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Summary (English)

Su�cient data is key when training Machine Learning algorithms in order to
obtain models that generalize for operational use. Sometimes su�cient data
is infeasible to obtain and this prevents the use of Machine Learning in many
applications. The goal of this thesis is to gain insights and learn from data
despite it being limited in amount or context representation. Within Machine
Learning this thesis focuses on Convolutional Neural Networks for Computer
Vision. The research aims to answer how to explore a model's generalizabil-
ity to the whole population of data samples and how to interpret the model's
functionality. The thesis presents three overall approaches to gaining insights
on generalizability and interpretation. First, one can change the main objective
of a problem to study expected insu�ciencies and based on this make better
a choice of model. For this �rst approach the thesis presents both a study on
translational invariance as well as an example of changing the objective of a
problem from classi�cation to segmentation to robustly extract lower level in-
formation. The second approach is the use of simulated data which can help by
inferring knowledge in our model if real data is scarce. The results show clear
advantages both when using rendered Synthetic Aperture Radar images, but
also when predictions from physical models are used as target variables which
are matched with real data to form a large dataset. The third approach to cope
with data insu�ciencies is to visualize and understand the internal representa-
tions of a model. This approach is explored and concrete examples of learnings
that can be obtained are shown. There is no doubt that large quantities of well
representing data is the best foundation for training Machine Learning models.
On the other hand, there are many tools and techniques available to interpret
and understand properties of our models. With these at hand we can still learn
about our models and use this knowledge to e.g. collect better datasets or im-



ii

prove on the modeling.



Summary (Danish)

Tilstrækkelige mængder af kvalitets data er vigtigt til at træne Machine Lear-
ning algoritmer der generaliserer til operationelt brug. I visse tilfælde er det dog
ikke muligt at indsamle nok data og det forhindrer brugen af Machine Lear-
ning til mange problemer. Målet for denne afhandling er at opnå viden fra data
selvom data er begrænset i mængde eller i den kontekst det beskriver. Indenfor
Machine Learning fokuserer denne afhandling på Convolutional Neural Networ-
ks i billed analyse. Forskningen stræber efter at besvare hvordan vi kan sikre at
vores datamodeller generaliserer til hele populationen af data samt hvordan vi
fortolker vores modellers funktionalitet. Afhandlingen præsenterer tre generelle
indgangsvinkler til at opnå indsigt om generalisering og fortolkning. Den første
indgangsvinkel studerer både variation i objektplacering i billeder samt hvordan
man kan skifte fra en klassi�kationsmetode til segmentering når man vil vurdere
forskellige algoritmer. Den anden indgangsvinkel drejer sig om brugen af simu-
leret data som hjælper ved at overføre den viden vi allerede har om problemets
natur til et Convolutional Neural Network når rigtig data er knap. Resultater-
ne viser klare fordele både når man bruger syntetiserede billeder i træningen
af en model, men også når forudsigelser fra fysiske modeller bruges som out-
put variable der matches med rigtig data. Den tredje indgangsvinkel er at lære
om vores datamodeller ved at visualisere deres repræsentation af data. Denne
indgangsvinkel udforskes og konkrete eksempler på hvad man kan lære vises i
afhandlingen. Der er ingen tvivl om at store mængder af struktureret data er
det bedste fundament for Machine Learning, men der �ndes mange teknikker
og metoder til at fortolke og forstå egenskaberne af vores modeller. Med disse
metoder kan vi stadig lære om vores modeller og bruge den viden til at forbed-
re dem ved f.eks. at målrette indsamlingen af data eller forbedre modellernes
egenskaber.
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Preface

This thesis is part of the ful�llment of the Danish Industrial PhD program. The
project is a collaboration between the Technical University of Denmark and
Terma A/S with support from the Innovation Fund Denmark.

The PhD project entitled "Classi�cation of Targets in Synthetic Aperture Radar
Imaging" set out to investigate classi�cation models for Synthetic Aperture
Radar images. While the title and scope of this thesis have changed slightly
to focus on the statistically derived models known as Convolutional Neural
Networks, the thesis still answers essential questions for the project. Since
Convolutional Neural Networks have in recent years been considered state of
the art models in image classi�cation, segmentation, etc., these constituted a
promising solution to the problem at hand. In order to mature these models
for the application, a deeper understanding was needed. Often, we face the
problem that fully representative datasets are hard to obtain. How we can gain
information from the data we have and how we can increase model generalization
is the scope of this thesis. The thesis presents di�erent approaches to obtain
insights when dealing with datasets of limited representativity. These topics are
ordered in three parts, Experimental Setup, Simulated Data and Interpretations.

Lyngby, 31-August-2017

David Malmgren-Hansen
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Chapter 1

Introduction

The �eld of Computer Vision concerns a wide range of applications and problems
related to automatic interpretation of visual data. The tasks can be to classify
objects, segment images, render visual scenes, reconstruct geometries, measure
color or structure, etc. Many of these problems have traditionally been solved by
engineered image transformations that infer prior knowledge on the problem at
hand. The advantage of this approach is that if we �nd improvements with the
transformations, we know that our assumptions on prior knowledge were right.
For example, in order to recognize the same object in two images taken from
di�erent positions, angles and illumination conditions, our representation needs
to be scale, rotation and intensity invariant, as shown in [Low99]. Convolutional
Neural Networks (Convnets) turn this approach around and aim to learn useful
image transformations from a set of images. In this way we can solve problems
without inferring prior knowledge and possibly explore trained models to learn
about new relevant image transformations.

1.1 Scope

This thesis explains and explores the properties of Convnets that make them
interesting in a Computer Vision context. The original project scope aimed to
investigate current state of the art image classi�cation algorithms. This goal has
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been slightly changed by applying a focus on Convnets. A deeper understanding
of Convnets was found necessary to progress towards practical solutions in Au-
tomatic Target Recognition (ATR) for Synthetic Aperture Radar (SAR) data.
The overall goal is to explore how we can gain information from data in situ-
ations where our datasets have limitations. We refer throughout this thesis to
limited datasets as datasets that are limited in either size, context representa-
tion (e.g. imbalanced categories) or datasets that lack the variances expected in
the respective application (e.g. scale, rotation, or background variation). Lim-
itations to datasets are critical to generalizability. In this thesis we think of
generalizability as how well a model trained on a set of samples can be extended
to the whole population. Closely connected with estimating generalizability is
the ability to interpret a model's function. If we understand how a model works
we have a better foundation for understanding the generalizability without test-
ing the model on the whole population. The thesis goals are highly relevant for
SAR ATR where high operational costs limit the possibility of collecting large
suitable datasets. The �ndings from this thesis can be used for Convnets in
general, however the experiments are mostly focused on Remote Sensing and
SAR data, to remain in line with the original scope of the PhD project.

1.2 Outline

Chaper 2 - Theoretical Background, provides basic understanding of two topics
which are important to the thesis, Convnets and SAR sensors. The following
three chapters (3, 4, 5) covers the papers published during the PhD project as
follows,

� Chapter 3, Experimental Setup - Paper A, B.

� Chapter 4, Simulated Data - Paper C, D, E.

� Chapter 5, Interpretations - Paper F.

Each chapter introduces the published contributions, explains their relevance
in an overall context, and ends with a conclusion. Further, since not all work
carried out in the project was published, some chapters contain additional exper-
imental results. The thesis closes with a Discussion and Outlook, summarizing
the �ndings and discussing the perspectives of the Convnet approach to solve
computer vision problems.



Chapter 2

Theoretical Background

This chapter provides the reader with background information within two main
topics of this thesis, Convolutional Neural Networks and Synthetic Aperture
Radar data. If the reader is familiar with these subjects, this chapter can be
skipped as it will not be referenced later in this thesis.

2.1 Convolutional Neural Networks

A Convnet is a Neural Network with one or more convolutional layers. The
convolutional layer convolves a �lter kernel over every variable position of an
input as a opposed to a fully connected layer that typically would have a desig-
nated weight for each variable. The idea is to learn feature detectors, i.e. �lters
that enhance properties relevant to the given task while achieving invariance to
irrelevant properties such as scale, rotation, translational shift etc. This is no
di�erent than what computer vision has aimed to achieve with manually engi-
neered feature detectors in the past, but Convnets provide a framework to learn
the features from data instead. Since a convolutional layer will look for local
patters in input data (within the size of the kernel), rather than global patters
as a fully connected layer, it is well suited for data that are, e.g. sampled with
temporal or spatial relations. The local patterns found by a convolutional layer
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Figure 2.1: Example illustration of a Convnet from Paper F. Summation signs
over c is sum over c input channels. Squares denote feature maps,
i.e. outputs from convolutional layers. The blue arrows represent
the chosen subsampling scheme e.g. max-pooling, and the small
circles are neurons in fully connected layer

will become feature enhances/detectors for subsequent layers.

By stacking convolutional layers, see Figure 2.1, Convnets enable early layer
�lters to enhance simple features useful for describing a range of visual context
classes, while deeper �lters will become more specialized to solve the speci�c
task. This hierarchical structure is information e�cient in the sense of repre-
senting a range of image data context with as few features as possible. Whether
the intended hierarchical structure is in fact learned is a challenge to verify,
however visualization techniques for Convnet interpretations have shown it to
be true for some datasets, [ZF14].

2.1.1 History

It is not the intention to give a thorough description of past research in Neural
Networks. Four main events however summarize the contributions leading to
the vast use of the models we are currently witnessing. These are the following:

1. McCulloch and Pitts (1943) introduction of mathematical models inspired
by neural activities in the human brain [MP43]. Their work was followed
up by Rosenblatt, [Ros58], who showed how a probabilistic version of these
models could learn from observations.

2. The idea of learning internal representations by means of error-propagation
[RHW85], known as back-propagation, was introduced by Rumelhart et
al.
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3. Yann LeCun et al. (1989), [LBD+89], applying back-propagation to Neural
Networks that included convolutional layers inspired by studies on the
visual cortex performed on animals by Hubel and Wiesel (1962) [HW62].

4. Alex Krizhevsky et al. performed a GPU accelerated implementation of a
Convnet on a large scale image problem [KSH12].

Generally, the success of event 4 is largely credited to the availability of a�ord-
able fast computing platforms (GPUs) and access to large datasets compiled
from internet downloads. Despite these facts playing a major role in their suc-
cess, Alex Krizhesky et al. contributed with concepts that are now a part of
the Neural Network research era from 2010 to 2015, in which the ease of Neural
Network training was drastically improved. The most important contributions
in this era are Recti�ed Linear Units (ReLU) [NH10], Dropout regularization
[SHK+14], theoretically derived weight initialization [GB10], batch normaliza-
tion [IS15] and data augmentation [KSH12].

Recti�ed Linear Units as activation functions, de�ned as σrelu(x) = max(0, x),
have the property of a very simple gradient. The idea is that this leads to
numerical stability and faster convergence during the training process, which was
experimentally shown in [KSH12]. Further, one can achieve faster convergence
by initializing weights in such a way that the product sum of inputs and weights
for each layer sums up to approximately one, [GB10]. One could argue that
initialization is redundant since the network should learn some solution despite
initial values of weights, but due to the iterative update scheme of weights,
clever initialization can lead to saving a large amount of computation. Since
modern Convnets and computer vision tasks are large, saving computations can
be the di�erence between converging within feasible time or not, and is therefore
crucial. Further, since our update schemes are based on iterating towards an
error minimum with a �xed or adaptive step size the initialization can in�uence
whether we get stuck in a poor minimum or not.

For each solution to the weight matrix of a Neural Network there exists an in-
�nite amount of equal solutions where weights upon following layers are scaled
relatively. In principle we do not care which of these solutions we �nd, but
we would like the weights not to shift between these relative scaling of weights
during training. Often referred to as covariate shift, the relative transforming
of weights between layers slows down the training process if the weights alter
between these solutions. Batch Normalization aims to prevent this by always
scaling the output of the network layers to have zero mean and unit variance.
Such normalization reduces the Convnet learning capability, so batch normal-
ization introduces two additional parameters to shift layer output distributions
away from zero mean and unit variance. These two parameters are updated dur-
ing gradient descent training together with the layer weights and can cancel the
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normalization if necessary. Though it intuitively might seem contradicting that
the normalization can be canceled, Batch Normalization has experimentally
shown useful as a sort of regularizing constraint that enables higher learning
rates, [IS15].

Dropout is another regularizing scheme. It aims to emulate ensemble model
prediction of models with shared weights. The need for this arises since a real
ensemble of Neural Networks would often be infeasible due to computational
costs. Applied to a network layer, Dropout skips the update of each layer node
with a given probability in an iteration of the update scheme. A node is either
a neuron in a fully connected layer or a �lter kernel from a Convolutional layer.
Dropout prevents co-adaptation of weights and thereby over-�tting behaviours
otherwise known as a common problem for Neural Networks. To further pre-
vent over-�tting Data-augmentation can as well be applied. It aims to prevent
over-�tting by considering every transformation of an input sample x that has
relevance to the task being solved, as an additional training sample. Typical
Data-augmentation transformations for images is zooming, rotation, scaling,
shifting etc.

Another technique for Neural Network training that has eased the procedure is
the adaptive control of learning rates. In order to achieve fast convergence and
a stable reduction of the error function simultaneously, learning rates must be
reduced during training. One can do this by linear reduction of the learning rate
as a function of iterations in the training. Alternatively, two popular approaches
named RMSprop, [HSS12], or ADAM, [KB14], can be used. These methods
control learning rates with relation to the gradient of the error function.

2.1.2 Optimization

A set of weights for a Neural Network W is often found according to the max-
imum likelihood solution to the given problem. As we will see this yields a
natural choice for the model's output and error function, [Bis06]. For a classi�-
cation task with K mutually exclusive classes, Bayes theorem on the posterior
probability of the k'th class can be rewritten,

P (Ck|x) =
P (Ck)P (x|Ck)

P (x)

=
P (Ck)P (x|Ck)∑K
j=1 P (Cj)P (x|Cj)

(2.1)

=
eak

∑K
j e

aj
, ak = ln(P (Ck)P (x|Ck)) (2.2)
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In Equation 2.1 the observation probability, P (x), is expanded with the law of
total probability. Equation 2.2 is known as the softmax function and when used
as output function in a Neural Network, the k'th output ak for k = 1, ...,K
will represent the logarithm of the evidence, P (x|Ck), multiplied with the prior
probability on the class, P (Ck). Given the probabilities from the network we
shall consider an error function (also known as the objective or loss) to explain
the distribution of an estimated target vector's probabilities. In most practical
cases there is one class label per sample, which can be encoded as a vector t
with one element equal 1 corresponding to the correct class and zeros in all
other elements. For a mutually exclusive classi�cation problem this is simply
the product of individual Bernoulli distributed probabilities,

p(t|x,W) =
K∏

k=1

yk(x,W)tk (2.3)

Where yk() is the function for the k'th output of our Neural Network and tk
being the k′th element of our target vector t. When taking the negative loga-
rithmic likelihood and considering the sum over all N samples in a given dataset
we get an error function,

E(W) = −
N∑

n=1

K∑

k=1

tk ln(yk(xn,W)) (2.4)

Equation 2.4 is known as the categorical cross entropy.

In the case of a multi target regression with Neural Networks we follow the same
approach exchanging the conditional distribution with the one appropriate for
the given data. Commonly a Gaussian distribution is used and independent tar-
gets are assumed. With the independence assumption the likelihood is reduced
to the product of the individual posterior probabilities of each target, Equation
2.5.

p(t|xn,W) =
L∏

l=1

p(tl|xn,W), (2.5)

n represents a speci�c sample over and L is the number of target variables in
our regression. The target t is no longer an encoding of class probabilities but
a vector of continuous target variables with tl being the l'th element. If we
consider our prediction a target estimate with a Gaussian distributed error,

t = y(xn) + en, e ∼ N(0, σ) (2.6)

we can obtain a maximum likelihood solution to the regression,

p(tl|xn) =
1√
2πσ2

e
(yl(xn,W)−tl)2

2σ2 (2.7)
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This reduces to the sum of squares error function when taking the negative log-
likelihood and discarding constants. We can write this over all N samples in
our dataset for all L targets as,

E =
N∑

n=1

L∑

l=1

(yl(xn,W)− tl,n)2 = ‖y(xn,W)− tn‖2 (2.8)

which gives the least squares error function. The output function of the Neural
Network should be selected appropriately. If we do not make assumptions on
the nature of our signal, the output of the last layer in the model should be
a linear projection of the previous layer's outputs. In some cases there might
be reasons to change the output function, e.g. if we are predicting targets that
have upper or lower bounds.

2.2 Synthetic Aperture Radar

A Synthetic Aperture Radar (SAR) is an imaging sensor based on the principles
of radar technology. It has to be operated on a moving platform, typically
an airplane or satellite, and it records the terrain in a line scanning manner
with each line perpendicular to the �ight trajectory. Since a SAR is based on
emitting electromagnetic waves from a source carried on board the platform, it
is capable of recording day and night. Further, since the SAR sensors operate
at lower frequencies than optical systems they are capable of looking through
clouds. The capabilities to record any time of day and in all weather conditions
are very useful for many applications. Figure 2.2 depicts the geometry of a SAR
system in a 3D coordinate system representing its environment. By having
an antenna looking widely, the radar receives target re�ections from several
positions along its trajectory (x). The varying distance to the target within
these re�ections leaves a modulated pattern in the received signal that is given
by distance to the target, the antenna beam width and the velocity of the SAR
platform. When the signal is demodulated, energy is concentrated in the center
position of the received signal, i.e. the SAR signal is focused.

There are three distinct features commonly present in SAR images. As a SAR
system emits a coherent signal in order to measure the phase of re�ections, an
unwanted signal called speckle arises when multiple scatterers are present in one
resolution cell. This is due to the complex summation of the multiple scatterers,
and speckle will follow a Rayleigh distribution in the amplitude component.
If V = (X,Y ) denotes a vector with two independent Gaussion distributed
elements with zero mean and equal variance, the Rayleigh distribution is the
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(a) (b)

Figure 2.2: (a): A SAR trajectory illustrating how a 3D coordinate system
is mapped along trajectory axis, x, and slant range axis, r. (b):
Depression angle illustration. P is the SAR sensor position, H the
height above ground and y the ground range axis.

distribution of the length L given,

L =
√
X2 + Y 2 (2.9)

A SAR signal is measured by two complex components, (x, y), in rectangular
coordinates. Speckle will in�uence each component with a Gaussian distributed
variance. So the joint distribution of (x, y) becomes,

(x, y) =x+ iy (2.10)

p(x) =
1√
2πσ2

e−
x2

2σ2 (2.11)

p(x, y) =p(x)p(y) =
1

2πσ2
e−

x2+y2

2σ2 (2.12)

When the complex signal is converted to polar coordinates to get the amplitude
of the backscatters the amplitude distribution will be,

aeiθ =x+ iy (2.13)

a =
√
x2 + y2 ∨ θ = tan−1

y

x
(2.14)

p(a) =
a

σ2
e−

a2

2σ2 , a ≥ 0 (2.15)

p(θ) =
1

2π
, 0 ≤ θ < 2π (2.16)

where we see that the amplitude follows a Rayleigh distribution while the phase
is uniformly distributed. The relationship between Equation 2.12 and 2.15 can
be found by exchanging variables and introducing an equal integral in rectangu-
lar and polar coordinates. Speckle is a multiplicative signal source hence higher
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backscatter will lead to higher amount of speckle. Often SAR images are �ltered
with a spatial moving average operation (multilook SAR image) to reduce the
speckle.

Figure 2.3: SAR terrain picture from the MSTAR project (background im-
age).

Figure 2.3 shows a SAR image of a terrain, with a road (dark - i.e. low backscat-
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ter), �elds, trees and some houses/buildings. A common feature of SAR images
can easily be observed in form of shadows behind each object rising above the
ground. Due to the recording geometry of a SAR, objects that rise above ground
will cast shadows behind them. Lower depression angles will yield longer shadow
casts. Another feature commonly found in SAR images is foreshorting. Since
signals are recorded along the r-axis on Figure 2.2 (slant range), re�ections from
elevated scatterers may appear before re�ections from closer to the ground. This
can make tall trees or mountains appear distorted compared to aerial recordings
from optical instruments.

2.2.1 Polarimetric SAR

A number of con�gurations for SAR sensors need to be chosen during the design
phase dependent on the application. Spotlight SAR are systems with steerable
antennas that focus on a given area in order to achieve the higher cross range
resolution at the cost of lower ground coverage. Di�erent radar frequencies
can be chosen depending on the application. Examples of applications where
frequency is important are forest biomass estimations or estimation of water
content in snow, [BFG+99, RHP+94]. In the application of forest biomass esti-
mation certain SAR frequencies are suitable, as scattering is received from both
tree crowns as well as the forest �oor. Another SAR design choice is polarization
of the transmitted and received radio waves. Fully polarimetric SAR systems
can provide additional information about scatterers. The additional informa-
tion comes from the interaction between polarized transmitted signal and the
scatterer geometry. The orientation of di�erent parts of an object's geometry
will result in di�erent polarized backscatter signatures. A fully polarimetric
SAR acquires four backscatter measures at di�erent combinations of transmit-
ted and received linear polarizations, HH, HV, VH and VV. An average of the
two signals from the cross polarized measurements SHV and SV H can be used to
reduce the noise on these components, [Skr12]. A scattering covariance matrix,
[UE90], can be constructed for every pixel as,

k = [SHH S′HV SV V ]
T , S′HV = 0.5(SHV + SV H)

Z =
1

N

N∑

n=1

k(n)k(n)∗T

=



〈|SHH |2〉 〈SHHS′∗HV 〉 〈SHHSV V 〉
〈S′HV S∗HH〉 〈|S′HV |2〉 〈S′HV S∗V V 〉
〈SV V S∗HH〉 〈SV V S∗HV 〉 〈|SV V |2〉




where 〈.〉 denotes the multilook operation and ∗ the complex conjugate. Since
the covariance scattering matrix is hermitian, i.e. the o� diagonal elements are
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complex conjugates of each other, each pixel in our �nal polarimetric SAR image
can be represented by the six unique elements. The o�-diagonal elements are
complex numbers while the diagonal elements are real numbers. Polarimetric
SAR images can be visualized as RGB color images by their diagonal elements
of the scattering covariance matrix. A common used color encoding is |SHV |2
for the red channel, |SHH |2 for the green and |SV V |2 for the blue, as this yields
the most natural looking colors. An example of this encoding can be seen for
the EMISAR dataset on Figure 2.4.

Figure 2.4: Color coded polarimetric SAR image from the EMISAR Foulum
dataset, June recording.

Such color encodings can help visualize the di�erences of scattering patterns in
the signal. In Figure 2.4 we see di�erent colors on the �els which arise from the
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di�erent polarimetric scattering signatures.
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Chapter 3

Experimental Setup

In order to solve a classi�cation problem, a Convnet needs a representative set
of sampled training data which covers expected variances. In many sciences
and applications, gathering su�cient data with associated targets values can
be a very hard task and remote sensing is no exception. If we consider a re-
�ectance spectrum measured by an airborne optical instrument, the re�ectance
will include variance due to time of the day, weather conditions, atmospheric
conditions, view incidence angle, geographic location, transient changes, etc.
One can tackle this data challenge in two ways. The �rst option is to collect as
large a dataset as possible and aim to cover enough variance. While this is not
always possible, another approach is to accept the limitations of gathered data
and try to understand the model's capabilities and ability to generalize. With
this understanding new data collection can be focused to extend the models
capabilities or models with built-in invariance towards the data pitfalls might
be explored. In this chapter we consider a simple classi�cation task on a lim-
ited dataset. By changing the objective from studying the accuracy on this
task, which we know do not generalize to operational use, we can still obtain
learnings from the dataset.
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3.1 Classi�cation

The MSTAR dataset was recorded during the mid nineties in order to improve
the data foundation for research in Automatic Target Recognition (ATR) for
SAR images. It consists of 10 military vehicles recorded with an x-band SAR
radar at 30x30 centimeter pixel resolution. A description of the dataset can be
found in Appendix A.1. MSTAR is known to be a very limited dataset in regards
to meeting the variability of an operational scenario and according to [RWV+98]
it can not be considered a random subset of real world data. It lacks variability
both in terms of depression angles where it is limited to 15° and 17° but also in
terms of background variation and the very limited number of vehicles recorded.
The dataset is not meant to give a performance score of operational SAR ATR,
but can still be used to gain insight into how SAR data can be modeled. As
the training set contains solely 17° depression angles and the test set 15° the
model's ability to generalize over 2° depression angle variation can be studied.
Since the depression angle is changing the appearance of objects in SAR images
signi�cantly due to the slant range and ground range relationship, robustness
towards depression angle variation is relevant to study.

One of the �rst benchmarks of Convnets on MSTAR was performed in [Mor15].
The network used in [Mor15] is relatively shallow compared to the ones reported
in [SVZ13] and [SLJ+15] for the ImageNet large scale image recognition chal-
lenge. Given the more simple problem in MSTAR and a lot fewer images it is
reasonable to believe a smaller architecture is su�cient. When it comes to de-
signing an architecture for a Convnet there is little theoretical foundation to rely
on. Deep Learning is an experimentally driven �eld, and following best prac-
tices and related work is the best initial starting point for every new problem.
Automatic hyperparameter optimization can at best be applied in a subset of
the hyperparameter space since there is no limit to how many hyperparameters
a Convnet architecture can have. For every new layer we add, we can change
its size, its activation function, whether to include pooling layers or not, and
even more. Further, when the number of parameters grow, so does our training
time, and this always introduces an upper practical limit to how big models we
can explore. While the Convnet reported in [Mor15] achieved a reasonable per-
formance of 92.3% we found that it could be additionally improved by following
some best practices developed before and after the publication. These build on
the following concepts and experiences,

1. Logarithm transform of SAR pixel values. Since the MSTAR images con-
tained some pixels with value 0, we added a small number, took the 10
base logarithm, before normalizing pixels to zero mean and unit variance.
In SAR applications logarithmic transform is often performed in order to
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make the multiplicative speckle signal additive. Further, the logarithmic
transformation has advantages when visualizing SAR images as the high
dynamic signal range is mapped so lower backscatter patterns are easier
visible together with higher backscatters.

2. Smaller �lter kernels impose parameter and computational sparsity, [SVZ13]

3. Dropout regularization. Though often resulting in a need for higher num-
ber of parameters in a model, dropout is often seen to increase the end-
performance, [SHK+14].

4. Batch Normalization layers, [IS15], added after each convolutional layer
in order to reduce covariate shift and thereby achieve faster convergence.

5. Adam (Adaptive Moment), [KB14], optimizer scheme to continuously con-
trol learning rates during optimization as opposed to the �xed learning
rates in [Mor15] that were reduced by a factor of 10 after a 3000 itera-
tions.

The �nal network architecture of our proposed network can be seen in Table
3.1. With this architecture we reach a performance of 99.19% accuracy after
1000 epochs, which takes 1½ hour trained on a NVIDIA Titan Black GPU.

A benchmark of di�erent classi�ers on MSTAR was performed as an initial study
in this project and can be seen on Figure 3.1. The SVD+SVM method refers to
an approach inspired by [DS83], where 10,000 9x9 pixel patches were extracted
from the training images in MSTAR and a singular value decomposition over
these was performed. This lead to a set of decomposed patches explaining the
majority of local variances in the images which can be used as feature extraction
�lters.

Since the Convnet and the SVD+SVM methods contain a �ltering step before
classifying the images, it is not surprising that they perform well. More surpris-
ing is the fact that some of the other approaches, that work entirely based on
�nding decision boundaries between the pixel vectors that the MSTAR images
span. The linear Support Vector Machine (SVM), K Nearest Neighbours (KNN)
and Linear Disciminant Analysis (LDA) all achieve >75% accuracy. Keeping in
mind the unrealistic simplicity of MSTAR images misleading choices of classi-
�ers can be made if only tested on MSTAR. Alternatively, one can study speci�c
robustness of classi�ers with simulated data.

In Paper A we show that Covnets perform better compared to other classi�ers
when introducing translational variance. The experiments were performed on a
simulated SAR ATR dataset in order to create di�erent datasets with di�erent
amount of object translation. By using a simulated dataset we ensure that



18 Experimental Setup

Table 3.1: The Convnet architecture presented below has 763678 trainable pa-
rameters. It reached a test accuracy of 99.2% on MSTAR 10-class
benchmark. The process names refer to function names from the
Deep Learning software library Keras, [C+15].

Process Parameters Parameters Description

Input (128,128) MSTAR image size [pixels]
Conv2D (12,5,5) (Number of kernels, kernel width and height)
BatchNormalization
Activation ReLU Function type
MaxPooling2D 3x3 Pooling window size.
Dropout 30% Probability of a node getting dropped.
Conv2D (36,5,5) (Number of kernels, kernel width and height)
BatchNormalization
Activation ReLU Function type
MaxPooling2D 2x2 Pooling window size.
Dropout 30% Probability of a node getting dropped.
Conv2D (72,5,5) (Number of kernels, kernel width and height)
BatchNormalization
Activation ReLU Function type
MaxPooling2D 2x2 Pooling window size.
Dropout 30% Probability of a node getting dropped.
Dense 144 Fully connected layer size.
BatchNormalization
Activation ReLU Function type
Dropout 50% Probability of a node getting dropped.
Dense 144 Fully connected layer size.
BatchNormalization
Activation ReLU Function type
Dropout 50% Probability of a node getting dropped.
Dense 10 Fully connected layer size.
Activation softmax

models are perfectly centered initially. It is shown that a random translation of
the vehicle outside the image center by as little as 3 pixels drastically decreases
the performance on the tested classi�ers except for the Convnet, see Figure
3.2. Now, if we expect this kind of translational variance in real world data
we know we should look for classi�ers with similar properties of a Convnet
(�ltering/feature extraction combined with pooling schemes) when studying a
SAR ATR application. The details of the models tested in Figure 3.2 and the
simulated dataset used can be found in Paper A.
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Figure 3.1: Benchmark of di�erent classi�ers on the MSTAR dataset. The
Convnet performance shown here was before applying improve-
ments described in Table 3.1.

3.2 Segmentation

Alternatively to applying speci�c tests like translation invariance to gain in-
formation from limited datasets like MSTAR we might consider new ways to
extract information. An example could be to change the objective from classi�-
cation to segmentation and reduce the semantic problem to background, target
and shadow. This will enable us to pool the MSTAR data and create a la-
beled dataset in a new way. Due to the geometric properties of SAR, one can
roughly estimate the object size with a good segmentation mask of a target
and its shadow. SAR object segmentation can be performed with Convnets by
considering it a pixel-wise classi�cation. We propose to follow a method where
each pixel is classi�ed from a neighborhood of pixels to be either background,
object or shadow. In Paper B we enable this by estimating the ground truth
pixel annotation from Computer Aided Design (CAD) models of the targets
in MSTAR. First the CAD model is converted to a depth map by computer
graphic rasterization given the radar view angles. Secondly, these pixel-wise
distances are mapped corresponding to SAR geometry. The pipeline of this
approach is illustrated in Figure 3.3. This technique yields a simple annotation
of every pixel in the image that can be used to train a supervised segmentation
algorithm. Our annotation masks for all MSTAR images in the 10-way classi�ca-
tion tasks are publicly available via [MHNJ17]. The Convnet approach performs
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Figure 3.2: Translational invariance results of the �ve tested classi�ers.
Datasets of simulated SAR ATR data were generated with dif-
ferent amount of target o�-center translation in the image. For
each dataset the classi�ers were retrained and tested. While the
complexity of the task increases with translation, the dataset size
remained the same which explains the small decrease in perfor-
mance of the Convnet as well.

very well on the segmentation, speci�cally in �nding the boundary between a
target and its shadow. Other work on SAR segmentation algorithms typically
classi�es the boundary as background pixels due to the similarity of the values
[WKC+99, AWZ02, HWH16]. However, �nding the boundary is important to
estimate the target height above ground.

3.2.1 The EMISAR Experiments

The pixel-wise classi�cation approach can be adopted to other applications with
even more diverse pixel classes. This is illustrated by applying the approach to
the EMISAR Foulum, Denmark dataset of crop classi�cation, [SST99]. The
EMISAR is a fully polarimetric SAR radar, i.e. capable of both transmitting
and receiving horizontally and vertically polarized electromagnetic waves. Fur-
ther, EMISAR is a dual radar system with both L-band and C-band recording
simultaneously with the goal of studying optimal con�gurations for crop classi-
�cation. The SAR map over the �elds of Foulum are shown in Figure 3.4 with
the outlines of their label masks. Pixels left of the dashed line are held aside
for the test set while the part on the right is used for training. The dataset
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(a) (b) (c) (d)

Figure 3.3: Pipeline in the SARBake algorithm presented in Paper B. Given
a MSTAR target vehicle (a) �nd a CAD model (b) render a depth
map from the radar view position (c) and convert the depths into
a mask of the target. Shadow distances can be calculated to a
�at ground easily by triangulation from edge points, but in our
approach a �at ground was rendered where the shadow distances
can read from. This allows for di�erent terrain models in more
complex scenarios.

consists of polarimetric scattering covariance matrices in each pixel position.
The o�-diagonal elements are complex numbers and when these are stacked
together with the diagonal elements as separate image channels, the resulting
image size of the EMISAR Foulum dataset are 1024x1024x9. As a preprocessing
step these channels are normalized by subtracting mean and dividing by stan-
dard deviation. The diagonal elements of the covariance matrix are Gamma
distributed. From experiments it was found an advantage to take the logarithm
of the Gamma distributed elements before performing a zero mean unit variance
normalization. A patch of size 21×21 is extracted around every pixel containing
an annotated �eld. To avoid overlap between patches in test and training sets, a
ten pixel wide strip to the right of red line in Figure 3.4 is left out. The approach
is to train a Convnet to classify the center pixel of each patch. To cope with
an unbalanced amount of samples from the di�erent crop types smaller classes
where oversampled. This yielded better performance than under-sampling big
classes or weighing the loss function with the inverse samples size. With a model
architecture similar to the one used in Paper B, we achieved good performance
compared with other work on this dataset, [Skr12], [VDLN12]. In [Skr12] it was
shown that several temporal samples during a season of crop growth yield much
higher accuracy when combined with the polarimetric and frequency informa-
tion. Our approach achieved an error rate of 22% from a single temporal sample
with all polarimetric and frequency information. [Skr12] used a much simpler
approach to the classi�cation of crop types and achieved 41% error rate from
single temporal sample.
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Table 3.2: Results from EMISAR experiments with di�erent polarimetric and
frequency settings. The performances are given in error rates over
all test samples.

L-Band C-Band L+C-Band
Diagonal polarimetric elements 33% 36% 25%
All polarimetric elements 34% 23% 22%

3.3 Conclusion

Given the de�ciencies of MSTAR, the accuracy from a classi�cation model on
this dataset provides little knowledge about the problem of SAR ATR. By refor-
mulating the problem into experiments that overcome known challenges, such
as translation variance, we can still obtain useful information. Alternatively,
we have shown how well performing segmentation algorithms can be trained on
MSTAR and thereby yield information about object size in an automatic way.
The segmentation might be an indirect way of gaining information about a ve-
hicle, but it enables us to create an annotated dataset from existing data and
train a robust algorithm on a reduced semantic content. The annotation masks
have been made publicly available and provide a foundation for continuous ex-
periments on MSTAR based on supervised segmentation models.
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(a)

(b)

(c)

Figure 3.4: (a) EMISAR Foulum dataset with labels. (b) Convnet Prediction
on test set. (c) Confusion Matrix for the 6 classes.
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Chapter 4

Simulated Data

One of the success criteria for the Convnet by Alex Krizhevsky et. al [KSH12]
in 2012 was the availability of the large, labeled image dataset, ImageNet, which
has more than 1,000,000 images. Since 2012 Convnets have improved the score
in many computer vision benchmarks. Often though, not by only training the
Convnets on each benchmark dataset but largely also with help from the con-
cept of Transfer Learning. Gathering a labeled set of more than a million images
is a cumbersome task, but by �rst training a Convnet on ImageNet and then
further training it on another computer vision dataset with adequate similar-
ity, fewer images are needed in the second dataset. Transfer learning is still
mostly applied between datasets with the same modality but the objects in the
computer vision problem may be distinctively di�erent, [She16, NGM15]. We
will give an analysis of Transfer Learning by means of visualizations in Chapter
5. In this chapter we focus on how Transfer Learning can be used from simu-
lated data and how simulated data in general can play a role, when real data is
insu�cient. Simulated data, being data generated from models of physical phe-
nomena, can be seen as one way to add the existing prior knowledge when using
Machine Learning models. In the traditional computer graphics context simu-
lation are visual rendering of geometric models given knowledge of interaction
between light and material. This type of simulation is great as an alternative
to collecting datasets since it links the context to data samples and provides us
with an automatic way of obtaining large quantities of data with target labels.
For some applications, such as weather forecasting, large deterministic models
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based on physical constraints creates the link between past observations and
future predictions. These deterministic models can provide target variables for
other models that link measurements from e.g. satellite sensors, to the observa-
tions e.g. temperature, wind speed, etc. which are needed for weather forecasting
models to predict future states. This concept can be seen as another way where
simulated data impose the physical knowledge we posses into Machine Learning
models. In this chapter we will explore examples of both ways of generating
datasets and explain how they can be useful when dealing with limited data.

4.1 Simulated Input Data

LeCun & Bottou released the NYU Object Recognition Benchmark (NORB)
dataset in 2004, [LHB04]. NORB consists of stereo image pairs of ten toy
�gures from �ve generic object classes at several illumination levels and from
di�erent view angles. NORB can be seen as a way to simulate a real object
recognition scenario, hence the generalizability from models trained on NORB
is an interesting aspect. In [LHB04] encouraging results of the generalizability
between NORB and real world objects were shown, although no training on
images of real world objects was performed. Another way to gather data from
a controlled set-up is by computer simulations. Due to the access to large
databases like ImageNet and the concept of Transfer Learning, little need has
been present for simulations of natural images. Simulation can be a part of
the solution in computer vision problems, where transferring models trained on
ImageNet do not provide a meaningful approach.

In Paper C we present the concept of Transfer Learning between simulated
images and real images and provide an experimental analysis in the SAR ATR
context. Recent advances in SAR simulation tools have enabled the use of
simulated data as a part of the foundation for ATR models, [ØKCL16, KAD16].
An example from the SARSIM (Appendix A.2) dataset can be seen on Figure
4.1. It was developed by the National Space Institute at the Technical University
of Denmark, [KAD16], and provides the foundation for the experiments in Paper
C.

The main idea of Paper C is the concept of using Transfer Learning between
simulated data, SARSIM, and the objective dataset, MSTAR. This concept will
have several advantages over approaches that require simulation of the exact
objects in the objective dataset. First, SAR ATR targets in real world applica-
tions are rarely known to a degree where precise CAD models can be obtained.
Second, precise CAD models of certain objects are cumbersome to build and
requires high amount of manual labor. With Transfer Learning we aim to learn
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Figure 4.1: Left: MSTAR image of T72 tank. Right: SARSIM simulation of
T72 tank. CAD models of exact MSTAR vehicles are not avail-
able so the simulated image is an estimation based on an online
available model of same type.

generic object representations on our simulated dataset that can be transferred
to a real SAR image problem. We show that the simulated objects do not have
to be replicas of the objects in the objective dataset on a vehicle classi�cation
task. The CAD models used for simulations in our experiments are high quality
available models from the di�erent CAD model sharing web pages. Our classi-
�cation accuracy on MSTAR improves, especially under conditions with little
training data available as seen on Figure 4.2. Further, we show that the training
time can be reduced when a network is pre-trained on simulated data.

As MSTAR does not contain many of the real world challenges of operational
SAR ATR, the experiments have potential for further development. With the
literature on transferability of ImageNet in mind, it suggests that di�erent clas-
si�cation and interpretation tasks on SAR data could bene�t from pooling sim-
ulated datasets across a range of object categories. Land cover classi�cation
often looks for features in SAR images that distinguish city areas from e.g.
mountainous or agricultural areas, but these features might as well be shared
with algorithms for classifying vehicles. The potential for SAR ATR models
trained on a wider range of object categories might also be larger as robustness
is accumulated with a model trained within a broader context. The SARSIM
data has been made publicly available to encourage future work in SAR object
recognition to train on high-quality simulated data [KDS].
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Figure 4.2: Test performance after training on di�erent fractions of the
MSTAR dataset, with either pre-training on SARSIM or random
initialized network parameters.

4.2 Modeled Target Data

Predictive analysis is a key element in many remote sensing applications, such as
meteorology, climatology, geo-science, and several aspects of intelligence. While
it is easy to record large quantities of data from satellite borne imaging equip-
ment in Earth observation applications, it is usually labor intensive to obtain
ground truth information for it. Often it requires on site measurements in areas
that are hard to reach and in best case relatively few point measurements are
obtained. Large deterministic models built upon physical information of a sys-
tem such as weather models, can serve as an approximation of ground truth data
in some cases. While not representing the exact truth, these models can supply
target values for predictive algorithms on a global scale. This approach is taken
in Papers D, E where statistical retrieval of atmospheric parameters is studied.
The task is to predict temperatures at 90 di�erent altitudes in the atmosphere
from infrared sounder measurements. For this we investigate Convnets as re-
gression models on the infrared sounding images covering the Earth, containing
several thousand spectral image bands. Little literature is concerned with Con-
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vnets for regression, and in this particular case of multi dimensional input and
output regression new challenges are posed. The many spectral bands of infrared
sounding data pose a computational and statistical challenge. Dimensionality
reduction is therefore an important step in the regression pipeline. In paper
D Minimum Noise Fractions (MNF) are studied as an alternative approach to
Principal Component Analysis (PCA). The results show that MNF improve the
performance of the regression model for any number of decompositions included.
Further, the paper shows that a balance between spatial and spectral sampling
yields higher accuracy, a conclusion that lead us to explore the spatial feature
extraction properties of a Convnet in Paper E. The Convnet approach to at-
mospheric temperature modeling yielded both 32% RMSE improvement over
the commonly used Linear Regression, but also smoother predictions pro�les as
seen on the transects in Figure 4.3.

Figure 4.3: Left: Target surface temperature of the test set orbits from the
ECMWF weather model. Right: Transect pro�les of the atmo-
sphere along a line on Earth, top row shows target temperatures,
lower rows show the absolute mean error from 3 di�erent mod-
els. Altitudes of the pro�les are given in the atmospheric pres-
sure levels. The models tested are Linear regression with single
pixel samples, Linear Regression with 7x7 neighborhood pixel sam-
ples, Linear Regression with 15x15 neighborhood pixel samples
and Convnet with 15x15 neighborhood pixel samples.

A large performance gain was also seen over cloud-marked pixels for the Con-
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vnet. This is promising as cloudy pixels often are left out of these predictions
due to poorer accuracy. Large spatial coverage is important for the perfor-
mance of weather models. Inclusion of neighborhood pixels together with the
spatial feature extraction properties of Convnets seems to improve accuracy on
cloud-marked samples and thereby provide larger spatial coverage.

4.3 Conclusion

In Machine Learning we work within an optimization framework to relate a pre-
dicted target variable y, of the target t, from the input variable x with some
parameterized function y = f(x;W) with parametersW. This chapter provides
insights into exchanging x or t with simulations to provide additional data in
situations where it would not be possible to obtain it from direct measurements.
Paper C concerns the simulations of input data, x, since little real SAR ATR
data is publicly available. As accurate CAD models are rarely available for the
exact vehicles in a SAR ATR problem, the concept of Transfer Learning makes
use of available vehicle models from online 3D CAD communities. The �ndings
in Paper C are very practical and o�er a useful framework for SAR ATR. To
further close the gap between operational SAR ATR data and the simulations,
it is likely that SARSIM could be extended with more simulations. Extra simu-
lated data is needed both in terms of additional vehicle models to create higher
intra class variance, but also with more complicated background scenarios, such
as including trees or other vehicles in the background. Experiments on the in�u-
ence of simulation quality on performance is relevant future work, however, the
limited MSTAR is not optimal for these tests. Datasets with generally broader
context and variance in e.g. background would serve as a better foundation of
evaluating simulation quality.

Paper E works with simulated targets, t, since collecting enough real measure-
ments to match the radiance images from the IASI instrument is infeasible. The
model we train will be an emulator of the model that provides the target vari-
ables. Therefore, we cannot expect to capture physical phenomena not included
in the model which provides the target. Despite this, our emulator model can
still be useful for supplying global coverage of atmospheric temperature pro�les.
Since increased coverage in itself reduces uncertainty in numerical weather mod-
els, the result is useful. We also show in Paper E how the error in cloud covered
areas can be largely reduced by using a Convnet. In general, simulated data
can provide useful foundation for experiments when real data is scarce, but it
is important to know the limitations and approach the problem with the most
suitable framework.
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Interpretations

The deep structure of modern Convnets makes it di�cult to interpret the indi-
vidual layer's functionality. Each layer adds to the level of abstraction in the
data representation, resulting in increased interpretation di�culty. The high
number of layers is therefore both the strength and weakness of Convnets. Be-
ing able to interpret and understand is important, as it can reveal properties
about data generation (sensors), collection (datasets and their biases) and mod-
eling (being able to build robust models).

The most straightforward way to gain insights about a Convnet is to visualize its
internal representations as images. Convolutional layers work as image �lters,
and thereby preserve the spatial structure in the output. This fact makes it
possible to show its transformation of the input as an image as opposed to fully
connected layers' outputs. Most classi�cation Convnets contain pooling layers as
well, which reduces the resolution of these images, hence the approach works best
for early layers. Examples of MSTAR image projection by the �rst and second
layer of a Convnet trained for MSTAR classi�cation can be seen in Figure 5.1.
While it seems like the �rst Convolutional layer mostly perform noise reducing
or smoothing on the images, the second layer's �lters strongly enhance certain
features. Some enhance the shadow and some the target, while another enhances
the boundaries between shadow and target or target and background. The
SVD+SVM classi�cation approach presented in Section 3.1 also performs �lter
projections of the input image before the Support Vector Machine classi�cation.
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(a) Output from the �rst Convolu-

tional layer.

(b) Output from the second Convolutional

layer.

Figure 5.1: MSTAR SAR image of a T72 tank projected through �rst two
convolutional layers of a trained Convnet. The full Convnet ar-
chitecture is described in Table 3.1.

Examples of these projections are shown in Figure 5.2. While the �lters do not
exactly match the Convnet projections, there are similarities, e.g. projection 2
in Figure 5.1b and projection 1 in Figure 5.2. The similarities suggest that some
of the features a Convnet uses to classify the MSTAR vehicles are represented
by maximum variation of local pixel neighborhoods, i.e. the Eigen �lters found
by the SVD decomposition of local patches.

While this type of visualization shown here is useful in some cases it is insu�cient
when moving onto deeper layers of the networks. In deeper layers the abstraction
of �lters makes it complex to interpret. Another challenge when visualizing deep
layers is that the number of �lters usually grow. Instead of showing 12 outputs
as in Figure 5.1a we might have hundreds or even thousands for some modern
Convnet architectures, e.g. as the network in [SVZ13].

5.1 Occlusion Maps

In the concrete case of SAR ATR on MSTAR, interpretations are of great im-
portance to gain new knowledge. Since we know the dataset is not a subset
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Figure 5.2: SVD �lter projections from the SVD + SVM classi�cation ap-
proach explained in Section 3.1 of an MSTAR SAR image showing
the BTR60 vehicle.

of how objects appear in an operational scenario, we cannot consider training
a Convnet on MSTAR solving SAR ATR. On the other hand, learning how
an MSTAR trained Convnet represents the data can explain whether it would
generalize to an operational scenario. One well known limitation of MSTAR
is the stationary background during data collection, i.e. background correlation
between training and test data. Each object has remained on its exact location
during collection and di�erent azimuthal viewing angles have been obtained by
�ying by from di�erent sides. This fact is worrying since possible patterns from
stones, wheel patterns in the surface, or similar, will be correlated with a speci�c
label class between test and training set. In [SR04] the background was shown
to in�uence the classi�cation accuracy in a positive manner, indicating the prob-
lem of stationary backgrounds. The risk is our model learns to recognize these
patterns rather than features on the objects and thereby will not generalize to
operational data. In order to �nd out whether this happens with a trained
Convnet we can visualize parts of the images that are assigned high relevance.
Visualizing predictions and internal representations from Convnets has recently
gained increased interest. Several approaches to, e.g. determining which pixels
in the input image are of highest relevance to the prediction have been proposed
[ZF14], [BBM+15], [SVZ13], [SDV+16]. One approach is to produce occlusion
maps as proposed in [ZF14]. In this method we �nd an image that our model
correctly classi�es with high con�dence. By iteratively occluding the image with
a small mask on top of every pixel position and evaluating the probability of
the correct class, we obtain a map that directly shows the occlusion's e�ect on
the model's con�dence. Further, we can plot a discrete label map of the classes
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which the model predicts during occlusion. This reveals the positions where the
model's con�dence is lowered to such a degree that a misclassi�cation happens.
Examples of MSTAR image occlusion maps can be seen on Figure 5.3, while a
larger set of occlusion masks can be found in Appendix B. The method from
[ZF14] has been adjusted to �t the SAR image domain. Rather than a gray
occlusion mask, we use a patch of background pixels as occlusion mask. While
a gray mask might be neutral in the natural image domain, it is not in SAR
images due to their pixel value distribution. Further, we use a 10 pixel diameter
circular occlusion mask to create smooth probability maps.

The maps on Figure 5.3 show di�erent learnings. First of all they all seem
invariant to occlusions in the background. This indicates that our model su�ers
less from over�tting to background features than the study in [SR04]. On Figure
5.3a we see a circular pattern in the probability map with twice the diameter of
our mask. This pattern arises when one, or few, pixels are very important for the
model con�dence. It is generally worrying that one pixel is important for model
generalization, however there is a natural explanation in the case of MSTAR.
MSTAR is an identi�cation task of 10 speci�c vehicles, and it is therefore not
strange if signi�cant scatters of some targets make them easy distinguishable. In
classi�cation tasks where a certain object variance within classes is present, the
model behavior might be di�erent. If e.g. we are classifying vehicles into general
classes like "tanks", we would expect the cannon to be a signi�cant feature, but
in MSTAR there are four tanks that we must learn to distinguish. The ZSU23-4
vehicle on 5.3a has a parabola disk mounted on its top which yields a scatter
signi�cantly di�erent from all other targets (see picture in Appendix A.1b).
The ZIL131 truck in the occlusion map on Figure 5.3c is the tallest target in
the MSTAR dataset. Since the shadow cast in SAR images is dependent on the
target height we �nd a clear drop in con�dence when the shadow is decreased in
the upper part. In occlusion maps the model con�dence serves as quanti�cation
of the importance of image regions. One can also count number of occluded
pixels that leads to misclassi�cation and by this get a measure of model occlusion
sensitivity across datasets. This is shown in Tables 5.1 and 5.2 for target and
shadow pixels individually. The pixel annotation masks developed in Paper B
are used to mark which pixels belong to the object and which to the shadow.

The elements of Table 5.1 and 5.2 represent the percentage of pixels that falls
into each class when occluded. Low values in the diagonals are results of the
model being sensitive to occlusions in the given area. We can conclude that
the model is generally more sensitive to occlusions of the target rather than the
shadow.
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Table 5.1: The occlusion confusion matrix presents the classi�cations when
occluding pixels marked as targets in the annotation masks. The
diagonal elements are the percentage of times where occluding tar-
get pixels did not have a negative e�ect on the models classi�cation.
Low diagonal values indicate therefore that our model is sensitive
to target occlusion.

t72
tank

bmp2
tank

btr70
trans-
port

btr60
trans-
port

2s1
gun

brdm2
truck

d7
bull-
dozer

t62
tank

zil131
truck

zsu23-
4
gun

t72 tank 45 17 51 01 00 03 00 00 05 06
bmp2 tank 00 71 32 02 00 00 00 00 00 00
btr70 transport 00 03 96 02 00 00 00 00 00 00
btr60 transport 00 03 25 70 01 00 00 00 00 00
2s1 gun 00 04 20 01 69 16 00 00 02 00
brdm2 truck 00 00 00 00 00 100 00 00 00 00
d7 bulldozer 00 00 00 00 00 25 57 00 08 06
t62 tank 02 00 02 00 00 95 00 21 04 21
zil131 truck 00 00 00 00 00 02 00 00 98 00
zsu23-4 gun 00 00 00 00 00 21 00 00 04 81

Table 5.2: The occlusion confusion matrix presents the classi�cations when oc-
cluding pixels marked as shadow in the annotation masks. The di-
agonal elements are the percentage of times where occluding shadow
pixels did not have a negative e�ect on the models classi�cation.
That the diagonal elements are generally high means that the model
is not very sensitive to occlusion of the shadow for most of the
classes.

t72
tank

bmp2
tank

btr70
trans-
port

btr60
trans-
port

2s1
gun

brdm2
truck

d7
bull-
dozer

t62
tank

zil131
truck

zsu23-
4
gun

t72 tank 78 01 02 00 01 00 00 00 09 08
bmp2 tank 00 91 03 00 00 07 00 00 00 00
btr70 transport 00 01 98 00 00 00 00 00 01 00
btr60 transport 00 01 03 93 01 00 00 00 02 00
2s1 gun 00 00 01 00 93 01 00 00 04 00
brdm2 truck 00 00 00 00 00 100 00 00 00 00
d7 bulldozer 00 00 00 00 00 06 82 00 02 10
t62 tank 00 00 00 00 00 10 00 57 04 30
zil131 truck 00 00 00 00 00 00 00 00 98 03
zsu23-4 gun 00 00 00 00 00 01 00 00 00 99
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(a) ZSU23-4 Anti Aircraft Vehicle

(b) T72 Tank.

(c) ZIL131 Truck.

Figure 5.3: Left: original MSTAR image. Center: Probability of correct class
for each position of the occlusion mask. Right: color map where
each color represents the class that the network assigns the highest
probability, for each position of the occlusion mask.

5.2 Layer Activation Clustering

The idea of stacking several layers in Convnets is to break up feature represen-
tations in levels of increasing complexity. With this hierarchical structure early
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layers consist of general representations that can be used to describe image in-
formation across a broad range of context and deep layers become more speci�c
to certain classes. This type of image context representation allows for reuse
of features but whether this happens with trained networks is hard to prove.
[ZF14] proposed a method named deconvolutional networks as an approach to
visualizing feature extractions from layers in a Convnet. In their method an
image is �rst forwarded through a Convnet, then a layer node is selected for
visualization and the node's output is back-propagated into input image space
by inverted operations. This produces visualizations of the information left in
a deep layer with same spatial resolution as the input image. The Convnet ar-
chitecture used in [ZF14] has 1376 feature maps and additional 4096 neurons in
the fully connected layers. This high dimensionality poses a challenge regarding
selecting relevant maps to visualize and this is the limitations of most visual-
ization techniques. In Paper F we propose an unsupervised method to cluster
all feature representations in each layer of a network and produce a discrete
label map from the result. This leaves the user with much fewer visualizations
to interpret. The contributions of Paper F are twofold. First, we propose a
pipeline for feature map clustering that compresses the amount feature map
visualizations from possibly thousands to one per layer. Second, we use the
proposed method to explain why Transfer Learning with Convnets works very
well despite diversity of the datasets on which the model transfer is performed.

Figure 5.4: The �gure shows the labelmaps for an MSTAR image, for each
of three di�erent convolutional layers in a Convnet trained on
MSTAR.
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The proposed scheme to compress feature map visualizations considers each
node in a layer an element of an activation vector. A node is either a feature
map from a convolutional layer or a neuron from a fully connected layer. Each
layer produces activation vectors from all nodes in the given layer, which can
be clustered to �nd groups in the activations. We use the Dirichlet Process
Gaussian Mixture Model (DPGMM), [BJ+06], clustering scheme as it has two
important properties for this application. First, it assumes underlying mixtures
to be Gaussian distributed clusters which suit this problem well assuming there
is some variance in the image representations. Secondly, it initializes an in-
�nite amount of mixtures (in practice a maximum number must be selected)
with priors sampled from the a Dirichlet process. These priors will have rapidly
decreasing probability and during optimization of the data likelihood many of
them will not be assigned any points. This provides an unsupervised cluster-
ing scheme that yields as few clusters as possible to �t the data. We �nd this
property well suited for our application since the number of feature represen-
tations inside the networks are unknown. While feature maps consist of many
activation pixels per image, the neuron from a fully connected layer yield one
vector per image. Two di�erent approaches to visualization and interpretation
are therefore taken. The result of clustering feature map activation pixels can
be restructured into label color maps for selected images as shown on Figure
5.4. The output of a fully connected layer has per de�nition pooled all spatial
information out of its representation of input data. Instead of interpreting spe-
ci�c feature representations, we suggest to interpret fully connected layers by
their ability to cluster a set of images and analyze the context that is preserved
in the resulting clusters. The results in Paper F show that meaningful context
representations exist in deep layers of an ImageNet trained networks when an-
alyzing microscopic cell images that the network never saw during training. It
explains why Transfer Learning works well for even distinctly di�erent datasets,
and shows that it is a large part of the network that contributes to the per-
formance gain. Figure 5.5 summarizes the results from Paper F as label maps
generated from a stained gland cell samples shows meaningful interpretation
inside a Convnet that was trained on ImageNet data, which signi�cantly di�ers
from the cell image. Some meaningful context representation on the cell images
is still present in very deep fully connected layers. The result of clustering all
cell images by the vector representation from a fully connected layers can be
seen on Figure 5.6. Cluster 1 is mainly benign samples and cluster 2 mainly
malign.
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Figure 5.5: Label maps for di�erent convolutional layers in a Convnet trained
on ImageNet. The image passed through the network is a stained
gland cell sample which is signi�cantly di�erent data than what
the network was trained on. Data is from the Warwick QU
datasets described in [SSR15, SPC+17].

Figure 5.6: Clustering result on image vectors from layer 14 (fully connected)
out of 16 layers. The test images are clustered with some context
preserved so the image representation in this layer is likely to be
transferable.

5.3 Conclusion

There are two challenges when interpreting Convnets with visualization tech-
niques. The �rst is to quantify model sensitivity over a set of images, as opposed
to only visualizing single image representation. Secondly, the high dimension-
ality of feature space inside a network leads to the practical issue of manually
verifying the nodes of the network. In this chapter both challenges are ad-
dressed. Occlusion maps o�er a quanti�cation of a model's sensitivity measured
by its con�dence. The technique can be adapted to �t other image modali-
ties by changing occlusion masks to statistically neutral values according to the
distribution. Further, if segmentation masks are provided we can quantify a
model's occlusion sensitivity with respect to individual context categories. High
feature dimensionality in Convnets can be reduced by considering clusters in
feature space. Clustering activations from layers in a Convnet result in a re-
duced visualization space and can be used to interpret the context by means
of the clusters' representation of input data. The proposed activation cluster-
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ing scheme is a general framework and in our case it proved useful explaining
Transfer Learning between dissimilar datasets.



Chapter 6

Discussion and Conclusion

Convnets have a strong ability to represent image context by stacked feature
representations proven by the vast amount of recent literature, experiments and
their use. However, regarding problems related to limited datasets and interpre-
tations of the models, there are still issues that need to be addressed further. In
this thesis a set of tools have been developed for coping with dataset limitations.
The tools are based on changing experimental setups, using simulated input and
output data when real data is sparse and interpreting model functionality by
visualizations. Experimentally, the contributions of this thesis concern obtain-
ing information when dealing with limited datasets. Promising solutions were
found when using simulated data for SAR ATR, a �eld where data collection is
limited by high costs. These results encourage future research to look in this
direction.

Within the domain of SAR ATR this thesis contributed with several methods
to tackle limited datasets. Paper A investigated translational invariance for
classi�cation models to show the algorithm's generalizability to an operational
scenario with higher translational variance. While translational invariance can
be an important parameter, the experiments need to be extended in order to
conclude on optimal classi�ers for SAR ATR. The largest problem is that the
SAR ATR data foundation generally is weak. Paper C showed good results by
using Transfer Learning between simulated data and the MSTAR dataset. This
proves that simulated data can play a larger role in future SAR ATR and possi-
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bly strengthen the data foundation. To account for the limitations in MSTAR
such as lack of depression angles and intra-class variation the SARSIM simu-
lated dataset was extended on these parameters. However, there were several
other parameters on which the dataset could be improved that would further
reduce the gap to operational SAR ATR data. Complex backgrounds with trees
and other vehicles would introduce more variance and challenge classi�ers in
a realistic way. Another general limitation within SAR ATR is the separation
of classi�cation/recognition from detection of objects. If we consider the large
areas of ground a SAR sensor can cover, new studies on �nding areas of interest,
segmenting land cover types and detecting objects to pass to a classi�er would
also be relevant. In Computer Vision the tasks of segmenting or detecting ob-
jects have merged with classifying objects, e.g. in Semantic Segmentation, and
Convnets fully support this concept. In SAR ATR, little data exist for testing
algorithms that e.g. both detect and classify objects in large maps, but this
could be a focus in future work and data collection campaigns.

Dense predictions of targets were performed in both Paper B and Paper E on
two di�erent tasks with good results. Paper ?? concerned predictions over all
pixels in a SAR image with categories target, shadow and background. Paper
E the a pixel-wise predictions of atmospheric temperature pro�les over infrared
spectral measurements. However, the approach of reformulating a Convnet to
work on patches in a pixel-wise manner is computationally expensive. For all
patches that partly overlaps, the Convnet performs some or more redundant
convolutions due to the overlap of the patch windows. With smaller patch sizes
the redundancy decreases hence whether the computational load is a problem
depends on the speci�c application and model design. It is not in the scope of
Paper B to include experiments on optimal patch size. For the small MSTAR
images (128x128 pixels) a patch size of 33x33 pixels is not a problem since an
image can be processed in a few seconds, but for larger SAR maps this might
become a problem. Newer architectures for dense predictions with Convnets
trade the density of convolutions in a patch for a Convnet architecture that
produces larger predictions maps in one go with signi�cantly less computations,
[YK15]. The receptive �eld in the approach of [YK15] from where information is
aggregated into a convolutional layer output can be designed to be the same as
in the patch based approach. Further, spatial resolution is kept so sharp edges
in segmentation masks are well modeled as opposed to other dense prediction
methods, e.g. [LSD15]. The Convnet architecture in [YK15] could be used for
both the segmentation task in Paper B and regression problem in Paper E if
the network output layer is adapted to the respective task.

The experiments in Paper E combined with the dimensionality reduction tech-
niques in Paper D show great potential for Convnets in retrieval of atmospheric
parameters. To further extend on the work in Paper E two main concepts would
be interesting to explore. First, as an alternative to the Minimum Noise Frac-



43

tion algorithm in Paper D, the �rst layer in the Convnet architecture could as
well perform dimensionality reduction. By convolving a kernel across the spec-
tral channels in the Infrared Sounder data, dimensionality reduction could be
learned simultaneously with the regression task. The second extension would be
to include the spatial relationship between the target temperatures as they are
expected to be highly correlated with neighbors in both vertical and horizontal
direction. This could be done by exchanging the least square regression error
function that assumes target independence. Possible alternative error functions
that include information from neighboring targets could be based on Markov
Chains or Markov Random Fields.

Visualization of a Convnet's image representation o�er intuition about its func-
tionality. This is an important tool when evaluating generalizability of a model.
Occlusion maps are one way of gaining insight into the generalizability as it
provides us with a direct pixel-wise measure of model con�dence when a local
area is occluded. The occlusion map experiments on MSTAR revealed that our
model had learned to recognize a vehicle by a single strong re�ection on it. This
fact is worrying for generalizability if we suspect a similar re�ection could be
present on other vehicles given a larger set of vehicle types.

When it comes to understand the internal data representation in Convnets the
main challenges are the abstraction and dimensionality of the representation.
The label activation map presented in Paper F is a direct way of reducing
dimensionality when considering visualizations of Convnets. Further, the label
activation maps consider clusters of Gaussian mixtures on a Convnet's image
representations a way of measuring its relevance to the given data. This was
found very useful for explaining Transfer Learning between dissimilar datasets.

From the results presented in this thesis we �nd several tools and approaches
that can explore a model's generalizability when working with limited datasets.
Generally one can test whether certain problems exist by visualization and use
Transfer Learning and simulated data to tackle these. Alternatively, it might
be bene�cial to scope the experimental setup to cope with expected variances
not covered by the dataset. All these �ndings provide a foundation for building
practical solutions with Convnets for Computer Vision problems.
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Appendix A

Datasets

The datasets used in this thesis are referred to as MSTAR, SARSIM, EMISAR
and IASI. A short description and sample images are shown in this section.

A.1 MSTAR

MSTAR is a set of real SAR images of military vehicles in 30cm x 30cm reso-
lution. The subset often used for testing classi�cation algorithms contains ten
vehicle types recorded at 15° and 17° depression angles. Incidence angles of the
radar radio wave on target are characterized by depression angle and azimuth
rotation angle illustrated on Figure A.1.

The vehicles are densely sampled in azimuthal rotation with an image for each
1° - 2° depending on the object. The training set contains the ten vehicles at
17° and the test set contains the 15° samples.

Besides the classi�cation set, MSTAR contains additional images of empty back-
grounds covering large areas. Additionally, three vehicles in MSTAR have been
recorded at depression angles equal to 30°and 45°. These vehicles are a tank -
2S1, an armored patrol car - BRDM2 and an anti-aircraft vehicle - ZSU23-4.
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(a) (b)

Figure A.1: Illustration of MSTAR depression angles (a) and azimuthal rota-
tion angles (b).

(a)

(b)

Figure A.2: MSTAR images from the 10-way classi�cation subset. A SAR
image of each vehicle is shown (a) at approximately 90°azimuthal
rotation. (b) A regular image of each of the objects in MSTAR.



SARSIM 53

Table A.1: Table of simulation parameters in the SARSIM dataset. In to-
tal the dataset contains 21 168 images. "Medium" background is
generated with a mean backscatter coe�cient of grass and road.

Parameters Instance Number
Azimuth Angles 0, 5, ..., 355 72
Depression Angles 15, 17, 25, 30, 35, 40, 45 7
Classes Tanks, Trucks, Buses, Cars,

Humwees, Bulldozers, Motorbikes 7
Models 2 pr. class 14
Background Grass, Road and Medium 3
Resolution 30cm 1

A.2 SARSIM

SARSIM is a simulated SAR ATR dataset developed by DTU Space in collabo-
ration with Terma A/S. The goal has been to extend on the information about
SAR ATR that can be obtained from MSTAR. Rather than ten speci�c vehicles
SARSIM contains seven vehicle classes and each has two instances of vehicles.
SARSIM has a 5° azimuthal sampling of objects, but includes seven di�erent de-
pression angles to study the change in object appearance with respect to these.
Further, objects have been simulated with di�erent backgrounds. An overview
of the settings can be seen in Table A.1.

A.3 EMISAR

EMISAR is a fully polarimetric SAR system developed at DTU Space, i.e.
it is capable of transmitting horizontal and vertical polarized radio waves as
well as receiving both and do every combination of transmission and receiv-
ing these. It has two radar frequencies L-band (λ ∈ 15 − 30cm) and C-band
(λ ∈ 3.75 − 7.5cm). [CSD+98, MCSD91], provides the full description of the
technical system details. The dataset referred to as the EMISAR dataset in this
paper in a study of vegetation growth with measurements from the EMISAR
system. The recordings are of �elds near the danish village of Foulum which
is the location of the Danish Centre For Food and Agriculture. There are 6
di�erent types of crops marked in the images at Figure A.4, Rye, Grass, Winter
Wheat, Spring Barley, Peas and Winter Barley.
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Figure A.3: Left column: Real SAR image from MSTAR of T72 Tank. Middle
Column: SARSIM simulation of T90 Tank in 30cm pixel resolu-
tion. The rows represent 15°, 30°and 45°depression angles respec-
tively.
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(a) March. (b) April. (c) May.

(d) June. (e) July. (f) August.

Figure A.4: Color coded polarimetric SAR images from the EMISAR Foulum
dataset. EMISAR Foulum dataset is a crop classi�cation dataset
with polarimetric SAR images of the whole growth season on
certain crop type �elds.

A.4 Infrared Atmospheric Sounding Interferom-

eter

The Infrared Atmospheric Sounding Interferometer is an instrument on board
the MetOp satellite series. It measures infrared emissions in the spectra from
3.62 - 15.5 µm wavelength (2760 - 645 cm−1), with the intention of providing
temperature and water vapor pro�les of the atmosphere. The measurements
consist of spectra with 8461 bands and more than one million of these are
collected each day. Each orbit from IASI produces 1530 scans of 60 points
across track and approximately 14 orbits are collected each day corresponding
to two global coverages.

For Paper D and E a dataset of 13 orbits from august 2013 were collected and
structured in rectangular grids of 1530x60 pixels. These were matched with
temperature and water vapor atmospheric pro�les from 90 di�erent altitudes.
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The temperature and vapor pro�les are outputs from a weather model by The
European Centre for Medium-Range Weather Forecasts (ECMWF). Each orbit
has corresponding cloud and land fraction masks associated with it. With these,
prediction errors can be analyzed according to e.g. "cloud free" versus "cloudy"
predictions.



Appendix B

Occlusion Maps

Provided in this appendix are occlusion maps according to the description in
Section 5.1 from SAR images in the MSTAR dataset. There are two occlusion
maps per vehicle in the MSTAR dataset. The maps support the analysis in
Section 5.1, e.g. there seems to be no vehicles where the model is sensitive to
features in the background of the image.

B.1 2s1 Tank
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B.2 BMP2 Tank

B.3 BRDM2 Patrol Car



BTR60 Armored Personnel Carrier 59

B.4 BTR60 Armored Personnel Carrier

B.5 BTR70 Armored Personnel Carrier
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B.6 D7 Bulldozer

B.7 T62 Tank
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B.8 T72 Tank

B.9 ZIL131 Truck
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B.10 ZSU23-4 Anti Aircraft Vehicle
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Abstract
In this paper we present a comparison of the robustness of Convolutional Neural Networks (CNN) to other classifiers
in the presence of uncertainty of the objects localization in SAR image. We present a framework for simulating simple
SAR images, translating the object of interest systematically and testing the classification performance. Our results
show that where other classification methods are very sensitive to even small translations, CNN is quite robust to
translational variance, making it much more useful in relation to Automatic Target Recognition (ATR) in a real life
context.

1 Introduction

Compared to classification studies on natural images,
Synthetic Aperture Radar (SAR) datasets are often
smaller and contain more biases. One of very few pub-
lic available SAR Automatic Target Recognition (ATR)
datasets is the Moving and Stationary Target Acquisition
and Recognition (MSTAR) that was collected during the
1990s. MSTAR contains several subsets with different
tasks to solve. One of these is the 10 target classifica-
tion task where 10 specific vehicles must be recognized.
Although it is an interesting problem this does not con-
tain much class variance. A more realistic scenario could
be how well general target classes like "tanks" that might
contain many different instances can be recognized from
other classes of vehicles like "cars" or "busses".
The targets in MSTAR are densely sampled along az-
imuthal object rotation, but far most images are taken
at 15◦ and 17◦ depression angles with almost no back-
ground variation.
Recent advances in Convolutional Neural Networks
(CNNs) for computer vision problems makes it interest-
ing to study the benefits of these algorithms on SAR prob-
lems as well. This has been done for the MSTAR dataset
by Morgan in [3]. In [3] a CNN classifier is applied to the
10 target classification task from MSTAR and it achieve
results similar to other state of the art methods bench-
marked on this problem, e.g. by [4], [5], [7] and [8]. Due
to the sparsity of object representation in the data, there
are more investigations to be made in order to find the
best classification models.
In this article we first show how to generate a simulated
dataset where the amount of translational variance is big-
ger than for the MSTAR dataset (see Section 2). We then
describe the design of the CNN used as well as the clas-
sification algorithms for comparison (see Section 3). Fi-
nally we show the results of the comparison (Section 4)
and conclude that the convolution layers in a CNN can
make it more invariant to translational variance, and su-

perior to other machine learning classification algorithms
(Section 5).

2 Data Simulation

For our SAR image simulations, the geometry consists of
a CAD model placed on a corrugated surface representing
the terrain. The surfaces are generated by selecting points
in an ground grid (x-y plane) and then picking the vertical
displacement (the z component) from a normal distribu-
tion with a given variance. The ground planes vertical
displacement is then low-pass filtered to give a smooth
and more natural terrain.
A highly simplified optical algorithm is used to trace mul-
tiple rays and find the intersection points between the in-
cident signal and the model and/or terrain. The cell value
in the image corresponds to the range / cross-range value
of the intersection point. Here a simple diffuse scattering
contribution is found from the angle between the surface
normal at the intersect point and the incident ray direc-
tion. Based on whether a ray intersects with the model
or terrain, the value of the cell is scaled with a scatter-
ing cross section representing the material (metal for the
target and soil for terrain).
Parameter values for the simulation model, such as ma-
terial reflection coefficients and background variation,
have been adjusted according to images from the MSTAR
dataset. This is done by manually defining boundaries in
an MSTAR image for background and target, and then
analyse the values from each region. The relationship be-
tween the median from the two sets of values was used to
define the relation between the reflection coefficients for
terrain and vehicle model in the simulation. The terrain
topology variation in our simulation is adjusted so his-
tograms from background pixels in a MSTAR image and
in a simulated image is most alike.
By adjusting the parameters in this way, we get a simu-
lated image that has a visual appearance close to the real



SAR images, despite using a simple simulation proce-
dure. In Figure 1 an image from the MSTAR dataset can
be seen together with a simulated image from our dataset.

Our simulation tool is implemented in python and GPU
accelerated with the VTK toolset. It takes approximately
2 minutes to simulate an image of 192x192 pixel resolu-
tion.

(a) MSTAR image of a
T62 tank.

(b) Simulated SAR image
of a leopard tank.

Figure 1: Comparison of an MSTAR image and a similar
vehicle modelled with our SAR simulation algorithm.

2.1 Dataset

Our dataset is constructed from 14 CAD models from 7
different vehicle classes, so each class has two instances.
When simulating the images, a background is chosen be-
tween 100 different generated examples and rotated ran-
domly. Then a model is placed with a given rotation
and images from seven different depression angles are
generated. A shadow mapping technique is used to re-
move points not visible from a the radar position so these
does not contribute to the simulation. We sample with
20◦steps of azimuthal object rotation which gives us 18
images per vehicle per depression angle. This is in to-
tal 1764 images of 192x192 pixel resolution and to look
most like MSTAR data our pixel spacing is 0.2 meter and
resolution 0.3 meter.

CAD model examples from each target class are shown
in Figure 2 along with a simulated SAR image of the
given model.

Figure 2: Examples on target instances and their sim-
ulated SAR image. Pixel values are clipped in order to
show the background in the simulated images.

When training our machine learning algorithms we ex-
tract sub-images of 128x128 pixels from our dataset.
This allow us to gradually extract datasets that have
higher translational variance of the target. Our method
is illustrated at Figure 3. The maximum distance away
from the center which our sub image can be extracted
is 192−128

2 = 32 pixels in each direction. We extract
datasets with different random translation levels within
32 pixels. By gradually increasing the level of random
translation we can measure how it effects the accuracy of
the algorithms.

Figure 3: Illustration of how sub-image extraction gives
us translational target variance.



3 Classifiers

The classifiers used in our study are all end-to-end learn-
ing based models. This means they all take raw pixel val-
ues as input and there are no hand crafted feature extrac-
tors preprocessing the data for the classifier. One of the
nice properties on Convolutional Neural Networks is its
ability to learn feature extractors in its convolution layers
and base a nonlinear decision boundary on top of this.
The data set described in Section 2.1 is split randomly
in five parts on which we make a 5-fold cross-validation
of all classifiers. This gives us training set sizes of 1411
samples and test sets of 353 samples for each fold. We
report performance of our classifiers as the fraction of
correct classifications averaged over the cross-validation.
The classifiers has been chosen to span complexity from
very simple classifiers (K-Nearest Neigbor) to state of
the art (Convolutional Neural Networks and Random
Forests). We have futhermore tested various subcompo-
nents of the CNN, the Multi Layer Perceptron i.e. the
fully connected layers in the CNN and the Softmax i.e
the output layer in the CNN.

3.1 Convolutional Neural Network

Our CNN model has 5 layers with trainable parameters,
3 convolutional and 2 fully connected hidden layers. We
train our model with a stochastic gradient descent (SGD)
algorithm minimizing the multiclass log-loss over our 7
target classes.

Layer kernels kernel size Dropout fraction
C1 18 9x9 0.25
C2 36 5x5 0.25
C3 120 4x4 0.25
F4 400 120 0.50
F5 7 400 0.25

Table 1: CNN layer sizes shown. In total the model has
138’159 parameters.

After the first two convolution layers we apply a max
pooling operator to reduce the dimensionality. The first
max pooling operation has a window size of 6x6 pixels
and the second a window size of 4x4 pixels. After all
layers we apply a Rectified Linear Unit activation func-
tion as Krizhevsky et al. in [2] showed how this can make
CNN’s converge faster. We found it necessary to apply
the dropout technique described by Srivastava et al. in
[6] to prevent overfitting. In this technique a fraction
of randomly chosen network weights are omitted from
the weight updates in each iteration of the SGD algo-
rithm. Our model layer sizes together with the fraction
of dropout used can be seen in Table 1. Considering the
amount of variation in target appearance in our dataset, a
training set size of 1411 samples cannot be considered a
lot and it seems reasonable that measures must be taken
to prevent overfitting to the training data.

3.2 Classification models

We use an implementation of Random Forest [1], an en-
semble method of classification trees from the Python
library scikit-learn. The primary parameters for the Ran-
dom Forest is the number of trees N and the number of
features per tree m. The parameters (N,m) have been
found by 5-fold cross-validation to be 512 trees and 128
features per tree.

K Nearest Neighbours is the classic approach of storing
all training images together with their class. At test time,
euclidean distances is calculated between the given test
images and all training images and the k shortest dis-
tances vote which class the test images belongs to. the
k-parameter have found by 5-fold cross-validation to be
optimal at k = 1.

A simpler neural network where the input layer size
is number of pixels 1282, one hidden layer with 128
nodes and a softmax layer to output probabilities for the
7 classes in the dataset (2’114’432 trainable parameters).

Our softmax classifier is a one layer shallow neural net-
work normalized with a softmax function output. It is
similar to the Multilayer perceptron but has only a 7 neu-
rons with each 16384 weights giving in total 114’688
trainable parameters.
.

4 Results
At Figure 4 our results can be seen. The test score which
is the percentage of correct classifications on the test data
averaged over 5-fold cross-validation procedure.

It can be seen that the Convolutional Neural Network
does not decrease in performance as fast as the other al-
gorithms when we increase translational object variance.
It is not a surprise that there is some decrease in all classi-
fiers performance, because we keep the number of train-
ing images fixed as well as the size of the classifiers.
When increasing the dimensions of variance we should
also expect a lower performance. The interesting fact,
seen at Figure 4, is the relative performance drop between
the CNN and the other classifiers. It clearly shows that
CNN can be trained to have translational invariance.

5 Conclusions
There are many ways to increase the problem size shown
in this article towards more realistic scenarios for SAR
ATR. We have created a simulated dataset that covers
some many type of variance in target appearance. By
controlling the amount translational variance of target
alignment we have shown how CNN are superior to oth-
ers machine learning algorithms in dealing with transla-
tional variance.
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Figure 4: Test score plotted as a function of the percentage of randomly translational variance. Note that the first drop
in performance happens around 3 pixels random translational variance

The impracticalities of collecting real SAR datasets that
represent all natural variances of target representation
for SAR ATR, are many. It is therefore very important
to consider realistic problems when benchmarking algo-
rithms on the sparse data available. We have shown that
when considering the best algorithms for SAR ATR one
must know the precision of placing targets consistently.
Whether it is from a detection algorithm or manually ex-
tracted target patches, their displacement variability must
be considered as even small inconsistent displacements
can have big impact on the accuracy of a classifier. We
have shown that some algorithms have a drastic decrease
in performance when objects vary in position with as lit-
tle as 3 pixels.
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Abstract—Segmentation of Synthetic Aperture Radar (SAR)
images has several uses, but it is a difficult task due to a number
of properties related to SAR images.
In this article we show how Convolutional Neural Networks
(CNNs) can easily be trained for SAR image segmentation with
good results. Besides this contribution we also suggest a new
way to do pixel wise annotation of SAR images that replaces a
human expert manual segmentation process, which is both slow
and troublesome. Our method for annotation relies on 3D CAD
models of objects and scene, and converts these to labels for all
pixels in a SAR image.
Our algorithms are evaluated on the Moving and Stationary
Target Acquisition and Recognition (MSTAR) dataset which was
released by the Defence Advanced Research Projects Agency
during the 1990s. The method is not restricted to the type of
targets imaged in MSTAR but can easily be extended to any
SAR data where prior information about scene geometries can
be estimated.

I. INTRODUCTION

A lot of research has been done in image segmentation.
The objective is typically to simplify image information so
that different features or measures can be extracted and used
for e.g. classification of objects. The same objectives are
relevant when segmenting SAR images. For example objects’
height above ground in a SAR image can be estimated from
its shadow length, since the depression angle is inherently
known, but only if the shadow can be well segmented.
Transferring image segmentation methods to SAR images
is not easy. SAR images contain speckle that arises with
scatterers complex summation within a resolution cell from
coherent signals. This type of noise together with SAR
sensors’ representation of geometry makes it hard to rely on
edge information in SAR image segmentation.
Relying purely on intensity information is also a problem
since intensities are not unique for different areas in a SAR
image. This is illustrated with the intensity density plots in
Figure 1 for the type of areas concerned with the data we
work on in this article.

Another problem in automatic segmentation is the difficulty of
obtaining baseline annotations. We need these in order to test
our algorithms, but they also enable supervised segmentation
methods if parts of annotated data is used for optimizing
prediction models. Manual expert annotation is a common

way of measuring performance, but this is difficult in SAR
images. G. J. Power and R. A. Weissenseel have shown in
[1] that manual segmentation is a complicated process that
benefits from their concept of supervisory control. They also
show that manual segmentation suffers from inter- and intra
operator variability.

Fig. 1: The three density plots come from intensity values
defined by the region of our annotation algorithm.

We propose a new method to create baseline segmentations
to test other segmentation algorithms against. Our method
uses 3D models of the known targets to create a labelled
image with pixels annotated as target, shadow or background.
Based on rasterization and further pixel remapping we are
able to transform the 3D model into an approximated radar
view. The software developed to create these segmentations
along with source code will be publicly available1. Our
software, named SARBake, is intended as a tool for research
in MSTAR and similar datasets, but the concept could be
extended to any SAR data where the objects and scene can
be well modelled. On top of an object and landscape model,
the algorithm requires knowledge about object orientation. It
is therefore not suited as an automatic segmentation method
in SAR image analysis. In the MSTAR dataset both object
name and orientation are known for all images, which makes
this data suitable for testing our algorithm. An example of a
MSTAR image can be seen in Figure 2.

1Source code available on GitHub. Links and information can be found on
the 1st author’s homepage.



Fig. 2: SAR image from the public MSTAR database. The
particular image shows a BTR60 armored personnel carrier.

In this article we will also investigate the performance
of Convolutional Neural Networks (CNN) as a supervised
segmentation approach.

CNNs have shown great results in computer vision lately
as they are able to learn both hierarchical structured feature
extractors and good classifiers in a single model optimization.
Due to its great success in classification we have chosen to
classify a patch around each pixel in the image according to
the segment it belongs to. We have used a Deep Learning
library for Python called Keras [2] that builds on top of the
Python machine learning library Theano [3], [4]. Our method
is further described in Sec. III

II. METHOD FOR BASELINE SEGMENTATIONS - SARBAKE

To create the baseline annotation, geometric properties of
the target must be known. The MSTAR dataset is labelled
with target vehicles, for example T62 tank or BTR60 armored
personnel carrier, as well as viewing angle. CAD models of
most vehicles are freely available from online communities
and we use such given models as input to the method.

Simple rendering of a model does not provide information
about the source of energy in the individual pixel intensities.
This would require a simulation of recording and processing
the SAR images, which is a complex and computationally
expensive task. Our model produces a mask of the area
illuminated by a radar wave when converted into SAR image
coordinates.

Listed below are the assumptions made in our method,
1) With orthographic projection in the rendering phase, far-

field radar viewing conditions are assumed.
2) The 3D models found for SAR targets are close approx-

imations to actual targets imaged by the SAR sensor.
3) No target scattering properties are taken into account,

i.e. we assume that surfaces illuminated by the radar
wave belong to the given target.

4) Effects from a wide angle aperture of the radar are
small and can be neglected, i.e. the SAR image can be
approximated with a scan of 2D slices through a 3D
object representation.

SARBake consists of two steps, model rendering and mapping
from 3D points to 2D points.

A. Model Rendering

The model is rendered using an orthographic projection.
When performing orthographic projection, view rays are
parallel and the size of the projection does not depend on the
distance from the virtual camera to the object. The pixels of
the rendered image contain the distances to surface of the
model as floating-point numbers. Since the resulting image
contains depth from the virtual camera it is known as a depth
map.

For each view configuration we render the target and
the ground in two separate render calls. This allows us to
compute the shadow cast by the model onto the ground,
including the distance from the surface point to the ground
point for each view ray. Using geometry to represent the
ground allows us to easily extend the method to work on
nonplanar ground surfaces.

This method could be implemented using a ray tracer,
however it fits well with the hardware rasterizer found in
modern graphics cards. Our implementation uses OpenGL
to render the depth map. This is achieved by enabling
hardware-accelerated z-buffering, which stores the minimum
distance between the rendered surface and the image plane.
After rendering, the values from the z-buffer are read and
transformed as described in Sec. II-B.

The rendering speed depends on the graphics card, the
complexity of the model and the resolution of the image plane.
For a model of 500k triangles the rendering time is 14ms on
a NVIDIA GeForce GT 650M 1024 MB graphics card.

B. Mapping to Radar Coordinates

The complete mapping of a 3D CAD model to pixel labels
in a SAR image can be described as transforming points in a
(x, y, z)-space to points on a (x, r)-plane. This is illustrated
in Figure 3. As a SAR sensor records reflection intensities
in range intervals, r, from its position along the trajectory
x, (x, r) spans our image plane. From the model rendering
process described in the previous section all points in (x, y, z)-
space are transformed into points in (x, r, z

cos(α) ), where α is
the depression angle of the radar.

In the depth map from the model rendering process we
get an image where columns correspond to the displacement
in the x-axis, and rows to the location on the transformed
z-axis, ( z

cos(α) ). The intensities of the output pixels represent
the distance from the camera plane to the target. The next
step is simply to eliminate the spatial location in rows. This
is done by column wise re-sampling the depth intensities into
a series of labelled pixels with ”0” indicating background,
”1” indicating target, and ”2” indicating shadow. Figure 4
illustrates the concept of representing the different labels
along a line perpendicular to the image plane. For the



Fig. 3: Illustration of how a SAR sensor maps 3D real world
points into a 2D plane expanded by the x displacement and
the range from the radar.

Fig. 4: Illustration of sampling along the r-axis.

cross-section in Figure 4, there is a distance where neither
background nor target are present and this represents the
shadow. The shadow distance could be calculated, but as
described in the previous section, we render a ground plane
and read the shadow distance from that.

If an exact target position is known when the SAR image
is recorded, the segmentation can be positioned according to
that. This is not the case with the MSTAR SAR images, and
neither is a fixed offset of a model the solution to a good
placement of our baseline segmentation. Instead we chose to
perform a 2D cross-correlation between our target labels and
the SAR image and take the position of the maximum as our
placement. In Figure 5 a SARBake result can be seen.

III. CONVOLUTIONAL NEURAL NETWORKS FOR
SEGMENTATION

CNNs for segmentation of both natural images and medical
images have been investigated before, as shown in [5] and
[6]. There are mainly two conceptually different approaches.
One approach is to extract patches around every pixel in
the image, and for each of these patches a label for the
center pixel is predicted. This often works well, but for large
images it is computationally costly. In the second approach,

Fig. 5: SARBake baseline annotation of an MSTAR image.
The vehicle imaged is a BTR60 armored personnel carrier.

shown in [6], the CNN model is rewritten into a function
that can predict a full segmentation mask for each input
image given. In this approach there is a compromise between
reducing dimensionality so that many layers can learn complex
hierarchical features and simultaneously preserve sharp edges
in the segmentations.

Due to the SAR images in MSTAR being fairly small, most
of them are 128x128 pixels, we have chosen to simply extract
patches of size 33x33 pixels around every pixel in the image
and predict a label for each of them. With a patch size of
33x33 pixels we ensure that enough context information from
surrounding edges is included for the network to learn well
describing features, but other patch sizes could as well have
been chosen. We disregard the boundaries when extracting
patches, thus we end up with a segmentation mask of the
96x96 for the center of the image.

In Figure 6, an illustration of parsing data through our
model can be seen, as well as the network architecture. The
design is inspired by early work in CNN research presented
by LeCun et al. [7], but other model architectures can as
well be explored for this task. Table I describes the individual
layers in the model. It has 22,917 uniformly random initialized
parameters, which must be considered a small CNN. However,
considering the problem complexity and runtime for a whole
image segmentation it seems reasonable to not choose a very
large networks for this task.

Our loss function is the multiclass logloss function, also
known as the categorical cross entropy loss function, and
we optimize it with a stochastic gradient descent algorithm
evaluated on batches of training data. The loss function can
be seen in Eq. 1.

E(W,Dm) =
1

|Dm|

|Dm|∑

m=0

N∑

n=0

Tm,nlog(ym,n(xm,W)) (1)

where Dm is a minibatch of data and N is the number of
labels (three in our case). Tm,n is a binary vector of size N ,
where each element represents a label and the value represents



Fig. 6: Illustration of our Convolutional Neural Network model. The network output is probabilities of each class,
target/shadow/background, for the center pixel of the input sample.

Type Image Size Feature Maps Kernel Size
Input 33x33 1 -
Convolutional + ReLU 28x28 8 6x6
Max pooling 14x14 8 2x2
Convolutional + ReLU 10x10 18 5x5
Max Pooling 5x5 18 2x2
Convolutional + ReLU 3x3 100 3x3
Fully connected + ReLU - 3 900
Softmax - 3 -

TABLE I: Individual layers in the Convolutional Neural Net-
work model. ReLU indicates that a Rectified Linear Unit
activation function has been applied to the output.

Parameter Value
α 0.9
β 5 ∗ 10−4

γ 1 ∗ 10−6

ε 0.0125

TABLE II: Training parameter values.

whether the label is true for the m′th sample. ym,n is a
predicted vector of probabilities for the m′th sample, given
the weights in W.
When updating our weights we make use of momentum based
learning, weight decay and learning rate decay. Our update
function can be seen in Eq. 2.

εi+1 = εi ∗ (1− γ)

gi+1 = αgi − βεi+1Wi − εi+1
dE

dWi

Wi+1 = Wi + gi+1

(2)

where α is the momentum coefficient, β our weight decay,
εi+1 our learning rate at iteration i+1, and γ our learning rate
decay. The values used for the training parameters are shown
in Table II.

When performing the actual segmentation, patches around
each pixel in the image are extracted and passed through the
model, but at training time a balanced dataset of patches has

been created. This has been done by selecting 100 random
MSTAR images in the subset called ”Mixed Targets”, all
recorded at 17◦ depression angle. This subset has seven
different vehicles such as a bulldozer, a truck, personnel
carriers, and tanks. All vehicles have been recorded with <2◦

sampling of rotation angles. Since there are fewer target pixels
than shadow- and background pixels in an MSTAR image,
patch samples from the shadow and background class were
removed until an equal amount of samples of each category
was achieved. This yields approximately 100k samples in total,
which has been divided in to a training and test set by a ratio
of 70% / 30%.

At training 29,640 weight updates with a minibatch size of
128 samples were run. The whole training took 27 minutes on
an NVIDIA TITAN Black graphics card, but the optimization
converges fast, reaching an 11% test error after just 592 weight
updates. After training we reached a test error of 5.81%.

IV. RESULTS

The MSTAR Mixed Targets subset contains a total of 2,049
images of 7 vehicles recorded at 17◦ depression angle. CNN
segmentation on all these images was performed, except the
100 images used for training.

We have chosen to report our performance measures in Dice
scores, as it is a common measure in segmentation challenges.
First shown in [8], Dice scores are defined as Eq. 3. A good
property of the Dice score is that correct predictions are
normalized with the mean area of the baseline annotation and
the predicted segmentation. Since shadows often takes up more
space in a SAR image taken from a low depression angle, than
the target itself, Dice scores provides a more fair comparison
between our performance on these two classes.

SDice =
2|A ∩B|
|A|+ |B| (3)

where A is the segmentation result and B the baseline
annotation to compare against.
Dice score density plots of our segmentation performance on



all 1949 test images can be seen in Figure 7.
A typical segmentation from our CNN model can be seen

Fig. 7: Dice score density plots for target- and shadow
segmentations. Target: mean = 0.76, std = 0.065. Shadow:
mean = 0.80, std = 0.074

in Figure 8a with the corresponding SARBake annotation in
Figure 8b. However, some results are corrupted by dark areas
not located next to the target, as seen in Figure 9. The cause of
this is likely to be shadows from objects outside of the image
region.

(a) CNN segmentation result.

(b) SARBake segmentation result.

Fig. 8: T62 tank. 17◦ Depression angle, 329◦ azimuthal object
rotation. Dice score Dtarget = 0.82, Dshadow = 0.81.

(a) CNN segmentation result.

(b) SARBake segmentation result.

Fig. 9: BTR60 armored personnel carrier. 17◦ Depression
angle, 329◦ azimuthal object rotation. Dice score Dtarget =
0.81, Dshadow = 0.71.

A. Re-evaluation

The prediction error in the lower right corner in Figure 9a
is clearly a result of inaccurate modelling in our baseline an-
notation. Regardless whether the dark area is due to a shadow
cast from another object or from topographic variations, it is
information we do not have for our annotation. It is therefore
also relevant to test our prediction model excluding these areas.
We have chosen to constrain our prediction so that pixels
classified as shadow must lie behind a target pixel in every
column of the image. This is done after prediction of a whole
image, where pixels not fulfilling our constraint are set to be
shadow. After this post processing, the result from Figure 9a
is shown in Figure 10. The difference in Dice scores with and
without this constraint on the prediction can be seen in Table
III.

Furthermore, we evaluated our model on data recorded at
15◦ depression angle. At this angle there are an additional
1850 images. Despite not being part of the training data we
achieve similar results at the 15◦ data, as seen in Table IV.

V. CONCLUSION

The result from our annotation process can only be quali-
tatively evaluated since no ground truth exist for the MSTAR



Dice score Before After
Mean 0.80 0.83
Standard deviation 0.075 0.065

TABLE III: Mean and standard deviations of shadow seg-
mentation. Dice score before and after the post-processing
algorithm that removes shadow labelled pixels if they are not
located behind target labelled pixels.

Fig. 10: The prediction from Figure 9a, where shadow pixels
are constrained to be located behind target pixels.

Dice score Target Shadow
Mean 0.76 0.84
Standard deviation 0.078 0.066

TABLE IV: Mean and Standard Deviations of segmentation
Dice score for both target and shadow when evaluated on data
from 15 ◦depression angle.

images. The visual result seems very convincing, but the con-
cept’s drawback is that approximate CAD models of the target
imaged must be obtained in order to achieve a good result. Our
method is fast and consistent and, if 3D models were found for
all objects in MSTAR, the total dataset of nearly 14000 images
could be annotated in less than a day on a computer with a
decent graphics card. For the seven vehicles in this dataset,
adequate models were found by searching online CAD model
sharing communities. We showed how a Convolutional Neural
Network was able to learn segmentation of SAR images from
our automatic annotation method, achieving low error rates.
Our segmentation results were obtained without specific effort
in fine tuning network architecture and training parameters. It
could be relevant for future work to investigate the effect of
different patch sizes as well as other model designs, but we
have shown here that even with a simple structure good results
can be achieved. Being able to predict connected segmentation
masks that seem to rely on actual background features, this
type of segmentation method seems very promising for SAR
image data.

We will make all SARBake annotations used for this
research available on the first author’s website to encourage
further research in the field.
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Improving SAR Automatic Target Recognition
Models with Transfer Learning from Simulated Data

David Malmgren-Hansen, Anders Kusk, Jørgen Dall, Allan Aasbjerg Nielsen, Rasmus Engholm,
and Henning Skriver

Abstract—Data driven classification algorithms have proven
to do well for Automatic Target Recognition (ATR) in Synthetic
Aperture Radar (SAR) data. Collecting datasets suitable for these
algorithms is a challenge in itself as it is difficult and expensive.
Due to the lack of labelled datasets with real SAR images of
sufficient size, simulated data plays a big role in SAR ATR
development, but the transferability of knowledge learned on
simulated data to real data remains to be studied further.

In this paper we show the first study of Transfer Learning
between a simulated dataset and a set of real SAR images. The
simulated dataset is obtained by adding a simulated object radar
reflectivity to a terrain model of individual point scatters, prior to
focusing. Our results show that a Convolutional Neural Network
(Convnet) pre-trained on simulated data has a great advantage
over a Convnet trained only on real data, especially when real
data is sparse. The advantages of pre-training the models on
simulated data show both in terms of faster convergence during
the training phase and on the end accuracy when benchmarked
on the MSTAR dataset. These results encourage SAR ATR
development to continue the improvement of simulated datasets
of greater size and complex scenarios in order to build robust
algorithms for real life SAR ATR applications.

Index Terms—SAR ATR, Convolutional Neural Networks,
Transfer Learning, SAR Image Simulation.

I. INTRODUCTION

In Automatic Target Recognition (ATR) for Synthetic Aper-
ture Radar (SAR) applications it is well known that lack
of realistic and big labelled datasets is a challenge for the
development of robust algorithms. For statistical studies of
SAR ATR algorithm performance, it is important to have
sufficient data. However, just as important is it to have a
great variety of realistic scenarios. The latter should cover
objects on different kind of backgrounds, (e.g. grass, road,
gravel) but also scenes where objects are closely co-located,
occluded by trees and similar challenging scenarios, dependent
on its relevance to the ATR application at hand. Such datasets
will be difficult or at least very expensive to collect for each
individual SAR ATR application. Hence simulated data has
great potential to improve this field.

The Moving and Stationary Target Acquisition and Recog-
nition (MSTAR) dataset has been used for benchmarking algo-

David Malmgren-Hansen and Allan Aasbjerg Nielsen are with the De-
partment of Applied Mathematics and Computer Science at the Technical
University of Denmark. e-mail: (see http://people.compute.dtu.dk/dmal/ or
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Anders Kusk, Jørgen Dall and Henning Skriver are with National Space
Institute at the Technical university of Denmark.

Rasmus Engholm is Senior Data Scientist at Terma A/S, Lystrup Denmark

rithms since it was collected by AFRL1 and DARPA2 between
1995-1997. The vehicles in the dataset are densely sampled in
azimuthal view angle but are only recorded at few depression
angles and the backgrounds remain stationary throughout the
dataset. Additionally, vehicles are centered in the image, and
there are no confusing features in the background (trees, other
vehicles, etc.). Due to these shortcomings it should not be
considered as a random subset of operational interesting SAR
ATR data [1]. Despite this, MSTAR is interesting since it can
show an algorithm’s robustness to the statistical properties
of real SAR data. MSTAR can also reveal the algorithm’s
generalizability of features learned on one depression angle,
to another, and thereby whether 2° difference in depression
angle sampling is adequate in ATR development. Several data
driven classification models have proven to do well on the
MSTAR task, such as [2], [3], [4], [5], [6], [7]. In order to learn
more about the algorithms’ scalability to larger recognition
tasks with more targets, or complex scenarios, the potential of
simulated data is big.

Research on improving Convolutional Neural Networks
(Convnets) by including simulated data dates back to 2004 [8]
for natural images. Here training images of toy figures made
the Convnet generalize to predictions on real images, when
complex backgrounds were inserted in the training samples.
In more recent work, [9], [10] it is suggested to use rendered
images from 3D CAD models to help training Convnets in spe-
cific applications where labelled data is sparse. In [9] there is a
specific focus on making the rendered images realistic. Instead
of rendering complex backgrounds it is suggested to use real
backgrounds and add rendered objects to them. Following such
an approach for SAR data to enhance SAR ATR development
is suggested several times in the literature, [11], [12], [13], but
whereas realistic rendering is highly developed in the optical
image domain, SAR simulation needs to deal with different
challenges. These challenges include complex summation of
reflections due to a coherent signal source, and edge diffraction
due to the large wavelength compared to visible light. Several
approaches to SAR image simulation have been suggested
from very simple scatter models as the one used in [14] to
sophisticated models that analyze the object and scene for
geometric features that have significant scattering [15].

To open up for the use of simulated data in real SAR ATR
applications, methods of exploiting it need to be explored
further. This is both in terms of ensuring that the simulated

1Air Force Research Laboratory
2Defense Advanced Research Projects Agency
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Fig. 1. Coordinate system used for simulated SAR images.

data is sufficiently realistic and to find practical ways of
incorporating it into data driven classification algorithms. In
[16] the combined use of simulated data and real data is
explored in a study of pairwise binary classification tasks
between SAR images with eight different ships. The exact ship
models are carefully modelled in a CAD drawing and rendered
with a SAR simulation tool. This study is not close to a real
application in the sense that it only shows the separability
between the pairs of ships, but reach an important conclusion
of simulated data having a regularizing effect on Convnet
training.

In this article we aim to explore the information that can be
learned from a simulated SAR dataset which can be transferred
to a real SAR data scenario. We do this by studying the
accuracy of a Convnet pre-trained on the simulated data
versus a Convnet trained with random initialized weights, i.e.
Transfer Learning such as in [17]. With this approach objects
in our simulated dataset, Dsim, do not have to be geometric
replicas of the real objects in our target dataset, Dreal, as
long as they share image features. This is a great advantage
for SAR ATR where exact target geometry rarely is known.
In this way our method possesses both a practical way of
incorporating simulated data into a SAR ATR application as
it reveals whether the data is realistic enough to benefit a
classification algorithm. We show that generic features learned
on the simulated data benefit the model performance on real
data. Our results show that training time can be reduced and
end performance improved. In the experiments described in
Section III we used simulated data from the tool introduced
in [18] named SARSIM. This tool is described in Section II
and the specific dataset used in this work will be publicly
available for research purposes at [19]. The results from the
Transfer Learning experiments are shown in Section IV and
Section V concludes and summarizes our findings.

II. DATA SIMULATION

To simulate realistic SAR images of an object, a model
of the object radar reflectivity is required, as well as models

of the surrounding terrain and the radar system. The object
reflectivity is estimated using the commercially available CST3

Microwave Studio Asymptotic Solver with a 3D CAD model
as input. CST estimates the complex scattered electric field
components over a range of frequencies, elevation (θ) angles
and azimuth (φ) angles, using the geometry illustrated in
Figure 1. The frequency sweep covers the simulated radar
system bandwidth, and a full 360◦ sweep in azimuth is carried
out for each desired elevation angle. Since the CST simulation
results are sampled in frequency, the sampling increment, ∆f ,
determines the alias-free scene extent (object size) in range,
Wr, that can be simulated by ∆f < c

2Wr
, c being the speed

of light. Likewise, the azimuth sampling increment, ∆φ is
determined not by the antenna beamwidth (as it is in a real
system), but by the alias-free scene extent in azimuth, Wx, as
∆φ < λ

2Wx
, with λ being the wavelength.

The geometry in Figure 1 assumes acquisition along a circu-
lar synthetic aperture. By using a time-domain back-projection
focusing algorithm [20], however, the final output images can
be provided on an arbitrary grid, e.g. a rectangular slant-
range/azimuth grid. Compared to a linear aperture, simulation
of a circular aperture yields a slightly different result due to
varying incidence angles along the aperture. For an aperture
corresponding to 10 cm resolution at X-band and nominal
θ = 45◦, the difference is smaller than 0.2◦. This difference
is independent of sensor altitude, and is smaller yet for lower
depression angles. This means that even though linear aperture
SAR images are desired, the circular aperture reflectivity
simulation is likely a reasonable approximation. The output
resolution is determined by the frequency bandwidth and
azimuth angle interval used.

Terrain clutter is modelled by adding the object signal to
the simulated backscatter of a set of individual point-like scat-
terers prior to SAR focusing. The scatterers are specified by
(X,Y, Z)-position and complex reflectivity. For every aperture
angle, the visibility of each scatterer is determined by casting
rays from the sensor position to the scatterer and testing for
intersection with the object CAD model. Scatterers for which
the ray intersects the object are suppressed. For every visible
scatterer, the range is calculated, and the simulated backscatter
signal is generated by multiplying a flat spectrum with (a)
the complex reflectivity of the scatterer, (b) a linear phase
ramp that shifts the time response to have maximum at the
calculated range, and (c) the two-way propagation phase. The
summed contributions of all visible scatterers are added to
the object signal. Simulated thermal noise is then added to
every sample based on the radar equation and the simulated
SAR system parameters. Finally, the signal is focused in
range by an inverse FFT (with Taylor weighting for sidelobe
suppression), and azimuth focusing is done using the back-
projection algorithm. The approach above ensures that the
clutter and noise signals are subjected to the same SAR
processing as the object signal, and also models shadowing
and partial visibility along the aperture correctly. Arbitrary
scatterers can be used for the clutter simulation; currently,
homogeneous clutter is simulated by a point scatterer at every

3CST - Computer Simulation Technology, Dassault Systemes
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Fig. 2. Real vs. simulated images of T-72 at 15◦ depression and 148◦

azimuth. Left MSTAR actual SAR image, Right SARSIM simulated image.

Fig. 3. MSTAR T-72 tank and T-72 CAD model used for simulated image.

output grid point, with complex reflectivity modelled by a
complex zero-mean Gaussian process with identical real and
imaginary part variance s2:

s2 = (σ0δaδr)/2 cos θ (1)

where σ0 is the terrain reflectivity, and δa and δr are the range
and azimuth pixel spacings. Typical values of σ0 for different
terrain types are available in [21].

Figure 2 shows a real MSTAR SAR image of a T-72 tank
and the corresponding simulated image generated with the
SARSIM tool, using a T-72 CAD model and MSTAR radar
parameters, assuming a grassy terrain. A photo of the tank, as
well as a rendering of the CAD model are shown in Figure
3.

III. EXPERIMENTS

The experiments explained in this section are intended
to investigate the transferability of information learned in a
parametric model. Let us consider a classification task on a
dataset, D, solved with a Convnet model, y(x,w), with input
x ∈ D. The model parameters or weights, w, are initialized
following the approach in [22] with a uniform distribution in
the interval,

w ∼ U [−
√

6√
nl + nl+1

,

√
6√

nl + nl+1
],

for l = 0, ..., L− 1 (2)

with L being the number of layers in our model, and nl being
the number of incoming nodes in the l’th layer. For a multi
class classification task, the maximum likelihood optimization
of our model will be given with the categorical cross entropy

error function if the output of the network is a softmax
function, [23]. The error function is given by,

E(w) = −
N∑

n=1

tn ln(y(xn,w)), (3)

with tn being a ”one-hot” vector encoding a one for the
correct class and zeros otherwise given the n’th image. y()
has an output representing the probability of each k-classes in
the given classification task. The error function can then be
minimized with a stochastic gradient descent (SGD) scheme.
In our analysis we use a version of SGD where the gradient
for each iteration is divided with a root-mean-square weighted
sum of the weights and previous gradients. This method
called RMSprop [24], helps ensure a stable learning curve by
effectively adjusting the step size of the weight updates.

In order to explain the amount of information that can be
transferred from a simulated dataset, Dsim, to a real dataset,
Dreal, we investigate the error, E(w), during the minimization
process of Equation (3) with xn ∈ Dreal, for the following
two scenarios.

1) w being initialized according to Equation (2).
2) w being initialized from argmin

w
E(w,x), for x ∈

Dsim.
Additionally, we can consider random subsets of Dreal in
order to study the relationship with dataset sparsity. The
amount of data needed for training a model to SAR ATR
is critical in operational scenarios, since it can be difficult
to obtain dense datasets of the relevant objects. It should be
emphasized that in our setup the classification task on Dsim
and Dreal can differ in terms of objects and complexity. Since
the number of classes in Dsim and Dreal in our experiment
differ, we re-initialize the last layer with random weights
according to Equation (2) in both scenarios. The two datasets
used in the experiments are described in Section III-A.

The Convnet used in our experiments has 412,028 parame-
ters. Layers and input sizes of the Convnet can be seen in Table
I. We run our optimization by mini batch gradient descent with
a batch size of 128 images. We further add L2-norm weight
decay to our update scheme.

Several approaches to Transfer Learning are reported in
literature where only the last layer is fine tuned on a new
dataset or where early layers are fine tuned with reduced
learning rate. We will fine tune all parameters in the Convnet
with equal learning rate as this was experimentally shown as
the best procedure in [17].

On the standard MSTAR 10-way classification task with
randomly initialized weights the model presented in Table I
reaches 93.2% accuracy on the test set.

A. Datasets

The two datasets used in the experiments are described
below.

1) MSTAR: MSTAR is a set of real SAR images of mili-
tary vehicles. The subset often used for testing classification
algorithms contains 10 vehicle types recorded at 15° and
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TABLE I
CONVNET MODEL USED IN EXPERIMENTS. THE OUTPUT SIZE DENOTES

(number of rows x number of columns x number of nodes) IN EACH LAYER.
RECTIFIED LINEAR UNIT IS AN ACTIVATION FUNCTION DEFINED BY

f(x) = max(0, x).

Layer Type Layer Output size Kernel size comment
Input 128x128x1 - -
Convolutional 128x128x12 5x5 ReLU activation
Maxpooling 42x42x12 3x3
Convolutional 42x42x36 5x5 ReLU activation
Maxpooling 21x21x36 2x2
Convolutional 17x17x72 5x5 ReLU activation
Maxpooling 8x8x72 2x2
Fully connected 56 1x4608 ReLU activation
Fully connected 10 1x56 Softmax activation

17° depression angles. The vehicles are densely sampled in
azimuthal rotation with an image for each 1° - 2° depending
on the object. The training set contains the ten vehicles at 17°
and the test set contains the 15° samples.

2) SARSIM: The dataset consists of simulated SAR images
of vehicles and is simulated according to the description in
Section II. Fourteen vehicle CAD models have been down-
loaded from the web and each one is simulated for every two
degree azimuthal object rotation at seven different depression
angles (15°, 17°, 25°, 30°, 35°, 40° and 45°). The objects
belong to seven different categories with two objects in each
category (truck, car, motorbike, bus, tank, bulldozer and pick-
up). Each object has been simulated with three different
statistically generated background clutter types, corresponding
to grass, roads and a mean of the two.

In our experiments the dataset is split randomly with
90% for training and 10% for testing. The effect on end
performance by splitting the data in different ways (e.g. by
depression angle, object model instance etc.) is not in the
scope of this article to explore, but could be relevant for future
studies. With the random split of 90%/10% we achieve a high
accuracy on the test set (>99%). This is probably due to the
very dense sampling of objects in different view angles.

IV. RESULTS

For each of the Convnet training scenarios on MSTAR, we
consider five random subsets of the full dataset, (20%, 40%,
60%, 80% and 100%). In Figure 4 the accuracy on the test
set is shown for each epoch, with epoch being the number
of batch iterations corresponding to all images in the dataset
being processed.

It is clearly seen that pre-training on simulated data makes
the network converge faster on the real data set. This can
be a great advantage in operational SAR ATR scenarios
where problems can involve more vehicles than present in
the MSTAR and where new vehicles are added regularly.
Additionally, MSTAR lacks the variance of objects on different
backgrounds, which makes real problems require even bigger
datasets to fulfil operational requirements.

The difference in the end performance between the ran-
domly initialized model and the pre-trained model seems to
diminish with increasing dataset sizes. To illustrate this, Figure
5 shows a bar-plot of the end performance for each experiment.

Fig. 4. Error on test dataset measured for each epoch during the training
process. Different sub-plots show the fraction of the training data that was
used.

Fig. 5. End test performance averaged over the last 10 epochs to even out
test error variance due to training set/test set bias.

The end performance is reported as the average over the last
ten epochs in order to reduce the variance on the test accuracy.
This variance is likely due to biases between test and training
sets and since the MSTAR problem splits between test and
training on the depression angle, there is a significant bias
between them. This variance was also reported in [2].

The difference in performance with increasing percentage
of data included in the training is likely due to the very dense
sampling in azimuth angles and lack of background clutter
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variance in MSTAR. In operational scenarios it is very unlikely
that such a dense sampling can be obtained for all objects
of concern. Figure 5 shows that there is a great potential
for increased performance with pre-training on simulated data
when only sparsely sampled datasets are available.

V. CONCLUSION

The advances in simulation of SAR images lead towards
practical data driven classification algorithms being useful in
SAR ATR. We have shown that the simulated SAR images do
in fact contain valid information that is useful for real SAR
data ATR problems. The simulated data used in this work is
improving both training convergence and the end performance
of the classifier.

Transfer Learning provides a favourable scheme in utilizing
simulated data. It enables the use of the many detailed CAD
models freely available online to learn generic features that
can be transferred to real SAR images in ATR applications.
As detailed CAD models might be hard to obtain of all objects
in a given operational classification task, Transfer Learning
might be necessary to alleviate the lack of sufficient amounts
of real SAR data.

The proposed method can as well be useful for other
remote sensing problems, such as land cover classification
and detection of objects in cities. In the proposed simulation
algorithm it is assumed that object and ground interaction
effects are negligible by separately simulating each of them.
When comparing with the MSTAR images this assumption
seemed reasonable, though it might be different for other radar
frequencies and different environments. By proposing Transfer
Learning between the simulated and real data it is likely that
generic features can be learned although some simplifications
are made in the simulation process. A study of which parts
of the simulation are important in order to make Convnets
generalize between the two data domains is an interesting
subject for future work.

For the future improvement of SAR ATR, bigger and more
realistic datasets need to be gathered. Including more complex
scenes such as co-located vehicles, occlusions by trees and
confusing objects such as buildings, will be the next step
in the development. The performance of algorithms on a
greater variety of object types will also shed light on data
driven classification methods’ robustness in operational SAR
ATR applications. It must be expected that in operationally
interesting applications, algorithms should deal with far more
vehicle types compared to MSTAR and SARSIM. As shown
in our experiments simulated data may play an important role
in these studies.
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ABSTRACT
In this paper we present a combined strategy for the retrieval
of atmospheric profiles from infrared sounders. The approach
considers the spatial information and a noise-dependent di-
mensionality reduction approach. The extracted features are
fed into a canonical linear regression. We compare Princi-
pal Component Analysis (PCA) and Minimum Noise Fraction
(MNF) for dimensionality reduction, and study the compact-
ness and information content of the extracted features. As-
sessment of the results is done on a big dataset covering many
spatial and temporal situations. PCA is widely used for these
purposes but our analysis shows that one can gain significant
improvements of the error rates when using MNF instead. In
our analysis we also investigate the relationship between error
rate improvements when including more spectral and spatial
components in the regression model, aiming to uncover the
trade-off between model complexity and error rates.

Index Terms— Infrared Atmospheric Sounding Interfer-
ometer (IASI), Minimum Noise Fractions, Principal Compo-
nent Analysis (PCA), Statistical retrieval.

1. INTRODUCTION

“Perfection is achieved not when there is nothing more to
add, but when there is nothing more to take away.”

— Antoine de Saint-Exupry: Terre des hommes.

Temperature and water vapour atmospheric profiles are essen-
tial meteorological parameters for weather forecasting and at-
mospheric chemistry studies. Observations from high spectral
resolution infrared sounding instruments on board of satellites
provide for retrieval of such profiles. However, it is not trivial
to retrieve the full information content from radiation mea-
surements; accordingly, improved retrieval algorithms are de-
sirable to achieve optimal performance for existing and future
infrared sounding instrumentation.

EUMETSAT, NOAAA, NASA and other agencies are
continuously developing product processing facilities to ob-
tain L2 atmospheric profile products from infrared hyperspec-
tral radiance instruments, such as IASI. One of the retrieval
techniques commonly used in L2 processing is based on lin-
ear regression, which is a valuable and very computationally

The research was funded by the European Research Council (ERC) un-
der the ERC-CoG-2014 SEDAL project (grant agreement 647423), and the
Spanish Ministry of Economy and Competitiveness (MINECO) through the
projects TIN2015-64210-R and TEC2016-77741-R.

efficient method. It consists of performing a canonical least
squares linear regression on top of the data projected onto
the first principal components or Empirical Orthogonal Func-
tions (EOF) –known in statistics as PCA– of the measured
brightness temperature spectra (or radiances) and the atmo-
spheric state parameters. To further improve the results of
this scheme for retrieval, nonlinear statistical retrieval meth-
ods, as well as nonlinear pre-processing methods [1], can
be applied as an efficient alternative to more costly optimal
estimation (OE) schemes. These methods have proven to
be valid in retrieval of temperature, dew point temperature
(humidity), and ozone atmospheric profiles when the original
data are used [2, 3]. However, they are costly to train and do
not consider spatial correlation between radiances neither the
noise information.

Recently, in [4], a high improvement on the performance
of retrieval methods was reported when applying standard
compression algorithms to the images. Although this result
may appear counter-intuitive since compression implies re-
duction on the amount of information in the images, a certain
level of compression is actually useful because: 1) compres-
sion removes information but also noise, and it could be use-
ful to remove the components with low signal-to-noise ratio.;
and 2) spatial compression introduces in a simple way infor-
mation about the neighboring pixels. The use of Minimum
Noise Fractions (MNF) employed here is a simpler and more
mathematically elegant way to take advantage of both prop-
erties simultaneously. MNF is specifically designed to sort
components according to the signal-to-noise ratio (SNR) [5].
The way we apply MNF here also enforces the inclusion of
spatial information as noise is estimated by the residuals of
fitting a quadratic surface locally. In this work we compare
the effect of using PCA or MNF when retrieving temperature
profiles using IASI data. We will show that MNF is better
suited for this task. Moreover since PCA and MNF are both
linear and unsupervised transformations, using MNF do not
introduce any modification in the data processing pipeline.

The remainder of the work is organized as follows. Sec-
tion §2 describes the data set collected and the pre-processing
for dimensionality reduction and spatial filtering. Section §3
reviews the two decomposition methods used in the work.
Section §4 gives empirical evidence of performance of the
proposed scheme for spatial, noise-aware retrieval of atmo-
spheric parameters. We conclude in §5 with some remarks
and outline for the further work.



2. DATA DESCRIPTION

The Infrared Atmospheric Sounding Interferometer (IASI)
data are point measurements of approximately 25 km diam-
eter with 8461 spectral components, ranging in the infrared
emission spectra from 645 to 2760 cm−1 with 0.25 cm−1

resolution. The dataset collected for this paper consists of 4
consecutive orbits from august 2013 of which the first three
are used for training the regression model and the last is used
for testing.

In our problem we follow the same scheme proposed in
[4]. First we remove certain bands from the spectrum that
do not contains useful information for retrieval reducing the
data to 4699 spectral components. Although the longitudinal
distance between acquisition points increases towards equator
we can reshape each orbit into a rectangular grid of 1530×60
elements. By doing so, data can be treated as an image, taking
advantage of spatial relations. The dimensionality reduction
transformations are calculated on the training set and applied
to both the training and testing datasets.

3. DECOMPOSITION METHODS

In our analysis we consider two orthogonal transformations,
PCA [6] and MNF [5]. Notationally, given an observation
data matrix X ∈ Rn×d with n pixels of d dimensions, we aim
to find a transformation to a lower dimensional representation,
d′ < d, such that the projected data preserves most of the
‘information’ of the input. Solutions offered by both PCA and
MNF are found by solving an eigenvalue problem but where
the PCA finds a solution with eigenvectors in the columns
of W ∈ Rd×d′

in direction of maximum variance, the MNF
looks for the eigenvectors that minimize the noise fraction, or
equivalently maximizes the signal-to-noise ratio [7, 8]:

PCA : W∗ = argmax
W

{
Tr

(
W>X>XW

W>W

)}

MNF : W∗ = argmax
W

{
Tr

(
W>X>XW

W>X>NXNW

)}
,

(1)

where X is our data matrix with each row representing a sam-
ple of a infrared spectrum and with columns corresponding to
the number of spectral components. XN is the correspond-
ing noise estimation of each sample in X. The resulting set
of vectors from the PCA decomposition are orthogonal as op-
posed to the MNF solution which obtains orthogonality with
respect to the noise covariance.

If the noise covariance matrix is known, it can be used in
the MNF estimation. Often it is not the case and it has to be
estimated from data. Common ways to do noise estimation in
image analysis include local mean subtraction, or taking the
residuals from a plane or paraboloid fit on every pixel position
in the image. We follow the latter approach for our analysis
with a 3 × 3 paraboloid residual kernel implemented as a fil-
tering operation [9].
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Fig. 1. Cummulated normalized eigenvalues.
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Fig. 2. Multi-information between the input and output com-
ponents for PCA and MNF. Ten realizations have been made
for each method while including different amount of spectral
components. Lines denote the mean trend of the results.

The cumulative and normalized eigenvalues for both
methods are shown in Fig. 1. For PCA they represent the
percentage of explained total variance and it is seen that 99%
explained variance is obtained within the first 5 components.
For the MNF, eigenvalues represent the signal fraction for
each component [5] and less than 80% signal fraction is ob-
tained from the first 5 components. Although this could be
seen as an disadvantage one has to take into account that
PCA might keep the noise information too. Therefore how
the eigenvalues relates to the information necessary to pre-
dict the temperature profiles Y ∈ Ro is less straight forward
to estimate. We analyze in Fig. 2 this relation by using the
concept of multiinformation [10] (also known as total corre-
lation). We show the amount of multiinformation, i.e. shared
information, between the projected inputs Xp = XW and
the outputs Y using different amount of input components for
each decomposition method. These values have been com-
puted using RBIG method ([11]). We have followed similar
procedure as in [12] where the amount of information con-
tained by spatial and spectral components was analyzed for
several sensor configurations. In this case, we are analyzing
only the spectral information, yet including the variable to
predict Y (temperature profiles). Fig. 2 shows the multiinfor-
mation results for PCA and MNF. Although it also includes
the redundant information of the inputs, this measure can be



seen as an approximation of the information of the output
that we can be obtained from the input. Note that even that
MNF is not specifically designed to maximize this informa-
tion, the multiinformation is bigger for MNF when using the
same number of input components than for PCA. We will see
in the experiments section how this behavior gives raise to
improved retrieval performance.

As suggested in [4], to improve the retrieval performance
it is important to remove noise from the data and to include
spatial information. Fig. 3 illustrates the ability of MNF to do
so. We show half orbit of data from the test set projected onto
each of the 50 first components from the PCA (top row) and
MNF (bottom row) decomposition. It is clear from this figure
that MNF obtains smoother are less noisy projections than
PCA. For instance component 38 from the PCA projection
seem to contain less structure than the three following projec-
tions. This indicates that some noise components in the data
have higher variance than other signal components. This be-
haviour repeats above the first 50 PCA components, whereas
the MNF projections represents spatially smooth information
in early components and gradually increase to finer details for
higher components.

4. EXPERIMENTAL RESULTS

The goal of our experiments is two-fold, first to compare the
effect of using PCA or MNF in the retrievals, and furthermore
to uncover the trade-off between prediction performance and
the number of spectral components included for each method.
Dimensionality reduction is important to limit the computa-
tional load but choosing the appropriate number of compo-
nents to keep is less straightforward. A lower computational
load can be traded for larger amounts of training data so over-
fitting is prevented. Alternatively the lower number of data di-
mensions can enable the use of computationally heavier non-
linear models such as Kernel Ridge Regression, which has
been shown to improve performance for retrieval in infrared
sounder data [4].

As well as the influence of spectral sampling in temper-
ature profile modelling we include experiments for different
sizes of pixel neighborhood sampling as studies suggest this
can be beneficial [12]. This means that we model the tem-
perature profile of one sample in the IASI data from the sam-
ple plus a neighborhood of samples around it. For quadratic
neighborhoods the increase of size will also lead to quadratic
increase in computational load and it is therefore relevant to
limit it.

In Fig. 4 the results from our experiments are shown. It
is seen that the RMSE improvements converges after approx-
imately 125 spectral components. The results also show that
there is a significant improvement including neighborhood
pixels in the modelling of temperature profiles, but that the
improvement decreases going towards larger neighborhood
sizes. Figure 5 shows the resulting RMSE over the temper-
ature profile for using 175 spectral components in the Lin-
ear regression model. Our analysis suggests to use between
125 − 175 spectral components from a MNF decomposition
and a pixel neighborhood sampling size of 3×3 or 5×5 when

performing Linear Regression on this type of data.

5. CONCLUSIONS

This paper showed that using MNF is a simple and mathemat-
ically elegant way of removing the noise in the signal and at
the same time taking into account spatial information. These
two properties have been suggested previously as an impor-
tant point when dealing with this particular data [4]. Both
effects can be observed in Fig. 3, the selected features by the
MNF are less noisy and spatially softer than the ones found
by PCA. We want to stress the fact that substituting PCA by
MNF would not change the processing pipeline. PCA and
MNF are both linear transformations so only the values of
the projecting vectors should be changed. Moreover, unlike
other solutions as PLS [13], PCA and MNF are unsupervised
methods, i.e. are not fitted for predicting an specific variable.
Therefore, although we here show the results for a particular
variable (i.e. temperature), it is expected that the improve-
ment would be consistent for the retrieval of other variables.
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Abstract

Infrared atmospheric sounders, such as IASI or AIRS, provide an unprecedented source

of information for atmosphere monitoring and weather forecasting. The obtained prod-

ucts represent a significant improvement in the accuracy and quality of the measure-

ments used for meteorological models. Sensors provide rich spectral information that

allows retrieval of temperature and moisture profiles, ass well as relevant trace gases.

From a statistical point of view, the challenge is immense: on the one hand, “under-

determination” (i.e., too many parameters and too few observations) is common place

as regression needs to work on high dimensional input and output spaces; on the other

hand, redundancy is present in all dimensions (spatial, spectral and temporal). On top

of this, large amounts of noise sources are encountered in the data. In the last decade,

machine learning has emerged as a proper framework to tackle these data problems, and

lately deep learning has excelled in many classification problems. Few developments

are found in the field of regression.

In this paper, we present for the first time the use of deep convolutional neural net-

works for the retrieval of atmospheric profiles from IASI sounding data. The proposed

scheme performs multidimensional nonlinear output regression, accounts for noise fea-

tures, and exploits correlations in all dimensions. The first step of the proposed pipeline

performs spectral dimensionality reduction taking into account the signal to noise char-

acteristics. The second step encodes spatial and spectral information, and finally pre-
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diction of multidimensional profiles is done with deep convolutional networks. We

give empirical evidence of the performance in a wide range of situations. For this, we

collected a big database of co-located IASI radiances and re-analysis temperature pro-

files. Networks were trained on full orbits and tested out of sample with great accuracy

over competing approximations, such as linear spatio-spectral regression (+32%). We

also observed a huge improvement in accuracy when predicting over clouds, thus in-

creasing the yield by 34% over linear regression. The proposed scheme is modular and

allows us to predict related variables from an already trained model, performing trans-

fer learning in a very easy manner. We conclude that deep learning is an appropriate

learning paradigm for statistical retrieval of atmospheric profiles.

Keywords: Deep learning, Machine Learning, Atmospheric parameter retrieval,

infrared sounders, IASI, Convnets
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1. Introduction

Temperature and water vapour atmospheric profiles are essential meteorological

parameters for weather forecasting and atmospheric chemistry studies. Observations

from high spectral resolution infrared sounding instruments on board of satellites pro-

vide unprecedented accuracy and vertical resolution of temperature and water vapour

profiles. However, it is not trivial to retrieve the full information content from radiation

measurements. Accordingly, improved retrieval algorithms are desirable to achieve

optimal performance for existing and future infrared sounding instrumentation.

The use of MetOp data in Numerical Weather prediction (NWP) accounts for 40%

of the impact of all space based observations in NWP forecasts. The Infrared Atmo-

spheric Sounding Interferometer (IASI) sensor is implemented on the MetOp satellite

series. Products obtained from IASI data are a significant improvement in the quality

of the measurements used for meteorological models. In particular, IASI collects rich

spectral information to derive temperature and moisture profiles, which are essential to

the understanding of weather and to derive atmospheric forecasts. The sensor provides

infrared spectra, from which temperature and humidity profiles with high vertical res-

olution and accuracy are derived. Additionally, it is used for the determination of trace

gases such as ozone, nitrous oxide, carbon dioxide and methane, as well as land and

sea surface temperature, emissivity, and cloud properties (EUMETSAT, 2014; Tournier

et al., 2002).

EUMETSAT, NOAA, NASA and other operational agencies are continuously de-

veloping product processing facilities to obtain L2 atmospheric profile products from

infrared hyperspectral radiance instruments, such as IASI, AIRS or the upcoming MTG-

IRS. One of the retrieval techniques commonly used in L2 processing is based on linear

regression, which is a valuable and very computationally efficient method. It consists of

performing ordinary least squares linear regression on top of the data projected onto the

first principal components or Empirical Orthogonal Functions (EOF) of the measured

brightness temperature spectra (or radiances) and the atmospheric state parameters. To

further improve the results of this scheme for retrieval, nonlinear statistical retrieval

methods can be applied as an efficient alternative to more costly optimal estimation
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(OE) schemes. These methods have proven to be valid in retrieval of temperature, dew

point temperature (humidity), and ozone atmospheric profiles when the radiance data

are used (Camps-Valls et al., 2012).

From a statistical standpoint, the challenge is immense: on the one hand, “under-

dertermination” (meaning too many parameters and too few observations) is common

place as regression needs to work on high dimensional input and output spaces; on the

other hand, redundancy is present in all dimensions (spatial, spectral and temporal).

On top of this, several noise sources and high noise levels are encountered in the data,

which in many cases are correlated with the signal. The previous L2 processing scheme

presented in (Camps-Valls et al., 2012) consisted of first performing a spectral dimen-

sionality reduction based on Principal Component Analysis (PCA) (Hotelling, 1933),

and then a nonlinear regression based on kernel methods (Camps-Valls et al., 2011a,b;

Camps-Valls & Bruzzone, 2009). Despite being an effective approach, the scheme

reveals some deficiencies. The PCA transformation accounts for most of the signal

variance, but does not consider the correlation between the signal and the noise. On

the other hand, the spatial information is discarded and the retrieval algorithm acts on

a pixel (FOV) basis. Only very recently methods have included spatial-spectral feature

relations in the retrieval algorithm, yet in an indirect way through either post-filtering

of the product, or via data compression (García-Sobrino et al., 2017). In this paper, we

propose a general scheme to cope with all these problems.

Three main motivations guide our proposal:

• Accounting for noisy features. Recently, in (García-Sobrino et al., 2017), great

improvement in the performance of retrieval methods was reported when apply-

ing standard compression algorithms to the images. Although this result may

appear counter-intuitive since compression implies reduction on the amount of

information in the images, a certain level of compression is actually beneficial

because: 1) compression removes information but also noise, and it could be

useful to remove the components with low signal-to-noise ratio (SNR); and 2)

spatial compression introduces information about the neighbouring pixels in an

indirect yet simple way. The use of Minimum Noise Fractions (MNF) employed
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in this paper is a simpler and more mathematically elegant way to take advantage

of both properties simultaneously. MNF is specifically designed to sort feature

components (loadings) according to the SNR score (Green et al., 1988). In this

work we compare the effect of using PCA or MNF when retrieving temperature

profiles using IASI data. We show that MNF is better suited to this task. More-

over, since PCA and MNF are both linear and unsupervised transformations,

using MNF does not introduce any critical modification in the data processing

pipeline. One can simply replace the PCA principal components with (possibly

a lower number of) MNF components.

• Accounting for smoothness in the spatial and vertical dimensions. All previ-

ous algorithms (Blackwell et al., 2008; Camps-Valls et al., 2012, 2016; Laparra

et al., 2017) used for statistical retrieval exploited the spectral information in

the FOVs only, and discarded spatial information of the acquired scene. In-

cluding spatial information in classifiers and regression methods has been done

traditionally done via hand-crafted features (Plaza et al., 2002; Tuia et al., 2010;

Camps-Valls et al., 2006, 2014). This, however, requires expert knowledge, it is

time consuming and scenario dependent. In the last decade, convolutional neural

networks (CNNs) has excelled in many classification problems in remote sens-

ing (Aptoula et al., 2016; Geng et al., 2015; Zhang et al., 2016a; Luus et al.,

2015; Maggiori et al., 2017; Marmanis et al., 2016; Zhang et al., 2016b; Romero

et al., 2016). CNNs allow to easily learn the proper filters to process images

and optimize a task (in our case, prediction of atmospheric profiles). It is, how-

ever, quite striking that very few applications of CNNs are found in the field of

regression, and none to our knowledge for bio-geo-physical parameter retrieval.

In this paper, we present for the first time the use of deep convolutional neural

networks for the retrieval of atmospheric profiles from IASI sounding data. We

should note that, neural networks offer an additional advantage to our multivari-

ate regression problem: models are intrinsically multi-output and account for the

cross-relations between the state vector at different altitudes. This allows us to

attain smoothness, and hence consistency, across the atmospheric column in a
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very straightforward way.

• Accounting for higher level feature representations. The problem of translating

radiances to state parameters is a challenging one because of its intrinsic high

nonlinearity and underdertermination. Deep learning offers a simple strategy to

approach the problem of complex feature representations by stacking together

several convolutional layers. In the last decade, deep networks have taken over

shallow architectures in many recognition and detection tasks. This is our third

motivation to explore deep convolutional nets in the context of atmospheric pa-

rameter retrieval.

Capitalizing on these three motivations, in this paper we propose a chained scheme

that exploits the MNF transformation and deep convolutional neural networks for at-

mospheric parameter retrieval. In summary, the proposed scheme performs multidi-

mensional nonlinear output regression, accounts for noise features, and exploits corre-

lations in all dimensions.

The remainder of the paper is organized as follows. Section 2 presents the process-

ing scheme and analyses the building blocks (dimensionality reduction and retrieval)

in detail. Section 2.1 describes the datasets used for the development of the algorithm.

Section 3 illustrates the performance of the proposed method in terms of accuracy, bias

and smoothness of the estimates (across the space and vertical dimensions), both over

land and over ocean. We also pay attention to the yield ratio when predicting over

clouds as a function of the cloud fraction. The section ends with an exploratory anal-

ysis of the performance of the method to estimate other (yet related) variables with

minimal retraining. We outline the conclusions of the work and the foreseeable future

developments in Section 4.

2. Methodology

Rather than modeling atmospheric parameters from single point measurements,

the purpose here is to investigate spatial dependencies in the retrieval. IASI data are

collected as point measurements in a 2×2 grid simultaneously. The IASI instrument
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Figure 1: Pipeline schematic: IASI spectra are first reduced from the original 8461 spectral channels by

selecting a subset of 4699 channels according to noise specifications in (Camps-Valls et al., 2012), which

then pass through an MNF projection to reduce the dimensionality to 125 features. Subsequently, patch

extraction is performed with varying sizes. Finally, either a linear regression or a CNN is used for prediction

of the atmospheric profiles sampled at 90 vertical positions.

scans a swath of 60 points. This fact can be used to structure the data in rectangular

grids and treat them as images likewise (García-Sobrino et al., 2017). We use this

approach in two steps of our prediction pipeline illustrated in Figure 1. The pipeline

consists of 1) removing irrelevant spectral bands and structuring the data as images of

dimension of 1530×60×4699 per orbit (cf. (Camps-Valls et al., 2012)), 2) applying

the linear basis (learned using an MNF decomposition) on the spectral components, 3)

extracting patches from data so that observations are local neighbourhoods around each

pixel, 4) running either a CNN model or a linear regression for retrieval of atmospheric

parameters at 90 different altitudes simultaneously. Let us describe in detail each of

these steps.

2.1. Data collection and preprocessing

The Infrared Atmospheric Sounding Interferometer (IASI) is an instrument imple-

mented on the MetOp satellite series. From MetOp’s polar orbit, the IASI instrument

scans the Earth at an altitude of, approximately, 820 kilometers. The instrument mea-

sures in the infrared part of the electromagnetic spectrum (between 645 cm−1 and

2760 cm−1) at an horizontal resolution of 12 kilometers over a swath width of, ap-

proximately, 2200 kilometers. It obtains a global coverage of the Earth’s surface every

12 hours, representing 7 orbits in a sun-synchronous mid-morning orbit. This repre-

sents more than one million of high dimensionality samples to be processed each day.

Obtaining all the products provided by IASI with classical methods requires an enor-

mous computational load. To obtain these measurements efficiently some works have
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focused on using machine learning methods (Camps-Valls et al., 2012; Laparra et al.,

2015, 2017).

Each original sample has 8461 spectral bands, but following previous recommen-

dations (Camps-Valls et al., 2012) we performed feature selection removing the most

noisy bands and keeping 4699. Even with such drastic feature reduction, regression

methods can suffer and easily overfit as many parameters need to be learned. In ad-

dition, even though some noise is removed by doing this channel selection, there still

remains some noise and spectral redundancy in the data. Actually it has been sug-

gested that simple spatial smoothing techniques remove the noise and help improving

the predictions quality (Garcia Sobrino et al., 2017). In the following subsection we

pay attention to the feature extraction step to better pose the problem. Each sample is

matched with temperature and dew point temperature profiles estimated using the Eu-

ropean Centre for Medium-Range Weather Forecasts model. Products obtained from

IASI data are a significant improvement in the quality of the measurements used for

meteorological models. Profiles of humidity obtained using IASI obtain an error of

within 10% and a vertical resolution of one kilometer and profiles on temperature with

an accuracy of within one Kelvin.

2.2. Dimensionality Reduction

Traditionally, dimensionality reduction is done by means of PCA, or equivalently

by means of Singular Value Decomposition (SVD) (Golub & Van Loan, 1996). In this

context, PCA compresses the total variation of the original variables (i.e. radiances)

into fewer uncorrelated variates termed ‘principal components’ which minimize the re-

construction error of the original variables. Alternatively, one could use a different fea-

ture extraction method, for instance Independent Component Analysis (ICA) (Hyväri-

nen et al., 2001) where the not just uncorrelated but statistically independent variates

maximize a measure of non-Gaussianity such as negentropy in all original variables.

In (Malmgren-Hansen et al., 2017) we recently showed that uncorrelated variates re-

sulting from a minimum noise fraction (MNF) transformation outperform principal

components when used as predictors of the atmospheric profile. These MNF variates

minimize the noise fraction or equivalently maximize the signal-to-noise ratio (given
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a noise model) in all original variables. Here, the noise is estimated as the pixel-wise

residual from a quadratic function fitted in a 3x3 window. It can be shown that the MNF

variates can be considered as a form of independent components. Figure 2 shows a re-

sult from (Malmgren-Hansen et al., 2017) that compares MNF and PCA for analysis at

the pixel level (1 × 1), as well as when local 3 × 3, 5 × 5, and 7 × 7 neighbourhoods

are used. It is seen that the performance gain converges above 100 spectral compo-

nents even for increasing spatial sample sizes in the experiments. We have chosen 125

spectral MNF components for the experiments presented Section 3.
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Figure 2: Mean RMSE error for linear regression as a function of number of spectral components included,

when predicting atmospheric temperatures. PCA and MNF signal decompositions of spectral bands are

compared.

2.3. Regression Models

In this work we use ordinary least squares (OLS) linear regression as a benchmark

method to compare the results using CNNs. The linear model, here in its simplest

version, is estimating a target variable t with K elements as,

t̂ = f(xn) = Wxn + b (1)

where xn is the n’th observation of size I input variables and b the model intercept.

In our regression I would equal 125 decomposed spectral radiances times the number
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of local neighbourhood pixels (e.g. 125× 3× 3 = 1125). Given all N observations, a

closed form solution can be found to the minimization of the residuals,

arg min
W

‖t− (xnW + b)‖2 for n = 1, .., N (2)

This gives a set of independent predictions for all target variables tk, with k = (1, ...,K).

In our regression we are predicting 90 atmospheric temperatures, hence K = 90.

If we keep the assumption of output independence and further assume tk to be

Gaussian distributed and represented by a deterministic function with noise added,

t = f(xn) + en, we can see that the likelihood,

p(t|xn) =
K∏

k=1

p(tk|xn), (3)

p(tk|xn) =
1

(2πσ2)1/2
exp

(
(fk(xn)− tk)2

2σ2

)
(4)

reduces to the following error function for maximizing the likelihood over all N obser-

vations,

E =

N∑

n=1

K∑

k=1

(fk(xn)− tk,n)2 = ‖f(xn)− tn‖2 (5)

when we take the negative logarithm and remove additive and multiplicative constants,

with fk being a single target of the 90 atmospheric temperatures. This minimizing this

error function is as well the most popular approach to regression with neural networks

and the difference between our predictor function f(xn), being the linear regression or

some neural network denoted y(xn;W) for all layers’ weights W, is the complexity.

Since y(xn;W) is non-linear, Equation 5 becomes a non-convex problem and there is

no longer a closed form solution, (Bishop, 2006). Note that if linearity is kept in the

last layer of the neural network, i.e. no non-linear activation function is applied on the

output, our model can be written as,

y(xn;W) = WLg(xn;W1,..,L−1) + b, (6)

and we see that the last layer, L, of the neural network is a linear regression on a

set of non-linear feature extractions from the previous L − 1 layers. When the first

layers’ weight vectors w1,..,L−1 are given, the last layer weights wL can be found with
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a closed form solution as with the linear regression. This can be used to ensure the

optimal set of parameters for the last layer after CNN training (Bishop, 1995) or used

in a hybrid training algorithm as suggested in (Webb & Lowe, 1988).

The error in Equation 5 corresponds to minimizing the variances of our estimated

target functions given that each K outputs are independent and can be modelled with

one global parameter for the variance,

σ2 =
1

NK

N∑

n=1

K∑

k=1

(yk(xn;W)− tk,n)2 = ‖f(xn)− tn‖2 (7)

This is not necessarily true in our case as one could assume that nearby variables in the

vertical atmospheric profile will be correlated. We will keep this assumption in order

to ensure simplicity of the objective function, but other approaches could be adopted

in future studies.

The purpose of comparing a linear model with a CNN for estimating atmospheric

temperatures is to study how the spatial information in the data helps determining the

optimal prediction model. In a linear model we can model local input correlations

by concatenating a neighbourhood of spectral pixel values when predicting the center

pixel. In a CNN all spatial content in the given input patch is mapped to a latent rep-

resentation through a series of stacked convolutions, for which the kernel coefficients

are a part of the parameters we optimize. If, e.g. the proximity of a coastline has a

high influence on the target variable for the IASI data, a kernel in the CNN can learn to

represent this feature in the latent representation, no matter where in the patch that the

coastline appears.

To find the optimal set of weights for the CNN we use an iterative stochastic gra-

dient descent (SGD) based update scheme. It is well known that estimating the error

for all training samples in each iteration leads to slower convergence why a mini batch

approach is used in the field of deep learning now. This, though, leads to more noisy

estimates of the error function and methods to cope with this stochastic noise have been

proposed. We use the method called ADAM (Kingma & Ba, 2014), where exponential

moving averages of the gradients and squared gradients are used to ensure a smooth

convergence of the parameters. Since our initial targeted state vector (temperatures,

dew-point temperatures, etc) can have different variances across the atmosphere, one
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could chose to normalize the target variables. This might lead to significantly different

solutions in an SGD based scheme, as opposed to e.g. an SVD factorization of the or-

dinary least squares problem. The fact that target values might change scale can have

a big impact on some SGD schemes since the gradient term scales as well. Unless

accounted for in the learning rate, this will change the convergence of a solution. The

ADAM SGD scheme chosen for optimization in our experiments is practically invari-

ant to scaling of the gradients due to its update rule based on first and second order

moment vectors. These vectors impose an individual stepsize for each parameter in the

network during the iterative parameter updates.

3. Experimental Results

The goal of our experiments is to demonstrate the advantages of CNNs for the re-

trieval of atmospheric variables from infrared sounders. In particular, we will illustrate

how the networks, unlike other machine learning methods, include spatial regulariza-

tion in a natural way. This feature results in improved prediction in the case of cloud

coverage or noisy settings. Another advantage of the method is that cross-relations be-

tween the different atmospheric states are captured, so smoothness in the vertical pro-

file is also achieved. Finally, we explore a very interesting possibility of the network

to perform transfer learning, by which a network trained for example for temperature

profile estimation can be re-used for moisture estimation with minor retraining.

3.1. Experimental setup

We will employ the data collected in 13 consecutive orbits within the same day,

17-08-2013, by the IASI sensor. Each orbit consists of approximately 92,000 samples.

We use the first 7 orbits (which cover most of the Earth) for training and the last 6 for

testing (which also cover most of the Earth). Figure 3 shows the coverage of the two

different sets of data taken on the same day.

3.2. Models

In order to investigate different extents of spatial information, four CNN models

have been designed, see Tables 1 and 2. A summary of some essential CNN features
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Figure 3: Example of how we split the data: training (left) and test (right). Figures show surface temperatures

for different orbits.

are given in Table 1 while a thorough description is found in the Appendix.

Table 1: Table of CNN architectures developed in this work. Training times are reported on a Python

(Theano) implementation running on a single NVIDIA Titan Black GPU.

CNN A CNN B CNN C CNN D

Input Size 125×3×3 125×10×10 125×15×15 125×25×25

Number of layers 4 6 6 7

Number of parameters 127,290 347,070 639,750 938,350

Output dimension 90

Optimizer ADAM (Kingma & Ba, 2014)

Approx. Training time 4h 11h 18h 39h

# train. samples 524,552 460,887 415,472 324,792

Mean test RMSE [K] 2.48 2.43 2.19 2.28

Our experiments consist of comparisons between CNN predictions with an ordinary

least squares (OLS) linear regression model, yet including spatial information in the

OLS too. The linear model defined according to Equation 1 can be extended to different

spatial sample size by appending new variables to the columns of the data matrix X.
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As the input dimensionality rapidly grows with increasing p, the size of the dataset

sets a natural limit to the spatial extend that can be included in the regression. We

have therefore limited the OLS regression to p = 15. In particular, CNN A is trained

on patches of p = 3. With a convolution kernel size, s, in the first layer of 3 × 3

coefficients this gives one valid convolution per patch. Practically this is equivalent to

multilayer perceptron network with the nine neighbourhood pixels stacked in an input

vector. In CNN B, C, D we keep s as 3× 3 filters, while letting the patch size increase

resulting in increased number of convolutions across the patch, i.e. we model local

correlations (features) across an entire patch.

3.3. Retrieval performance and evaluation

In Table 2 the mean over the RMSE vertical profiles are given for our regression

models with different sizes of p with the corresponding individual profiles shown in

Fig. 4. In general, CNNs outperform linear regression models in terms of feature ex-

traction, but this result can be further improved when training with the ADAM scheme

is done. According to Equation 6 we can find the last CNN layer weights with the OLS

algorithm when we fix the previous layers’ weights. In our experiments, this procedure

improved the CNN predictions with additionally 12− 17% for all CNN architectures.

Table 2: Summary of the mean RMSE (across the atmosphere profile) on temperature prediction. The CNN

+ Opt. row is the same network as the first but where the last layer is optimized with the closed form least

square solution after training.

Patch Size 1×1 3×3 5×5 7×7 10×10 15×15 25×25

CNN – 2.48 – – 2.43 2.20 2.28

CNN + Opt. – 2.11 – – 2.01 1.94 2.01

OLS 3.30 3.00 2.91 2.86 2.84 2.85 –

Let us now analyse some key aspects of the proposed CNN models: 1) the smooth-

ness of the prediction profiles across space and vertical dimensions, and 2) the trans-

ferability of the models to be re-used in predicting other variables.

During a neural network optimization the average gradient of the error function is

back propagated to update the weights, Equation 5. In this way we capture the best
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Figure 4: RMSE error profiles of model prediction for both CNNs and linear models at different input spatial

patch sizes. The CNN generally outperform OLS regression except at very high altitudes. The temperatures

at lower altitudes (> 200 hPa) are the most important for meteorological models.

average solution to our regression. This is in contrast to a linear model where each

output is an independent model of the input. In the case of atmospheric parameter

retrieval where neighbouring targets are spatially dependent, the average gradient or

the non-linearity in the CNN seem to smooth vertical predictions as well. Figure 5

shows 4 transects of the mean error for a given path in an orbit of data. It can be seen

that the linear model can obtain spatial smooth (horizontally) predictions by increasing

the input patch size. The CNN ensures a smooth error profile both in the vertical and

horizontal directions of the transect. The estimated cloud fraction is marked on each

pixel of our dataset and can be seen as the white dashed line in Figure 5. Though higher

errors are generally expected in cloudy areas it seems that the correlation between the

cloud fraction and the error are weak. We shall explore this further.

3.3.1. Predictions over clouds

Predictions are inherently disturbed by strong attenuation or mixing of radiometric

contributions from a large number of sources. It is commonly known that the presence

of clouds attenuate the signal and hamper retrieval of parameters. Some approaches to

temperature prediction typically act on cloud-free marked pixels only to be confident
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Figure 5: Top plot shows the target temperature along a transect profile, lower four plots shows the transect

profile of the prediction error from different regression models. White dashed line is the cloud fraction, i.e.

the percentage on cloud each input sample is marked with. The y-axis is the altitude pressure level.

on the obtained predictions. Cloud masks can to some extent be estimated from optical

sensors, but different approaches to generating cloud masks can have high influence on

the final result1. Since we are predicting the center pixel profile from a neighbourhood

of pixels one could filter patches based on the amount of clouds. Nevertheless, in the

results shown here, no such pre-filtering was performed, but CNNs figure out how to

exploit the (possibly less cloudy) neighbouring radiances. Figure 6 shows the error

of a CNN on pixels with less than 50% clouds and pixels above. The cloud mask

1See e.g. the IAVISA exercise: http://www.brockmann-consult.de/iavisa-info-web/

index.html.
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contains mostly 0% and 100% cloud fractions. For linear regression the difference

between predicting over clouds or in cloud free areas is clear, around an increment of

one degree of the error in lower atmospheric layers. In the case of CNNs this difference

is less noticeable, around 0.25 degrees in the same area. An important thing to stress

is that the CNNs model obtains less prediction error over cloudy areas than the linear

model does over cloud free areas.
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Figure 6: Difference on RMSE profile when testing on cloudy samples (CF>0.5) versus samples marked

cloud free (CF<0.5).

3.3.2. Predictions over land

Prediction over land is typically more challenging than over ocean, mainly due to

the more varying conditions, landscape and land cover, and changes in bodies’ emissiv-

ities. We aimed to study the performance of algorithms as a function of the land cover

per pixel. Figure 7 shows the error in predictions from a linear model and a CNN with

15×15 pixel input patch size, conditioned on the land fraction. The land fraction mask

contains mostly 0% or 100% values, but some coastal areas are given as intermediate

values due to the resolution cell covering both land and sea. On the other hand, the

land fraction has a high influence on the predictions, and continues to be a challenge
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for precise predictions of atmospheric temperature profiles.

0 1 2 3 4 5 6 7 8
RMSE

102

103

h
P
a

CNN C 15x15

0 1 2 3 4 5 6 7 8
RMSE

OLS 1x1

0 1 2 3 4 5 6 7 8
RMSE

OLS 15x15

LF<0.5 LF>0.5

Figure 7: Difference in performance when predicting temperature profiles over land (LF>0.5) and over sea

(LF<0.5).

3.4. Transfer Learning

The concept of transfer learning within deep learning has proven useful for a range

of computer vision tasks. Deep CNNs trained on large databases of natural images can

be transferred to smaller datasets for specific applications with high end performance.

There are two overall different approaches to transfer learning. One, as in (Yosinski

et al., 2014), where the training of a Network is repeated on a new dataset but starting

with the weights found solving the first problem. The second is to consider a part of

the network a feature extractor and access the latent representation learned from one

dataset and classifier to solve a problem on a second related dataset (Sharif Razavian

et al., 2014).

The purpose of exploring transfer learning in our setup is not to unveil whether

cross domain features can be learned. Instead, we explore the ability of a model trained

to predict atmospheric temperature profiles to be transferred to other output variables,

such as moisture profiles. Possible benefits are shorter training time, as well as higher
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accuracy.
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Figure 8: Test error convergence during training for dewpoint temperature prediction. Blue curve is a CNN

initialized with random weights and the red is a CNN initialized with the weights for a model that predicts

air temperatures. Both models converge to a mean RMSE error of 3.34 K after 400 epochs.

Figure 8 explores speed up of training convergence on predicting dew point tem-

peratures when considering initialization of a CNN with either weights from a network

trained on atmospheric temperatures or a standard random initialization for training

from scratch. The figure shows that the performance reached by CNN initialized from

random weights can be reached in less than around 1
8 (50 out of 400) of the training

time if the weights are transferred from a model trained for another output variable.

Considering a model trained on atmospheric temperatures, a feature extractor for

a linear regression to predict dewpoint temperatures can as well be done, and this ap-

proach is conceptually closer to the one proposed in (Sharif Razavian et al., 2014).

RMSE profiles from the transfer learning experiments are shown in Figure 9.

The red and blue profiles in Figure 9 show that we reach the same performance

whether we start with a model trained on atmospheric temperatures or random weights,

when predicting dewpoint temperatures. This is not surprising since it is the same

dataset we fit the models on, all we change is the predictor variable. When considering

the second transfer learning approach where a CNN trained on temperature prediction

is used as a feature extractor with a linear regression to predict dewpoint we reach a
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Figure 9: Dew point temperature RMSE profiles of transfer learning regression models. The features learned

on temperatures are poor for dewpoint prediction (grey profile) unless fine tuned (red profile).

less optimal solution. The purple profile in Figure 9 shows the second transfer learning

approach and training a linear regression directly on the input radiance is shown as the

grey profile. At low altitudes we get better accuracy than the shallow linear regression

model (>1◦RMSE terms). At higher altitudes though, the second transfer learning

approach does it worse. Fine tuning for a specific output variable is necessary in order

to achieve good predictions.

4. Conclusion

We present for the first time the use of deep convolutional neural networks for

the retrieval of atmospheric profiles from infrared sounding data, particularly for IASI

data. The proposed scheme performs multidimensional nonlinear output regression,

accounts for noise features, and exploits correlations in all dimensions. Good experi-

mental results were obtained over competing approaches in a wide range of situations.

Networks were trained on full orbits and tested out of sample with great accuracy. We

also observed a huge benefit in accuracy when predicting over clouds, increasing the

yield by 34% over linear regression. The proposed scheme is modular and allows us
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to predict related variables from an already trained model. We also illustrated this by

exploiting the learned network to predict temperature profile and retraining the last lin-

ear layer to fit moisture (dew point temperature) profiles. Good results were obtained

too, which demonstrates that the learned features by the network impose a sort of spa-

tial and vertical smootheness that can be exploited for other state variables that share

these features, such as some trace gases as well. We conclude that deep networks is an

appropriate learning paradigm for statistical retrieval of atmospheric profiles.

There are several aspects of the modeling to explore in the future to improve the sta-

tistical retrieval. It would be relevant to explore model architectures that directly model

the output correlations. This could be done with the neural network by including the

joint probabilities between neighbouring targets in expense of a more complicated er-

ror function. Alternatively one can predict the difference between neighbouring target

variables rather that their value and, in this way, incorporate neighbourhood correlation

in the targets. We have shown that there is a high potential for models that incorporate

feature extracting abilities as well as capabilities of modeling non-linear phenomena

in statistical retrieval. Finding optimal architectures for CNNs remains an open task in

the deep learning literature, and due to the non-convexity of the problem, experiments

are the only way to find optimal models. In this work, a few architectures have been

explored but a larger analysis of this is highly relevant for the application. Further,

results in this work were limited by the dataset size and constructing larger datasets

that capture more variances, such as (monthly, yearly) temporal variations is needed

regardless of the chosen method. Recent alternatives on efficient training of convolu-

tional nets could resolve the induced complexity (Giusti et al., 2013; Sermanet et al.,

2013; Kampffmeyer et al., 2016).
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Table 3: Table of CNN architectures. B.R.D. is a concatenation of 3 layers, Batch Normalization, Rectified

Linear Unit activation layer and Dropout. Dropout is performed with a probability p = 0.5 in all cases

CNN A CNN B

Type Parameters Output Type Parameters Output

Input - 125x3x3 Input - 125x10x10

Conv 125x60x3x3 60x1x1 Conv 125x60x3x3 60x10x10

B.R.D. - 60x1x1 Conv 60x60x3x3 60x10x10

Conv 60x120x1x1 120x1x1 Pool - 60x5x5

B.R.D. - 120x1x1 B.R.D. - 60x5x5

Conv 120x240x1x1 240x1x1 Conv 60x120x3x3 120x5x5

B.R.D. - 240x1x1 Conv 120x120x3x3 120x3x3

Conv 240x90x1x1 90x1x1 Pool - 120x1x1

B.R.D. - 120x1x1

Conv 120x240x1x1 240x1x1

B.R.D. - 240x1x1

Conv 240x90x1x1 90x1x1

CNN C CNN D

Type Parameters Output Type Parameters Output

Input - 125x15x15 Input - 125x25x25

Conv 125x100x3x3 100x15x15 Conv 125x100x3x3 100x23x23

Conv 100x100x3x3 100x13x13 Conv 100x100x3x3 100x21x21

Pool - 100x6x6 Pool - 100x10x10

B.R.D. - 100x6x6 B.R.D. - 100x10x10

Conv 100x160x3x3 160x4x4 Conv 100x160x3x3 160x8x8

Conv 160x160x3x3 160x2x2 Conv 160x160x3x3 160x6x6

Pool - 160x1x1 Pool - 160x3x3

B.R.D. - 160x1x1 B.R.D. - 160x3x3

Conv 160x240x1x1 240x1x1 Conv 160x200x3x3 200x1x1

B.R.D. - 240x1x1 B.R.D. - 200x1x1

Conv 240x90x1x1 90x1x1 Conv 200x240x1x1 240x1x1

B.R.D. - 240x1x1

Conv 240x90x1x1 90x1x1
28



116 Publications

Paper F - Compressed Feature Visualizations in

Convolutional Neural Networks



Noname manuscript No.
(will be inserted by the editor)

Compressed Feature Visualizations in Convolutional Neural
Networks

David Malmgren-Hansen · Allan Aasbjerg Nielsen ·
Rasmus Engholm

Received: date / Accepted: date

Abstract Convolutional Neural Networks (Convnets) have achieved good results in a range
of computer vision tasks in recent years. Their ability to learn features from large quantities
of data provides a strong framework, but it remains a challenging task to interpret these fea-
tures. Current methods of interpreting Convnets are based on visualizing each node of the
network, but modern Convnets can have thousands of nodes. We propose a generic visual-
ization framework based on clustering internal representations across layers with Dirichlet
Process Gaussian Mixture Models. Our method compresses the high number of nodes in a
Convnet and provides a single cluster result per layer of the Convnet. With this method, one
is able in a layer-wise manner to visualize how the network structures information from im-
ages. We show in this paper how it can explain the high adaptability of Convnets trained on
large scale images databases when transferred to other image problems in different domains,
i.e. Transfer Learning. Our results reveal that a large part of a network has structured feature
representation of the data at hand despite the fact that the data is very different from the data
the Convnet was trained on.

Keywords: Deep learning; Feature visualization; Dirichlet Processes; Gaussian Mixture Mod-
els;

David Malmgren-Hansen
Technical University of Denmark
Department of Applied Mathematics and Computer Science
E-mail: dmal@dtu.dk

Allan Aasbjerg Nielsen
Technical University of Denmark
Department of Applied Mathematics and Computer Science
E-mail: alan@dtu.dk

Rasmus Engholm
Terma A/S
E-mail: rae@terma.com



2 David Malmgren-Hansen et al.

1 Introduction

Convolutional Neural Networks (Convnets) have had a great impact on a range of com-
puter vision problems such as image classification, object detection, image captioning etc.
The ability to represent image context by representing it with hierarchically ordered feature
extractions makes Convnets suitable for scaling to large complex problems with many cate-
gories of data. The reason for this is that early layer features will be simple building blocks
in the representation of many types of data, while deeper layer features are more specific to
a certain context which make it possible to separate images by predefined classes.
There are rarely any built-in constraints on the structure or location of internal represen-
tations in Neural Networks. The idea is to train a Convnet to be a ”good” hierarchically
ordered feature extractor from large quantities of data. Whether this actually happens and
which internal nodes or layers become certain types of feature extractors are very important
to explain a model’s ability to generalize. It can also give insight into how features learned
on one dataset can be transferred to other problems, known as Transfer Learning. Transfer
Learning has been heavily explored within deep learning recently and has solved several
tasks well, e.g. in [20], [11], [23], [16], [21].

1.1 Related Work

Plotting the values of feature maps in a Convnet (square boxes in Figure 1), such as in [10]
is one way of gaining insight, but it leaves the user to interpret a large number of abstract
feature maps. Convnets can easily have several hundreds of feature maps in just one layer
of the network. In [9] it was shown that the first layer filter parameters resembled Gabor
wavelet kernels. This was interesting in the sense that large amounts of image data and a
classification task with 1000 classes had forced the filters to become, what has long been
known to be good image texture descriptors, [4], [13]. However, showing filter parameters
or layer outputs as images becomes harder after the first layer of a Convnet. In deeper layers
each node has a number of filters corresponding to the number of channels (feature maps)
of the previous layer and are therefore no longer a color specific representation as in the first
layer, see illustration in Figure 1. This has led to other recently proposed techniques such
as in [23], [22], [12]. In [23] a method is proposed where an internal representation from a
node in a Convnet is projected back into input RGB-space by inverting all operations. The
technique shows easy interpretable visualizations of a node, however the network used had
more than 9000 nodes. If one has a labelled dataset, a way to select interesting nodes could
be to find the ones that have high activations values when a group in the dataset, e.g. cats or
dog, are processed. Without labelled images though, it becomes a tedious task to analyze all
nodes in the network.
The contributions of this paper is twofold. First, we present a framework for visualizing
internal representations from clustered feature maps. The method copes with the challenges
of dealing with the high number of nodes in a Convnet. Further, it clusters in an unsuper-
vised manner without specifying the number of clusters, and in this way is very flexible
across different visualizations purposes. In the second part of our contribution we apply our
method on different datasets and show how it can explain the strong ability to generalize
that Convnets trained on large scale image recognition problems have. Recent research in
transfer learning has shown that these networks generalize to other datasets though their are
very different from the dataset the Convnet was trained on, but intuition on why this is has
until now not been given.
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Fig. 1: Example illustration of a Convnet (note the illustration above follows a different
architecture than the one used in our experiments). Summation signs over c is sum over c
input channels. Squares denote feature maps, i.e. outputs from convolutional layers. The blue
arrows represent the chosen subsampling scheme e.g. max-pooling, and the small circles are
neurons in fully connected layers. Connections are only shown for the first node in each
layer, but all nodes in all layers are connected to all inputs from previous layers.

In [20], different training procedures in Transfer Learning are experimentally explored.
The authors randomly split a dataset in two parts and considered transfer learning of a Con-
vnet from one part to the other. In this procedure it is clear that a high amount of learning
should be transferable since data originates from the same set. However, it has also been
shown that Transfer Learning can improve performance between datasets that are very dis-
similar [16], [14]. The question is whether it is only the very basic feature extractions, i.e.
early layers, that improve performance when using Transfer Learning with these more dis-
similar sets. We will explore this with a new visualization technique in our experiments.

1.2 Proposed Method

In this paper we propose an alternative approach to Convnet visualization based on Dirichlet
Process Gaussian Mixture Model (DPGMM) clustering. The DPGMM follows the method
in [3], and we suggest to cluster feature representations across nodes in each layer. Different
clustering algorithms might be considered, however they need to find the number of clusters
automatically. Since we cannot assume anything about the true number of clusters in the
feature space of a given Convnet layer, classical algorithms such as K-means and standard
Gaussian Mixture Models are not feasible. One advantage of the DPGMM is that points are
modelled as belonging to underlying probability distributions with individual covariance
matrices. This is in contrast to simpler approaches where points are separated with distance
metrics. The Density Based Spatial Clustering in Applications with Noise algorithm (DB-
SCAN), [6], was tried as well. DBSCAN resulted typically in only one or two clusters for a
given layer, and is therefore not optimal for this visualization pipeline.

Our visualization approach can be summarized by the following steps,

1. Given a trained Convnet, process one or more images with the Convnet and save all
activations.

2. For each layer, structure the activations as multi-dimensional points with each node
being an element in the point vector.

3. Run the clustering scheme over the points and assign each point a label.
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4. For feature map activations the labels can be restructured to the feature map size and
visualized by discrete a color scheme.

5. For fully connected layers, a vector per image is obtained and the clustering of a set of
image vectors reveals the degree of distinguishability from a given layer.

More elaborate explanations of step 3 and 4 are provided in Section 3. For convolutional
layers that output feature maps with spatial structure, we consider each feature map pixel as
a point and one processed image leads to many points that can be clustered and analyzed.
Naturally this approach is infeasible in fully connected layers where each node outputs one
value per input image, illustrated as small circles on Figure 1. This gives the practical differ-
ence that we can plot the resulting clusters per image as a discretely colored label map for
convolutional layers as opposed to fully connected layers where we interpret based on how
the layer cluster a set of images. Compared to other visualization techniques, our algorithm
visualizes data representations from a whole layer at once rather than a single node in the
network. This has the advantage that the we do not need to search through thousands of
nodes in order to find strong feature detectors for a given image.

The experiments in Section 3 aim to show how features from Convnets trained on a
dataset are transferred to new unseen data. We use the proposed algorithm to analyze VG-
GNet, [17], which is trained on the ImageNet dataset, [5]. VGGNet has 13,416 nodes dis-
tributed on 16 layers. Ideally each node represents a feature necessary for solving the clas-
sification task posed in ImageNet, however when used with unseen data we cannot know
which nodes are relevant. In Section 3 we will present the visualization results on two un-
seen datasets with different degrees of similarity to ImageNet.

2 Dirichlet Process Gaussian Mixtures Models

The Dirichlet Process Gaussian Mixture Model is a variant of the variational inference
scheme for Dirichlet Process Mixtures introduced in [3]. As opposed to a Gaussian Mix-
ture Model, which aims to model observations as coming from a finite number of Gaussian
distributions, the DPGMM considers an infinite number of distributions. The Dirichlet Pro-
cess (DP), in Equation 1, infers the prior of each of the infinite number of distributions. If
we consider a random measure G drawn from an DP with an underlying base distribution
G0 given a positive scaling parameter α,

G|{α,G0} ∼ DP (α,G0)

vi ∼ G, i ∈ {1, ..., N} (1)

where vi is the i′th independent random samples of N samples from our DP. When clus-
tering an unknown number of clusters one wish to sample priors from an infinite series of
discrete values that sums to 1 and has a decreasing value as the sampling progresses. This is
achieved by following a stick breaking process as explained in [15]. The process is to break
off fractions of the residual on a unit length stick as samples. When the number of samples
goes towards infinity the residual goes toward zero and the DP prior will thereby infer a
limit to the number of clusters found in the data.

πi(v) = vi

i−1∏

j=1

(1− vj)

G =
∞∑

i=1

πi(v)δηi

(2)
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δηi is an indicator function on the mixing components denoted ηi which in our case
being represented by a Gaussian distribution in our case. v is a vector of independent draws
from a Beta distribution v = {v1, v2, ...}, vi ∼ Beta(1, α). The DPGMM has one parame-
ter, α, sometimes referred to as the concentration parameter. This alters the Beta distribution
resulting in a change of how fast our component priors will go towards zero. In practice we
cannot fit Mixture Models over an infinite number of components but a finite approximation
can be made by leaving the last sample taking the rest of the stick. The finite approximation
introduces another hyper parameter, the maximum number of components. However, this
parameter has little influence on the result as long as it is set higher than the number of
components found during optimization. If one can increase this parameter and find results
with a higher number of mixtures, it was set too low initially.

For our experiments we have used the implementation of the DPGMM algorithm from
the Scikit-Learn package for Python. It uses the Expectation-Maximation scheme to assign
data points to the different mixtures components iteratively as the posterior probability is
maximized.

3 Experiment

In Deep Learning it has become popular to store input data and model parameters in N-
dimensional arrays referred to as tensors, [2], [1]. This is especially convenient with Con-
vnets working on images, as your data structure has four dimensions, i.e. number of images,
number of channels (e.g. 3 for RGB), image height and image width. A convolutional layer
output will be, for each image, a number of feature maps equal to the number of nodes
chosen for the layer, which each has a new number of rows and columns. In our experiment
we analyze the pretrained Convnet VGGNet from [17] (model D), which classifies fixed size
224x224 RGB input images among 1000 predefined classes. The convolutional layers of this
model produce feature maps with number of rows and columns equal to the number of rows
and columns in the input, due to their choice of the convolutional layer hyper parameters
”stride” and ”border mode”. ”stride”, being the pixel offset of the kernel in the convolution
process, reduces the output size if set higher than one. ”border mode” refers to handling con-
volutions near the edges. One can e.g. zero pad the input to obtain the same output size as
the input. VGGNet has 16 layers and the feature maps’ sizes are reduced trough the network
with a max-pooling subsampling function between some of the layers. As the first layer in
the model has 64 features maps the output size will be (n, 64, 224, 224), with n being the
number of images we process with the network. The last three layers are fully connected
layers and their output size (n,K, 1, 1) with K being the number of nodes in each of them.
To cluster internal representations we need to consider them as points of features. As we are
interested in learning what each layer represents, we suggest to cluster across nodes of each
layer. For the fully connected layer this means each vector representation of an image is a
point. For the convolutional layers’ output (feature maps) we need to consider each pixel
in them across all feature maps in the layer as a point. As an example, we can consider the
second layer in the model, which outputs an array of size (n, 64, 224, 224). We will convert
this into a matrix of size (n · 2242, 64) considering each row a point in feature space. We
then cluster the points with the DPGMM and reconstruct the image of labels given from the
assigned mixture components. This allows us to visualize a feature image where each color
represents a certain cluster of features in the given layer, without knowing the number of
different feature clusters that are present.
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The values of the feature map pixels and fully connected activations are ranging in an
arbitrary interval given by the learned parameters of the model. We scaled the values to
range between 0 and 10 to fit the random initialization scheme of DPGMM components.
To reduce the computationally load when clustering the high dimensional points, we use a
diagonal covariance matrix scheme for the underlying gaussian mixture components.

The VGGNet handles images of different sizes by resizing to a fixed input size of
224x224 pixels. We followed this approach and did bilinear interpolation so the smallest
dimension was 224 pixels, and then cropped the center piece along the other dimension. In
this way we avoided uneven resizing, but at the cost of sometimes leaving out information
along the edges. Another procedure often used in the ImageNet entries is to do multiple
crops and average results, but this yields a higher amount of data that needs to be processed.

3.1 Datasets

In our experiments we evaluate the presented visualization technique on two datasets, Cal-
tech101 [7], [8] and Warwick-QU [18], [19]. As explained in Section 4, we are visualizing
the features learned in the pretrained Convnet VGGnet from [17] that is trained on the Ima-
geNet ([5]) dataset. The two datasets chosen for this experiment are dissimilar to ImageNet
in different degrees. Warwick-QU, which consist of Haematoxylin and Eosin (H&E) stained
slides of gland samples, is very dissimilar to the natural images of different objects in Ima-
geNet. Caltech101 contains 101 categories of objects which mostly consists of natural RGB
images but also includes drawings and grayscale images. This dataset has an overlap with
ImageNet objects, e.g. they both contain natural images of pigeons, and we therefore con-
sider it a more similar dataset. Our goal is to explore the extent of Transfer Learning, in the
sense of exploring features learned from one dataset on other datasets with different degrees
of dissimilarity.

4 Results

In convolutional layers it is possible to cluster representations from a single image or mul-
tiple images, whereas in fully connected layers we have to cluster across several images. In
this section we will show results from both approaches on the datasets presented.

In Figure 2, an example is shown with feature map clustering from early to deeper con-
volutional layers. An example from each dataset is shown, and it can be seen that lower
level features get pooled together representing bigger structures deeper in the network. The
pigeon sample in the top row of Figure 2 gets more distinctively separated from the back-
ground as we go deeper in the network in the sense that the pigeon is represented by fewer
clusters. This makes sense, since the background should not be relevant for the object class.
The same happens with the cell sample from Warwick-QU and this is despite of the context
in the cell image being very far from the context represented in the ImageNet setup. No re-
training on the new datasets was performed, so the feature detectors are the ones optimized
on ImageNet.

We ran the algorithm on a number of cell images from Warwick-QU and plotted the
centers of non background components in their input space position, shown on Figure 3.
The point on Figure 3 is not to present a good cell detector, but it is an interesting fact that
it naturally arises from accumulated information in layer 10 of the pretrained Convnet. This
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(a) Sample from Caltech101

(b) Sample from Warwick-QU

Fig. 2: DPGMM clusters of feature maps from a single image for different layers in the
network, where each color is a label given from the clustering. Note that the feature map
size decreases due to the Max-pooling subsampling operations. Top row is a Caltech101
sample and the bottom row is a Warwick-QU. In these experiments α = 0.2. It should be
noted that the colors between layers in above figure have no correspondence since they are
assigned in numerical order from the clustering algorithm which changes due to the random
mixture initialization.

shows that there is structured context representation all the way up to layer 10 in this model
on a new different dataset, since the model can separate cells from the background.

Fig. 3: Non-background component centers from layer 10 plotted in input space for different
cell images.

When analyzing the representations in even deeper layers, there is little spatial informa-
tion about them left in the representation. It is therefore necessary to look at clusters over
a range of image examples. From layer 14 in our model, which is a fully connected layer,
we have clustered all 165 images in Warwick-QU. The algorithm clusters them as seen in
Figure 4.

The Warwick-QU dataset is annotated with grades (benign, malign) and patient ID.
Cluster ”1” in Figure 4 is 74.4% benign image samples, whereas cluster ”2” is 92.9% malign
samples. Clusters ”3”, ”4” and ”5” are single sample clusters, and are outliers in our cluster-
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Fig. 4: Clustering over all images of the vector representation from layer 14. In this experi-
ment α = 0.1 for the DPGMM clustering.

ing result, they are all benign samples. Cluster ”6” has two benign samples from the same
patient and cluster ”7” has four malign samples from another patient. We ran experiments
with the concentration parameter α equal to 0.1 and 0.2. With α equal to 0.2, cluster ”1”
became 100% benign of size 27 samples, at the cost of cluster ”2” only being 64% malign.
In a classification context we do not achieve a high performance, but the model was also
never trained for this task. The interesting fact is that training a model on ImageNet gives
some ability to discriminate between benign and malign samples in this dataset. What our
experiment also shows is that it is not only lower level layers that have potential to contribute
to performance gain when using Transfer Learning even between very dissimilar datasets.
The feature vector used to cluster the images in Figure 3 was extracted from layer 14 out
of 16 layers. This suggests that a large part of the network generalizes well across different
types of data.

The original task of the Warwick-QU dataset was to segment the images. It is not in the
scope of this paper to explore the process of using a Convnet model trained for classification
on a segmentation task, but some approaches on how to do this are presented in [11]. Given
our analysis, it seems promising to use a pretrained model for the segmentation task even
though the original dataset is significantly different from the Warwick-QU data.

The Caltech101 dataset has more similarity with ImageNet than Warwick-QU. How-
ever, it has 101 categories compared to 1000 in ImageNet, and further it contains drawings
of objects which is not the case for ImageNet. Clustering of Caltech101 images based on
activations from layer 14 with α values 0.2, 1, 1000 yielded 31, 40, 44 clusters, showing
that the number of clusters is not very sensitive to this parameter. Due to the stick breaking
scheme, where we iteratively sample our prior as a percentage of the residual on a unit length
stick combined with the α parameters influence on the beta distribution, the sensitivity on
the number of clusters low. Most of the clusters from the experiments with α = 1 are shown
in Table 1 together with the percentage of Caltech101 categories they contain.

Besides the shown clusters, one cluster contains samples from 82 categories and seems
to capture a range of samples from different Caltech101 categories. The clusters in Table 1
contain mainly one Caltech101 category or a combination of categories that are similar, like
”Faces” and ”Faces easy”, ”ketch” and ”schooner”, as well as ”leopards” and ”wild cat”.
Figure 5 shows 4 images from some sample clusters. As supplementary material (Online
Resource 1), a document with a larger amount of clustered image samples is provided for
all clusters.

Simply using the 1000 predefined categories from the original training task of the Con-
vnet to label Caltech101 images does not provide any meaningful grouping of them. We
found 697 different labels on Caltech101 by classifying them with ImageNet labels’, and no
groups had high correlation with Caltech101 categories. Since ImageNet has a 1000 classes,
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Table 1: Table of 39/40 DPGMM cluster results when clustering over all Caltech101 im-
ages from layer 14 representations. Left column: percentages of all samples in Caltech101
category. Right column: corresponding Caltech101 category. For example, the first category
consists solely of watch pictures and it is 76% of all watches in the datasets that is repre-
sented by this cluster.

0.76 watch
0.25 yin yang
0.03 - 0.58 octopus - starfish
0.05 - 0.45 - 0.02 - 0.25 - 0.44 - 0.29 - 0.03 - 0.03 - 0.80 - 0.45 anchor - ant - ceiling fan - crab - crayfish - lobster - mayfly - octopus -

scorpion - tick
0.99 - 0.99 Faces - Faces easy
0.09 Motorbikes
0.35 - 0.93 chair - windsor chair
0.87 - 0.23 - 0.27 Motorbikes - inline skate - wheelchair
0.86 - 0.86 ketch - schooner
0.69 hawksbill
0.82 - 0.03 dalmatian - panda
0.21 - 0.78 - 0.03 cougar body - cougar face - wild cat
0.05 - 0.86 - 0.08 lotus - sunflower - water lilly
0.01 butterfly
0.11 cougar body
0.40 brain
0.82 - 0.56 Leopards - wild cat
0.52 hedgehog
0.31 airplanes
0.62 - 0.11 airplanes - helicopter
0.41 tick
0.02 - 0.61 - 0.01 - 0.66 brontosaurus - elephant - llama - rhino
0.64 accordion
0.81 grand piano
0.84 trilobite
0.62 - 0.18 - 0.03 - 0.14 - 0.83 - 0.15 - 0.02 emu - gerenuk - ibis - kangaroo - llama - okapi - rooster
0.71 revolver
0.34 kangaroo
0.15 nautilus
0.64 - 0.31 - 0.61 flamingo - flamingo head - ibis
0.07 - 0.04 - 0.68 - 0.03 - 0.02 buddha - cup - ewer - lamp - menorah
0.31 soccer ball
0.31 nautilus
0.58 - 0.02 soccer ball - yin yang
0.03 butterfly
0.05 butterfly
0.88 laptop
0.39 stop sign
0.62 - 0.03 euphonium - saxophone

it is likely that some of them are more specific object categories compared to the Caltech101
classes. A thorough analysis of the labels differences could probably yield more insight into
the Convnet’s performance on Caltech101 but this would be a cumbersome task compared
with an automatic clustering scheme. The proposed method therefore provides a useful tool
to analyze the learned context across datasets.
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Fig. 5: Clustering the vector representation of all images in Caltech101. The feature vector
representation was extracted from layer 14 in VGGNet. Every column represents a separate
cluster and shows four random images from each.

5 Conclusion

In this paper we have proposed a technique for clustering and visualizing internal represen-
tations in a pretrained Convnet, based on Dirichlet Process Gaussian Mixture Models. Our
clustering approach is unsupervised, which makes it possible to interpret relevant informa-
tion from data representation regardless whether labels are available as oppose to related
approaches that visualize all nodes. The method copes with the high number of nodes in
a single layer of a Convnet by clustering them to a discrete label space. This reveals how
many feature clusters a layer uses to represent a given image or set of images, and whether
this is a meaningful representation can be interpreted by the user.

The proposed algorithm is well suited to explore and explain the cross domain gener-
alizability that has been experimentally shown in Transfer Learning research recently. Our
experiments showed that a Convnet trained on a dataset can have meaningful representations
of unseen data, despite the new data being very dissimilar to the original one. Interestingly,
we found that even these meaningful representations are not limited to shallow layers which
often are considered very basic feature descriptors. Even high layers contained representa-
tions that were useful on a very dissimilar dataset. One future extension of this method could
be to combine it with the deconvolutional method presented in [23], and do the clustering
on deconvolved representations of the nodes in each layer. This would yield a higher spatial
size of the label maps and allow for fully connected layers to be presented in label maps as
well as for the convolutional layers.
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