storeu_ps(&out.m[2][0], out23x);
20 }

Listing 6.4: Example code for 4x4 matrix multiplication using AVX512
intrinsics. Source: https://gist.github.com/rygorous/4172889.

i7-4980HQ CPU @ 2.80GHz using the Java Microbenchmarking Harness (timings

given are averaged over 10 iterations, with 5 iterations of warm-up before):

Table 6.1: 4x4 matrix multiplications routines on the JVM compared with native

C++ routines.

Routine Timing ± Std.Dev.

Loop-based 27.664±0.782ns

Loop-based, FMA 24.553±0.774ns

Unrolled loop 21,906±0.389ns

Unrolled loop 21,906±0.389ns

C++ loop-based (gcc -O1) 25.6ns

C++ AVX512 (gcc -O3) 3.2ns

Ideally, 4x4 matrix multiplication would utilise both AVX512 commands and

registers. This can be achieved with hand-written C code, see Listing 6.4 for an

example.

As can be seen from the table, the unoptimised C++ version of loop-based 4x4

matrix multiplication is in the same timing region as the loop-based Java version. The

AVX512 is way faster, though. In the future, the JVM will gain native support for

using SSE and AVX intrinsics manually in the language, almost certainly closing that

gap. This initiative runs under the name Project Panama, and preview releases can be

found at openjdk.java.net/projects/panama. scenery has already been tested success-

fully with the preview releases of Project Panama, benchmarks will be conducted in

the future once the Project Panama API for intrinsics stabilises more.

https://openjdk.java.net/projects/panama
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6.7 Summary

In this chapter, we have introduced the rendering architecture of scenery, discussed

the renderer interface, and special scenery features like semi-automatic instancing

and custom rendering pipelines. We discussed the differences between the OpenGL

and Vulkan renderers, and compared a performance-critical operation in the context

of the JVM and native code.

For future work, we refer the reader to Chapter 10, FutureDevelopmentDirections,

which summarises the future targets for all components of scenery.





Chapter 7:

Input Handling and Integration of External Hardware

Here we describe the input handling subsystem of scenery, and how external hardware,

such as head-mounted displays or natural user interfaces can be used. The major

design goal for these subsystems was to enable the user to design interactions and

tools cross-API — here, we are going to detail how we have achieved that.

7.1 Input Handling

Input handling is done using using Tobias Pietzsch’s open-source ui-behaviour

library1. The ui-behaviour library is heavily used in the ImageJ/Fiji ecosystem, 1 See github.com/scijava/ui-behaviour/ for
details.

and provides a handles input events via InputTriggers and Behaviours. An

InputTrigger is the related to the physical event, such as a key press, or a mouse

movement, scroll, or click. A Behaviour is the triggered action. ui-behaviour is able

to handle AWT input events. For scenery, we have extended the library to also be

able to handle events originating from JOGL, GLFW, JavaFX, or headless windows.

Furthermore, we extended the library to enable custom mappings for buttons of

hand-held controller devices, or VRPN2 devices. 2 VRPN (Virtual Reality Periphery Net-
work) is an abstraction layer that enables ac-
cess to a variety of Virtual Reality-associated
input devices, such as tracked stereo glasses,
Wiimotes or Flysticks. See [Taylor et al.,
2001].

Spatial input, such as HMD positioning and rotations, are handled by the specific

implementation of a TrackerInput, such as an OpenVRHMD3, or a VRPNTracker4.

3 OpenVR or SteamVR is a runtime and
abstraction layer that provides a vendor-
independent API to various VR headsets,
and access to the associated input devices
and rendering surfaces. Usable VR headsets
include e.g. the Oculus Rift, HTC Vive, or
the various Windows Mixed Reality head-
sets. OpenVR has been developed by Valve
Software, more information about the li-
brary can be found at github.com/ValveSoft-
ware/OpenVR.
4 VRPN (Virtual Reality Periphery Net-
work) is an abstraction layer that enables ac-
cess to a variety of Virtual Reality-associated
input devices, such as tracked stereo glasses,
Wiimotes or Flysticks. See [Taylor et al.,
2001].

Multiple of these inputs can coexist peacefully, and will not interfere with each other,

but rather augment.

7.2 Head-mounted displays and natural/gestural

user interface devices

Support for head-mounted displays and control devices is at the moment provided

by two means:

1. utilising the lwjgl bindings for SteamVR/OpenVR to interface with off-the-shelf

HMDs like the Oculus Rift or HTC Vive (see class OpenVRHMD).

2. utilising the custom-built wrappers for VRPN[Taylor et al., 2001], called jVRPN

(github.com/scenerygraphics/jvrpn). jVRPN is used in scenery to e.g. provide sup-

port for DTrack or OptiTrak tracking systems used in CAVE systems or Powerwalls

(for more details, see the class TrackedStereoGlasses and VRPNTracker).

https://github.com/scijava/ui-behaviour/
https://github.com/ValveSoftware/OpenVR
https://github.com/ValveSoftware/OpenVR
https://github.com/scenerygraphics/jvrpn
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When a new HMD is to be added to scenery, a new class has to be created for the

HMD, and that class needs to implement two interfaces:

• Display, for querying information about the HMD’s rendering surfaces, projec-

tion matrices, and state, and

• TrackerInput, for providing spatial information to scenery, about the HMD’s

position, rotation, and associated input devices.

The Display interface looks as follows:

interface Display {

fun getEyeProjection(eye: Int, nearPlane: Float = 1.0f, farPlane: Float = 1000.0f): GLMatrix

fun getIPD(): Float

fun hasCompositor(): Boolean

fun submitToCompositor(textureId: Int)

fun submitToCompositorVulkan(width: Int, height: Int, format: Int,

instance: VkInstance, device: VulkanDevice,

queue: VkQueue,

image: Long)

fun getRenderTargetSize(): GLVector

fun initializedAndWorking(): Boolean

fun update()

fun getVulkanInstanceExtensions(): List<String>

fun getVulkanDeviceExtensions(physicalDevice: VkPhysicalDevice): List<String>

fun getWorkingDisplay(): Display?

fun getHeadToEyeTransform(eye: Int): GLMatrix

}

This interface provides submission to both OpenGL and Vulkan renderers, which

is necessary as they work quite differently5. The update function is used to update 5 In OpenGL, there is e.g. no explicit device
selection, as this is done implicitly by the
driver. In Vulkan, this is done by the appli-
cation explicitly, and so information about
on which device a rendered texture resides
has to be passed to the compositing applica-
tion, such as the one of SteamVR/OpenVR.

HMD state once per frame, while transformations are cached as much as possible.

The renderer will only render to the device if initializedAndWorking() returns

true, and getWorkingDisplay() returns a Display instance. HMDs can choose

to have a compositor to which the resulting rendered image is submitted. If this is

not the case, e.g. as it is with tracked stereo glasses for CAVEs, the image is rendered

regularly.

Equally simple is the TrackerInput interface:

interface TrackerInput {

fun getOrientation(): Quaternion

fun getOrientation(id: String): Quaternion

fun getPosition(): GLVector

fun getPose(): GLMatrix

fun getPoseForEye(eye: Int): GLMatrix

fun initializedAndWorking(): Boolean

fun update()
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fun getWorkingTracker(): TrackerInput?

fun loadModelForMesh(device: TrackedDevice, mesh: Mesh): Mesh

fun loadModelForMesh(type: TrackedDeviceType = TrackedDeviceType.Controller, mesh: Mesh): Mesh

fun attachToNode(device: TrackedDevice, node: Node, camera: Camera? = null)

fun getTrackedDevices(ofType: TrackedDeviceType): Map<String, TrackedDevice>

}

In this interface, the noteworthy functions are getPoseForEye(), which

returns a transformation matrix relative to the origin containing translational

and rotational information separately for each eye. Furthermore, an HMD may

provide multiple tracked devices, such as nunchucks, which can be queried via

getTrackedDevices(). Via attachToNode() a controller can be attached any

Node in the scene graph (most likely one representing a 3D model of the controller),

which subsequently inherits the transformations of the tracked device. A suitable

model for such a device may be provided by the HMD via loadModelForMesh().

Our implementation of SteamVR HMDs provides the correct mesh for a given

HMD via this function.

7.3 Augmented Reality and the Hololens

scenery also includes support for the Microsoft Hololens, a stand-alone, unteth-

ered augmented reality headset, based on the Universal Windows Platform (see class

Hololens). The Hololens includes its own CPU and GPU, due to size constraints

they are, however, not very powerful, and especially when it comes to rendering of

volumetric datasets, underpowered.

To get around this issue, we have developed a thin, Direct3D-based client applica-

tion for the Hololens that makes use of Hololens Remoting, a proprietary streaming

protocol developed by Microsoft6. This client receives pose data from the Hololens, 6 The exact details of how this works are not
published, but apparently work by stream-
ing the image data for both eyes over the net-
work, compressed with H264.

as well as all other parameters required to generate correct images, such as the projec-

tion matrices for each eye. This data is then forwarded to a Hololens interface within

scenery, based on the regular HMD interface. Initial communication to acquire

rendering parameters is done via a ZeroMQ request-reply socket, while receiving of

per-frame pose data is handled with an additional, publish-subscribe socket due to

better latency.

The Hololens remoting applications are usually fed by data rendered with Di-

rect3D, which lets us immediately recognise the problem that scenery can only render

via OpenGL and Vulkan at the present moment.

Fortunately, a shared memory extension for Vulkan, NV_external_memory, ex-

ists in the standard that enables zero-copy sharing of buffer data between different

graphics APIs, by using a keyed mutex. Programmatically, this is done as:

1. On the host (scenery) side, verify that the device supports this type of Direct3D

texture for importing.

2. For each swapchain image, allocate a Direct3D shared handle texture with flag
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D3D11_RESOURCE_MISC_SHARED_KEYEDMUTEX on the side of the client appli-

cation. This image will serve as the final render target to be sent to the Hololens7. 7 We allocate multiple image buffers and use
them in a double/triple-buffering manner
for read/write access to prevent the GPU
stalling.

3. For each shared handle, create a Vulkan image, with memory bound to the shared

handle.

4. Request access to the image via the keyed mutex, and store image data in it, e.g. via

vkCmdBlitImage. Keyed mutex handling is done by the extension itself, via extra

information attached to the appropriate vkQueueSubmit call. The command

buffer for the blit operation needs to be recorded only once and can be reused as

long the resolution does not change.

The inclusion of the keyed mutex information into the vkQueueSubmit call in

the last step has the benefit that no additional network communication via ZeroMQ

is necessary to indicate by which part of the software the shared texture is used at the

moment, leading to increased performance.

7.4 Eye Tracking

scenery includes support for the Pupil Labs eye tracking solution [Kassner et al.,

2014](www.pupil-labs.com), implemented in the class PupilEyeTracker. This

class communicates with the Pupil Labs softwarePupilCapture orPupil Service via Ze-

roMQ, with msgpack data serialisation. Our implementation provides HMD-based

screen-space and world-space calibration, reporting of the gaze positions, normals,

timestamps, and confidences.

For calibration, the user is presented with a series of points to look at, which

serve to establish a connection between the eye tracker’s captured direction of gaze

with a screen-space or world-space position in the scene. For each calibration point,

80 different samples are taken to account for microsaccades, and the first 20 are

discarded to exclude those samples that might still include eye movement, while the

user is moving from one point to the next. After finishing the calibration, the user is

informed of successful or unsuccessful calibration, and can repeat the calibration, if

necessary.

After successful calibration, scenery enables the developer to connect the outputs

of the eye tracker (in the form of gaze normals, gaze positions, and a confidence rating)

to the properties of any object. By default, gaze points are only output in case the

confidence reaches more than 80%, leaving the decision to the developer which of

the higher-confidence samples to use.

More details about eye tracking can be found in Chapter 4, Eye Tracking and

Gaze-based Interaction, with a use case implemented in Chapter 11, Bionic Tracking:

Using Eye Tracking for Cell Tracking.

https://www.pupil-labs.com


Chapter 8:

Distributed Rendering

Figure 8.1: A user interacting with a
Drosophila dataset rendered on a clustered 4-
sided CAVE setup with 5 machines. Photo
courtesy of Aryaman Gupta, MPI-CBG,
Dresden.

Apart from rendering to VR/AR headsets, scenery includes support for parallel

and distributed rendering on multiple machines. While all scenery-based applications

are in principle ready to run on multiple machines in concert, a bit of configuration

is required. This chapter details the necessary steps, starting with the geometry

definition for multi-projector/multi-screen environments, followed by an explanation

what steps are necessary on the software side. We end the chapter with information

about how scenery keeps the information on all machines synchronised.

8.1 Screen Geometry Definition

For setting up a multi-projector, multi-machine environment with scenery, the physi-

cal geometry of the projection space has to be defined. This is done using a simple

YAML file, an example of which can be seen in Listing 8.1.

1 name: CAVE example configuration
2 description: Multi-screen configuration, demoing a 4-sided CAVE environment
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3 screenWidth: 2560
4 screenHeight: 1600
5

6 screens:
7 front:
8 match:
9 type: Property

10 value: front
11 lowerLeft: -1.92, 0.00, 1.92
12 lowerRight: 1.92, 0.00, 1.92
13 upperLeft: -1.92, 2.40, 1.92
14 left:
15 match:
16 type: Property
17 value: left
18 lowerLeft: -1.92, 0.00, -1.92
19 lowerRight: -1.92, 0.00, 1.92
20 upperLeft: -1.92, 2.40, -1.92
21 right:
22 match:
23 type: Property
24 value: right
25 lowerLeft: 1.92, 0.00, 1.92
26 lowerRight: 1.92, 0.00, -1.92
27 upperLeft: 1.92, 2.40, 1.92
28 floor:
29 match:
30 type: Property
31 value: floor
32 lowerLeft: -1.92, 0.00, -0.48
33 lowerRight: 1.92, 0.00, -0.48
34 upperLeft: -1.92, 0.00, 1.92

Listing 8.1: Simple configuration file for a four-sided CAVE environment
with each wall having a resolution of 2560x1600 pixels.

First, the name and description of the configuration are set (lines 1 and 2), along

with the screen dimensions in pixels (lines 3 and 4, all screens have to have the same

pixel width and height). Following that, a set of screens is defined (line 6 and follow-

ing). These screens can have arbitrary names, and should ideally reflect a physical

property, e.g. relating to their positioning in the room. The match element (e.g. line

8) defines how scenery determines which machine in the cluster is associated with

which screen. Two ways are possible for this:

• type: Property, where the screen is determined by the system property

scenery.screenName set to the string given in value, or

• type: Hostname, where the screen is determined by matching the hostname of

the machine to the name given in value.

The following three vectors, lowerLeft, lowerRight, and upperLeft deter-

mine the corners of the screen surface in physical space, which is assumed to be

rectangular (e.g. lines 11, 12, and 13). Note here that the tracking system also needs

to be calibrated to the same coordinate space. In the example above, the coordinate

origin is on the floor, 0.48m in front of the front screen, and each screen has a width

of 3.84m, and a height of 2.40m.
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8.2 Synchronisation of Scene Data

Scene data is synchronised using a custom ZeroMQ-based protocol. ZeroMQ is a

low-latency message-passing library with bindings for a variety of languages, and

support of all major operating systems. It is very resilient to network issues, e.g.,

lost connections are reestablished automatically. Furthermore, ZeroMQ supports

multiple connection topologies, such as publish-subscribe (non-blocking), request-

reply (blocking), or push-pull. We use the publish-subscribe topology, which is non-

blocking, to synchronise scene contents. The actual synchronisation is deliberately

kept extremely simple, in order to be able to execute the synchronisation step as fast

as possible.

Two classes in scenery are responsible for scene synchronisation, NodePublisher

and NodeSubscriber. The NodePublisher creates a ZeroMQ Publisher socket, to

which an arbitrary number of NodeSubscribers can connect. Node changes are de-

tected using the mechanism described in Section 6.2.3, PushMode, it is the same the

renderer uses to decide whether a node needs re-rendering. If a node changes, it is

serialised into a stream of bytes using the open-source library Kryo1 library. Kryo was 1 See github.com/EsotericSoftware/Kryo
for code and details.

chosen on the basis of performance and usability: It outperforms most other Java

serialisation libraries, while not requiring code changes or large additions, and can be

augmented with custom (de)serialisation routines.

A NodePublisher instance is created by default when scenery’s base class

SceneryBase initialises. It then listens on the local network interface on port 6666

for connections. NodeSubscribers are not created by default. They are only created

if the system property scenery.MasterNode is set to the address of a master node.

A schematic of the scene synchronisation is shown in Figure 8.2.

NodePublisher NodeSubscriberZeroMQ ZeroMQ
Network

Main Loop

List of nodes with updates
Scene

Node
updates

master client

Figure 8.2: Schematic of the scene syn-
chronisation in scenery, where one or more
clients connect to a master in order to syn-
chronise scene contents over the network via
ZeroMQ. See text for details.

8.3 Software Setup for Clustering

At the time of writing, scenery requires a script to launch the remote clients that

connect to the NodePublishers on the master node. On Windows, the utility psexec

can be used, while on Linux ssh is the utility of choice. In Listing 8.2, a script is

shown to launch scenery instances on a number of nodes with psexec: Lines 3 to 6

launch scenery instances on the machines wall1 to wall4, with user credentials given

by username and password.

https://github.com/EsotericSoftware/Kryo
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1 @echo off
2 echo ”Running test %1”
3 call psexec -f -d -i -u username -p password \\wall1 -c run.bat %1 left
4 call psexec -f -d -i -u username -p password \\wall2 -c run.bat %1 front
5 call psexec -f -d -i -u username -p password \\wall4 -c run.bat %1 floor
6 call psexec -f -d -i -u username -p password \\wall3 -c run.bat %1 right
7

8 exit /b 0

Listing 8.2: run-cluster.bat for launching multiple scenery instances on
different Windows machines via psexec.

Listing 8.3 shows the script that launches the individual instance on a machine

with the required parameters: Line 2 creates a network share from a path on the

master node containing the scenery application, and Line 2 runs scenery, activating

fullscreen mode (line 3), activating framelock (line 4), declaring the master node

address (line 6), screen name (line 7), and activating VR rendering from the start

(lines 8 and 9). In this example, the screen configuration for each wall is determine by

the system property scenery.ScreenName, as defined in Listing 8.1 on line 8.

1 net use S: \\master\scenery-base
2 java -cp ”S:/scenery/target/*;S:/scenery/target/dependency/*” -Xmx16g^
3 -Dscenery.RunFullscreen=true^
4 -Dscenery.VulkanRenderer.UseOpenGLSwapchain=true^
5 -Dscenery.Renderer.Framelock=true^
6 -Dscenery.MasterNode=tcp://10.1.2.201:6666^
7 -Dscenery.ScreenName=%2^
8 -Dscenery.Renderer.Config=DeferredShadingStereo.yml^
9 -Dscenery.vr.Active=true^

10 org.junit.runner.JUnitCore %1 > S:\%2.log 2>&1
11 net use S: /delete /yes

Listing 8.3: run.bat for running a scenery instance on a node.

The remote clients can be launched directly from within the IDE, or individually,

independently of the master process (e.g., manually from the command line). Initial

or resumed connections are possible at any point in time. The program can be

designed in two ways:

1. The local instance on master and clients handle scene construction themselves, or

2. scene construction is handled by the master node, and all changes and additions

are communicated over the network to the clients.

Which of the strategies to choose depends on the problem at hand: Fully local

initialisation can be beneficial if the data can be loaded from a local source for im-

proved performance, while non-local construction is useful in the case that data can

be loaded quickly from a common data source, such as a NAS (network-attached

storage), SAN (storage-area network), or cluster file system.

In the future, we would like the extend the network capabilities of scenery in

such a way that the remote-launch scripts are not necessary anymore, but a general-

purpose client is run on the slave machines which will automatically connect to an

active master node. Additionally, the synchronisation modes presented here can be
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used for networking in general, meaning that remote multi-user environments are

also possible with scenery, but have not been explored yet.





Chapter 9:

Miscellaneous Subsystems

We will briefly describe the remaining subsystems of scenery: Hub, Settings, Statistics,

and OpenCL contexts. The Hub is the communications backbone of scenery, while

the Settings store gathers user- and system-defined settings from various places and

makes them available to scenery in a type-safe manner. The Statistics subsystem

collects running averages of timings or frame rates, and an OpenCL context can be

used to perform general-purpose computation on the CPU or GPU.

9.1 The Hub

All of scenery’s subsystems — including the renderers, input handlers, VR devices,

etc. — register with a hub, which is unique to an application.

A hub can be queried for the presence of a subsystem via Hub.get(e:

SceneryElement). This routine will either return the SceneryElement

is has been asked for, or null if that subsystem has not been registered. A

SceneryElement can be a renderer, OpenCL compute context, statistics collector,

node publishers or subscribers, settings storage, and regular or natural input devices.

A new SceneryElement may be added to a hub via the generic function <T:

Hubable> Hub.add(e: SceneryElement, obj: T), which will return the

object that has been added to the hub.

With this design, it is possible to realise full applications that handle the application

logic, rendering, input, and clustering, but also headless applications that run only

the application logic, but do not produce any visual output, nor take any input. In

this way, we can easily realise minimal unit tests or integration tests that only include

the necessary subsystems for the test case at hand, while still enabling communication

between the required subsystems.

Furthermore, by implementing the Hubable interface, the developer is able to

add own subsystems.

9.2 Settings store

scenery uses a simple key-value store for settings. In the key-value store, values are fixed

to their initial type once they have been set for the first time during an application run.
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The settings system allows a bit of leeway in typing: for example, up- and downcasts,

e.g. from float to double and vice-versa are possible, but a warning will be emitted

to make it easier for the developer to track down errors, should they occur. This

constrained flexibility allows to interoperate with scripting languages that do not

exhibit different floating point types, such as JavaScript.

During startup, settings are gathered in the following order, with later ones taking

precedence:

• scenery’s default settings, usually defined in the interfaces of the various

subsystems, such as Renderer, which, e.g., defines the supersampling factor1 1 Supersampling refers to a rendering tech-
nique where images are rendered larger than
necessary and downscaled later on for dis-
play in order to avoid aliasing artifacts.

Renderer.SupersamplingFactor to be 1.0.

• Configuration files, where the settings are stored in YAML format (by default,

.scenery/[applicationName].conf.yml in the user’s home folder),

• System properties from the command line. E.g., handing the optional flag -

Dscenery.Renderer=OpenGLRenderer to the JVM on startup will override

both scenery’s default renderer setting, and the configuration file. System proper-

ties starting with scenery. are automatically translated to scenery settings, with

the scenery setting name being the part after the dot.

New settings can be added via Settings.set(name: String, contents:

Any), or Settings.setIfUnset(name: String, contents: Any) if over-

writing an existing setting — which might come from system properties or settings

files — is not desired.

Settings can be queried at runtime via <T> Settings.get(name: String,

defaultValue: T? = null). The default value, which is optional, can provide a

fallback if necessary. If a setting is not found or cannot be cast to the type requested,

an exception is emitted.

For inspection all existing settings can be queried as a string viaSettings.list(),

or their names returned as a List<String>, via Settings.getAllSettings().

9.3 Statistics

The Statistics subsystem can be used to collect information on timings or framerates.

By default, the renderers use this subsystem to collect the timings of each rendering

pass, and of the framerate. For all statistics collected, a running average over the last

100 values is kept.

A new statistic can be added by calling Statistics.add(name: String,

value: Float, isTime: Boolean), where value is expected to be in nanosec-

onds, if it is a time value. When isTime is false, the values are not converted

to milliseconds for displaying. In addition to adding already calculated values,

Statistics.addTimed(name: String, lambda: () -> Any) can be used to

measure the runtime of any lambda function invocation, and add that as a statistic.

All statistics can be printed on standard output or REPL 2, by calling 2 scenery provides a REPL, or read-evaluate-
print loop, to interactively issue commands
during runtime.

Statistics.log(). See Listing 9.1 for an example.
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1 Statistics - avg/min/max/stddev/last
2 OpenGLRenderer.updateInstanceBuffers - 0.18/0.11/0.41/0.05/0.19
3 OpenGLRenderer.updateUBOs - 0.38/0.24/0.68/0.09/0.33
4 Renderer.AO.renderTiming - 0.14/0.08/0.30/0.04/0.15
5 Renderer.AOBlurH.renderTiming - 0.11/0.06/1.63/0.16/0.11
6 Renderer.AOBlurV.renderTiming - 0.14/0.06/1.83/0.24/0.12
7 Renderer.DeferredLighting.renderTiming - 0.28/0.15/1.43/0.15/0.40
8 Renderer.FXAA.renderTiming - 0.07/0.04/0.17/0.02/0.07
9 Renderer.ForwardShading.renderTiming - 0.53/0.30/2.68/0.32/0.55

10 Renderer.HDR.renderTiming - 0.10/0.06/0.25/0.03/0.11
11 Renderer.Scene.renderTiming - 0.28/0.18/1.81/0.16/0.29
12 Renderer.fps - 25.50/0.00/57.00/25.84/56.00
13 loop - 0.00/0.00/0.00/0.00/0.00
14 ticks - 515.50/466.00/565.00/28.87/565.00

Listing 9.1: Sample statistics output from scenery

In this example, all default statistics are shown: the timings of the individual

renderpasses (e.g. Renderer.HDR.renderTiming), the frame rate Renderer.fps,

and the timings for UBO and instance buffer updates (all in milliseconds).

9.4 OpenCL contexts

For general-purpose computations on the GPU, scenery offers access to OpenCL,

if supported by either GPU or CPU. OpenCL can be used perform any kinds of

computations that are not related to the regular graphics pipeline. In scenery, we use

an OpenCL context (in the class OpenCLContext) for example to generate signed

distance fields3 for high-quality font rendering [Green, 2007, Chlumsky, 2015]. This 3 A distance field of a binary image stores
the distance to the next border between fore-
ground (white) and background (black) for
each pixel. A signed distance field stores the
signed distance, where (depending on con-
vention) positive means inside, and negative
means outside.

technique requires high-resolution distance fields for each glyph of the font, which are

subsequently downsampled and stored in an atlas for later access. This distance field

can then be very efficiently sampled in a shader to find the (anti-aliased) outline of

the font without storing the font as a texture at different resolutions. For an example

rendering, see Figure 9.1.

The creation of the distance fields of a glyph is quite simple and serves as an exam-

ple how to use an OpenCLContext. The abridged code showing the most important

parts for this process is given in Listing 9.2. For full code, see the SDFFontAtlas

class in scenery (in src/main/kotlin/graphics/scenery/fonts), and

DistanceTransform.cl (insrc/main/resources/graphics/scenery/fonts)

for the OpenCL kernel code.

1 // resolution of high-res distance field in pixels
2 val distanceFieldSize = 512
3 // create OpenCL context
4 val context = OpenCLContext()
5 // generate image of P character in given font, returns pair of
6 // character width and generated image byte buffer
7 val character = genCharImage(”P”, font, distanceFieldSize)
8

9 // wrap the byte buffer returned from genCharImage
10 // such that OpenCL can read it
11 val input = context.wrapInput(character.second)
12 // create an output buffer to store the distance field
13 val outputBuffer = ByteBuffer.allocate(distanceFieldSize * distanceFieldSize)
14 // wrap the output byte buffer such that OpenCL can
15 // write to it
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Figure 9.1: Font in scenery rendered from a
signed distance field font atlas, generated via
an OpenCL kernel. Note that the per-glyph
distance field only has a size of at most 64x64
pixels, whereas the rendered resolution in
this case is already 160 pixels in glyph height.
For details, see text.

16 val output = context.wrapOutput(outputBuffer)
17

18 // load the signed distance field kernel
19 // and run it
20 context.loadKernel(kernelResource, ”SignedDistanceTransformUnsignedByte”)
21 .runKernel(”SignedDistanceTransformUnsignedByte”,
22 distanceFieldSize * distanceFieldSize,
23 input,
24 output,
25 distanceFieldSize,
26 distanceFieldSize,
27 maxDistance)
28

29 // read the result back into outputBuffer
30 context.readBuffer(output, outputBuffer)

Listing 9.2: OpenCL usage example.



Chapter 10:

Future Development Directions

10.1 Improved rendering

While scenery already supports a set of different rendering methods, and exchangeable

and customisable rendering pipelines, we will extend the default rendering pipeline

further with more state-of-the-art algorithms in the future:

• We would like to use more efficient ways of deferred shading, like forward+ shading

[Harada et al., 2012] or clustered deferred shading [Olsson et al., 2012] — these

variations of deferred shading support a large number of light sources, while

integrating with regular forward shading effects and material pipelines more easily.

Ideally, options for machines in several performance categories could be offered, as

scenery will probably be used on notebooks as well as high-powered workstations.

• Volume rendering in scenery is still rather basic, supporting only alpha blending,

and (local) maximum intensity projection. We would like to explore options like

Monte Carlo light transport (e.g. as used in [Kroes et al., 2012]), or path tracing

[Novák et al., 2018]. In addition to the added visual fidelity, such methods enable

the precise simulation of light emitted by fluorescent proteins possible [Abdellah

et al., 2017], opening the way to create better simulated data, e.g. for testing image

analysis algorithms.

• Shadowing has not been implemented yet, but provides higher visual fidelity as

well. We have started exploring various ideas in screen-space shadowing, with a

preliminary rendering of the Sponza demo scene shown in Figure 10.1.

• The advent of ray tracing cores in consumer hardware, as in Nvidia’s RTX se-

ries GPUs, offers new possibilities for global illumination (and shadowing). We

would like to explore how these new possibilities can improve the rendering of

experimental and simulated scientific data.

10.2 Improved networking

As described in Chapter 8, Distributed Rendering, scenery already provides facilities

to synchronise scene content over a network. We would like to extend our networking

implementation such that scientists can work collaboratively and remotely and jointly

on datasets, without requiring large changes to the code of an application. Another
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Figure 10.1: The Sponza demo scene
rendered with screen-space shadowing in
scenery with an experimental rendering
pipeline. Sponza model from Morgan
McGuire, Computer Graphics Archive,
casual-effects.com/data

possibility is the collaboration between scientists in the same place via AR headsets,

e.g., for discussing datasets and results while the dataset is hovering over the desk

around which the scientists are sitting.

10.3 In situ visualisation in Virtual Reality

Scan this QR code to go to a video demo

of in situ visualisation in scenery. For a

list of supplementary videos see https://ul-

rik.is/writing/a-thesis.

We have already started to explore the possibility of coupling scenery with simulation

frameworks such as OpenFPM [Incardona et al., 2019] and ISAAC [Matthes et al.,

2016]. We would like to explore VR-augmented visualisation of simulation data,

while the simulation is running (in situ visualisation), and steering of the running

simulation. With support for both virtual reality headsets and distributed rendering

setups, as well as various devices for interaction, scenery is an ideal framework for this.

We have already developed a prototype for a small molecular dynamics simulation,

with the simulation code running in OpenFPM, and the visualisation on four ren-

dering nodes, and one compositing node in scenery. This example is shown in the

supplementary video under the QR code on the right.

In situ visualisation provides further interesting research avenues:

• How can we efficiently decouple updates of the simulation data from the visual-

isation, such that the low latency and high frame rate requirements of VR can

be met? Here, we have already prototyped a client-server architecture, where

renderings are composited on the head node of a cluster, and then forwarded to a

visualisation client that does the final compositing and VR rendering.

• How can the framework be designed to provide support for a wide range of

simulation applications, yet require only minimal code changes? At the moment,

we require only minimal code changes to include in situ visualisation in OpenFPM,

but does that scale to all use cases? Could the simulation code provide metadata

such that scenery can automatically discover visualisable or tuneable parameters

of the simulation?

• How can we represent volumetric data efficiently, such that compositing of non-

convex regions becomes possible, as domain decompositions from the simulation

may be non-convex? In this case, an extension of Volumetric Depth Images (VDI)

https://casual-effects.com/data/
https://ulrik.is/thesising/supplement/InSituMD.mp4
https://ulrik.is/writing/a-thesis
https://ulrik.is/writing/a-thesis
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[Frey et al., 2013] might provide a way out — VDIs are intermediate representa-

tion of volumetric data, where changes in the data below a certain threshold are

compressed into a block representation, similar to run-length encoding. VDIs are

then re-used for novel-view synthesis, where the rendering of a volumetric dataset

is calculated from a new viewpoint, without traversing the entire dataset again.





At its very core, virtual reality is about being

freed from the limitations of actual reality.

Carrying your virtual reality with you, and

being able to jump into it whenever and

wherever you want, qualitatively changes the

experience for the better.

—John Carmack

Part III:

Case studies





Chapter 11:

Bionic Tracking: Using Eye Tracking for Cell Tracking

The work presented in this chapter has been done in collaboration with Kyle I.S.

Harrington (University of Idaho, Moscow) and Raimund Dachselt (TU Dresden),

and has been published as:

Günther, U., Harrington, K.I.S., Dachselt, R., Sbalzarini, I.F.: Bionic Tracking:

Using Eye Tracking to Track Biological Cells in Virtual Reality. BioImageComputing

at ECCV 2020. arXiv preprint 2005.00387.

We are going to detail the Bionic Tracking strategy for augmenting biological

tracking tasks for 3D data over time with eye gaze data in order to make them easier

and faster to do. Bionic Tracking utilises a combination of virtual reality and eye

tracking in order to do so.

We will first discuss the tracking problems usually encountered in biology and

then detail the design process that went into Bionic Tracking, and finally show a

proof-of-concept that the strategy works in the case of tracking cells during the early

development of Platynereis embryos.

11.1 Tracking Problems in Biology and Challenges

In cell and developmental biology, the image data generated by fluorescence mi-

croscopy is often only a means to an end: Many tasks require exact information about

the position of cells during development, or even their entire history, the so-called

cell lineage tree.

Images from fluorescence microscopy don’t have any well-defined intensity scale —

in contrast to CT images, for example, where a specific intensity indicates a particular

tissue type — and intensity might even vary across a single cell. It can therefore

be very hard to follow a moving, dividing, or dying cell around in a developing

tissue or organism. Often, the task of tracking cells is done manually over a series

of time points, which can be a very tedious process. In the past, tracking software

was often developed for a specific model organism, e.g., for C. elegans, and relied on

their stereotypical development to succeed in tracking their cells. Such approaches

however either fail entirely, or produce unreliable results for larger organism. For that

https://arxiv.org/abs/2005.00387
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reason, (semi)automated approaches have been developed which are independent of

the model organism and can track large amounts of cells:

• TGMM, Tracking by Gaussian Mixture Models [Amat et al., 2014, 2015], is

an offline tracking solution that works by generating oversegmented supervoxels

from the original image data, then fit all cell nuclei with a Gaussian Mixture Model

and evolve that through time, and finally use the temporal context of the various

lineages to create the final lineage.

• TrackMate [Tinevez et al., 2017] is a plugin for Fiji [Schindelin et al., 2012] that

provides automatic, semi-automatic, or manual tracking of single particles in

imaging datasets. TrackMate is highly customisable and allows the user to even

extend it with self-developed spot detection or tracking algorithms.

• MaMuT, the Massive MultiView Tracker [Wolff et al., 2018], is in some sense

the successor to TrackMate, allowing the user to track cells in large datasets, often

originating from lightsheet microscopes, and containing multiple different views.

MaMuT’s viewer is based on BigDataViewer [Pietzsch et al., 2015], and is able to

handle very large amounts of data.

All of these automated approaches however have in common that they need

manual curation as a final step, as all of them do make assumptions about cell shapes,

modelling them as Gaussian blobs, as in the case of TGMM. The main problem

we are going to address in this chapter is the manual curation step, which might be

needed either for verification, or to handle especially difficult developmental stages,

where cell shapes may vary wildly.

The challenges of this step are twofold:

• Image data from fluorescence microscopy can be very inhomogeneous, with in-

homogeneity stemming from both the distribution of fluorescent proteins, and

from the diversity of cell or nuclear shapes. Deriving general algorithms that can

capture both regular and very deformed cells or nuclei is a highly challenging task.

• Manually curation of cell lineages is very tedious at the moment, as the users have

to go through each timepoint and connect cells between the timepoints. This is

often done on a per-slice basis and by mouse, leading to a time-consuming process.

Manually tracking a single cell through 100 timepoints with this process can take

up to 30 minutes, and tracking a single dataset whole can take many months.

11.2 Design Space and Related Work

Bionic Tracking is powered by a combination of eye tracking and virtual reality:

A user is tasked to follow a cell with her eyes, the gaze direction recorded, and

the targeted cell then determined, turning the 3-dimensional localisation problem

into a 1-dimensional one — from the whole volume of image data, to a set of rays

through it. As described in Chapter 2, Introduction to Visual Processing, the human

visual system excels in following moving objects smoothly, and in datasets used for

cell tracking, the cells are also assumed to be moving smoothly.
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Gaze in general has been used in human-computer interaction for various kinds of

interactions. Briefly, it has been used as an additional input modality in conjunction

with touch interaction [Stellmach and Dachselt, 2012] or pedaling [Klamka et al.,

2015], or for building user interfaces on top of it, e.g. for text entry [Lutz et al., 2015].

However, the particular kind of eye movements we are exploiting here mainly – smooth

pursuits — are under-explored in human-computer, especially for 3D interaction: In

[Kosch et al., 2018], the authors use deviations from smoothness in smooth pursuits

to evaluate cognitive load, while in [Vidal et al., 2013], smooth pursuits are used for

item selection in 2D user interfaces. To the author’s knowledge, only [Piumsomboon

et al., 2017] use smooth pursuits for 3D interaction in theirRadial Pursuit technique,

where the user can select an object in a 3D scene by tracking it with her eyes, and it

will become more “lensed-out” the longer she focuses on a particular object.

With the addition of virtual reality, we give the user a tool for enhanced navigation

and cognition when exploring a complex 3D dataset [Slater and Sanchez-Vives, 2016],

and second, utilise the tracking data from the head-mounted display, consisting of

head position and head orientation, for constraining the eye tracking data to remove

outliers from the gaze data, e.g., by calculating the quaternion distance between eyeball

rotation and head rotation. In addition, head tracking data from the HMD can be

used to foveate the rendering of the volumetric dataset, dimming areas the user is not

looking at [Levoy and Whitaker, 1990, Bruder et al., 2019]. We have not yet explored

foveation (e.g., to boost tracking rates) yet. In the context of biological or biomedical

image analysis, VR has been applied e.g. for virtual colonscopy [Mirhosseini et al.,

2019] or for tracing of neurons from connectome data [Usher et al., 2017].

Let us take a critical look at whether only one of the two technologies could

be sufficient in achieving our goal of making manual cell tracking faster and more

comfortable:

• When removing eye tracking, the head orientation could still be used as a cursor.

However, following small and smooth movements with your head is not some-

thing humans are used to, the eyes will always lead the way, and the head will

follow via the vestibulo-ocular reflex.

• When removing virtual reality, the effective “canvas” the user can use to follow

cells around become restricted to the small part of the visual field a regular screen

occupies. Alternatively, large screens, such as Powerwalls, could be used, but

these also do not offer the freedom of movement that virtual reality headsets offer,

especially when the user needs to move inside the dataset, or even evade objects

while tracking a cell.

In terms of the design space for gaze interaction on head-mounted displays intro-

duced by [Hirzle et al., 2019], we utilise (stereoscopic) VR with full world informa-

tion, combined with binocular eye tracking.
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Figure 11.1: Diversity of nuclear shapes in
early Platynereis development, taken from
the first 100 timesteps of a developmen-
tal timelapse. Dataset courtesy of Mette
Handberg-Thorsager, Tomancak Lab, MPI-
CBG.

11.3 Tracking cells in early Platynereis development

Scan this QR code to go to a video showing

the early development of a Platynereis em-

bryo. For a list of supplementary videos see

https://ulrik.is/writing/a-thesis.

Platynereis dumerilii is an annelid, a segmented worm. Its embryonic development

has a very characteristic feature, spiral cleavage where dividing cells turn in spiral

form during their division. Arising from this geometric peculiarity, a wide variety of

cell shapes can be found in developing Platynereis. Their membranes are inherently

hard to segment, also due to the stochastic distribution of fluorescent markers. Al-

ternatively, nuclei can be tracked, but their shapes vary as well, with some examples

shown in Figure 11.1.

11.4 Design Process

11.4.1 Initial Prototype

Figure 11.2: 2D Screenshot of the atten-
tive tracking prototype. The sphere to be
tracked can be seen in the upper left corner
of the image. See the text for details.

For the initial prototype, within scenery we created a virtual reality-based crowded

environment consisting of many differently-sized and differently-colored boxes.

This prototype was tested with an HTC Vive on a set of 5 people familiar with

tracking problems, either from the biological or algorithmic side. The participants

were not told that they are going to perform a tracking problem in order to prevent

priming them.

In the presented scene, a black sphere is performing random motions in the a

crowded space, and the participant was instructed to follow this sphere, and not lose

sight of it. A screenshot of the prototype can be see in Figure 11.2. While participants

stated that manual tracking is usually perceived as a tedious, boring and annoying

task, they described following the sphere in VR as interesting, easy and fun.

https://ulrik.is/thesising/supplement/Platynereis100Timepoints.mp4
https://ulrik.is/writing/a-thesis
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Encouraged by the positive reactions to the first simple prototype, a next, more

serious prototype was planned. Just tracking head orientation and position would

not be enough for the precision required, so an eye-tracking solution was integrated

into the HTC Vive to gain access to more detailed information on where the user is

looking at any given point in time.

11.4.2 Selecting the eye tracking hardware

For the this project, we have chosen the Pupil eye trackers produced by Pupil

Labs[Kassner et al., 2014]1, as they provide a solution that provides both open-source 1 The Pupil HMD-based eye tracker from
Pupil Labs, see https://www.pupil-labs.
com.

software and very competitively-priced hardware that is simple to integrate into

HMDs. The software offered is available as LGPL-licensed open-source software on

Github (https://github.com/pupil-labs) and can be extended with custom plugins.

In addition to being open, data gathered by the software is available to external

applications via a ZeroMQ-based protocol — in contrast to closed-source proprietary

libraries required by other products — which even enables the use of the eye tracking

data over the network.

At the time of writing, HTC’s extended version of their Vive Pro HMD, the

Vive Pro Eye, with integrated eye tracking hardware, is also becoming available. It

will be interesting to compare the two solutions in the future, especially as the Vive

Pro Eye will be more competitively priced (around EUR1400) than a regular Vive

combined with the Pupil eye trackers (EUR600 for the HMD, plus EUR1100 for

the eye trackers).

Figure 11.3: The Pupil eye tracking cam-
eras integrated into a HTC Vive HMD. The
cameras view the eyes of the user from be-
low, while the eyes are illuminated by a set of
IR LEDs position around the lenses of the
HMD. Image reproduced from www.pupil-
labs.com.

An image of how the eye tracking solution looks integrated into a HTC Vive

HMD can be seen in Figure 11.3.

https://www.pupil-labs.com
https://www.pupil-labs.com
https://github.com/pupil-labs
https://www.pupil-labs.com
https://www.pupil-labs.com
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.

Figure 11.4: Pupil detection in the Pupil
software. See text for a description of the
steps. Image reproduced from [Kassner
et al., 2014].

11.5 Pupil detection and calibration

11.5.1 Pupil 2D and 3D detection

Using three user-defined parameters, pupil intensity range, and pupil min/max diam-

eter, Pupil extracts the pupil from the camera images as follows (from [Kassner et al.,

2014]):

1. A Canny edge detector is applied to the camera image (Figure 11.4-1),

2. Darker regions of the image are selected, based on the pupil intensity range pa-

rameter, the offset of the first histogram maximum, edges outside this area are

discarded (Figure 11.4-2),

3. the remaining edges are filtered to exclude specular reflections, such as from

the infrared LEDs, then the remaining edges are extracted into contours using

connected components (Figure 11.4-3, spectral reflections in yellow),

4. the remaining contours are filtered and split into sub-contours based on the

continuity of their curvature (Figure 11.4-4),

5. candidate pupil ellipses are formed using least squares fitting, with the major

axis within the bounds of the pupil min/max parameter, and a combinatorial

search is done on the remaining contours to see which might be added to the

ellipse for additional support. Resulting ellipses are evaluated based on the ratio

of supporting edge length and ellipse circumference, called confidence in Pupil,

and finally

6. if the best result’s confidence is above a defined threshold, the candidate ellipse is

reported as result, otherwise the algorithm returns that no pupil has been found.

If 3D detection is selected in Pupil, the result ellipse is passed on to the algorithm

described in [Swirski and Dodgson, 2013]. As we are only going to use 2D detec-

tion for Attentive Tracking, we are not going to detail this algorithm, but refer the

interested reader to the paper instead.
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We have found that the the combination of high-resolution camera images (reso-

lution over 640x480 pixels) in combination with the Canny edge detector used in the

first step of the algorithm leads to contour overdetection, and therefore useless pupil

detections. We therefore used a camera resolution of 640x480 pixels, which provides

the best tradeoff between speed, processing cost, and accuracy. The used cameras

provide a framerate of 120fps at this resolution, which in turn leads to a high-enough

temporal resolution for tracking eye movements, as the framerate of the HMD is 90

fps maximum. We are currently exploring alternatives to the algorithm described,

based on genetic algorithms.

Although by using vergence as binocular depth cues, 3D detection could yield

additional constraints on at what depth the user was looking, in the following, we

use the 2D detection algorithm, which we found to be more reliable.

11.5.2 Calibration procedure

Scan this QR code to go to a video showing

the calibration procedure for Bionic Track-

ing. For a list of supplementary videos see

https://ulrik.is/writing/a-thesis.

Eye positions, size, etc. are subject to large individual differences. It is therefore

required to calibrate the eye trackers before each use, to be able to get reliable gaze

data out.

In case of regular, glasses-mounted eye trackers, Pupil offers an integrated calibra-

tion procedure, while for HMD-based settings, we need to create our own calibration

routine. Our custom calibration routine works as follows and is based on the one

used in the HMDeyes example from Pupil Labs:

1. We show the user the images recorded by the two eye tracking cameras in the VR

HMD, such that the position of the headset can be adjusted so the eyes can be

detected well by Pupil,

2. when the user starts the calibration procedure, we instruct her to follow the points

shown on-screen. First, we show a single highlighted point in the center of the

screen,

3. after acquiring enough samples for calibration (scenery defaults to 120 samples per

point, discarding the first 15 to remove samples where the eyes where potentially

still moving), the screen space position of the calibration point is sent to Pupil,

4. the next counter-clockwise point out of a set of 6 equidistant points on the circle

is shown to the user,

5. after all 7 points have been gazed at by the user, Pupil’s calibration routine will

try to construct a correspondence between the gaze vectors of both eyes and the

screen-space coordinates submitted,

6. if the calibration routine is successful, the calibration interface will be hidden, and

the regular application can continue. If the calibration routine is not successful,

we restart from 1. until successful or until the user cancels.

The user can now continue with tracking cells in the loaded dataset.

https://ulrik.is/thesising/supplement/Bionic TrackingCalibration.mp4
https://ulrik.is/writing/a-thesis
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Figure 11.5: Controller bindings for us-
ing Bionic Tracking. See text for details.
Vive controller drawing from VIVEPORT
Developer Documentation, developer.vive-
port.com.

11.6 Tracking Procedure

After calibration and before starting the tracking procedure for a single cell, the user

can position himself freely in space, and also move to the right position in time for

the dataset. All of these functions can be performed using the HTC Vive handheld

controllers. The controller bindings are shown in Figure 11.5, with them the user

can perform the following:

• move the dataset by holding the left-hand trigger and moving the controller

around,

• use the directional pad on the left-hand controller to move forward, back, left,

right, with respect to the direction the user is looking into,

• start and stop tracking by pressing the right-hand trigger,

• play and pause the dataset by pressing the right-hand menu button,

• playing the dataset faster or slower by pressing the right-hand directional pad up

or down, and

• stepping through the timepoints of the dataset by pressing the right-hand direc-

tional pad left or right.

To adjust for handedness of the user, the controller mappings can be swapped.

The user can start the tracking process as soon as she is ready and has found the

cell she wants to track. Starting a tracking step will start playing the dataset if it is

currently paused. When tracking is active, gaze directions and other metadata are

collected, and can be analysed automatically in the next step. The limitation at the

moment is that the user has to look at a trackable object when the tracking step is

started, in order to seed the analysis algorithm.

https://developer.viveport.com
https://developer.viveport.com
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11.7 Analysis of Eye Tracking Data

After all rays have been collected for a tracking step, all further track data is derived

from the set of rays, which we call the hedgehog. An individual ray we dub spine, as it

contains more information than just the ray’s orientation and direction. In particular,

it contains:

• the confidence of the gaze data point it was derived from,

• the entry and exit points through the volume in volume-local coordinates (mean-

ing for each coordinate axis ∈ [0.0, 1.0]),

• the head orientation at recording time,

• the head position at recording time,

• the timepoint of the volume it belongs to, and

• a list of samples taken in uniform spacing along the ray, along with the spacing.

How this collection looks visually in 3D is depicted in Figure 11.6 (when visualis-

ing spines, we usually only show the spatial extent of them, and show their associated

confidence as color code — all data associated with the spine is however used in the

analysis). In the depicted image, the tracking user’s position is the intersection of all

spines, which are shown here in an elongated way for visualisation purposes. In this

case, the spines are color-coded by the timepoint of the volumetric dataset.

Figure 11.6: The hedgehog of a tracking step
of a single cell through 100 timepoints in a
Platynereis dataset. In the dataset, a Histone
marker is used for fluorescence. Each spine
is color-coded by timepoint, with early time-
points shown in green, and later ones in yel-
low. Dataset courtesy of Mette Handberg-
Thorsager, Tomancak Lab, MPI-CBG.

Additionally, the hedgehog can be represented in two dimensions, with time on

the Y axis, and depth along a given ray along the X axis. An example of that is shown

in Figure 11.7. In this figure it is clearly visible that the rays do have different lengths,

which is due to the angle they intersect the dataset. Also note that each line on the Y
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axis represents one gaze sample, of which we collect up to 60 per second, leading to

1614 samples in the plot (16 samples per timepoint on average).

Figure 11.7: The raw plot of the hedgehog
rays. On the Y axis, volume intensity along a
single ray is shown, on the X axis, time runs
from top to bottom. See text for details.

The data can also be smoothed with a moving window average over time. An

example of that with the same dataset as before is shown in Figure 11.10. In this plot

we additionally show the local maxima along each ray in red. The track of the cell we

were following is clearly visible. As there are movements of the user, and other cells

or objects might appear in front of the cell the user is tracking, the challenge is now

how to reliably use the temporal information contained in the hedgehog to find a

track for the cell.

11.7.1 Graph-based temporal tracking
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Figure 11.8: An example profile of an entire
ray through a volumetric dataset. X axis is
step along the ray in voxels, Y axis volume
sample value. In this case, there are two local
maxima along the ray, one close to the ob-
server, at index 70, and another one further
away at 284.

To reliably connect cells together over several timepoints, we use an incremental

graph-based approach utilising all spines that have local maxima in their sample value.

An example ray through a volume is shown in Figure 11.8. In the figure, the position

in voxels along the ray is shown on the X axis, while the Y axis shows the value of the

volume at that point of the ray. We assume that when starting a tracking step, the

user is looking at an unoccluded object that will be visible as a local maximum along

the ray to seed the algorithm.
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Figure 11.9: A graphical illustration of the
incremental graph-search algorithm used to
extract tracks from a hedgehog. Time runs
along the X axis. spine1 is the initial seed
point where to start tracking. The algorithm
is currently at spine4, determining how to
proceed to spine5, which has multiple possi-
ble cell detections. In this case, the middle
track with 𝑑 = 1 wins, as it is the shortest
world-space distance away from the current
point.

For each timepoint, we have collected a variable number of spines, whose count

varies between 0 and 60 (with an average of 16) — zero spines might be obtained

in case that the user blinks and no detection was possible. To connect the initial

seed point with the other correct spines correctly, we step through the list of spines

one-by-one, performing the following steps:

1. Advance to the next spine,

2. connect the currently active point from the previous spine with the local maxi-

mum on current next spine that has the lowest world-space distance — with this

weighting we can exclude cases where another object was briefly moving between

the user and the actually tracked object. The process of connecting one local

maximum to the next closest one is a version of dynamic fringe-saving A* -search

[Sun et al., 2009] on a grid, where all rays get extended the the maximum length

in the whole hedgehog along the X axis, and time flows along the Y axis.

Figure 11.10: The same hedgehog with lo-

cal maxima marked. On the Y axis, volume

intensity along a single ray is shown, on the

X axis, time runs from top to bottom. Local

maxima are shown in red. See text for details.

A graphical representation of the algorithm is given in Figure 11.9 and the algo-

rithm itself is summarised in Algorithm 1.

 Data: Hedgehog ℋ with spines 𝒮
Result: Track 𝒯, consisting of points 𝑝𝑖
 

 𝑣current ←𝒮 first;

forall Spine 𝑠 ∈ ℋ \ 𝑣current do
/* Find index of the closest local maximum */
𝑖closest ←FindIndexOfClosestMax (𝑣current, || ⋅ ||2);

/* If no maximum found, skip to next spine */
if 𝑖closest == null then

skip to next 𝑠;

end

𝑣.position ←𝑠.origin + 𝑠.direction ⋅𝑖closest;
𝑣current ←𝑣;

𝒯 + 𝑣
end

Algorithm 1: Algorithm for evaluation of the hedgehog in Bionic Track-

ing. See text for a detailed explanation of the steps.
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11.8 User Study

Figure 11.11: 52 cell tracks created by the au-
thor for a 101 timepoint time-series dataset
of aPlatynereis embryo. The tracks were cre-
ated in about 40 minutes. See the supple-
mentary video for the creation of a single
track, and a debug visualisation showing in-
tersections with the nucleus.

In order to evaluate the performance and usability of the Bionic Tracking method,

we have conducted a user study with seven experts in either manual or algorithmic cell

tracking, or both (median age 36, s.d. 7.23, 1 female, 6 male). In the study, the users

were given the task to track cells in thePlatynereis dataset also featured in Figure 11.11.

One of the participants was already familiar with the dataset. The user study was

conducted on a Dell Precision Tower 7910 workstation (Intel Xeon E5-2630v3 CPU,

8 cores, 64 GB RAM, GeForce GTX 1080Ti GPU) running Windows 10, build

1909, with a HTC Vive VR headset equipped with eye trackers by Pupil Labs.

The users who participated in the study had no or very limited experience with

using VR interfaces up to this point (5-point scale, 0 means no experience, and 4 daily

use: mean 0.43, s.d. 0.53), only one of them had previously used an eye-tracking-based

user interface. (same 5-point scale: mean 0.14, s.d. 0.37).

11.8.1 Procedure

Before starting the experiment, the users were informed of goals and potential risks

of the study (e.g. simulator sickness). In a questionnaire that was split into a pre-

experiment and a post-experiment part, the users were asked about the presence of any

motor or visual impairments, previous VR experience, and their current wellbeing.

The full questionnaire is available in Appendix C.

The users then got a quick introduction into the software and into VR environ-
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ments in general, if necessary. After the fit of the headset was ensured, the eye trackers

were calibrated. The users were then asked to create as many tracks as they liked and

are comfortable with. If any of the created tracks did not satisfy them, the offending

track could be deleted.

After the experiment was done, the post-experiment part was filled out, in this part

users had to judge the usability and suitability of the software, were asked again for

their wellbeing, and in addition had to rate their experience with both the NASA TLX

questionnaire [Hart and Staveland, 1988] and the Simulator Sickness Questionnaire

(SSQ, [Kennedy et al., 1993]). The questions about the usability and suitability of

the software were based on both the System Usability Score [Brooke, 1996] and the

User Experience Questionnaire [Laugwitz and Held, 2008].

As final element of the study, a free-form interview was conducted in which the

users could comment about the software, and suggest improvements.

11.8.2 Results

In the experiment, users created up to 32 cell tracks in 10 to 29 minutes.

The average SSQ score was 25.6 ± 29.8 s.d. (median 14.9), approximately on par

with other VR applications that have been evaluated using SSQ [Singla et al., 2017].

For the NASA TLX score, we used all categories (mental demand, physical demand,

temporal demand, success, effort, insecurity) on a 7-point scale where 0=Very Low and

6=Very High for the demand metrics, and 0=Perfect, 6=Failure for the performance

metrics. Users reported medium scores for mental demand (2.71 ± 1.70) and for

effort (2.86 ± 1.68), while reporting low scores for physical demand (1.86 ± 1.95),

temporal demand (1.57 ± 0.98), and insecurity (1.14 ± 1.68). Most importantly, the

participants did judge themselves to have been rather successful with the cell tracking

tasks (1.71 ± 0.75).

The users explicly expressed interest in using Bionic Tracking for their own track-

ing tasks (3.43 ± 0.53; 5-point scale here and for the following questions: 0=No

agreement, 4=Full agreement). The tracks created were judged to look reasonable

(2.57 ± 0.98), and Bionic Tracking was deemed to provide an improvement over their

current manual tracking methods (3.14 ± 0.90). Furthermore, the users stated that

they could create new cell tracks not only with reasonable confidence (2.86 ± 0.69),

but much faster (3.29 ± 0.76). Users also found the software to be relatively intuitive

(2.43 ± 0.98) and did not need long to learn how to use it (0.59 ± 0.79). Especially the

ergonomics of the method were remarked about in the follow-up interviews:

”It was so relaxing, actually, looking at this [cell] and just looking.” (P2, the user

remarked further after the interview that the technique might prevent carpal

tunnel issues often encountered when tracking using mouse and keyboard.)

”I figured this could be like a super quick way to generate the [cell] tracks.”

(P7)
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The software felt responsive to my inputs. 3.14 3.00 0.38

Being in an isolated VR environment 
irritated me. 0.00 0.00 0.00

I had trouble orienting myself. 0.71 1.00 0.76

I would have liked a di�erent input/control 
method. 0.57 0.00 0.79

The usage felt very natural and intuitive. 2.43 2.00 0.98

I had to keep track of too many things at 
once. 0.86 1.00 0.69

I was put o� by the prototype character of the 
software. 0.29 0.00 0.76

I needed a long time to learn how to use the 
software. 0.57 0.00 0.79

The interaction felt very precise. 2.43 2.00 0.98

Having my eyes tracked irratated me. 0.29 0.00 0.49

The cell tracks created looked reasonable 
to me. 2.57 3.00 0.98

I could complete the tracking tasks with 
confidence. 2.86 3.00 0.69

I could imagine adopting the presented 
technique for tracking of my datasets. 3.43 3.00 0.53

The presented technique provides an 
improvement over current techniques. 3.14 3.00 0.90

The presented technique would allow me to 
perform tracking tasks faster. 3.29 3.00 0.76

The presented technique would allow me to 
perform tracking tasks more precisely. 2.29 2.00 0.76

Frequency 0 1 2 3 4 5 6

Figure 11.12: Results of usability and accep-
tance question from the user study. Note
that the questions are formulated both posi-
tively and negatively.

The results from all questions related to software usability and acceptance are

summarized in Figure 11.12.

We made two more interesting observations in the user study:

First, we saw that users adjust playback speed more often than image size in VR. Af-

ter exploring different settings – users could choose speeds from 1-20 timepoints/sec-

ond – all users independently settled on a playback speed of 4-5 timepoints/second

for tracking, corresponding to 200-250 ms of viewing time per timepoint, which

coincides with the onset delay of smooth-pursuit eye movements (see Section 2.2.1,

Eye movements, and [Duchowski, 2017]). The chosen visual size of the dataset was

also usually chosen to be approximately human-scale (which was also the default

setting, but experimented with by the users).

Second, despite having no or limited previous VR or eye tracking experience, the

users did not at all feel irritated by the environment (0.00 ± 0.00), nor by the use of

eye tracking (0.29 ± 0.49).

Our preliminary results and user study show that cell tracks can be reliably re-

constructed by “just looking at them”, using eye, head and body movements that

are used in everyday life. Importantly, the users estimated that the Bionic Tracking
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method would yield a speedup of a factor 2 to 10 (3.33 ± 6.25) compared to tracking

cells with a 2D interface.

Scan this QR code to go to a video show-

ing tracking of a cell via Bionic Tracking

in early Platynereis development. For a

list of supplementary videos see https://ul-

rik.is/writing/a-thesis.

11.9 Discussion and Future Work

In this chapter we have introduced the Bionic Tracking strategy for tracking cells in

3D microscopy images in an effort to speed up manual tracking and proofreading

and developed a proof of concept. Preliminary results show that we might be able

to achieve approximately an order of magnitude speedup compared to manually

tracking cells. Before we can bring this strategy into actual use for biologists, we need

to do two more things:

• First, implement interactions that allow to track or proofread lineage trees. Such

an interaction could for example include the user pressing a certain button when-

ever a cell division occurs, and then track until the next cell division, and

• Second, Bionic Tracking has to benchmarked against other automatic solutions,

e.g. on cell tracking challenge datasets (see e.g. CellTrackingChallenge, [Ulman

et al., 2017]).

We foresee the limitation that for tracking large lineages entirely, Bionic Tracking

will not work, simply for combinatorial reasons. It can however be used to track early-

stage embryos where cells may have less-defined shapes, or it may provide constraints

to training data to machine learning algorithms. Furthermore, Bionic Tracking could

be used in a divide-and-conquer manner in conjunction with an automatic tracking

algorithm that provides uncertainty scores, and only be applied in regions where the

algorithm cannot cross a given uncertainty threshold. We could further increase the

usefulness of Bionic Tracking by not just searching for local maxima along rays, but

actually extract the centroids of cells.

Ultimately, we would like to integrate Bionic Tracking into existing tracking soft-

ware, such that it can be helpful for a more general audience. Current developments

in eye tracking hardware indicate falling prices in the near future, such that those

devices might become way more common soon. Alternatively, one could imagine

just having one or two eye tracking-enabled HMDs, and make them available to users

in a bookable item-facility-like manner.

https://ulrik.is/thesising/supplement/Bionic TrackingPlatynereis.mp4
https://ulrik.is/writing/a-thesis
https://ulrik.is/writing/a-thesis
https://celltrackingchallenge.net




Chapter 12:

Towards Interactive Virtual Reality Laser Ablation

The investigation of biological phenomena not only rests on observation of such,

but also on the ability to interfere with them. Especially where biomechanical and

biophysical questions need to be answered, laser ablation or microsurgery plays an

important role. In laser ablation, a high-powered, and usually pulsed, UV or IR laser

is used to destroy cells or parts of tissues precisely, while not interfering with their

neighbours, in a manner much more precise than purely mechanical manipulation

could achieve.

Nowadays, experiments in this realm are carried out with simple slice-based 2D

user interfaces, while the specimen and processes investigated get spatiotemporally

more and more complex.

In this chapter, we introduce the use of virtual reality to microsurgery to over-

come this problem. We present two prototypes that we developed to investigate user

satisfaction and compatibility, and propose a microscope design that will incorporate

an ablation system that can be steered in virtual reality. The prototypes presented

require flexible visualisation of both geometric data and large, time-series volumetric

data, as well as integration of additional hardware such as VR HMDs and controllers,

we show how our visualisation framework, introduced in [scenery — Democratising

VR/AR Visualisation for Systems Biology], enabled those developments. First, we

start with an introduction to microsurgery and the underlying biophysical principles.

12.1 Introduction to Microsurgery

For the interaction of light with biological tissue, five different regimes exist, depend-

ing on the applied power density. These are shown in table 12.1[Niemz, 2019].

Figure 12.1: Coagulated tissue samples, a:

Uterine tissue of a Wistar Rat, using a 10W

continious wave laser, b: Human cornea co-

agulated with 120 pulses of 5mJ from an

Er:YAG laser. Reproduced from [Niemz,

2019].

Table 12.1: Regimes for light interacting with biological tissue.

Regime Power density (W/m2) Exposure time (s)

Photochemical interaction 10−3 − 10 10+

Thermal interaction 10 − 106 10−5 − 10

Photoablation 106 − 1010 10−9 − 10−6

Plasma-induced ablation 1010 − 1014 10−13 − 10−10
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Regime Power density (W/m2) Exposure time (s)

Photodisruption 1011 − 1016 10−12 − 10−8

In case of photochemical interaction, chemical reactions are triggered by the appli-

cation of laser light, with most of the effects originate from decay products of these

chemicals, and not the laser itself [Niemz, 2019].

Thermal interaction in turn is characterized by extended tissue damage due to

vaporisation, coagulation, carbonisation or melting. This is not desirable for precise

manipulation on the cellular or tissue level, as clearly visible in Figure 12.1.

In case of very high plasma energies, photodisruption occurs and is marked by

both shock-wave generation and/or cavitation, which also leaves surrounding tissue

damaged and is therefore not desirable for microsurgery.

Tuning down the energy density by one to two orders of magnitude, we come

to the most useful regime for microsurgery on the cellular level: the plasma-induced

ablation regime, highlighted in the table. This regime provides ablation of the target

area by optical breakdown, confined to the focal point of the laser, with no damage

around that area. Two examples are shown in 12.2.

Figure 12.2: a: Cut in a human cornea sam-

ple achieved with an picosecond Nd:YAG

laser, b: 1𝑥1𝑚𝑚2 cut in a human tooth sam-

ple with 16000 1mJ pulses, with cracking

only due to EM sample preparation. Repro-

duced from [Niemz, 2019].

Optical breakdown of tissue occurs when the applied electric field 𝑬 exceeds the

ionisation energy 𝑬𝑰 of the molecules and atoms present. Ionisation then occurs

within a few hundred picoseconds, and the radiation is absorbed by the created

plasma. The plasma is created by an effect called inverse Bremsstrahlung1, where a

1 Inverse Bremsstrahlung is the opposite of
the regular Bremsstrahlung effect, where a
high-velocity electron gets rapidly deceler-
ated in an atom’s electric field, emitting high-
energy photons during the process.

free electron is accelerated by an inbound photon, which in turn collides with an

atom, ionising it, and resulting in two new free electrons, with less kinetic energy,

leading to an avalanche effect. Even if the original material was transparent, the plasma

will be opaque to the incident radiation. This effect makes it possible to ablate areas

that are otherwise transparent.

12.2 Example Use Cases

Laser ablation has found wide application in cellular biology, here we show a few

examples from this wide variety:

• In [Brugués et al., 2012] the authors use femtosecond infrared laser ablation repeat-

edly to induce synchronous depolymerisation in Xenopus metaphase spindles and

by that are able to infer information about the length distribution of microtubule

segments in the spindle.

• In [Saha et al., 2016], the authors describe the use of a picosecond Nd:YAG laser

for disruption of the cellular cortex of C. elegans embryos and gastrulating D. rerio

embryos in order to determine its properties, which are modeled as a 2D film of a

viscoelastic active gel.

• In [Li et al., 2014], the authors use laser ablation and optogenetics to disrupt

the C. elegans AIY interneuron and by that are able to show it is important for

locomotion and direction reversal of motion.
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• In [Li et al., 2019], the authors use laser ablation to investigate the migration of

Trunk Neural Crest cells in chick embryos. In the paper they partially eliminate the

lamellipodium to investigate its role in cell-cell contact attraction in conjunction

with cell-cell adhesion and find both play counteracting roles.

12.3 Related work

While the use of virtual reality and associated interaction techniques for arbitrary laser

ablation has not been demonstrated yet, various authors have made contributions in

that direction:

In [Engelbrecht et al., 2007], the authors demonstrate a SPIM-based micro-

surgery/laser ablation setup, powered by a 355nm UV laser, which is able to perform

multiple cuts with difficult geometries, and high precision. Most importantly, this

is to our knowledge the first paper where cuts in all three spatial dimensions were

demonstrated, ranging from sub-micron precision for the ablation of microtubules

to the cutoff of entire D. rerio fins.

On the interaction side, [Peng et al., 2014] demonstrated the Virtual Finger

system to boost the precision of selection and tracing tasks in 3D environments, such

as for neuron tracing, or in microsurgery settings. The authors employ a combination

of raycasting together with region growing and shortest path determination for the

precision enhancement of their methods.

[Oswald, 2010] demonstrated a versatile laser ablation setup on top of a confocal

microscope that is able to perform cuts with rates in the 1 kHz range over an area of

100 × 100µm2.

In terms of volumetric cuts, the authors of [Brugués et al., 2012] used a femtosec-

ond infrared laser to perform plane-like cuts composed of many, micrometer-spaced

lines inside the spindle apparatus of a Xenopus nucleus.

12.4 Observations

From our survey of related works and use cases in the previous section, we observe

the following:

Current interfaces for laser ablation often do not feature a 3D view of the specimen,

but usually utilise a 2D window with different controls for moving around, as shown

in Figure 12.3. Such systems provide support for planar cuts, in the form of lines,

circles, and rectangles.

Complex, three-dimensional cuts are hard to perform on a regular screen from

an interaction perspective — it is hard to translate from an image projected on a

2D screen to a — potentially moving — 3D volumetric specimen, and even with

sophisticated techniques as in [Peng et al., 2014], it can become overwhelming for

the user. Nevertheless, complex geometries need to be investigated in order to better

understand the biophysics of, e.g., the cellular cortex.
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Figure 12.3: A window-based 2D interface
for laser ablation. Laser and stage controls
for movement are shown in the tabs on the
upper left, power controls for the ablation
unit on the lower left. The view of the speci-
men is shown at the center, with the current
cut overlaid as a circle. Reproduced from
[Oswald, 2010].

Most of the systems surveyed use a confocal microscope as a basis. In many

use cases, lightsheet microscopes could be used for their superior speed and gentle

imaging as instruments for 3D ablation purposes. Their particular way of mounting

samples can beneficial for quickly moving the sample in three directional axis plus

one rotational axis, something that is not possible with e.g. confocal microscopes.

Even if the sample requires to be mounted on a microscopy slide, variations of the

original lightsheet microscope design exist that have similar geometries as confocal

microscopes.

12.5 First Prototype

As a first prototype, we developed a browser-based (threejs, https://threejs.org) pro-

totype that makes use of the LeapMotion gesture controller. In the prototype, the

user can perform tubular cuts in a simulated geometry of a C. elegans adult worm

using the gesture controller. The process is visualised on the user’s computer screen

and does not use any VR visualisation techniques. A screenshot of the prototype can

be seen in Figure 12.4. The workflow of the prototype is

1. orient the specimen of C. elegans in the desired way by using keyboard and mouse,

2. form a circular structure with thumb and index finger, and draw the desired

tubular structure into the aligned worm, and finally

3. a cylindrical tube is calculated from the defined circular samples via Centripetal

Catmull-Rom spline interpolation [Catmull and Rom, 1974]. Catmull-Rom

splines have been chosen here as they always go through their control points, and

do not form cusps, which both are desirable properties for surfaces later to be

used in laser ablation.

https://threejs.org
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We identified two major issues with this approach:

1. Orientation of the specimen using keyboard and mouse is error-prone and was

noted to be not very comfortable and intuitive, especially when combined with

subsequent gestural interaction,

2. the gestural interaction was found to be imprecise, as a feeling of 3-dimensionality

or immersion did not come up when being restricted to a regular, flat screen

without any VR functionality.

We abandoned browser-based prototyping after this first iteration, as loading

times were already too long when using the geometry model of 26MiB, and would

be even longer if any volumetric data would be used — such data can easily reach

many GiB. We want to note here that this initial experience also contributed to the

decision to start the development of scenery, such that we can efficiently prototype

software that enables interaction with geometry data, and large volumetric data.

Figure 12.4: Screenshot of the LeapMotion-
based interaction prototype, where the user
has delineated a tubular structure along the
C. elegans’ gonad system. C. elegans model
courtesy of openworm.org.

12.6 Second Prototype

The software for the second prototype was developed with our visualisation frame-

work scenery, described in detail in [scenery — Democratising VR/AR Visualisation

for Systems Biology]. We switched away from browser-based prototyping, as the

amounts of volumetric data required to be handled in the demo are too large for

browser-based software, and because scenery is an ideal toolkit for such prototype,

due to its support for large volumetric data and VR devices. We choose a VR setup

using an HTC Vive HMD with two controllers. The HTC Vive VR package is

state-of-the-art at the time of writing, provides high-resolution displays for both eyes

and low-latency, hand-held controllers. In addition, the controllers can be augmented

with additional devices, tracked by a small puck that can be attached to arbitrary

objects, or even body parts for full-body tracking. We did however only use the

hand-held controllers for this prototype.

https://www.openworm.org
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12.6.1 Description of study

Scan this QR code to go to a video demo

of the VR ablation prototype. For a

list of supplementary videos see https://ul-

rik.is/writing/a-thesis.

In the prototype, the user is shown a pre-recorded, multi-timepoint dataset of a C.

elegans embryo in three-cell-stage. The embryo had been genetically engineered to

express a fluorescent protein in the histones of its DNA, such that the chromosomes

(and, to a lesser extent, the associated spindle apparatus orchestrating DNA conden-

sation, duplication, and division) are visible. The time series dataset was played faster

than realtime to evaluate quick decision making and the ability to perform cuts under

time constraints. A screenshot of the prototype is shown in Figure 12.6.

L R

Movement
Draw cut

Activate
Laser

Figure 12.5: Controls for second prototype.

Vive controller drawing from VIVEPORT

Developer Documentation, developer.vive-

port.com.

The users can control movement with the touchpad of the left-hand controller,

and also move around physically, as they are being tracked by the VR system in an

area of about 2m by 3m. The right-hand controller can then be used to activate a

wand-like tool to designate areas for ablation. See 12.5 for a visual representation of

the controls.

For simplicity, the prototype was designed such that there is no undo function,

but a cut drawn, once finished, would be performed instantly. In real use, this is most

probably not a universal solution, but may have benefits in certain situations, where

interaction speed has a higher priority than precision.

We conducted a study with 8 experts in laser ablation (average age of 31, 4 female,

4 male, all right-handed, and recruited from different labs of the Max Planck Institute

of Molecular Cell Biology and Genetics). The study subjects were informed about

contents and goal of the study, and eventual risks and adverse health effects arising

from the use of VR glasses. The study subjects were not compensated for taking part

in the study.

Before the start of the study, users were asked about their familiarity with

smartphone-based VR, computer-based VR, and standalone VR, as well as for their

current wellbeing.

After an introduction to the software and familiarisation with the dataset, the

users were asked to perform the following tasks:

• perform several cuts in the chromosomes of the uppermost cell

• perform one triangular cut in centrosomes of the uppermost cell, and one in the

centrosome of the lower cell

• perform several cuts in the metaphase plates that form in the lower cell after playing

half the dataset.

Performing all of these tasks took 5 to 10 minutes per user.

After the study, the users were asked about the following aspects:

• again, for their wellbeing,

• for different aspects of the prototype, the likelihood of adoption of VR-steered

laser ablation,

• for physical and mental demands, assessed by the NASA-TLX (Task Load Index)

[Hart and Staveland, 1988] scoring system, and

https://ulrik.is/thesising/supplement/VRAblationPrototype.mp4
https://ulrik.is/writing/a-thesis
https://ulrik.is/writing/a-thesis
https://developer.viveport.com
https://developer.viveport.com
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• for symptoms of simulator sickness using the SSQ scoring system [Kennedy et al.,

1993] (SSQ takes 16 different symptoms of discomfort — ranging over nausea,

oculomotor, and disorientation symptoms — into consideration to calculate a

final, weighted score).

For standardised evaluation, we choose NASA-TLX and SSQ, as they perfectly

match our application setting, do not interfere with the study process itself, and have

been widely used and validated. Newer methods to assess motion sickness in real

or virtual environments, such as [Keshavarz and Hecht, 2011] have not been used,

as they have been designed to assess motion sickness during the course of the study,

which would have caused interference with the tasks the user were asked to perform.

After filling out our questionnaire, the users were asked to participate in an ad-

ditional, voluntary interview, to ask detailed questions about their experience with

the prototype. All of the users agreed to participate in the follow-up interview. The

questionnaire used is available in Appendix A.

Figure 12.6: Screenshot of the second vir-
tual reality-powered laser ablation prototype.
In the prototype, we show the mitotic spin-
dle apparatus in a pre-recorded dataset show-
ing a C. elegans embryo undergoing mitosis.
The tube-like objects in the center of the im-
age are the condensing chromosomes in the
cell nucleus, in the process of being separated
by the mitotic spindle. The task of the user
is to draw in cuts using VR controllers. See
text for a full description. Dataset courtesy
of Loïc Royer (MPI-CBG/CZI).

12.6.2 Results — General Questions

Results for the general questions section of the study questionnaire are shown in

Figure 12.7. Users were universally satisfied with the quality and usability of the pro-

totype, and were not irritated by having to perform tasks in VR they were previously

only used to with 2D interfaces. They generally reported that showing the dataset in

human size scales and positions — in the study, the dataset is shown with a height of

1.5m, hovering 1.5m above (virtual) ground — was well chosen. They did not have

trouble learning the interface, and were in general ready to use the interface within a

few minutes. While the users felt that the way of visualising the dataset supported the

performed tasks well, a number of users criticised the fidelity of the visualisation and

indicated in the follow-up interview they would like e.g. adjustable transfer functions,

as the opacity of the dataset sometimes interfered with the tasks. In terms of input

modality — the users were given state-of-the-art handheld VR controllers — users
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The interaction felt very precise.

I needed a long time to learn how
to use the software.

I was put off by the prototype
character of the software.

The visualisation of information
supports me in performing the task.

I had to keep track of too many
things at once.

The usage felt very natural and
intuitive.

I would have liked a different
input/control method.

I had trouble orienting myself.

Being in an isolated VR environment
irritated me.

The software felt responsive to my
inputs.

The visualisation had a good scale
relative to the user.

The visualisation was well−
positioned in space.

The visualisation had a high
fidelity.

Not at all Very
Agreement

Number of
responses

1

2

3

4

5

6

General Questions

Figure 12.7: Results of the general questions
section of the user study.
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were mostly satisfied, only a few users would have liked different input modalities

more. In the follow-up interviews these users indicated that a pencil-like interface

would feel more precise than the HTC Vive controllers used.

In general, the very positive user response shows that most of the design decisions

in the prototype have proven correct, so it can be refined further, and then deployed

to control an actual physical system.

12.6.3 Results — Wellbeing, Workload, and Simulator Sickness

Did you enjoy the standalone
experience?

Have you used standalone VR
headsets before?

Did you enjoy the smartphone−based
experience?

Have you used smartphone−based VR
headsets before?

Did you enjoy the computer−based
experience?

Have you used computer−based VR
headsets before?

Do you have any prior experience
with VR applications or games?

Never used/Did not enjoy Daily use/Enjoyed highly

Number of
responses

1

2

3

4

5

6

History of VR Usage

Figure 12.8: History of previous VR usage
and satisfaction in our study group.All users tolerated the usage of the prototype very well. In Figure 12.11 it can also

be seen that wellbeing — indicate by the Concentrated, Motivated, Headache, Tired,

Dry/Aching Eyes, and Nausea data points taken before and after the study — was not

affected by the test in a significant manner. This finding is confirmed by the low SSQ

scores we obtained:

The average total SSQ score was 6.2 ± 6.7. Compared to the calibration sample

in [Kennedy et al., 1993], this is a very low score, as only the 60th percentile was in

that realm, and the mean of the calibration sample was 9.8 ± 15.0, nearly 1.5-times

the score in our study.

The users in the test had mostly a low degree of previous exposure to VR sys-

tems before (see Figure 12.8). Those who had previous exposure to VR games or

applications were mostly happy with it.

We found a correlation between a history of VR usage and low SSQ scores (see

Figure 12.11), indicating there might be a training effect. Furthermore, a history of

VR usage correlated well with low TLX scores, and a general appreciation of the

visualisation, size, and positioning of the dataset in the study.

Workload evaluation results are shown in Figure 12.9. Users generally reported
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How insecure, discouraged,
irritated, stressed, and annoyed

were you?

How hard did you have to work
to accomplish your level of

performance?

How successful were you in
accomplishing what you were asked

to do?

How hurried or rushed was the pace
of the task?

How physically demanding was the
task?

How mentally demanding was the
task?

Very Low Medium Very High
Score

Number of
responses

1

2

3

4

5

6

Task Load Index

Figure 12.9: Task Load Index (TLX) results
in the user study.

very low mental and physical demands in the study, and mostly did not have to work

hard to achieve the desired results. A single user felt that the task was a bit hurried

or rushed, and two felt that the mental demand was average or above-average. Users

in general did not feel insecure or annoyed performing the task using the proposed

interface.

Both wellbeing and workload results indicate that using the proposed VR in-

terface is very comfortable for the users and allows them to perform 3-dimensional

ablation/selection tasks with ease, and without experiencing motion sickness.

12.6.4 Results — Acceptance and Potential Adoption

The presented technique would allow
me to perform experiments more

precisely.

The presented technique would allow
me to perform experiments faster.

The presented technique provides
an improvement over current

techniques.

I could imagine adopting the
presented technique for my

experiments.

Not at all Maybe Completely
Agreement

Number of
responses

1

2

3

4

5

Potential Adoption

Figure 12.10: Results of the adoption ques-
tions section of the study.The majority of the users stated they could imagine adopting the presented tech-

nique for their experiments (see Figure 12.10 for all results), and stated that the
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technique provides an improvement over the current way laser ablation experiments

are performed.

Users seemed unsure whether the technique presents an improvement in terms of

speed or precision: While they tended towards improvement in both cases, in both

cases, four users answered only maybe or less. In the follow-up interview we found

out the reasons for the uncertainty here lies in the different models systems users

investigate: users which had to produce a large number of reproducible cuts in their

day-to-day experiments tended to be more skeptical about free-form drawing. We are

going to address this problem in the next prototype, see Section 12.6.6, Requested

Changes and Additions for more details.

12.6.5 Results — Further correlations
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Do you have any prior experience with VR applications or games?

Have you used computer−based VR headsets before?

Did you enjoy the computer−based experience?

Have you used smartphone−based VR headsets before?

Did you enjoy the smartphone−based experience?

Have you used standalone VR headsets before?

Did you enjoy the standalone experience?

Do you have any prior experience with laser ablation?

How tired do you feel?

How concentrated are you?

How motivated are you?

Do you have a headache?

Do you have dry or aching eyes?

Do you feel nauseous?

How tired do you feel?

How concentrated are you?

How motivated are you?

Do you have a headache?

Do you have dry or aching eyes?

Do you feel nauseous?

The visualisation had a high fidelity.

The visualisation was well−positioned in space.

The visualisation had a good scale relative to the user.

The software felt responsive to my inputs.

Being in an isolated VR environment irritated me.

I had trouble orienting myself.

I would have liked a different input/control method.

The usage felt very natural and intuitive.

I had to keep track of too many things at once.

The visualisation of information supports me in performing the task.

I was put off by the prototype character of the software.

I needed a long time to learn how to use the software.

The interaction felt very precise.

I could imagine adopting the presented technique for my experiments.

The presented technique provides an improvement over current techniques.

The presented technique would allow me to perform experiments faster.

The presented technique would allow me to perform experiments more precisely.

How mentally demanding was the task?

How physically demanding was the task?

How hurried or rushed was the pace of the task?

How successful were you in accomplishing what you were asked to do?

How hard did you have to work to accomplish your level of performance?

How insecure, discouraged, irritated, stressed, and annoyed were you?

SSQ Total Score

Figure 12.11: Correlations between ques-
tions in the questionnaire, only including
SSQ summary score. For full correlation
plot, please see Appendix B.1.

In the correlation matrix in Figure 12.11 a few more interesting correlations can
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be observed. Correlations were computed as Pearson correlation coefficients. The

observed correlations are:

• Positive answers to the Adoption questions (see Figure 12.10) correlate well with

affirmative answers to in the General section about fidelity and naturalness of the

prototype, indicating the the subjects answered these questions truthfully.

• Individual TLX and SSQ scores anticorrelate with wellbeing scores, indicating

that the less well a user felt before or after the study, the more demanding the tasks

were scored, and the more sick the subject felt afterwards.

• Questions in the General section (see Figure 12.7) did not correlate well with

each other, indicating that each of them provides a valuable and independent data

point.

12.6.6 Requested Changes and Additions

Figure 12.12: Sensory organs in the

Drosophila melanogaster pupal wing circled

in green. These can be used as landmarks for

laser ablation. Image courtesy of Romina

Piscitello, Eaton Lab, MPI-CBG.

In the interviews conducted after the study, users were asked to comment further

on the presented prototype and suggest improvements and additions. From this

feedback, we decided to implement the following features and changes:

• Confirm and Undo: In addition to the regular freeform mode with immediate

ablation after completing the drawing, another mode, where the target shape

is drawn first, and confirmed after additional inspection was requested. In this

mode, undo or erase will be possible as well.

• Brush size: The ablation laser by default has a specific cut size. By combination of

multiple shots, larger cuts can be created. In the interface, this can then be handled

in a similar way as brush size adjustments in applications like Adobe Photoshop.

• Template mode: Many cuts a user has to perform are to be reproducible over a

set of different specimen. For that reason, a template mode will be added, where a

shape defined at one point can be reused later, optionally after translating, scaling

or rotating it.

• Semi-automatic Guides: In 2D/3D or presentation applications, such as Au-

todeskMaya, Adobe Photoshop or Apple Keynote, interactive guides exist to help

the user with element alignment. Users often perform ablations relative to one

or more specific landmarks, such as centrosomes in the mitotic spindle, or these

dots in the Drosophila pupal wing (see Figure 12.12 for an example what such

a landmark might be). Semi-automatic guides will be added such that they can

indicate to the user which are the optimal points or contours for ablation. The

semi-automatic guides will also be scriptable so they can be adjusted for a specific

experiment.

• Toolbelt: The already existing freeform mode will be combined into a toolbelt,

e.g., attached to a VR controller, with the user being able to seamlessly switch

between different tools. The toolbelt will also offer the possibility to create custom

tools by scripting.

These changes will be implemented in a future version of the software. The

proposed changes can be easily integrated in our scenery-based prototype.
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12.7 Proposed Hardware Realisation

In our proposed setup, we are going to use a lightsheet microscope of the SPIM

variety as default to overcome the speed and inflexible mounting issues of confocal

microscopes in order to provide the user with instant feedback, and to treat the sample

more gently, potentially for repeated application of cuts.

U
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35
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Laser Box
488nm
561nm

sCMOS

sCMOS

Beam Expander

Half-wave Plate

Acousto-Optic
Modulator XY Galvo

Mirrors

Pinhole

Dichroic
Mirror

Beamsplitter

fΘ lens

Figure 12.13: Beam paths of our proposed
hardware solution, based on a X-SPIM ver-
sion of the OpenSPIM, with two illumina-
tion and two detection arms, and the UV
ablation unit coupled into one of the de-
tection arms. See text for details. Figure
extended from X-OpenSPIM design by Jo-
hannes Girstmair.

The ablation unit design we propose is based on the design of [Oswald, 2010]. In

Oswald’s original design, the ablation unit was coupled to a spinning disk confocal

microscope, and the design is already quite modular. We want to keep the modularity

of the unit, such that it can also be used with other microscopes, e.g. spinning disk

confocals as in the original, because some samples might need mounting on a glass

slide. C. elegans adults for example do not enjoy embedding into agarose as it is

common in lightsheet microscopy, while Danio rerio or Drosophila specimen tolerate

it excellently.

A sketch of the setup is shown in Figure 12.13. The ablation unit is connected to

an extension of the OpenSPIM microscope [Pitrone et al., 2013] for double-sided

illumination and double-sided detection developed by Johannes Girstmair at UCL

London and MPI-CBG, Dresden dubbed X-SPIM [Girstmair et al., 2016]. The

X-SPIM design has the benefit that the sample can be more evenly illuminated from

two sides, limiting the need for multi-angle acquisitions where the sample needs to be

rotated, as light can only penetrate biological tissue to a limited extent. While more

complex than the original OpenSPIM design, even an X-SPIM is less complex than a

spinning disk confocal microscope and can be built by an experience microscopist

within a day.

The ablation unit itself consists of the following parts:
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• A 355nm Nd:YAG picosecond-pulsed UV laser, providing the necessary power

output to reach the plasma-induced ablation regime described in Section 12.1,

Introduction toMicrosurgery. The laser provides high-energy pulses of 10 𝜇J with

a rate of up to 1 kHz, with a pulse width of 500ps, yielding power densities of up

to 10TW ⋅ cm−3.

• An Acousto-optical modulator (AOM) is used to be able to quickly change the

laser power to reach the optimal regime for ablation. The AOM works by diffract-

ing the beam by phonon waves in a silicium dioxide crystal. The first diffraction

order of the beam then is adjustable between 0 − 80% of the original input power.

• Two galvanometric mirrors for steering in the X and Y axis are used to steer the

UV laser beam in an fΘ lens. An fΘ lens translates a beam of incidence angle Θ

by 𝑓 ⋅ Θ, where 𝑓 is the focal length of the lens. It is used in our proposed setup

instead of the scanning telescope in the original setup.

The total magnification of the system has to be designed to overfill the entrance

aperture of the objective, in our case the upper detection objective. The exact spec-

ifications of the objective to use are still under consideration. The setup will then

contain an adjustable beam expander such that the ablation unit can be adapted to

multiple systems.

For computer control of the microscope, the ClearControl interactive/automatic

microscope control software (github.com/clearcontrol/clearcontrol) has been ported

by Robert Haase and Johannes Girstmair to support the OpenSPIM hardware com-

ponents. We have further coupled ClearControl with scenery and sciview to facilitate

live visualisation and control.

12.8 Future Work

The next prototype of the software will incorporate the changes proposed in the

previous section.

While we have focussed on the task of laser ablation, we believe that the interactions

we have proposed are also applicable to other tasks in microscopy that require an

surface or volume selection, such as optogenetics and photoconversion [Boyden

et al., 2005], where photoactivatable proteins are used to steer cellular functions, or

focused light-induced cytoplasmic streaming (FLUCS) [Mittasch et al., 2018], where

intracellular flows can be induced by scanning a focused laser over the specimen.

To improve the fidelity of the visualisation during the ablation procedure, we

want to to extend our software framework to support better rendering algorithms

[Kroes et al., 2012, Igouchkine et al., 2017] to provide better visual assistance and

guidance to the user (also see Chapter 10, Future Development Directions for more

details).

Finally, we aim to provide an open-source/open-hardware solution to perform

both laser ablation and optogenetics tasks with the assistance of VR interfaces, based

on a customised OpenSPIM microscope.

https://github.com/clearcontrol/clearcontrol


Chapter 13:

Rendering the Adaptive Particle Representation

The work presented in this chapter has been done in collaboration with Bevan

Cheeseman, Sbalzarini Lab, MPI-CBG, and is partially published in:

Cheeseman, B.L., Günther, U., Susik, M., Gonciarz, K., and Sbalzarini, I.F.: Adap-

tive Particle Representation of Fluorescence Microscopy Images. Nature Commu-

nications, 2018. bioRxiv preprint 263061.

13.1 Introduction

The Adaptive Particle Representation (APR) [Cheeseman et al., 2018] is a represen-

tation of image data that does not rely on regular sampling as found in pixel images,

but instead uses computational particles to represent point intensities and further

properties in space-filling data structure similar to an octree. Especially in the context

of fluorescence microscopy, where images are mostly sparse, this alternative repre-

sentation allows for highly efficient data storage and processing, resulting in space

savings of a factor of 10 to 100 compared to the original image size.

13.2 Theory

Local Intensity Scale

Reconstructed ImageAPRLocal Resolution EstimateInput Image Gradient Magnitude

Resolution Function

Figure 13.1: High-level overview of the APR
construction pipeline: 1. Input image 2. De-
termination of the gradient magnitude and
local intensity scale, allowing to adjust for
local intensity variations across the image 3.
Estimation of the Local Resolution 4. Con-
struction of the Resolution Function from
the Optimal Valid Particle Cell set 5. The
final APR as combination of the Optimal
Valid Particle Cell set 𝒱 and the Particle Set 𝒫.
Image reproduced from [Cheeseman et al.,
2018].

As bottlenecks in fluorescence microscopy not only exist with storage, but also

with processing of the generated imagery, underlying the APR are four representation

criteria:

https://www.biorxiv.org/content/early/2018/03/02/263061
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• RC1 — The APR must guarantee a user-definable representation of noise-free

images and must not degrade the signal-to-noise-ratio of noisy images.

• RC2 — Memory cost and computational cost of the APR must be proportional

to the information content of the image, and not its pixel size.

• RC3 — It must be possible to rapidly convert from image to APR, and back.

• RC4 — The APR must reduce both memory cost and computational cost, and

allow existing algorithms to consume it with minimal changes, and without re-

sorting back to a pixel representation during processing.

An overview of the APR construction pipeline is given in Figure 13.1. Before

continuing, let us introduce and explain a few terms that we are going to need:

• Particles — particles in the APR are a generalisation of pixels that can carry prop-

erties, such as, but not limited to, intensity or size. Particles, in contrast to pixels,

to not need to reside on a Cartesian grid.

• Implied Resolution Function — as the APR resamples an image using particles the

implied resolution function governs the required or desired resolution everywhere

in the image.

• Local Intensity Scale — or 𝜎(𝑦) for a point 𝑦 in the image is a estimation of the

dynamic range locally present around 𝑦, introduced to not over-value bright parts

of an image, and under-value dim parts.

• Pulling Scheme — the pulling scheme is an algorithm that efficiently solves the

particle positioning with regard to the implied resolution function, turning a

problem that would otherwise scale as 𝒪(𝑁2) (𝑁 being the number of particles)

to 𝒪(𝑁).

13.2.1 Reconstruction condition

At each point 𝑦 of an image 𝐼(𝑦), and an image ̂𝐼(𝑦) reconstructed from an APR, RC1

can be reformulated as finding the resolution function 𝑅(𝑦) that maximises

|𝐼(𝑦) − ̂𝐼(𝑦)| ≤ 𝐸𝜎(𝑦) (13.1)

where 𝐸 is the user-specified maximum error, and 𝜎(𝑦) is the local intensity scale. As

̂𝐼(𝑦) is reconstructed by interpolating over all particles in the APR, finding an optimal

𝑅(𝑦) is an 𝒪(𝑁2) operation in the number of particles.

By introducing two restrictions on the formulation of 𝑅(𝑦), we can solve this

problem though:

First, we restrict 𝑅(𝑦) to satisfy

𝑅(𝑦) ≤ 𝐿(𝑦∗), ∀𝑦 ∶ |𝑦 − 𝑦∗| ≤ 𝑅(𝑦), (13.2)

with 𝐿(𝑦) = 𝐸𝜎(𝑦)/|∇𝐼|, with ∇𝐼 being the gradient of the image. This inequality is

called the Resolution Bound and 𝐿 the Local Resolution Estimate. If the underlying

image is assumed to be differentiable everywhere, and 𝜎(𝑦) assumed to be sufficiently

smooth, the Resolution Bound is stricter than the Reconstruction Condition, and

an 𝑅(𝑦) subject to it will yield an equal or better representation accuracy.
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Second, the Resolution Function 𝑅(𝑦) is further restricted to consist only of square

blocks, whose sizes are powers of two. Then, the optimal Resolution Function can

be found in 𝒪(𝑁).

13.2.2 Particle Cells

Figure 13.2: Formation of the Optimal Valid
Particle Set in the case that the local parti-
cle cell set ℒ only has one cell. Image repro-
duced from [Cheeseman et al., 2018].

The blocks constituting the Resolution Function must be powers of 1/2 the image

edge length in pixels |Ω|1. The piecewise constant Resolution Function which is then 1 If an image edge length is not a power of
two, |Ω| is rounded up, and the image not
padded.

defined by the upper edges of these blocks is called the Implied Resolution Function

𝑅∗(𝑦), and it’s blocks are called the Particle Cells, which all have a side length of |Ω|/2𝑙.

𝑙 is called the Particle Cell Level and ranges from 𝑙min = 1, where the corresponding

block has half the size of the original image, to 𝑙max, corresponding to blocks of pixel

size.

With the two restrictions introduced, the determination of the optimal Resolution

Function can be reduced to finding the smallest set 𝒱 of particle cells defining a

Resolution Function 𝑅∗(𝑦) that satisfies the Resolution Bound 13.2. This smallest

set is called the Optimal Valid Particle Cell set (OVPC).

For now finding this set, we reformulate the Resolution Bound 13.2 in terms of

Particle Cells:

• particle cells become arranged in a tree structure, with an individual particle cell

labeled 𝑐𝑖,𝑙 by level 𝑙 and location 𝑖 in the tree. The tree itself is a binary tree in 1D,

a quadtree in 2D, and an octree in 3D.

• within this tree structure, the descendents of a particle cell can be naturally defined

as all the child particle cells in the tree up to 𝑙max.

• 𝐿(𝑦) can then be represented as a set of particle cells ℒ generated by iterating over

all pixels 𝑦∗, and adding the particle cell with 𝑙 = ⌈log2
|Ω|

𝐿(𝑦∗) ⌉ and 𝑖 = ⌊ 2𝑙𝑦∗

|Ω| ⌋, if it is

not there already. ℒ is called the Local Particle Cell set (LPC).

For the formation of the OVPC, particles are given an additional type property,

which is seed if the cell is in both 𝒱 and ℒ; neighbor in case their neighbor is of

type seed; and filler in all other cases. See Figure 13.2 for a schematic how this

set if formed in the case of ℒ only containing one cell.

Then, the Resolution Bound can be reformulated as:
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A set of Particle Cells 𝒱 will define an Implied Resolution Function 𝑅∗(𝑦) satisfying

the Resolution Bound 13.2 for 𝐿(𝑦), iff ∀𝑝 ∈ 𝒱 none of its descendents, or neighbor’s

descendents are in the LPC set ℒ.

13.2.3 Pulling Scheme

With this definition, we can go on to describe the Pulling Scheme for finding the

OVPC set in 𝒪(𝑁) time. The name arises from the behaviour of a cell in ℒ that pulls

the resolution function down, leading to smaller particle cells across the image.

The algorithm for the pulling scheme is summarised in Algorithm 2.

 Data: Local Particle Cell set ℒ
 Result: Optimal Valid Particle Cell set 𝒱(ℒ)
 

 Function pulling_scheme(ℒ)
Represent all possible Particle Cells 𝒞 from 𝑙𝑚𝑎𝑥 to 𝑙𝑚𝑖𝑛 in a

multi-resolution pyramid and set all Particle Cells type to EMPTY;

forall Particle Cells 𝑐 ∈ 𝒞 where 𝑐 ∈ ℒ do
𝑐.type = SEED

end

for 𝑙𝑐 = 𝑙𝑚𝑎𝑥 ∶ 𝑙𝑚𝑖𝑛 do

/* Fill neighbors (Step 1) */
forall neighbors 𝑛 of 𝑐 ∈ 𝒞(𝑙𝑐) where 𝑐.𝑡𝑦𝑝𝑒 is (SEED or PROPAGATE)
do

if 𝑛.type is EMPTY then
𝑛.type = BOUNDARY

end

/* Set Parents (Step 2) */
forall parents 𝑝 of 𝑐 ∈ 𝒞(𝑙𝑐) where 𝑐.𝑡𝑦𝑝𝑒 is (SEED, PROPAGATE, or
ASCENDANT) do

𝑝.type = ASCENDANT
end

if 𝑙𝑐 > 𝑙𝑚𝑖𝑛 then

/* Set Ascendant Neighbors (Step 3) */
forall neighbors 𝑛 of 𝑐 ∈ 𝒞(𝑙𝑐 − 1) where 𝑐.𝑡𝑦𝑝𝑒 is ASCENDANT
do

if 𝑛.type is EMPTY then
𝑛.type = ASCENDANT_NEIGHBOR

if 𝑛.type is SEED then
𝑛.type = PROPAGATE

end

/* Set Fillers (Step 4) */
forall children 𝑑 of 𝑐 ∈ 𝒞(𝑙𝑐 − 1) where 𝑐.𝑡𝑦𝑝𝑒 is
(ASCENDANT_NEIGH or PROPAGATE) do

if (𝑑.type is EMPTY then
𝑑.type = FILLER

end

end

return all type SEED, BOUNDARY and FILLER Particle Cells in 𝒞 as 𝒱;
  
Algorithm 2: The Pulling Scheme algorithm. The Pulling Scheme

efficiently computes the OVPC set 𝒱 from the Local Particle Cell set ℒ
using a temporary pyramid mesh data structure. 𝒞(𝑙) denotes all Particle

Cells on level 𝑙.
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The Pulling Scheme has the following properties:

• Predictability and self-similar structure — neighbouring particle cells never differ

by more than one level from each other, and are arranged in a fixed pattern around

the smallest particle cells in the set. This structure is independent of the level itself

and results in self-similarity between the levels. From this property, the OVPC set

𝒱 can easily be constructed from any LPC set ℒ with a single particle cell 𝑐𝑖,𝑙.

• Separability — The OVPC set can be found by considering each particle cell in

ℒ on its own, and afterwards combining them into one set covering the whole

image, using a minimum operation on the particle cells. See Figure 13.3 for a

visualisation.

• Redundancy — When constructing 𝒱, all particle cells in ℒ that have descendants

can be ignored, as descendants imply either the same or a tighter constraint on

the Resolution Function.

Figure 13.3: Separability property of the
Pulling Scheme: In the first two parts, the
construction of 𝑅∗(𝑦) is shown for two sep-
arate particle cells, 𝑐19,6 and 𝑐38,6. In the
third part of the figure, their combination
into the Local Particle set ℒ is shown. Image
reproduced from [Cheeseman et al., 2018].

13.2.4 Creating the APR from the Optimal Valid Particle Cell set

After determining 𝒱 via the pulling scheme, the particles 𝒫 have to be placed. The

Resolution Bound implies that within radius 𝑅∗(𝑦) of a pixel at 𝑦, at least one particle

has to be placed. This means that for each 𝑐𝑖,𝑙 ∈ 𝒱, a particle 𝑝 is added to 𝒫 with

location

𝑦𝑝 =
|Ω|
2𝑙 (𝑖 + 0.5). (13.3)

As particle positions are already governed by the particle cell, they do not need to be

stored explicitly. The only data then stored explicitly are particle properties, such as

interpolated intensities 𝐼𝑝.

Finally, the APR is formed from both the Optimal Valid Particle Cell set 𝒱, and

the Particle Set 𝒫.
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13.3 Related Work

Adaptive sampling and multiresolution approaches have quite a history in image

processing: Ranging from pyramid image representations [Adelson et al., 1984],

over super-pixels [Achanta et al., 2012, Amat et al., 2012], wavelet decompositions,

level-set methods [Monasse and Guichard, 2000], dictionary-based sparse representa-

tions [Davis et al., 1997], to adaptive mesh representations [Demaret and Iske, 2002,

Wang et al., 1996, Yang et al., 2003], and dimensionality reduction [Schmid et al.,

2013, Heemskerk and Streichan, 2015]. None of these methods however are able to

guarantee all the Reconstruction Criteria we have outlined earlier.

If we venture outside of just image processing and turn to (realtime) rendering,

there are two additional techniques that bear a similarity to the APR:

• Sparse Voxel Octrees (SVOs) [Laine and Karras, 2010, Crassin, 2011] work by

voxelising a given geometry, with the actual voxels being stored in an octree data

structure as final leaf nodes. SVOs are great for storing very large mesh data, but

cannot efficiently represent volumetric data as we try to achieve.

• VDB [Museth, 2013] uses B+trees [Bayer and McCreight, 1972] to hierarchically

represent volumetric data. From the spatial organisation, VDB is closest to our

approach, although the leaf nodes of their tree do still contain voxels instead of

particles. Figure 13.4 shows a 2D representation of a VDB dataset.

Figure 13.4: Representation of a narrow-
band level set stored in the VDB data struc-
ture. The lower left part shows the tree
structure of a 1D VDB representation of the
circle above, with the sparse representation
displayed at the bottom left. On the right,
the 2D structure of the circle represented as
VDB is shown. Branching factors here are
chosen for visualisation purposes, and are
chosen larger in practise (Reproduced from
[Museth, 2013]).
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13.4 Integration into scenery

Our APR software library, libapr is written in C++ and available at github.com/cheese-

ma/libapr. For interfacing with scenery, and the JavaVM ecosystem in general, we

have developed a SWIG [Beazley, 1996] (swig.org) wrapper that exposes nearly all

of the libapr functionality to Java. The wrapper functionality is part of the main

repository of libapr.

SWIG works by creating an interface definition file that specifies all header files

that need to be wrapped. In our library this file can be found in the root directory

as libapr.i, and is quite short. The interface definition also includes additional

code that is needed to make the wrapping work, e.g., for renaming functions in

the case that naming rules clash between wrapper and wrappee, or for specialising

templated code. It also includes custom allocator/deallocator code for the APR class

andExtraParticleData2 class, as memory management between garbage-collected 2 The ExtraParticleData class contains
functionality for attaching additional prop-
erties to particles, such as intensities.

languages and non-garbage-collected ones is not straightforward. In our case, both

those classes will retain references to a loaded APR, such that it does not get garbage

collected by the VM.

13.4.1 Limitations

SWIG does not have very good support for templated code, and the APR library is

heavily templated. Therefore, the wrapped library contains only support for 16bit

APRs, although this is not too limiting, as that is the most common case, at least in

our main use case of fluorescence microscopy.

13.4.2 Future Directions

We are exploring alternatives to SWIG, such as JavaCPP (github.com/bytedeco/-

javacpp), which has better support for state-of-the-art C++ features, and also includes

an automatic wrapper generator, as well as the possibility for manual adjustments,

which SWIG provides with the interface definition file.

A prototype of this effort has been developed by Krzysztof Gonciarz and can be

found at github.com/krzysg/LibAPR-java-wrapper.

13.5 Goals

For visualising the Adaptive Particle Representation, we set the following goals:

• the software has to handle the APR datasets in realtime

• the software needs to be capable of integration with the existing Fiji/ImageJ

ecosystem, i.e. it needs to be usable from Java

• the software needs to support virtual reality visualisation

• the software needs to make use of the attributes provided by the APR particles,

such as position, normals, etc., such that they can be used for visualisation or

selection purposes.

https://github.com/cheesema/libapr
https://github.com/cheesema/libapr
https://swig.org
https://github.com/bytedeco/javacpp
https://github.com/bytedeco/javacpp
https://github.com/krzysg/LibAPR-java-wrapper


138

13.6 Initial prototype

The first prototype developed for APR visualisation, named dive, came to be before

scenery development even had started.

It was able to primitively visualise APR datasets as point clouds, with no postpro-

cessing applied (see Figure 13.5), but included limited support for the Oculus Rift

DK2 HMD. It was also written from scratch using OpenGL 3.3 and SDL, where

the need for a much quicker prototyping solution became apparent, as development

efforts using this approach were not sustainable going forward.

Figure 13.5: Visualisation of a Drosophila
dataset using dive as a point cloud. The orig-
inal dataset size is 960 MiB, while the APR
only consumes 70 MiB. Dataset courtesy of
Tomancak Lab, MPI-CBG Dresden.

13.6.1 User feedback

A poster and demo of dive was shown at the 2014 BioImageInformatics conference

in Leuven, Belgium. In addition, it was tested by 2 more lab members internally. The

main points collected were:

• flat colouring leads to a false impression of the dataset

• dataset loading times were considered good, especially as the original dataset is

about 960MiB, and the APR dataset only 70MiB.

• filtering based on particle properties was desired to be possible.

13.7 Second prototype

The second prototype built was based on scenery, and included a port of the code

used in dive for importing the APR files. This port resulted in the creation of the

Java wrappers discussed in Section 13.4, Integration into scenery.

This new implementation now had support for particle properties, as well as

HDR and Ambient Occlusion as postprocessing options, as provided by default by

scenery. A visualisation with Ambient Occlusion (AO) on/off is shown in Figure

13.6. The second prototype did not include support for VR headsets, as this was still

work in progress in scenery back then.
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Figure 13.6: Visualisation of a Danio re-
rio vasculature dataset using scenery. Top:
Ambient occlusion on, revealing the details
of the vasculature. Bottom: Ambient oc-
clusion off. Dataset courtesy of Stephan
Daetwyler, Huisken Lab, MPI-CBG Dres-
den & Morgridge Institute for Research,
Madison, USA.

13.7.1 User feedback

Compared to the first prototype, user feedback now was better:

• Ambient Occlusion was well liked, as it gives the dataset a more plastic, more

detailed appearance and highlights small details.

• Custom colormaps make the visualisation of APR datasets more flexible.

• Filtering can help to create segmentation-like visualisations easily.

The following additions were requested:

• 3D model-like appearance is unusual for microscopy datasets, biologists are more

used to maximum intensity projections or alpha blending-based renderings.

• While filtering based on particle properties was now possible upon loading the

dataset, it would be better if filtering could be controlled interactively.

13.8 Particle-based rendering in scenery

For interactive rendering of the APR, we have integrated the Java wrapper with

scenery3. In scenery, we render the APR as point-based graphics, and subject it to 3 See github.com/skalarproduk-
traum/aprrenderer for demo code.

the same postprocessing steps as all other renderings (such as screen-space ambient

occlusion, and HDR exposure correction).

For point-based rendering, positions and intensities of particles on all levels of

the APR are reconstructed according to Eq. 13.3, and stored in a Mesh, with the

mapping shown in Table 13.1.

Particle normals can be stored with the regular APR data as additional property,

but they might also be computed on-the-fly. The vertex data is then rendered with

a custom shader that provides multiple options for colouring the particles, such as

colouring by level, by distance to observer, or intensity. The shader also enables

thresholding of the particles, resulting in a very simple way to render visualisations

of an APR similar to isosurfaces and segmentations by just selecting particles with a

given intensity. An example segmentation of D. rerio head vasculature using graph

https://github.com/skalarproduktraum/aprrenderer
https://github.com/skalarproduktraum/aprrenderer
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cuts is shown in Figure 13.7, and an example direct particle rendering of a Drosophila

melanogaster embryo is shown in Figure 13.8.

Table 13.1: APR-to-scenery mapping for particle properties.

scenery Node property APR contents

Mesh.vertices Particle position (x, y, z)

Mesh.normals Particle intensity, particle cell level,

Particle normal x (optional)

Mesh.texcoords Particle normal y, Particle normal z

Figure 13.7: Image of an APR-based seg-
mentation of Danio rerio head vasculature
visualised as point-based graphics. Parti-
cles are coloured by distance to the cam-
era. Dataset courtesy of Stephan Daetwyler,
Huisken Lab, MPI-CBG Dresden & Mor-
gridge Institute for Research, Madison,
USA

Figure 13.8: Image of a APR-based di-
rect particle rendering of a Drosophila
melanogaster embryo after cellularisation.
Particles are here colored by level, with blue
signifying the highest-resolution level, and
red the lowest-resolution level. Dataset cour-
tesy of Loïc Royer, MPI-CBG Dresden &
Chan-Zuckerberg Biohub, San Francisco,
USA, obtained using a custom-built auto-
matic lightsheet microscope.

13.9 Particle-based maximum intensity projection

Maximum intensity projections of datasets are among the most common visualisa-

tions used in fluorescence microscopy, therefore they need to be supported on the

APR as well.

The algorithm for achieving this is relatively simple:
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Figure 13.9: Comparison of maximum in-
tensity projections of a Danio rerio (ze-
brafish) vasculature dataset with a the maxi-
mum intensity projection based on the orig-
inal pixel data and b the maximum inten-
sity projection based on the APR. Visu-
ally, there is no perceivable difference, only
when the contrast is exaggerated, blocking
artifacts from the lower particle cells be-
come visible. Dataset courtesy of Stephan
Daetwyler, Huisken Lab, MPI-CBG Dres-
den & Morgridge Institute for Research,
Madison, USA, obtained using a custom-
built lightsheet microscope.

Figure 13.10: Comparison of maximum
intensity projections of a Tribolium casta-
neum (red flour beetle) dataset with a the
maximum intensity projection based on the
original pixel data and b the maximum in-
tensity projection based on the APR. Visu-
ally, there is no perceivable difference, only
when the contrast is exaggerated, blocking ar-
tifacts from the larger, lower resolution parti-
cle cells become visible. Dataset courtesy of
Akanksha Jain, Tomancak Lab, MPI-CBG
Dresden, obtained using a Zeiss Lightsheet
Z1 microscope.
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1. create a multi-resolution representation of the original image dimensions down

to the lowest resolution (largest) particle cell level, which each level having a factor

2 lower resolution than the one before,

2. iterate over all particles in the APR dataset, and adding the interpolated pixel

intensity to the determined pixel position,

3. the resulting per-level images are blended together to yield the final maximum

intensity projection. More formally, this algorithm is stated in Algorithm 3.

Two example renderings resulting from this algorithm are shown in Figures 13.9

and 13.10, where they are compared with a maximum intensity projections from the

same pixel-based dataset. Visually, there is no difference, although blocking artifacts

on the largest, lowest resolution particle cell levels will appear when the contrast is

exaggerated.

Data: APR consisting of OVPC 𝒱 and particle set 𝒫
Result: Maximum projection of the APR, 𝑀

FunctionmaxProjectAPR(𝒱, 𝒫)
for 𝑙𝑐 = 𝑙𝑚𝑎𝑥 ∶ 𝑙𝑚𝑖𝑛 do

image ← initialize as empty with dimensions Ω𝑙𝑐
for 𝑐𝑖,𝑙𝑐

∈ 𝒱 do

𝑦𝑝 ← |Ω|
2𝑙𝑐

(𝑖 + 0.5) /* InterpolateIntensity can either
directly use the particle’s intensity, or
interpolate it */

image (𝑦𝑝) ← InterpolateIntensity(𝑐𝑖,𝑙𝑐
,𝒫)

end

/* Blend levels together, e.g. by max operation */
𝑀 ←blend(𝑀, image)

end

Algorithm 3: Maximum Intensity Projection on the APR.

13.10 Particle-based volume rendering of the APR on

the GPU

Unfortunately, the algorithm presented in the previous section only works well on

the CPU, as it requires a lot of random accesses to change pixel values, and therefore

does not map well to the massively parallel architecture of GPUs. By just gathering

particles on a per-level basis, it does not use of the space decomposition inherent

to the APR. In this section, we present an alternative algorithm that solves these

problems and makes the APR suitable as a basis for interactive volume rendering of

large datasets.

In addition, the methodology we proposed in Section 13.8, Particle-based render-

ing in scenery, while simple, does not deal well APRs containing more then 1 or 2

million particles, especially not when a lot of small particles occupy very little screen

space, need to be depth-sorted, and blended together. In such cases, the performance

can degrade very quickly. Furthermore, the typical user of the APR might not be

used to particle-based renderings, but rather to volume renderings of microscopy

data.

Our approach bears similarity to the algorithm proposed in [Knoll et al., 2019],
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Intensity  Particle Cell Level 

Particle Cell Type Particle Cells

Figure 13.11: A slice of an APR rendered as
particle intensities, particle cell level (larger
circle equals lower level), cell type, and cell
decomposition. Image reproduced from
[Cheeseman et al., 2018].

 Data: APR consisting of OVPC 𝒱 and particle set 𝒫
 Data: Ray with origin ⃗𝑜 and normalised direction ⃗𝑑
 Result: Intensity per pixel, ̂𝐼, computed along the ray

 

 Function volumerender_apr_for_ray(𝒱, 𝒫, ⃗𝑜, ⃗𝑑)
while 𝑐 ≠ null do

/* Query next cell from APR structure */
𝑐 ← NextCell(𝒱, 𝒫, ⃗𝑜, ⃗𝑑);

⃗𝑜′ ← ExitPointForCell(𝑐, ⃗𝑜, ⃗𝑑);
forallHit particles 𝑖 ∈ 𝑐 do

ℎ⃗ ← ⃗𝑜 + ∣ ⃗𝑝𝑖 − ⃗𝑜∣ ⋅ ⃗𝑑;

𝐼𝑖 ←ParticleIntensity(ℎ⃗);

/* sample intensity according to 13.5 */
𝐼(𝐼𝑖, ℎ⃗) ←SampledIntensity(𝐼𝑖, ℎ⃗);
/* Blend particles together, e.g. by

front-to-back blending */
̂𝐼 ←blend( ̂𝐼, 𝐼(𝐼𝑖, ℎ⃗));

end

⃗𝑜 ← ⃗𝑜′;

end

Algorithm 4: Volume rendering of the APR. See text for a detailed

explanation of the steps.



144

where radial basis functions are used as a basic primitive to emulate rasterisation-based

billboard splatting via raytracing. Compared to [Knoll et al., 2019], we however do

not need to build an acceleration data structure, as the APR already provides a de-

composition of space from which the particles can efficiently be accessed. See Figure

13.11 for an example how the APR decomposes space into cells in an example dataset.

Using this decomposition, the dataset can be traversed efficiently for raycasting. The

particles in the APR then also have a naturally-defined bounding box, and can be in-

terpolated using Gaussians/Radial Basis Functions, or a piecewice constant function

(or for that matter, any custom interpolation method). For calculating the intersec-

tion of a particle 𝑖 at position ⃗𝑝𝑖 with radius 𝑟𝑖 with a ray of normalised direction ⃗𝑑

and origin ⃗𝑜, the hit point ℎ⃗ is given as

ℎ⃗ = ⃗𝑜 + ∣ ⃗𝑝𝑖 − ⃗𝑜∣ ⋅ ⃗𝑑. (13.4)

Depending on whether to reconstruct using a Gaussian or a piecewise constant

function, the sampled intensity 𝐼(𝐼𝑖, ℎ⃗) then is one of

𝐼(𝐼𝑖, ℎ⃗)Gaussian = 𝐼𝑖 ⋅ exp
⎛⎜⎜⎜⎜
⎝

−
(ℎ⃗ − ⃗𝑝𝑖)

2

𝑟2
𝑖

⎞⎟⎟⎟⎟
⎠

𝐼(𝐼𝑖, ℎ⃗)Piecewise = 𝐼𝑖, (13.5)

where 𝐼𝑖 is the intensity of the particle 𝑖. The algorithm for APR traversal for a

single ray of origin ⃗𝑜, direction ⃗𝑑, and maximum length 𝑑max is given in Algorithm 4.

13.11 Discussion and Future Work

We have introduced different visualisation and rendering techniques for the Adaptive

Particle Representation (APR), and provided a brief summary of how it is constructed

from a given image. We have shown the evolution of rendering the APR, going from

an initial, unshaded prototype, over particle-based rendering with interpolated surface

normals and ambient occlusion, to maximum intensity projection and a proposal for

volume rendering on the APR data structures.

At the moment, we are finalising the interfacing of the libapr C++ code with

Java code, such that scenery can fully benefit from the APR data structures and

transfer these directly to the GPU without any conversions necessary such that the

algorithm described in Section 13.10, Particle-based volume rendering of the APR

on the GPU, can be implemented efficiently and without resorting to additional

data structures. When the integration is done and verified, we want to perform

benchmarking, comparing regular volume rendering to volume rendering on the

APR. We expect a large speedup compared to pixel-based images, especially for large,

but sparse volumetric datasets of >100 TB, where the APR can show its full potential.

Additionally, the spatial sampling of the APR is currently being extended to the
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time domain by Bevan Cheeseman (APR+t). For multi-timepoint datasets, this is

going to provide additional data reduction, such that volume rendering of multi-

timepoint datasets with high timepoint sizes could also become much faster.

On the applications side, remote 3D collaboration on volumetric datasets is cur-

rently hampered by the need to either possess or transfer the dataset to all participants

— for gigabyte-sized datasets a nuisance, for terabyte-sized datasets nearly impossible

without time-consuming preparation, and sharing of data via sneakernet. Alterna-

tively, browser-based approaches like CATMAID [Saalfeld et al., 2009] can be used,

but suffer from high latency — especially in the case of VR/AR rendering — and the

need for centralised, fast hardware.

The APR, and especially the APR+t, provides a solution here, by reaching 20 to

100-fold data reduction, moving gigabytes to megabytes, and terabytes to gigabytes.

As scenery already includes capabilities for synchronisation over the network, remote

3D collaboration on large volumetric datasets is an interesting research avenue for

the future.





Chapter 14:

sciview — Integrating scenery into ImageJ2 & Fiji

The work presented in this chapter has been done in collaboration with Tobias

Pietzsch (MPI-CBG), Curtis Rueden (University of Wisconsin, Madison), Stephan

Daetwyler (MPI-CBG and UT Southwestern, Texas), and Kyle I.S. Harrington

(University of Idaho, Moscow, and HHMI Janelia Farm), and is currently being

prepared for publication as:

Günther, U., Pietzsch, T., Rueden, C., Daetwyler, S., Huisken, J., Elicieri, K.,

Tomancak, P., Sbalzarini, I.F., Harrington, K.I.S.: sciview — Next-generation 3D

visualisation for ImageJ & Fiji.

Figure 14.1: Screenshot of the sciview main
window, showing the Game of Life 3D
demo.

Fiji [Schindelin et al., 2012] is a widely-used — as of April 2019, it has been

cited over 10000 times — open-source distribution of ImageJ for biological image

analysis (Fiji stands for “Fiji is just ImageJ”). It is now the predominant ImageJ

[Schneider et al., 2012] distribution. It recently had its its underlying infrastructure

modernised tremendously, e.g. by replacing its basic image processing library with

imglib2 [Pietzsch et al., 2012], and replacing the original ImageJ 1.x with ImageJ2,
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which has brought better interoperability and better overall design [Rueden et al.,

2017].

The original 3D visualisation tool in Fiji is the 3D Viewer [Schmid et al., 2010],

which has now become dated and is not actively developed anymore, necessitating a

replacement. After the start of the development of scenery in early 2016, we started

the development of a replacement for 3D Viewer, named sciview. sciview builds on

the infrastructure provided by the Fiji, SciJava1, and ImageJ2 projects [Rueden et al., 1 See scijava.org and imagej.net/SciJava for
more information about the projects.

2017].

In this chapter, we introduce sciview and explain how intertwining scenery and

the ImageJ2/Fiji ecosystem creates a powerful new tool for interactive visualisations

in the life sciences. We start by introducing the ImageJ2/Fiji ecosystem in more detail,

focussing on the developer side and explaining how the various parts are used in our

project. After that, we introduce examplary use cases that have not been possible

before, and projects that are enabled by scenery and sciview.

14.1 Integration into the ImageJ2 & Fiji ecosystem

With its basis, SciJava common, ImageJ2 focuses heavily on modularisation, extensi-

bility, and interoperability. At the core of ImageJ2 is the support for N-dimensional

image data, going beyond the “traditional” stack of 2D images from microscopy,

and extending towards multispectral and hyperspectral images, which might even

include information about wavelengths, sample counts, polarisation states, etc. On

the interoperability side, the SciJava infrastructure enables simple integration of plu-

gins that only need to be written once into several different software suites, such as

ImageJ2/Fiji, KNIME [Berthold et al., 2008], and Icy [de Chaumont et al., 2012].

We make use of three main components from the ImageJ2 effort:

• SciJava common, for providing core abstractions for extensible applications, such

as for plugins and commands (more on that in a moment),

• SCIFIO, the SCientific Image Format Input and Output library, facilitating image

input and output in various formats, as well as interoperability between formats,

and

• ImgLib2 [Pietzsch et al., 2012], which decouples image representation from

processing and storage.

SciJava common provides several services that enable integration into ImageJ2/Fiji

installations:

• the PluginService for dynamic plugin discovery at runtime,

• theEventService, for publishing and subscribing to scenery-related events, such

as Node additions, removals, and changes,

• the IOService for providing access to file input/output, e.g., via SCIFIO.

sciview itself is implemented as a SciJava Service, the SciViewService. A user

can create a new sciview instance by runningSciViewService.createSciView(),

https://scijava.org
https://imagej.net/SciJava
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1 @Plugin(type = Command.class, menuRoot = ”SciView”, //
2 menu = { @Menu(label = ”Edit”, weight = EDIT), //
3 @Menu(label = ”Add Volume”, weight = EDIT_ADD_VOLUME) })
4 public class AddVolume implements Command {
5

6 @Parameter
7 private SciView sciView;
8

9 @Parameter
10 private Dataset image;
11

12 @Parameter(label = ”Voxel Size X”)
13 private float voxelWidth = 1.0f;
14

15 @Parameter(label = ”Voxel Size Y”)
16 private float voxelHeight = 1.0f;
17

18 @Parameter(label = ”Voxel Size Z”)
19 private float voxelDepth = 1.0f;
20

21 @Parameter(label = ”Global rendering scale”)
22 private float renderScale = 1.0f;
23

24 @Override
25 public void run() {
26 Node n = sciView.addVolume( image, new float[] { voxelWidth, ↩

voxelHeight, voxelDepth } );
27 n.setRenderScale(renderScale);
28 }
29

30 }

Listing 14.1: Example SciJava Command for adding a volume to a sciview
scene.

or get an already active instance by SciViewService.getActiveSciView().

sciview instances can also be named, and later accessed independently via

SciViewService.getSciView(name: String).

All commands the user can execute from the sciview main window are imple-

mented as SciJava Command Plugins. As a simple and instructive example, the

Command that adds the Edit > Add Volume menu item is shown in Listing 14.1.

This example code illustrates one of the prime features of ImageJ2: the separation

of data model and view (or GUI). All of the class members annotated as @Parameter

are going to be either populated automatically or exposed in the UI by SciJava’s plugin

infrastructure: all the members referring to Dataset, or any kind of Service will

be automatically populated with the currently open dataset or services at hand from

the ImageJ instance. E.g, the parameter sciView will point to the currently active

sciview instance. Members labelled @Parameter with no relation to a service will be

user-editable parameters shown in the GUI dialog. How this Command is rendered

in the default ImageJ2 Swing GUI is shown in Figure 14.1. Such parameters can be

named (label), given minimum and maximum boundaries, or styled as a particular

widget.

Figure 14.2: A simple example for an auto-

matically generated UI: sciview’s Add Vol-

ume dialog, shown in the default ImageJ2

Swing GUI.

At the moment, all automatically-generated GUIs are using Swing. The generation

system however is abstract enough such that Swing can be replaced by JavaFX or

another UI toolkit in the future.
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14.2 Example Use Cases

The remainder of this chapter is intended to showcase applications of sciview. We

introduce three examples and discuss how sciview has helped in creating them.

14.2.1 Zebrafish development

Scan this QR code to go to a video demo

of zebrafish vasculature development visu-

alised in sciview. For a list of supplementary

videos see https://ulrik.is/writing/a-thesis.

The visualisations shown in this section have been published as part of:

Daetwyler S., Günther, U., Modes, Carl D., Harrington, K.I.S., and Huisken, J.:

Multi-sample SPIM image acquisition, processing and analysis of vascular growth

in zebrafish. Development 146 (6), 2019. bioRxiv preprint 478149.

Figure 14.3: Screenshot of sciview, show-
ing a multicolour segmentation of Danio re-
rio vasculature. Dataset courtesy of Stephan
Daetwyler, Huisken Lab, MPI-CBG Dres-
den and Morgridge Institute for Research,
Madison, USA.

For the publication [Daetwyler et al., 2018] we developed a custom visualisation

pipeline to cope with the terabytes of image data generated in experiments which

simultaneously imaged multiple Danio rerio embryos over the course of several days

in order to investigate vascular development. This was developed before scenery

gained support for out-of-core volume rendering, so alternative techniques had to be

employed to create timelapse videos of vascular development. The resulting script

for controlling sciview to create the animation shown in Figure 14.4 and the supple-

mentary video is shown in Listing 14.2 — it reads all TIFF files from a given location

(line 19 onward), and iterate through them one-by-one (line 23), saving a screenshot

on each iteration (line 35).

Figure 14.4: Frames from a developmen-

tal timelapse of D. rerio rendered in sciview,

from [Daetwyler et al., 2018].

1 // import necessary packages
2 importPackage(java.nio.file);
3 importPackage(java.io);
4 importPackage(java.lang);
5 importPackage(java.util);
6

7 // get sciview object
8 var sc = sciView.getActiveSciView();
9

https://ulrik.is/thesising/supplement/ZebrafishVascularDevelopment.mp4
https://ulrik.is/writing/a-thesis
https://www.biorxiv.org/content/10.1101/478149v1
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10 // get scene object
11 var scene = sc.getAllSceneNodes()[0].parent;
12

13 // get imported volume, number 6 in the array
14 var fish = scene.children[6];
15 // scale to half the original size
16 fish.renderScale = 0.5;
17

18 // get all TIFF files and sort by name
19 var files = new File(”C:/my/fish/data/tiff/combined/angle000/”).listFiles();
20 Arrays.sort(files, 0, files.length-1);
21

22 // iterate over all files
23 for(i = 0; i < files.length-1; i++) {
24 var f = Paths.get(files[i]);
25 fish.readFrom(f, true);
26 Thread.sleep(1500);
27

28 // adjust transfer function range and LUT
29 fish.trangemin = 0.0;
30 fish.trangemax = 255.0;
31 sc.setColormap(fish, lut.loadLUT(lut.findLUTs().get(”VirtualFishAssignment.↩

lut”)));
32 Thread.sleep(500);
33

34 // take a screenshot (which is saved to disk)
35 sc.takeScreenshot();
36 Thread.sleep(1500);
37 }

Listing 14.2: sciview example script in JavaScript to display a zebrafish
vasculature developmental timelapse, with each frame loaded individually.
See text for details.

14.2.2 Constrained Segmentation of the Zebrafish heart

Scan this QR code to go to a video demo

of the constrained segmentation. For a

list of supplementary videos see https://ul-

rik.is/writing/a-thesis.

In this use case, sciview is leveraged to simplify the segmentation procedure for

parts of the zebrafish heart by introducing interactive mesh-based cropping as a

pre-segmentation step.

Segmentation of intricate structures in 3D microscopy images, such as the ze-

brafish heart, using simple, off-the-shelf algorithms and suites such as Weka [Hall

et al., 2009], is often hampered by oversegmentation or noise. If the user can interac-

tively constrain the region to be segmented, the performance of such algorithms can

be increased tremendously.

The approach is the following:

1. The user uses ImageJ’s point selection tool to roughly select points that define a

convex shape around the region of interest for segmentation,

2. the image is visualised as a 3D volume in sciview, and the points from the point

selection are shown as spheres within the volume,

3. the user moves the points around, either using a mouse, or VR controllers, until

they constrain the dataset in a satisfactory manner (see Figure 14.5a),

4. a convex hull is calculated from such points using sciview’sInteractiveConvexMesh

command,

https://ulrik.is/thesising/supplement/ConstrainedSegmentation.mp4
https://ulrik.is/writing/a-thesis
https://ulrik.is/writing/a-thesis
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5. the convex hull is used to determine the inside of the relevant region of the volu-

metric dataset, and outside parts are removed or set to zero (see Figure 14.5b).

6. the resulting dataset is used with a trainable Weka segmenter in 3D.

For the last step, less than 10 annotations had to be manually performed, in order

to reach a good segmentation quality, as shown in Figure 14.6. This approach involves

a tractable effort, and is able to effectively reduce formerly impossible segmentation

problem to feasible ones.

Figure 14.5: Constraining a volumetric im-
age for segmentation using the thingy com-
mand in SciView. a: Constrain points
drawn into dataset (step 1), b: Outside of
convex hull removed (step 5). See text for
details. Dataset courtesy of Anjalie Schleppi,
Huisken Lab, MPI-CBG and Morgridge In-
stitute for Research.

Figure 14.6: Constrained segmentation re-

sult using a trainable Weka segmenter on the

volume cropped before (step 6), as shown

in Figure 14.5. See text for details. Dataset

courtesy of Anjalie Schleppi, Huisken Lab,

MPI-CBG and Morgridge Institute for Re-

search.

14.2.3 EmbryoGen — Generating test data for algorithmic

analysis of lightsheet imaging data

Vladimir Ulman (Tomancak Lab, MPI-CBG) has developed a software, EmbryoGen,

to create artificial, but realistic-looking images of developing Drosophila embryos.

EmbryoGen was developed in order to be able to compare segmentation and tracking

algorithms with actual ground truth data of cell positions, sizes, and velocities, which

is normally not available for microscope-acquired fluorescence microscopy datasets.

scenery 
sciview
JavaVM

EmbryoGen 
C++

Agent updates

ZeroMQ

Control commands

Figure 14.7: EmbryoGen architecture, with
the actual simulation written in C++ talking
to scenery and sciview via a ZeroMQ-based
protocol. See text for details.

EmbryoGen’s visualisation is based on scenery and sciview, in order to harness

the simultaneous visualisation of mesh data, coming from simulated cell shapes and

positions, and volumetric data, calculated from the simulated cells. Employing a

client-server architecture, EmbryoGen has the actual simulation code written in C++,

and communicates with scenery and sciview via a simple, ZeroMQ-based protocol.

A sketch of the architecture is shown in Figure 14.7. The support of instancing in
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Figure 14.8: Visualisation of a simulated
Drosophila embryo using EmbryoGen in
sciview. The cells are shown as green spheres,
while the equilibrating forces acting on them
are shown as arrows on the right side where
the cells are hidden. Courtesy of Vladimir
Ulman, Tomancak and Jug Labs, MPI-CBG
and Center for Systems Biology Dresden.

scenery (see Section 6.2.7, Instancing) is helpful in this particular use case, as the

number of simulated cells can easily reach many tens of thousands.

The visualisation of the simulation is used for debugging and demonstration

purposes: The cells can be visualised individually (see Figure 14.8, with cells shown

in green, and the forces acting on them as white arrows. Furthermore, the optical

flow induced by the cells moving can be visualised (see Figure 14.9.

Figure 14.9: Visualisation of the optical flow
generated by a simulatedDrosophila embryo
using EmbryoGen in sciview. Courtesy of
Vladimir Ulman, Tomancak and Jug Labs,
MPI-CBG and Center for Systems Biology
Dresden.

14.2.4 Agent-based Simulations

We have used sciview to visualise agent-based simulations with large numbers of

agents. By adapting the existing agent- and physics-based simulation toolkit brevis

[Harrington and Stiles, 2017], we were able to increase the number of agents that
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can be visualised at interactive frame rates by a factor of 10, from originally 1000,

on a notebook equipped with a Nvidia Quadro P4000 GPU with 8 GB of graphics

memory.

Figure 14.10: An agent-based simulation of
10.000 independent agents simulated using
brevis and visualised using sciview. See text
for details.

This performance improvement enables previous studies of swarms with evolving

behaviours to be revisited under conditions that may enable new levels of emergent be-

haviour [Harrington and Magbunduku, 2017, Gold et al., 2014]. In Figure 14.10, we

show 10.000 agents that use flocking rules inspired by [Reynolds, 1987] to collectively

form a sphere.

Subsequently, we were able to further increase the number of agents, pushing the

limits of scenery. The highest number of agents we could visualise was 2.500.000,

albeit at a framerate of only about 2-5 fps, as the GPU becomes overwhelmed with

vertex and geometry processing.

14.3 Conclusions and Future Work

In the future, we want to integrate sciview even more tightly with the existing ImageJ

ecosystem, for example by making image processing commands available in a context-

based menu that can also be used in VR/AR, such that image processing tasks can be

executed without having to take off the headset.

In order to make sciview more interoperable with other ecosystems, we will pro-

vide wrapper libraries. Such a library has already been developed to use sciview from

Python, enabling use of, e.g., SciPy, Numpy, TensorFlow, or PyTorch2, is currently 2 SciPy and Numpy (see scipy.org) are
Python frameworks for scientific com-
puting, while TensorFlow (tensorflow.org)
and PyTorch (pytorch.org) are widely-used
frameworks for GPU-accelerated deep learn-
ing and neural network prototyping.

undergoing testing, and will be published as open-source software in the near future.

Furthermore, we would like to provide better interoperability with simulation

frameworks such as Morpheus [Starruß et al., 2014] or OpenFPM [Incardona et al.,

https://scipy.org
https://tensorflow.org
https://pytorch.org
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2019], to better facilitate the visualisation and analysis of experimental data in con-

junction with data from models and simulations. In this context, we have already

done preliminary work for simulating and visualising the growth of artificial neurons

in conjunction with Simple Neurite Tracer [Longair et al., 2011] and a custom-built

growth simulation.

While the current GUI of sciview is based on Swing, we would like to provide

support for JavaFX in the future as well. If Fiji/ImageJ2 also move to JavaFX, this

would provide a very powerful combination, as it opens up the possibility to also run

on touch-based devices, such as smartphones and tablets.

14.4 Software Availability

sciview is available as free and open-source software under the 2-clause BSD license

at github.com/scenerygraphics/sciview. It is also available via a ImageJ/Fiji update

site (see https://imagej.net/Update_Sites for details) under https://sites.imagej.net/

SciView. An automatically-built unstable version also available in addition at https:

//sites.imagej.net/SciView-Unstable.

https://github.com/scenerygraphics/sciview
https://imagej.net/Update_Sites
https://sites.imagej.net/SciView
https://sites.imagej.net/SciView
https://sites.imagej.net/SciView-Unstable
https://sites.imagej.net/SciView-Unstable




I expect that within the next five years more

than one in ten people will wear

head-mounted computer displays while

traveling in buses, trains, and planes.

—Nicolas Negroponte (1993)

Part IV:

Conclusion





Chapter 15:

Conclusions and Outlook

In this thesis, we have introduced scenery, a flexible and extensible rendering frame-

work for the Java Virtual Machine, along with several use cases where the functionality

of scenery is either used to improve workflows in systems biology, or integrated into

existing software ecosystems for wider dissemination.

Now, we would like to revisit the individual contributions, and provide an outlook

towards future research challenges.

15.1 Framework

With scenery, we have introduced a framework using the state-of-the-art rendering

API Vulkan in order to provide VR/AR rendering of geometric and volumetric

datasets of large size. The initial development of scenery was motivated by the need

to make 3D data actually 3D, and harness the perceptual improvements brought by

VR/AR for biological problems, such as tracking or instrument control. scenery was

developed with five goals in mind:

1. VR/AR support, both for headsets and room-scale systems like CAVEs,

2. Out-of-core volume rendering of large datasets,

3. User- and developer-friendly API

4. Cross platform, support for at least Windows, macOS, and Linux, and

5. Run natively on the Java VM, and be embeddable in existing applications.

No existing software packages fulfilled these goals when we started the develop-

ment of scenery, and at the time of writing, this still holds true. scenery is also the

first framework for scientific visualisation that uses the modern Vulkan API.

In addition to the already mentioned VR/AR support and the out-of-core volume

rendering of large datasets, we succeeded in creating a cross-platform framework that

can help produce prototypes and applications on the three major operating systems.

The framework can be embedded in existing applications on the Java VM, like Fiji,

and — according to user feedback — is both user and developer friendly.

In the future, we would like to extend the capabilities of scenery: This includes

improved rendering algorithms as outlined in Chapter 10, Future Development Di-
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rections, improved support for AR applications, and venturing into new areas, such

as in situ visualisation.

15.2 Case studies and applications

With the case studies in this work we demonstrated two things:

1. VR/AR can provide a tangible benefit for various visualisation and interaction

applications in systems biology, and

2. scenery is a powerful and practical tool to develop such.

In Chapter 11, Bionic Tracking: Using Eye Tracking for Cell Tracking, we

combined virtual reality exploration of 4D biological datasets with eye tracking

technology to enable the user to track cells by just looking at them, and following them

around in time and space. We chose to develop this in virtual reality, as the tracking

enables the user to look and move around, and even perform evasive movements,

without the necessity for additional input devices, mimicking the exploration of

objects in the real world. The combination of the tracking information from the

virtual reality headset with the eye tracking data provided a powerful way to discern

real and spurious cell detections, and an easy way to reduce the problem of finding

a cell from 3D to 1D — from the whole 3D dataset, to just along a ray through

the dataset. We have demonstrated a graph search-based approach, similar to fringe-

preserving A* search, to connect detections of cells between multiple timepoints. The

user study we have conducted shows that users are able to create cell tracks of good

quality with Bionic Tracking, and have indicated that, compared to other manual

annotation methods, Bionic Tracking might speed up the process by at about an

order of magnitude — not only significantly lowering the workload on the person

performing the tracking, but also improving the ergonomics of the tracking process.

In the future, we want to continue the validation of our approach, e.g. with

pre-annotated datasets or simulated datasets, where ground truth data is available,

and make the technique available in tracking software packages, such as TrackMate,

MaMuT, or Mastodon.

In Chapter 12, Towards Interactive Virtual Reality Laser Ablation, we have

developed a prototype for the virtual reality control of laser ablation devices on

volumetric microscopes, in order to make spatiotemporally complex processes ac-

cessible for experimental interference. We tested our prototypes with pre-recorded

data on a set of people familiar with laser ablation, and collected their feedback. The

feedback of the users has been mostly positive, with most of the users stating the

presented technique provides an improvement over the state-of-the-art and could

enable them to perform experiments not doable before, or perform experiments more

quickly or precisely. From the user feedback, we have also collected ideas for future

developments, namely the inclusion of a virtual toolbelt that can provide multiple

cutting geometries, as well as a macro mode to easily produce highly reproducible

laser cuts even in difficult geometries. We have furthermore sketched ideas for an

OpenSPIM-based lightsheet microscope with an ablation unit.
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In the future, we are going to implement the suggestions from the user tests, and

build a microscope to actually perform the actual laser ablation, and conduct another

user test with the actual microscope, with data acquired in realtime.

In Chapter 13, Rendering the Adaptive Particle Representation, we have

given a short introduction to the Adaptive Particle Representation (APR) as a new

and highly efficient way of representing fluorescences images. In this case study, we

have shown that scenery can also adapt to new, unconventional representations of

image data, and can be a useful tool both during development and use of such. We

introduced the prototyping stages for visualising the APR, presented particle-based

rendering, and CPU-based maximum intensity projections of the APR, and finally

outlined a new algorithm to render the APR in a similar way to volume renderings

on the GPU via raytracing.

In the future, we would like to finish the implementation of the raycasting algo-

rithm, and evaluate the performance of the raycasting algorithm, especially on very

large datasets exceeding multiple terabytes when stored as traditional pixel images.

Additionally, we want to integrate the APR rendering methods into sciview.

In Chapter 14, sciview — Integrating scenery into ImageJ2 & Fiji, we have

introduced sciview, a visualisation plugin for ImageJ2 & Fiji, based on the scenery

framework. With sciview, we combine the advanced rendering and customisation

capabilities of scenery, with a user-friendly interface in a software package that is

widely used within the biomedical imaging community. We have shown how sciview

harnesses the SciJava infrastructure for efficient integration into the ecosystem, and

demonstrated example use cases, including the visualisation large data originating

from the imaging of zebrafish vascular development, manually-constrained image

segmentation, embryo simulation for ground truth generation, and visualisation of

agent-based simulations.

In the future, we would like to integrate sciview even tighter into the ecosystem

and associated applications, and provide an actual VR interface for performing image

analysis tasks, as such tasks at the moment still have to be performed with the regular

menu structure in Fiji.

With these four case studies, we believe that we have demonstrated both theses

stated above: In interactive ablation, VR is invaluable for exploration and understand-

ing of the dataset, and scenery helped to rapidly prototype interactions. For Bionic

Tracking, scenery has provided the crucial underpinning, providing visualisation of

large volumetric data, VR, and eye tracking support. With the demonstration of APR

rendering, we have shown that scenery is a powerful toolkit even for unusual kinds

of volumetric data, and finally, with sciview, we demonstrated scenery can be used

to build applications and make VR available to a wider audience in the biomedical

imaging community.

With this, we conclude this thesis. Thank you for reading.





Appendix A:

Questionnaire for VR Ablation User Study

This appendix shows the full questionnaire test subjects had to fill out for the user

study in the chapter 12, Towards Interactive Virtual Reality Laser Ablation — for

more details about the study please see this chapter. The questionnaire is a multi-page

PDF and starts on the next page.
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Freeform Interactive Laser Ablation using Virtual
Reality
Please make sure you have understood and signed both theDeclaration of Consent and theDeclaration of Consent for the Storage
of Personal Data for Research Purposes before filling out this form.

About you

1. Age
2. Gender
3. Dominant Hand

2 Left
2 Right

4. Do you require any optical aid?
2 No
2 Yes,

5. Are you wearing any right now?
2 No
2 Yes,

6. Do you have any impairment in color vision?
2 No
2 Yes,

7. Do you have any impairment in spatial perception?
2 No
2 Yes,

8. Do you have any motor impairment?
2 No
2 Yes,

Pre-study questions

9a. Do you have any prior experience with VR applications or games?
None2—2—2—2—2Daily use

9b. Have you used computer-based VR headsets before? Examples for such devices are Oculus Rift, HTC Vive, etc.
Never2—2—2—2—2Daily use

9c. Did you enjoy the experience?
Not at all2—2—2—2—2Very much

9d. Have you used smartphone-based VR headsets before? Examples for such devices are Samsung Gear VR, Zeiss VR ONE
Plus, etc.

Never2—2—2—2—2Daily use
9e. Did you enjoy the experience?

Not at all2—2—2—2—2Very much
9f. Have you used standalone VR headsets before? Examples for such devices are Oculus Go, or the LenovoMirage Solo.

Never2—2—2—2—2Daily use
9g. Did you enjoy the experience?

Not at all2—2—2—2—2Very much
9h. Do you have any prior experience with laser ablation?

None2—2—2—2—2Daily use
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Condition before the study

10a. How tired do you feel? Not at all2—2—2—2—2Very
10b. How concentrated are you? Not at all2—2—2—2—2Very
10c. Howmotivated are you? Not at all2—2—2—2—2Very
10d. Do you have a headache? Not at all2—2—2—2—2Very
10e. Do you have dry or aching eyes? Not at all2—2—2—2—2Very
10f. Do you feel nauseous? Not at all2—2—2—2—2Very

Post-study questions

Please read the questions carefully, some are formulated in a affirmative way, some are not.

Condition after the study

11a. How tired do you feel? Not at all2—2—2—2—2Very
11b. How concentrated are you? Not at all2—2—2—2—2Very
11c. Howmotivated are you? Not at all2—2—2—2—2Very
11d. Do you have a headache? Not at all2—2—2—2—2Very
11e. Do you have dry or aching eyes? Not at all2—2—2—2—2Very
11f. Do you feel nauseous? Not at all2—2—2—2—2Very

General Questions

12a. The visualisation had a high fidelity. Not at all2—2—2—2—2Very
12b. The visualisation was well-positioned in space. Not at all2—2—2—2—2Very
12c. The visualisation had a good scale relative to the user. Not at all2—2—2—2—2Very
12c. The software felt responsive to my inputs. Not at all2—2—2—2—2Very
12d. Being in an isolated VR environment irritated me. Not at all2—2—2—2—2Very
12e. I had trouble orienting myself. Not at all2—2—2—2—2Very
12f. I would have liked a different input/control method. Not at all2—2—2—2—2Very
12g. The usage felt very natural and intuitive. Not at all2—2—2—2—2Very
12h. I had to keep track of too many things at once. Not at all2—2—2—2—2Very
12i. The visualisation of information supports me in performing the task. Not at all2—2—2—2—2Very
12j. I was put off by the prototype character of the software. Not at all2—2—2—2—2Very
12k. I needed a long time to learn how to use the software. Not at all2—2—2—2—2Very
12l. The interaction felt very precise. Not at all2—2—2—2—2Very

Adoption Questions

13a. I could imagine adopting the presented technique for my experiments.
Not at all2—2—2—2—2Completely

13b. The presented technique provides an improvement over current techniques.
Not at all2—2—2—2—2Completely

13c. The presented technique would allow me to perform experiments faster.
Not at all2—2—2—2—2Completely

13d. The presented technique would allow me to perform experiments more precisely.
Not at all2—2—2—2—2Completely
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Task Load Questions

14a. Howmentally demanding was the task?
Very Low2—2—2—2—2—2—2Very High

14b. How physically demanding was the task?
Very Low2—2—2—2—2—2—2Very High

14c. How hurried or rushed was the pace of the task?
Very Low2—2—2—2—2—2—2Very High

14d. How successful were you in accomplishing what you were asked to do?
Perfect2—2—2—2—2—2—2 Failure

14e. How hard did you have to work to accomplish your level of performance?
Very Low2—2—2—2—2—2—2Very High

14f. How insecure, discouraged, irritated, stressed, and annoyed were you?
Very Low2—2—2—2—2—2—2Very High

Simulator Sickness

Do you experience any of the following symptoms? How badly?
15a. General discomfort None2—2—2—2Very High
15b. Fatigue None2—2—2—2Very High
15c. Headache None2—2—2—2Very High
15d. Eyestrain None2—2—2—2Very High
15e. Difficulty focussing None2—2—2—2Very High
15f. Increased salivation None2—2—2—2Very High
15g. Sweating None2—2—2—2Very High
15h. Nausea None2—2—2—2Very High
15i. Difficulty concentrating None2—2—2—2Very High
15j. Fullness of head None2—2—2—2Very High
15k. Blurred vision None2—2—2—2Very High
15l. Dizzy with open eyes None2—2—2—2Very High

15m. Dizzy with closed eyes None2—2—2—2Very High
15n. Vertigo None2—2—2—2Very High
15o. Stomach awareness None2—2—2—2Very High
15p. Burping None2—2—2—2Very High



Appendix B:

Full Correlations in VR Ablation Questionnaire
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Do you have any prior experience with VR applications or games?
Have you used computer−based VR headsets before?

Did you enjoy the computer−based experience?
Have you used smartphone−based VR headsets before?

Did you enjoy the smartphone−based experience?
Have you used standalone VR headsets before?

Did you enjoy the standalone experience?
Do you have any prior experience with laser ablation?

How tired do you feel?
How concentrated are you?

How motivated are you?
Do you have a headache?

Do you have dry or aching eyes?
Do you feel nauseous?

How tired do you feel?
How concentrated are you?

How motivated are you?
Do you have a headache?

Do you have dry or aching eyes?
Do you feel nauseous?

The visualisation had a high fidelity.
The visualisation was well−positioned in space.

The visualisation had a good scale relative to the user.
The software felt responsive to my inputs.

Being in an isolated VR environment irritated me.
I had trouble orienting myself.

I would have liked a different input/control method.
The usage felt very natural and intuitive.

I had to keep track of too many things at once.
The visualisation of information supports me in performing the task.

I was put off by the prototype character of the software.
I needed a long time to learn how to use the software.

The interaction felt very precise.
I could imagine adopting the presented technique for my experiments.

The presented technique provides an improvement over current techniques.
The presented technique would allow me to perform experiments faster.

The presented technique would allow me to perform experiments more precisely.
How mentally demanding was the task?

How physically demanding was the task?
How hurried or rushed was the pace of the task?

How successful were you in accomplishing what you were asked to do?
How hard did you have to work to accomplish your level of performance?

How insecure, discouraged, irritated, stressed, and annoyed were you?
General discomfort

Fatigue
Headache

Eyestrain
Difficulty focussing

Increased salivation
Sweating

Nausea
Difficulty concentrating

Fullness of head
Blurred vision

Dizzy with open eyes
Dizzy with closed eyes

Vertigo
Stomach awareness

Burping
SSQ Nausea Score
SSQ Oculomotor Score
SSQ Disorientation Score

SSQ Total Score

Figure B.1: Full correlation plot for ques-
tionnaire answers, including all SSQ symp-
toms. A black X indicates data where no
correlation could be determine due to the
standard deviation being zero. This is only
the case for some SSQ symptoms that were
not reported by any subject.





Appendix C:

Questionnaire for Bionic Tracking User Study

This appendix shows the full questionnaire test subjects had to fill out for the user

study in chapter 11, Bionic Tracking: Using Eye Tracking for Cell Tracking — for

more details about the study please see this chapter. The questionnaire is a multi-page

PDF and starts on the next page.



1

bionic tracking: eye tracking for cell tracking in
VR
Please make sure you have understood and signed both theDeclaration of Consent and theDeclaration of Consent for the Storage
of Personal Data for Research Purposes before filling out this form.

About you

1. Age

2. Gender

3. Dominant Hand

2 Left

2 Right

4. Do you require any optical aid?

2 No

2 Yes,

5. Are you wearing any right now?

2 No

2 Yes,

6. Do you have any impairment in color vision?

2 No

2 Yes,

7. Do you have any impairment in spatial perception?

2 No

2 Yes,

8. Do you have any motor impairment?

2 No

2 Yes,

Pre-study questions

9a. Do you have any prior experience with VR applications or games?

None2—2—2—2—2Daily use

9b. Have you used computer-based VR headsets before? Examples for such devices are Oculus Rift, HTC Vive, etc.

Never2—2—2—2—2Daily use

9c. Did you enjoy the experience?

Not at all2—2—2—2—2Very much

9d. Have you used smartphone-based VR headsets before? Examples for such devices are Samsung Gear VR, Zeiss VR ONE
Plus, etc.

Never2—2—2—2—2Daily use

9e. Did you enjoy the experience?

Not at all2—2—2—2—2Very much

9f. Have you used standalone VR headsets before? Examples for such devices are Oculus Go, or the LenovoMirage Solo.

Never2—2—2—2—2Daily use

9g. Did you enjoy the experience?

Not at all2—2—2—2—2Very much
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9h. Did you ever use an eye tracking-based user interface?

Never2—2—2—2—2Daily use

9i. Do you have any prior experience with cell tracking?

None2—2—2—2—2Daily use

Condition before the study

10a. How tired do you feel? Not at all2—2—2—2—2Very

10b. How concentrated are you? Not at all2—2—2—2—2Very

10c. Howmotivated are you? Not at all2—2—2—2—2Very

10d. Do you have a headache? Not at all2—2—2—2—2Very

10e. Do you have dry or aching eyes? Not at all2—2—2—2—2Very

10f. Do you feel nauseous? Not at all2—2—2—2—2Very

Post-study questions

Please read the questions carefully, some are formulated in a affirmative way, some are not.

Condition after the study

11a. How tired do you feel? Not at all2—2—2—2—2Very

11b. How concentrated are you? Not at all2—2—2—2—2Very

11c. Howmotivated are you? Not at all2—2—2—2—2Very

11d. Do you have a headache? Not at all2—2—2—2—2Very

11e. Do you have dry or aching eyes? Not at all2—2—2—2—2Very

11f. Do you feel nauseous? Not at all2—2—2—2—2Very

General Questions

12a. The software felt responsive to my inputs. Not at all2—2—2—2—2Very

12b. Being in an isolated VR environment irritated me. Not at all2—2—2—2—2Very

12c. I had trouble orienting myself. Not at all2—2—2—2—2Very

12d. I would have liked a different input/control method. Not at all2—2—2—2—2Very

12e. The usage felt very natural and intuitive. Not at all2—2—2—2—2Very

12f. I had to keep track of too many things at once. Not at all2—2—2—2—2Very

12g. I was put off by the prototype character of the software. Not at all2—2—2—2—2Very

12h. I needed a long time to learn how to use the software. Not at all2—2—2—2—2Very

12i. The interaction felt very precise. Not at all2—2—2—2—2Very

12j. Having my eyes tracked irratated me. Not at all2—2—2—2—2Very

12k. The cell tracks created looked reasonable to me. Not at all2—2—2—2—2Very

12l. I could complete the tracking tasks with confidence. Not at all2—2—2—2—2Very

12m. Relative to regular manual tracking, tracking with the presented technique would take times the time.

Adoption Questions

13a. I could imagine adopting the presented technique for tracking of my datasets.

Not at all2—2—2—2—2Completely

13b. The presented technique provides an improvement over current techniques.

Not at all2—2—2—2—2Completely

13c. The presented technique would allow me to perform tracking tasks faster.

Not at all2—2—2—2—2Completely

13d. The presented technique would allow me to perform tracking tasks more precisely.

Not at all2—2—2—2—2Completely



3

Task Load Questions

14a. Howmentally demanding was the task?

Very Low2—2—2—2—2—2—2Very High

14b. How physically demanding was the task?

Very Low2—2—2—2—2—2—2Very High

14c. How hurried or rushed was the pace of the task?

Very Low2—2—2—2—2—2—2Very High

14d. How successful were you in accomplishing what you were asked to do?

Perfect2—2—2—2—2—2—2 Failure

14e. How hard did you have to work to accomplish your level of performance?

Very Low2—2—2—2—2—2—2Very High

14f. How insecure, discouraged, irritated, stressed, and annoyed were you?

Very Low2—2—2—2—2—2—2Very High

Simulator Sickness

Do you experience any of the following symptoms? How badly?

15a. General discomfort None2—2—2—2Very High

15b. Fatigue None2—2—2—2Very High

15c. Headache None2—2—2—2Very High

15d. Eyestrain None2—2—2—2Very High

15e. Difficulty focussing None2—2—2—2Very High

15f. Increased salivation None2—2—2—2Very High

15g. Sweating None2—2—2—2Very High

15h. Nausea None2—2—2—2Very High

15i. Difficulty concentrating None2—2—2—2Very High

15j. Fullness of head None2—2—2—2Very High

15k. Blurred vision None2—2—2—2Very High

15l. Dizzy with open eyes None2—2—2—2Very High

15m. Dizzy with closed eyes None2—2—2—2Very High

15n. Vertigo None2—2—2—2Very High

15o. Stomach awareness None2—2—2—2Very High

15p. Burping None2—2—2—2Very High



q u est ion n air e f or bioni c t rack ing user stud y 173



List of Tables

4.1 Comparison of eye tracking modalities. 35

5.1 scenery compared to other software packages. 50

6.1 4x4 matrix multiplications routines on the JVM compared with native C++ routines. 78

12.1 Regimes for light interacting with biological tissue. 117

13.1 APR-to-scenery mapping for particle properties. 140



List of Figures

1.1 The green fluorescent protein GFP, with the beta barrel cut away on the right sight, revealing the chromophore. Image

courtesy of Raymond Keller, Public Domain. 9

1.2 Z projection of a phalloidin-labeled osteosarcoma cancer cell, making actin filaments visible. Image taken on a Zeiss LSM780

confocal microscope. Image (cc) by Howard Vidin, Wikimedia Commons 10

1.3 Confocal microscope operating principle, 10: Arc lamp (laser, nowadays), 12: Illumination pinhole, 16: Dichroic mirror, 22:

specimen, 26: Pinhole, 28: Photomultiplier diode (Public Domain, from Marvin Minksky’s original patent application).10

1.4 Comparison of the data produced by different microscope types within 24 hours. Adapted from [Reynaud et al., 2014].12

2.1 Schematic overview of the paths from the eye to the visual cortex, with the parts discussed in this chapter highlighted in italics.

Adapted from Anatomy of the Human Body [Gray and Lewis, 1878], Public Domain. 15

2.2 Anatomy of the human eye — Image (cc) by Rhcastilhos and Jmarchn, Wikimedia Commons. 16

2.3 Ranges for peripheral and central vision in humans. Central or foveal vision offers the highest acuity. Image (cc) by Zyxwv99,

Wikimedia Commons. 16

2.4 Muscles of the human eye. Image (cc) by Patrick Lynch, Wikimedia Commons. 17

2.5 Example time series of saccadic eye movements: The movement starts after an initial processing delay of about 150ms,

followed by fast movement for about 50 − 100ms. Image reproduced from [Snowden et al., 2011]. 18

2.6 Inverted retinal architecture of mammals. Adapted from original illustration, (cc) by Marc Gabriel Schmid, Wikimedia

Commons. 18

2.7 The distribution of rods and cones in dependence of the visual angle. While the distribution of cones sharply peaks around

the fovea, the distribution of rods falls off slower in the periphery, and rods do not exist entirely at the fovea. Adapted from

[Duchowski, 2017]. 19

2.8 Correlation of the layered architecture in the LGN (lower half) with the cell layers in the Primary Visual Cortex (upper half):

Neurons from the magnocellular, parvocellular and koniocellular LGN layers project into similar sublayers of the cortex.

Observe that V1 layer L6 also projects back to the LGN. Reproduced from [Thomson, 2010]. 21

3.1 Virtuality continuum according to [Milgram et al., 1995], where mixed reality encompasses all settings that are not the

extremal points, and cross reality encloses the extremal points as well. 26

3.2 A Holmes-type stereoscopes to view left/right-eye images as single image. Public Domain. 26

3.3 The sensorama. Image reproduced from Sensorama, Inc. Advertisement, 1962. 26

3.4 The Sword of Damocles. Note the cathode-ray tubes mounted to the sides of the user’s head, and the mirrors directing the

image to the eyes. Reproduced from [Sutherland, 1968]. 26

3.5 Protein docking example using the haptic GROPE-III system. Users reported a radically improved situational awareness

from using the system. From [Brooks et al., 1990]. 27

3.6 An early Oculus Rift prototype. Image reproduced from Engadget, https://www.engadget.com/2012/08/16/oculus-rift-

hands-on/. 27

3.7 The Oculus Rift Virtual Reality HMD. Public domain. 27

https://commons.wikimedia.org/wiki/File:Schematic_diagram_of_the_human_eye_en.svg
https://commons.wikimedia.org/wiki/File:Peripheral_vision.svg
https://commons.wikimedia.org/wiki/File:Peripheral_vision.svg
http://patricklynch.net
https://commons.wikimedia.org/wiki/File:Retina_layers.svg
https://commons.wikimedia.org/wiki/File:Retina_layers.svg
https://www.engadget.com/2012/08/16/oculus-rift-hands-on/
https://www.engadget.com/2012/08/16/oculus-rift-hands-on/


176

3.8 The HoloLens 2. Promotional picture, from microsoft.com/en-us/hololens. 28

3.9 The Magic Leap AR Headset. Promotional picture, from magicleap.com. 28

4.1 Scleral search coil contact lens eye tracking schematic, reproduced from [Robinson, 1963]. 33

4.2 Electrooculography in use, still image reproduced from Biopac Student Lab, youtu.be/QXGiZBDkUw 33

4.3 A videooculography setup, the Pupil Pro headset. Reproduced from [Kassner et al., 2014]. 34

4.4 Videooculography using a HMD-based eye tracker from Pupil Labs, mounted on an HTC Vive. Image reproduced from

pupil-labs.com/vr-ar. 34

4.5 The physical origin of Purkinje images P1 to P4: P1, reflection on anterior corneal surface; P2, reflection on the posterior

corneal surface; P3, reflection on the anterior surface of the lens; P4, reflection on posterior surface of the lens. Image (cc) by

Z22, Wikimedia Commons. 34

4.6 Classification of gaze-based interaction. Left: According to [Duchowski, 2017], Right: according to [Stellmach, 2013].

Figure reproduced from [Stellmach, 2013]. 38

4.7 Gaze-based interaction classification according to [Hirzle et al., 2019]. In this figure, the interaction-centric view on the

classification is shown, with specific interaction tasks classified into the respective fields. Figure reproduced from [Hirzle

et al., 2019]. 38

4.8 Foveated volume rendering evolution: a, b: Foveated and unfoveated volume renderings from [Levoy and Whitaker, 1990]. c,

d: Foveated and unfoveated volume renderings from [Bruder et al., 2019]. 39

5.1 ClearVolume running inside Fiji, showing a multicolour Drosophila melanogaster brain dataset (courtesy of Tsumin Lee,

Howard Hughes Medical Institute, Janelia Farm Research Campus), with a by-slice viewer inset. Reused from [Royer et al.,

2015]. 46

5.2 Multipass maximum projection — In the naive approach, consecutive samples along a ray are taken in single-step increments.

With low-discrepancy sampling based on the Fibonacci sequence, not-yet sampled intervals along the ray are filled in most

efficiently. In the figure, consecutive samples are shown top-to-bottom, with the current sample being highlighted in red.

Reused from [Royer et al., 2015]. 47

5.3 a Data flow in a ClearVolume-augmented microscopy application, b Local or remote visualisation using ClearVolume, c

Evaluation of data fitness/sharpness and drift correction applied, d Multi-colour compositing. Reused from [Royer et al.,

2015]. 48

5.4 A high-level overview of scenery’s components. 54

6.1 The graph representation of the ForwardShading rendering pipeline. Scene passes are shown with red background, postpro-

cessing passes with orange background. Light blue parallelograms are framebuffers. Solid black arrows signify transition

from one pass to the next, grey arrows show data dependencies, with squares standing for writes, and circles for reads. Dotted

arrows show scenegraph accesses. 62

6.2 The graph representation of the DeferredShading rendering pipeline. Scene passes are shown with red background, postpro-

cessing passes with orange background. Light blue parallelograms are framebuffers. Solid black arrows signify transition

from one pass to the next, grey arrows show data dependencies, with squares standing for writes, and circles for reads. Dotted

arrows show scenegraph accesses. 65

6.3 Volume raycasting schematic, 1. casting a ray through the volume, 2. defining sampling points, 3. calculation of lighting at

the sampling points, 4. accumulation of the lit samples into a single pixel and alpha value 68

6.4 A volume rendered in scenery using alpha compositing, showing the Game of Life in 3D with volumetric ambient occlusion.70

6.5 A Drosophila dataset rendered by-slice in BigDataViewer. Image courtesy of Tobias Pietzsch. 70

6.6 scenery rendering an out-of-core, multiview Drosophila dataset consisting of three different views (color-coded) using the

BigDataViewer integration. volume rendering using maximum intensity projection. On the left-hand side, the transfer

function has been adjusted to make boundaries between the different subvolumes visible more clearly. 70

6.7 Workflow for translating between BigVolumeViewer and scenery. 71

http://microsoft.com/en-us/hololens
http://magicleap.com
https://www.youtube.com/watch?v=-QXGiZBDkUw
https://pupil-labs.com/vr-ar/
https://commons.wikimedia.org/wiki/File:Diagram_of_four_Purkinje_images.svg


q u est ion n air e f or bioni c t rack ing user stud y 177

6.8 Comparison of different languages with the Computer Languages Benchmark Game, as of August 2019. Figure from

benchmarksgame-team.pages.debian.net/benchmarksgame/which-programs-are-fastest.html. 76

6.9 Generated assembly for the loop-based matrix multiplication with FMA, ran on JDK 9.0.4, macOS 10.12.6, Intel Core

i7-4980HQ CPU @ 2.80GHz. 77

6.10 Generated assembly for the loop-unrolling matrix multiplication, ran on JDK 9.0.4, macOS 10.12.6, Intel Core i7-4980HQ

CPU @ 2.80GHz. 78

8.1 A user interacting with a Drosophila dataset rendered on a clustered 4-sided CAVE setup with 5 machines. Photo courtesy of

Aryaman Gupta, MPI-CBG, Dresden. 85

8.2 Schematic of the scene synchronisation in scenery, where one or more clients connect to a master in order to synchronise

scene contents over the network via ZeroMQ. See text for details. 87

9.1 Font in scenery rendered from a signed distance field font atlas, generated via an OpenCL kernel. Note that the per-glyph

distance field only has a size of at most 64x64 pixels, whereas the rendered resolution in this case is already 160 pixels in glyph

height. For details, see text. 94

10.1 The Sponza demo scene rendered with screen-space shadowing in scenery with an experimental rendering pipeline. Sponza

model from Morgan McGuire, Computer Graphics Archive, casual-effects.com/data 96

11.1 Diversity of nuclear shapes in early Platynereis development, taken from the first 100 timesteps of a developmental timelapse.

Dataset courtesy of Mette Handberg-Thorsager, Tomancak Lab, MPI-CBG. 104

11.2 2D Screenshot of the attentive tracking prototype. The sphere to be tracked can be seen in the upper left corner of the image.

See the text for details. 104

11.3 The Pupil eye tracking cameras integrated into a HTC Vive HMD. The cameras view the eyes of the user from below, while

the eyes are illuminated by a set of IR LEDs position around the lenses of the HMD. Image reproduced from www.pupil-

labs.com. 105

11.4 Pupil detection in the Pupil software. See text for a description of the steps. Image reproduced from [Kassner et al., 2014].106

11.5 Controller bindings for using Bionic Tracking. See text for details. Vive controller drawing from VIVEPORT Developer

Documentation, developer.viveport.com. 108

11.6 The hedgehog of a tracking step of a single cell through 100 timepoints in a Platynereis dataset. In the dataset, a Histone

marker is used for fluorescence. Each spine is color-coded by timepoint, with early timepoints shown in green, and later ones

in yellow. Dataset courtesy of Mette Handberg-Thorsager, Tomancak Lab, MPI-CBG. 109

11.7 The raw plot of the hedgehog rays. On the Y axis, volume intensity along a single ray is shown, on the X axis, time runs from

top to bottom. See text for details. 110

11.8 An example profile of an entire ray through a volumetric dataset. X axis is step along the ray in voxels, Y axis volume sample

value. In this case, there are two local maxima along the ray, one close to the observer, at index 70, and another one further

away at 284. 110

11.9 A graphical illustration of the incremental graph-search algorithm used to extract tracks from a hedgehog. Time runs along

the X axis. spine1 is the initial seed point where to start tracking. The algorithm is currently at spine4, determining how

to proceed to spine5, which has multiple possible cell detections. In this case, the middle track with 𝑑 = 1 wins, as it is the

shortest world-space distance away from the current point. 111

11.10The same hedgehog with local maxima marked. On the Y axis, volume intensity along a single ray is shown, on the X axis,

time runs from top to bottom. Local maxima are shown in red. See text for details. 111

11.1152 cell tracks created by the author for a 101 timepoint time-series dataset of aPlatynereis embryo. The tracks were created

in about 40 minutes. See the supplementary video for the creation of a single track, and a debug visualisation showing

intersections with the nucleus. 112

https://benchmarksgame-team.pages.debian.net/benchmarksgame/which-programs-are-fastest.html
https://casual-effects.com/data/
https://www.pupil-labs.com
https://www.pupil-labs.com
https://developer.viveport.com
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11.12Results of usability and acceptance question from the user study. Note that the questions are formulated both positively and

negatively. 114

12.1 Coagulated tissue samples, a: Uterine tissue of a Wistar Rat, using a 10W continious wave laser, b: Human cornea coagulated

with 120 pulses of 5mJ from an Er:YAG laser. Reproduced from [Niemz, 2019]. 117

12.2 a: Cut in a human cornea sample achieved with an picosecond Nd:YAG laser, b: 1𝑥1𝑚𝑚2 cut in a human tooth sample with

16000 1mJ pulses, with cracking only due to EM sample preparation. Reproduced from [Niemz, 2019]. 118

12.3 A window-based 2D interface for laser ablation. Laser and stage controls for movement are shown in the tabs on the upper

left, power controls for the ablation unit on the lower left. The view of the specimen is shown at the center, with the current

cut overlaid as a circle. Reproduced from [Oswald, 2010]. 120

12.4 Screenshot of the LeapMotion-based interaction prototype, where the user has delineated a tubular structure along the C.

elegans’ gonad system. C. elegans model courtesy of openworm.org. 121

12.5 Controls for second prototype. Vive controller drawing from VIVEPORT Developer Documentation, developer.vive-

port.com. 122

12.6 Screenshot of the second virtual reality-powered laser ablation prototype. In the prototype, we show the mitotic spindle

apparatus in a pre-recorded dataset showing a C. elegans embryo undergoing mitosis. The tube-like objects in the center

of the image are the condensing chromosomes in the cell nucleus, in the process of being separated by the mitotic spindle.

The task of the user is to draw in cuts using VR controllers. See text for a full description. Dataset courtesy of Loïc Royer

(MPI-CBG/CZI). 123

12.7 Results of the general questions section of the user study. 124

12.8 History of previous VR usage and satisfaction in our study group. 125

12.9 Task Load Index (TLX) results in the user study. 126

12.10Results of the adoption questions section of the study. 126

12.11Correlations between questions in the questionnaire, only including SSQ summary score. For full correlation plot, please see

Appendix B.1. 127

12.12Sensory organs in the Drosophila melanogaster pupal wing circled in green. These can be used as landmarks for laser ablation.

Image courtesy of Romina Piscitello, Eaton Lab, MPI-CBG. 128

12.13Beam paths of our proposed hardware solution, based on a X-SPIM version of the OpenSPIM, with two illumination and

two detection arms, and the UV ablation unit coupled into one of the detection arms. See text for details. Figure extended

from X-OpenSPIM design by Johannes Girstmair. 129

13.1 High-level overview of the APR construction pipeline: 1. Input image 2. Determination of the gradient magnitude and

local intensity scale, allowing to adjust for local intensity variations across the image 3. Estimation of the Local Resolution 4.

Construction of the Resolution Function from the Optimal Valid Particle Cell set 5. The final APR as combination of the

Optimal Valid Particle Cell set 𝒱 and the Particle Set 𝒫. Image reproduced from [Cheeseman et al., 2018]. 131

13.2 Formation of the Optimal Valid Particle Set in the case that the local particle cell set ℒ only has one cell. Image reproduced

from [Cheeseman et al., 2018]. 133

13.3 Separability property of the Pulling Scheme: In the first two parts, the construction of 𝑅∗(𝑦) is shown for two separate

particle cells, 𝑐19,6 and 𝑐38,6. In the third part of the figure, their combination into the Local Particle set ℒ is shown. Image

reproduced from [Cheeseman et al., 2018]. 135

13.4 Representation of a narrow-band level set stored in the VDB data structure. The lower left part shows the tree structure of a

1D VDB representation of the circle above, with the sparse representation displayed at the bottom left. On the right, the 2D

structure of the circle represented as VDB is shown. Branching factors here are chosen for visualisation purposes, and are

chosen larger in practise (Reproduced from [Museth, 2013]). 136

13.5 Visualisation of a Drosophila dataset using dive as a point cloud. The original dataset size is 960 MiB, while the APR only

consumes 70 MiB. Dataset courtesy of Tomancak Lab, MPI-CBG Dresden. 138

https://www.openworm.org
https://developer.viveport.com
https://developer.viveport.com
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13.6 Visualisation of a Danio rerio vasculature dataset using scenery. Top: Ambient occlusion on, revealing the details of the

vasculature. Bottom: Ambient occlusion off. Dataset courtesy of Stephan Daetwyler, Huisken Lab, MPI-CBG Dresden &

Morgridge Institute for Research, Madison, USA. 139

13.7 Image of an APR-based segmentation ofDanio rerio head vasculature visualised as point-based graphics. Particles are coloured

by distance to the camera. Dataset courtesy of Stephan Daetwyler, Huisken Lab, MPI-CBG Dresden & Morgridge Institute

for Research, Madison, USA 140

13.8 Image of a APR-based direct particle rendering of a Drosophila melanogaster embryo after cellularisation. Particles are here

colored by level, with blue signifying the highest-resolution level, and red the lowest-resolution level. Dataset courtesy of

Loïc Royer, MPI-CBG Dresden & Chan-Zuckerberg Biohub, San Francisco, USA, obtained using a custom-built automatic

lightsheet microscope. 140

13.9 Comparison of maximum intensity projections of a Danio rerio (zebrafish) vasculature dataset with a the maximum intensity

projection based on the original pixel data and b the maximum intensity projection based on the APR. Visually, there is no

perceivable difference, only when the contrast is exaggerated, blocking artifacts from the lower particle cells become visible.

Dataset courtesy of Stephan Daetwyler, Huisken Lab, MPI-CBG Dresden & Morgridge Institute for Research, Madison,

USA, obtained using a custom-built lightsheet microscope. 141

13.10Comparison of maximum intensity projections of a Tribolium castaneum (red flour beetle) dataset with a the maximum

intensity projection based on the original pixel data and b the maximum intensity projection based on the APR. Visually,

there is no perceivable difference, only when the contrast is exaggerated, blocking artifacts from the larger, lower resolution

particle cells become visible. Dataset courtesy of Akanksha Jain, Tomancak Lab, MPI-CBG Dresden, obtained using a Zeiss

Lightsheet Z1 microscope. 141

13.11A slice of an APR rendered as particle intensities, particle cell level (larger circle equals lower level), cell type, and cell

decomposition. Image reproduced from [Cheeseman et al., 2018]. 143

14.1 Screenshot of the sciview main window, showing the Game of Life 3D demo. 147

14.2 A simple example for an automatically generated UI: sciview’s Add Volume dialog, shown in the default ImageJ2 Swing

GUI. 149

14.3 Screenshot of sciview, showing a multicolour segmentation ofDanio rerio vasculature. Dataset courtesy of Stephan Daetwyler,

Huisken Lab, MPI-CBG Dresden and Morgridge Institute for Research, Madison, USA. 150

14.4 Frames from a developmental timelapse of D. rerio rendered in sciview, from [Daetwyler et al., 2018]. 150

14.5 Constraining a volumetric image for segmentation using the thingy command in SciView. a: Constrain points drawn into

dataset (step 1), b: Outside of convex hull removed (step 5). See text for details. Dataset courtesy of Anjalie Schleppi, Huisken

Lab, MPI-CBG and Morgridge Institute for Research. 152

14.6 Constrained segmentation result using a trainable Weka segmenter on the volume cropped before (step 6), as shown in

Figure 14.5. See text for details. Dataset courtesy of Anjalie Schleppi, Huisken Lab, MPI-CBG and Morgridge Institute for

Research. 152

14.7 EmbryoGen architecture, with the actual simulation written in C++ talking to scenery and sciview via a ZeroMQ-based

protocol. See text for details. 152

14.8 Visualisation of a simulated Drosophila embryo using EmbryoGen in sciview. The cells are shown as green spheres, while the

equilibrating forces acting on them are shown as arrows on the right side where the cells are hidden. Courtesy of Vladimir

Ulman, Tomancak and Jug Labs, MPI-CBG and Center for Systems Biology Dresden. 153

14.9 Visualisation of the optical flow generated by a simulated Drosophila embryo using EmbryoGen in sciview. Courtesy of

Vladimir Ulman, Tomancak and Jug Labs, MPI-CBG and Center for Systems Biology Dresden. 153

14.10An agent-based simulation of 10.000 independent agents simulated using brevis and visualised using sciview. See text for

details. 154
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B.1 Full correlation plot for questionnaire answers, including all SSQ symptoms. A black X indicates data where no correlation

could be determine due to the standard deviation being zero. This is only the case for some SSQ symptoms that were not

reported by any subject. 167
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