1,235 research outputs found

    Ubiquitous Semantic Applications

    Get PDF
    As Semantic Web technology evolves many open areas emerge, which attract more research focus. In addition to quickly expanding Linked Open Data (LOD) cloud, various embeddable metadata formats (e.g. RDFa, microdata) are becoming more common. Corporations are already using existing Web of Data to create new technologies that were not possible before. Watson by IBM an artificial intelligence computer system capable of answering questions posed in natural language can be a great example. On the other hand, ubiquitous devices that have a large number of sensors and integrated devices are becoming increasingly powerful and fully featured computing platforms in our pockets and homes. For many people smartphones and tablet computers have already replaced traditional computers as their window to the Internet and to the Web. Hence, the management and presentation of information that is useful to a user is a main requirement for today’s smartphones. And it is becoming extremely important to provide access to the emerging Web of Data from the ubiquitous devices. In this thesis we investigate how ubiquitous devices can interact with the Semantic Web. We discovered that there are five different approaches for bringing the Semantic Web to ubiquitous devices. We have outlined and discussed in detail existing challenges in implementing this approaches in section 1.2. We have described a conceptual framework for ubiquitous semantic applications in chapter 4. We distinguish three client approaches for accessing semantic data using ubiquitous devices depending on how much of the semantic data processing is performed on the device itself (thin, hybrid and fat clients). These are discussed in chapter 5 along with the solution to every related challenge. Two provider approaches (fat and hybrid) can be distinguished for exposing data from ubiquitous devices on the Semantic Web. These are discussed in chapter 6 along with the solution to every related challenge. We conclude our work with a discussion on each of the contributions of the thesis and propose future work for each of the discussed approach in chapter 7

    Ambient-aware continuous care through semantic context dissemination

    Get PDF
    Background: The ultimate ambient-intelligent care room contains numerous sensors and devices to monitor the patient, sense and adjust the environment and support the staff. This sensor-based approach results in a large amount of data, which can be processed by current and future applications, e. g., task management and alerting systems. Today, nurses are responsible for coordinating all these applications and supplied information, which reduces the added value and slows down the adoption rate. The aim of the presented research is the design of a pervasive and scalable framework that is able to optimize continuous care processes by intelligently reasoning on the large amount of heterogeneous care data. Methods: The developed Ontology-based Care Platform (OCarePlatform) consists of modular components that perform a specific reasoning task. Consequently, they can easily be replicated and distributed. Complex reasoning is achieved by combining the results of different components. To ensure that the components only receive information, which is of interest to them at that time, they are able to dynamically generate and register filter rules with a Semantic Communication Bus (SCB). This SCB semantically filters all the heterogeneous care data according to the registered rules by using a continuous care ontology. The SCB can be distributed and a cache can be employed to ensure scalability. Results: A prototype implementation is presented consisting of a new-generation nurse call system supported by a localization and a home automation component. The amount of data that is filtered and the performance of the SCB are evaluated by testing the prototype in a living lab. The delay introduced by processing the filter rules is negligible when 10 or fewer rules are registered. Conclusions: The OCarePlatform allows disseminating relevant care data for the different applications and additionally supports composing complex applications from a set of smaller independent components. This way, the platform significantly reduces the amount of information that needs to be processed by the nurses. The delay resulting from processing the filter rules is linear in the amount of rules. Distributed deployment of the SCB and using a cache allows further improvement of these performance results

    Data semantic enrichment for complex event processing over IoT Data Streams

    Get PDF
    This thesis generalizes techniques for processing IoT data streams, semantically enrich data with contextual information, as well as complex event processing in IoT applications. A case study for ECG anomaly detection and signal classification was conducted to validate the knowledge foundation

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Model-driven dual caching For nomadic service-oriented architecture clients

    Get PDF
    Mobile devices have evolved over the years from resource constrained devices that supported only the most basic tasks to powerful handheld computing devices. However, the most significant step in the evolution of mobile devices was the introduction of wireless connectivity which enabled them to host applications that require internet connectivity such as email, web browsers and maybe most importantly smart/rich clients. Being able to host smart clients allows the users of mobile devices to seamlessly access the Information Technology (IT) resources of their organizations. One increasingly popular way of enabling access to IT resources is by using Web Services (WS). This trend has been aided by the rapid availability of WS packages/tools, most notably the efforts of the Apache group and Integrated Development Environment (IDE) vendors. But the widespread use of WS raises questions for users of mobile devices such as laptops or PDAs; how and if they can participate in WS. Unlike their “wired” counterparts (desktop computers and servers) they rely on a wireless network that is characterized by low bandwidth and unreliable connectivity.The aim of this thesis is to enable mobile devices to host Web Services consumers. It introduces a Model-Driven Dual Caching (MDDC) approach to overcome problems arising from temporarily loss of connectivity and fluctuations in bandwidth

    Storage Solutions for Big Data Systems: A Qualitative Study and Comparison

    Full text link
    Big data systems development is full of challenges in view of the variety of application areas and domains that this technology promises to serve. Typically, fundamental design decisions involved in big data systems design include choosing appropriate storage and computing infrastructures. In this age of heterogeneous systems that integrate different technologies for optimized solution to a specific real world problem, big data system are not an exception to any such rule. As far as the storage aspect of any big data system is concerned, the primary facet in this regard is a storage infrastructure and NoSQL seems to be the right technology that fulfills its requirements. However, every big data application has variable data characteristics and thus, the corresponding data fits into a different data model. This paper presents feature and use case analysis and comparison of the four main data models namely document oriented, key value, graph and wide column. Moreover, a feature analysis of 80 NoSQL solutions has been provided, elaborating on the criteria and points that a developer must consider while making a possible choice. Typically, big data storage needs to communicate with the execution engine and other processing and visualization technologies to create a comprehensive solution. This brings forth second facet of big data storage, big data file formats, into picture. The second half of the research paper compares the advantages, shortcomings and possible use cases of available big data file formats for Hadoop, which is the foundation for most big data computing technologies. Decentralized storage and blockchain are seen as the next generation of big data storage and its challenges and future prospects have also been discussed

    An infrastructure for context-dependent RDF data replication on mobile devices

    Get PDF
    Der im Rahmen dieser Arbeit vorgestellte Ansatz beschreibt die Erstellung einer technischen Infrastruktur, die selektiv RDF-Daten in Abhängigkeit der Informationsbedürfnisse und den unterschiedlichen Kontexten mobiler Nutzer auf ein mobiles Endgerät repliziert und diese somit in intelligenter Art und Weise unterstützt. Eine Zusammenführung kontextspezifischer Konzepte und semantischer Technologien stellt einen wesentlichen Bestandteil zur Verbesserung der mobilen Informationssuche dar und erhöht gleichzeitig die Präzision mobiler Informationsgewinnungsprozesse. Trotz des vorhandenen Potentials einer proaktiven, kontextabhängigen Replizierung von RDF-Daten, gestaltet sich die Verarbeitung auf mobilen Endgeräten schwierig. Die Gründe dafür liegen in den technischen und netzwerkspezifischen Beschränkungen, in der fehlenden Verarbeitungs- und Verwaltungsfunktionalität von ontologiebasierten Beschreibungsverfahren sowie in der Unzulänglichkeit bestehender Replikationsansätze, sich an verändernde Informationsbedürfnisse sowie an unterschiedliche technische, umgebungsspezifische und infrastrukturbezogene Eigenheiten anzupassen. Verstärkt wird diese Problematik durch das Fehlen ausdrucksstarker Beschreibungsverfahren zur Repräsentation kontextspezifischer Daten. Existierende Ansätze leiden dementsprechend unter der Verwendung proprietärer Datenformate, dem Einsatz serverabhängiger Applikationsinfrastrukturen sowie dem Unvermögen, kontextspezifische Daten auszutauschen. Dies äußert sich in Studien, welche die Berücksichtigung der Informationsbedürfnisse mobiler Nutzer als unzureichend einstuft und einen Großteil der benötigten Informationen als kontextrelevant auszeichnet. Obgleich Fortschritte bei der Adaption von semantischen Technologien und Beschreibungsverfahren zur kontextabhängigen Verarbeitung zu erkennen sind, bleibt eine auf semantische Technologien basierende, proaktive Replizierung von RDF-Daten auf mobile Endgeräte ein offenes Forschungsfeld. Die vorliegende Arbeit diskutiert Möglichkeiten zur Erweiterung der mobilen, kontextspezifischen Datenverarbeitung durch semantische Technologien und beinhaltet eine vergleichende Studie zur Leistungsfähigkeit aktueller mobiler RDF-Frameworks. Kernpunkt ist die formale Beschreibung eines abstrakten Modells zur effizienten Akquise, Repräsentation, Verwaltung und Verarbeitung von Kontextinformationen unter Berücksichtigung der technischen Gegebenheiten mobiler Informationssysteme. Ergänzt wird es durch die formale Spezifikation eines nebenläufigen, transaktionsbasierten Verarbeitungsmodells, welches Vollständigkeits- und Konsistenzbedingungen auf Daten- und Prozessebene berücksichtigt. Der praktische Nutzen des vorliegenden Ansatzes wird anhand typischer Informationsbedürfnisse eines Wissensarbeiters demonstriert. Der Ansatz reduziert Abhängigkeiten zu externen Systemen und ermöglicht Nutzern, unabhängig von zeitlichen, örtlichen und netzwerkspezifischen Gegebenheiten, auf die für sie relevanten Daten zuzugreifen und diese zu verarbeiten. Durch die lokale Verarbeitung kontextbezogener Daten wird sowohl die Privatssphäre des Nutzers gewahrt als auch sicherheitsrelevanten Aspekten Rechnung getragen.This work describes an infrastructure for the selective RDF data replication to mobile devices while considering current and future information needs of mobile users and the different contexts they are operating in. It presents a novel approach in synthesizing context-aware computing concepts with semantic technologies and distributed transaction management concepts for intelligently assisting mobile users while enhancing mobile information seeking behavior and increasing the precision of mobile information retrieval processes. Despite the huge potential of a proactive, context-dependent replication of RDF data, such data can not be efficiently processed on mobile devices due to (i) technical limitations and network-related constraints, (ii) missing processing and management capabilities of ontology-based description frameworks, (iii) the inability of traditional data replication strategies to adapt to changing user information needs and to consider technical, environmental, and infrastructural restrictions of mobile operating systems, and (iv) the dynamic and emergent nature of context, which requires flexible and extensible description frameworks that allow for elaborating on the semantics of contextual constellations as well as on the relationships that exist between them. As a consequence, existing approaches suffer from the deployment of proprietary data formats, server-dependent application infrastructures, and the inability to share and exchange contextual information across system borders. Moreover, results of recently conducted studies reveal that mobile users find their information needs inadequately addressed, where a large share can be attributed as context or context-relevant. Although progress has been made in applying semantic technologies, concepts, and languages to the domain of context-aware computing, a synthesis of those fields for the proactive provision of RDF data replicas on mobile devices remains an open research issue. This work discusses possible fields where context-aware computing can be enhanced using technologies, languages, and concepts from the Semantic Web and contains a comparative study about the performance of current mobile RDF frameworks in replication-specific tasks. The main contribution of this thesis is a formal description of an abstract model that allows for an efficient acquisition, representation, management, and processing of contextual information while taking into account the peculiarities and operating environments of mobile information systems. It is complemented by a formal specification of a concurrently operating transaction-based processing model that considers completeness and consistency requirements on data and process level. We demonstrate the practicability of the presented approach trough a prototypical implementation of context and data providers that satisfy typical information needs of a mobile knowledge worker. As a consequence, dependencies to external systems are reduced and users are equipped with relevant information that adheres to their information needs anywhere and at any time, independent of any network-related constraints. Since context-relevant data are processed directly on a mobile device, security and privacy issues are preserved

    Mobile Cloud Support for Semantic-Enriched Speech Recognition in Social Care

    Get PDF
    Nowadays, most users carry high computing power mobile devices where speech recognition is certainly one of the main technologies available in every modern smartphone, although battery draining and application performance (resource shortage) have a big impact on the experienced quality. Shifting applications and services to the cloud may help to improve mobile user satisfaction as demonstrated by several ongoing efforts in the mobile cloud area. However, the quality of speech recognition is still not sufficient in many complex cases to replace the common hand written text, especially when prompt reaction to short-term provisioning requests is required. To address the new scenario, this paper proposes a mobile cloud infrastructure to support the extraction of semantics information from speech recognition in the Social Care domain, where carers have to speak about their patients conditions in order to have reliable notes used afterward to plan the best support. We present not only an architecture proposal, but also a real prototype that we have deployed and thoroughly assessed with different queries, accents, and in presence of load peaks, in our experimental mobile cloud Platform as a Service (PaaS) testbed based on Cloud Foundry
    • …
    corecore