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Abstract
Neural networks have been proven to successfully predict the results of complex non-linear problems in a

variety of research fields, including medical research. Yet there is paucity of models utilising intelligent

systems in the field of thermoregulation. They are under-utilized for predicting seemingly random

physiological responses and in particular never used to predict local skin temperatures; or core temperature

with a large dataset. In fact, most predictive models in this field (non-artificial intelligence based) focused on

predicting body temperature and average skin temperature using relatively small gender-unbalanced

databases or data from thermal dummies due to a lack of larger datasets.

This paper aimed to address these limitations by applying Artificial Intelligence to create predictive models of

core body temperature and local skin temperature (specifically at forehead, chest, upper arms, abdomen,

knees and calves) while using a large and gender-balanced experimental database collected in office-type

situations.

A range of Neural Networks were developed for each local temperature, with topologies of 1-2 hidden layers

and up to 20 neurons per layer, using Bayesian and the Levemberg-Marquardt back-propagation algorithms,

and using various sets of input parameters (2520 NNs for each of the local skin temperatures and 1760 for the

core temperature, i.e. a total of 19400 NNs). All topologies and configurations were assessed and the most

suited recommended. The recommended Neural Networks trained well, with no sign of over-fitting, and with

good performance when predicting unseen data. The recommended Neural Network for each case was

compared with previously reported multi-linear models. Core temperature was avoided as a parameter for



local skin temperatures as it is impractical for non-contact monitoring systems and does not significantly

improve the precision despite it is the most stable parameter. The recommended NNs substantially improve

the predictions in comparison to previous approaches. NN for core temperature has an R-value of 0.87 (81%

increase), and a precision of ±0.46°C for an 80%CI which is acceptable for non-clinical applications. NNs for

local skin temperatures had R-values of 0.85-0.93 for forehead, chest, abdomen, calves, knees and hands, last

two being the strongest (increase of 72% for abdomen, 63% for chest, and 32% for calves and forehead). The

precision was best for forehead, chest and calves, with about ±1.2°C, which similar to the precision of existent

average skin temperature models even though the average value is more stable.
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List of Abbreviations
ADALINE – Adaptive Linear Element

AI – Artificial Intelligence

ANN/NN – Artificial Neural Network(s)

BMI – Body Mass Index (body mass of the subject divided by the square of the height in m, i.e. kg/m2)

Epoch – a full data cycle, i.e. each time the network is presented with a new training pattern

FNN – Fuzzy Neural Network(s)

Logsig – The logistic sigmoid Function

MSE – Mean Squared Error

Nodes – the interconnections between hidden layers in the Neural Network (equivalent to neuron

connections)

PE – Percentage Error (%)

POAH – Pre-Optic Anterior Hypothalamus

R2 – Coefficient of determination (determines the goodness of fit)

RSE – Relative Standard Error (%)

SD – Standard Deviation

SE – Standard Error

1. Introduction

The understanding of thermoregulation is essential for both our survival and daily comfort. It is essential to

prevent heat strokes [1], minimise discomfort in large places [2] and reduce the spread of infections [1].

Thermoregulation also influence our susceptibility to diseases, since body temperature rise leads to the

destruction of immune system proteins when reaching 41-2 C, leaving it compromised [3]. Nowadays it is



used to adapt environmental temperatures to the occupant’s needs in indoor spaces (e.g. public spaces, large

venues, or aeroplanes) while aiming for reduced energy consumption [4].

Core body temperature regulation originates within the Pre-Optic Anterior Hypothalamic (POAH) region of the

brain [5]. It is a complex system that works to maintain the core temperature in a narrow range of values (36

– 37 C) and whose process is affected by individual characteristics (e.g. gender) and external factors (e.g.

climate, exposure to the sun). The regulatory system has a great range of adaptability; even in extreme

environmental conditions our body temperature is not easily changed [6], fluctuating just enough to adapt to

the external conditions, our daily schedule and protecting our body from overheating [7]. Our thermal

physiology is ‘asymmetric’, which adds to the complexity, with a survival range of 21 C (thermal minimum) to

42 C (thermal maximum) [6], although it is rare to go anywhere near these extreme during our lives.

1.1. Existing models

Body temperature regulation models need to consider a number of external factors such as room

temperature, wind velocity, humidity in addition to regulatory responses like sweating, shivering and heat

distribution through the body [8]. Two different approaches to model body temperature are found in the

literature

(1) numerical or mathematical models where the temperature distribution is derived at discrete temperature

points based on experimental data, or as a set of differential equations (nodes), respectively; [9] and

(2) physical models which simulate the heat production and thermal transport processes [9].

Numerical models for mean skin temperature were derived by Nielsen and Nielsen [8]. They studied the

number and location of temperature points required for such prediction and found that 13 points deliver a

good representation of skin temperature distribution for clothed subjects, but noted that more points are

needed in cool environments. However, when measuring at 13 points is not possible/practical, 4 specific

points (forehead, hand, lower back, lower leg) provide a good estimation of the mean skin temperature.

Currently most experimental studies use Hardy and Dubois seven-point average which was found to be the

minimum necessary for an accurate prediction of mean skin temperature [10].

One of the most significant and influential physical models for thermoregulation mapping is Stolwijk’s (1966)

25-node model, originally a theoretical study on the thermoregulatory responses of the body divided into two

systems: the passive and the controlling. The passive system deals with the heat exchanges within the body

and the differential equations that govern it. The controlling system relates to the regulatory response aiming

to keep the core temperature stable [9]. Stolwijk’s 25-node model has since been used as the basis for new

mathematical thermoregulation models of growing complexity and accuracy, e.g. accounting for the

evaporation of sweat [11,12]; improving the blood flow description in the model by simulating the human

arterial system [13]; developing further the controlling or active system to simulate responses such as

shivering, sweating and blood vessel motion to address a shortcoming of the original Stolwijk model [14];

increasing the number and changing the shape (cylinders, spheres) of the nodes [12,15] as well as simplifying

the model (decreasing temperature points) to see how it performs. Furthermore, models have been created

that consider individual body characteristics [9], as well as to improve thermal comfort [14,16].

Some physical models use thermal manikins to simulate thermoregulation responses and local and overall

heat exchange of the body, particularly within the automobile and textile industry as the thermal response

can be quickly assessed in inhomogeneous environments (e.g. vehicles, planes, etc.) or with different clothing.

However, these models only predict the effect of surrounding environments on the body rather than its

thermoregulation. Alternative hybrid models have been investigated [14,17], for instance Nilsson and Holmer

[17] coupled a thermal manikin with a computer simulation (CFD calculations) to predict thermal response in



different work environments, which seem to be successful but highlighted the need for more advanced

computer simulations.

Despite the existence of a number of theoretical and computational models, very few have been tested or

even developed using more than a few subjects, many are based on thermal manikins (who are in fact

hardware models), rendering their findings less reliable. Mehnert et al. [18] and Garcia-Souto and Dabnichki

[4] addressed this issue and developed statistical models for mean skin temperature and core and local skin

temperature respectively based on independent large sets of experimental data. This improves the

coefficients of the mathematical and numerical models and therefore their outcome [18]. Mehnert and

Garcia-Souto and Dabnichki’s investigations agreed with Fiala’s et al. [16] observation of a non-linear

relationship between regulatory responses (sweating, shivering, and blood vessel motion) and core and skin

temperature, either local or global, respectively. Core temperature was found essential in predicting mean

skin temperature in high temperatures [18]. Garcia-Souto and Dabnichki observed also that core temperature

remained stable for low room temperatures while it increased significantly for higher temperatures; local skin

temperature was found to have a multi-linear relation with room temperatures in agreement with Mehnert et

al. [18] and Fiala et al. [16]; in low room temperatures forehead, chest and upper arm temperature remained

constant, while for higher room temperatures the same happen for the abdomen and knees suggesting that

local skin temperature stabilizes after reaching a certain threshold temperature; the largest variation of local

skin temperature was at the limbs as expected while chest temperature remained the most stable for clothed

subjects due to clothing insulation [8,18]. Garcia-Souto and Dabnichki also investigated the effect of gender

on thermoregulation, which is still the sole large scale study of large scale despite strong anecdotal evidence

of gender dependent thermal comfort requirements.

1.2. Neural networks approach

Over the last 2 decades researchers have been turning to AI for forecast and predictions in a variety of fields

[19] such as forecasting peak demand electrical load [20], or short-term load forecasting for summer time

[21], heating gas consumption [22], cash demand in ATMs [23], hourly forecast of ambient temperature in

Spain [24], and predicting sea surface temperatures in the North Indian Ocean [25]. Also, hybrid models have

been created where NNs have been coupled with fuzzy logic to forecast rainfall based on weather pattern [26]

or forecasting daily Malaysian electricity load demand [27].

AI has also been widely applied to the prediction of medical outcomes [28], e.g. for the classification of

patient’s health status in relation to kidney disease [29], prediction of protein enzymatic class [30], ventilation

control for thermal comfort and optimization of energy consumption in public buildings [2,31]. Some studies

also presented the efficiency of the predictive NNs in comparison to the more traditional logistic regression

[32] for re-hospitalisation of patients with stroke [33] or living after hip fracture [28]. Examples more closely

related with this paper are prediction of body temperature changes and other responses as indicators or heat

strain [34] and prediction of local and overall clothing thermal sensation [35]. Sanders & Lau [34] used a multi-

layer ADALINE NN trained with external factors as well as temperature measurements and compared the

results with a heat strain predictive model. Luo et al. [35] used a Fuzzy Neural Network (FNN) trained with

local skin and core temperature measurements and their change rate and compared the model to data from a

simulation system for human clothing. Both Sanders & Lau [34] and Luo et al [35] have shown that the use of

NNs provide accurate results while helping to reduce the rigorous lab experiments and size of the data base

needed to study such complex problems. The use of fuzzy logic can decrease data requirements further since

the network is trained using inference rules from already established relationships within thermoregulation.

However neither paper used a sufficiently large database to validate the use of AI.



1.3. Motivation

The ability to predict the core and skin temperature based on environmental parameters and basic

descriptors of the individual is of great interest, e.g. for the fields of thermoregulation and climate control.

Various models such as descriptive statistical models already exist, but have a limited success due to the

numerous parameters affecting temperature values, and the complicated and unknown inter-dependencies

among these factors. Most models are also based on small experimental datasets while large and gender-

balanced databases are needed. Besides the potential benefits of using Artificial Intelligence to overcome in

part the complexity of this problem, its application in the field of thermoregulation is still quite limited.

Our approach, and main significance of the study, was to identify an appropriate computational technique

that does not rely on inferred relations. We selected a well-established method in AI (Neural Networks of

various topologies, with Bayesian and Levemberg-Marquardt back-propagation algorithms) for the prediction

of ‘local skin temperatures’ and ‘core temperature’ based on ‘environmental conditions’ (room temperature,

humidity) and ‘personal characteristics’ (gender, age, BMI, clothing), and investigated its suitability in some

detail. In the process we used a large gender-balanced database to train and make a detailed assessment of

these Neural Networks’ performances, and compared them with earlier non-AI approaches of analogous

inputs and outputs [4] using the same database as to get an informed conclusion. Additional NNs with a

reduced number of inputs were also assessed to study the robustness of the prediction under possible

simplifications. For each of the temperatures we wished to predict, the optimal NN topology and training

algorithm that maximizes the predicting performance were identified and reported.

2. Methods

2.1. Data

The data used was previously collected by Garcia-Souto and Dabnichki [4] from 159 healthy volunteers

following a study protocol approved by the University of London Ethical Committee.

Temperature measurements were taken from 13 different skin areas on the body as shown in Figure 1. Skin

temperature was simply measured on the skin when exposed, and reaching under the cloths when covered. In

addition to these the core (tympanic) temperature was measured and the gender, age, BMI and layers of

clothing at various locations were recorded.



Figure 1: Measuring points

2.2. Analysis

Thermoregulation responses of the human body are not fully deterministic; hence AI techniques provide a

suitable option for a thermoregulation model. Different techniques such as the Bayesian approach, Markov

Chains, Expert Systems, evolutionary algorithms and artificial neural networks are potentially viable and were

considered in this work. Approaches such as expert systems and evolutionary algorithms require the

definition of rules to fit data, and such rules do not exist for thermoregulation where some stochastic

inferences may affect the response. The use of NNs was selected instead for their black box nature and their

ability to ‘learn’ these inference rules from the data. NNs are also very well suited for dealing with noisy data

that might arise from an experiment [36].

Therefore it was decided to develop eight different Artificial Neural Networks to predict core and local skin

temperature at seven sites (forehead, chest, upper arms, abdomen, knees and calves) assuming temperature

symmetry and using individual and environmental information. Specifically, for each desired output we

searched for the best combination of topology among a range of options, training algorithm and set of inputs

to accurately predict each temperature but without overfitting the networks. This process resulted on an

informed recommendation of 8 single NNs, each one to predict one of the desired temperatures (core and

each of the 7 local skin temperatures).

The experimental data was normalised as NNs work better with smaller numbers [36]. The min-max and

standardized normalisation (equation 1) were tested and the latter was selected.



The experimental data (which includes input data X and response variable or output Y) was separated into

two cohorts. 90% of the data was used for establishing the optimal training conditions and then training,

validation and testing with the optimal topology (that deeming the lowest error as defined in section 2.2.2).

The remaining ‘unseen’ 10% of the data were used to assess the obtained networks, by simulating the

network generated predictions. This partition is independent to any partitions done within the various

training algorithms used.

Various NNs were created, in MATLAB [37] using the input parameters proposed by Garcia-Souto and

Dabnichki [4]. The accuracy of these NNs was assessed by studying:

a. the performance during training,
b. the accuracy of their prediction in the ‘unseen’ data, and
c. the normality of their error distribution using descriptive statistics.

Additionally, alternative NNs were created where the effect of different input parameters was investigated

(these are further discussed in section 2.2.1), comparing accuracy of results and computational costs. These

NNs were created and assessed following the same procedure as the ‘original’ NNs.

The development process of the recommended NN is summarized in Figure 2.

Figure 2: Development process of the recommended NNs for the prediction of core and local skin

temperatures followed in this paper

2.2.1. Parameters

The parameters used for each original network (8 in total to predict core temperature, T0, T1, T3, T5, T7, T9,

and T11) were initially selected to reflect earlier models by Garcia-Souto and Dabnichki (2013) (Table 1).

Additional NNs were developed using different sets of inputs according to the following two variations to

investigate its effect:

 removal of core temperature on the prediction of all local skin temperatures (locations T0-T11) as it is
hard to obtain; and

 add Average Clothing, i.e. the average number of clothing layers covering the body (equation 2),
substituting Local Clothing, i.e. number of layers covering the specific location, for the prediction of
skin temperature at typically covered locations (T1, T3, T5, T9 and T11); or as an extra parameter for
the prediction of forehead (T0) , hands (T7), and core (Tc) temperature.

ܺᇱ=
(ܺ − (ߤ

ߪ
Equation 1



These alternative NNs are summarized in Table 2.

ݒ݁ܣ ݎܽ ܥ݁݃ ℎ݅݊ݐ݈ ݃ =
ܶ0௧ () + ܶ1+ ܶ3+ ܶ5+ ܶ7+ ܶ9+ ܶ11

7

Equation 2

Output Input Parameters No. of

Parameters

Core Room Temperature, Humidity, Age, BMI, Gender 5

Forehead (T0) Room Temperature, Humidity, Core, Age, BMI, Gender 6

Chest (T1) Room Temperature, Humidity, Core, Age, BMI, Gender, Local Clothing * 7

Upper Arms (T3) Room Temperature, Humidity, Core, Age, Gender, Local Clothing 6

Abdomen (T5) Room Temperature, Humidity, Core, Age, BMI, Gender, Local Clothing 7

Hands (T7) Room Temperature, Humidity, Core, Age, BMI, Gender 6

Knees (T9) Room Temperature, Humidity, Core, BMI, Gender, Local Clothing 6

Calves (T11) Room Temperature, Humidity, Core, Age, BMI, Gender, Local Clothing 7

*Local Clothing refers to the number of layers covering the specific location
Table 1: List of input parameters used for the training of the ‘original’ NN for each location.

Output Input Parameters No. of

Parameters

Core Room Temperature, Humidity, Age, BMI, Gender, Average Clothing* 6

Forehead (T0) V1 Room Temperature, Humidity, Core, Age, BMI, Gender 5

V2 Room Temperature, Humidity, Core, Age, BMI, Gender, Average Clothing 6

Chest (T1) V1 Room Temperature, Humidity, Core, Age, BMI, Gender, Clothing Layers 6

V2 Room Temperature, Humidity, Core, Age, BMI, Gender, Clothing Layers, Average Clothing 6

Upper Arms

(T3)

V1 Room Temperature, Humidity, Core, Age, Gender, Clothing Layers 5

V2 Room Temperature, Humidity, Core, Age, Gender, Clothing Layers, Average Clothing 5

Abdomen (T5) V1 Room Temperature, Humidity, Core, Age, BMI, Gender, Clothing Layers 6

V2 Room Temperature, Humidity, Core, Age, BMI, Gender, Clothing Layers, Average Clothing 6

Hands (T7) V1 Room Temperature, Humidity, Core, Age, BMI, Gender 5

V2 Room Temperature, Humidity, Core, Age, BMI, Gender, Average Clothing 6

Knees (T9) V1 Room Temperature, Humidity, Core, BMI, Gender, Clothing Layers 5

V2 Room Temperature, Humidity, Core, BMI, Gender, Clothing Layers, Average Clothing 5

Calves (T11) V1 Room Temperature, Humidity, Core, Age, BMI, Gender, Clothing Layers 6

V2 Room Temperature, Humidity, Core, Age, BMI, Gender, Clothing Layers, Average Clothing 6

*Average Clothing refers to the average number of layers covering the body as calculated by equation 2
Table 2: List of input parameters used for the training of the alternative NN for each location. Strikethrough:

removed parameters. Bold: Added parameter, in cases in exchange for Local Clothing.



2.2.2. Studied topologies

Neural networks can have different topologies, defined by the number of hidden layers and the number of

nodes. Hidden layers transfer relationships through the network in a non-linear manner using the transfer

function and using the nodes to map this relationship into and out of one layer to the next [36]. Hence

choosing the right number of hidden layers and nodes is important in minimising error, i.e. less hidden layers

and the network will not train appropriately, more and it will overfit. Overfitting occurs when the NN

memorises data rather than establishing a relationship between the input data and output. This causes the

network to not generalise well, and perform poorly when introduced to new data [36].

Various topologies for the NN were investigated in this study (all combinations of 1 or 2 hidden layers and 1 to

20 nodes, i.e. 420 different topologies) using the logistic-sigmoid (or logsig) activation function between layers

–this relates the output parameters with the input parameters of the NN-, and their performance evaluated.

Each NN was trained recursively (using various epochs), assessing its performance and updating the weights

for the ‘logsig’ activation function after each epoch until the fitting error measured as MSE (equation 3) was

minimized. Using the areas of low error valley, the optimal number of hidden layers and nodes were

established for each network based on the point of least MSE, hereby the optimal topology. This simple

criteria previously used in the literature [36] was considered sufficient at this stage, although there are other

more advanced alternatives [38–40]The networks of optimal topology were further studied, as described in

the following section.

ܯ ܧܵ =
1

݊
 ൫ܻ− ܻ൯

ଶ


ୀଵ

Equation 3

2.2.3. Training Algorithm

A network with its optimal topology (identified in the previous section) was generated for each temperature

location (core and each of the local skin temperatures) and tested against two training algorithms, both based

on the back-propagation algorithm. The selected algorithms were the Levemberg – Marquardt back-

propagation, which is the fastest and default back-propagation algorithm for NN training, and the Bayesian

back-propagation, which is safer and better at generalisation.

The Levemberg – Marquardt back-propagation algorithm uses the Levemberg – Marquardt optimization to

update the weights and bias within the network. Its goal is to minimize the MSE between the output of the

network and the target outputs, and therefore the algorithm continues the training iteratively until the MSE is

reached. When using this algorithm it is best practice to divide the data available for training into 3 further

cohorts, called algorithm training, algorithm testing and algorithm validation set respectively. This approach

was used to control the number of epochs that take place during training (i.e. control the training iterations

required), as too few will fail to train the network and too many would cause the network to overfit the data.

However, when data provided to the network is divided in this fashion, the network monitors the training

error with respect to the validation and testing set instead of just minimising it at any cost (see Figure 3). The

training continues until the error between the two sets (training and validation) and the validation error start

to increase (overfitting). In that moment the training stops and the best performing weights (minimum

validation error) are restored. In this paper, the data available for training (90% of our entire data) was

divided into the following sets i) algorithm training - 70% (63% of all data); ,ii) algorithm testing - 15% (13.5%

of all data) and iii) algorithm validation 15% - (13.5% of all data).



The Bayesian back-propagation updates the weights while the NN is trained according to Levemberg –

Marquardt algorithm, while minimizing the square error simultaneously until it reaches an optimal

combination for the network to perform and generalise. This algorithm has already a built-in validation

function that monitor the process of minimising the error and therefore the original division of the data into a

training set (90% in this study) and test set (10%) is sufficient.

Figure 3. Example of network training using

Levemberg – Marquardt back-propagation

algorithm with training, validation, and testing sets.

Overfitting is always an issue to be considered. There are three main ways of improving generalisation and

reducing overfitting when dealing with a small dataset: regularization, early stopping, and cross validation [41]

However, it is important to note that there is little to no chance of overfitting when dealing with a large

dataset i.e. when the number of parameters in a network is much smaller than the number of data points, as

the network is exposed to sufficient variation to generalise well [36] which is the presented case.

2.2.4. Assessment of the neural networks

The performance of the NNs was first assessed by computing the error between predicted values (outputs of

the networks) and target values for the training and test set of the data. This helped to determine the

prediction accuracy and observe if the error is clustered around zero i.e. smaller prediction errors.

The performance of the NN during training was assessed using the MSE (equation 3), which was extracted

from the network for the overall training, and specifically for the training, validation and test stage of the

algorithm. A similar and low MSE in all stages of the algorithm indicates good training and consistency.

The performance of the NN with ‘unseen’ data was assessed by means of the average prediction Percentage

Error (PE) (equation 4), which compares the predicted and actual real values, and using the remaining 10% of

our data, which was ‘unseen’ data to the network.

The error distribution was then studied for the ‘unseen’ data. Ideally the error distribution would be normal,

and therefore the skewness and kurtosis values were investigated. They respectively indicate how symmetric

and how peaked/flat the distribution is , and have values of zero and three respectively for a normal

distribution [41,42]. However, a higher kurtosis is expected since the original temperature data do not follow

a normal distribution cause by the interconnected nature of the temperature points that makes them not

truly random.
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Equation 4

3. Results

3.1. Topology Results – original NNs

Various topologies for the NN were investigated in this study (1-2 hidden layers and 1-20 nodes, i.e. 420

topologies) as detailed in section 2.2.2. The MSE was computed and studied for all combinations, Figure 4

being the example for one location. All locations presented large valleys of minimum error (MSE) when the

number of hidden layers was two. The NN topologies with lower MSE for each of the temperature locations

were selected as ‘optimal’ and are described in Table A-1 and labelled as v0. The 2 layers had in the range of

10-16 and 8-14 nodes respectively.

Figure 4: Example of a topology graph. Layer 1 [i] and 2 [j] show the number of nodes
for the corresponding hidden layer plotted against the MSE. Blue areas of the graph
indicate valleys of minimum error, which is where the combination of nodes with the
lowest MSE will lie. Areas of increasing error values are represented with green, yellow,
orange and red colours, the later representing the highest error.

3.2. Developed NNs

Neural Networks were created for the prediction of core and local skin temperature when using as inputs the

parameters suggested by Garcia-Souto and Dabnichki [4]. Two different instances of neural networks using

the identified optimal topology were generated for the each of the temperature locations (core and each local

skin temperature) following two different training algorithms as described in section 2.2.3, i.e. the Bayesian

back-propagation and the Levemberg – Marquardt back-propagation.

Alternative networks were developed for core and each local skin temperature in the same fashion, this time

changing the parameters used as inputs. The variations were either (a) core temperature was removed as

input from the original input set, or (b) the average clothing (equation 2) was used for forehead, hands and



core or instead of local clothing for chest, upper arms, abdomen, knees and calves. The summary of inputs

used for these alternative NNs is presented in Table 2.

Therefore, a total of 19,400 NNs were created for the present study, broken down as follows: 2520 NNs for

each of the seven skin locations (= 420 topologies * 2 training algorithms * 3 sets of input parameters), and

1760 NNs for core temperature (= 420 topologies * 2 training algorithms * 2 sets of input parameters). After

initial assessment, one NN was selected for each of the combinations of set of inputs and desired output

parameter by choosing the topology with the lowest MSE in each case, i.e. 23 NNs.

Each of these 23 pre-selected NNs were studied in depth (see appendix A) and compared. Their performance

during training (overall and with respect to the training, validation and testing sub-sets) is summarized in

Table A-1 (original NNs labelled as v0, alternative NNs labelled as v1 and v2). These NNs were then evaluated

using the ‘unseen data’. Average Percentage Error (PE) and the goodness of fit value (R-value) are presented

in Table A-2, while descriptive statistics and 80% and 90% confidence intervals for the error associated with

the prediction of ‘unseen data’ are given in Table A-3. Regression graph of the predicted vs. target

temperatures from simulating the network with the ‘unseen data’ are presented in Figure A-1. Boxplots are

provided for the prediction errors observed both with the ‘training data’ and the ‘unseen data’ in Figure A-2

for comparison.

3.3. Comparison of pre-selected NNs with existing models, and
recommendations

The various pre-selected NNs reported in this paper were compared. A summary of the coefficient of fit (R-

value) between the prediction of ‘unseen’ data and actual data is given in Table 3. The use of a different set of

input parameters while constructing the NNs was assessed for each of the desired outputs. The

recommended NNs are highlighted in Table 3, described in Table 4, and provided in the online Appendix B.

Graphical representation of the recommended NNs’ performance is given in Figure 5. The use of the

recommended NNs was compared with the statistical models presented in the literature [4] and achieved

improvement is reported in Table 5. No other studies providing a model for local skin temperature were

found, although local skin temperature has been used as input for the prediction of other physiological

parameters (e.g. heat loss, mean skin temperature, mean body temperature, etc.). Some other models within

the field are given in Table 6 for comparison.

Model Tc T0 T1 T3 T5 T7 T9 T11

NNs/Original set 0.846 0.843 0.832 0.795 0.816 0.854 0.873 0.779

NNs/Original set – {T Core} -- 0.728 0.866 0.690 0.875 0.889 0.896 0.720

NNs/Original set + {Average Clothing} 0.870 -- -- -- -- -- -- --

NNs/Original set – {T Core} + {Average Clothing } -- 0.845 -- -- -- 0.931 -- --

NNs/Original set – {T Core} – {Local Clothing} +

{Average Clothing}
-- -- 0.690 0.766 0.790 -- 0.891 0.845

Table 3: Comparison of the R-values for the NNs of optimal topology when using each of the given sets of

input parameters. Bold number indicates recommended model for the location.



Networks Core
Forehead

(T0)
Chest (T1)

Upper

Arms (T3)

Abdomen

(T5)

Hands

(T7)
Knees (T9)

Calves

(T11)

Input parameters

Room temp;
Humidity;
Age;
BMI;
Gender;
Avg clothing.

Room temp;
Humidity;
Age;
BMI;
Gender;
Avg clothing

Room
temp;
Humidity;
Age;
BMI;
Gender;
Local

clothing

Room
temp;
Humidity;
Age;
BMI;
Gender;
Avg

clothing.

Room
temp;
Humidity;
Age;
BMI;
Gender;
Local

clothing

Room
temp;
Humidity;
Age;
BMI;
Gender;
Avg

clothing.

Room
temp;
Humidity;
BMI;
Gender;
Avg

clothing.

Room
temp;
Humidity;
Age;
BMI;
Gender;
Avg

clothing.

Topology: 2 layers

with [i, j] hidden

neurons

[12,14] [15,13] [14,15] [14,14] [14,9] [14,16] [12,17] [12,9]

Training Algorithm L – M L-M L-M L-M L-M L-M L-M L-M

Linear regression Y=0.9X + 4.9 Y=0.7X+9.8 Y=0.8X+7 Y=0.6X+13 Y=0.8X+8.2
Y=0.9X+2.

5

Y=0.9X+3.

8
Y=0.7X+9

Precision* 0.46 1.3 1.2 1.5 1.8 2.5 2.0 1.2

Ground Truth* 0.44 1.5 1.3 1.8 2.1 2.6 2.4 1.5

R-value 0.870 0.845 0.866 0.766 0.875 0.931 0.896 0.845

Table 4: Description of the recommended Neural Networks for the prediction of core temperature and local
skin temperature at various locations. The logistic-sigmoid (or logsig) activation function was used between
layers.
* Precision and Ground Truth values are the approx. range needed to enclose 80%CI of the predicted values

from the target temperatures and the measured values respectively for the unseen data.

Model Tc T0 T1 T3 T5 T7 T9 T11

Multi-linear/ Original set [Garcia-Souto & Dabnichki

2013]

0.48 0.64 0.53 0.68 0.51 0.76 0.79 0.64

Improvement between recommended NN model and

multi-linear model.
81% 32% 63% 13% 72% 23% 13% 32%

Table 5: Comparison of efficiency between statistical body temperature models from the literature [4] and

those reported in this paper using the recommended NNs.



Figure 5: Performance of the recommended NNs. Error values are calculated as the predicted minus actual

value for ‘unseen data’. Box represents mean, 25 and 75% quartiles; whisker length represents 1.5 times

interquartile range; red crosses represent outliers.

Study Experimental

protocol

Predicted

parameter

Input

parameters

Predicted vs

Measured

Model performance

[Nielsen,

1984]

10 clothed, resting

subjects; T room =

10°C; various

formulas tested

against formula by

Olesen et al. (1972)

Mean Skin

Temperature

1 – 12 local

temperature

points

Pre-existing
models:

R
2

= 0.28 (4
points) – 0.90 (12
points)

New models:

R
2

= 0.571 (1
point) -

R
2

= 1.0 (12
points)

Pre-existing models (examples):

*Mitchell and Wyndham was first
with 90% within +/- 0.5 °C
*Burton (1935) last with 23%
within +/- 0.5 °C
New models:

7 – 12 measuring points had 100%

within +/- 0.5 °C

Conclusion:

No formula including less than 7
points gave a reasonable accurate
results

[Mehnert,

2000]

Large dataset;

Nude vs clothed.

Environmental

conditions:

Radiation = {normal

or high};

Humidity = {normal

or high}; several

Mean Skin

Temperature

T air;

T radiant;

partial vapour

pressure;

air velocity;

T rectal

Nude:

Tobs = 1.02* Tpred –

0.65

R ϵ (0.76, 0.89) 

Clothed:

Tobs = 0.99* Tpred –

Nude:

83.3% data points within +/- 1°C

95.7% data points within +/- 1.5°C

Clothed:

81.8% data points within +/- 1°C



formulas used. 0.33

R ϵ (0.67, 0.80) 

94.8% data points within +/- 1.5°C

[Sanders,

1999]

9 subjects;

walking on treadmill;

two simulated

tropical environ;

soldiers trained in

heat; with uniform

and carrying

equipment;

Neural Networks

T core Nude weight,

height; length

of

acclimatization;

insulation;

permeability; T

room; relative

humidity; wind

speed; total

metabolic rate

R = 0.19 at 30°C
and 60% RH

R = 0.34 at 40 °C

and 30% RH

*Specificity and sensitivity indicate
that NN had low predicted
precision.
*Regression analysis indicates
positive but weak correlation.
*Concluded that the use of NNs for

predicting human physiological

responses is worth further

investigation.

[Lenhardt,

2006]

44 subjects;

undergoing bypass vs

healthy volunteers;

T core ϵ [18,36.5]°C.  

Mean Body

Temperature

(MBT) using

Burton’s

formula

Tcore;

T skin average

ܻ

= 0.94 ∙ ܺ + 2.15

R
2
=0.98

87% estimates within ±0.5C, 92%

estimates within ±0.7C

[Jay, 2007] 60 clothed, healthy

subjects;

cycling 60-90

minutes – until

steady state T core;T

room = {24, 30}°C,

Humidity ={30, 60}%;

various T core

estimation methods

Change of

MBT after

exercise

(ΔMBT) 

Δ Trectal ;

Δ Tskin average

Model 1:

R = 0.45 after 90

mins.

Model 2:

R ϵ (0.33, 0.75) 

depending on

exercise time and

T core estimation

method.

Model 2:

Mean percentage error with 95% CI

in brackets, e.g. +15.0% (+27.2,

+2.8) to оϭϯ ͘ ϳ й �;оϰ͘ Ϯ͕ �оϮϯ ͘ ϯͿ�ĂŌĞƌ�

90 min

Table 6: Other predicting models examples in the field of thermoregulation

4. Discussion

4.1. General study of the created NNs

As already outlined topologies with1 or 2 hidden layers and 1-20 nodes per layer were considered, and the

optimal topology identified based on the point of least MSE. The number of hidden layers and nodes per layer

was not increased any further as overfitting was observed as expected as the studied data has relatively few

input parameters. Data proved to follow strongly non-linear relationship with poor performance with 1

hidden layer. Two hidden layers performed better as expected because of the data volume used for training

(approximately 6 parameters and 1451 entries). The ‘optimal topology’ was consistent across the various

locations, and characterized by 2 hidden layers and an average of 12 nodes per layer.

Two training back-propagation algorithms were tested, i.e. the Bayesian and the Levemberg – Marquardt.

Both algorithms showed very similar performance (MSE) in every instance, however the Levemberg –



Marquardt algorithm was finally used for all networks as its training time was shorter (~10s for L-M versus

~1min for Bayesian).

The taken precautions and the large data set and few input parameters allowed to prevent over-fitting of the

NNs. Nevertheless the NNs were generated using validation datasets to monitor the error during training and

avoid over-fitting, i.e. creating neural network that generalize well.

4.2. Original NNs

Initially eight NNs were created to predict core temperature, and local skin temperature at the forehead,

chest, upper arms, abdomen, knees and calves based on input parameters previously selected by Garcia-

Souto and Dabnichki [4] (summarized in Table 1). Cross validation demonstrated a good performance (R-

values between 0.78 and 0.87) (Table A-2 labelled as v0) indicating that ‘unseen data’ was accurately

predicted throughout the networks. Similar performance results were observed during training, yet slightly

poorer as expected, deeming it successful. There was no indication of overfitting.

The error distributions were approximately symmetrical around the zero error value for all networks. A small

skewness value was observed for core, T0, T1, T3, T7 and T9 temperature locations (between -0.5 and 0.5)

and slightly larger for abdomen and calves (but only up to -1.15) (Table A-3, Figure A-2). Kurtosis values were

relatively higher than those of a normal distribution (e.g. between 5.8 and 6.3 for chest, calves and abdomen

skin temperature). This is positive as it indicates that the peak around zero is higher and therefore the error

for the majority of the predictions is smaller. High kurtosis could have been a sign of over-fitting but it was

discarded following the assessment of the MSE valleys. The standard deviation and 80% confidence intervals

observed in the error histograms were relatively small, with a minimum for forehead and knees (SD=0.47C,

80% CI=1.2C) and a maximum of for the upper arms skin temperature (SD=0.66C, 80% CI=1.6C).

These results are typical for thermoregulation studies rather than reflecting limitations of the NNs. The error

observed is partly due to the diversity of temperatures at a specific collection point, which varies depending

on the person, environmental conditions and also personal circumstances such as clothing and material and

others of psychological and physiological nature. The influence of these factors changes with the location, and

are cross-related, making some locations more predictable than others. The descriptive statistics for the

experimental data showed that the type of distribution and variation observed on the outputs of each

network reflected the experimental data. It was then concluded that the networks were trained successfully

and generate accurate predictions.

The obtained skin temperature errors in the predictions are highly satisfactory as the data itself has a large

variability and the localised body response is to some degree stochastic. The error for core temperature (SD=

0.55C) is more than satisfactory for non-clinical applications showing that the models would be able to

discern between high and low core temperatures. Surprisingly NN for knees had a similarly good performance

as the forehead (limbs are periphery and temperature is prone to higher degree of variation as the prime

target of the thermoregulation system is constant core temperature). This is due to the range of habitation

comfort level of room temperature. Therefore this location could be considered for human temperature

monitoring and as an indicator in body temperature prediction models.

4.3. Alternative NNs

Secondly, alternative NNs were created where the set of inputs was slightly modified from the original

proposition, as summarized in Table 2. Similarly to previously created NNs, the ability to predict ‘unseen data’



was good, with R-values in the range of 0.69-0.90 when removing the core temperature as an input, and 0.69-

0.93 when using Average Clothing in addition to the initial set of inputs or instead of the Local Clothing (Table

A-2 labelled as v1 and v2).The error distributions were also approximately symmetrical around the zero error

value for all networks and presented high Kurtosis and slightly negative Skewness values (Table A-3, Figure A-

2), in similar fashion to the previously discussed NNs.

4.4. Comparison of models

Firstly it is important to note that human body temperature, and especially local skin temperature, depends

on a number of parameters, with many interdependencies making it difficult to model to a (high) level of

accuracy achieved in other applications. There is a great variability on temperature across the groups and

intra-individual ones even when subjected to identical climate conditions, with SD of 0.37C for core

temperature, and SD of local skin temperature ranging from 0.7-0.8C at forehead to 1.4-1.8C for hands,

these values being applicable to both the adult and toddlers population [43]. Furthermore, for practical

reasons the factors that were considered within the models in this paper are only environmental temperature,

environmental humidity, gender, age, clothing and BMI. These are “easy” to ascertain, are appropriate for

indoor environments and render the models more usable in climate control systems, e.g. in offices or long-

haul flights. However there are many other relevant factors that were not considered but could explain in part

the variability, e.g. metabolic rate, sweating rate, level of acclimation to the environment, level of fitness,

stress, etc. Therefore the models presented here, in the same way as other alternatives in the literature, for

core temperature or local skin temperature are limited by the nature of the very parameter we aim to predict.

For example, the models developed by Mehnert et al [18] for prediction of average skin temperature have R

of 0.86 for nude people, and 0.77 for clothed people, with a ± 1.0°C 83.3 and 81.8% of the data points

respectively. This is a similar performance to what the models presented here have achieved even though the

average skin temperature is more consistent than local skin temperature. Another example is the models

developed by Sanders et al [34] for prediction of core temperature for volunteers in a treadmill, with R of 0.19

and 0.34 at 30 and 40°C respectively. Therefore, the accuracy of the models presented in this paper are

modest as expected, and yet better than earlier approaches, hence they are of value to a better

understanding of thermoregulation and for the development of indoor climate control systems.

The original set of inputs for the NNs developed within this paper were 6-7 parameters accounting for

personal characteristics and external factors that were easy and practical to collect. Core temperature was

included as an input for the prediction of local skin temperature as it improves the accuracy [14]. However,

core temperature is more difficult to measure and therefore was eliminated of the alternative NN models to

make them more practical. The prediction of the ‘unseen data’ (see R-values in Table 3) decreased as

expected for skin temperature at forehead, upper arms, and calves a 14, 13 and 7.6% respectively. However,

the prediction for chest, abdomen, hands and knees slightly improved (R-values increased between 2.6 and

7.2%), indicating that core temperature values do not provide a significant addition to the set of input

parameters when predicting these skin temperatures, for the studied environmental conditions. The 80%CI

only becomes larger for forehead (14.8% increase) but otherwise it remains constant or decreases (up to

13.2% at chest location), making the models more precise.

The NN for core temperature improved when Average Clothing was included as an additional input. The R-

value increased just slightly from 0.85 to 0.87. However the SD and the 80% confidence interval decreased

significantly, about 10 and 21% respectively from the original NN, to values of 0.50 and 1.15C. The addition

of Average Clothing to the NNs for forehead and hand skin temperature where the core temperature was not

included had also a very positive effect. R-value increased 16 and 4.7% respectively, while the 80%CI

decreased to 3.8 and 31% respectively, making the models more accurate and precise. Local Clothing was

included as an input parameter in the original NNs for chest, upper arms, abdomen, knees and calves. When



Average Clothing was used instead, the efficiency of the NNs only improved for upper arms and calves (11 and

17% increase for R-values and 6 and 11% decrease of 80%CI respectively). For the other locations the R-value

remained fairly identical but the 80%CI became larger.

Two approaches for the creating of body temperature models were compared: multi-linear regression models

vs NNs. When using the same original set of inputs, the models generated with NNs produce significantly (p-

value 0.0003 at 1% significance level) more accurate predictions, with a mean R value of 0.63 for the multi-

linear models and 0.83 for the equivalent NNs. The greater improvement is observed for core temperature,

with an increase from 0.48 to 0.85, i.e. an improvement of about 75% over the initial value. The ranking of

locations with the best and worse predictions is very similar, with the best models being for knees (T9) and

hands (T7).

The recommended NNs, i.e. with the recommended set of parameters, have a very significant increase on R-

value with respect to the multi-linear regression model: 81% for core temperature, 72% for abdomen skin

temperature, 63% for chest temperature, 32% for calves and forehead temperature and 13% for upper arms

and knees skin temperature (Table 3). Therefore, the use of NNs for the prediction of body core and local skin

temperature are demonstrated to be more suitable and they are recommended. The 80%CI values for the

predictions by the recommended NNs and for the experimental 'unseen' data (ground truth) are very similar

and slightly smaller for the predicted values. This indicates that the models are sensible and perhaps a bit

conservative.

5. Conclusion

This paper demonstrated that core body and local skin temperatures (forehead, chest, upper arms, abdomen,

knees and calves) can be successfully predicted by means of Neural Networks for both genders and in a wide

range of every-day indoor situations. This paper has therefore opened the possibility of using AI in the

modelling of thermoregulation and potentially for climatic control of shared public spaces.

Some of the main results and characteristics of the ultimately selected NN per location are:

 NNs were trained and tested using a large and gender-balanced experimental database on real office-

type situations, covering a wide range of environmental temperatures (18 to 31°C) and humidity

values (22 to 60%) (previously reported by Garcia-Souto and Dabnichki [4]).

 NNs have 2 hidden layers and 8-16 nodes per layer, and were trained with the Levemberg –

Marquardt back-propagation algorithm.

 The input parameters included room temperature, and humidity in all cases, and additionally all or a

subset of the following: age, BMI, gender and clothing (either local or average).

 NNs presented very good results when assessed with ‘unseen’ data: R=0.87 for core temperature and

in the range of 0.85 and 0.93 for local skin temperature at forehead, chest, abdomen, calves, knees

and hands, with the latter 2 holding the strongest predictions. Upper arms holds the lower

performance (R = 0.77).

 The estimated precision for core temperature was 0.46°C at an 80%CI, which is quite acceptable for

non-clinical applications. For skin temperature the precision was best at forehead, chest and calves

(±1.2°C, similar to the precision achieved by Mehnert et al [18] for average skin temperature) and still

acceptable for the other local temperatures (between ±1.5 and ±2.5°C).

In comparison with previous models [4]:

 Core temperature has been withdrawn as an input for the prediction of local skin temperatures as it is

impractical to measure and advantageously it is a non-contributor to the NN output.



 Average Clothing as input is beneficial for the prediction of core, forehead and hands temperature,

and should be used instead of the Local Clothing for upper arms and calves.

 Accuracy using NNs are significantly better than the previously-reported multi-linear models [4] using

the same dataset and same (and even less) input parameters: 81% raise of R-value for core

temperature and in the range of 13-72% for local skin temperatures, particularly improving the core,

forehead, chest, abdomen and calves temperature predictions.

 NNs provide better precision but still error is observed, partly due to the diversity of temperatures

characteristic of the human thermoregulation, which cannot be overcome by any model.
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Appendix A – Performance Results for all pre-selected NNs
Results presented in this appendix correspond to the 23 pre-selected Neural Networks for the prediction of

core and local skin temperature that were studied in depth out of the 19,400 NNs that were created. From

these, the NNs which used as inputs the parameters in Garcia-Souto and Dabnichki [4] (summarized in Table

1) were named as ‘original’ and indicated by “v0”. Those NNs using a variation of the set of input parameters

(according to Table 2) were named as ‘modifications’ and indicated by “v1” and “v2”.

The performance of the NNs during training is summarized in Table A-1. The NNs evaluation using ‘unseen

data’ is presented in Table A-2 (e.g. average Percentage Error, and the goodness of fit value) and in Table A-3

(e.g. descriptive statistics and confidence intervals of associated error). Regression graph of the predicted vs.

target temperatures from simulating the network with the ‘unseen data’ are presented in Figure A-1. Boxplots

are provided for the prediction errors observed both with the ‘training data’ and the ‘unseen data’ in Figure

A-2 for comparison.

Networks Core Forehead (T0) Chest (T1)
Upper Arms

(T3)

Abdomen

(T5)

Hands

(T7)
Knees (T9)

Calves

(T11)

No.Neurons [,]

V0 [12, 13] [13, 9] [16, 10] [10, 13] [13, 14] [11, 8] [15, 14] [12, 10]

V1 [12, 14] [14, 15] [14, 15] [15,14] [14, 9] [12, 14] [12, 17] [15, 12]

V2 --- [15, 13] [14, 16] [14, 14] [15, 15] [14, 16] [14, 12] [12, 9]

Network Perf.

V0 0.178 0.245 0.291 0.347 0.219 0.204 0.181 0.298

V1 0.141 0.355 0.261 0.386 0.165 0.121 0.165 0.274

V2 --- 0.249 0.292 0.309 0.250 0.103 0.141 0.318

Training Perf.

V0 0.163 0.207 0.231 0.326 0.190 0.199 0.148 0.250

V1 0.115 0.294 0.201 0.376 0.118 0.0885 0.143 0.202

V2 --- 0.181 0.228 0.261 0.211 0.0842 0.125 0.279

Validation Perf.

V0 0.219 0.329 0.518 0.402 0.240 0.225 0.228 0.416

V1 0.208 0.591 0.459 0.317 0.287 0.150 0.239 0.359

V2 --- 0.373 0.500 0.398 0.342 0.140 0.180 0.340

Testing Perf.

V0 0.264 0.333 0.340 0.393 0.219 0.206 0.291 0.405

V1 0.183 0.404 0.341 0.502 0.262 0.242 0.195 0.528

V2 --- 0.439 0.380 0.445 0.340 0.154 0.174 0.482

R-value (Net.

Targets vs. Net.

Outputs)

V0 0.906 0.873 0.843 0.804 0.884 0.891 0.908 0.836

V1 0.927 0.798 0.861 0.784 0.911 0.936 0.915 0.855

V2 --- 0.869 0.838 0.829 0.867 0.947 0.927 0.826

Table A-1: Description and performance during training (i.e. with ‘training data’ only) of the NN selected for

each body location according to the models specified in Table 1 (original NNs indicated as v0) and Table 2

(alternative NNs indicated as v1 and v2). The training algorithm was in all cases the Levemberg – Marquardt

back-propagation.



Networks Core Forehead (T0) Chest (T1)
Upper Arms

(T3)

Abdomen

(T5)
Hands (T7)

Knees

(T9)

Calves

(T11)

Prediction Avg.

P.E

V0 0.408 1.17 1.32 2.11 2.11 2.77 2.39 1.78

V1 0.363 1.61 1.11 2.16 1.82 2.50 2.19 1.72

V2 ---- 1.32 1.60 1.98 1.96 1.68 2.24 1.49

R-value

(Unseen

Targets vs.

Predictions)

V0 0.846 0.843 0.832 0.795 0.816 0.854 0.873 0.779

V1 0.870 0.728 0.866 0.690 0.875 0.889 0.896 0.720

V2
---- 0.845 0.690 0.766 0.790 0.931 0.891 0.845

Linear

Regression

V0 Y=0.7x+9.3 Y=0.8x +6.3 Y=0.8x+7.4 Y=0.7x+10 Y=0.7x+8.6 Y=0.7x+8.7 Y=0.8x+6.3 Y=0.6x+12

V1 Y=0.9x+4.9 Y= 0.6x+15 Y=0.8x+7 Y=0.6x+14 Y =0.8x+8.2 Y=0.8x+5.7 Y=0.9x+3.8 Y=0.6x+12

V2 --- Y=0.7x+9.8 Y=0.6x+15 Y=0.6x+13 Y=0.7x+11 Y=0.9x+2.5 Y=0.8x+4.8 Y=0.7x+9

Table A-2: Description and performance with ‘unseen data’ of the NN selected for each body location

according to the models specified in Table 1 (original NNs indicated as v0) and Table 2 (alternative NNs

indicated as v1 and v2).

Networks Core
Forehead

(T0)
Chest (T1)

Upper

Arms (T3)

Abdomen

(T5)

Hands

(T7)

Knees

(T9)

Calves

(T11)

Average error

(C)

V0 0.051 0.0335 0.0966 0.0483 -0.0058 0.006 -0.077 -0.908

V1 0.0384 -0.0579 -0.0273 -0.0118 -0.0630 -0.0086 -0.0548 0.0120

V2 --- -0.133 -0.0882 0.0134 -0.0225 -0.0031 0.0589 0.109

Kurtosis

V0 3.49 4.0 5.82 5.30 6.31 3.96 4.36 6.13

V1 4.61 9.44 8.08 7.01 5.79 7.42 4.18 9.10

V2 --- 10.1 15.6 11.6 8.66 11.8 7.06 10.8

Skewness

V0 0.124 0.247 -0.220 0.504 -1.15 -0.149 0.352 -0.874

V1 0.228 -1.88 -0.589 -0.325 -0.0927 0.899 -0.0237 -0.616

V2 --- -1.62 -2.34 -1.89 -1.39 -1.50 0.817 -1.26

SD (C)

V0 0.553 0.469 0.571 0.663 0.614 0.538 0.467 0.648

V1 0.498 0.756 0.498 0.732 0.552 0.488 0.436 0.673

V2 --- 0.570 0.802 0.680 0.602 0.355 0.461 0.542

80% CI V0 1.46 1.15 1.29 1.56 1.49 1.32 1.19 1.37

V1 1.15 1.32 1.12 1.51 1.28 1.15 1.06 1.37

V2 --- 1.27 1.44 1.42 1.46 0.791 1.08 1.22

90% CI V0 1.86 1.67 1.85 2.04 1.99 1.65 1.59 1.95

V1 1.72 2.39 1.45 2.46 1.62 1.62 1.43 1.89

V2 --- 1.77 2.08 1.66 1.87 1.08 1.39 1.61

Table A-3: Descriptive statistics and confidence intervals of the errors between targets and predictions values

of the ‘unseen data’ generated by the NN selected for each body location according to the models specified in

Table 1 (original NNs indicated as v0) and Table 2 (alternative NNs indicated as v1 and v2).



Unseen targets vs. Predictions for developed NN





Figure A-1: Regression of the unseen target data against the predictions given by each developed NN.

Regression equation and R-value for each fit is given in Table A-2. Original NNs are indicated as v0, while

alternatives to these NNs are indicated as v1 and v2.



Performance of the developed NN





Figure A-2: Performance of the created NNs per location. Error values are calculated as the predicted minus

actual value for ‘training data’ and ‘unseen data’ and presented separately for comparison. Box represents

mean, 25 and 75% quartiles; whisker length represents 1.5 times interquartile range; red crosses represent

outliers. Original NNs are indicated as v0, while alternatives to these NNs are indicated as v1 and v2.

Appendix B – Supplementary data
Supplementary data associated with this article can be found in the online version, at

http://dx.doi.org/10.1016/j.asoc.2016.11.006.
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