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Abstract: Remanufacturing has gained great recognition in recent years due to its economic and
environmental benefits and effectiveness in the value retention of waste products. Many studies on
reverse logistics have considered remanufacturing as a key node for network optimization, but few
literature reviews have explicitly mentioned remanufacturing as a main feature in their analysis. The
aim of this review is to bridge this gap. In total, 125 papers on remanufacturing reverse logistics
network design have been reviewed and conclusions have been drawn from four aspects: (1) in
terms of network structure, the functional nodes of new hybrid facilities and the network structure
combined with the remanufacturing technologies of products are the key points in the research.
(2) In the mathematical model, the multi-objective function considered from different aspects, the
uncertainty of recovery time and recovery channel in addition to quantity and quality, and the
selection of appropriate algorithms are worth studying. (3) While considering product types, the
research of a reverse logistics network of some products is urgently needed but inadequate, such
as medical and furniture products. (4) As for cutting-edge technologies, the application of new
technologies, such as intelligent remanufacturing technology and big data, will have a huge impact
on the remanufacturing of a reverse logistics network and needs to be considered in our research.

Keywords: reverse logistics; remanufacturing; review; network design; model

1. Introduction

As a result of the accelerated pace of technological development and economic growth,
the pace for product replacement keeps increasing, which leads to an exponential surge
in the generation of waste products. In order to reduce pollution and promote the reuse
of resources, it is paramount to collect and reuse the waste products, for which reverse
logistics (RL) is instrumental.

From the return of personal goods to the disposal of urban wastes, reverse logistics
has played an indispensable role in these processes. However, the term of reverse logistics
was not recognized until the end of the last century.

The concept of RL was proposed by Stock [1], who refers to RL as the collection
of waste products or the disposal and management of waste hazards in a narrow sense,
and treatment and the reuse of resources in a broad sense. The role of reverse logistics
is essentially the process of transporting waste products from the consumer back to the
production end for processing. The common treatments of these waste products are
recycling, disposal, etc. However, enterprises do not often make considerable profits when
implementing these treatments as they are time consuming and laborious. To improve
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corporate profits and efficiency in resource reuse, remanufacturing is added as one of the
alternatives for the treatment of waste products.

Remanufacturing is an industrial process that turns used products into as-good-as-
new conditions (the same quality, functionality and warranty as these for new products) [2]
through processes such as disassembly, cleaning, inspection, repair, replacement, and
reassembly [3]. Remanufacturing is critical for realizing a resource-efficient manufacturing
industry and circular economy [4]. Through remanufacturing, which plays a good role in
promoting the extended producer responsibility system, the function of waste products
is restored, and new value is created. The products for remanufacturing are usually
automobile parts, electrical and electronic equipment, large machinery and office equipment
such as printers.

Reverse logistics is closely related to remanufacturing. In many studies of a reverse
logistics network of waste products, remanufacturing is an essential research content.

In reverse logistics, the network structure consists mainly of consumers, collection
centres, treatment plants and markets [5]. According to the treatment method of products,
reverse logistics can be divided into different categories: remanufacturing, recycling,
disposal, etc. Compared with the other two reverse logistics categories, remanufacturing
reverse logistics (RRL) has a different network structure. Some RRLs utilize hybrid facilities
which integrate remanufacturing centres with the manufacturing centres [6], or some are
based on the collection centres within the distribution centres [7]. Different structures
of RRL have a different utilization efficiency of waste products, which has become a
research subject.

So far, there are few literature reviews on the analysis of the state of the art of a
remanufacturing reverse logistic network (RRLN). In this review paper, 125 papers on the
design and optimization of an RRL network were identified and systematically analysed
according to network structure, model, solution method and case studies in order to have
a clear understanding of the research status in this field and to define the direction in the
future research.

The rest of this article is structured as follows:
Section 2 introduces the previous review papers on reverse logistics and compares

them with this paper; Section 3 is the introduction of the screening method; Section 4 analy-
ses the models for RRLN and summarizes several different types of networks; Section 5
reviews the mathematical models and the solution methods employed in the literature;
Section 6 analyses the application of the cases in this paper; Section 7 summarizes this
paper and puts forward the future research directions.

2. Literature Review

There are a few literature reviews in the domain of reverse logistics network. This
section analyses the 23 literature review papers on reverse logistics, as shown in Table 1.

Four of the reviews discussed the research status and development of reverse logistics.
Pokharel and Mutha [8] argued that research in RL is multifaceted, which distinguishes
itself from forward logistics, and concluded that the research on the uncertainty of demands
for remanufactured products or the supply of used products and product pricing models
is insufficient. By analysing the latest and most advanced research in different scientific
journals from 2007 to 2013, Govindan et al. [9] classified 382 papers according to their
content and summarise the trends and gaps of different research contents. They present
future opportunities for uncertainty, models, and solution methods, and suggested that
RRLNs with greener and more sustainable and environmental goals that consider multiple
objective issues are becoming a future research direction. Prajapati et al. [10] divided
the literature of the reverse logistics into 11 different categories and carried out detailed
evaluation and analysis. They also investigated waste product-related legislations, e.g.,
an expanded producer responsibility system in countries around the world, such as the
extended producer responsibility directives (2000) in the European Union, the Brazilian
National solid waste policy (2010), and their impacts on RL of used components. In addition,
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the paper concluded that consumer behaviour, information management, performance
measurement, secondary market perspective, carbon footprint, government regulations,
reverse logistics and other research fields have received little attention in the past, which
could be research opportunities in the future. Rachih et al. [11] classified the papers
according to the meta-heuristic approach and the illustrative context of the reverse supply
chain and discussed the effectiveness and flexibility of these approaches in solving RL
problems. It showed that the genetic algorithm and taboo search strategy are the most
common methods used by researchers due to their applicability to most logistics and
reverse logistics problems. In addition, the article also mentioned the potential application
of meta-heuristic methods in other areas, such as Dynamic Lot Sizing, Forecasting, and
Purchasing problems.

Govindan and Soleimani [12] and Kazemi et al. [13] analysed reverse logistics papers
published in the Journal of Cleaner Production (JCP) and the International Journal of
Production of Research (IJPR). Both papers indicated the major trends and future areas
in the topics of reverse logistics and closed-loop supply chain. The former analysed the
deficiencies and related research directions of the JCP papers in the aspects of different
products and modelling of the closed-loop supply chain, and the latter discussed the
influence of IJPR in the field of RL and closed loop supply chain management (CLSCM),
indicating that the future research direction can be oriented to different industries and
case applications.

In terms of product types, there are two papers that reviewed articles on Waste
Electrical and Electronic Equipment (WEEE). Islam and Huda [14] used the content analysis
method to select and classify 157 papers on WEEE reverse logistics published from 1999 to
May 2017. It shows that in RL and closed loop supply chain (CLSC) network design, there
is a lack of research considering different modelling objectives, problem formulation and
solutions. Doan et al. [15] focused their efforts on e-waste reverse logistics and divided the
research of the e-waste reverse supply chain into four categories: implementation factors,
performance evaluation and decision making, predictive product recall and network design.

Pushpamali et al. [16] evaluated the research status of reverse logistics practice in the
construction industry and highlighted the positive impact of reverse logistics practices on
upstream construction activities and suggested that the industry stakeholders’ support is
vital for the successful implementation of reverse logistics. Therefore, industry decision
makers must take the long-term future life cycle into account when making decisions,
rather than focusing solely on the current waste problem. Mahmoudi et al. [17] provides
a systematic quantitative overview of discarded photovoltaic panels. According to the
review results, future studies must focus on the prediction of photovoltaic waste flow,
the development of reverse logistics of recovery technology and the policies of individual
photovoltaic cells in various countries. Karagoz et al. [18] reviewed the mathematical
models of end-of-life vehicle (ELV) management and found that there was insufficient
research in social standards. There has been insufficient research carried out on the environ-
mental consequences of introducing or extending ELV logistics networks. More detailed
consideration must be given to the recyclability of materials that reduce material waste
and innovative molding processes that can recycle materials. In addition, the research also
suggested little industry practice in case studies or surveys. There are few papers on risk
measurement and uncertainty.

Three papers reviewed articles on models and networks. Agrawal et al. [19] focused
their research efforts on the important issues that were unconsidered in previous literature
reviews. This review, through a systematic and structured literature review, provides
insights into the conceptualization and research on the issues, including adoption and
implementation, forecasting product returns, outsourcing, RL networks from a secondary
market perspective, and disposition decisions. After the analysis of 242 papers, it as found
that there are still research gaps in the selection and deployment, risk assessment network
models and the possibility of further research. Bazan et al. [20] reviewed the literature
on modelling reverse logistics inventory systems based on economic orders/production
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quantities (EOQ/EPQ) and combined economic batches. Van et al. [21] took a comprehen-
sive view of reverse logistics and waste management and analysed the relevant papers on
network design in the field of waste reverse supply chain, and explains the importance of
factors such as multi-objective and multi-level uncertainty in network design of reverse
supply chain.

Table 1. Overview of past reviews.

Author Year NS RL MM CLSC R PC Main Focus

Pokharel and Mutha [8] 2009
√ √

164 The present situation of reverse logistics research and
practice is discussed

Govindan et al. [9] 2015
√ √ √

382 Research status of reverse logistics and closed loop
supply chain

Agrawal et al. [19] 2015
√ √ √

242 RL networks and disposal decisions for forecasting product
returns, outsourcing, secondary market perspective

Bazan et al. [20] 2016
√ √

-
Literature on modelling reverse logistics inventory systems
based on economic order/production quantity (EOQ/EPQ)
and joint economic batch

Govindan and
Soleimani [12] 2017

√ √
83 Literature on reverse logistics and closed loop supply

chain in cleaner production

Kazemi et al. [13] 2018
√ √

94 Literature on reverse logistics and closed loop supply
chain IJPR (International Journal of Production Research)

Braz et al. [22] 2018
√

56 Bullwhip effect in a closed loop supply chain

Islam and Huda [14] 2018
√ √

157 Waste electrical and electronic equipment/electronic waste
reverse logistics and closed loop supply chain

Tombido et al. [23] 2018
√

134 3PL benefits in reverse logistics

Pushpamali et al. [16] 2019
√

54 The research status of reverse logistics in construction
industry is evaluated

Mahmoudi et al. [17] 2019
√

70
The current study systematically investigates global
research on EOL photovoltaic modules to identify gaps for
further exploration.

Prajapati et al. [10] 2019
√

449 According to the structure dimension and content of the
paper, the paper is evaluated and classified in detail

Rachih et al. [11] 2019
√

120
This paper reviews the previous papers on reverse logistics
and classifies them according to the meta-heuristic method
and the background of reverse supply chain

Doan et al. [15] 2019
√ √

-

Research on e-waste resource sharing is divided into four
categories, namely implementation factor performance
assessment and decision forest product return and
network design

Karagoz et al. [18] 2019
√ √

- End-of-life vehicle management

Van et al. [21] 2020
√ √ √ √

207 Strategic network design using mathematical optimization
models in waste reverse supply chains

our work 2020
√ √ √ √ √

125 Network Design and Optimization of remanufacturing
reverse logistics

A “-” in the column indicates it is unclear how many papers are reviewed. NS = Network structure, RL = Reverse
Logistics, MM = Mathematical Models, CLSC = Closed-Loop Supply Chain, R = Remanufacturing, PC = Paper Counts.

Braz et al. [22] systematically reviewed the application of the bullwhip effect in a
closed-loop supply chain. The results showed that the closed-loop design of the supply
chain can reduce the bullwhip effect and have a positive impact on the environmental
performance of the supply chain. Tombido et al. [23] focused on the impact of third-
party logistics providers (3PLs) on the performance of the existing supply chain. In the
analysis, it was found that most of the studies were focused on the third party collecting
and reprocessing benefits, while there were few studies on other reverse logistics activities,
such as sorting and the distribution of third parties, and there were also few studies on the
performance measurement and competition of third parties.
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The above analyses indicate that there have been a considerable number of literature
reviews in various fields of reverse logistics, but there are few reviews on reverse logistics
networks considering remanufacturing. Agrawal et al. [19] divided the reverse logistics
network into recycling networks, reuse networks, remanufacturing networks, repairing
networks and other categories, and indicated that remanufacturing reverse logistics mainly
has the characteristics of high-value products, closed-loop supply chain and uncertainty.
According to their analysis, remanufacturing network models have been developed for
a wide range of products providing solutions to various propositions of strategic issues.
There are many kinds of remanufactured products and a large number of papers on the
design and optimization of remanufacturing reverse logistics networks. In order to have a
clear understanding of the development and problems of RRL, it is necessary to review the
papers in this field.

3. Methodology

Literature review helps in determining the research content and comprehending
the development trend of current theories. In order to systematically review the gaps
and trends in the research of remanufacturing reverse logistics network, the research
methodology will be illustrated from three steps: material collection, descriptive analysis
and category selection.

3.1. Material Collection

Material collection is the first step in a literature review. The unit of analysis is defined
as a single study. This step is divided into two parts: collection and screening.

In the first step, a pair of keywords “reverse logistics” and “literature review” are used
in the title abstract and keywords to search for review articles. These keywords are used in
WOS to select English literature. After reading and analysing the literature review, the term
“remanufacturing”, “network design”, “model optimization” and the key term “reverse
logistics” were used to search for articles with options as in first step. In this process, we
selected the last 10 years as the time range and collected a total of 387 articles in WOS for
further research. The collection of all materials was completed in April 2020.

Then, we applied the following criteria for further screening:

(1) The network mathematical model or the network structure diagram should be con-
tained in the papers;

(2) The location of remanufacturing facilities is considered in the design and optimization
of the network model;

(3) Remanufacturing is the main treatment method for the waste products.

Only those articles which were focused on the above-mentioned criteria were taken
into consideration. Finally, a total 125 papers between 2010 and 2020 met these criteria
and were used for subsequent research. With a focus on the network design section
of remanufacturing reverse logistics, the number of articles analysed for review seems
adequate and is consistent with the number of articles analysed in a recent literature review
in the RL field.

3.2. Descriptive Analysis

To comprehend the multi perspective view of the concepts, articles were sorted out
from more than 50 journals. As can be found in the statistical process, most of the articles
were published in the Journal of Cleaner Production, Omega, European Journal of the
Operational Research and other reputed journals.

Figure 1 shows the annual and the journal distribution of the reference files respectively.
As can be seen from the table, most of the articles were published in the last five years. Due
to the increasing interest of researchers in the field of remanufacturing reverse logistics, the
number of articles has increased significantly in the past few years. The highest number of
articles (24) was published in year 2018.
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The categories and framework of this study are shown in Figure 2. Since the op-
timization of the RRL network mainly focuses on the study of the network model, this
paper adopts modelling steps to analyse the literature: network structure model analyses,
solution methods and model validation.
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4. Network Structure

To design an RRL network, the first step is to determine the overall structure of the
network. This section investigates the structure of the network. We divided the papers into
the following three categories according to their different network structure characteristics.

4.1. General Network Structure

A reverse logistics network is often comprised of four stages: customers, collection
centres, treatment plants and markets. As in Figure 3, the first stage is customer zones,
where the used products are generated. The second stage is collection centre, to collect the
used products from customer zones, and then the products are inspected and disassembled.
After that, components with different values are sent to perform different operations, such
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as remanufacturing and disposal. At the final stage, products are sent to different markets
for resale.
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The following is a basic structure in RRL network design papers. Of all the papers we
reviewed, 20 of them used this structure.

4.2. Network Structure of Closed-Loop Supply Chain

If the market for remanufactured products differs from that of new products, the
network is an open loop. The market for remanufactured products is usually a second-
hand market. The networks mentioned in Section 4.1 are typical open loop networks.

In cases where the remanufactured products return to the same market as new prod-
ucts, the network is closed loop. A structure of a closed-loop supply chain network (CLSCN)
is given in Figure 4. CLSCN integrate forward and reverse logistics. The supplier sent
raw materials to the factory, where materials were manufactured into products. Then,
the products were sent to the distribution centre for sale to customers. After the end of
use, the products were collected by the recycling centre and sent to the remanufacturing
centre. After the remanufacturing is completed, the product re-entered the forward logistics.
CLSCN occurs when a customer who releases used products is also the consumer for the
remanufactured products, such as medical products and industrial products [24]. Due to
the concerns about the environment, many countries now advocate “Extended Producer
Responsibility”, in which manufacturers have to extend the traditional supply chain to
include the end-of-life stage of products [7].Processes 2021, 10, x FOR PEER REVIEW 8 of 23 
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closed-loop supply chain structures.
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4.3. Special Network Structure

Some network structures of CLSCN that have some special characteristics are dis-
cussed in this section. Some have proposed the concept of hybrid facility. As shown in
Figure 5, hybrid facility refers to the remanufacturing/manufacturing facility or collec-
tion/distribution centre at the same facility location, which enables the facility to have
two different functions and enable the co-existence of forward and reverse logistics at
the same time. Some papers considered hybrid manufacturing facilities, where products
are manufactured and remanufactured in the same facility and shipped to distribution
centres [6,25,26]. In addition to the hybrid manufacturing facility, others also considered the
hybrid intermediate facility, e.g., the collection/distribution centre, where the distribution
of both new and remanufactured products and the collection of used products are carried
out [7,27–37]. The establishment of such hybrid facilities allows the utilization of the nodes
of the existing forward logistics network to optimize the design of the reverse logistics
network for remanufacturing. Moreover, this method can eliminate the need to establish a
new reverse logistics network, thus effectively reducing the costs.Processes 2021, 10, x FOR PEER REVIEW 9 of 23 
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Regarding the treatment of waste products that could not be remanufactured and
recycled, Yu and Solvang [38] and Subulan, Taşan, and Baykasoğlu [39] considered energy
recovery to recover energy generated by incineration and biochemical treatment. These
products and energy flows should be considered when optimizing the location of thermal
treatment plants and are an interesting extension for future models.

Different products are selected for the network design, but few of them considered
the product characteristics or remanufacturing processes as a characteristic for the network
design. Zarei et al. [40] and Reddy et al. [41] designed a reverse logistics network for the
ELV. In these papers the ELVs are disassembled into different components. Depending on
the conditions of these components, decisions are made regarding the potential treatment
of these components, including remanufacturing, recycling and disposal. Then, these
disassembly components and parts are transported to various places, e.g., remanufacturing
centres, recycling centres, and landfills, for further treatment. Paydar and Olfati [42]
analysed the remanufacturing process of polyethylene terephthalate (PET) bottles. During
the whole process, the PET bottles need to go through five different operations, including
compression, crushing, cleaning and two granule making techniques before they can be
resold into the market. Based on that, workshops with different remanufacturing process
capabilities may be constructed. In the established network model, there are material flows
of PET bottles between factories, and the PET bottles can only enter the market if specific
remanufacturing steps were undertaken on these products. Such a network of various
plants with different remanufacturing process capabilities provides a good direction for the
further application of reverse logistics in different enterprises.

5. Model Analyses

After the network structure is determined, the mathematical models of the networks
are discussed. In this section, the mathematical models are analysed regarding these factors,
including decision variables, objective functions and constraint conditions.
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5.1. Decision Variables

Decision variables are the first factor to be determined in a network model. In general,
decision variables in a network can be divided into two stages. Table 2 lists several common
decision variables at these two different stages.

Table 2. Common decision variables.

Decision-Making Level Common Decision Variables

Strategic level

Facility location
Mode of transportation

Remanufacturing technology
Facility capacity

Capacity extension
The investment amount of the network

Tactical level

Inventory level
Production volume

Connection between nodes
Recovery price of waste products

The sales price after remanufacturing

At the first stage, the model mainly makes decisions at the strategic level. The decision
variables at this stage are usually binary variables, which use 0 or 1 to define whether
a facility is open, and whether a mode of transportation is selected and the technology
is employed for remanufacturing or not. The mode of transportation can be selected by
setting different vehicle types [31,39,41,43,44] or different types of transportation [36,45–48].
Remanufacturing technology [30,39,47–50] is related to the cost of the remanufactured
products and the remanufacturing processes, rather than the location or capacity of the
facility. Different remanufacturing technologies, such as inspection, cleaning, and repair
(laser surface cladding, brush plating and thermal spray), require different equipment
and incur different costs. In the process of remanufacturing, the selection of different
remanufacturing technologies will also have a certain influence on the calculation of the
model. Generally, the capacity of facilities is set to a constant value in the model, but some
research, e.g., Zarei et al. [40] and Keyvanshokooh, Ryan, and Kabir [51] adds the selection
of facility capacity to the decision variables, and Zhen et al. [52] and Üster and Hwang [53]
set different capacity extensions. In the multi-period models, the investment value of the
network [43,45,54] is also an important decision variable.

After selecting the appropriate sites, the second stage requires a tactical decision. At this
stage, the decision variables mainly make decisions on the specific details in the network.
The surplus inventory in the network [24,55–58] and the inventory level [30,39,41,51,59–63]
are related to the production capacity of the factory, so it is of great benefit to select the
appropriate inventory for the operation of the company. The transport between nodes can
be represented by continuous variables, or whether two nodes are connected or not can be
determined by binary variables [29,56]. In addition, the tactical decision of the network
includes the production volume [62,64,65], the recovery price of waste products [41,64]
and the sales price of remanufactured products [66]. As described above, in the process of
determining decision variables, many scholars tend to analyse remanufacturing technology.
Under the circumstances that multiple remanufacturing technologies are suitable for the
same product, the cost of different technologies and their influence on the model are
worth considering.

5.2. Objective Function

It is very important to determine the objective function in the design of RRL network.
A network model cannot be solved without an optimization objective. In papers on network
model, objective function is mainly divided into two categories, including single objective
and multi objectives.
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Common objectives in single objective models are the maximal total revenue or mini-
mal costs. Two objective models are often employed to analyse network operations from
two perspectives, including profits and losses avoidance. Other uncommon objectives are
maximum sustainability [67], minimum carbon emissions [68], and maximum expected
net present value [69]. This kind of single-object problem can be solved with different
mathematical models, such as commercial solvers and heuristic algorithms, according to
the size, characteristics and complexity of the model.

Of the 125 papers, 40 adopted multi-objective functions, as can be seen in Figure 6.
The economic benefit of the network has always been the focus of network design papers.
In addition to the minimum cost and maximum benefit used in the above single-objective
models, the multi-objective models also take into accounts other factors affecting network
economic benefits, such as service level [29], customer satisfaction [30], number of equip-
ment [70] and network coverage and flexibility [71]. Ramezani, Kimiagari, and Karimi [72]
apply the change in equity as the objective function to be optimized. Some papers consider
the recovery rate of waste products [73,74], product return [75] and network fault [76,77],
which have a certain influence on the network. Vahdani and Mohammadi [7] added the
concept of queuing for two-way facility processing to the network, and its target includes
minimum queuing time of remanufacturing products. For remanufactured products, the
timeliness of distribution and the defect rate of the products are crucial. There are seven
articles considering the on-time delivery target [26,75,78–82]; however, only four papers
considered defect rate of products [26,29,78,83]. Social benefit targets in RRL networks
are also very common, such as the maximal social welfare [35,36,48,49,84–87] and maxi-
mal job opportunities [49]. Due to increasing concerns of environmental problems recent
years, the environmental benefits of RRL networks have been increasingly recognized.
However, like any manufacturing activity, there are also some environmental problems
associated with the RRL network, such as the construction of facilities and the transporta-
tion of products. Taking into consideration environmental objectives in the process of
the network design optimization can minimize environmental problems associated with
remanufacturing. In the reviewed papers, environmental objectives are mainly achieved
by minimizing environmental impacts or maximizing environmental benefits, such as
the minimization of carbon emissions [24,25,30,31,35,47,66,70,76,84,88–91], the maximiza-
tion of green performances [78,87,92,93], minimum pollution emissions [66], minimum
environmental problems [94], minimum environmental impacts of facilities and treatment
processes [48,85], transportation [86] and transportation channels [81], maximising the envi-
ronmental benefits of clean technology and recyclable materials [95] and the environmental
benefits of recycled products [87].
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In the selection of objective function, it is common to choose cost and profit, as well as
green objective, e.g., carbon emission and environmental impact. In addition, the queuing
time of remanufactured products and the rate of product defects are seldom considered in
the remanufacturing reverse logistics network.

5.3. Constraints

It is very important to determine the constraints of the model, which is vital to whether
the solution of the model can be proceed normally to gain the correct result.

In RRL network models, the most common constraints are flow conservation, process-
ing and storage capacity constraints, demand satisfaction and allocation constraints be-
tween nodes for products. Other constraints are maximum number of facilities
refs. [5,6,24,29,31,44,54,56,57,71,83,89,96–101], distance constraints between facilities
refs. [43,45,47,54,63,71,96], capacity constraints of the transport routes [5,54,66,102–105],
facility expansion constraints [43,45,52,54,106,107], remanufacturing technology selection
constraints [30,49,50], network inventory constraints [30,39,51,59–62,70,92–94,104] and min-
imum throughput constraints of facilities [39,43,45,76,106,108].

There are constraints on proportion in some of the reviewed papers, including,
e.g., the proportions of waste products in the recovery process [38,83,97,109–113], dis-
posal [34,42,50,61,78,83,92,93,95,114–117], remanufacturing [62,65,82,110] and other proce-
dures [56,63,64,90,118–123]. When multiple products are concerned, there are also con-
straints of demand proportion of each product [53,113] and the distribution proportion of
each part after disassembly [55]. The model can be simplified by using the proportional
constraint, but the proportional constraint method cannot reflect the actual situation well.

There are a few special constraints to be noted. In the papers considering the closed-
loop supply chain, closed-loop constraints are included to ensure the closed-loop structure
of the supply chain [46,60,124,125]. This constraint makes the network a closed loop by
ensuring that each remanufactured product is returned to the same actors who undertake
the forward flow in a reversed sequence. Some papers considered the price discount of raw
materials ordered in large quantities and proposed the quantity discount constraints [26,30].
Four papers considered the constraints of carbon emissions [38,71,108,126]. Differently
from the objective functions, the carbon constraints force the network to emit less than a
certain amount. Yu and Solvang [90] suggested a flexible constraint of capacity, e.g., the
capacity of facilities can be adjusted within a certain range. Hatefi et al. [27,127] added
facility reliability constraints in their papers. In some multi-period papers, investment
value and investment allocation constraints are utilized for each period [31,33,40,45,54,128].

In the determination of constraints, the constraints on the selection of remanufacturing
technology need to be noted, which puts forward restrictions on the selection of remanu-
facturing technology, e.g., no more than one technology can be selected at a time, and the
remanufacturing technology cannot be changed in multiple periods.

5.4. Solution Method

After establishing the mathematical model of the network, it is necessary to find a
suitable method to solve the model. The method for solving a proposed model to (near)
optimality depends on several of the characteristics discussed above. Depending on
different factors, such as the problem complexity, size and the available computation time,
priority can be given to exact or heuristic approaches.

If models are rather limited in size and complexity, such as single-objective or
deterministic models, commercial software packages are able to find an exact solu-
tion in a reasonable computation time. CPLEX and LINGO are the most common
commercial solvers used to solve mathematical models. Of the 125 papers reviewed,
31 used CPLEX [30,34,36,37,41,43,60,62,64,69,80,95,101,103,106,108–110,117,127,129–132]
or LINGO [67,74,96,133–136] as a solution tool. Often, it is used with GAMS (or AMPL,
AIMMS, IBM ILOG Optimi-zation Studio) as a higher-level programming environment.
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In addition, there are solvers such as XpressSP [57], Knitro [75], Gurobi [91], etc. that are
employed in the reviewed papers.

When the problem becomes large and complex, common methods cannot obtain the
optimal result, so approximation methods (heuristics/meta-heuristics) need to be used. In
recent years, numerous heuristics have been used to find a reasonably good solution in a
limited computation time. In contrast to the exact solution methods, heuristics do not guar-
antee an optimal solution. However, as problem dimensions increase and models become
more complex, these techniques become inevitable. The meta-heuristic algorithm is an
improvement of the heuristic algorithm, which is the combination of the random algorithm
and local search algorithm. Meta-heuristic is an iterative generation process. Through the
intelligent combination of different concepts, this process realizes the exploration and de-
velopment of search space with the heuristic algorithm. In this process, learning strategies
are used to obtain and grasp the critical information to effectively find the approximate
optimal solution. The meta-heuristic algorithm is mainly used to prevent the search from
falling into the local optimal prematurely. The papers adopting the (meta-) heuristic algo-
rithm include: the genetic algorithm (GA) [35,40,42,47,54,55,66,76,81,86,98,118,122,137,138],
imperialist competition algorithm (ICA) [2,7], cuckoo optimization algorithm (COA) [48],
tabu search [52,102], league championship algorithm (LCA) [114], seeker optimization algo-
rithm (SOA) [111,120], artificial bee colony algorithm (ABCA), the ant colony optimization
(ACO) approach [89], particle swarm optimization (PSO) algorithm [73], complex evolution
algorithm (CEA) [139], simulated annealing (SA) algorithm [140] and artificial immune
system (AIS) algorithm [58].

These algorithms have their own advantages and disadvantages. For the same model,
different algorithms usually obtain different results. To bring the solution closer to the
real value, some models adopt a hybrid algorithm [24,28,49,50,63,77,85,105], that is, a
mixture of different algorithms for solving a problem, which can discard the defects of
some algorithms and obtain better solutions.

As there have been many heuristics developed so far and since problem formulations
do not differ substantially, it would be worthwhile to compare the performance of the
proposed heuristic with existing ones. In some papers [49,53,85,87], the performance of
algorithms is compared, among which, Fathollahi-Fard, Hajiaghaei-Keshteli, and Mir-
jalili [49] proposed three new hybrid metaheuristic approaches, each made up of three
algorithms divided by a different order. The comparison between solvers and algorithms is
shown in Hajipour et al. [141], Zarei et al. [40], Soleimani, Seyyed-Esfahani, and Shirazi [55],
Paydar and Olfati [42], Alimoradi et al. [122], Zohal and Soleimani [89] and Sadjadi, Soltani,
and Eskandarpour [142].

The combination of multiple algorithms has become a trend. The research of Fathollahi-
Fard, Hajiaghaei-Keshteli, and Mirjalili [49] shows that different combinations of algorithms
will produce different results. This confers certain inspiration for the future algorithm
selection and how to better combine different algorithms.

5.5. Model Validation

Once the mathematical model of the network is established and the solution method
is developed, cases are required to verify and apply the proposed model.

According to the different data sources of the cases, we divided them into three
categories. The first category is the numerical experiment, in which the data used is
fabricated within a certain range by the computer. The main purpose of such cases is to
verify the validity of the model or the computational advantage of the algorithm. The
second type is the reference cases, which uses the data obtained by referring to other papers
or a reference dataset that combines data from the literature along with certain assumptions
for some parameters [110], and whose function is the same as the first type of paper. The
last category is the actual cases, which is the real case in life. The data are usually provided
by some companies and enterprises. The purpose is to apply it to real life. In the reviewed
papers, there were 65 numerical experiments, 12 reference cases and 44 actual cases.
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In actual cases, the analysis of the network is often accompanied by information about
geographical locations and product types.

Figure 7 shows the regional distribution of actual cases around the world. It can be
intuitively seen from the figure that before 2014 and 2015, the cases of the RRL network
were mainly applied in Portugal [36,69,117,143], the Netherlands [68], Greece [60], Ger-
many [106], Italy [91] and other European countries. After that, there are some cases
in America [53,88,144], but more cases are beginning to be developed in developing
countries, such as Iran [4,24,42,70,85,86,126,132], India [41,44,56,67,71,75,96,135,136,145],
China [63,76,118,133,137,139] and the United Arab Emirates (UAE) [43,54,84]. This is closely
related to the increasing environmental awareness of the general public in these areas and
the government’s attention to environmental issues.
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The waste products that are to be remanufactured need to have the value for reuse
and the technology is available to achieve remanufacturing. According to the papers
reviewed, the general products to be remanufactured are electronic products, such as
laptop [46,83,97,119], cell phones [61,136], cameras [136] and other electrical and electronic
equipment (WEEE) [36,78,82,86,99], household appliances [37,43,67,106,112,115,135], bat-
teries [41,44,84,92], vehicles [40,103,109,132,139], and tires [39,65,71,96,123]. Figure 8 shows
the number of different product types. In addition to the above common remanufactur-
ing products, there are also large construction machinery [118], hospital equipment [24],
furniture [91], glass [85,117], LEDs [74] and PET bottles [42]. The temporal distribution of
product types can be seen in Figure 8.
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6. Gaps and Research Trends Analyses

Based on the different sections above, research gaps were identified and analysed
by the researchers. A summary of the findings and research trends is discussed in the
following sub-sections.

6.1. Novel Structures in Networks

Figure 1 in Section 3 illustrates a significant increase in research interests in RRL
network design from 2010 to 2020. This indicates that RRL is gaining increasing attention
from scholars. In their studies, the CLSCN is often adopted as it can facilitate the reman-
ufacture and resale of waste products. As can be seen in Figure 9, papers on CLSCN are
gradually increasing. Of all these papers, 10 considered hybrid facilities. As we mentioned
in Section 4, such a network structure provides a good method for the establishment of
reverse logistics network with lower cost and shorter time, which is a trend in the field
for enterprises and researchers. However, there are still deficiencies in existing studies on
hybrid facilities. The hybrid facilities proposed in the papers mostly exist in manufactur-
ing/remanufacturing centres, and recycling/distribution centres, without considering the
potential of sharing other logistics facilities in CLSCN, which is a point that needs to be
improved in the utilization of hybrid facilities.

In the process of combining with practice, few papers considered the possible impact
of remanufacturing technology on the reverse logistics network structure. The remanufac-
turing technologies of products are different; when designing the network structure, in
addition to analysing the recycling process of waste products, the difference of its process-
ing process also needs to be further analysed, so as to establish the RRL network structures
that conform to the reality. This can be seen in the papers of Paydar and Olfati [42],
Zarei et al. [40] and Reddy et al. [41], who designed different networks by analysing the
remanufacturing processes of PET bottles and vehicles. The combination of other products
and network structures is what we need to consider.
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6.2. Different Elements in the Model

Mathematical modelling plays an important role in the process of network design.
Different model parameters and solving methods in the papers will be analysed below.

As mentioned in Section 4, most of their models adopted multiple objective functions.
Most of these models is to minimize costs or maximize benefits combined with another
objective, such as environmental, social benefits, and product quality. However, there are
some more specific objectives that need to be noted. Vahdani and Mohammadi [7] proposed
the concept of two-way facility processing queuing in the network, with the purpose of
reducing the processing time of remanufactured products. Vahdani et al. [77] developed
a bi-objective mathematical programming formulation which minimizes the total costs
and the expected transportation costs after failures of facilities of a logistics network.
Rajak, Parthiban, and Dhanalakshmi [81] considered the impact of different transportation
channels on the environment. These papers explain the key factors in the RRL network
model from different aspects and analyse the relationship between different factors and
their influence on the model, which provide a good method in model constructing.

The RRL network has a high degree of uncertainty. The establishment of an RRL
mathematical model needs to solve this problem. The time, quantity and quality of waste
products in the collecting process are uncertain. Some products have multiple collecting
channels, so the channel selection in the collecting process is also uncertain. These features
make it difficult to establish the RRL model. Most of the papers considering uncertainty
focused on the quantity and quality and did not carry out in-depth analysis of other
aspects. The uncertainty of collecting time and collecting channel of waste products is
worth studying.

In the analysis of Section 5, we find that there are constraints on the recycling ratio
and remanufacturing ratio in many papers. This method simplifies the model and makes
it easier to obtain results, but it suffers from a lack of accuracy. The common methods to
deal with uncertainty are stochastic programming [146], while scenario-based methods
are used to analyse uncertainty factors and calculate the optimal expectation to obtain the
optimal scheme of RRL network under an uncertain environment. Other ways to deal with
uncertainty are mathematical models based on triangular fuzzy number or robust design.
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6.3. Product Type

There are many types of products that have been applied in the papers. As shown
in Section 6, the most common remanufactured products are electronic products, because
they have a relatively perfect recovery mechanism, and the network structure can be
optimized according to the existing mechanism when establishing the reverse logistics
network. Other types, such as hospital equipment and furniture products, have fewer
analyses. The remanufacturing technology of some products has been applied in practice.
However, the recovery system is still not complete, which makes it difficult to establish
reverse logistics. It is a good direction to analyse the network structure of these products
and discuss the establishment of the product recovery system in this paper.

6.4. Research Trends

The development of modern society has promoted the emergence of many new tech-
nologies, which are applied to all aspects of industry, and have a great impact on RRL.
With the development of intelligent technology, intelligent remanufacturing will become a
realizable technology complex and will continue to develop in the future [147]. It is worth
studying how intelligent remanufacturing and other technologies will affect the existing
RRL network.

Industry 4.0 (I4.0) emphasizes intelligent production, and the application of intelligent
technologies can have a great impact on logistics networks. According to the analysis
of [148,149], I4.0 mainly includes emerging technologies such as the internet of things (IoT),
cloud technologies, artificial intelligence, big data analytics, etc. As we mentioned in Sec-
tion 5, remanufacturing technology has a great influence on the model, and the decision of
different technologies has a great impact on the network. As the fusion of remanufacturing
technologies and intelligent technologies, intelligent remanufacturing technology is based
on the whole life cycle data of products which enables automatic remanufacturing processes
and seamless information flow and interactions between remanufacturing processes and
RRL. Reference [150] provides us with a technology, additive remanufacturing, also known
as three-dimensional (3D) printing. This technology creates parts by adding materials in
layers, providing a beneficial ability to construct parts with geometric and material com-
plexity, while contributing to the reuse of materials and reducing environmental problems.
This paper describes the application of additive technology in the field of remanufacturing
and provides different additive remanufacturing technology, which provides a new factor
for the research of the RRL network model.

As can be seen from the analysis of [148], the development of technology requires corre-
sponding infrastructure, which presents new challenges to RRL’s network. While applying
new technologies, the establishment of new facilities are required, which thus incurs more
costs. It is necessary to analyse and balance the benefits brought by technology and the cost
of facilities. In the analysis of [149], it is worth noting that the semi-automation of trucks
can improve efficiency and reduced labour costs in the process of logistics transportation,
and reduced fuel consumption and carbon emissions.

Industry 5.0 adds people-oriented theory to industry 4.0, emphasizing the more
sustainable people-oriented transformation in the process of intelligent production. Future
research is thus needed to understand how human-centric smart transformation can be
achieved in logistics sectors. I5.0 could revolutionaries remanufacturing, and a promising
future research area could be the integration of I5.0 and RRL.

7. Conclusions

In this paper, a comprehensive review of a remanufacturing reverse logistics and
closed-loop supply chain network design is presented. A total of 125 online papers pub-
lished until 2020 are selected, reviewed, and categorized based on the proposed criteria
of this study. The review has shown that there is a significant increase in the number of
studies after the year 2011. These studies focus on many different network structures,
mathematical models, and product types, which developed the RRL research.
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It was found that the Journal of Cleaner Production, Applied Mathematical Modelling,
and European Journal of Operational Research represent primary publication outlets for the
investigated research area. The results can help researchers interested in remanufacturing
reverse logistics networks to understand the research content of published papers and
future research opportunities. The mainly findings and opportunities are shown below:

(1) The research on RRL networks has been focused on closed-loop supply chain structure.
Some papers adopted a hybrid facility network structure, in which enterprises can
establish reverse logistics networks on the basis of existing logistics networks. This
network structure provides a method for the establishment of reverse logistics network
with lower cost and shorter time, which provides a good direction for researchers.

(2) Among various mathematical models, the constraints of remanufacturing technology
and products have been the concern of many scholars and provide a reference for
model building. Considering remanufacturing techniques for different products can
make the networks more specific and more applicable to real life. In addition, we
found that in terms of uncertainty, factors such as the uncertainty of collecting time
and collecting channel are worth studying.

(3) We conducted a descriptive analysis of existing new technologies in order to bring
new opinions to existing RRL networks. These new technologies will change the
structure of existing networks and have impacts on mathematical models, which is
worth further study.

However, this review has its own limits. The search and screening of papers is
subjective, and the characteristics of papers are not well analysed in the statistical process.
Some opinions in this paper are relatively simple and lack of in-depth analysis, which
needs to be improved in the future.
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