567 research outputs found

    A review of discrete-time optimization models for tactical production planning

    Full text link
    This is an Accepted Manuscript of an article published in International Journal of Production Research on 27 Mar 2014, available online: http://doi.org/10.1080/00207543.2014.899721[EN] This study presents a review of optimization models for tactical production planning. The objective of this research is to identify streams and future research directions in this field based on the different classification criteria proposed. The major findings indicate that: (1) the most popular production-planning area is master production scheduling with a big-bucket time-type period; (2) most of the considered limited resources correspond to productive resources and, to a lesser extent, to inventory capacities; (3) the consideration of backlogs, set-up times, parallel machines, overtime capacities and network-type multisite configuration stand out in terms of extensions; (4) the most widely used modelling approach is linear/integer/mixed integer linear programming solved with exact algorithms, such as branch-and-bound, in commercial MIP solvers; (5) CPLEX, C and its variants and Lindo/Lingo are the most popular development tools among solvers, programming languages and modelling languages, respectively; (6) most works perform numerical experiments with random created instances, while a small number of works were validated by real-world data from industrial firms, of which the most popular are sawmills, wood and furniture, automobile and semiconductors and electronic devices.This study has been funded by the Universitat Politècnica de València projects: ‘Material Requirement Planning Fourth Generation (MRPIV)’ (Ref. PAID-05-12) and ‘Quantitative Models for the Design of Socially Responsible Supply Chains under Uncertainty Conditions. Application of Solution Strategies based on Hybrid Metaheuristics’ (PAID-06-12).Díaz-Madroñero Boluda, FM.; Mula, J.; Peidro Payá, D. (2014). A review of discrete-time optimization models for tactical production planning. International Journal of Production Research. 52(17):5171-5205. doi:10.1080/00207543.2014.899721S51715205521

    Modeling a Remanufacturing Reverse Logistics Planning Problem: Some Insights into Disruptive Technology Adoption

    Get PDF
    Remanufacturing is the process to restore the functionality of high-value end-of-life (EOL) products, which is considered a substantial link in reverse logistics systems for value recovery. However, due to the uncertainty of the reverse material fow, the planning of a remanufacturing reverse logistics system is complex. Furthermore, the increasing adoption of disruptive technologies in Industry 4.0/5.0, e.g., the Internet of things (IoT), smart robots, cloud-based digital twins, and additive manufacturing, has shown great potential for a smart paradigm transition of remanufacturing reverse logistics operations. In this paper, a new mixed-integer program is modeled for supporting several tactical decisions in remanufacturing reverse logistics, i.e., remanufacturing setups, production planning and inventory levels, core acquisition and transportation, and remanufacturing line balancing and utilization. The model is further extended by incorporating utilization-dependent nonlinear idle time cost constraints and stochastic takt time to accommodate diferent real-world scenarios. Through a set of numerical experiments, the infuences of diferent demand patterns and idle time constraints are revealed. The potential impacts of disruptive technology adoption in remanufacturing reverse logistics are also discussed from managerial perspectives, which may help remanufacturing companies with a smart and smooth transition in the Industry 4.0/5.0 era

    Selection of return channels and recovery options for used products

    Get PDF
    Due to legal, economic and socio-environmental factors, reverse logistics practices and extended producer responsibility have developed into a necessity in many countries. The end results and expectations may differ, but the motivation remains the same. Two significant components in a reverse logistics system -product recovery options and return channels - are the focus of this thesis. The two main issues examined are allocation of the returned products to recovery options, and selection of the collection methods for product returns. The initial segment of this thesis involves the formulation of a linear programming model to determine the optimal allocation of returned products differing in quality to specific recovery options. This model paves the way for a study on the effects of flexibility on product recovery allocation. A computational example utilising experimental data was presented to demonstrate the viability of the proposed model. The results revealed that in comparison to a fixed match between product qualities and recovery options, the product recovery operation appeared to be more profitable with a flexible allocation. The second segment of this thesis addresses the methods employed for the initial collection of returned products. A mixed integer nonlinear programming model was developed to facilitate the selection of optimal collection methods for these products. This integrated model takes three different initial collection methods into consideration. The model is used to solve an illustrative example optimally. However, as the complexity of the issue renders this process ineffective in the face of larger problems, the Lagrangian relaxation method was proposed to generate feasible solutions within reasonable computational times. This method was put to the test and the results were found to be encouraging

    A Review on Remanufacturing Reverse Logistics Network Design and Model Optimization

    Get PDF
    Remanufacturing has gained great recognition in recent years due to its economic and environmental benefits and effectiveness in the value retention of waste products. Many studies on reverse logistics have considered remanufacturing as a key node for network optimization, but few literature reviews have explicitly mentioned remanufacturing as a main feature in their analysis. The aim of this review is to bridge this gap. In total, 125 papers on remanufacturing reverse logistics network design have been reviewed and conclusions have been drawn from four aspects: (1) in terms of network structure, the functional nodes of new hybrid facilities and the network structure combined with the remanufacturing technologies of products are the key points in the research. (2) In the mathematical model, the multi-objective function considered from different aspects, the uncertainty of recovery time and recovery channel in addition to quantity and quality, and the selection of appropriate algorithms are worth studying. (3) While considering product types, the research of a reverse logistics network of some products is urgently needed but inadequate, such as medical and furniture products. (4) As for cutting-edge technologies, the application of new technologies, such as intelligent remanufacturing technology and big data, will have a huge impact on the remanufacturing of a reverse logistics network and needs to be considered in our research

    A Review of Production Planning Models: Emerging features and limitations compared to practical implementation

    Get PDF
    In the last few decades, thanks to the interest of industry and academia, production planning (PP) models have shown significant growth. Several structured literature reviews highlighted the evolution of PP and guided the work of scholars providing in-depth reviews of optimization models. Building on these works, the contribution of this paper is an update and detailed analysis of PP optimization models. The present review allows to analyze the development of PP models by considering: i) problem type, ii) modeling approach, iii) development tools, iv) industry-specific solutions. Specifically, to this last point, a proposed industrial solution is compared to emerging features and limitations, which shows a practical evolution of such a system

    The Optimization Problem of Batik Cloth Production with Fuzzy Multi-Objective Linear Programming and Application of Branch and Bound Method

    Get PDF
    This study discussed fuzzy multi-objective linear programming (FMOLP) and its application. This research was conducted in Rumah Batik Mentari Jambi, which produces five batik motifs typical of the Jambi. In this research, the tolerance for additional raw material capacity is included in the model. This research aims to find out the number of tolerances needed, the maximum number of batik needed to be produced, and the minimum production time so that the producer can earn the maximum profit. The decision variables in FMOLP are the number of pieces of batik measuring in 2m2, which means the decision variables must be an integer. Therefore, after obtaining the optimal solution from FMOLP, then proceed with the branch and bound method to obtain the integer solution. The result of this research is that the addition of raw materials needed to earn optimal solutions is as much as 50% of the tolerance assumed in the model. Thus, owner can earn the optimal profit of Rp. 5,675,800.00/week by producing as many as 67 pieces of batik with the design of angso duo, 18 pieces with the design of gentala, and 50 pieces with the design of batang hari, and the minimum production time is 270 hours/week

    Green supply chain quantitative models for sustainable inventory management: A review

    Full text link
    [EN] This paper provides a systematic and up-to-date review and classification of 91 studies on quantitative methods of green supply chains for sustainable inventory management. It particularly identifies the main study areas, findings and quantitative models by setting a point for future research opportunities in sustainable inventory management. It seeks to review the quantitative methods that can better contribute to deal with the environmental impact challenge. More specifically, it focuses on different supply chain designs (green supply chain, sustainable supply chain, reverse logistics, closed-loop supply chain) in a broader application context. It also identifies the most important variables and parameters in inventory modelling from a sustainable perspective. The paper also includes a comparative analysis of the different mathematical programming, simulation and statistical models, and their solution approach, with exact methods, simulation, heuristic or meta-heuristic solution algorithms, the last of which indicate the increasing attention paid by researchers in recent years. The main findings recognise mixed integer linear programming models supported by heuristic and metaheuristic algorithms as the most widely used modelling approach. Minimisation of costs and greenhouse gas emissions are the main objectives of the reviewed approaches, while social aspects are hardly addressed. The main contemplated inventory management parameters are holding costs, quantity to order, safety stock and backorders. Demand is the most frequently shared information. Finally, tactical decisions, as opposed to strategical and operational decisions, are the main ones.The research leading to these results received funding from the Grant RTI2018-101344-B-I00 funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe". It was also funded by the National Agency for Research and Development (ANID) / Scholarship Program/Doctorado Becas en el Extranjero/2020 72210174.Becerra, P.; Mula, J.; Sanchis, R. (2021). Green supply chain quantitative models for sustainable inventory management: A review. Journal of Cleaner Production. 328:1-16. https://doi.org/10.1016/j.jclepro.2021.129544S11632
    • …
    corecore