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Abstract

With the ever-increasing number of connected devices, the IoT devices have be-

come a primary source of data generation in the form of Big Data or Big Data streams.

Current research is investigating how to process data along the data pipeline, use re-

sources available outside the cloud, and semantically enrich data streams for unified

representations and complex event processing inferences.

This thesis generalizes techniques for processing an IoT data stream, semantically

enrich the data with contextual information at Edge, Fog, or Cloud-layer, as well as

complex event processing in IoT applications.

A case study in the field of eHealth is used to validate the knowledge foundation

of this thesis. The use case demonstrates an anomaly detection, and classification sce-

nario over an Electrocardiogram (ECG) stream, where anomalous ECG signals are pro-

cessed dynamically across the data pipeline and classified with modern machine learn-

ing approaches based on the Hierarchical temporal memory (HTM) and Convolutional

Neural Network (CNN) algorithms. By applying the HTM algorithm on the Edge layer,

the data volume can be reduced over the IoT ecosystem, which results in the reduction

of classification latency as well as needed processing resources. The proposed architec-

ture of the case study describes an adaptive solution that can be extended to other use

cases to enable complex analysis of patient data in a historical, predictive, and even

prescriptive application scenario. The resulting implementation acts as a proposal for

researchers and developers to rapidly deploy and test scalable IoT scenarios in the field

of data processing, data enrichment, and (semantic-) complex event processing.
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Chapter 1

Introduction

This section contains the introduction to the Internet of Things (IoT) streaming do-

main and the motivation of this thesis. Further, the challenges of modern IoT stream-

ing applications are elaborated. Based on those challenges, the problem statement and

goals of the thesis are defined. Concluding this section, the structure of this work are

outlined.

1.1 Motivation

IoT-capable devices can produce massive amounts of data. Cisco predicts that by

2030, 500 billion devices will be expected to be connected to the internet [C16]. Smart

devices generate data for IoT applications to aggregate, analyze, and create insight, to

drive informed decisions and actions. An essential component of smart devices are

sensors that gather information about the environment in which they are deployed.

Many sensors can be combined to create an application that fulfills a global purpose.

For instance, an autonomously driving car generates a data volume of approximately

4 terabytes per day [Nis19]. Airplanes create an even higher data volume. The wing

of an Airbus A380, contains around 10,000 sensors, where each wing delivers around

5 terabytes of data per day. The sensors within the engines alone measure around

5,000 parameters 16 times per second. Just the individual information signals add up

to around 150 million throughout a flight that need to be analyzed [DC18]. However,

the majority of this information is disposable data, characterized by minimal or even

missing potential for later reuse. While the given examples are prominent, do the same

characteristics hold to smaller IoT sensor applications. Depending on the use case, IoT

applications need the analysis in real-time for immediate decision-making.
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Edge computing is an indispensable key technology for the IoT. In this paradigm,

data is processed in a decentralized way, close to where the data is created. Interna-

tional Data Group International Data Group (IDG) analysts predicted that by 2019, al-

ready 43 percent of the IoT generated data would be processed on the edge of the net-

work with edge computing systems to handle the flood of data [MTL+16]. Edge com-

puting shifts computing to the edge of the network to further guarantee low latency

and prevent bottlenecks in data delivery or reasoning. Furthermore, Edge computing

helps to ease the burden on conventional central computing architectures and helps to

protect mission-critical data and services by reducing the need for central processing

[KNL+18].

Devices as small as Raspberry Pis can handle data processing for a variety of

IoT endpoints. However, their performance is barely scalable, and their availability is

hardly guaranteed.

Industries, health care, and cities are exploiting IoT data-driven frameworks to

make their environment more efficient and effective. For making IoT a reality, data

produced by sensors, smartphones, watches, and other wearables need to be inte-

grated and the meaning of IoT data extracted. To extract meaning from heterogeneous

devices and data environments, the data structure needs to be defined in a unified

representation schema and semantically linked.

1.2 Problem Statement and Research Questions

With the paradigm of IoT real-time analytics, the challenges for this thesis are

described in the 4 main categories:

1. Variety, Velocity and data rate of IoT data Streams

IoT Devices generate continuous data at a very high rate that needs to be collected

and structured. Videos, tweets, audio recordings, documents, or ECG strips are all data

but are generally unstructured, and varied. Velocity is the measure of how fast the data

is arriving in IoT infrastructure components, where the goal is to reduce the data rate

as much as possible without losing essential events and information.

2. Efficiency - Timeliness and Instantaneity Efficiency in IoT streaming systems can

be considered in the aspect of low latency and reliable delivery on limited resources.
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Low latency is required in critical applications or complex situations where the data

needs to be processed before it gets outdated. On resource-constrained IoT devices, a

high efficiency enables processing close to the data source. This reduces communica-

tion cost, secures better data availability, faster event detection, and reasoning, with

what IoT cloud systems can be spared by having a decreased data rate.

3. Robustness - Randomness and Imperfection IoT streamed data often has the

characteristic of being incomplete and unordered in their arrival time and unreliable.

This can lead to different challenges in the robustness of IoT services. Precise reasoning

can hardly be achieved because IoT stream data is observed through a (time-) window

of a specific size. In some applications, the whole input can not be considered in the

processing, which can lead to an incomplete inference. Building suitable models for

uncertainty management is an important consideration in several IoT stream process-

ing applications.

4. Semantic Expressive Power While the main challenges of IoT data communica-

tion at sensor level are being solved, handling the heterogeneity of data on a semantic

level is still a major issue [Hud16]. IoT sensor devices produce a low level of data.

To understand complex situations, the challenge lies in extracting higher knowledge

levels on a low heterogeneous data level. For an efficient knowledge deduction on IoT

data, knowledge extraction and processing models are required. Those models build

the basis for semantic integration of heterogeneous sources. Heterogeneous data fur-

ther contains the challenge of transforming various data formats, which differ in their

semantic expressive power.

Research Question Based on the aforementioned challenges, the focus on this thesis

can be formulated in the following research questions:

1. What primitive functions can be used to process IoT streaming data efficiently?

This question builds the basis of processing IoT data streams on the lowest level close

to the source and along the data pipeline. In comparison to traditional Database Man-

agement System (DBMS), the nature of continuous data is subject to processing limita-

tions and new paradigms. The focus will be held on identifying the fundamental func-

tions of IoT data stream processing as well as classifying more sophisticated methods

that are used depending on the type of IoT data stream present.
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2. What operations need to be defined to reason over complex events? This question

builds on the results of the previous research question and studies the follow-up step

of how the initially processed data and detected primitive events could be used as a

basis to infer knowledge and reason over more complex event scenarios.

3. What semantic operations need to be defined to enrich data with context informa-

tion to link events semantically? This question concerns the challenge of standard-

izing semantic expressive power in homogeneous and heterogenous IoT application

environment. The focus lies on finding best-practice approaches or standards to se-

mantically enrich information uniformly and reviews methodologies in the field of

knowledge base integrations in the field of IoT Data.

1.3 Case Study: Scalable IoT patient data processing and

reasoning ecosystem in the field of health analysis

A good health monitoring system will discover abnormalities of health condi-

tions in time and build diagnoses in line with the inferred knowledge. The most im-

portant approach to diagnosis is sensor-based patient monitoring. However, in the

past, this monitoring was unlikely to be transportable. As these devices are typically

too costly for home use, patients need to move in many cases to hospitals where they

were restricted during the time of information collection. The burden of hospitals in

terms of space requirements, cost, staffing, and possible advanced analytics results in-

creases the need for modern patient monitoring approaches.

The objective of this selected case study is to validate and apply the concepts

and methodologies explained in this thesis, where stream processing, semantic enrich-

ment, and complex event processing showcases a proposal that holds on the main re-

quirements for a health-data real-time analytics ecosystem. The proposed architecture

evaluates the use case of processing ECG data in real-time, starting from the sensor,

over the Edge/Fog-Layer to the central analytics server. ECG data can be considered

as real-time IoT data streams, in which the processing can be critical. The idea behind

the ECG analysis is to preprocess the raw data and check the signals for anomalies so

that the successive processing load can be reduced, as well as the analytics focused on

relevant data. Relevant elements should be ingested and analyzed for primitive events
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in the Edge or Fog layer. With the possibility of retrieving primitive events, the proof of

concept for Complex Event Processing (CEP) will be showcased in a possible integration

in the defined ecosystem.

The case study includes the following milestones:

1. Design of an IoT real-time ecosystem for semantic stream analytics functionality.

2. Design of a data processing pipeline for ECG analysis and CEP integration, while

the processing pipeline should be generalized on other use cases in the field of

IoT streams.

3. Implementation of anomaly detection, primitive event classification, and CEP to

validate the proof of concept of the designed real-time analytics ecosystem.

4. Description of possible semantic complex event processing and knowledge base

integration.

1.4 Thesis structure

Chapter 2 ”Related Work” describes the state of the art and other findings inside

the research communities in the field of IoT healthcare applications and semantic rea-

soning over IoT data streams. Chapter 3 ”Overview” builds the theoretical foundation

of the domains of IoT stream processing, enrichment, and reasoning. An introduction

of modern IoT architecture designs will be introduced and elaborated in chapter 4 ”IoT

Edge Architecture”, in the context of implementation choices based on use case char-

acteristics. The elaboration of the case study follows in chapter 5 ”Scalable IoT patient

data processing and reasoning ecosystem in the field of health analysis”, where the

previous chapters serve as decision foundation over the chosen implementation of this

proof of concept. The end of this thesis represents chapter 6 ”Conclusion and future

work”, which critically assess the results of the case study, as well as gives insights

into current open research questions in the explored topics of semantic enrichment

and complex event processing over IoT edge streaming. The future work will give an

outlook on possible improvements to the case study.
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Chapter 2

Related work and literature review

Big IoT Data for Remote Health Monitoring

[IKK+15] showed an overview of existing IoT–based healthcare architectures, plat-

forms, and industry trends. Also, they presented an extensive overview of IoT health-

care systems, one of them being the Internet of m-Health Things (m-IoT), which rep-

resents a consolidation of IoT sensors, mobile computing, and communications tech-

nologies. [MNG+17] focused on the data analytics aspect of IoT architecture, oppor-

tunities, and challenges. A brief overview of research efforts directed toward IoT data

analytics between IoT and Big Data was given. Another evaluation was conducted on

analytic types, methods, and technologies in the field of IoT data mining. [MGT+17]

proposed a distributed IoT framework in monitoring activities involving physical ex-

ertion over biomedical signals. [MWY+17] presented an IoT based health application

system, leveraging big data and IoT. The architecture acts as a basis to described chal-

lenges and potential m-health applications. The smart health concept, for the integra-

tion of health principles with sensors and information in smart cities, was introduced

by [SPC+14]. The paper provided an overview of smart health principles and the main

challenges and opportunities of smart healthcare in the context of smart city concepts.

Processing and Analysis of health data streams

[FPY+16] has given an overview of challenges and techniques for data processing of

big data in health informatics. Machine learning algorithms were characterized and

compared. This paper resulted in a proposal for a general processing pipeline for

healthcare data that includes data sensing, storing, analyzing, search, and discover,

as well as decision support.
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Processing and Analytics on the Edge and Cloud layer

[SHT16] presented a comparative analysis of state of the art processing solutions over

Open-Source solutions and commercial stream solutions. The comparison characteris-

tics where the processing model, latency, data pipeline, fault tolerance, and reliability.

Findings and Contribution:

• The utilization of biomedical sensing devices is growing [sources].

• Advanced application use cases demand the need for offloading of computing

and analytics tasks, due to the resource limitations on IoT devices.

• The increasing number of connected IoT devices and new types of applications

enables new interconnected use case scenarios.

In current scientific work, use cases are often illustrated in the optimization of data

processing and reasoning, while the fields of semantic interoperability still represent a

challenge, depending on the domain of application. Based on this observation contains

this work, the contribution of:

• Contribution 1: Giving a use case independent foundation over the fields of

stream processing, semantic enrichment, and complex event processing.

• Contribution 2: Development of a use case based prototype that enables an end-

to-end data pipeline process with the requirement for a generalized and scalable

IoT stream infrastructure in the fields of stream processing, semantic enrichment,

and complex event processing.
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Chapter 3

Overview

In this chapter, the processing pipeline of IoT data is introduced, starting with the

main characteristics of stream data in section 3.1. It follows the introduction in section

3.2, that describes how the stream data can be processed and which reasoning tech-

niques exist for IoT data streams in simple and complex event scenario. The principles

and methods for semantic IoT data will be presented in section 3.3).

3.1 IoT Streams in the context of big data

The core utility of data stream analytics is the recognition and extraction of mean-

ingful patterns from raw data inputs. With that, a higher level of insight can be re-

trieved and used for event detection, complex event processing, reasoning, and deci-

sion making. Extracting knowledge from raw data is essential for many applications

and businesses since it potentially enables competitive advantages. Several works

have characterized the characteristics of big data from different points in terms of vol-

ume, velocity, and variety. A commonly used model today is the ”6V”, that is used to

characterize IoT Big Data, where also data streams can be described with:

Volume represents the amount of data generated. The estimated data generation of

an autonomous car lays at approximately 300TB per year [aut].

Velocity is the speed in which new data is generated and moved trough networks. It

is a crucial characteristic to consider especially for critical tasks like credit card trans-

action checks for fraudulent activities or the sensors of an autonomous car.
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Variety represents the different types of data representation, where the differentia-

tion not only lies in the general type, whether the streaming data is text or numbers.

Based on different sensor manufacturers, the same sensor application can have differ-

ent data schemes.

Veracity represents the inaccuracy as well as the trustworthiness of data. Data streams

appear in many forms where quality and accuracy are hard to manage. The volumes

often balance the lack of quality or accuracy, where the aspects of real-time analytics

stay in a trade-off between volume-driven accuracy and fast analytics.

Value results from the transformation of raw data to meaningful insights. The Value

highly depends on the underlying processes, services, and the way the data is pro-

cessed. For example, an ECG signal monitoring may need to sense on all sensor data,

opposed to a weather forecast sensor only needs random samples of sensor data. In

the context of real-time analytics, the value of the data could decay, the slower it is

processed.

Variability represents the different data flow rates. Depending on the field in which

IoT devices are applied, inconsistent data flows can result. A data source can have

different data load rates based on specific times. For example, in environmental mon-

itoring, devices are required to maximize their battery life. This results in a need for

efficient processing and low network overhead. The processing speed, however, is

usually not as crucial in these cases. In a production environment, the power usage of

the sensing devices and processing is not a concern, as power is readily available, and

the usage is marginal compared to the production line. The data rates in these kinds of

environments can be very high, and there may be a need for instantaneous processing.

An error in the production line that is not detected within seconds or even milliseconds

may result in production issues.

Batch vs. Realtime analytics: The streaming data analytics on high-performance

computing systems or cloud platforms is mainly based on data parallelism and in-

cremental processing [LDS15]. By data parallelism, a large dataset is partitioned into

several subsets, on which parallel analytics can be performed simultaneously. Incre-

mental or serial processing refers to fetching a small sample of batch data to be pro-

cessed quickly in a pipeline. Even though these techniques reduce the response latency
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from the streaming analytics framework, they might be not the best solution for stream

IoT applications. By bringing stream analytics closer to the source of IoT and edge de-

vices, the need for central data parallelism and sequential processing is less sensible.

3.1.1 Static Data - DBMS vs Continuous Data - DSMS Systems

The main objective of both Data Stream Management System (DSMS)s and DBMSs

is to provide generic data management for applications. Still, there are differences

how to manage data and evaluate queries. DSMSs have their origin in DBMSs but

present substantial differences.The following paragraphs will evaluate the different

characteristics.

Query Types The first difference can be seen in the type of queries, where DBMS run

one-time queries over persistently stored data, while DSMS system make use of contin-

uous queries over transient data. A DBMS query is executed and gives the output for

the current state of the relations. DSMS on the other side are long-running queries and

stay active in the system over a longer time window. Once a DSMS registered a con-

tinuous query, the results will be generated as output continuously over new arriving

stream elements until it is deregistered.

Query Answers The query answer of a DBMS always produce exact answers for

a given query. Continuous queries, on the other side, usually provide approximate

query answers. The reasons for this approximate answers are that

(i) many continuous queries are not computable with a finite amount of memory.

An example of this is the cartesian product over two infinite streams, which lead in

bounded computation to an approximate answer.

(ii) The group-by operator would block an infinite stream for exact answers, which is

why an approximate result over a finite space is giving.

(iii) The accumulation of data can be faster than the system can process. In the context

of continuous streaming, high quality approximated data is accepted as an answer.

Moreover, newly arrived data is seen as more accurate and relevant in continuous data

than in old data.

Processing Methodology DBMS can be seen as demand-driven computation models,

where the processing of a query is issued. The tuples are read from the persistently

12



stored data via scan or index-based access methods. Continuous Query Processing (CQP)

in a DSMS is a data-driven approach, where the answer is computed incrementally on

the arrival of new stream elements. Without the use of buffering, DSMS can access

the stream elements only in a sequential arriving order, where DBMS can access tuples

randomly.

Query Optimization The query optimization in DBMS is done before the execution.

The optimizer generates semantically equivalent query executions plans, based on cost

approximation, which contains different performance characteristics. The approxima-

tion of the cost is handled with statistical information of the tables, relations, and sys-

tem information. The optimizer chooses the plan afterward with the lowest estimated

cost. Continuous queries in DSMS require query optimization and run-time to adapt

to changing stream characteristics and system conditions. Query workload can change

over time, as well as data distributions and arrival rates. To not degrade the perfor-

mance of the stream application, run-time optimization is an important aspect to con-

sider in DSMS.

In the rest of this thesis, the focus will be held singly on the CQP paradigm.

3.1.2 Time variability - Characterizing continuous data streams

In continuous data streams, the validity and usefulness of stream elements have a

lifespan. Latency in a network or out-of-date stream elements could degrade the value

of the analysis. Also is the anticipated time variability of the data streams necessary

for later processing steps and reasoning. An example can be that an alarm will be

triggered over an average threshold of the last 10 data elements. The problem occurs

if the time variability is not constant, and only 9 data elements arrived, and further

elements are not generated in a constant time interval.

In this thesis, the data stream will be generally described as:

1. A data stream is a possible unbounded sequence of data items generated by a

data source. A single data item is called a stream element.

2. Stream elements usually arrive continuously at a system.

3. The core system has no control over the sequence of the arriving elements as well

as their arrival rates. The stream rates and ordering can be unpredictable and

change over time.
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Figure 3.1: Illustration of data flow with fixed time intervals t1

4. A data source sends the stream elements only once. As stream elements are ac-

cessed sequentially, a past arrived stream element cannot be retrieved unless it

is stored. With the unbounded size of stream data, a full materialization is not

possible in some cases.

5. Data stream queries need to run continuously and return new results while new

stream elements arrive. The ordering of stream elements may be implicit, which

can be in the form of arrival time at the system, or explicit when the stream ele-

ments provide an application timestamp with their time of creation. In addition

to raw stream data, some use cases need to enrich the data streams with stored

data.

A data stream can be generally characterized into one of the following categories:

1. According to Time intervals between packages:

• Strongly periodic data stream:

– When the time intervals stay the same length between two packets, then

the stream has a strongly periodic characteristic (see figure 3.1). In the

optimal case, the jitter has the value zero.

– Example: Pulse code modulation coded speech in classic telephone switch-

ing.

• Weakly periodic data stream:

– When the time interval between two packages is not constant but peri-

odical, then the stream has a weakly periodic characteristic (see figure

3.2).

– Example: Segmented transmission.
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Figure 3.2: Illustration of data flow with segments with periodic nature represented by

t2

Figure 3.3: Illustration of data flow with with no pattern of the time interval between

packages

• A-periodic data stream

– When the sequence of time intervals is neither strongly nor weakly peri-

odic, and the time period or time gap varies between packets to packets

during the transmission, then such data stream is called an a-periodic

data stream, like illustrated in figure 3.3.

– Example: Instant messaging systems.

2. According to variation of consecutive packet amounts

• Strongly regular data stream:

– When the amount of data is constant during the lifetime of a data stream.

This feature is especially found in uncompressed digital or sensor data

transmission. Figure 3.4 illustrates this characteristic.

– Example: Video stream of cameras in uncompressed form, audio stream

or ECG sensors.

Figure 3.4: Illustration of a constant data size
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Figure 3.5: Illustration of a weakly regular data size stream

• Weakly regular data stream:

– When the size of the data stream items varies periodically then it is

called weakly regular data stream, like shown in figure 3.5.

– Example: Compressed video stream.

3. According to connection or continuity between consecutive packets

• Continuous data stream

– If the packets are transmitted without intermediate gaps.

– Example: Audio data.

• Unconnected data stream

– A data stream with gaps between information items is called an uncon-

nected data stream.

– Example: Compressed video stream.

• Irregular data stream

– If the amount of data is not constant or changes, then the data stream is

called irregular. Transmission and processing of this type of stream are

more complicated since the stream has a variable (bit) rate after apply-

ing compression methods. Figure 3.6 illustrates this characteristic.

– Example: Sentiment analysis on trending tweets.
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Figure 3.6: Illustration of a irregular data size stream

3.2 IoT Stream processing

Stream processing in the field of connection-oriented communications means to

transmit and interpret raw data to convey data packets for the higher-level network

abstraction. It is a one-pass data-processing paradigm that always keeps the data in

motion to achieve low processing-latency. Stream processing supports message aggre-

gation and delivery, as well as the capability of performing real-time asynchronous

computation. The one-at-a-time processing model applies predefined queries or estab-

lished rules to data streams to get immediate results upon their arrival, which leads

to the requirement for simple and independent computations for analytics and pattern

recognition.

There are two major classes in the field of stream processing; DSMS and CEP.

Data streams within the context of DSMS are joined, filtered, and transformed accord-

ing to specific logics with the goal of continuous and long-standing queries. State-of-

art DSMSs adopt mostly the imperative implementation of long-time queries, where a

segment of code is performed upon the arrival of data element for the whole-analysis

logic [BD16]. A typical use-case of DSMS includes face recognition from a continu-

ous video stream, calculation of user preference according to the click history or traffic

analysis for service providers.

The other use case is called CEP, which is essentially tracking and processing

streams of raw events to derive composite events and identify meaningful insights

from them. Complex event processing will be further elaborated in section 3.2.5 and

showcased in the case study under 5.4.4.

By now, the focus will be held on the DSMS. In the next section, the fundamentals

of processing will be described by the lowest level of semantic primitives, followed by

examples of more complex processing scenarios.
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3.2.1 Semantic primitives for stream processing

In this section, the universal primitive functions of stream processing are ex-

plained in detail. The represented operators are explained with their requirements

in a streaming scenario. The operators can be categorized into two categories of non-

blocking and blocking operators. Non-blocking operators can be applied on a constant

stream without further requirements while blocking operators present results only on

a finite sequence.

Non-blocking

Filter: Let PT be the set of filter predicates over tuples of type T. The filter

σ : St × PT− > ST (3.1)

returns all stream elements of a logical stream whose tuple satisfies a given filter pred-

icate. A filter predicate p ∈ PT is a function

p : ΩT− > {true, false} (3.2)

. The argument predicate is expressed as a subscript. The definition of σp indicates that

the input and output stream have the same type.

Map: Let Fmap be the set of all mapping functions that map tuples of type T1 to tuples

of type T2 . The map operator

µ : ST1 × Fmap− > ST2 (3.3)

applies a given mapping function f ∈ Fmap to the tuple component of every stream

element. The argument function is expressed as a subscript. The mapping function

can be a higher-order function. It is therefore sufficient to have only a single mapping

function. This definition of the map operator is more important than its relational

counterpart as it allows to create tuples of an entirely different type as output. The
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projection operator of the extended relational algebra can only project to attributes and

add new attributes by evaluating arithmetic expressions over the existing attributes.

Blocking

Union: The union

U : ST × ST− > ST (3.4)

merges two logical streams of compatible types. The multiplicity of a tuple e at time

instant t in the output stream results from the sum of the corresponding multiplicities

in both input streams.

Cartesian Product: The Cartesian product

X : ST1 × ST2− > ST3 (3.5)

of two logical streams combines elements of both input streams whose tuples are valid

at the same time instant. Let T3 denote the output type. The auxiliary function :

ΩT1× ΩT2− > ΩT3 (3.6)

creates an output tuple by concatenating the contributing tuples. The product of their

multiplicities determines the multiplicity of the output tuple.

Duplicate Elimination: The duplicate elimination

δ : ST− > ST (3.7)

eliminates duplicate tuples for every time instant. The multiplicities of all tuples are

hence set to 1.

Difference: The difference :

ST × ST− > ST (3.8)
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subtracts elements of the second argument stream from the first argument stream.

Value-equivalent elements valid at the same time instant are subtracted in terms of

multiplicities. The types of both streams need to be compatible.

Grouping: Let Fgroup be the set of all grouping functions over type T . Let k ∈ N, k >

0, be the number of possible groups for a given input stream. A grouping function

fgroup ∈ Fgroup, fgroup : ΩT− > 1, ..., k (3.9)

determines a group identifier for every tuple. The grouping partitions the input stream

into k disjoint sub-streams according to the given grouping function (expressed as sub-

script).

Scalar Aggregation: Let Fagg be the set of all aggregate functions over type T1. Ag-

gregate function

fagg ∈ Faggwithfagg : P(Ω×N)− > ΩT2 (3.10)

computes an aggregate of type T2 from a set of elements of the form (tuple, multi-

plicity). The aggregate function is specified as subscript P denotes the power set. The

aggregation

α : SlT1× Fagg− > SlT2 (3.11)

evaluates the given aggregate function for every time instant on the non-temporal

multi-set of all tuples from the input stream being valid at this instant. The aggrega-

tion implicitly eliminates duplicates for every time instant as it computes an aggregate

value for all tuples valid at the same time instant weighted by the corresponding mul-

tiplicities. Note that the aggregate function can be a higher-order function. As a result,

it is possible to evaluate multiple aggregate functions over the input stream in paral-

lel. The output type T2 describes the aggregates returned by the aggregate function.
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Aggregate consists of the aggregate values and grouping information. The latter is

essential if a grouping is performed before the aggregation. An aggregate function

should retain the portion of the tuples relevant to identify their group. For the rela-

tional case, this portion would correspond to the grouping attributes. Recall that the

scalar aggregation treats its input stream as a single group.

3.2.2 Primitive functions - Time-Series analysis

This subsection will illustrate primitive processing in time series more in detail.

A time series is a set of periodic and chronological elements and characterized by its

numerical and continuous nature. With a high load of data and continuous stream, it

can be of interest to reduce the size of the data. Representation methods deal with di-

mensionality reduction, data transformation, and keeping characteristic features rather

than storing whole time series. After retrieving representative features, subsequent

stream analysis can be differentiated between three main categories:

1. Indexing: Given a database of stored time series, a query time series, and a simi-

larity measure, indexing can help to efficiently extract the set of the most similar

time series from a database.

2. Clustering: Clustering is a technique where data is positioned into homogeneous

groups where no explicit definitions nor meta-information on the groups are

known. Clustering can help to find groupings of time series data. With a similar-

ity measure present, clusters are constructed by grouping time series that have

maximum similarity with other time series within the same group and minimum

similarity with time series from the other groups. An example could be the de-

tection of anomalous behavior in the data stream, where no previous knowledge

exists of how such an anomalous behavior could look.

3. Classification: With a set of predefined classes present, a database of classified

time series, and with the help of a specific similarity measure, an unlabeled time

series, when going through the classification procedure will be assigned a known

class at the end. An example represents the classification of activities of a sensor

streams attached to an athlete.

Besides those three main categories, several more terms are used in the research

community, which can be in very general speaking categorized into the aforemen-
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tioned categories. The following methods are some of them: Subsequence matching,

motif discovery, identifying pattern, trend analysis, summarization, and forecasting.

3.2.2.1 Representation Methods for Dimensionality Reduction

Dimensionality reduction is one of the main goals of the data stream and time-

series representation methods. By reducing the dimension, the number of data points

that make up a time series will decrease. The challenge lays in preserving the semantic,

character, and shape of the original time series. A basic example approach is to sam-

ple over a time series randomly, periodically, or follow different criteria to reduce the

dimension. Depending on the use case, the global shape and general semantic can be

lost, if the sampling window is not specified precisely. Instead of taking sampled data

points, other metrics can be of use like Piecewise Aggregate Approximation (PAA) to

build averages with adaptive varying-length segments, the Segmented Sum of Varia-

tion (SSV) or min-max extraction of a segment.

One of the most used representation methods is the Piecewise Linear Representa-

tion (PLR), which averages time series into segments, which leads to an approximation

of the original shape. Linear regression can also be used to break a time series window

down into segments with its best-fitting line.

The Perceptually Important Points (PIPs) algorithm identifies points of interests.

The idea is to preserve the most important and descriptive points within a time series

and discards all other points in between. At the initialization of a window, the first

data points are considered as PIPs. The following PIPs are identified by the max dis-

tance to the other preserved PIPs. Another method is to transform time series data

into symbolic strings that represent a pattern of the time series. This type of method

can be used in combination with sampling methods like PAA, where an algorithm like

Symbolic Aggregate Approximation (SAX) can be used to represent the fixed window

of the time series by a predefined alphabet. The aforementioned methods keep the

transformation in the time domains. Other methods convert time series into differ-

ent representations in various domains. A famous example of those methods is the

Discrete Fourier Transformation (DFT) or Discrete Wavelet Transformation (DWT) and

Haar Transform.

Shapelets is a recently introduced concept, where shapelets represents a maxi-

mally discriminative sub-sequence of time series data. Shapelets identify short dis-
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criminative series segments. Modern methods discover shapelets by analysing sub-

sequences from all possible time-series segments [BC19] [Bag13] and follow by sorting

the top performing segments according their target prediction quality. Distances be-

tween series and shapelets represent shapelet-transformed classification features for a

series of segregation metrics, such as information gain [BC19] [BRK+05], FStat [BBD+02]

or Kruskal-Wallis.

3.2.2.2 Indexing

The idea of indexing is to put time series representations into indexing structures

to reduce the overhead of the processing. Given a query time series, a set of the most

similar time-series is retrieved and returned. The queries could be divided into two

types: the e-range and k-nearest neighbors. E-range retrieves all time-series where

the distances between them and the query time series are less or equal to e. k-nearest

neighbors return to the query time series depending on a specific similarity measure.

With that, the k-nearest neighbors’ technique can deal with scaling, gaps, and faster

rejection of irrelevant candidates[XGP+15][LCW07].

3.2.2.3 Sequence matching

The similarity is only an approximation over a continuous time-series data streams.

Two ways of measuring can be considered, namely whole sequence matching or sub-

sequence matching. A popular method in the category of whole sequence matching is

the dynamic time warping technique, which extracts patterns from time series for fur-

ther matching analytics. In Subsequence Matching, two time series of different lengths

are matched. The main task is to find subsequences that have the same length and are

similar. The sliding window mechanism (explained in section 3.2.4) is ideal support

for this specific task [KP00]. Subsequence matching is computationally expensive, and

it suffers from bottlenecks regarding the processing time and the disk access time, be-

cause of redundant access to store and process resources for the post-processing step

that enhances the results [LPK06].

3.2.2.4 Clustering

The distribution of time series over clusters should be carried out in a way that

maximizes inter-cluster variance and minimizes intra-cluster variance. Such grouping
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mechanisms could help to understand and analyze what knowledge is conveyed in

data. Distance-based clustering is extensively used for motif discovery[SA15], anomaly

detection [LJGC+17][JNIH16] and finding discords[YKR08]. One of the main chal-

lenges when it comes to clustering is to specify a correct number of clusters to capture

the (dis)similarity of time series. Time-series clustering could be further divided into

two parts, whole series and subsequence.

Whole series clustering: Whole time-series are used to form a cluster. Partionin-

ing, hierarchical, model-based clustering are relevant for time series data. Clustering

has proven to be very efficient for data streams [CMZ07][CP08][MBSRJ18].

Subsequence clustering: Clusters are constructed from subsequences instead of

the complete time series. Time series may vary in their structure over time, where

subsequences belong in different clusters. An example could be to use DFT to analyze

periodicity of time series and therefore to slice them into non-overlapping chunks.

These chunks are tested for similarity and grouped into clusters. Here the questions

lay in whether to use overlapping or non-overlapping information to catch important

structures and not produce meaningless results. Solutions to these inconsistencies start

when not all subsequences were forced into the clustering procedure, but some of them

were ignored all together[HYX+16][KR04].

3.2.2.5 Classification

The major difference between classification and clustering is that classification

is known in advance. The task is to learn distinctive features that characterize each

class. Afterward, the unlabeled data can be assigned to the right class. An important

characteristic of the features should be of being non-overlapping distinguishing and

discriminative so that the classification can be done more precisely.

Whole series classification Nearest neighbor classifiers are often used to, e.g.,

classify the unlabeled query with the same class as the most similar labeled time series.

This technique can be beneficial if there may be discriminatory features that character-

ize the whole time series. In its simplest form, Euclidean distance could be used, ei-

ther on raw time series or transformed representations, like Piecewise Linear Representa-

tion (PLR), Symbolic Aggregate Approximation (SAX) and others. However, this assumes

that time series are perfectly aligned, and this is often not the case in real-life situations.

Therefore alternative elastic distance measures are usually employed like Dynamic Time
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Warping (DTW). DTW suffers from some drawbacks when it comes to outliers and data

imperfection.To boost classification accuracy, different approaches have enhanced this

raw method. In [JKJO11], the authors added a multiplicative weight penalty to reduce

the warping.

Interval based classification In the case of noise and redundant shapes, whole

series classifiers may get confused and deliver inaccurate results. This is where ex-

tracting features from intervals rather than the whole series could be desirable. The

challenge to conduct such a technique is finding the best interval. Specifically, there is

an undefined number of possible intervals, so how to select the best one and what to

extract from each interval once selected? [RAM05] proposed an approach where inter-

val lengths were equal to powers of two, and binary features were extracted from each

interval. Afterward, a SVM was trained on the extracted features. A famous interval-

based classification approach is the Time Series Forest (TSF)[DRTM13]. It is a random

forest approach. After specifying the number of desired decision trees, each tree is

trained by dividing the time series into random intervals where n denotes the length

of the time series. Effectively the training is done on three features extracted from each

interval; the mean, the standard deviation, and the slop. The final classification result

is determined by a majority voting.

Dictionary based classification Dictionary-based classification methods are suit-

able approaches, if motifs or frequent patterns are what characterizes a given class.

This technique counts the frequency of patterns. The main idea is to slide a window of

a given length and then compute the distribution of words over the different training

instances. Following this mechanism, the correlation between the frequency of specific

patterns and the occurrence of particular classes could be established. The Bag of Pat-

terns (BOP) approach proposed in [LKL12] computes a histogram of words for time

series that are transformed with SAX. Then the same method is followed to build a

histogram for unlabeled time series and finally the new series is given the class of the

most similar histogram.

Shapelet based classificaiton In scenarios where discriminative patterns could

characterize the class of the time series, shapelets are the most suitable technique. They

are shapes(subsequences) that occur within the time series, independently from the

phase (the placement at the beginning, middle, end). E.g., ECG abnormality detec-

tion could be seen in fatal heartbeats in ECG data. Shapelets were devised in 2009

[YJK09], and in their work, authors discover shapelets through testing all possible can-

25



didates between two given lengths. This approach is called the brute force algorithm.

It archives very accurate results but with a high computation cost. The time complex-

ity is O(n2m4) where n is the number of time series and m is the length. A more recent

approach is the Fast Shapelets (FS) algorithm. This algorithm drastically improved the

time complexity to find shapelets. In this context, the computing complexity results in

O(nm2).

Other shapelet based approaches [HLB+14][CMC] formulate what is called Shapelet

Transform (ST). These approaches are more concerned with the discovery of discrim-

inative shapelets rather than building a classifier to use them. Following the ST, the

original time series is transformed into a vector of distances where each element repre-

sents the distance between a given time series and a specific shapelet. ST balances the

trade-off between the number and quality of shapelets is done by counting on the infor-

mation gain metric. In the end, the top k shapelets for each class are returned. Another

interesting approach that learns shapelets is called Learned Shapelets (LS). This propo-

sition learns shapelets that characterize the available classes; however, the learning

procedure is different from other algorithms like Fast Shapelets (FS) and ST. Tradition-

ally, shapelets are defined as subsequences from the original time series, yet in LS, they

are not limited to that. LS uses k-means clustering of candidates in the training data

set to initialize k-shapelets. Then these shapelets are adjusted based on a regression

model for each class.

Early Classificaiton Early classification usually deals with online stream classifi-

cation where the interest is to classify as early as possible the currently streamed time

series, without waiting for the complete time series to be read. Given the smallest pos-

sible sub-sequence of a time series, the main goal is to predict its class accurately. As

mentioned, shapelets are shapes that characterize a specific class, and the class could

be immediately predicted at any given point in the stream. Furthermore, if shapelets

lengths are taken into consideration when attributing utility scores, earliness could be

significantly boosted. Approaches such as [MTZ16a] [MTZ16b] prove that shapelets

perfectly fit for early classification and rule discovery.

3.2.3 Anomaly detection

Anomaly detection can be found in the fields of:

• Quality control of faulty sensor readings or data corruption during transmission.
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• Monitor machine sensors to detect and predict possible failures, before they oc-

cur.

• Understand resources usage and power distributions in a connected building.

• Identify anomalous patterns in direction or speed from a vehicle.

• Identify network changes and server degradation.

Algorithms for anomaly detection in a sensor’s time-series data can be put in

the main categories of statistical, probabilistic, proximity-based, clustering-based, and

prediction-based methods:

Statistical methods use measurements to approximate a model. Whenever a new

measurement is registered, it is compared to the model and, if it results to be statis-

tically incompatible with it, then it is marked as an anomaly [GMM18a]. Statistical

methods can be applied to single elements or window segments. An approximation

over a window improves the approximation.

Probabilistic methods describe probabilistic models in parametric or non-parametric

nature, depending on the distribution. The classification of anomalies is performed by

measuring the probability of an analyzed element or segment. If the probability of

distribution falls below a threshold, an anomalous event is detected.

Proximity-based methods rely on distances between data measurements to dis-

tinguish between anomalous and correct readings. A popular proximity-based algo-

rithm is the Local Outlier Factor (LOF), which assigns an outlier score to each element

based k nearest neighbor density measurements [GMM18b]. Readings with high out-

lier scores are labeled as anomalies.

Clustering-based methods create a measurement between different elements and

cluster them based on their similarity. New measurements are assigned to similar clus-

ters or labeled as anomalous in case of a to high distance to existing clusters. Cluster

methods and proximity-based methods are usually not the best choices for high di-

mensional data [GMM18a]. The typical approach is to find the right representation

method of differentiating between normal and anomalous data [elaborated in 3.2.2.1].

Prediction-based methods use past measurements to train a model that can pre-

dict the value of the next measurement of time-series data. If the actual data has no

similarity with the predicted data, then it will be labeled as an anomalous element.
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The domain of prediction is increasing steadily with the rise of machine learning. Ex-

amples are Support Vector Machine (SVM), Deep Neural Networks (DNN), Long Short-

Term Memory (LSTM) or HTM (which is applied in the case study). Which algorithm

to use strongly depend on the characteristics of the data. The following questions can

be taken as considerations for selecting a predictive model:

1. What kind of data is available for training the predictive models? (online vs.

offline training)

2. Which format does the data have - are representative features for prediction

given?

3. The properties may change over time, which is called concept drift. E.g., will

offline learning algorithms be able to learn on drifts?

An example of the HTM online learning algorithm is given in the case study by ana-

lyzing anomalous behavior in an ECG signal stream in chapter 5.4.1.

3.2.4 Window methods - bounded stream

The continuous data stream model introduces new challenges for the implemen-

tation of queries. Algorithms only have sequential access and need to store some state

information from stream elements that have been seen previously, e. g., the join, and

aggregation, which must be computable within a limited amount of space on an un-

bounded stream. This requires approximation techniques that trade output accuracy

for memory usage and opens up the question of which reliable guarantees can be given

for the output. Like previously mentioned, some implementations of relational opera-

tors are blocking. Examples are the difference that computes results by subtracting the

second input from the first input, or the aggregation with SUM, COUNT, or MAX.

Stateful/blocking operators (cartesian product, join, union, set difference, spatial

aggregation, etc.) require the entire input sets to be completed. These blocking opera-

tors will produce no results until the data stream ends. To output results continuously

and not wait until the data streams end, blocking operators must be transformed into

monotonic queries. A selection operator over a single stream is an example of a mono-

tonic query at any point in time T ′ when a new tuple arrives, it either satisfies selection

predicate, or it does not, and all the previously returned results (tuples) remain inQ(t′).
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Both standard and spatial aggregate operators always return a stream of length one -

they are non-monotonic and thus blocking.

A dominant technique to overcome transforming the blocking queries into their

non-blocking counterpart is to restrict the operator range to a finite window over in-

put streams. Windows limits and focuses on the scope of an operator or a query to a

manageable portion of the data stream. A window is a stream-to-relation operator that

specifies a snapshot of a finite portion of a stream at any time point as a temporary

relation. In other words, a window transforms blocking operators and queries to com-

pute in a non-blocking manner. At the same time, the most recent data is emphasized,

which is more relevant than the older data in the majority of data stream applications.

The following types are being extensively used in conventional DSMS: (Logical) time-

based windows and (physical) tuple based windows. By default, a time-based window

is refreshed at every time tick, and tuple based window is refreshed when a new tuple

arrives. The tuples enter and expire from the window in a first-in-first-expire pattern.

Whenever a tuple becomes old enough, it is expired(deleted) from memory. These two

window type are not useful in answering an important class of queries over the spatio-

temporal data stream, and predicate based window have been proposed in which an

arbitrary logical predicate specifies the window content.

In the following, the description of different window methods:

Time-based sliding window

Time-based sliding windows are characterized by two parameters: The window size

and also the window slide. The size is defined in terms of the time length and says that

the window content at time t contains only the elements with a timestamps bigger than

t-size. The slide parameter, fixed as a time length, indicates how often the window is

going to be computed, or slided over time.

Time-based tumbling window

In this case, the size of the sliding window is equal to the window length. For instance:

Give the room where person X has been within the last ten minutes; change results

every ten minutes.

Triple-based windows

Triple-based windows were characterized to emulate tuple count windows in Continuous

Query Language (CQL)-like data stream systems.

Count-based window based on Basic Graph Pattern

Basic Graph Pattern (BGP) count-based window is introduced to deal with the above
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limitation of a triple-based window on Resource Description Framework (RDF) streams

characterized as sequences of graphs [W3C16]. Rather than counting single triples, this

count-based window can count the groups of triples (subgraphs) that match a specific

basic graph pattern.

Partitioned Windows

Deal with one input stream and a number of other output streams (i.e., partitions),

over that the query is evaluated. The partitioned windows are based on knowing the

underlying schema, and deciding of how to do the partition in an effective way for the

query.

Predicate-based window

Predicate-based windows, qualified objects are a part of the window once they ful-

fill a particular query predicate. Objects expire if they no longer satisfy a particular

predicate and are a generalization of tuple-count and time-based windows [W3C16].

3.2.5 Primitive- vs Complex-event processing

In contrast to the primary goal of DSMS, which performs stream analytics at

a geographically concentrated place, the major concern of CEP is to infer the global

meaning of raw events to stream as fast as possible [HPX11]. An event object carries

general metadata (event ID, timestamp) and event-specific information like, sensor-id,

measurements. Atomic events might have no special meaning but can get a higher

meaning in correlation with other events. CEP analyses continuous streams of events

in order to identify complex sequences of events (event patterns). A pattern match

represents a relevant state of the environment and causes the trigger to creating a new

complex event or triggering an action.

Event Processing Language (EPL) is a fundamental concept of CEP, which contains

event processing rules defining event patterns, actions, and event processing engines

to analyze events and match rules continuously [BBDR13].

CEP engines usually have the following basic characteristics:

– Continuous in-memory processing: Designed to handle a sequential in-

put stream of events and in-memory processing enables real-time oper-

ations.

– Correlating Data: Enables the combination of different event types from

heterogeneous sources. Event processing rules transform primitive events
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into complex events that represent a significant meaning for the appli-

cation domain.

– Temporal Operators: Within event stream processing, timer functionali-

ties as well as sliding time windows can be used to define event patterns

representing temporal relationships.

CEP provides a rich set of concepts and operators for processing events, which include

the CQL like, queries, rules, primitive functions (aggregation, filtering, transformation,

etc.) and production of derived events. The events are manipulated by CEP rules,

which are Event-Condition-Actions (ECA). ECA is a combination of continuous query

primitives with context operators. Context operators can contain the characteristics

of temporal, logical, and quantifiers, where a positive correlation generates a complex

event that summarizes the correlated input. [EHPdAS16].

The following points represent phase examples of a CEP processing flow:

• Signaling: Detection of an event.

• Triggering: Check an event against a defined set of rules.

• Evaluation: Evaluate the condition of each checked rule.

• Scheduling: Execution order of selected rules.

• Execution: Execute all actions for the relevant selected rules.

Rule Model can be classified into two main classes - transforming rules and detecting

rules. Transforming rules can be considered as a graph connection of primitive oper-

ators. The operators take multiple input flows and produce new elements that can be

forwarded to other operators or consumers. Transforming rules can be usually found

with homogeneous information flows where the structure of the input and output can

be anticipated [CM12a]. Detecting rules present an distinction between a condition

and an action. The condition part represents a logical predicate that captures patterns

in a sequence of elements. The action part defines how the information gets processed

and aggregated.

The language types of CEP can be divided into the classes of transforming and detec-

tion based languages [CM12b]:

• Transforming languages defines transforming rules on input streams by filter-

ing, joining, and aggregating received information to produce new output flows

[CM12a]. Transforming rules can be divided into two sub-classes:
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– Declarative languages express processing rules by specifying the expected

results, instead of the execution flow.

– Imperative languages define rules that specify a plan of primitive operators.

Each operator contains a transformation over its input.

• Detecting or pattern-based languages specify the trigger conditions and the ac-

tions to be taken when specific conditions hold. Conditions are represented by

patterns over the input stream and constructed with logical operators, timing and

content and constraints. Actions define how the detected events have to be com-

bined to produce new events. This is a common language in CEP systems, that

has the goal to detect relevant information items before the evaluation process is

started.

Modern languages consolidate operators of different languages. An example for declar-

ative languages is CQL. [ABW06]

3.2.6 Primitive functions for CEP

CQL defines three classes of operators [CM12c]:

• relation-to-relation operators define classical queries over database tables

and are similar to SQL queries.

• stream-to-relation operators create tables out of a bounded segment of stream

data. Relation-to-stream operators create a data flow out of fixed tables.

• Stream-to-stream operators are expressed using the other operators.

Stream-to-relation operators are based on sliding window operator concepts. The re-

lation is obtained from a stream by extracting the set of tuples included in the current

window.
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CQL contains 3 relation-to-stream operators:

• Istream(): whenever a tuple t is inserted into the input relation at time τ →

Outputs(τ , t)

• Dstream(): whenever a tuple t is deleted from the input relation at time τ →

Outputs(τ , t)

• Rstream(): whenever a tuple t is updated in the input relation at time τ → Outputs(τ ,

t)

Example:

SELECT Istream(*)

FROM S [Rows 100]

WHERE S.A \rightarrow 2

Execution explanation:

1. Source of the query is the referenced stream S.

2. Stream-to-relation operator [Rows 100] converts the input stream of 100 entries

into a relation.

3. Relation-to-relation filter S.A =¿2 selects the attributes with values higher than 2,

which results in another relation.

4. Istream relation-to-stream operator transforms the output back into a stream.

Pattern-based languages use selection operators to find items or events of a complex

pattern. In the publish-subscribe system, they are the main operators of choosing items

to be forwarded to consumers [MC11].

The following logical primitive operators are used in a CEP system:

• A conjunction of elementsE1, E2, ...En is satisfied when all the elementsE1, E2, ...En

have been detected.

• A disjunction of elements E1, E2, ...En is satisfied when at least one of the ele-

ments E1, E2, ...En has been detected.

• A repetition of an element E of degree m, n is satisfied when E is detected at

least m times and not more than n times.
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• A negation of an element I is satisfied when E is not detected.

Logic operators are present in pattern-based languages, where they combine dif-

ferent. Declarative and imperative languages do not provide logic operators explicitly.

They allow con(disc)junctions and negations using rules that transform input stream.

Sequences

Sequences are used to define the arrival of a set of elements where the order of ar-

rival is considered. A sequence defines an ordered set of elements E1, E2, ...En which

is satisfied when all the elements E1, E2, ...En have been detected in the same order.

Parameterization

Parameterizations define the capability to filter some data streams based on elements

that are part of other streams. Use Case: A fire alarm of a building is being notified

when the temperature of a room is over a defined threshold of 41oC, but only if smoke

has been detected. Declarative and imperative language solution: Joining two infor-

mation flows with temperature and smoke within same room. Pattern-based language

solution: Do not provide a join operator but can use the conjunction operator to capture

the single events of high temperature and high smoke in the same room via parametric

filtering on the streams. Aggregates

Many CEP applications need to aggregate the content of multiple, incoming informa-

tion items to produce new information.

Most languages have predefined aggregates, which include minimum, maximum,

and average. In declarative and imperative languages, aggregates are usually com-

bined with the use of windows. Pattern-based languages include detection aggregates

to capture patterns over stored values.

3.3 Semantic IoT Stream enrichment and reasoning

This chapter details the process of annotation of sensory data with semantic de-

scriptions specifying spatial, temporal, and thematic attributes. Section 3.3.1 explains

the semantic transformation and annotation process in which the delivered IoT data is

being transformed from a middleware message into a bag of metadata. The annotated

data provides a basis for interoperation among different components using machine-

interpretable language (i.e., RDF and Turtle). Section 3.3.2 presents an information

model for semantic modeling of the streaming data, as an extension of the SSN ontol-
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ogy which allows representing not only sensor observations but also aggregated val-

ues and temporal entities such as segments and data points involved in a data stream.

Section 3.3.3 shows a comparison of different CEP processing methods for semantic

data.

3.3.1 Semantic stream processing concepts

Stream Transformation

This component aims to transform a message into a bag of metadata to be used in the

semantic annotation process. In the context of the Semantic Web, syntactically defined

messages that are provided by IoT applications need to be conceptually re-engineered

in order to extract the semantics of the intended actions and the underlying IoT domain

concepts. This requires not only structural transformation but also semantic transfor-

mation. The ultimate result of the semantic transformation is a set of semantic models,

which are used for annotation.

Semantic Annotation of IoT Ressources

In IoT applications can be a need to use ontologies to represent the domain knowledge

in order to deal with various forms of heterogeneity. This heterogeneity can be in the

form of data modality and data representation. Utilisation of semantic technologies

for IoT enables interoperability between IoT resources, representation models, data

providers, as well as consumers. Semantic Web technologies provide solutions for this

challenge with standardized knowledge representation, information sharing, and in-

terlinking of heterogeneous resources.

Sensors and their data can be linked to geographic data (e.g., correlated natural

phenomena), user-generated data, and general data (e.g., public transportation, health

data) through a knowledge-based approach.

Semantic Interoperability

With semantic interoperability, data can be accessed by different stakeholders in a gen-

eralized representation. IoT entities need to communicate data between each others,

with other users or need to be related in more complex representations. Unambiguous

data descriptions are a key enabler of automated information communications, inter-

actions, and complex reasoning. Semantic annotation of the data with domain knowl-

edge can provide machine-interpretable descriptions of the data source, the relation to

other entities, and the meaning in a more complex context [BWHT12].
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3.3.2 Linked Data Components

Resource/service search and discovery

Search and discovery mechanisms are an essential function to locate resources and ser-

vices to relate them to entities. To support the search and discovery, the principles of

linked sensor data is used to enable publishing and usage of sensor data.

IoT data abstraction and access

IoT Data abstraction deals with how the generated data is represented and managed.

Ontologies such as the W3C’s SSN ontology [W3C14] have been developed to repre-

sent sensor data. Ontologies are constructs to formally represent sensor resources and

their generated data on different abstraction levels. Data access can be implemented

at low-levels (e.g., device or edge level). Heterogenous device and network environ-

ments make data access difficult, where sensing as a service is a scalable way to access

data.

The semantic Web technologies include standards (e.g., RDF or OWL) and tools

for creating and querying semantic data. The semantic annotation supports more ef-

fective mechanisms to integrate the IoT data, however, an autonomous and easy inte-

gration still needs effective reasoning and processing mechanisms [BWHT12].

The booming state of IoT, as well as the wide range of IoT platforms, standards,

and custom implementations, create challenges to define the right semantic schema.

RDF is recommendation by World Wide Web Consortium (W3C) for structuring and rep-

resenting information.[W3C13]

The benefit of RDF schemas can be summarized in three aspects:

1. The RDF model consists of triples and due to that be efficiently implemented and

stored. Other models with variable-length fields might require a more complex

implementation.

2. The basic RDF model can be processed in the absence of more detailed informa-

tion (RDF schema) on the semantics. It allows basic inferences, since it can be

logically seen as a fact knowdledge base.
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3. The RDF model is modular, where directed graphs (union of knowledge) are

mapped into the corresponding RDF structures, which means that:

• information processing can be parallelized. in the presence of partial infor-

mation inside a volatile environment.

• the output is a consistent RDF model.

A RDF stream is a sequence of RDF graphs that including the describing metadata. The

metadata acts as a flexible mechanism to additionally add time-relation information.

An example of time metadata are:

• Production time: Time the data element was initially created.

• Receiving time: Time the data element was made available with the RSP engine.

• Start time and finish time: Time when the data element was validated and ended.

The selection of the right timestamp depends on the use case. In many use cases, the

system arrival timestamp is enough, while in other cases a validity interval can be of

high importance.

This RDF model standard relies on a traditional persisted-data paradigm, in which

the main focus is on maintaining a finite set of data parts in a knowledge base. In con-

clusion, this paradigm does not match the case of general data streams, in which stream

elements flow continuously over time, forming infinite sequences of data.

Semantic reasoning and interpretation

Inference algorithms are usually implemented within reasoners like FACT++3 and

Jena4 [BWHT12]. As an example, SPARQL is used to construct queries to explore se-

mantic descriptions. SPARQL builds upon the previously mentioned RDF standard

[W3C14]. SPARQL is designed to execute queries over RDF triples but does not have

the functionalities to query RDF streams. Continuous RDF query languages have intro-

duced to face this challenge. Continuous SPARQL (C-SPARQL) was an early extension

of SPARQL for querying RDF streams and supports continuous queries, which are

registered and continuously executed while considering stream windows [BBC+09].

However, C-SPARQL is not designed to handle large volumes of data.

SPARQLStream [CCG10] was inspired by C-SPARQL, but only supports win-

dows operators. The stream-to-ontology mapping is done via S2O and R2RML. How-

ever, it does not support querying on both stream and RDF datasets. Event-Processing-

SPARQL (EP-SPARQL) uses a black-box approach with a logic engine, where queries
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are translated into logic programs [AFRS11]. EP-SPARQL unifies event processing and

stream reasoning in a logic programming paradigm, where the disadvantage lays in

its decreased performance over complex queries [LCL16]. Continuous Query Execu-

tion over Linked Stream (CQELS) [PDTPH11], is an adaptive execution framework

for Linked Stream Data and Linked Data. CQELS provides a flexible architecture for

implementing efficient continuous query processing engines over Linked Data Stream

and Linked Data.

CQELS, C-SPARQL, SPARQLStream do not provide any temporal pattern match-

ing operator and thus cannot be classified under the Semantic Complex Event Process-

ing (SCEP) languages [GZPL18]. While frameworks like the SPARQL extension EP-

SPARQL exist with sequence constructs that allow temporal ordering over triple streams,

it does not support the integration of multiple heterogeneous streams and only with

single-stream models [ARFS12]. SPAseq extends SPARQL with new SCEP operators

which can be evaluated over RDF graph-based events [GZPL18].

3.3.3 Semantic reasoning methodologies

Data streams must be fused into tangible facts by combining information with

background knowledge to infer new knowledge. Several states-of-the-art reasoning

methods were described in chapter 2. The following table shows a comparison of the

pro and cons of the mentioned methods [SG17]:

Table 3.1: IoT Data enrichment Reasoning methods

comparison

Methods Pro Con

Logic/rule-based simple rules, adapted to

simple sensors, easy for

beginner (learning and

implementation)

not adapted to compli-

cated sensors, heteroge-

neous rule languages and

editors

Continued on next page
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Table 3.1 – continued from previous page

Methods Pro Con

Machine learning More elaborate results,

adapted to complicated

sensors

need real datasets,

complicated for non-

experts, complicated for

a ”sharing and reusing”

approach

Linked Stream processing Real-time data, scalabil-

ity, linked data

no real reasoning

Re-use domain knowl-

edge (LOD, LOV, LOR)

Sharing and reusing ap-

proach

complicated for imple-

mentation

Distributed reasoning saclability, interoperabil-

ity between systems

complicated for imple-

mentation

Recommendation sys-

tems

adapted to the user pro-

file

complicated for non-

experts, need real

datasets, need user

profile

Logic rule-based reasoning

Several mechanisms and tools have been developed in order to apply processing logic

over streams. Sensor-based Linked Open Rules (S-LOR) approaches to share and reuse

rules for the interpret IoT data based on an interoperable dataset of rules. Domain

experts manually wrote the rules and extracted from Linked Open Vocabulary (LOV) for

the LOV4IoT dataset [GAB+16] [GBBS16] in the fields such as healthcare, smart homes,

and smart cities. Linked Edit Rules (LER) is an approach similar to S-LOR to share and

reuse the rules associated with the data, while it was not applied in the IoT context.

LER focuses on checking the consistency of data and extends the RDF data model by

introducing the concept of EditRule [MPGS15].

Linked Open Rules

Linked Open Rules (LOR) is an approach for sharing and reusing ways to interpret the

data and to infer new information. LOR can be extended towards using S-LOR, that

contains a dataset of interoperable rules to interpret sensor data [GBB14] via a triple

store. This approach is inspired by the concept of Linked Rules [KJK11], the idea of
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semantic rules interchanging in languages.

Machine learning

The papers of [SHSS08] and [WB09] proposes reasoning over semantic sensor data.

[WB09] describes the use of ”semantic perception”[HST12] and [BGHS12] to interpret

and reason over sensor data. This work developed a semantic-based approach to in-

tegrating an abductive logic framework and Parsimonious Covering Theory (PCT) for

the integration of semantics in sensor devices. A conclusion in this work was that

the construction of background knowledge is difficult. For this reason, the LOV4IoT

dataset has been designed to encourage the reuse of the domain knowledge exper-

tise relevant for IoT. Logic-based reasoning is faster and more flexible to use for

simple sensors like temperature, while complex sensors like ECG still rely on data

mining approaches. [GBC13] and [GBC14] introduced a Knowledge Acquisition Toolkit

(KAT) to infer abstractions on a high level from sensor data in order to reduce traffic

overload in network communication. KAT proposes the use of domain-specific back-

ground knowledge, which is not sufficient for the IoT unless another approach like the

LOV4IoT dataset is used in combination.

[MPP+10] emphasizes the use of machine learning on sensor data with the use

of decision trees and Bayesian networks to analyze sensor measurements. The sensor

data was enriched with semantic context information, based on ontologies like Geon-

ames for location, Geo WGS84 for coordinates, W3C Semantic Sensor Network (SSN) on-

tology for sensor description, as well as the W3C time ontology [Mor13][MM12]. The

in [MMV+11] proposed SemSense architecture is an approach to collect and publish

sensor data as Linked Data.

[DK12] designed an ontology for weather events observed by sensors such as

wind speed and visibility, where high-level abstractions are deduced with rule-based

reasoning via Semantic Web Rule Language (SWRL). [RGSE14] explains the need for

a domain-specific automated reasoning system and imagines such a system for inter-

preting IoT data based on Description Logic (DL) or CEP.
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Chapter 4

IoT Architecture

According to Cisco, it is estimated that there will be around 50 billion connected

devices by 2020 [Eva11]. Current mobile network architectures already face challenges

of managing the size and rate of generated data. In many implementations of cloud-

based applications, the data is sent to cloud data centers [RP17]. Moving the data from

the IoT source to the cloud might not be efficient or even infeasible in many cases due

to bandwidth limitations. Further does time-sensitive, or location-aware applications

will have the requirement of ultra-low latency in which a distant cloud processing will

not represent an option [ZMK+15]. Furthermore, do privacy concerns over generated

user-data to cloud services represent a significant challenge.

To address the issues of high-bandwidth, geographically-aware, ultra-low la-

tency, and privacy-sensitive applications, a modern computing paradigm located closer

to the source has been proposed. Fog and edge computing address some issues by en-

abling computing, storage, networking, and data management close to IoT devices

[BMZA12]. Other emerging computing paradigms are mist computing or cloudlets,

also address these challenges. A visualization of the different computing paradigms

can be seen in figure 4.1, which are mentioned in this chapter.

Edge computing systems distinguish between “disposable data” and “critical”

data. IoT-capable devices produce large amounts of data with their sensors. With

this, the edge acts as a hyper-responsive mediator layer between cyber-physical sys-

tems and the data center. The prioritization of data transfer can take place on the spot,

and therefore in real-time with minimal network load. The fog is a system-level edge-

computing architectural pattern, with specialized gateways and other Fog nodes. The
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Figure 4.1: Overview of computing paradigms. Reduced version of [YFN+19].

edge computing model processes the data directly on the end devices themselves. De-

vices as small as Raspberry Pis can handle data processing for a wide range of “smart”

IoT endpoints-but their performance is barely scalable, and their availability is barely

guaranteed.

4.1 Decentralized architecture paradigms

Fog Computing: Fog Computing implements a decentralized Computing infrastruc-

ture based on Fog Computing Nodes (FCN) placed between the end devices and the

central system. FCNs are heterogeneous and are based on different types of hardware

including routers, switches and access points.

Mobile Computing: The development of mobile computing influences the advance-

ment in fog and cloud computing. Mobile computing, is when computing is performed

via mobile or portable devices. Mobile computing can be used to create context-aware

applications, such as location-based reminders. Mobile computing holds the vision

for adaptation in an environment of low processing power and sparse network con-

nectivity. Using mobile computing solely is not suitable for many modern IoT use

cases, due to the evolving requirements of connected devices. Fog and cloud com-

puting enables computing outside of local network and expand the scope and scale
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of mobile computing. Mobile computing requires only mobile devices, which can be

connected through WiFi, Bluetooth, and other cellular protocols. Compared to fog and

cloud computing, mobile computing is more resource-constrained. Distributed appli-

cations benefit from the distributed mobile computing architecture because devices do

not need a centralized location. However, mobile computing comes with drawbacks

such as substantial-resource constraints, the balance between autonomy and interde-

pendence, communication latency, and the need for mobile clients to efficiently adapt

to changing environments [Sat96]. These drawbacks often make mobile computing

unsuitable for current applications that require low-latency or robustness or to deal

with large amounts of data.

Mobile Edge Computing: Mobile Edge Computing (MEC) can be considered as edge

computing implementation that brings computational and storage to the edge of the

network to improve context-awareness and reduce latency. The MEC servers are often

co-located within the Radio Network Controller or base station. MEC offers real-time

information on the network while providing information about connected devices, like

location information.

Mobile Cloud Computing (MCC): As cloud computing matured, MCC became a valu-

able complement to mobile computing. The data storage and data processing get of-

floaded outside of the mobile device [DTLNW13]. Some MCC applications include

healthcare, sensor data processing, and task offloading [RZZS15] [SAGB14]. Mobile

applications can be partitioned at runtime to adaptively offload computationally in-

tensive components of the application [SGKB13]. Resource-constrained mobile devices

can leverage cloud resource services. MCC shifts computation from mobile devices to

the cloud, which can increase the battery life of devices. Yet, this introduces connectiv-

ity and latency challenges for delay-sensitive applications.

Mobile ad-hoc Cloud Computing (MACC): The MCC computing paradigm is not

always applicable for scenarios in which there is a deficit of infrastructure or a cen-

tralized cloud. MACC consists of nodes that form a dynamic network and represent

the most decentralized form of networks [HGBV00]. Mobile devices build a dynamic

network topology, where the devices continuously join or leave. MACC can include

use cases such as disaster management or unmanned vehicle systems.
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Cloudlet Computing: A Cloudlet can be dened as a trusted cluster of nodes with re-

sources available to use for nearby mobile devices [BOE17] [SBCD09]. Cloudlet com-

puting has similarities with MCC and MEC. Cloudlet nodes are mini clouds that are

typically one hop away from mobile devices and provide resources for mobile device

offloading mechanism [HBZZ17]. Operators for cloudlet computing can be cloud ser-

vice providers who want their services available close to mobile devices to lower la-

tency and energy consumption on mobile devices. MACC and cloudlet computing

support mobility, while MACC is resource-constrained on the mobile devices.

Mist Computing: Mist computing had the purpose to capture an endpoint edge of

connected devices. This computing paradigm describes dispersed computing on the

IoT devices and has been proposed with the idea of self-aware and autonomic sys-

tems [PTJ+15]. Mist computing extends with the end device the compute, storage, and

networking across the fog. With these characteristics, mist computing is a superset

of MACC, since the networking may not be necessarily ad-hoc, and the devices may

not be mobile devices. The authors in [MPSRS+17] introduce the idea of using mobile

devices as a cloud computing environment for storage, and computing. Some advan-

tages of mist computing are to preserve the privacy of user data by local processing

and analysis [SN16].

4.1.1 IoT architecture components

An IoT architecture can be generalized in the now following components.

Sensing layer: It consists of sensors attached to physical devices. These sensors gen-

erate data continuously. The generated data from these multiple sensors can be hetero-

geneous. The sensing layer primary goal is to identify any state in the device sensor

and obtain data from it.

Ingestion Layer: This component acts as a message queue for raw data streams that

are pushed from the sensing layer. Multiple sources can continuously push data streams

(e.g., sensor or social network data). Such a component must be able to deal with high

throughput rates and scale according to the number of sources. One of the key re-

sponsibilities is to enable the ingestion of all incoming data. This component does not

require any knowledge about the data or schema of incoming data streams. How-
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ever, for each element, it must know its source and type. To assure fault-tolerance

and durability of results in such a distributed environment, techniques such as write-

ahead logging or the two-phase commit protocol are used, that have an impact on the

availability of data to next components.

Stream Processing: The Stream Processing component is responsible for performing

One-Pass algorithms over the stream of elements. The presence of a summary is re-

quired as most of these algorithms leverage in-memory stateful data structures. Such

data structures can be leveraged to maintain aggregates over a sliding window for a

specific time period. Different processing strategies can be adopted, being the most

popular tuple at-a-time and micro-batch processing, the former providing low latency

while the latter providing high throughput.

Ingestion/middleware Layer - A middleware layer provides between application

software and system software.

Network Layer: The network layers role is a communication medium to transfer

data, from the sensing layer to other components. IoT devices use different communi-

cation technologies (e,g, WiFi, cellular network).

Processing and Actuation Layer: The data processing layer consists of the primary

data processing unit. The processing layer takes collected data in the sensing layer and

processes or analyses the data to make decisions based on the result.

In the following will be illustrated the most popular IoT stream processing infrastruc-

tures:

Traditional cloud-based processing architecture: This archtiecture is based on

the IoT device and the upper cloud layer. In this architecture, the IoT devices com-

municate between the cloud server via a local area network (LAN), mobile network,

or wide area network (WAN). The energy consumption needs to be relatively high to

enable uninterrupted performance. Due to this, these IoT devices are often stationary

and connected to a continuous power supply. Static IoT sensor provides and consumes

data occasionally, such as measuring temperature, or controlling access to a door, a

small quantity of data is exchanged between the cloud and the IoT device [GKK+19b].
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A problem arises with large quantities of data, generated at high speed, that needs to

be transferred to the cloud. Traditional cloud-based architecture cannot cope with the

increased demand for data transfer. This architecture might not be able to support an

energy-efficient solution, in the case of wireless IoT devices [GKK+19b].

Vertical Edge Processing architecture: The previously presented architectural

solution cannot cope with the situation when the edge device cannot perform the re-

quired services, e.g., in the case of mobile edge devices with limited resources and

wireless connectivity. To reduce or balance energy consumption on IoT devices, the

edge device will want to distribute the processing task to other devices on the edge.

An architectural solution that supports such offloading is the vertical edge computing

architecture. An edge server is on the next hope above the edge device and performs

the data storage and complex operations. With this, the load on the edge device is re-

duced and balanced. This edge server can be in the form of a raspberry, mini-cloud,

cloudlet server, or mobile computing clusters.

Horizontal Edge Processing architecture: A more promising solution is based

on deviceless edge architecture. This architecture does not need the management

of edge devices and servers, and offloading is realized horizontally to nearby edge

devices.[GKK+19a]

4.2 Decision criteria for IoT architecture selection

To find the right archtitecture for an IoT application, several considerations about

the environment limitations should be analysed. A general selection survey could be

considered under the following points [DD17]:

1. Proximity: Defines the logical- (how many hops) and physical-distance (actual

distance to next layer). The lower proximity as a negative influence on the la-

tency.

2. Access Medium: Access mechanisms are important to determine the bandwidth

available to the end devices, the distance of connectivity and support for different

types of devices.

3. Context awareness: Further information about device and environment, like,

e.g., the device location or network load.
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4. Power consumption: The power consumption is a major contributing factor for

resource-constrained end devices. The consumption with e.g. LTE and radio

networks is higher than the energy consumption for WiFi [HQG+12]. The con-

sumption by accessing Mobile Edge nodes is bigger than the consumption of

accessing Cloudlets. On the other hand, FC allows access to its nodes through

access mediums that consume lower energy like BLE.

5. Computation time: defines the required time at the Edge layer for performing the

tasks and responding with the desired results. The computation time for MEC

and Cloudlet Computing proves to be beneficial due to the virtualized nature

along with dynamic resource provisioning. However, since the Fog devices are

often legacy devices, the processing and storage capacities are lower, leading to

higher computation time.
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Chapter 5

Case Study: Scalable IoT data

processing and reasoning ecosystem in

the field of Health Analytics

In this chapter, the case study is introduced within the context of health analytics

and the requirements for a complex event ecosystem in section 5.1. Based on the re-

quirements, the conceptional design of the architecture components follow in section

5.2. Section 5.3 contains the detailed insight in the technical realization of the data pro-

cessing pipeline. The implementation of the anomaly detection, classification as well

as complex event processing follows in section 5.4. The final section 5.5 describes the

possible semantic representation schema that can be used for unified representation,

as well as integration in already existing knowledge bases.

5.1 Introduction

ECG-stream processing use case: Patients with chronic diseases such as heart

conditions or other medical conditions, usually need to frequently pay visits to physi-

cians or are possibly hospitalized for monitoring. This care service can be very imprac-

tical for the patient and expensive for hospitals. In some cases, chronically ill patients

receive home-based healthcare service from caregiver and doctors. These services are

more and more improved with health-monitoring devices which deliver individual

analytics results to the care service. The review of this data can help to improved care

or alert of acute health conditions. Waiting for a batch analysis of the patient data or a
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manual review can leave the patient at risk in critical situations.

Personalized Analytics: Fusing CEP with medical data enables advanced and

personalized analytics for each patient in real-time. The reasoning over composite

events with the integration in existing health care knowledge bases, offers many use

cases to support real-time decision making in emergency situations. Slight differences

in a patient’s blood pressure or heart rate might not raise any alarm. In a correlated

analysis, this can indicate possible heart failure or other critical situations, where a

fast prescriptive analysis could recommend specific medications or interventions. A

caregiver could be alerted with the specific information and recommendation for med-

ication based on the patient’s situation and historical data, eliminating the need for

additional extensive manual review. The inference can be retrieved out of a knowl-

edge base to give information about the best suitable treatment method for a specific

patient.

A particular focus in this case study will be held on the monitoring and the inte-

gration process of the detection of Cardiovascular disease (CVD). According to the World

Health Organization, a significant number of deaths are caused by CVD [WHO]. Ar-

rhythmia is a type of CVD that relates to any irregular change of the heart rhythms.

Although a single arrhythmia heartbeat may not have a severe effect on life, continu-

ous arrhythmia beats can indicate an incoming fatal situation. Prolonged premature

ventricular contraction beats can turn into ventricular tachycardia or ventricular fibril-

lation beats, which can immediately lead to heart failure. Due to that, it is essential to

periodically monitor the heart rhythms to prevent and interfere with the CVDs.

Methodology

The result of this case study will be a proposal of practical course of action to pro-

cess IoT health data in a scalable IoT architecture by evaluating different implemen-

tation decisions based on the research fields of data processing, data enrichment and

(semantic-) CEP. The methodology of exploratory research will be followed, which

aims to explore and evaluate the identified theoretical background by applying a com-

plex IoT use case in the field of e-health.

The project milestones of an IoT use case are generalized in the following steps:

1. Define a processing pipeline for IoT-based communication systems, semantic

data acquisition, continuous query processing, complex reasoning, and detailing

the implementation of each component.
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2. Provide a semantic information model for the representation of IoT data, patient

data, and medical domain knowledge in a scenario, by reusing existing semantic

models.

3. Define an stream reasoning component as part of the eco-system, based on con-

tinuous query processing.

The proposed IoT stream architecture will have generalized requirements ex-

pected to be the minimum standard in a healthcare domain scenario. It is important to

mention that the defined requirements are not based on a factual requirement analysis

with healthcare domain experts. The proof of concept contains generalized require-

ments for the full integration of semantic enrichment and complex event processing

over IoT data streams. The following generalized requirements were defined for the

proof of concept:

1. Requirement 1 - IoT integration in central analytics infrastructure: Many tradi-

tional health monitoring devices have integrated and isolated monitoring func-

tionalities, where an integration outside of the device itself is often not possible.

This is shifting with modern IoT devices, that can be integrated into other ser-

vices. A central analytics environment should be able to collect and correlate IoT

data stream events.

2. Requirement 2 - Real-time alarming system: A fast reaction time should be

made available on detected issues as soon as possible close to the source. With

more powerful devices, the architecture design should be flexible enough to offer

edge computing to decrease the latency of primitive reasoning over single event

streams and forward events to the central complex event processing system if

needed.

3. Requirement 3 - Integrate device analytics in more complex analytics scenar-

ios: This requirement contains complex event processing over several stream el-

ements to offer an in-depth analysis of a diagnosis that consists of composite

events, as well as the integration of CEP inferences on patient data and knowl-

edge base expert systems.
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Figure 5.1: Complete processing architecture starting from the IoT data generation, the

Kafka ingestion, the following processing via the Faust workers to the event classifica-

tion

4. Requirement 4 - Scalable and secure infrastructure: A scalable and reliable mes-

saging architecture is of utmost importance in the field of healthcare.

5.2 Conceptual Design: Architecture

Conceptual design is the intial design step, in which the general outlines of

function and the Eco-system was articulated. The main components are explained

in the following subsections, where figure 5.1 shows the overview of the proposed

Eco-system.

5.2.1 Ingestion and communication system - Kafka

The first component to be analyzed was the stream ingestion layer.

Kafka is a high throughput, distributed log that can be used as a message queue

system. Any number of producers and consumers can be handled by Kafka.
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With this principle, Kafka provides persistency for the messages and offers the

following characteristics [Kafa]:

• Reliability is the highest requirement

• Some messages should be kept a copy of, even after consumption

• Data loss is not acceptable

• Speed is not the biggest concern

• High data size

The main requirement for a health care system is reliability and data loss preven-

tion, which made Kafka the choice for the implementation of this case study.

Apache Kafka is a streaming platform that allows users to publish data and sub-

scribe to different stream topics. Kafka stores the streams in a fault-tolerant way. A

Kafka system runs as a cluster and follows the concept of a topic in which data is

published. In this system abstraction, every raw data stream type is published to a

topic. This enables to structure streams by different topics, e.g., ECG, Heart Rate, light

sensors. Each topic records all the messages for a specified retention period. This ca-

pability can be used not only for real-time singles stream analytics but also for health

condition analytics in complex event compositions that require using historical patient

data.

Different IoT devices act as data producers. Devices publish the raw and early

pre-processed data in the specific Kafka cluster, where Kafka consumer can publish

back the results of their processing or analytics into the cluster. Kafka manages the

scalability of the system as the general load on the architecture may change with an

increase in patients. Kafka serves as data retention, storage, and forwarding interface,

where several consumers can consume the data.

5.2.1.1 Kafka Architecture

The Kafka architecture is a cluster consisting of several components. The fig-

ure 5.2 illustrates the different Kafka components, which are described in this section.

Kafka Broker: A Kafka cluster consists of multiple brokers that enable load balanc-

ing. Kafka brokers are stateless, where the ZooKeeper maintains the cluster state. A

Kafka cluster always has a leading broker, which will be elected by the ZooKeeper.
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Figure 5.2: Overview of Kafka architecture for this case study. Illustrating the producer,

cluster and consumer architecture

Kafka ZooKeeper: The ZooKeeper is the central management and coordination unit

in the cluster. If a new broker enters the cluster or if a broker fails, the ZooKeeper

notifies the producers and consumers. This notification allows producer and consumer

on how to act and start communicating with other available brokers in the cluster.

Kafka Producers: Producers push the data to the brokers. The Kafka Producer passes

data to partitions in the Kafka topic based on the partition strategy that has been pre-

defined. The Kafka producer takes care that the data rate can be handled by the broker.

Kafka Consumers: The Kafka brokers are stateless, while the consumers maintain

the number of messages that have been consumed. This is achieved by using a parti-

tion offset. A consumer confirms each message offset which is proof that all messages

before were consumed.

5.2.1.2 Kafka-Concepts

Kafka Topics: A Kafka topic is a logical message channel to distinguish between dif-

ferent message types. Kafka topics are divided into several partitions. Partitions allow

parallelizing a topic by splitting the data into a specific topic across multiple brokers.

A partition writing process of a topic is illustrated in figure 5.3. Each partition can be

assigned on a separate machine to allow multiple consumers to read from a topic in
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Figure 5.3: Showcase of a kafka topic with 3 partitions. New entries are written with

the offset number in the top of a queue

parallel. Further, can the message processing throughput of a consumer be increased

by the parallel reading of multiple partitions.

Each message within a partition has the previously mentioned offset. The offset

represents the ordering of messages as an immutable sequence. The consumer has

different options to start reading from any offset point, which allows the consumers to

join the cluster at any time.

With the offset info, each specific message in a Kafka cluster can be uniquely

identified with the information of the message topic, partition and offset within the

partition.

Partitions in Kafka: Each broker holds several partitions that can be either a leader

or a replica for a topic. A leader coordinates all writes and reads to a topic, and coor-

dinates updates in the replicas with new data. If a leader fails, a replica takes over as

the new leader.

Topic Replication Factor: Topic replication helps to prevent system failure in case of

broker failure. In case of a broker failure, the topic replicas of other brokers can secure

the system stability. A replication factor determines how many backups are created for

a topic.
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Figure 5.4: MQTT Broker ingestion

5.2.2 Communication protocol between producer devices and the

Kafka ingestion system - MQTT

MQTT is an ISO messaging protocol [MQT]. MQTT is famously used for IoT

scenarios and uses a publish/subscribe architecture in contrast to HTTP with its re-

quest/response paradigm. The publish and subscribe concept is an event-driven

paradigm and allows messages to be pushed to a client. The central communication

point is an MQTT broker. A broker dispatches the messages between the senders and

consumers. Clients publish the messages specified on a topic to a broker. This provides

bi-directional communication between the devices over an MQTT broker.

MQTT and Apache Kafka are a good combination of end-to-end IoT integration

from the edge to the processing nodes and back. In this case-study, the bidirectional

and inter-device communication was not needed for the goal of having a monitoring

and processing pipeline along with the IoT architecture with a centralized deep ana-

lytics engine. Nevertheless, the MQTT characteristics of being bandwidth and battery-

efficient on IoT devices are considered a valuable component for this architectural con-

cept. By evaluating different implementation recommendations of MQTT device inte-

grations, the following two integration scenarios were evaluated.

Scenario 1 - MQTT Broker:

In this first scenario (figure 5.4), the data gets pulled from the MQTT Broker via

the Kafka MQTT Connector to the Kafka Broker.

Scenario 2 - MQTT Proxy:

To reduce complexity and simplify the management of the infrastructure, in Sce-

nario 2 (figure 5.5), an MQTT proxy can be used to get rid of the MQTT broker cluster

that would be required to be managed in Scenario 1. In case, no additional broker clus-

55



Figure 5.5: MQTT Proxy ingestion

ter is needed, more reliable and performant processing can be guaranteed by having

fewer components along the processing pipeline.

5.2.3 Stream Processing and single-stream event detection - Faust

Faust is a high performance stream processing library, which adapts the idea of

Kafka Streams in Python and for this chosen for the case-study. Faust has the following

characteristics:

1. Kafka Consumer: Faust worker can act as a consumer of a Kafka cluster and

process events based on their assigned topics.

2. Scalability: Faust can be vertically scaled by assigning multiple workers to a

topic.

3. No DSL: It is written in python. The whole range of python libraries is available

for processing an event, which includes, e.g., Tensorflow for more sophisticated

AI-based analytics.

4. Asynchronicity: With Python 3 and the AsyncIO module, Faust offers high-

performance asynchronous processing. With AsyncIO and the async/await key-

words in Python 3.6+, multiple stream processors can be run in the same process.

5. Stateful: Faust can persist in states and act as a database. Tables are named dis-

tributed key/value stores which are implemented as regular Python dictionary.

6. Stream Windows Processing: Tumbling, hopping and sliding windows are avail-

able. Windows can be subject to time constraints in which old windows can ex-

pire to stop loading data.
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Figure 5.6: Faust agent basic code example

7. High Reliability: For reliability, Kafka topics possess a write-ahead-log. In case a

key is changed, the information gets published to the changelog. Standby nodes

consume the changelog info to keep a replica of the data. In the case of a node

failure, this replica enables an instant recovery.

8. Persistence: Tables can be stored locally on each machine using RocksDB [Roc], a

high performance embedded database for key-value data.

The core components are described in the next 5 paragraphs.

Agents: Agents process infinite streams using asynchronous generators. The agent

concept comes from the actor model, where the stream processor executes concurrently

on many CPU cores. An actual code example can be seen in Figure 5.6

Tables: Tables are dictionaries that give stream processors states with persistent data.

Sharding and partitioning are an essential part of stateful stream processing and need

to be planned strategically for the right processing in a Faust cluster. Streams can be

processed in a round-robin principle where Faust acts as a simple event processing and

as a task queue.

Distribution: Faust relies on Kafka’s consumer management principle, to identify

whether any partition or topic is not being served to and launches an agent in an in-

stance where the application is reporting as functioning.

Figure 5.7 represents a single Kafka topic that has six partitions. Three Faust

worker are running on the same application name. The left illustration shows a work-

ing cluster with an elected leader and two further worker nodes. The elected topic

leader will coordinate which partition will be fed to which worker. The node failure

detection is based on a timeout value, after which a consumer group will inform the

leader that one of the nodes is down and trigger a re-distribution of topics and partition

assignments.
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Figure 5.7: Faust topic replication example in case of a worker failure. Left side - All

worker healthy; Right side - one worker fails and partitions are redistributed

Table Sharding: Tables shards in Kafka are organized using a disjoint distribution of

keys. Any computation for a subset of keys happens together in the same worker. The

following example illustrates an incorrect usage of key subsets assignments of worker

processes: If we have patient and location information, depending on the use case and

goal, we want to partition by a key on location or patient-ID. Should we partition on a

patient-ID and process aggregated information on location information, most likely we

run into a risk of incomplete data, where location information might be spread across

different partitions. Such an issue can be solved with Faust by using two distinct agents

and repartition the stream by location when populating the table.

The Changelog: The changelog is used to recover from system failure, were every

modification to a table has a changelog entry. The changelog is registered in the Kafka

Cluster as its topic and only keeps the most recent values of a key in the log. The

RocksDB storage allows the recovery of tables, where a worker retrieves missed up-

dates since the last time the instance was running.

5.2.4 Complex Event Processing - Kafka Streams with KSQL

Faust acts in this Kafka infrastructure as a consumer for processing the data

streams as well as producer of event streams. With this architecture design, CEP En-

gines can now be attached to the Kafka cluster as a consumer and can access those

event streams in the Kafka architecture. In the implementation of the case study, the

focus will be held on the “simple” CEP integration. This integration will not have the

58



benefit of integrating complex reasoning over ontologies but explains the composite

event behavior reasoning. At the end of this chapter, a conclusion over the advanced

possibility of integrating a semantic CEP in this use case will be given.

Based on the underlying Kafka ecosystem, the decision was made in favor of

Kafka Streams. Kafka Streams is the Apache Kafka library for writing streaming ap-

plications and microservices in Java and Scala.

5.2.4.1 Kafka Stream Concept

Kafka Streams has following characteristics [Kafb]:

1. Lightweight client library, that can be embedded in Java application.

2. Kafka is the only dependency as an internal messaging layer. Kafka Streams uses

Kafka’s partitioning principles to scale while maintaining ordering guarantees

horizontally.

3. Fault-tolerant local state which enables stateful operations (windowed joins and

aggregations).

4. Exactly-once processing is guaranteed, where each record will be processed once,

even in case of a failure.

5. One-record-at-a-time processing for lower processing latency.

6. Event-time based windowing operations.

7. Includes stream processing primitives with a high-level DSL and low-level Pro-

cessor API.

The core components are described in the next paragraphs.

Kafka Stream Processing Topology: A stream processing application defines its log-

ics trough one or more processor topologies. A processor topology represents a graph

of processor nodes that are connected by their streams. A stream processor represents

a processing step of a stream input and applies operations to produce one or more

outputs, which are sent to downstream processors in the topology.

There are two type of processors in the topology:
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1. Source processor: A source processor produces an input stream from one or mul-

tiple Kafka topics and acts as a consumer of topics to forward them to down-

stream processors.

2. Sink processor: A sink processor does not have down-stream processors. It re-

ceived records from its up-stream processors and sends the output to a specified

Kafka topic.

Processed results can forwarded to Kafka or to external systems.

Time Dimension: Common notions of time in streams are:

• Event-time: When an event or data record occurred. In this case study, e.g., the

record of the ECG signal at the device.

• Processing-time: When the event or data record is being processed. This can be

the time of consumption and later than the event time.

• Ingestion time: When the event or message is stored inside a topic partition by

the Kafka broker.

Kafka automatically embeds the timestamps into a message, where timestamps can

represent event-time or ingestion-time. The corresponding Kafka configuration setting

can be specified on the broker level or per topic.

Aggregation: Aggregations take one input stream or also table and create a new table

by combining multiple records into a single output. An example is the computation of

a sum.

Windowing States: Kafka Streams offers windowing and lets group records that

have the same key for stateful operations such as aggregations or joins. Windows can

be specified with a retention period and are tracked per record key. Kafka streams state

management enables joins over input streams, grouping and aggregation over records.

Processing guarantee and out-of-order-handling: Stream processing applications

usually make use of a lambda architecture, which enables the infrastructure for real-

time and batch processing in parallel. The goal is often to have real-time alerts and a
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batch layer that guarantees that no data-loss or data duplicates occur. Newer Kafka

versions allow its producers to send messages to different topic partitions in a trans-

actional and idempotent manner. With this characteristic, Kafka Streams offers the

end-to-end exactly-once processing semantics without the need of adding a batch

layer[Kafa]. For stateless operations, out-of-order data will not impact the process-

ing logics since only one record is considered at a time for stateful operations such

as aggregations and joins. For the handling of out-of-order data, a longer wait time

should be considered, where the state needs to be tracked. This will lead to a trade-off

between latency, cost, and correctness.

Some of the out-of-order data cannot be handled by increasing the latency and

cost in Streams:

1. Stream-Stream joins: All three types (inner, outer, left) handle out-of-order

records correctly. The only problem can occur in the resulting stream, where

left and outer joins contain unnecessary 1: null records.

2. Stream-Table joins: Out-of-order records are not handled and may result in un-

predictable results.

5.2.4.2 Kafka Stream Architecture

Stream Partitions and Tasks: Kafka partitions data for storing and transporting,

while Kafka streams partitions for further processing. In Kafka, partitioning enables

data locality, scalability, high performance, and fault tolerance. With partitions and

tasks as a logical unit, a parallel processing model can be realized.

Following similarity can be found between Kafka streams and Kafka:

• A stream partition is an ordered sequence of data records assigned to a Kafka

topic partition.

• The keys of a topic element determine the data partitioning in Kafka and Kafka

Streams.

The processor topology can be scaled by using multiple tasks, where a task is a fixed

unit of parallelism for a topic. The instantiation of a processor topology is done by

a task, where the task also maintains a buffer for each of the assigned partitions and

process messages one-at-a-time from the record buffers. This characteristic gives the

Kafka stream architecture the independent and parallel processing paradigm.
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Figure 5.8: Illustration of a task assignment inside a Kafka Stream thread.

Kafka Streams can be run on a single machine or spread across multiple ma-

chines, where tasks are automatically distributed to the application instances. The

diagram in Figure 5.8 exemplifies how a task assignment structure could look.

Two tasks, where each one is assigned with one partition of the relevant topic,

which in return enables a fault tolerance characteristic for processing. In case an appli-

cation instance fails, all affected partitions will be automatically restarted on another

instance and fed with the same stream partitions.

Threads While the partitions, in combination with a task, enable fault tolerance, the

threads enable parallel processing inside an application instance. With creating more

threads, a different subset of partitions is used to enable parallelized processing. The

threads run independently and can not communicate with each other. Kafka Streams

takes care of distributing the partitions among the tasks.

Local State Store State stores enable to store and query data inside a task, which is

essential for stateful operations (e.g., aggregation over a time window or join). The

state stores are secured of failure by a changelog topic with each update, similar to the

changelog of Faust. A changelog topic is partitioned so that each task state store has

its partition.
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5.2.4.3 KSQL

KSQL is built on Kafka Streams as a streaming SQL engine. Based on the sim-

plicity of use and high expressiveness, KSQL was used as the (semi-)CEP for detecting

composite stream events in this work.

5.3 Technical design: Data Processing - ECG Data

For the part of processing the ECG data along the stream pipeline, the following con-

siderations were evaluated:

1. Where to process data and how does it scale: If the data processing step has the

output result of reducing the overhead over the eco system, the goal should be

to put that processing step as close as possible to the source. Possible limitations

in such a scenario can be the computing power or memory resources on the IoT

device or edge nodes. Reliability could be affected by putting a to high and fluc-

tuating load on devices, which could lead to an overload in the processing and

result in processing problems. In some scenarios, the battery life optimization is

critical, where the processing power should be kept as low as possible.

2. Some processing steps might be based on semantically enriched data inference,

which contains the linking of static data that can be subject to specific data pro-

tection laws. This can have as a result that personal data cannot be shared with

end devices or end device data can not be shared with a cloud system.

3. In a scalable processing architecture with parallel worker nodes, stream elements

could be processed on different worker nodes, and time-series correlation could

be lost. A possible solution is to assign data streams on dedicated worker nodes.

Another way is to structure the processing in a way that it will be decoupled from

the time-series.

4. Limitations on message size along the processing pipeline. For example, MQTT

has the limitations of the length of the actual topic string at most 65536 bytes,

and the payload of the message is limited to 268,435,456 bytes [MQT]. It needs

to be evaluated that the message processing can be handled at later processing

nodes of the other systems like Kafka and Faust, or a reduction of the data size

considered.
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5.3.1 Pre-Processing

As an initial edge pre-processing step, the standardization and normalization of

the ECG data stream was conducted. Only standardized data was feed into the Kafka

message broker and guaranteed consumers that the data contains identical data and

semantic structure. The heterogeneity of IoT devices is a primary challenge in IoT sys-

tems. Different ECG devices can be clocked on different frequencies. The initial step

was to sample the raw data streams on 180-hertz frequency, which contains downsam-

pling in case of a higher frequency and up-sampling in case of a lower frequency. The

high-frequency noise filter is the second computation step to retrieve a smooth ECG

stream. As a final processing step, the data has been normalized on a scale of 0-1. The

resulting standardized data stream can now be processed in the pipeline with different

heterogeneous IoT devices in the case of ECG monitoring.

5.3.2 Core-Processing

The HTM algorithm was used to find anomalous segements on the standardized

data stream (explanation in section 5.4.1). Anomalous segments are forwarded for

storage inside the Kafka cluster for further processing by consumers. Topic-specific

worker nodes will now be able to process the anomalous segments.

From the anomalous segment to the extracted signal A single extracted signal is

relevant for the classification in most of the methods. The signal extraction in this

thesis was based on the following step-wise approach:

1. Splitting the continuous ECG signal to 5s windows and select a 5s window from

an ECG signal.

2. Amplitude normalization between the range between 0 and 1.

3. Determine the set of local maximas based on zero-crossings of the first derivative.

4. Determine the set of R-peaks candidates by applying a threshold of 0.9 on the

normalized value of the local maximas. Experiments showed that the threshold

can be in between 0.85-0.92 for the R-peak detection.

5. Determine the median of R-R time intervals as the nominal heartbeat period of

that window (T).
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6. For each R-peak, selecting a signal part with the length equal to 1.2T. With this

value, it should be assured that all beats are completely extracted.

7. Padding each selected part with zeros to m.

8. Send signal for classification.

The pseudo-code of the signal extract can be found in appendix 7.3. This approach is a

very basic methods to extract signals. More advanced methods are already proposed

by other researchers and were not in the scope of this work, but will be discussed in

the conclusion.

5.4 Technical design: Anomaly detection, classification

and complex event processing

5.4.1 Anomaly Detection

ECG monitoring can be classified in the applications of short term and long term

monitoring. An ECG signal in a long term monitoring scenario will create data with

a frequency of 360 hertz on a two signal stream with timestamp, resulting in 632

MB/day. An ECG signal stream usually contains a high amount of data that is consid-

ered normal. Periodical deviations are considered anomalous signals. Those signals

need to be analyzed and classified for specific diagnoses. Based on these characteris-

tics, the next processing step is to identify and extract those anomalous signals.

Following the idea of an edge event detection, that contains the classification of

ECG data, an implementation was tested to detect close to the source anomalous sig-

nals, extract them and send them in the Kafka infrastructure. This has the benefit of

reducing the load on the communication ports and Kafka cluster. A modern approach

for online detection of anomalies in time series data presents the HTM algorithm.

Hierarchical temporal memory: HTM was inspired by the learning behavior of the

neocortex, where the signals from all of the body’s sensory organs are processed in one

algorithm [Mou78].

HTM is a self-learning and memory system of storing invariant representations of

physical structures and abstract concepts. Self-learning is described as the ability that

no offline data set for pre-training is needed and the learning is done in real-time on the
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incoming data. HTM is highly adaptive and can learn changing representations in real-

time and forgets outdated representations. This allows HTM to learn with invariant

representations of common patterns. By observing those patterns in a sequence, HTM

can predict future patterns.

HTM structure: The HTM learning algorithm models how learning takes place in a

single layer of the cortex. HTM creates sparse representations of time series patterns.

When the HTM algorithm observes a new pattern, it will try to match it to stored pat-

terns. Because inputs never repeat in the same way, invariance of the stored sequences

is vital to the ability to recognize inputs. The HTM algorithm only knows what pat-

terns are probably following a particular observed pattern. HTM’s general learning

principles are to train on every input. If a pattern is repeated, then strengthen it and if

the pattern is not repeated, then forget it. HTM carries out at each time step three steps

on the observed input, which is further explained in the appendix 7.1.

For each sample, an anomaly score gets determined. In a sliding window over the

ECG stream, the moving average of the anomaly score will be determined and based

on a patient-specific anomaly threshold. Two functions can be triggered by the HTM

result:

• Early warning signal for a local caretaker on IoT devices or edge nodes like a

raspberry pi.

• Forward the segment to the Kafka infrastructure, where it will be ingested for

further in-depth processing over the anomalous segment.

The threshold can be configured depending on the clinical risk of the patient. The

threshold represents the trade-off between detection accuracy, data rate, and with this

the load on the ecosystem. To catch all anomalous signals, a very sensitive threshold

needs to be selected, which in return increases the amount of data that is classified as

anomalous. A high threshold will reduce the data load on extreme cases only, that can

lead to missing unhealthy beats. The pseudo-code for the HTM algorithm implemen-

tation can be found in Appendix 7.2.

66



5.4.2 Classification

In the domain of ECG classification three main approaches have been identified:

1. Feature-based: It aims to find a set of relevant features of ECG data that can

attain a good classification accuracy.

In ECG signals (see Figure 5.9), one cardiac cycle includes the P-QRS-T waves.

This feature extraction technique determines the amplitudes and intervals in the

ECG signal for subsequent analysis.

Figure 5.9: Example visualization of an ECG signal and its feature definitions [wik].

2. 1-Dimensional ECG signal classification based on CNN: An adaptive imple-

mentation of 1-D convolutional neural networks (CNNs) is used to fuse the two

significant blocks of the ECG classification into a single learning body: feature

extraction and classification.

3. 2-dimensional ECG image classification based on CNN: One-dimensional ECG

signals can be transformed into two-dimensional ECG images, where noise filter

and feature extraction are not required. Using ECG image as an input also ben-

efits in robustness. Traditional ECG arrhythmia detection methods are sensitive

to noise. However, when the ECG signal is converted to the two-dimensional

image, the proposed CNN model can automatically ignore the noise data while

extracting the relevant feature map throughout the convolutional and pooling

layer. Thus, the proposed CNN model can be applied to the ECG signals from

the various ECG devices with different sampling rates and amplitudes. Further-

more, detecting ECG arrhythmia with ECG images resembles how medical ex-
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perts diagnose arrhythmia since they observe an ECG graph from the patients

throughout the monitor, which shows a series of ECG images [JNK+18].

To keep the complexity of the classification as low as possible, the 1D CNN classifica-

tion was considered, while a future improvement should be considered by the current

state of the art 2D CNN approach.

Model Training: The MIT-BIH Arrhythmia Database [MM01] was used for training

the model, containing 48 analysis two-channel 30 minutes ECG recordings, obtained

from 47 subjects. The original recordings were digitized on a frequency of 360 per

channel with an 11-bit resolution over a 10 mV range. The focus of this work was on

the optimization of the CNN model.

5.4.3 Result Evaluation

This section studies the effects of applying the HTM algorithm as a pre-filter step

to identify anomalous segments for further analysis by the Faust classification clus-

ter. The study will focus on the trade-off factors of the implementation configuration

over different threshold values. A second evaluation was conducted on the the Faust

worker extraction and classification task, where time measurements were taken for

different arrival rates of incoming anomalous segments. The final part of the result

evaluation shows the total troughput time of the signal sample generation till the fin-

ished classification of the Faust worker.

5.4.3.1 Tradeoff 1: HTM anomaly threshold vs. data size vs. detection rate

The evaluation was conducted on the labeled MIT-BIH Arrhythmia

Database [MIT]. This data set contains approximately 110,000 beats that have

been annotated by two or more cardiologists independently. Each patient has a

recording of 30 minutes in a frequency of 360 Hz, which results in 648,000 samples.

The annotations were mapped by the cardiologist to a single sample, were an example

can be seen in Figure 5.10:

The HTM algorithm, as well as the implementation, contains a complex setup of

parameters. The fine-tuning of the HTM was outside of the scope of this thesis. The

following parameters are used in the experimental setup and can be seen in Figure
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Figure 5.10: Snipped of the ECG annotation set. The first column marks the time of a

signal. The class expresses if the signal was marked as healthy or unhealthy.

Figure 5.11: This is a model of the implementation parameter used for identifying and

extracting anomalous segments with the HTM algorithm

5.11:

• Maximum and Minimum queue window size = Maximum size of a window.

• Hopping window size = Represents the overlapping interval.

• Anomaly window size = Length of the moving average of the anomaly score.

• Threshold of moving average of anomalies = The factor of tolerance over detected

anomalous segments.

In this experiment, the frequency was downsampled to 180 Hz to reduce the ex-

periment duration (for different frequencies of an ECG stream, the implementation
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parameters need to be optimized and reconfigured). The raw data stream was not

pre-processed and contains noisy samples.

For the evaluation on a 180hz frequency, following settings were choosen:

• Maximum and Minimum queue window size: 200-450

• Anomaly window size: 20

• Hopping window size: 100

The major goal of the HTM algorithm was to detect unhealty signals and reduce

as good as possible the data rate on the infrastructure. For this, the detection rate of

an unhealthy signal (True Positive Rate = TPR) was evaluated, as well as the rate of

healthy signals that were considered as anomalous (False Positive Rate = FPR). The

results can be seen in visualized in Figure 5.12. With a low threshold of 0.06, the TPR

was at 100%, while 85% of healthy signals have been considered for the ingestion in

Kafka and the precise classification by the CNN model. With a threshold of 0.08, it can

be observed that the TPR is at 94%, while the FPR shrinks to 65%.

Figure 5.12: Evaluation of Development of TPR and FPR over different anomaly

thresholds.

For the same setup and threshold ranges, the data volume was evaluated and can

be seen in figure 5.14. The initially measured generated data of one ECG sensor over
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24 hours is at 480MB. With an acceptable anomaly threshold of 0.08, the volume was

reduced by 24% to a volume of 355MB. All results of the threshold test can be viewed

in the table 5.13.

Considering that the HTM algorithm had no optimization of the hyperparame-

ters and the raw noisy data stream, were the results promisingly good. The HTM al-

gorithm should be in a future outlook investigated on a pre-processed and clean ECG

stream (e.g, noise filter, feature extraction, representation schemas).

Figure 5.13: Evaluation table of binary classification analysis of untuned HTM anomaly

detection over the raw data stream of patient-100.

The processing was evaluated on an AWS instance type t2.medium with 2 vCPUs (3.3

GHz) and 4 GiB RAM.

Processing time (highly depending on sample frequency and was tested with 180hz):

• HTM algorithm: ≤ 0.01 seconds per sample.

• Queue segment evaluation: ≤ 2 seconds (mainly depending on window size

configuration).

5.4.3.2 Faust signal extraction and classification evaluation

In this experiment, the extraction and classification of anomalous signals were

evaluated on a Faust worker node. A single Faust worker was deployed where the test

consisted of measuring the time of extracting a signal and classifying it. The Figure 5.15

shows the evaluation results, where different event rate scenarios where tested. The

worker was able to handle 245 events perseconds and showed a linear behavior for

increased data rates. The experiment showed that the classification step took slightly

more time than the signal extraction process.
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Figure 5.14: Example of Anomaly Threshold effects on stream volume of one ECG

sensor over a 24 hours duration, where a raw generated volume was estimated with

480 MB every 24hours.

5.4.3.3 Processing time along the Architecture

This section contains the throughput time of a generated event at the sensor until

the final event classification at the Faust worker node. Several measurements were

taken at the HTM algorithm, MQTT connection, Kafka cluster, and Faust worker node,

which can be seen in figure 5.16.

The HTM algorithm processed the raw ECG samples on a frequency of 180Hz,

where the analysis time was between 0.4 and 2 seconds of a single signal, which is due

to the window operator configuration. Depending on the window size, the processing

time will be affected. The HTM algorithm gives an anomaly score on a single signal in

a fraction of a second. To establish a mechanics to prevent a system flooding based on

noise elements inside the raw data stream, the evaluation was delayed untill an clear

decision can be made based on the followup samples of the time series of an ECG.

The network communication latency between the IoT device, Kafka ecosystem

and Faust worker node are essential measurements to be considered for a real appli-
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Figure 5.15: Processing time of a Faust worker over anomalous segments.The task con-

sisted of signal extraction and classification.

cation. In this case study they were not considered for an in-depth investigation and

outside of the scope. Basic measurements were taken and showed a communication

time of under 0.2 seconds of a sensor deployment in Barcelona to the AWS availability

zone 3 in Frankfurt.

Two measurements were taken at the Faust worker node for the anomalous seg-

ment task to extract signals and classifying. The total time of a segment classification

was at under 0.006 seconds (note: an anomalous segment was consisting of 3 signals

in the test based on the anomalous segment window configuration).

The maximum throughput time starting at the generation of an event untill the

classification of probable unhealthy signals was at 2.1 seconds plus the network latency

characteristics in the deployed environment for MQTT and between the Kafka and

Faust worker.

5.4.3.4 Classification

The model was implemented in a basic 1D-CNN to test the overall functionality.

The signal pre-processing step follows the idea of [JNK+18]. By having the same input

structure, the model can be replaced with the model of Jun et al. proposed 2D-CNN
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Figure 5.16: Visualization of the total throughput time of one ECG signal.

model architecture, that showed the following result for the classification of the same

ECG data with the same setup [JNK+18]:

• Acc(%)= 99.05

• Sp(%) = 99.57

• Se(%) = 97.85

• +P(%) = 98.55

In a real application, the implemented model needs to be replaced, whereas the

remaining data pipeline can stay unchanged..

5.4.4 Complex event processing

CEP can be used to predict and manage critical assistance. A CEP system may

combine the processing of several data streams with static data stored in a database.

Possible use cases can be countless, depending on the available data. Some use cases

are:

• Realtime (remote-) Reasoning and alert system for healthcare personnel about a

patient.
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• Feedback loop with devices that monitor the patient health, for (automatic-) pre-

scriptive treatment and medication administration.

• Information system for caregivers and relatives about long term health develop-

ment analysis (e.g., lack of movement, pro-active-emergency detection).

• Realtime Linked data correlation with open health and community statistics, to

detect, for example, cancer clusters or spikes in asthma attacks in a community.

• Linking of data sources and processes to automate the tasks assignment and pro-

cess allocation of resources to teams during a disaster management [XAB+11].

5.4.4.1 Event Processing Network Diagram

In this section, the data event topics and channels are visualized (see Figure 5.17).

The event data flows are described as channels, which are the streams that effectively

handle the routing of events. Event processing begins with raw event data from the

medical devices and then ends on the right side, where complex event alerts are gen-

erated.

The intermediate queries are shown below for each event processing step. This

implementation is just a showcase and in a real application, measurements and thresh-

olds must be evaluated.

(1) Average HeartRate Query

SELECT

AVG(hr) As AverageHr

FROM

hrTopic[ROWS4 SLIDE4]

(2) HeartRate History Query

SELECT averageHr AS averageHr

FROM averageHrTopic[ROWS 4]
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(3) HeartRate Difference Query

SELECT

a.averageHr AS currentAverageHr,

h.averageHr AS historicAverageHr,

a.averageHr - h.averageHr AS hrDifference,

((a.averageHr-h.averageHr)/h.averageHr)*100 AS hrChangePercentage

FROM

averageHrTopic[now] AS a,

historicAverageHrTopic[ROWS 1] AS h

WHERE

a.averageHr>0 AND h.averageHr>0

(4) HeartRate Alert Query

SELECT

|’Hr increase of’||hrChangePercentage||’from’||

averageHr||’to’|| hr AS Alert

FROM

hrDifferenceTopic[now] AS d

WHERE

d.hrChangePercentage>5

76



Figure 5.17: Event Processing Network Diagram of a complex event scenario for critical

health status detection. The example contains the correlation of the heartrate and stress

measurement event composition.
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5.5 Data Representation and Enrichment

IoT semantic interoperability The representation will be a fusion of already existing

healthcare ontologies and IoT sensor stream representations. The existing healthcare

ontologies will be not defined in this work, and the focus held on the IoT stream rep-

resentation and the possible option of linking the data. The IoT stream ontology de-

cision factor will be the trade-off between expressiveness versus the complexity of the

representation, with the goal of not unnecessarily increasing the complexity and mes-

sage payload. The linking between existing healthcare ontologies and the IoT stream

ontology will mainly be designed by the stream reasoning results and location-based

information of patients and assisting personal. The final representation should enable

complex inferences over treatments of an individual patient based on existing patient

information and real-time diagnosis results.

5.5.1 Linked data and ontologies review for Healthcare applications

The used ECG data set is available as part of one of the databases at PhysioBank

[MM01]. The databases comprehend ECG records containing a continuous recording

from a single subject. In MIT-BIH, a signal is defined more restrictively as a finite

sequence of integer samples. These are usually obtained by digitalizing a continuous

observed function of time at a fixed sampling frequency. All sample intervals for a

given signal are equal. MIT DB records are each 30 min in duration and are annotated.

This means that a label called an annotation describes each beat. The conceptual model

resulting from this standard is depicted in the left-hand of figure 5.18.

This figure illustrates a possible linking of the MIT-BIH dataset with the ECG

ontology [GGPF11]. The annotation structure of the MIT-BIH ontology can be of

importance in future ML training approaches.

To explicitly describe sensor measurements uniformly, there are proposals to en-

rich them with semantic web technologies. With an increasing amount of domain-

specific IoT applications, the amount of specified domain knowledge-bases is increas-

ing too. Domain applications use ontologies and semantic descriptions as a way to

define types, properties, and relationships of entities that exist for a specific domain.

In healthcare, many ontologies have been proposed to describe assisted living applica-
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Figure 5.18: PhysioNet ECG data ontology representation [ZCB19]

tions [ZCB19]. The following ontologies have been identified as being of relevance for

a cross-domain correlation in this case study:

Medical applications:

1. Disease Ontology (DO): human diseases for linking biomedical knowledge

through disease data [KL14].

2. SNOMED-CT: advanced terminology and coding system for eHealth [Don06].

3. OdIH-WS: Ontology-driven Interactive Healthcare with Wearable

Sensors[KKDC14]. This ontology has the goal to retrieve in real-time con-

text information in with ontological methods by integrating meteorological data

in order to prevent disease.

4. ContoExam [BBS+13] is an ontology developed handle interoperability problems

of sensor networks in the context of e-health applications. This ontology contains

specific expressions and specifications for medical uses as examination vocabu-

lary and expressions.
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5. MetaQ is an ontology-based framework for activity recognition in AAL environ-

ments that uses SPARQL queries and OWL 2 activity patterns[MDK15].

AAL applications: There are still issues and challenges in the field of AAL to tackle,

such as defining an ontology that describes actions, activities with uncertainty, concur-

rent, and overlapping activities [HM04].

SSN [CBB+12] is a suitable ontology for sensors description in IoT and can generate

data in RDF format. Representing data using RDF or OWL enhances the interoperabil-

ity between IoT systems [ZCB19]. Several healthcare ontologies have been proposed

to describe diseases and activities of daily living.

The European project OpenIoT [KL14] is an open-source middleware platform.

OpenIoT represents a on-demand access to cloud-based IoT services for connected ob-

jects [ZCB19]. OpenIoT architecture uses the CUPUS middleware as a cloud-based

publish and subscribe processing engine for sensing as a service of sensors and relies

on SSN sensors description. The stream data is stored as linked data and processed

by SPARQL queries. OpenIoT can be viewed as a federation of several interconnected

middleware projects in the field of smart cities or the campus and agriculture domain.

OpenIoT could have been excellent for IoT health applications, but its complexity due

to the variety of middleware solutions can be a significant drawback for the developer

[ZCB19].

5.5.1.1 Proposed semantic representation along the data pipeline

For this thesis, the proposed rdf-schemas for the semantic representation of the

data can be seen in figure 5.19. The representation followed the minimum require-

ments of the data processing pipeline and can be extended and mapped to different

concepts in the field of healthcare and ECG representations.

Anomaly segment

It has turned out that the definition of an extracted anomlous timeseries of an ECG

stream can be hardly defined by many ontologies in healthcare. In this scenario, the

SAREF4Health ontology [SAR] offered a solution for a possible representation of this

type of data. The proposed representation can be found in figure ?? and contains

sequences.
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Figure 5.19: Example of a possible semantic representation of sensor data.

Figure 5.20: Example of a possible semantic representation of anomalous segment.

Analytics data set descriptions

The ECG recording produces a data flow in which intermediate datasets can poten-

tially be reused for other purposes, including other analytic methods, or data process-

ing evaluations. The produced datasets in the data pipeline can be systematically an-

notated, starting from the raw datasets produced by the IoT ECG device, the anomaly

detection process, classification as well as a possible complex event processing.
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Figure 5.21: Example of a possible semantic representation of derived event.

The monitoring result shows how the high level classified events of the CNN

model is annotated as a derived dataset from the processed sensor data. The PROV-

O7 ontology is used, as recommended by W3C when interchanging and representing

provenance information [W3C] . It contains the following main concepts:

• Entities: Physical or digital entities.

• Activities: Actions that are performed on an entity like transformation or pro-

cessing.

• Agents: perform or are responsible for the activities upon the entities.

The example in the figure 5.21 represents a classified event dataset as an entity,

which is generated by an activity, described as a physiological model performed by the

CNN algorithm.

5.5.1.2 Conclusion and ongoing challenges in the context of semantic enrichment

Some projects have proposed to tackle the interoperability issue from a technolog-

ical perspective by relying on middleware solutions that promote the interoperability

and the manageability of sensors in an IoT system. Although the existing semantic

middleware proposals address many challenges and requirements regarding the inter-

operability in IoT systems, there are still open research challenges related to scalability

and real-time reasoning. Using ontologies affects the requirements as parsing, stor-

ing, inferencing, and querying over RDF data takes a longer time compared to simple
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data formats. Furthermore, do ontologies require domain knowledge and expertise

and require a higher computational cost. The complexity is considered to be related to

the diversity of libraries to use and the complexity of the programming environment

[ZCB19]. Another challenge that could be addressed in the research area is related to

ontologies for sensors and domain descriptions. Providing a complete ontology that

combines the health care domain and sensors in IoT is still an ongoing challenge. Us-

ing Message oriented Middleware (MOM) approaches with semantic descriptions in IoT

is still in an early stage.

Web of Thing (WoT) [GTMW11] can be seen as a major solutions for interoperabil-

ity issues in IoT. It allows an easier way for IoT applications to build upon smart things.

The WoT concept relies on the connectivity service of IoT and easy access to sensors

data[GT09]. It can be seen as an evolution of the Internet of things where all compo-

nents share their information and collaborate to generate and infer advanced knowl-

edge. Using semantic descriptions enables data contextualization for data stream dis-

covery and querying. New research shifts to the semantic web of things [PRB+11]

where data can be integrated with data and available services. WoT is a open research

to improve and investigate several IoT environments, including healthcare.
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Chapter 6

Conclusion and future work

This chapter contains the conclusion and future work of the general review of the

state of the art of the three research questions in the field of IoT, as well as the case

study related conclusion, critical assessment, and future work.

6.1 Conclusion

General: The review explored the state of the art in the field of IoT stream process-

ing, semantic enrichment, and complex event processing. Current research focuses

heavily on the application of modern machine learning algorithms in nearly every

use case scenario. While the field of stream processing is widely covered by industry

and academia, the fields of domain ontologies show the potential to grow in terms of

domain-specific ontologies for IoT applications. The enabling of semantic representa-

tion of IoT data will be required for semantic complex event processing scenarios. The

motivation for a focus on defining domain-specific IoT domains and semantic complex

event processing should be based on the growing interconnection of devices as well as

the new resulting possibilities for higher-order reasoning. While in recent years, a lack

of SCEP engines for multiple heterogeneous streams represented a significant problem,

we now have engines like SPAseq that extend SPARQL with new SCEP operators that

can be used over RDF graph-based events that offer new opportunities in the field of

complex IoT reasoning. The main contribution of this thesis is the use case indepen-

dent review of the foundation for an end-to-end IoT ecosystem.

The second contribution consists of a use case based prototype that enables an

end-to-end data pipeline process with the requirements for a generalized and scalable
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IoT stream ecosystem in the field of eHealth. The implementation can be regarded as

a basis for other use cases as a fast prototype proposal for small teams with limited

expertise. With python being a popular language in the rapidly expanding field of

data science, an entry barrier was kept low by realizing the ecosystem proposal solely

based on Python and SQL.

Case Study: The presented use case of ECG-data classification illustrates a scalable

distributed processing scenario, where anomalous segments are detected on the edge

device with the HTM algorithm to reduce the data load on the architecture. The Kafka

system stores the identified abnormal segments. Single signals were successfully ex-

tracted from the segment by a Faust worker node, which analyzed it with a trained

CNN model on possible heart conditions. The HTM algorithm was tested on a raw

and noisy test set and was able to reduce the stream volume by up to 40% while keep-

ing a TPR of detected unhealthy signals at 94%. The total throughput time, starting

from sensing until the classified event, took between 0.5 and 2.2 seconds. Classified

events are stored in the Kafka system, where a CEP consumer was attached to rea-

son over the Kafka message and event topics. In this work, Kafka Streams and its

higher-level abstraction language KSQL was deployed to analyze the proof of con-

cept of CEP integration over a stress-sensor stream and the heart rate sensor, where a

positive composite event detection led to an alarm. This scenario can be considered

as a trigger to inform caregivers with the diagnosis results and recommended actions

and treatments. With the foundation of CEP, further research was based on enabling

high inference options based on semantic integration of stream data, historical patient

information, and healthcare knowledge bases. ECG ontologies turned out to be not

satisfying for the IoT use case example, due to missing expressivity for segment and

stream data. The SAREF4health and SSN ontology, in combination with healthcare

ontologies, have been identified for the representation of the ECG data streams in the

scenario of segment processing. The system foundation for a patient-specific real-time

prescriptive treatment is given in the context of this architecture.
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6.2 Critical assessment

Case Study: While the HTM algorithm can be used to reduce the load on the classi-

fication component inside the Fog or central analytics layer, CNN models are already

able to run in IoT devices itself. Depending on the scenario, considerations for the po-

sitioning of pre-processing, signal extract, and classification need to be made. While

the unoptimized HTM algorithm showed promising results on a raw and noisy data

stream, an optimized HTM implementation should be evaluated against state of the art

algorithms on pre-processed streams. Due to the limited power of edge devices, an-

other evaluation criterion should be the resource requirements for running the HTM

algorithm against other anomaly detection algorithm. In different scenarios, the device

resource restrictions or the goal of saving battery power could limit the practicality of

a more sophisticated algorithm like HTM.

Another use case specific consideration is the open research field of Edge dis-

tributed CEP. By reasoning over multiple streams right at the source of creation, pri-

vacy issues and data overloading can be prevented, as well as latency decreased.

6.3 Future Work

General: Semantic complex event processing is the product of the synergy of those

three domains and represents a challenge, where domain experts and developers need

to work closer together. The development in modern IoT architecture concepts should

be followed carefully, where concepts like misc computing and decentralized resource

offloading will enable new opportunities as well as challenges to stream and complex

event processing, as well as semantic enrichment on the Edge or Fog layer.

Current research in the field of IoT has a strong focus on leveraging the comput-

ing power of edge or fog systems. A future focus should be in the area of fog-centric

architecture designs. A fully-autonomous workload distribution mechanism is already

presented with examples like EdgeCEP [CYH+17]. An exciting project to follow is the

Apache Edgent incubator project, which is a programming model embedded in gate-

ways and small edge devices, enabling local, real-time analytics on continuous data

streams [APA].
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Case Study: The field of data privacy was not in the scope of this thesis but should be

considered as one of the most critical requirements of an eHealth IoT stream applica-

tion. For the storage and communicate of eHealth data, a robust encryption mechanism

needs to be implemented. [XLZ+14] proposes a physician authorization mechanism,

where the data is sent encrypted to the cloud and is made accessible on the approval

of patients by a doctor. With wearable monitoring devices, such data can be encrypted

and stored online, where the patient allows physicians to access and reason over the

already gathered insights.

The case study has been mainly focused on the end-to-end integration, where the

optimization of the anomaly detection and the classification algorithm where tasks out-

side the scope of the thesis. The HTM algorithm can be improved with hyperparameter

optimization as well as pre-processing steps to clean the raw ECG stream. The eval-

uation of the pre-processing should contain considerations for dimensionality reduc-

tion and representation techniques to improve anomaly detection sensitivity, latency,

and resource utilization. Another task would be to replace the 1D-CNN model with

a state of the art 2D-CNN model. The model of Jun et al. [JNK+18] can be recreated

and exchanged with the current model, without the need for changing the processing

pipeline, due to the same approach of signal extraction. The signal will be transformed

into greyscale images, where the deployment can be expanded in even analyzing the

patient’s ECG monitor through the camera.

While the proposed ecosystem design offers a generalized IoT ecosystem for

consumer-based SCEP components, a real use case should be determined with experts

in the medical domain to find a benchmark between traditional medical analytic sce-

narios and event-based real-time analytics. A synergy between healthcare expert sys-

tems and reliable real-time analytics offers a wide range of new use cases to improve

the life of patients.
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Chapter 7

Appedix

7.1 HTM description

Step 1 - Create an SDR of the input by activating whole columns

The first step determines the active columns of cells in HTM (see Figure 7.1). Each

column is connected to a subset of the input bits via the synapses on a proximal den-

drite. Subsets for different columns may overlap but they are not equal. Consequently,

different input patterns result in different levels of activation. The columns with the

strongest activation level block columns with weaker activation. The size of the inhi-

bition area around a column is adjustable and can span from very small to the entire

region. The inhibition mechanism ensures a sparse representation of the input. If only

a few input bits change, some columns will receive a few more or a few less active one

inputs, but the set of active columns is not likely to change much. Therefore, similar

input patterns will map to a relatively stable set of active columns.

HTM learns by forming and reforming connections between cells. Learning oc-

curs by updating the permanence values of the synapses. Only the active columns

increment the permanence value of synapses connected to active bits and decrement

otherwise. Columns that do not become active for a long period do not learning any-

thing. To not waste columns, the overlap scores of these columns are “boosted” to

ensure that all columns partake in the learning of patterns.

Step 2 - Place the input in context by selecting among cells in active columns.

The cells can be in one of three different states. If a cell is active because of a feed-

forward input, it gets assigned the active state. If the cell is active because of lateral

connections with nearby cells, then it is in the predictive state and otherwise in the
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Figure 7.1: HTM SDR cell column structure [Hol16].

inactive state.

The second step converts the column representation of the input into a new one

that includes the past context. This new representation is formed by the activation of

a cells subset within each column (normally only one cell per column). The rule used

to activate cells is as follows: When a column becomes active, HTM checks all the cells

in the column. When one or several cells inside the column are in the predictive state,

only those cells get the state active. If there are no cells in the column in the predictive

state, then all cells become active. This means, if an input pattern is expected, then

HTM approves the pattern by activating solely the cells in the predictive state. If an

unexpected input pattern follows, then HTM activates all the cells in the column.

HTM can represent the exact same input different in another context, by selecting

different active cells in each active column. Figure 7.2 illustrates how HTM can rep-

resent the sequence AB as part of two larger sequences CABF and HABG. The same

columns have active cells in both cases but the active cells differ. If there is no prior

state and therefore no prediction, the cells in a column will be activated when the col-

umn gets set on active.

Step 3 - Predict future patterns from learned transitions between SDRs The

third and final step makes a prediction of likely new input. The prediction is based on

the representation formed in the second step, which includes context from all previ-
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Figure 7.2: Representation of specific sequences in larger sequences [Hol16].
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Figure 7.3: Distal segment representation[Pri11].

ous input patterns. When HTM makes a prediction, all cells that are likely to become

active due to future feed-forward input are changed to the predictive state. Because

the sparse representations, multiple predictions can be made at the same moment. The

cells in the predictive state represent the HTM prediction for the next input.

The predictive state of any cell in HTM is determined by its distal segments. A

segment connects to cells via synapses on distal dendrites. If enough of these cells

are active, then the segment becomes active (see Figure 7.3). A cell switches to the

predictive state when it has at least one active segment. However, a cell that is already

active from the second step does not switch to the predictive state. Learning occurs

by adjusting the permanence values of the synapses on active segments at every time

step. The permanence of a synapse is only updated when a predicted cell actually

becomes active during the next time instance. The permanence of a synapse connecting

to an active cell is increased while the permanence of a synapse to an inactive cell is

decreased.
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7.2 ECG anomaly with HTM code

Input: incoming-data-t(ecg-signals as unbounded stream in time-step t), flag-send=

anomaly based trigger for sending data, Queue-size = size of data queue, segment-

size= size of anomalous segment for further analysis Output: Anomalous segment for

further processing

initialize

data_queue(size=queue_size) #FIFO Queue

moving_average_queue(size=segment_size) #FIFO queue

while device_is_online do:

data_queue(insert=incoming_data_t)

anomaly_score_t=HTM_anomaly_test(incoming_data_t)

moving_average_queue(insert=anomaly_score_t)

if moving_average_queue>=threshold

flag_send=True

if flag_send==true && length(data_queue)>=segment_size

send_to_mqtt_broker(data_queue_dequeue(size=segment_size)

falg_send=False

7.3 Signal extract

Input: is (Input segment received by anomaly detection)

Output: Signals (n signals extracted of input-segment initialize previous=0

While worker online:

is_norm=(is_s-min(is_s))/(max(is_s)-min(is_s))

is_grad=gradient(is_norm)

zero_crossing=zero_crossing(is_grad)

peaks_index=is_norm[zero_crossing]>=0.9

for peak in peaks_index

peak_distances<-(peak-previous)

previous=peak
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median_length=median(peak_distances)

segment_length=median_length*1.2

for signal in peaks_distances

signal=is_norm[signal_index:(signal + median_length)]

signal=fillup_zeros(signal, segment_length)
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[SA15] Joan Serrà and Josep Lluı́s Arcos. Particle swarm optimization for time

series motif discovery. Knowledge-Based Systems, 92, 01 2015.

104

https://rocksdb.org/


[SAGB14] Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya. Heterogeneity in mobile

cloud computing: Taxonomy and open challenges. IEEE Communications

Surveys Tutorials, 16(1):369–392, First 2014.

[SAR] Saref4health ontology. https://w3id.org/def/saref4health. Ac-

cessed: 2019-08-24.

[Sat96] M. Satyanarayanan. Fundamental challenges in mobile computing. In

Proceedings of the Fifteenth Annual ACM Symposium on Principles of Dis-

tributed Computing, PODC ’96, pages 1–7, New York, NY, USA, 1996.

ACM.

[SBCD09] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel

Davies. The case for vm-based cloudlets in mobile computing. IEEE

Pervasive Computing, 8(4):14–23, October 2009.

[SG17] Marcos Serrano and Amelie Gyrard. 6 a review of tools for iot semantics

and data streaming analytics. 2017.

[SGKB13] M. Shiraz, A. Gani, R. H. Khokhar, and R. Buyya. A review on distributed

application processing frameworks in smart mobile devices for mobile

cloud computing. IEEE Communications Surveys Tutorials, 15(3):1294–

1313, Third 2013.

[SHSS08] Amit Sheth, Cory Henson, and Satya S. Sahoo. Semantic sensor web.

Internet Computing, IEEE, 12:78–83, 08 2008.

[SHT16] Maninder Pal Singh, Mohammad Ashraful Hoque, and Sasu Tarkoma.

Analysis of systems to process massive data stream. CoRR,

abs/1605.09021, 2016.

[SN16] Ahmed Salem and Tamer Nadeem. Lamen: leveraging resources on

anonymous mobile edge nodes. In S3@MobiCom, 2016.

[SPC+14] Agusti Solanas, Constantinos Patsakis, Mauro Conti, Ioannis S Vlachos,

Victoria Ramos, Francisco Falcone, Octavian Postolache, Pablo A Pérez-
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