975 research outputs found

    Convolutional Neural Networks - Generalizability and Interpretations

    Get PDF

    Transport Infrastructure Surveillance and Monitoring by Electromagnetic Sensing: The ISTIMES Project

    Get PDF
    The ISTIMES project, funded by the European Commission in the frame of a joint Call “ICT and Security” of the Seventh Framework Programme, is presented and preliminary research results are discussed. The main objective of the ISTIMES project is to design, assess and promote an Information and Communication Technologies (ICT)-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring of critical transport infrastructures. The integration of electromagnetic technologies with new ICT information and telecommunications systems enables remotely controlled monitoring and surveillance and real time data imaging of the critical transport infrastructures. The project exploits different non-invasive imaging technologies based on electromagnetic sensing (optic fiber sensors, Synthetic Aperture Radar satellite platform based, hyperspectral spectroscopy, Infrared thermography, Ground Penetrating Radar-, low-frequency geophysical techniques, Ground based systems for displacement monitoring). In this paper, we show the preliminary results arising from the GPR and infrared thermographic measurements carried out on the Musmeci bridge in Potenza, located in a highly seismic area of the Apennine chain (Southern Italy) and representing one of the test beds of the project

    Deep Learning Based Burnt Area Mapping Using Sentinel 1 for the Santa Cruz Mountains Lightning Complex (CZU) and Creek Fires 2020

    Get PDF
    The study presented here builds on previous synthetic aperture radar (SAR) burnt area estimation models and presents the first U-Net (a convolutional network architecture for fast and precise segmentation of images) combined with ResNet50 (Residual Networks used as a backbone for many computer vision tasks) encoder architecture used with SAR, Digital Elevation Model, and land cover data for burnt area mapping in near-real time. The Santa Cruz Mountains Lightning Complex (CZU) was one of the most destructive fires in state history. The results showed a maximum burnt area segmentation F1-Score of 0.671 in the CZU, which outperforms current models estimating burnt area with SAR data for the specific event studied models in the literature, with an F1-Score of 0.667. The framework presented here has the potential to be applied on a near real-time basis, which could allow land monitoring as the frequency of data capture improves

    Challenges and Opportunities of Multimodality and Data Fusion in Remote Sensing

    No full text
    International audience—Remote sensing is one of the most common ways to extract relevant information about the Earth and our environment. Remote sensing acquisitions can be done by both active (synthetic aperture radar, LiDAR) and passive (optical and thermal range, multispectral and hyperspectral) devices. According to the sensor, a variety of information about the Earth's surface can be obtained. The data acquired by these sensors can provide information about the structure (optical, synthetic aperture radar), elevation (LiDAR) and material content (multi and hyperspectral) of the objects in the image. Once considered together their comple-mentarity can be helpful for characterizing land use (urban analysis, precision agriculture), damage detection (e.g., in natural disasters such as floods, hurricanes, earthquakes, oil-spills in seas), and give insights to potential exploitation of resources (oil fields, minerals). In addition, repeated acquisitions of a scene at different times allows one to monitor natural resources and environmental variables (vegetation phenology, snow cover), anthropological effects (urban sprawl, deforestation), climate changes (desertification, coastal erosion) among others. In this paper, we sketch the current opportunities and challenges related to the exploitation of multimodal data for Earth observation. This is done by leveraging the outcomes of the Data Fusion contests, organized by the IEEE Geoscience and Remote Sensing Society since 2006. We will report on the outcomes of these contests, presenting the multimodal sets of data made available to the community each year, the targeted applications and an analysis of the submitted methods and results: How was multimodality considered and integrated in the processing chain? What were the improvements/new opportunities offered by the fusion? What were the objectives to be addressed and the reported solutions? And from this, what will be the next challenges

    Deep Semisupervised Teacher-Student Model Based on Label Propagation for Sea Ice Classification

    Get PDF
    In this article, we propose a novelteacher–student-based label propagation deep semisupervised learning (TSLP-SSL) method for sea ice classification based on Sentinel-1 synthetic aperture radar data. For sea ice classification, labeling the data precisely is very time consuming and requires expert knowledge. Our method efficiently learns sea ice characteristics from a limited number of labeled samples and a relatively large number of unlabeled samples. Therefore, our method addresses the key challenge of using a limited number of precisely labeled samples to achieve generalization capability by discovering the underlying sea ice characteristics also from unlabeled data. We perform experimental analysis considering a standard dataset consisting of properly labeled sea ice data spanning over different time slots of the year. Both qualitative and quantitative results obtained on this dataset show that our proposed TSLP-SSL method outperforms deep supervised and semisupervised reference methods

    Efficient Algorithms for Large-Scale Image Analysis

    Get PDF
    This work develops highly efficient algorithms for analyzing large images. Applications include object-based change detection and screening. The algorithms are 10-100 times as fast as existing software, sometimes even outperforming FGPA/GPU hardware, because they are designed to suit the computer architecture. This thesis describes the implementation details and the underlying algorithm engineering methodology, so that both may also be applied to other applications

    Special Topics in Information Technology

    Get PDF
    This open access book presents outstanding doctoral dissertations in Information Technology from the Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy. Information Technology has always been highly interdisciplinary, as many aspects have to be considered in IT systems. The doctoral studies program in IT at Politecnico di Milano emphasizes this interdisciplinary nature, which is becoming more and more important in recent technological advances, in collaborative projects, and in the education of young researchers. Accordingly, the focus of advanced research is on pursuing a rigorous approach to specific research topics starting from a broad background in various areas of Information Technology, especially Computer Science and Engineering, Electronics, Systems and Control, and Telecommunications. Each year, more than 50 PhDs graduate from the program. This book gathers the outcomes of the best theses defended in 2021-22 and selected for the IT PhD Award. Each of the authors provides a chapter summarizing his/her findings, including an introduction, description of methods, main achievements and future work on the topic. Hence, the book provides a cutting-edge overview of the latest research trends in Information Technology at Politecnico di Milano, presented in an easy-to-read format that will also appeal to non-specialists

    Synthetic Aperture Compound Imaging

    Get PDF

    Deep learning-based vessel detection from very high and medium resolution optical satellite images as component of maritime surveillance systems

    Get PDF
    This thesis presents an end-to-end multiclass vessel detection method from optical satellite images. The proposed workflow covers the complete processing chain and involves rapid image enhancement techniques, the fusion with automatic identification system (AIS) data, and the detection algorithm based on convolutional neural networks (CNN). The algorithms presented are implemented in the form of independent software processors and integrated in an automated processing chain as part of the Earth Observation Maritime Surveillance System (EO-MARISS).In der vorliegenden Arbeit wird eine Methode zur Detektion von Schiffen unterschiedlicher Klassen in optischen Satellitenbildern vorgestellt. Diese gliedert sich in drei aufeinanderfolgende Funktionen: i) die Bildbearbeitung zur Verbesserung der Bildeigenschaften, ii) die Datenfusion mit den Daten des Automatischen Identifikation Systems (AIS) und iii) dem auf „Convolutional Neural Network“ (CNN) basierenden Detektionsalgorithmus. Die vorgestellten Algorithmen wurden in Form eigenständiger Softwareprozessoren implementiert und als Teil des maritimen Erdbeobachtungssystems integriert
    • …
    corecore