1,197 research outputs found

    An investigation of the suitability of Artificial Neural Networks for the prediction of core and local skin temperatures when trained with a large and gender-balanced database

    Get PDF
    Neural networks have been proven to successfully predict the results of complex non-linear problems in a variety of research fields, including medical research. Yet there is paucity of models utilising intelligent systems in the field of thermoregulation. They are under-utilized for predicting seemingly random physiological responses and in particular never used to predict local skin temperatures; or core temperature with a large dataset. In fact, most predictive models in this field (non-artificial intelligence based) focused on predicting body temperature and average skin temperature using relatively small gender-unbalanced databases or data from thermal dummies due to a lack of larger datasets. This paper aimed to address these limitations by applying Artificial Intelligence to create predictive models of core body temperature and local skin temperature (specifically at forehead, chest, upper arms, abdomen, knees and calves) while using a large and gender-balanced experimental database collected in office-type situations. A range of Neural Networks were developed for each local temperature, with topologies of 1–2 hidden layers and up to 20 neurons per layer, using Bayesian and the Levemberg-Marquardt back-propagation algorithms, and using various sets of input parameters (2520 NNs for each of the local skin temperatures and 1760 for the core temperature, i.e. a total of 19400 NNs). All topologies and configurations were assessed and the most suited recommended. The recommended Neural Networks trained well, with no sign of over-fitting, and with good performance when predicting unseen data. The recommended Neural Network for each case was compared with previously reported multi-linear models. Core temperature was avoided as a parameter for local skin temperatures as it is impractical for non-contact monitoring systems and does not significantly improve the precision despite it is the most stable parameter. The recommended NNs substantially improve the predictions in comparison to previous approaches. NN for core temperature has an R-value of 0.87 (81% increase), and a precision of ±0.46 °C for an 80% CI which is acceptable for non-clinical applications. NNs for local skin temperatures had R-values of 0.85-0.93 for forehead, chest, abdomen, calves, knees and hands, last two being the strongest (increase of 72% for abdomen, 63% for chest, and 32% for calves and forehead). The precision was best for forehead, chest and calves, with about ±1.2 °C, which is similar to the precision of existent average skin temperature models even though the average value is more stable

    A Novel Exercise Thermophysiology Comfort Prediction Model with Fuzzy Logic

    Get PDF

    An Economic Model-Based Predictive Control to Manage the Users' Thermal Comfort in a Building

    Get PDF
    The goal of maintaining users' thermal comfort conditions in indoor environments may require complex regulation procedures and a proper energy management. This problem is being widely analyzed, since it has a direct effect on users' productivity. This paper presents an economic model-based predictive control (MPC) whose main strength is the use of the day-ahead price (DAP) in order to predict the energy consumption associated with the heating, ventilation and air conditioning (HVAC). In this way, the control system is able to maintain a high thermal comfort level by optimizing the use of the HVAC system and to reduce, at the same time, the energy consumption associated with it, as much as possible. Later, the performance of the proposed control system is tested through simulations with a non-linear model of a bioclimatic building room. Several simulation scenarios are considered as a test-bed. From the obtained results, it is possible to conclude that the control system has a good behavior in several situations, i.e., it can reach the users' thermal comfort for the analyzed situations, whereas the HVAC use is adjusted through the DAP; therefore, the energy savings associated with the HVAC is increased.Spanish Ministry of Science and Innovation [DPI2014-56364-C2-1-R]; EU-ERDF funds; Competitiveness and ERDF funds; Fundacion Iberdrola Espana; Portuguese Foundation for Science & Technology, through IDMEC, under LAETA [ID/EMS/50022/2013

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes
    corecore