452 research outputs found

    The design and implementation of a microprocessor controlled adaptive filter

    Get PDF
    This thesis describes the construction and implementation of a microprocessor controlled recursive adaptive filter applied as a noise canceller. It describes the concept of the adaptive noise canceller, a method of estimating the received signal corrupted with additive interference (noise). This canceller has two inputs, the primary input containing the corrupted signal and the reference input consisting of the additive noise correlated in some unknown way to the primary noise. The reference input is filtered and subtracted from the primary input without degrading the desired components of the signal. This filtering process is adaptive and based on Widrow-Hoff Least-Mean-Square algorithm. Adaptive filters are programmable and have the capability to adjust their own parameters in situations where minimum piori knowledge is available about the inputs. For recursive filters, these parameters include feed-forward (non-recursive) as well as feedback (recursive) coefficients. A new design and implementation of the adaptive filter is suggested which uses a high speed 68000 microprocessor to accomplish the coefficients updating operation. Many practical problems arising in the hardware implementation are investigated. Simulation results illustrate the ability of the adaptive noise canceller to have an acceptable performance when the coefficients updating operation is carried out once every N sampling periods. Both simulation and hardware experimental results are in agreement

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Automatic Performance Optimization of Stencil Codes

    Get PDF
    A widely used class of codes are stencil codes. Their general structure is very simple: data points in a large grid are repeatedly recomputed from neighboring values. This predefined neighborhood is the so-called stencil. Despite their very simple structure, stencil codes are hard to optimize since only few computations are performed while a comparatively large number of values have to be accessed, i.e., stencil codes usually have a very low computational intensity. Moreover, the set of optimizations and their parameters also depend on the hardware on which the code is executed. To cut a long story short, current production compilers are not able to fully optimize this class of codes and optimizing each application by hand is not practical. As a remedy, we propose a set of optimizations and describe how they can be applied automatically by a code generator for the domain of stencil codes. A combination of a space and time tiling is able to increase the data locality, which significantly reduces the memory-bandwidth requirements: a standard three-dimensional 7-point Jacobi stencil can be accelerated by a factor of 3. This optimization can target basically any stencil code, while others are more specialized. E.g., support for arbitrary linear data layout transformations is especially beneficial for colored kernels, such as a Red-Black Gauss-Seidel smoother. On the one hand, an optimized data layout for such kernels reduces the bandwidth requirements while, on the other hand, it simplifies an explicit vectorization. Other noticeable optimizations described in detail are redundancy elimination techniques to eliminate common subexpressions both in a sequence of statements and across loop boundaries, arithmetic simplifications and normalizations, and the vectorization mentioned previously. In combination, these optimizations are able to increase the performance not only of the model problem given by Poisson’s equation, but also of real-world applications: an optical flow simulation and the simulation of a non-isothermal and non-Newtonian fluid flow

    Temperature aware power optimization for multicore floating-point units

    Full text link

    The 1991 3rd NASA Symposium on VLSI Design

    Get PDF
    Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2

    Fast Volume Rendering and Deformation Algorithms

    Full text link
    Volume rendering is a technique for simultaneous visualization of surfaces and inner structures of objects. However, the huge number of volume primitives (voxels) in a volume, leads to high computational cost. In this dissertation I developed two algorithms for the acceleration of volume rendering and volume deformation. The first algorithm accelerates the ray casting of volume. Previous ray casting acceleration techniques like space-leaping and early-ray-termination are only efficient when most voxels in a volume are either opaque or transparent. When many voxels are semi-transparent, the rendering time will increase considerably. Our new algorithm improves the performance of ray casting of semi-transparently mapped volumes by exploiting the opacity coherency in object space, leading to a speedup factor between 1.90 and 3.49 in rendering semi-transparent volumes. The acceleration is realized with the help of pre-computed coherency distances. We developed an efficient algorithm to encode the coherency information, which requires less than 12 seconds for data sets with about 8 million voxels. The second algorithm is for volume deformation. Unlike the traditional methods, our method incorporates the two stages of volume deformation, i.e. deformation and rendering, into a unified process. Instead to deform each voxel to generate an intermediate deformed volume, the algorithm follows inversely deformed rays to generate the desired deformation. The calculations and memory for generating the intermediate volume are thus saved. The deformation continuity is achieved by adaptive ray division which matches the amplitude of local deformation. We proposed approaches for shading and opacit adjustment which guarantee the visual plausibility of deformation results. We achieve an additional deformation speedup factor of 2.34~6.58 by incorporating early-ray-termination, space-leaping and the coherency acceleration technique in the new deformation algorithm

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications
    • …
    corecore