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A B S T R A C T

A widely used class of codes are stencil codes. Their general structure
is very simple: data points in a large grid are repeatedly recomputed
from neighboring values. This predefined neighborhood is the so-
called stencil. Despite their very simple structure, stencil codes are
hard to optimize since only few computations are performed while a
comparatively large number of values have to be accessed, i. e., stencil
codes usually have a very low computational intensity. Moreover, the
set of optimizations and their parameters also depend on the hardware
on which the code is executed.

To cut a long story short, current production compilers are not able
to fully optimize this class of codes and optimizing each application by
hand is not practical. As a remedy, we propose a set of optimizations
and describe how they can be applied automatically by a code genera-
tor for the domain of stencil codes. A combination of a space and time
tiling is able to increase the data locality, which significantly reduces
the memory-bandwidth requirements: a standard three-dimensional
7-point Jacobi stencil can be accelerated by a factor of 3. This opti-
mization can target basically any stencil code, while others are more
specialized. E. g., support for arbitrary linear data layout transforma-
tions is especially beneficial for colored kernels, such as a Red-Black
Gauss-Seidel smoother. On the one hand, an optimized data layout
for such kernels reduces the bandwidth requirements while, on the
other hand, it simplifies an explicit vectorization.

Other noticeable optimizations described in detail are redundancy
elimination techniques to eliminate common subexpressions both
in a sequence of statements and across loop boundaries, arithmetic
simplifications and normalizations, and the vectorization mentioned
previously. In combination, these optimizations are able to increase
the performance not only of the model problem given by Poisson’s
equation, but also of real-world applications: an optical flow simula-
tion and the simulation of a non-isothermal and non-Newtonian fluid
flow.
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1 I N T R O D U C T I O N

In November 2018, the world’s fastest supercomputer according to
the TOP500 list1 is the Summit of the Oak Ridge National Laboratory
(ORNL). It provides a performance of 143.5 PetaFLOP/s on the High
Performance Linpack benchmark. Given this number, exascale is
only a factor of 7 away. The Summit consists of 4 608 nodes, each
equipped with two 22-core Power9 processors and six NVIDIA Tesla
V100 accelerators. The main memory is also heterogeneous with
512 GB DDR4 and 96 GB HBM2 memory per node. The latter HBM2
memory is located on the accelerators (16 GB each), but can be accessed
by the processors, too.

Overall, such high performance is easier to reach with a hetero-
geneous architecture and this trend is likely to continue. On the
downside, this requires much more optimization effort for programs
running on such a hardware and the traditional approaches become
increasingly complex. These include the creation of highly special-
ized and optimized codes for specific problems running on a single
machine on the one side, and the creation and maintenance of large
libraries on the other side. One possibility to overcome this problem is
to provide a domain-specific language (DSL) to the users and to gener-
ate an optimized target code automatically. Such a code generator can
also optimize for the actual target hardware and, thus, performance
portability is much easier to achieve. Supporting a new machine re-
quires the identification of suitable optimizations and, in the worst
case, the implementation of new optimizations in the code generator.
Then, not only new applications but also all previously developed
applications can be regenerated to benefit from these improvements.

In project ExaStencils2, we have been working on a DSL and a
code generator for the domain of stencil codes or, more specifically,
the domain of multigrid methods [38, 90]. The restriction to such a
narrow domain enables the automatic application of more specialized
optimizations as presented later.

1.1 stencil codes

Stencil codes are widely used in academia and industry alike, e. g.,
for solving systems arising from a discretization of partial differential
equations (PDEs). The main characteristics of stencil codes is the

1 https://www.top500.org/lists/2018/11/

2 http://www.exastencils.org
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(a) 2D 2nd-order (b) 2D 1st-order dense

Figure 1.1: 2D 9-point stencil shapes.

neighborhood relationship. It is utilized to recompute the values
in a given grid. The fixed pattern specified by the neighborhood
relationship is called a stencil. A commonly used, albeit ambiguous,
naming scheme specifies the number of elements or points accessed.
For example, the computation of a 2D 9-point stencil reads the center
elements and either two points in all four directions or one point in
each direction including the diagonals, as represented in Figure 1.1.
A better alternative to name these stencil patterns is to specify the
dimensionality, the radius, and whether it is dense, i. e., whether the
diagonal elements are accessed. The remainder of this section presents
and discusses different properties of stencil codes and their potential
influence on the performance or necessary optimizations.

1.1.1 Dimensionality

In theory, stencil codes are not limited to any dimensionality and the
construction of a stencil for an arbitrary dimension is straight-forward.
The simplest variants of stencil codes are 1D stencils. Listing 1.1 shows
an exemplary one-dimensional stencil code. Its data locality is already
optimal, since only contiguous elements are read from the input array.
There are some possibilities to tune 1D stencils but, since they are also
not that relevant in most applications, we focus on higher-dimensional
variants in this work.

2D stencils are based on the same neighborhood relationship as their
1D counterparts. However, since the address space of main memory
is one-dimensional, the 2D field accesses have to be linearized and
only the neighbors in one dimension are located beside each other,
while the others are spaced farther apart. The distance between
the two neighbors in the outer dimension is twice the extent of the
inner dimension. For a field size of 32 7682 elements, two lines fit

Listing 1.1: 1D stencil.

for (int i = 0; i < n; i++)

out[i] = 0.8 * in[i] + 0.2 * (in[i-1] + in[i+1]);
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easily in the processors fast on-chip cache, since they require only
2 · 32 768 · 8B = 512KB for double-precision elements. Thus, data
has to be loaded only once and resides in cache until its last access
occurs. On the contrary, the distance between the two neighbors of
the outermost dimension in a 3D stencil may already be too large for
the processors cache: for as many elements as in the 2D example, i. e.,
for a field size of 1 0243, two planes require 2 · 1 0242 · 8B = 16MB.
This trend continues for higher dimensionalities.

1.1.2 Radius

Another property of stencil codes that we will use is their radius or
order. It specifies how many elements in each direction are accessed.
A 1st-order stencil, i. e., a stencil with radius 1, accesses only the direct
neighbors in every direction. The stencil depicted in Figure 1.1(b) is
a 1st-order stencil. Since the diagonal neighbors are read, too, it is
the dense version of an ordinary 2D 1st-order stencil. Consequently,
Figure 1.1(a) shows a 2nd-order stencil.

The radius has an impact on the performance and the optimiza-
tions. A larger radius increases the number of lines accessed in linear
memory and, thus, the amount of data that has to be cached for later
reuse to prevent a repeated load from main memory. In contrast,
the dense versions do not alter the cache pressure but the number of
computations. However, even for the dense versions, the arithmetic
intensity, i. e., the number of computations performed relative to the
amount of data accessed, is still low, which renders stencil codes
memory-bandwidth bound.

1.1.3 Iteration Type

Stencil codes exhibit several types of iteration patterns.

jacobi. The simplest one is the Jacobi iteration, which is presented
in Listing 1.1. Its defining characteristics is that the write array and
the (one or more) read arrays are strictly separated. There is no array
that is both read and written. As a consequence, there are no data
dependences in a single application of the stencil: all data elements
can be computed in any order, even in parallel.

gauss-seidel. The other extreme is the Gauss-Seidel iteration. In
that type of stencil code the write array is also read. This leads to
some neighbors having been updated before being read, and others
not, as depicted in Figure 1.2. With x being the innermost dimension,
the green points are already updated, while the red are still pending.
The computation of the black point then accesses two green and two
red neighbors. This obviously enforces some data dependences and
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x

y

Figure 1.2: 2D grid during a Gauss-Seidel iteration.

it is no longer possible to update all data points in parallel. Actually,
a naïve parallelization of a Gauss-Seidel iteration imposes several
drawbacks, such as an unfavorable memory access pattern.

red-black gauss-seidel. An algorithmic solution to the complex
parallelization is to change the computation order. Instead of updating
all elements in a lexicographic sequence, the set of computations is
split in two: if only every other element is updated for a 1st-order
stencil, the newly computed values are not accessed again, which
allows half of the elements to be computed in parallel. The second
half is then updated in a separate second sweep. Traditionally, the
one half of the resulting checkerboard pattern gets the color red
assigned, the others black and the whole iteration scheme is called
Red-Black Gauss-Seidel (RBGS). Following this new iteration order,
the red points only access the neighboring black points and vice versa,
which effectively eliminates all data dependences inside a single sweep.
Thus, each color can then be updated in parallel and only a single
synchronization point is needed.

multi-color gauss-seidel. A splitting with two colors is only
sufficient for a 1st-order stencil that is not dense. For larger stencils,
more colors may be necessary. E. g., a dense 2D or 3D 1st-order stencil
requires four, respectively eight colors.

1.1.4 Coefficient Type

Another variation point is the choice between constant and variable
coefficients. In the former, the multiplicative weight of each neighbor
accessed is a compile-time constant, i. e., a value that is independent
of the location inside the grid. This enables some optimizations, such
as an application of the distributive law to eliminate some multipli-
cations if there are identical coefficients, as realized in Listing 1.1. In
contrast, in the latter case, the values of the coefficients depend on the
coordinate of the element to be computed. Such coefficients may either
be computed explicitly during the stencil application, or they have



1.2 multigrid 5

to be loaded from a separate memory location. The latter increases
the memory and bandwidth requirements significantly since, for an
n-point stencil, n different values per grid point must be stored in and
loaded from main memory. However, if these coefficients are reused
frequently, additional memory transfers may be faster than a repeated
computation.

1.1.5 Boundary Handling

Another important aspect of stencil codes is their boundary handling.
Updates of elements at the border of the grid requires special attention
since not all neighbors that are specified by the stencil shape exist.
Thus, either a specialized code for these computations must be exe-
cuted, or one or more additional layers, the so-called ghost layers, have
to be added. The latter obviously increases the memory footprint but
it does not add any complexity to the stencil code and its control flow
since every field element is updated in the exact same way. Depending
on the actual problem, these ghost cells must be updated after each
stencil application. However, because ghost cells are required anyway
if a parallelization for distributed memory is desired, we also utilize
them for boundary handling.

1.2 multigrid

While stencil codes have many applications, ranging from image pro-
cessing to simulations in physics and chemistry, project ExaStencils
focuses on a narrower domain: the solution of PDEs via geometric
multigrid solvers [52]. A multigrid solver consists of stencil computa-
tions on a hierarchy of grids with a different granularity [38, 90]. It
combines two principles into an iterative solver: the smoothing property
and the coarse-grid principle. The former means that, after very few
steps of a classical iterative method such as a Jacobi or Gauss-Seidel
iteration, the error—i. e., the difference of the actual solution to its cur-
rent approximation—is smooth. Informally, smoothness is a graphical
property of a grid and said methods are very ineffective in reducing
the remaining smooth error. This is where the coarse-grid principle
comes into play. It states that a smooth grid can be approximated
sufficiently on a coarser grid with fewer discretization points.

A complete simple multigrid solver, a so-called V-cycle, is given in
Algorithm 1.1. In pre-smoothing, the high-frequency components of
the error are eliminated via ν1 steps of a classical iterative method.
Then, an approximation of the smooth error, the residual, is computed
and restricted to the next coarser grid. After a solution to the coarser
problem has been computed recursively, the error is prolongated back
to the finer grid and then eliminated. Finally, a second smoothing
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algorithm 1.1: Recursive V-cycle to solve Alul = fl.

1 function Vl(u(k)l ,Al, fl,ν1,ν2):
2 if l > 0 then
3 ū

(k)
l ← Sν1l (u

(k)
l ,Al, fl) { pre-smoothing }

4 rl ← fl −Alū
(k)
l { compute residual }

5 rl−1 ← Rrl { restrict residual }

6 el−1 ← Vl−1(0,Al−1, rl−1,ν1,ν2) { recursive call }

7 el ← Pel−1 { prolongate error }

8 ũ
(k)
l ← ū

(k)
l + Pel { coarse grid correction }

9 u
(k+1)
l ← Sν2l (ũ

(k)
l ,Al, fl) { post-smoothing }

10 else
11 u

(k+1)
l ← A−1

l fl { solve directly }

12 return u(k+1)l

phase is conducted. The recursion terminates when the problem size
is small enough to be solved directly.

A graphical representation of this method with the finer levels
depicted on top of the coarser ones is shown in Figure 1.3(a). Other
cycle types exist, such as a W-cycle, which is presented in Figure 1.3(b).
It performs two instead of a single recursive call in line 6.

1.3 contributions

The automatic generation of a complete multigrid application is not
an easy task, even if performance is neglected. In project ExaStencils,
the performance of the generated code is important and, since the Exa-
Stencils code generator has been developed from scratch, a variety of
different optimization techniques is required. We make the following
contributions.

• We propose a set of different code optimizations that both sup-
port the code generation process and increase the node-level per-
formance of the generated code. The transformations described
in detail are function inlining, arithmetic simplifications and nor-

coarse

fine

(a) V-cycle (b) W-cycle

Figure 1.3: Different multigrid iterations.
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malizations, two specialized redundancy elimination techniques
of which one targets redundancies across loop boundaries, a
vectorization, a space and time tiling to increase the data locality,
and very versatile data layout transformations. Most of these
techniques manipulate the abstract syntax tree (AST) of the gen-
erated code directly. In contrast, the time tiling to increase the
data locality is based on the polyhedron model for loop trans-
formation [29], which is a mathematical model to represent and
manipulate loop nests.

• These optimizations have been implemented in the ExaStencils
code generator and both their abstract idea and the concrete im-
plementation are described in detail. This includes interactions
of different techniques. Our goal is to support the implementa-
tion of this optimization capability in other code generators for
similar and different domains.

• The optimizations were evaluated to demonstrate their effective-
ness and impact on both the isolated smoother component of
a multigrid solver and complete multigrid applications. The
latter cover a well-known model problem based on Poisson’s
equation, an optical flow simulation, and a non-isothermal and
non-Newtonian fluid flow simulation, i. e., a complex real-world
application.

1.4 outline

The remainder of this thesis is structured as follows. Chapter 2
provides background information, namely details on the ExaStencils
code generator and its DSL ExaSlang, as well as the polyhedron model
for loop optimization. The latter is the foundation of our data locality
optimizations. This is one of the techniques implemented in our code
generator, which are described in detail in Chapter 3. Beside the main
idea of the optimizations, their implementation is also outlined to
support an integration and adaptation for other code generators and
domains.

Specialized evaluations of the approaches presented are given in
Chapter 4. Related work is discussed in Chapter 5, while Chapter 6
concludes and presents possible future directions.

More detail on the contents is given in the corresponding chapter’s
introduction.





2 B A C KG R O U N D

This chapter provides background information on the polyhedron
model for loop optimization [29] in Section 2.1 and project ExaStencils,
especially its DSL and code generator, in Section 2.2.

2.1 polyhedron model

The source code of a loop nest can be transformed in many different
ways, some of which are tiling, permutation, skewing, fusion, and
distribution. Each of these transformations has the potential to in-
crease performance. However, it is not easy to glean from the source
code whether a transformation preserves the semantics and increases
performance. Also the best transformation may be syntactically com-
plex and dominated by others that are syntactically very simple. In a
mathematical model, all transformations have equal complexity. The
polyhedron model provides techniques and tools to perform a search
across a space of all legal loop transformations. This section gives a
brief overview of the polyhedron model.

The integer set library (isl) [92] is currently the most popular and
advanced C library supporting the polyhedron model. Unless spec-
ified otherwise, we represent and manipulate polyhedra only with
data structures and methods provided by this library.

2.1.1 Static Control Part

The polyhedron model is a quite powerful tool but it cannot be used
to transform an arbitrary program. The classic model imposes some
limitations to the structure of a target code. First of all, the code must
have a statically analyzable control flow, i. e., the control flow must
depend only on constants, constant variables, or loop iterators. Such a
program region is called a static control part (SCoP). Furthermore, to
keep the required computations decidable, the loop bounds, the loop
stride, branch conditions, and all memory address computations, i. e.,
array subscripts, must be affine in the surrounding loop iterators and
constant variables. Note that constant variables must not be constant
in the whole application but only in the code region that should be
transformed. Before or after such regions, updates of these variables
are permitted.

9
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Listing 2.1: Sample loop nest.

for (int i = 1; i < n; i++)

for (int j = 1; j < n; j++)

S: A[i][j] = B[i][j] + 0.2 * (B[i-1][j] + B[i][j-1]);

for (int i = 1; i < n; i++)

for (int j = 1; j < n; j++)

T: B[i][j] = A[i][j] + 0.2 * (A[i-1][j] + A[i][j-1]);

There have been some efforts to relax the limitations of the poly-
hedron model, such as permitting nonlinearity [36, 86] or including
while loops [33]. However, these extensions have not been imple-
mented in isl, and they are also not mandatory for the domain of
stencil codes that we consider.

2.1.2 Iteration Domain

The basic element of a polyhedral representation is a statement instance,
i. e., a single execution of a statement. A loop nest can then be viewed
as a set of statement instances each of which is associated with a
specific statement and specific value for each iteration variable of the
surrounding loops. Given that the loop boundaries and potential
conditionals are affine expressions, this set – the so-called iteration
domain – forms a union of integer polyhedra.

Consider the loop nest in Listing 2.1. Its iteration domain can be
written as follows:

[n] -> { S[i,j] : 1 <= i < n and 1 <= j < n;

T[i,j] : 1 <= i < n and 1 <= j < n }

This notation follows the syntax of isl. The identifier list [n] at the
beginning introduces the structural parameters of the loop nest. Struc-
tural parameters are unknown but constant values that typically cor-
respond to the problem size. The actual polyhedron for statements S

and T is specified inside the braces. Constraints must be in Presburger
arithmetic.

2.1.3 Schedule

A complete specification of the loop nest requires not only the itera-
tion domain but also the order in which its elements, the statement
instances, are to be executed. This can be achieved via a schedule
that assigns each instance to a point in a (possibly multi-dimensional)
virtual time. The execution order can then be determined by sorting
the elements of the iteration domain according to the lexicographic
ordering of the associated points in time. The schedule of the loop
nest in Listing 2.1 is
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{ S[i,j] -> [0,i,j]; T[i,j] -> [1,i,j] }

which can alternatively be represented by the matrices

ΘS
(
i

j

)
=

0 0 0 0

1 0 0 0

0 1 0 0

 ·

i

j

n

1

 and ΘT
(
i

j

)
=

0 0 0 1

1 0 0 0

0 1 0 0

 ·

i

j

n

1


The fist element is the constant 0 for S and 1 for T. Dimensions con-
sisting of constant values only represent a textual order: all statement
instances of S are executed before those of T. This results in two
separate loop nests for S and T. The remaining two elements of both S

and T are the values of the loop iterators, which means that both state-
ments are surrounded by two loops. In this example, each statement
instance is mapped to a unique point in three-dimensional time, i. e.,
the schedule is bijective.

We call a schedule that is bijective complete, otherwise incomplete.
These terms refer to the uniqueness or ambiguity of a schedule. While
a complete schedule specifies exactly in which order the statement
instances are executed, a single incomplete schedule corresponds to
multiple different execution orderings in a sequential environment.
Even with parallelism in mind are these definitions sensible, since
the number of execution units is usually less than the number of
parallel statement instances by orders of magnitude and, thus, a
further sequential ordering is required to prevent ambiguity.

2.1.4 Data Dependences

In addition to the iteration domain and the initial schedule, memory
accesses are modeled. They are represented by a mapping from
a statement instance to a memory location or array element. For
example, the read and write accesses in the loop nest of Listing 2.1 are
represented as follows:

reads: {

S[i,j] -> B[i,j]; S[i,j] -> B[i-1,j]; S[i,j] -> B[i,j-1];

T[i,j] -> A[i,j]; T[i,j] -> A[i-1,j]; T[i,j] -> A[i,j-1]

}

writes: { S[i,j] -> A[i,j]; T[i,j] -> B[i,j] }

If two statement instances access the same memory location and at
least one modifies its contents, there exists a data dependence between
both and the preservation of their order is a sufficient condition for a
schedule to be legal. The condition may not be necessary since it may
exclude some legal schedules as, e. g., in the case of five consecutive
statements all of which access the same memory location and the first,
third, and fifth modify its contents. The first two pairs of statements
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can be interchanged, however, the classic polyhedron model prevents
such a transformation. Similarly to the iteration domain, the depen-
dences can be represented as a finite set of polyhedra, given that the
memory accesses are affine expressions. If we look at the write ac-
cess in S and one of the read accesses, e. g., { T[i,j] -> A[i-1,j] },
subsequent iterations of the i-loop for the same value of j write to a
common memory location. This results in the following dependences:

[n] -> { S[i,j] -> T[i+1,j] : 1 <= i < n-1 and 1 <= j < n }

Dependences according to the other pairs of reads and writes are:

[n] -> { S[i,j] -> T[i,j] : 1 <= i < n and 1 <= j < n;

S[i,j] -> T[i-1,j] : 2 <= i < n and 1 <= j < n;

S[i,j] -> T[i,j-1] : 1 <= i < n and 2 <= j < n;

S[i,j] -> T[i,j+1] : 1 <= i < n and 1 <= j < n-1 }

The constraints behind the colon specify the existence of the depen-
dences, i. e., these include only dependences for which both the source
and the target are actually executed.

The data dependences enter into constraints for a legal schedule [27,
28, 73]. For each data dependence instance, i. e., each instance of
a dependence polyhedron, from ~xS to ~xT , a legal schedule Θ must
ensure a strict temporal order, i. e., an integer c between 1 and the
dimensionality of the schedule such that

(∀ i < c : ΘSi (~xS) = ΘTi (~xT ) ∧ ΘSc(~xS) < Θ
T
c (~xT ))

Dimension c is said to strongly satisfy and, therefore, carry this de-
pendence. If c corresponds to a loop in the target loop nest, the
dependence is loop-carried, otherwise it is text-carried. For dimensions
higher than c, the dependence is irrelevant.

2.1.5 Optimization

All in all, the optimization of a loop consists of the following steps:

(i) extract a polyhedral representation

(ii) compute the data dependences

(iii) find an optimal schedule

(iv) generate a target loop nest

There are libraries for extracting a polyhedral representation from a
C-like source code, such as Clan [6] or pet [93]. But, if the optimization
should be integrated into a compiler or code generator, an extractor
based on an internal syntax tree could be more efficient. For the three
remaining steps, isl provides suitable implementations of state-of-the-
art algorithms.
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Listing 2.2: Optimized loop nest.

#define S(i,j) A[i][j] = B[i][j] + 0.2*(B[i-1][j]+B[i][j-1])

#define T(i,j) B[i][j] = A[i][j] + 0.2*(A[i-1][j]+A[i][j-1])

for (int j = 1; j < n; j++)

S(1, j); // unrolled iteration i=1

for (int i = 2; i < n; i++) {

S(i, 1); // unrolled iteration j=1

for (int j = 2; j < n; j++) {

S(i, j);

T(i-1, j-1);

}

T(i-1, n-1); // unrolled iteration j=n

}

for (int j = 2; j <= n; j++)

T(n-1, j-1); // unrolled iteration i=n

The most interesting step is the third: the selection of an opti-
mal schedule. The existing scheduling algorithms compute a suit-
able schedule by optimizing an affine objective function, such as the
Feautrier scheduler [27, 28] that optimizes for parallelism or the PLuTo
algorithm [8] that optimizes for both coarse-grain parallelism and data
locality. The isl provides an implementation of the Feautrier scheduler
and a variation of the PLuTo algorithm.

Concerning the example given in Listing 2.1, the Feautrier sched-
uler does not apply any transformation, since both loop nests can be
executed in parallel. In contrast, the PLuTo algorithm computes the
following schedule:

{ S[i,j] -> [i,j,0]; T[i,j] -> [i+1,j+1,1] }

The constant dimension is located innermost: both statements are
surrounded by common loops, as evident in Listing 2.2. This reduces
the amount of parallelism but increases the data locality which can
result in an overall better performance.

2.2 exastencils

Project ExaStencils [52] is part of the priority program SPP 1648 “Soft-
ware for Exascale Computing” (SPPEXA) funded by the German
Research Foundation. We are developing a multi-layered DSL called
ExaSlang (ExaStencils language) [81] for geometric multigrid solvers
and a corresponding code generator that is able to produce automati-
cally optimized target code [50] for a given execution platform. This
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Figure 2.1: ExaSlang with its four layers of abstraction and a cross-cutting
target platform description language.

section presents ExaSlang and a detailed overview of its most concrete
layer, as well as the corresponding code generator.

2.2.1 ExaSlang

The input for our code generator is code in our DSL ExaSlang. It
consists of four increasingly concrete layers of abstraction, ExaSlang 1
to 4, as shown in Figure 2.1. The most abstract layer is ExaSlang 1, in
which the user specifies the continuous partial differential equation
(PDE) to be solved, as well as related information, such as the compu-
tational domain. ExaSlang 2 allows a discretized formulation of the
problem, while in ExaSlang 3 the multigrid method can be specified.
The most concrete layer, ExaSlang 4, facilitates a complete specifica-
tion of the final solver and further implementation details such as the
parallelization, the communication pattern, and the data layout. A
target platform description language orthogonal to ExaSlang 1 to 4,
called ExaSlang Platform Description [79], is available, too.

All optimizations we discuss are applied either to ExaSlang 4 code
or to a still more concrete internal representation of the code generator.
To be able to follow requires more details on ExaSlang 4.

ExaSlang 4 is the most concrete form of ExaSlang, but it still con-
tains language features that are abstractions of the multigrid domain.
From ExaSlang 4 code, the target code is generated—normally in C++
plus MPI/OpenMP/CUDA or similar languages. Listing 2.3 shows
ExaSlang 4 code for an RBGS smoother. Solution and RHS are repre-
sentations of discretized variables, which are called fields. Similarly,
Laplace is a representation of a discretized operator, such as a stencil
or a stencil field.

Multiple copies of a field can be defined and used via Slots. This is
useful, e. g., for the implementation of a Jacobi iteration, which needs
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Listing 2.3: ExaSlang 4 code for a RBGS smoother.

Function Smoother@(all but coarsest) {

color with {

(i0+i1+i2) % 2,

loop over Solution {

Solution = Solution +

1.0 / diag(Laplace) * (RHS - Laplace * Solution)

}

}

}

different memory locations for the input and output. Their usage
is similar to C arrays but with three additional keywords: active,
previous, and next. In conjunction with an advance field statement,
these simplify the handling of different slots. For example, let’s assume
the active field contains the most up-to-date data which is the input
for a Jacobi stencil. Then, the newly computed values are written to
the next field and a call to advance updates active, previous, and
next accordingly.

ExaSlang 4 allows most objects to be available at several levels of
the multigrid hierarchy. Such level specifications and references are
tied via the @ operator to the objects to which they belong: function
Smoother is available at all levels but the coarsest. The fields Solution
and RHS, as well as the stencil Laplace in the function’s body, are also
level-specific. If, as here, no level is specified explicitly, the identifiers
reference the objects at the level at which the function is being applied.
This can be made explicit by adding the optional label @current. Other
than current, the keywords coarser and finer reference objects at
the next coarser or finer level and the addition or subtraction of a
constant offset, such as current-2, is also possible. Additionally, there
are coarsest and finest.

A color with block starts with a non-empty sequence of modulo
operations. Their numerators are expressions that may contain field
iterators (i0, i1, . . . ) while their divisors must be natural numbers.
These expressions specify a (possibly multi-dimensional) coloring that
is applied to the loop over statements. In general, the loop over

construct specifies a full iteration over a (multi-dimensional) field.
However, the statements inside the color with block are executed
once for each color and, hence, the loop over statements are restricted
to the iterations across the current color. In the example, the body of
the loop is executed first for all steps for which the sum of the loop
iterators i0, i1, and i2 is even. In a second sweep, the remaining, odd
steps are executed.
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2.2.2 ExaStencils Code Generator

The ExaStencils code generator is based on the code generation frame-
work Athariac [80], which has been developed as part of project Exa-
Stencils. It is implemented in the programming language Scala [67],
which is both a functional and imperative, object-oriented language
running on the Java virtual machine. Athariac provides data struc-
tures and skeletons to support the development of code generation
and transformation techniques.

Data Structures

The domain-specific code provided to the code generator is internally
represented by an abstract syntax tree (AST). Each ExaSlang layer has
its own node types, which are subclasses of a common Node class.
This common superclass allows the framework to iterate over the
whole AST and also provides a way to attach additional information
to any node via an annotation mechanism. Such annotations are
useful when some information specific to a part of the AST should
be preserved for a later transformation or optimization. In addition
to the four ExaSlang layers, we already mentioned the more concrete
intermediate representation (IR), which is similar to C and is available
internally. Most optimizations are applied to IR code shortly before it
is pretty-printed to C++. It contains both abstract nodes representing
ExaSlang 4 features, such as a specific node for a multi-dimensional
loop over statement, but also nodes more closely related to C and
C++, like one for a for loop.

Transformations

The main workhorses of the Athariac framework and the ExaStencils
code generator are transformations. They are used for term rewriting
either to generate new computations, or to optimize existing ones by
replacing them with more efficient versions. Transformations take ad-
vantage of Scala’s principle of deep pattern matching that enables the
convenient search and modification of an arbitrarily large subtree as
illustrated in Listing 2.4. A new transformation takes a short descrip-
tion and a PartialFunction that performs the desired modification.
The description is mainly used for debugging, since it is written to
the generation log. As presented, Scala provides a special syntax for
a PartialFunction. Between the keyword case and an arrow (=>) an
arbitrary pattern can be specified, as well as an optional condition.
In the example, the patterns are an IR_Subtraction node containing
either two IR_FloatConstants or two IR_IntegerConstants. If any
matches, a constant with the desired value is returned, which re-
places the original subtraction. The search for and replacement of any
matched subtree in the complete AST is performed by the Athariac
framework. Optional flags provided at the creation of a transformation
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Listing 2.4: Example of a simple transformation in the ExaStencils code
generator.

new Transformation("evaluate constant subtraction", {

case IR_Subtraction(IR_FloatConstant(l),

IR_FloatConstant(r)) =>

IR_FloatConstant(l-r)

case IR_Subtraction(IR_IntegerConstant(l),

IR_IntegerConstant(r)) =>

IR_IntegerConstant(l-r)

})

specify whether it should be restricted to a given subtree or applied
recursively, i. e., whether the result of the transformation should be
searched for matching parts, too.

Collectors

Other objects that extract and process information when traversing
the AST are collectors. In contrast to transformations, these are not
intended to modify the AST. Therefore, an arbitrary number of col-
lectors can be registered to be executed in conjunction with a single
transformation. A collector cannot be run in isolation, but Scala pro-
vides a partial function with an empty domain that can be used in
a dummy transformation. When implementing a collector, one may
provide code to be executed when a node is entered and also when it
is exited in a depth-first traversal. This means that the enter(Node)

method is called for a specific node before its subtree is traversed
and the corresponding leave(Node) is executed after its children have
been accessed. This allows the creation of, e. g., an ancestor stack,
which contains all nodes of the path from the current one up to the
root.

Strategies

Transformations gain their power from being composed to strategies.
On the one hand, the simplest strategy is the DefaultStrategy, which
unconditionally applies a sequence of transformations in a fixed or-
der. It is easy to use and sufficient if only simple replacements are
necessary. On the other hand, the more flexible CustomStrategy does
not impose any fixed pattern on how transformations are applied. In
fact, a CustomStrategy is an abstract class that provides an API to its
derivatives for the direct handling of transformations and collectors.
Subclasses are supposed to provide an implementation of a generic
apply() method, which orchestrates all necessary transformations.
This way, each strategy naturally encapsulates a single task.





3 O P T I M I Z AT I O N S

The performance of a naïvely generated application in the domain
of stencil codes is far from optimal. Even though the code structure
of the generated application is fairly simple, the target production
compilers are not fully able to optimize the code by themselves. Thus,
several standard and advanced techniques have been implemented in
the ExaStencils code generator to reduce the run time of the emitted
application. A detailed description of the optimizations and their
implementation is presented in this chapter. Even though some of
these optimizations are also integrated in production compilers, it
is not always possible to select the best compiler. One prominent
example is the automatic vectorization performed by the Intel C/C++
compiler. While it is clearly superior compared to the vectorizing
capabilities of the GNU compiler, the Intel compiler is not always
available, e. g., due to architectural or license limitations. This is
why we chose to implement fairly standard techniques in our code
generator, too.

This chapter is organized as follows. A function inlining, arithmetic
normalizations, and address precalculation—three rather supplemen-
tary optimizations—are described in Sections 3.1 to 3.3. Techniques
to eliminate redundancies both in a sequence of statements and be-
tween subsequent loop iterations are detailed in Section 3.4. These
optimizations heavily rely on the first two techniques, the function
inlining and the arithmetic normalizations. Section 3.5 presents the
vectorization capabilities integrated in the ExaStencils code generator.
Standard polyhedral techniques and a polyhedral search space explo-
ration to increase data locality are illustrated in Sections 3.6 and 3.7,
while Section 3.8 describes very versatile data layout transformations
in detail.

3.1 function inlining

One of the basic optimizations implemented is a function inlining. It
replaces a call to a small function by the computations specified in
the function body. For frequently invoked functions, an inlining can
eliminate the function call overhead and, thus, improve performance.
An inlining may also be beneficial for other optimizations for which
function invocations are impenetrable barriers. For example, arith-
metic simplifications cannot be applied across a function boundary.
Additionally, the user can be encouraged to write small helper func-
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tions wherever appropriate to achieve a modular and maintainable
DSL code. The same holds for the code generation phases of our
generator.

Most production compilers are capable of inlining if both caller and
callee reside in the same compile module, i. e., source file. However,
our code generator creates a separate file for each generated func-
tion, which effectively hampers a target compiler’s inlining capability
except when link-time optimizations are available and enabled.

The inlining strategy consists of three phases: a code analysis, the
selection of functions to be inlined, and the actual inlining. The
analysis is conducted once, while the selection of a function and its
immediate inlining are repeated until all inline candidates have been
processed.

Code Analysis

Initially, an analysis of the whole abstract syntax tree (AST) is per-
formed by a specialized collector. It creates a call graph and gathers a
list of top-level variable declarations per function. Since our inlining
strategy merges the scopes of the callee and the caller, these variables
must be renamed if a name conflict occurs. Declarations in a nested
scope must not be tracked, since such a name conflict results in a
variable shadowing, which is not considered an error in C/C++. The
analysis collector also creates a set of candidate functions to be inlined
and removes those with more than one return path. This limitation
simplifies the function inlining strategy: in case of multiple return
paths, one must not only introduce a new temporary variable to store
the originally returned value, but a goto may also be required to
reconstruct the original control flow.

Function Selection

The set of candidate functions is refined further based on the function
size, which is measured heuristically by the number of statement
nodes in its body. The default threshold is 10, i. e., only functions that
contain at most 10 statement nodes are considered for inlining. This
threshold can be modified by the user if a more aggressive inlining is
desired or if it should be disabled altogether. A very large value, for
example, results in an inlining of almost an entire multigrid cycle into
a single method. Next, functions that do not contain any call to an
inline candidate (including the callee itself) are selected and inlined.
These can be determined via the call graph, which is, in turn, updated
after every step.

This order of events has several benefits. First, the only necessary
modification to the call graph is to remove edges, since an inlined
function does not have any (relevant) outgoing edges that must be
copied. Second, it minimizes the number of inlining steps. Third, it
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Figure 3.1: ASTs for semantically equivalent expressions.

guarantees termination even if there is an indirect recursion consisting
solely of inline candidates: each one contains at least one call and,
thus, none is inlined.

Function Inlining

In the third phase, the actual inlining, the following is performed
once for every call expression. The function body of the callee is
duplicated and variables whose names are already assigned in the
callers scope are renamed. For each function argument, a declaration
is generated and prepended to the duplicated body. Their variables
are initialized with the expressions in the function call arguments. To
complete the preparation, a potential return statement is removed and
the statements are inserted directly before the one that contains the
call expression. The function call itself is eventually replaced by the
return expression, if available; otherwise it is removed completely. An
additional scope for the former method body is explicitly not created
to keep the resulting code simple and to support later optimizations.

3.2 arithmetic normalizations

Very versatile optimizations are arithmetic normalizations. They can
be useful either to simplify complex computations or to improve other
optimizations, e. g., to allow a redundancy elimination to detect larger
redundancies. Let us take a closer look at the latter case. Since all
transformations of the ExaStencils code generator are performed on
an AST, the detection of redundant computations can be complex, as
indicated by the ASTs in Figure 3.1 for the following two assignments:

x = 2 + 2*i + 2*j;

y = 2*(i + j + 1);

In this example, the expressions for x and y are semantically equiva-
lent, but the corresponding ASTs are completely different. Even if the
multiplication by 2 is factored out of the computation in the first line,
the ASTs do not match because of the different order of the operands
in the summation.
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3.2.1 Commutativity and Associativity Law

For a binary addition, it is not sufficient to simply permute the chil-
dren of each node, which exploits the commutativity law, but a more
advanced restructuring analogously to the associativity law is re-
quired, too. To deal with this, the code generator has been equipped
with a more general summation node with an arbitrary number of
summands, of which a binary addition is a special case. A transfor-
mation to merge several nested additions into a single summation
and to sort the summands (according to an arbitrary total ordering)
is now straight-forward. The same holds for multiplications, while
subtraction and division nodes must be handled with care and remain
binary, since they are neither commutative nor associative. However,
a subtraction can be transformed to a combination of an addition and
a negation, which allows further normalizations of nested operations.
Note that one must take care when dealing with matrices and vectors,
as the commutativity of the multiplication only holds for scalar values.

3.2.2 Distributivity Law

A normalization according to the distributivity law is a bit more
complex. The heuristics implemented focuses mainly on affine com-
putations, which is sufficient for the computationally intense parts of
the generated stencil codes.

Affine Expressions

In a first step, the AST of the input expression is analyzed bottom-up.
The traversal of the expression’s syntax tree proceeds explicitly via
a recursive function that matches all expression nodes. Since every
node that belongs to the expression has to be processed individually, a
direct implementation is easier than a version that uses the generator’s
traversal capabilities. The latter are designed to ease the detection
and manipulation of few specific nodes rather than processing them
all. This analysis makes use of a special representation of a given
affine expression, namely a key-value mapping: {k1 : v1, ..., kn : vn}

represents the sum expression
∑n
i=1 vi · ki. The keys ki are memory

accesses and the associated constant values vi their coefficients. For
each node visited, the mapping is generated either directly in case of
a constant or a memory access, or by merging the mappings of their
children in an appropriate way. Such a merging is straight-forward if
only affine expressions are considered.

For example, the extraction for the expression 2*(2*i+j)-(k+j+3*k)

is illustrated in Figure 3.2. Each node in the presented AST is anno-
tated with the variable-constant mapping that represents the corre-
sponding subtree. The multiplication 2*i in the lower left requires the
mappings {1 : 2} and {i : 1} to be merged. Since only a single factor
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Figure 3.2: Bottom-up extraction of a sum mapping for the expression
2*(2*i+j)-(k+j+3*k).

contains variables, the result is its mapping in which all coefficients
are scaled by the values of the constant mapping: {i : 2}. Adding
this to j, whose representation is {j : 1}, creates a new mapping that
contains all elements of both predecessors. If the same variable is
present in multiple mappings, the respective coefficients are added.
Subtractions are handled analogously with the coefficients of the right
mapping being negated first. A division by a constant is treated as a
multiplication with the denominator’s inverse. The final mapping for
the whole representation is the one at the root node: {i : 4, j : 1, k : −4}.

AST Recreation

Such a mapping is already a normalized representation of an affine
expression, so the only step remaining is the recreation of an AST.
In general, one could simply generate one multiplication node per
map entry and an addition to combine them. This results in the
suboptimal expression 4*i + 1*j + (-4)*k for the previous example.
A better approach is to collect all variables with the same absolute
coefficients and create only a single multiplication for such a group.
This is incorporated by the usage of an inverse mapping, namely a
mapping from the coefficient to a list of the corresponding variables.
Further, the two variable lists for a positive coefficient and its negative
counterpart can be combined via a subtraction before one common
multiplication is generated. If one also refrains from generating a
multiplication with 1 (or 0), the normalization and simplification of
the upper example results in 4*(i-k) + j.

Non-Affine Expressions

This technique becomes more complicated if non-affine expressions
appear. The problem arises when two or more mappings should
be merged according to a multiplication node and there are two or
more non-constant mappings m1...mn. As a remedy, the factors of
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such a multiplication are simplified in isolation and the resulting
multiplication itself is treated like a normal variable access.

To start with, the coefficients of each mapping mi are scaled down
by their greatest common divisor di and an AST ti is created. The new
mapping for the non-affine expression then contains a single entry. Its
key is a new multiplication node whose factors are the normalized
expressions t1...tn. The coefficient for the multiplication is the product
Πni=1di ·Πmi=1ci, with c1...cm being the values of the constant factors in
the original multiplication. Let us take a closer look at the expression
(3*i+6*j) * (k+k) * 5. The mapping for the two non-constant factors
are {i : 3, j : 6} and {k : 2}. The greatest common divisors of the
coefficients for both mappings, namely 3 and 2, are factored out
and the new multiplication node is computed: (i+2*j)*k. Thus, the
mapping that represents the original multiplication is {(i+2*j)*k : 30}.
Note that we do not expand the non-affine multiplication since this
may have a negative impact on the performance of the generated code.

There are other problematic computations, too, such as division
or modulo computations with non-constant denominators. However,
these did not appear in performance-critical parts and a special treat-
ment has not been implemented yet.

Further Optimizations

The extraction process of a sum mapping provides several opportu-
nities for different optimizations. In case of a division by a constant,
a partial evaluation may be possible. For example, the floating-point
computation (2*i+j)/2 can be simplified to i + 0.5*j to get rid of
the division. If the input is part of an integer computation, the sim-
plified version i + j/2 is only allowed if the result of the division is
rounded towards negative infinity. A normal integer division in the
generated C/C++ code truncates the result, which means that the
rounding direction differs for positive and negative values. Therefore,
the simplified version is only used if the code generator can prove
that the sign of the numerator will not change. Such an optimiza-
tion is mainly useful to simplify the memory address computation
inside a loop nest. To render the required proof possible, under- and
overapproximations of the lower, respectively upper loop bounds are
computed in preparation.

Other optimizations are an elimination of duplicate expressions in a
minimum or maximum computation, or an expansion of a power com-
putation with a small, natural exponent. These are straight-forward
and will not be discussed in detail.
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3.3 address precalculation

A fairly standard technique is the precalculation of memory ad-
dresses in nested loops [2]. Since the virtual address space is orga-
nized one-dimensionally and data structures usually represent higher-
dimensional fields, a linearization of multi-dimensional accesses is
necessary. Our code generator handles multi-dimensional array ac-
cesses as long as it is beneficial for the implemented optimizations,
such as polyhedral techniques (Section 3.6) or data layout transforma-
tions (Section 3.8). But all accesses are eventually linearized, which
reveals redundant computations and justifies this optimization. For
example, a linearization of the access a[z][y][x] in an array with an
extent of 512 elements per dimension yields a[262144*z + 512*y + x].
If x is the iterator of the innermost loop and neither y nor z are modi-
fied in the innermost loop body, the subexpression 262144*z + 512*y

need not be computed over and over again. An evaluation once prior
to the x-loop is sufficient. Additionally, multiple accesses of neighbor-
ing elements of the same field share the same subexpression and can
be optimized in conjunction. Production compilers are in theory also
able to eliminate some of these redundancies. However, in conjunction
with other transformations, such as a vectorization, the generated code
may become too complex and the redundancies remain. Consequently,
we implemented such an optimization directly to ensure it is always
applied.

Collect and Analyze Accesses

The main task of this strategy is to identify loop-independent subex-
pressions of the array index computations. Such an analysis is per-
formed by a specialized collector. It searches for suitable loops and
collects all array accesses as well as variables that are modified or de-
clared in the loop body or header. The latter must stay inside the loop
and only subexpressions that do not contain any of these variables
can be moved outside. After a loop has been traversed entirely and
all array accesses have been collected, their index computations are
analyzed. For each one, a sum mapping, as described in Section 3.2,
is derived. Its summands are partitioned into those that can be pre-
computed and those that must stay inside the loop. Even though
a constant summand can be added to the former group, we refrain
from doing so. The reason is illustrated by the following example. A
simple stencil computation accesses the center element and its direct
neighbors, as depicted in Listing 3.1. Applying the described parti-
tioning, the summands that should be precomputed are identical for
all accesses, namely {z : 262 144, y : 512}, which results in a single new
base pointer for all accesses, as shown in Listing 3.2. This would not
be the case if the constant summand were part of the new pointer,
since it differs for all accesses.
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Listing 3.1: Stencil code after array access linearization.

for (int z = 1; z < 511; z++)

for (int y = 1; y < 511; y++)

for (int x = 1; x < 511; x++)

a[262144*z+512*y+x] +=

.2*(a[262144*(z+1)+512*y+x] + a[262144*(z-1)+512*y+x]

+ a[262144*z+512*(y+1)+x] + a[262144*z+512*(y-1)+x]

+ a[262144*z+512*y+(x+1)] + a[262144*z+512*y+(x-1)]);

Integrate Changes

A separate transformation is required to incorporate the changes, be-
cause all variables written in the loop body must be collected before
the redundant subexpressions can be determined. However, the pre-
ceding collector already prepares both new declarations and array
accesses. The only part remaining is to prepend these declarations to
the corresponding loop and replace the array accesses.

3.4 redundancy elimination

Eliminating redundant computations is a very obvious way to improve
performance. There are several different situations in which redundant
computations may appear. One has been illustrated in the previous
section, namely a precalculation of memory address computations.
The general redundancy elimination described in this section focuses
on the actual computations of the generated kernels and addresses
redundancies both inside a single loop iteration and between loop
iterations. The latter is especially useful in the context of finite volume
discretizations.

A general common subexpression elimination (CSE) [16] is fre-
quently implemented in production compilers [2]. The basic idea is
to remove repeated computations from expressions by reusing the
result of the first computation. It is easy to see that this optimization
can only be applied if none of the associated variables or memory
regions are modified between the repeated evaluations of subexpres-

Listing 3.2: Optimized version of Listing 3.1.

for (int z = 1; z < 511; z++)

for (int y = 1; y < 511; y++) {

double *a_p = &a[262144*z+512*y];

for (int x = 1; x < 511; x++)

a_p[x] += .2*(a_p[x+262144] + a_p[x+512]+ a_p[x+1]

+ a_p[x-262144] + a_p[x-512]+ a_p[x-1]);

}
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Listing 3.3: Example of a textual CSE.

(a) input code

x = 2*i / j + 2*i;

x = x * 2*i;

(b) optimized code

cs = 2*i;

x = cs / j + cs;

x = x * cs;

sions. The drawback is that CSE potentially increases the register
pressure since additional values must be preserved, which may lead to
register spilling. But, in this case, the assumption is that, for larger ex-
pressions, the newly introduced memory access operations are faster
than a recomputation of the expression.

3.4.1 Approaches to Common Subexpression Elimination

There are different approaches to the detection of common subexpres-
sions (CSs). Let us introduce them in turn.

Syntactic CSE

The classic CSE searches for textual redundancies, introduces a new
temporary variable that holds the value of the CS, and replaces each
occurrence by an access to the new variable. Listing 3.3(a) shows a sim-
ple code snippet that contains the CS 2 * i three times. Listing 3.3(b)
shows an optimized version.

However, since redundant expressions are searched in the text, some
optimization opportunities are missed. For example, there are two
pairs of CSs in Listing 3.4(a). The first, 2 * i, can be detected easily,
but the other, 5 + x respectively 5 + y, varies in the last variable name
and is therefore not detected, even though both variables have the
same value. One can overcome this limitation by a repeated copy
propagation and textual CSE until a fixed point is reached: first, a
CSE possibly introduces name aliases, which are resolved by a copy
propagation; second, since this may reveal new redundant expressions,
a CSE must be reapplied. A dedicated detection of both pairs of
subexpressions in this example requires a semantic equivalence test,
which is provided by, e. g., global value numbering (GVN).

Listing 3.4: Example of a semantic CSE based on GVN.

(a) input code

x = 2 * i;

y = 2 * i;

a = 5 + x;

b = 5 + y;

(b) optimized code

x = 2 * i;

y = x;

a = 5 + x;

b = a;



28 optimizations

Listing 3.5: Example in which CSE is able to remove a redundancy not
recognized by GVN.

(a) input code

if (i > 0) {

x = 2 * i;

y = x * x * x;

} else {

x = -(2 * i);

y = x * x * x;

}

w = x * x * x;

(b) optimized code

if (i > 0) {

x = 2 * i;

y = x * x * x;

} else {

x = -(2 * i);

y = x * x * x;

}

w = y;

Global Value Numbering

GVN [15, 17] is an analysis based on the static single-assignment form
of a program, which means that each variable is assigned exactly once.
The first step of a GVN is to assign a so-called value number to each
variable such that two variables have the same value number iff their
semantic equivalence can be proved. An optimal number mapping for
the example in Listing 3.4(a) would be [i → 1, x → 2, y → 2, a → 3,
b → 3]. According to this mapping, x and y, as well as a and b, are
equal, which leads to the optimized code of Listing 3.4(b).

There are cases in which GVN is not able to identify a redundant
computation that can be eliminated by a textual CSE. For example,
the CS x*x*x in Listing 3.5(a) can be detected easily by a syntactic
CSE, while the value numbers of x in both branches must be different,
since their values may differ in sign if i is less than or equal to 0. This
propagates to y and, thus, w cannot be statically identified with any of
both.

Loop-Carried Redundancies

Another opportunity for optimization arises from CSs between subse-
quent iterations of a surrounding loop as depicted in Listing 3.6. The
expression exp(0.5*i + 0.25) in iteration i-1 evaluates to the same
value as exp(0.5*i - 0.25) in the next iteration i:

exp(0.5*(i-1) + 0.25) ==

exp(0.5*i-0.5 + 0.25) ==

exp(0.5*i - 0.25)

Thus, the former can be reused. This incurs a higher detection effort,
since some arithmetic conversions and simplifications are necessary
due to the changing value of the loop iterator. Also, the optimization
shown in Listing 3.6 requires that function exp is free of side-effects,
so the analysis must be aware of this. One should further ensure that
the CSs in different loop iterations do not overlap, i. e., do not share a



3.4 redundancy elimination 29

Listing 3.6: Example of a loop-carried redundancy elimination.

(a) input code

for (int i=0; i<n; i++) {

A[i] = 4.2

+ exp(0.5*i - 0.25)

+ exp(0.5*i + 0.25);

}

(b) optimized code

lcs = exp(0.5*0 - 0.25);

for (int i=0; i<n; i++) {

tcs = exp(0.5*i + 0.25);

A[i] = 4.2 + lcs + tcs;

lcs = tcs;

}

part of the input code. For example, the redundant expression found
above could be extended to α = 4.2 + exp(0.5*i + 0.25) in iteration
i-1 and β = 4.2 + exp(0.5*i - 0.25) in iteration i. But, since the
summand 4.2 is now part of both expressions, the value of A[i] is
α + β - 4.2. The additional subtraction of the shared summand 4.2

increases the complexity of the optimized code unnecessarily while
reducing its benefit.

The idea of such a loop-carried CSE is not restricted to a single
encasing loop but, for multiple outer loops, a separate value for each
iteration of all inner loops must be remembered, which leads to a
significant increase in memory consumption. Another obstacle is that
the reuse of data from the previous iteration effectively sequentializes
a loop or, at least, requires a special treatment for a parallel execution.

3.4.2 Preliminary Transformations

The ExaStencils code generator supports two types of redundancy
elimination described in the previous subsection: a syntactic, AST-
based and a loop-carried version. In order to facilitate the removal
of as many and as large redundant computations as possible, a num-
ber of preliminary transformations are required. The redundancy
eliminations themselves and all preparations, except for a classic,
global inlining, are integrated in and orchestrated by a single strategy
that makes extensive use of Athariac’s capabilities to search, replace,
annotate, and inspect nodes via a large number of transformations.

Global Inlining

To start with, two special inlining transformations, one global and one
local, are executed. The former, which is introduced in Section 3.1,
is a self-contained optimization strategy and is executed prior to the
redundancy elimination by the code generator. It leads to a better
starting position, since multiple calls of arbitrary functions cannot be
merged in general. Inlining the body of pure functions simplifies the
redundancy detection. It is then only required to recognize and deal
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with calls to the standard C math library. All other function calls are
rejected, i. e., they are not considered as CSs.

Local Inlining

A subsequent local inlining removes constant local variables, i. e., vari-
ables that are assigned exactly once, namely in their definition. This
obviously introduces redundant computations, since every read of
such a variable is replaced by the same expression. But it allows arith-
metic optimizations and simplifications of the combined expressions,
and the CSE applied later can potentially also detect larger redundant
computations.

Arithmetic Normalizations

Arithmetic optimizations, which are detailed in Section 3.2, are the
last step of the preprocessing. They are a crucial part of a syntactic
redundancy elimination, as they also aim turn a semantic into a
syntactic equivalence.

3.4.3 Syntactic CSE

Although the loop-carried CSE described in the next subsection is
applied first, it is based in both concepts and techniques on the syntac-
tic redundancy elimination, which justifies addressing the latter first.
Section 3.4.1 introduced two different approaches to CSE, both with
their own advantages and disadvantages. A value numbering would
be the only transformation in the code generator that requires a static
single-assignment form of the code. Therefore, a syntactic, AST-based
redundancy detection has been implemented. In combination with the
two inlining steps performed beforehand, most of the restrictions of
this approach do not pose a hindrance. For example, both expressions
for a and b from Listing 3.4(a) read 5 + 2*i after x and y have been
inlined, which can now be optimized by any approach.

Detection

The detection follows the idea that a larger CS consists solely of smaller
CSs. Thus, it begins with a search of variable accesses, array accesses,
and constants in the input AST, which are the smallest redundant
expressions. Each instance found more than once is added to the
initial set of CSs along with its ancestor stack. Note that smaller
subexpressions, namely the array subscripts, are not analyzed here,
since they are subject to the more specialized address precalculation
introduced in Section 3.3, which is executed beforehand.

Starting with the initial list, larger CSs are detected inductively
as specified in Algorithm 3.1. Each iteration of the while loop tries
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algorithm 3.1: Find larger CSs based on an input set of smaller ones.
input: set of initial, small common subexpressions CSs
output: set of all common subexpressions

1 function Find_CSs(CSs):
2 newCSs← CSs

3 while newCSs 6= { } do
4 prevCSs← newCSs

5 newCSs← { }

6 foreach expr ∈ locations(prevCSs) do
7 parent← parent(expr)

8 if parent is sum or product then
9 foreach parent ′ ∈ powerset_children(parent) do

10 if children(parent ′) ⊆ CSs then
11 newCSs← newCSs ∪ {parent ′ }

12 else if children(parent) ⊆ CSs then
13 newCSs← newCSs ∪ {parent }

14 foreach cs ∈ newCSs do
15 if | locations(cs) | = 1 then
16 newCSs← newCSs \ { cs }

17 CSs← CSs ∪ newCSs
18 return CSs

to identify larger redundant expressions based on the results of the
previous iteration. Function locations takes one or more CSs and
returns a set of all locations in which these subexpressions occur. Thus,
the loop starting in line 6 iterates over all locations in which any of the
previously found CSs occur and tests whether the encasing expression
(retrieved in line 7) is a potential CS, too. Since the code generator
uses generalized sum and product nodes with an arbitrary number
of arguments, these have to be treated specially as in lines 8 to 11.
The function powerset_children is used to create new nodes with
all possible subsets of the children of a given node. These nodes are
also tested, since any combination of summands or factors can be
computed repeatedly. This test, as evident twice in lines 10 and 12,
simply evaluates whether all direct subexpressions, i. e., the children
in the AST, are previously detected CSs. In lines 14 to 16, those CSs
that occurred only once are removed again. Line 17 updates the set of
all detected CS, which is returned in line 18.

Elimination

Finally, after all CSs have been identified, declarations of a new vari-
able for each one can be inserted at the beginning of the given code
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block and the old expressions are replaced by accesses to these new
variables. Both tasks are straight-forward in the Athariac framework
and, thus, are not discussed further.

Analysis

An analysis of the detection process reveals that each node of the
input tree is added at most once to the list of potential CSs, namely
as the parent of its child with largest depth. Therefore, in each step,
the depth of the newly detected trees, which represent the new CSs,
increases by exactly 1, so the depth of the input AST is an upper
bound for the number of steps required.

After the first CS has been removed, one could either update the set
of the remaining ones carefully to choose how to continue, or simply
restart the whole analysis. Due to its simplicity and low performance
impact, the code generator currently restarts the detection phase from
scratch after each removed redundancy until either no new CS is
found, or the largest one becomes too small to be profitable.

3.4.4 Loop-Carried CSE

The ExaStencils code generator additionally supports a loop-carried
version of the CSE described in Section 3.4.3, which is executed first.
The basic idea is to detect and eliminate redundant expressions not
only in a text sequence of statements, but also between statement
instances of subsequent loop iterations, as described in Section 3.4.1.

Detection

Before the actual redundancy detection is started, each node of the
AST gets its own unique integer identifier assigned as a preparation
for a later overlap test.

For the detection of redundancies between neighboring loop itera-
tions, the body is duplicated and each occurrence of the loop iterator i
is replaced by the expression i - str(i), where str denotes the stride
of the given loop. The expressions in the modified body are then
simplified using the transformation described in Section 3.2. As a
result, the loop bodies of two subsequent iterations of the i-loop are
available. These two versions of the loop body then form the input for
the syntactic CS detection described in the previous subsection.

As explained in Section 3.4.1, only common subtrees that do not
overlap in the unprocessed source are sensible targets for an elim-
ination. This is equivalent to the uniqueness test for the integral
identifiers associated with each node among all occurrences of a CS.

From the remaining redundancies, one must select an appropriate
subset to be eliminated.
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Listing 3.7: Example in which eliminating a smaller CS results in a perfor-
mance improvement.

(a) input code

for (int i=0; i<n; ++i) {

A[i] = exp(0.5*i-0.25) + exp(0.5*i+0.25);

B[i] = exp(0.5*i-0.25) + 4.2;

C[i] = exp(0.5*i+0.25) + 4.2;

}

(b) eliminating the largest CS

lcs = exp(0.5*0-0.25) + 4.2;

for (int i=0; i<n; ++i) {

tcs = exp(0.5*i+0.25);

A[i] = exp(0.5*i-0.25) + tcs;

B[i] = lcs;

C[i] = tcs + 4.2;

lcs = tcs + 4.2;

}

(c) eliminating a smaller CS

lcs = exp(0.5*0-0.25);

for (int i=0; i<n; ++i) {

tcs = exp(0.5*i+0.25);

A[i] = lcs + tcs;

B[i] = lcs + 4.2;

C[i] = tcs + 4.2;

lcs = tcs;

}

Selection

The selection of subexpressions to be eliminated in this approach is
worth a closer look. Choosing the largest CS is not always sufficient.
Listing 3.7(a) shows a loop in which one could reuse data from the
previous loop iteration. The run time of this loop is clearly dominated
by the calls of exp. While the original code contains four calls in each
iteration, a syntactic CSE can save two of them. But this code can also
be optimized by a loop-carried CSE.

On the one hand, Listing 3.7(b) shows the resulting code if the
largest possible redundancy, namely exp(0.5*i-0.25) + 4.2 in itera-
tion i-1 and exp(0.5*i+0.25) + 4.2 in iteration i, is eliminated. How-
ever, it still contains two calls of exp, which can only be simplified
by adding another variable to carry even more data between loop
iterations. In this example, it would only require one additional
scalar value but the problem can also arise in situations with a higher
dimensionality, which could lead to a significantly higher memory
consumption.

On the other hand, starting directly with the smaller redundancy
exp(0.5*i-0.25) and exp(0.5*i+0.25) results in the code shown in
Listing 3.7(c), which gets along with only a single exp call. Therefore,
the code generator takes not only the size of a CS, but also the number
of its occurrences into account. The heuristics used eliminates all
redundancies larger than a fixed threshold. This leads to good results
in all test cases. A more advanced approach based on, e. g., the results
of a roofline analysis or auto-tuning would be possible, too.
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Elimination

The last phase—the elimination itself—proceeds as follows. A new
array to store the values computed in the previous loop iterations must
be introduced. Its extent depends on how many loops are inside the
one for which the loop-carried CSE is executed. E. g., for a three-fold
loop nest with iteration vector (i,j,k) ∈ {0, ..., 511}3 and a redun-
dancy between subsequent iterations of the i-loop, separate scalars for
each of the inner 512 · 512 iterations are required. Its initialization is
performed only in the first iteration of the i-loop using the redundant
expression itself. As a side-effect during the polyhedral techniques
applied later, this new condition may be removed via a partial un-
rolling performed in the AST recreation phase (see Section 3.6.2). The
CSs are eventually replaced by an access to the introduced array at
position [j,k]. What remains is an update of the array with a new
value in the current iteration. The expression specifying the value
can be generated from the CS by replacing each occurrence of i with
i + str(i). This also introduces a new textual redundancy, which is
eliminated by the subsequent syntactic CSE.

This approach is not limited to subsequent iterations; it can be easily
extended to any step size. In our domain of stencil computations,
however, this is usually not necessary.

3.5 vectorization

Almost all modern processor architectures include vector units. Promi-
nent examples are Intel x86’s SSE and AVX, BlueGene/Q’s QPX, or
ARM’s NEON. These support single-instruction multiple-data (SIMD)
parallelism with a vector size ranging from 128 bits (SSE) to 256 bits
(AVX/QPX) and even 512 bits (AVX-512). The latter is able to apply
an operation to 8 double-precision or 16 single-precision values in
parallel. It is easy to see that the processor’s peak performance can
be reached only if its vector units are charged to capacity, which is no
trivial task.

3.5.1 Automatic Vectorization

Most contemporary compilers contain automatic vectorizers, which
are meant to generate vectorized machine code. But the result is often
far from optimal. Therefore, we designed and integrated our own
vectorization strategy in the ExaStencils code generator. This prevents
an implicit dependence on a small set of compilers and also provides
more flexibility in how the main memory is accessed.
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Listing 3.8: Trading memory accesses with in-register operations for a vector
size of four elements.

(a) aligned and unaligned accesses

for (int x=a; x<b; x+=4) {

vL = load_unal(&in[x-1]);

vC = load_al(&in[x]);

vR = load_unal(&in[x+1]);

...

}

(b) aligned accesses only

vecC = load_al(&in[a-4]);

vecRa = load_al(&in[a]);

for (int x=a; x<b; x+=4) {

vLa = vC;

vC = vRa;

vRa = load_al(&in[x+4]);

vL = perm(vLa, vC);

vR = perm(vC, vRa);

...

}

Vector Load

There are basically three different options of loading data into a vector
register:

(i) The most flexible but also slowest option is to load each floating-
point value separately from memory and compose the vector
element by element. This should be avoided whenever possible.

(ii) The fastest load instructions are usually aligned vector loads.
A vector load instruction retrieves not only a single value but
a sequence of consecutive values. Alignment means that the
address of the memory location from which consecutive elements
are fetched is evenly divisible by the vector size.

(iii) The third option is an unaligned load, i. e., a vector load without
alignment restrictions. However, depending on the architecture,
unaligned loads could be either slower, or even not supported at
all, as is the case for IBM BlueGene/Q processors.

The same three options exist for store operations.

Potential of Aligned Loads

Current Intel processors support unaligned vector load and store oper-
ations without a performance penalty but, for some codes, a voluntary
restriction to aligned accesses can result in an overall smaller number
of loads from the memory hierarchy, as shown in Listing 3.8. The
left code contains unaligned load instructions to fetch three partially
overlapping vectors. The right version is semantically equivalent but
contains only aligned load operations, which require permuting the
elements of the vectors starting at positions x-4, x and x+4, respec-
tively. The advantage is that one can reuse the latter two vectors
in the subsequent loop iteration. This reduces the number of load
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instructions per iteration at the cost of additional instructions for the
permutation. However, the latter can operate on registers only, which
potentially improves the performance of bandwidth-bound codes. It
also requires more complex code restructuring to integrate the reuse
of vectors from the preceding loop iteration, which is usually not done
by production compilers.

Vector Intrinsics

To support an explicit vectorization, current compilers provide spe-
cial vector intrinsics and vector types. Syntactically, the intrinsics are
small functions to generate and deal with vector types. In contrast
to normal functions, they instruct the compiler to generate a few spe-
cific machine instructions instead of an explicit function call. These
instructions are also better integrated and optimized than inlined
functions, since the compiler is fully aware of their semantics. For
example, _mm256_add_pd tells the compiler to generate the correspond-
ing vaddpd instruction, which adds two vector registers point-wise,
without the need to embed assembler code in C/C++.

3.5.2 Vectorization Strategy

The vectorization strategy contains a single transformation that applies
the vectorization. It searches and potentially replaces loops with the
following properties:

• It must not be inside a device function, such as a CUDA function.
Vectorizing a device function is currently not supported.

• It must be flagged as a parallel loop.

• It must be the innermost loop of a nest.

• It must be a traditional numeric for-loop and its counter has to
be declared and modified only in the loop head.

The generator begins optimistically to vectorize such loops and back-
tracks if any not supported nodes or constructs appear. This strategy
operates on a copy of the loop’s AST, which is traversed explicitly, i. e.,
Athariac’s traversal routines are not used since they are designed to
operate only on a small set of nodes, while the vectorization has to re-
place or, at least, acknowledge every node. Note that the vectorization
generates ExaSlang IR vector instructions that are not tied to any target
architecture. They are converted to target-specific instructions in the
final C++ code generation phase. However, specific properties of the
target architecture are still taken into account, such as the availability
of unaligned memory accesses.

Algorithm 3.2 is the vectorization procedure. The first step is to
allocate a context object which handles and organizes the generated
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algorithm 3.2: Vectorize a loop nest.
input: copy of the loop nest loop to be vectorized
output: AST of vectorized loop nest

1 function vectorize_loop(loop):
2 ctx← generate_ctx(loop)

3 if loop performs reduction then
4 var← get_reduction_variable(loop)

5 varV ← get_vector_temporary(var)

6 idEl← get_reduction_identity_element(loop)

7 idElV ← broadcast_scalar(idEl)

8 ctx.pre_loop← declare(varV , idElV)
9 ctx.post_loop← assign(var, vector_reduction(varV))

10 if fields aligned then
11 ensure aligned write accesses
12 if avoid unaligned accesses then
13 ensure aligned read accesses

14 vstmts← [ ]
15 foreach stmt ∈ get_body(loop) do
16 vstmts← vstmts + vectorize_stmt(stmt, ctx)

17 new_stmts← [ ]
18 if fields aligned then
19 new_stmts← [ generate_prolog_loop(loop) ]

20 guard← generate_condition(ctx.get_empty_test())
21 guard.true_body← ctx.pre_loop

+ ctx.get_vectorized_loop(vstmts)
+ ctx.post_loop

22 new_stmts← new_stmts + guard

23 new_stmts← new_stmts + generate_epilog_loop(loop)

24 return new_stmts

nodes, such as initialization statements. Then, a special treatment
for reductions is incorporated in lines 3 to 9. A reduction is divided
into two phases. First, the original loop does not reduce to a scalar
but to a vector, i. e., it computes multiple partial results. Second,
the vector elements are reduced to a scalar after the execution of the
loop. The corresponding declaration and initialization of the vector
variable and the final reduction are generated and stored for later
use in the ctx object. Also, a mapping from the original reduction
variable to the new vector temporary is preserved as part of the
get_vector_temporary function. It ensures that every occurrence of
the former will be replaced with the latter during the vectorization.

The subsequent block (lines 10 to 13) is only executed if all fields
have been aligned. In this case, the generator aligns all write accesses
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Listing 3.9: Example loop to demonstrate different alignment situations.

for (int y = 0; y < 128; ++y)

for (int x = 0; x < 128; ++x)

a[128*y + x] = b[128*y + x + 1] + c[130*y + x];

by selection of a suitable starting value for the vectorized loop. A
potential prolog loop is later inserted in line 19. The generator can
also be instructed to avoid unaligned vector loads in general. In this
case, a non-aligned vector load must be replaced by two aligned loads
that contain all elements of the desired vector and an appropriate
permutation. To account for all supported vector architectures, the
permutation must be independent of any surrounding loop. Listing 3.9
presents a case in which this property does not hold for a vector
size of 4 elements. Aligning the write access to array a does not
require a prolog loop, since the index expression 128*y + x is already
a multiple of 4 for the initial values of both surrounding loops, namely
x = y = 0. The vector for b can then be generated by loading the vectors
starting at b[128*y + x] and b[128*y + x + 4] and selecting the last
three elements of the former and the first of the latter vector. This
permutation is independent of x and y. In contrast, the vector starting
at c[130*y + x] is aligned for even values of y and misaligned for odd
values. I. e., the permutation depends on the loop iterator and, thus,
the code generator refrains from vectorizing this loop. Line 13 is a test
of whether this property holds for all read accesses.

The actual vectorization of the loop body is specified in lines 14
to 16. Function vectorize_stmt performs an extensive matching to
deal with all occurring statement types, such as assignments, and
replaces all variable and array accesses, as well as operations. This also
includes calls to functions of the math library, given that vectorized
versions are available externally, i. e., as part of another library. If a
variable or array access is encountered for the first time, a new name
for the vector variable is generated. Additionally, a corresponding
declaration statement and an initialization via load instructions, or
a vector store statement is generated for read, respectively write
accesses. If an aligned load is not possible and an unaligned load is
not allowed, loads for the two adjacent aligned vectors that frame the
desired one and a suitable permutation are generated. Declarations
and permutations are inserted immediately before the statement to
be vectorized, while a store is placed behind it. For each subsequent
occurrence of the same variable or an array access with the same index
expression, the vector temporary is reused.

The list new_stmts, declared in line 17, is the final replacement for
the original loop. It starts potentially with a prolog loop, as explained
earlier. Statements that are executed before or after the vectorized
loop, such as the initialization of a vectorized reduction variable, must
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only be executed if the vectorized loop has at least a single iteration.
Therefore, these statements are governed by an according check in
lines 20 to 22. An epilog loop that executes all remaining iterations
(which no longer form a complete vector) is composed in line 23. The
generated statements in new_stmts are eventually returned to replace
the original loop.

3.5.3 Vector Load Optimizations

While the vectorization strategy itself does not generate obviously
redundant load instructions, a simple subsequent loop unrolling might
introduce some redundancies that should be dealt with. Also, there are
still some improvements envisionable: it may be possible to eliminate
load instructions by reusing vectors of the previous loop iteration, as
discussed in Section 3.5.1.

As a remedy, a specialized strategy to identify and remove such
unnecessary loads takes hold after the unrolling. It unifies syntactically
identical load instructions and searches for vector declarations that,
when executed in subsequent loop iterations, access the same memory
location. This can be tested as described in Section 3.4.4: the loop
iterator i in the address computation is replaced by the expression
i - str(i) (str denotes the stride of the given loop) and the result
is normalized with the techniques introduced in Section 3.2. If the
resulting expression is then syntactically equivalent to an unmodified
load, the latter is redundant and can be removed. In this case, a
declaration of a vector temporary is inserted before the loop. This new
temporary transports data between loop iterations, which reduces the
number of transfers from main memory.

3.5.4 Interaction with Loop-Carried CSE

Another specialization targets the loop-carried CSE introduced in
Section 3.4.4. One drawback of this technique is that it effectively
sequentializes the corresponding loop, since data from the previous
iteration is required.

On the one hand, employing multiple processor cores regardless of
a previous redundancy elimination is easy if each thread executes one
contiguous sequence of loop iterations. In this case, the initialization
must be adapted to be executed not only in the first iteration of the
loop but in the first one of each thread. Additionally, each thread
must have its private buffer to carry information between different
loop iterations.

On the other hand, vectorizing the innermost loop to load a single
processor core to capacity is more complex, since it incurs the parallel
computation of subsequent loop iterations. Excluding this loop from
the loop-carried CSE is also not an option, as it is the most profitable
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Figure 3.3: Reusing a value from the previous iteration in the scalar and
vectorized case. Arrows represent data copy operations. Blue
ones are across loop iterations.

one to be optimized: it requires only a single scalar to carry data
between iterations. However, the newly introduced data dependences
do not prevent the vectorization in general, but require a more careful
selection of the generated instructions for all three accesses to the new
temporary variable. First, the initialization of the temporary need
not be vectorized at all, as only the initial scalar has to be computed
separately. Second, vectorizing a statement, which loads the value
from the previous iteration, leads to two different situations, as shown
in Figure 3.3. For the first element of the vector, the required value is
the one of the previous iteration stored in the temporary (blue arrow)
while the values of all other elements are actually computed in the
current iteration and used twice. This requires the corresponding
elements of this iteration to be computed prior to the load operation
and also to generate suitable data shuffling instructions. Third, the
store of the newly computed value handed to the next iteration can
be restricted to the last element of the computed vector. However,
the code generator preserves the whole vector, since this may reduce
the number of shuffle instructions. In case of a prolog or epilog
loop, additional load and store instructions to save data between the
different loops are inserted as well.

3.6 classic polyhedral techniques

Stencil codes, as introduced in Section 1.1, usually have a very low
computational intensity: the number of operations to be executed is
low compared to the number of data elements involved. Therefore,
one of the first bottlenecks that limit performance is the memory
bandwidth, and optimizations that are able to reduce the bandwidth
requirements are crucial. For stencil codes, an optimization of the data
locality is promising. This means the computations are rearranged
such that input data is fetched only once from memory and reused
as long as it stays in the processor’s fast on-chip cache. Two groups
of tiling techniques exist that may increase locality, namely a classic
space tiling and a time tiling. The polyhedral model introduced in
Section 2.1 is well suited for both transformations and established
tools and techniques are available.
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Figure 3.4: Computation ordering for a space tiling. The dashed lines repre-
sent tiles that are processed one after the other.

This section provides basic information about different tiling tech-
niques and the integration of the polyhedron model in the ExaStencils
code generator. The subsequent section then describes a polyhedral
search space exploration to achieve a better result than with model-
based approaches.

3.6.1 Tiling

Tiling is a generic term that covers numerous different techniques rang-
ing from widely applicable to very specialized optimizations. There
are also several stencil-specific tiling techniques, such as diamond [4,
7] or hexagonal [35] tiling. But our code generator focuses on classic
techniques for now: an axis-aligned rectangular space tiling and a
time tiling.

Space Tiling

Due to the neighborhood relationship of stencil codes, the compu-
tations of neighboring elements in any dimension access partially
overlapping memory regions. This is not a problem for neighbors in
the inner dimension or loop, since previously loaded elements are still
in the processor’s on-chip cache and can be reused immediately. For
neighbors in outer loops, however, there are many other computations
inbetween, which also load the cache and may cause data to be evicted
before it can be reused. This leads to a repeated fetch of the same
elements from main memory and, thus, wastes a performance-critical
resource: memory bandwidth.

A remedy is a classic space tiling, also spacial blocking. It divides the
computations, or rather the iteration domain, into several tiles, which
are then processed one after the other. This reduces the number of
iterations between neighbors of an outer loop and, thus, the amount
of data that must fit into cache before a reuse occurs can be fine-tuned.

Figure 3.4 shows a tiled iteration domain for a two-dimensional loop
nest. The original code executes all iterations row-wise, while the new,
tiled iteration ordering is represented by the arrows. The green arrows
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Figure 3.5: Computation ordering for a time tiling with two time steps. The
field labeled intermediate represents the results of the first time
step, result those of the second.

correspond to the two inner loops in the target code that enumerate
all instances within the tiles, while the blue ones enumerate the tiles
themselves. The tile shape can be arbitrarily complex, but this may
result in a cluttered, and potentially inefficient, loop nest. Therefore,
we focus on rectangular, axis-aligned tile shapes. A transformation for
such a tiling has the form

{ [i,j,...] -> [floor(i/βi),floor(j/βj),..., i,j,...] }

where βi, βj, . . . are the constant, integral tile sizes. The actual loop
nest for the tiled code, including an appropriate boundary handling
in case the iterations cannot be distributed evenly among the tiles, is
then created by the polyhedral code generator. A brief discussion of
when such a tiling is allowed can be found in Section 3.7.1.

Time Tiling

A space tiling is able to minimize the bandwidth requirements for
a single, isolated stencil application, since all elements of the input
array (except few at the border of the tiles) are fetched only once from
main memory. But, if two or more stencil applications are executed in
sequence, a further optimization opportunity emerges: the results of
the first stencil application can be reused in the second application as
long as they reside in cache. In this case, not a single fetch operation is
issued for the input of the second stencil. This optimization is called
time tiling, or temporal blocking, since subsequent applications of the
same stencil can be viewed as different time steps [61, 96].

Figure 3.5 depicts a line-based version of this optimization. To
compute a new line of the intermediate grid, namely the bottom gray
line, the three lowest blue lines from the input grid are required. Two
of them have already been accessed in the previous iterations and may
still reside in cache. Only a single line from the input must be fetched
from memory. Then, along with the two previously computed gray
lines, the red line can be computed. If, in this example, three lines of
both the input and the intermediate grid fit in the processor’s cache,
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data from the latter grid must never be fetched from main memory.
Also, adding a space tiling on top lessens the cache space demands.

The ExaStencils code generator addresses multigrid methods. A
repeated application of stencil codes occurs in the pre- and post-
smoothing, as shown in Section 1.2. For example, a study by Ghysels
and Vanroose [32] revealed that, for standard Jacobi, 15 iterations in
the three-dimensional case and 10 iterations in the two-dimensional
case exhibit best performance. Their focus was on shared-memory
multicore systems. In case of a distributed memory using, e. g., MPI,
an additional overhead emerges for multiple time steps, caused by the
communication between nodes that compute neighboring regions of
the whole field. Thus, in the case of distributed memory, it pays to
keep the number of time steps even lower—typically not higher than
5. Thus, techniques that rely on hundreds or even thousands of steps
may not be applicable.

Time tiling an MPI parallel stencil code requires a special treatment.
To account for the distributed memory, the fields are blocked and the
blocks are distributed across all nodes. Since a stencil computation
accesses neighboring elements, an update of elements on the block
border requires data that reside on other nodes. Thus, to prevent
remote memory accesses during the stencil computations, additional
ghost layers are introduced that replicate data from the neighboring
blocks. However, these new layers have to be synchronized after every
time step, which impairs a time tiling. One solution to this problem
is to compute the new values of the ghost layers locally instead of
fetching them from other nodes. This trades some communication
steps with redundant computations. As the computation of a ghost
layer also accesses neighboring data, additional ghost layers for each
time step are necessary, which increase the memory consumption and
the communication volume. But it enables a time tiling.

ExaSlang 4 provides a special loop construct for time tiling to
modify the boundaries of nested loop over constructs accordingly:
a “repeat ν times with contraction [δ1, δ2, δ3]” requests ν time
steps and the three loops of each enclosed loop over are shortened
after each loop over execution since said loop has been extended
initially by twice the number of iterations given in the brackets. In
detail, for a Jacobi stencil in the i-th time step, the lower bound of
the j-th dimension of the nested loop over is increased by δj · (i− 1)
iterations, while the upper bound is reduced by the same value. For
colored smoothers, the loop boundaries have to be adapted not only
after every time step but also between different colors. The number ν
of time steps and the contraction values δj must be compile-time
constants since the loop is fully unrolled during the code expansion
by the generator.
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3.6.2 Implementation

The integration of the polyhedron model into the ExaStencils code
generator necessitates a special data structure to handle polyhedral
representations. It is introduced first and the optimization process
follows. The latter can be divided roughly into four phases. The
first phase covers the extraction of polyhedral representations for the
relevant loop nests. The second phase includes all kinds of simplifi-
cations and preparations of the extracted representations, while the
actual scheduling is the third phase. Finally, ASTs for the transformed
representations are created that replace the original subtrees.

We integrated the isl to represent and manipulate integer polyhedra.
Since the isl is a C-library and the code generator is written in Scala,
Java/Scala bindings of the isl are leveraged.

Representation

A polyhedral representation of a static control part (SCoP) (see Sec-
tion 2.1.1) contains at least:

• integer polyhedra for the iteration domain and the original sched-
ule of the loop nest, as introduced in Sections 2.1.2 and 2.1.3,

• a mapping from the identifiers in the polyhedral representation
to the unmodified, original subtrees for the statements.

The iteration domain specifies which statement instances a loop nest
contains, i. e., for which values of the loop iterators a statement must
be executed. The schedule associates every statement instance with
a point in time. What remains is the actual computation a statement
instance represents: the original subtrees for all statements have to be
stored, too. Other data structures, such as integer polyhedra for the
array access relations or the data dependences, are stored in the SCoP
representation, too.

Extraction

The extraction of polyhedral representations is implemented via a
specialized collector. It searches for nodes that represent a SCoP. In the
code generator’s current form, there is only a single node type that is of
interest here, namely IR_LoopOverDimensions. It is a special domain-
specific node that incorporates a full iteration over a multi-dimensional
field. Such a node is generated for an ExaSlang 4 loop over statement
(see Section 2.2.1). Therefore, for each IR_LoopOverDimensions node,
a separate representation is created.

The basic idea of the extraction process is to generate all representa-
tion objects in a single AST traversal. The extractor maintains a simple
state machine to track whether the traversed nodes are inside a SCoP
or even part of a statement in a SCoP. The initial state is the search for
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a SCoP. Such a state machine is easy to implement since a collector
traverses the AST depth-first and every node is visited twice: once
before its subtrees are processed and once immediately afterwards.
Thus, the first access of an IR_LoopOverDimensions node initializes
all data structures of the representation for the respective SCoP. At
this point, the representation does not contain any statement but the
loop boundaries are cached to support the creation of their iteration
domain once the traversal reaches a statement. Then, the children of
the loop node, i. e., the nodes inside the loop body are processed. A
visited statement node extends the domain and (original) schedule of
the representation and the original statements are retained. Variable
and array accesses contribute to the read and write access relations,
depending on where they are located in the encasing statements. If
the traversal reaches code structures not supported by the polyhedron
model, such as non-affine array accesses, the extractor discards all
data of current representation and switches back to the initial state:
the search for a new SCoP. Function calls are not supported in general,
too, but calls to unproblematic pure functions of the math library, such
as fabs or exp, are permitted. The extractor also provides methods
to register other generated functions as unproblematic. Branches in-
side the loop body are supported, given that the conditions are affine
expressions in the surrounding loop iterators or constants. However,
to accommodate some special cases, e. g., that of a very large number
of branches, the code generator coarsens the SCoP representation by
treating the whole loop body as a single statement. This reduces the
complexity of the extracted representation, which eases the optimiza-
tion step afterwards. It also prevents the generation of too cluttered
code, as conditions inside the loop body are prevented via a partial
unrolling wherever possible. Eventually, the representation is finalized
when the loop node itself is accessed the second time, i. e., after its
body has been processed completely.

Preparation

The preparation phase can be divided further into several individual
steps. The first one deals with local variable declarations inside a
SCoP. A declaration of a variable inside a loop means that information
can only be transferred between different statements in the same
loop iteration, not between different iterations. However, this cannot
be modeled satisfactorily. On the one hand, the declaration can be
replaced by an equivalent assignment and a new declaration is inserted
before the SCoP. This requires no special treatment when the variable
is modeled but, since the same memory location is written in every
iteration, the whole loop is effectively sequentialized, which prevents
several further optimizations. On the other hand, the variable can
be expanded to an array such that each iteration accesses a distinct,
unique memory location. This is the most flexible solution, since
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no unnecessary dependences are introduced. However, it increases
the memory consumption significantly and the newly created array
also competes for valuable cache space. Since both solutions come
with serious drawbacks, we try to bypass the whole problem by a
reduction of the granularity: all statements that access such a locally
declared variable, as well as all statements inbetween, are scheduled
alike, i. e., all of them are represented by one single statement and the
locally declared variable must not be modeled at all. This reduces the
scheduling flexibility but none of the other more serious drawbacks
emerge.

The second step addresses the fact that the extractor creates a sep-
arate representation for each IR_LoopOverDimensions, even if some
are adjacent in the same scope. These successive loops form a single
SCoP and the different representations can be merged easily, which
allows, e. g., a time tiling as introduced in Section 3.6.1. Since the ex-
tractor creates globally unique identifiers for the statements, a simple
union operation suffices to merge all contents except the (unoptimized)
schedule. The new schedule must then incorporate the fact that the
loop nests are executed one after the other. Thus, a new constant
dimension is added outermost to the individual schedules. It enumer-
ates the different loop nests, i. e., its value for statements of the i-th
loop nest is the constant i.

After everything has been merged and the domain, schedule and
memory accesses have been finalized, the data dependences have to
be computed. The code generator employs isl functionality for this
purpose.

The flow, i. e., read-after-write dependences may then govern a
polyhedral dead code elimination. However, this transformation may
result in more complicated program representations which, in turn,
may slow down or even preclude further optimizations. The gener-
ated code usually does not contain unnecessary computations, so this
transformation may only be advisable in rare occasions. Its idea is
to execute only those statement instances that are actually required
to compute the final result of the SCoP. Thus, to determine the set
of necessary statement instances, one can start with the (according
to the schedule) last write accesses LW of all relevant memory loca-
tions. When in doubt, all written memory locations are relevant (i. e.,
accessed after the SCoP) and their final update must be preserved.
The inverse flow dependences FD−1 specify a relation that maps a
statement instance to those statement instances, that compute its direct
input values. Then, the image of the set of the last write accesses LW
determined above under the reflexive transitive closure of this relation
(FD−1)∗ results in the desired statement iterations L = (FD−1)∗ [LW].
No other instance except those in L need be executed and the domain
can be limited accordingly.
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Scheduling

The most complex phase of a polyhedral optimization is the selection
of a suitable schedule that leads to a good or even optimal performance.
The classic, model-driven approaches optimize some (heuristic) ob-
jective functions, which may lead to good schedules. For example,
the scheduling algorithm proposed by Feautrier [27, 28] minimizes
the latency, i. e., the number of time steps, given that arbitrarily many
processing units are available. However, for modern processors, data
locality is frequently at least as important as parallelism. The PLuTo
algorithm [8] is based on this fact and optimizes for both coarse-grain
parallelism and data locality.

Feautrier’s algorithm and a variation of the PLuTo algorithm are
implemented in isl and, thus, are available in the ExaStencils code
generator. The latter is referred to as the isl scheduler. As can be seen
in Section 4.3.3, the results of of the isl scheduler are poor for stencil
codes and by far better schedules exist to implement a time tiling. This
is why we tweaked the isl scheduler heuristically by modifying its
input format. Besides the data dependences that must not be violated
by a schedule (the validity dependences), the isl scheduler accepts a
set of (proximity) dependences whose distance between source and
target is minimized by the algorithm to increase data locality. Both
sets need not be identical and we discovered that it is sometimes
better to pass a specially reduced set of dependences as proximity
dependences: for each source of multiple data dependences, only the
one with the lexicographic smallest target is kept. This leads to a
significantly better performance for some stencils—including a classic
Jacobi stencil—and does not deteriorate performance for any others.
Therefore, this heuristics is our default.

Alternatively, the user may explicitly provide schedules for some of
the SCoPs in the generated application. In this case, one must run the
code generator once using any of the above scheduling techniques. The
SCoPs in the generated code are preceded with a comment containing
an ID. This ID is required to instruct the code generator for which
SCoP a given schedule should be used.

Another possibility to a identify even better schedules is to search
the space of all legal transformations explicitly. Such a polyhedral
search space exploration has been implemented and is described in
Section 3.7. It can target either specific SCoPs via their IDs described
above for user-provided schedules, or all applicable ones when a
wildcard is provided.

AST Recreation

The final phase of a polyhedral optimization is to recreate syntax
trees for the transformed SCoP representations. There are algorithms
and tools for this purpose [5] and isl also provides functionality
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to create a C-like syntax tree. The code generator relies on isl to
create the ASTs and then transforms them to ExaSlang IR. These
eventually replace the original IR_LoopOverDimensions nodes. The
polyhedral representations are also tested for parallel dimensions and
the corresponding loops are marked parallel. This allows either a
vectorization, in case the innermost loop is parallel, or a subsequent
parallelization using OpenMP.

3.7 polyhedral search space exploration

As mentioned in the previous section, model-driven approaches do
not always lead to a bearable result when a time tiling is required.
Thus, we developed an exploration to evaluate a subset of all legal
schedules that has the potential to contain good variants.

To illustrate the basic concepts of a polyhedral search space explo-
ration, we start with an abstract algorithm for a naïve, exhaustive
exploration. We continue with a modified exploration, guided by a
more explicit representation of polyhedra and additionally powered
by a set of filters tailored to the domain of stencil codes.

Both algorithms are designed to generate complete, i. e., bijective
schedules only. Incomplete schedules have fewer dimensions and,
thus, their generation incurs less exploration effort. But the missing
(inner) dimensions still influence performance, even if all dependences
are carried by the existing (outer) dimensions. For example, the incom-
plete schedule { S[i,j,k] -> [j] } only specifies that the original
j-loop should be the outermost loop while no information on the i- or
k-loops is given. However, it is easy to see that their permutation—or
a more complex transformation like a skewing—may have a serious
effect on different properties, such as the memory access pattern or
whether the loop nest can be vectorized efficiently.

3.7.1 Search Space

One-Dimensional Schedule Space

The search space of all one-dimensional schedules can be viewed as
a multi-dimensional polyhedron of all possible coefficients for the
iterators, the structural parameters, and the constants. Consider the
following iteration domain:

[n,m] -> { S[i,j] : 0 <= i < n and 0 <= j < n;

T[i] : 0 <= i < m }

Each (affine) schedule for this iteration domain, whether legal or
not, has the following form, which is called the prototype schedule Θ0:



3.7 polyhedral search space exploration 49

[n,m] -> { S[i,j] -> [iS*i + jS*j + nS*n + mS*m + cS];

T[i] -> [iT*i + nT*n + mT*m + cT] }

The set of all possible affine transformations can then be written:

{ [iS,jS, iT, nS,mS, nT,mT, cS,cT] } = Z9

where iS, jS, and iT are the coefficients of the loop iterators for
statement S and T respectively, nS, mS, nT, and mT are the coefficients of
the structural parameters, and cS, cT are the constant parts. Following
this notation, the next two lines are two different representations of
the same schedule:

[1,1, -1, 2,0, 0,1, 3,-2]

[n,m] -> { S[i,j] -> [i+j+2n+3]; T[i] -> [-i+m-2] }

The former is a variant of the matrix representation presented in
Section 2.1.3.

A one-dimensional schedule with only zero coefficients for all itera-
tors of each statement is called constant. In the target code, it does not
become a loop but a textual sequence.

Legality Constraints

The entire space of Z9 also contains schedules that violate some data
dependences, i. e., not all elements are legal schedules. For each
dependence from ~xS to ~xT that is not carried, constraints of the search
space must be added to ensure that the inequality

ΘT0 (~xT ) −Θ
S
0(~xS) > 0 (3.1)

holds. To be exact, a single dependence in this definition is a single
pair of statement instances in the dependence polyhedron. However,
such a fine granularity is usually not manageable and a small set of
dependence polyhedra must be formed. These polyhedra are treated
atomically, i. e., a dependence polyhedron is said to be carried iff all
its dependence instances are carried. To create dependence polyhedra
with a sufficient granularity, we start with one polyhedron per pair of
statements and the following approach is used to split the polyhedra
iteratively: as long as a dependence polyhedron d contains multiple
instances with the same source iteration, we use isl’s lexmin method
to replace it with d1 = lexmin(d) and d2 = d \d1. The method lexmin

computes a relation that maps each element of the source to the single
lexicographic minimum of the target elements.

Some of the dependence polyhedra may contain holes, e. g., if only
every other statement instance is source of a dependence. Such a
dependence polyhedron cannot be handled correctly in subsequent
computations. A remedy is to compute the hull, which introduces
new dependences that may exclude some legal transformations.

The constraints to the search space can be computed by applying
an affine form of Farkas’ lemma to each dependence polyhedron and
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a Fourier-Motzkin elimination for the prototype schedule ΘX0 for state-
ment X [27, 83]. Among other libraries, isl provides an implementation
for this purpose. The basic idea of Farkas’ lemma is that, for any non-
empty polyhedron D represented by k inequalities ~ak ·~x+ bk > 0, an
affine function is non-negative everywhere in D iff it has the form

λ0 +
∑
k

λk(~ak ·~x+ bk) for λi > 0

Applied to the dependence polyhedra, this provides an alternative
representation of the left-hand side of equation (3.1):

ΘT0 (~xT ) −Θ
S
0(~xS) = λ0 +

∑
k

λk(~ak ·~x+ bk) for λi > 0

With this representation, the coefficients of the iteration variables and
the structural parameters, as well as the constants, can be gathered and
equated. Projecting out the Farkas multipliers λi via a Fourier-Motzkin
elimination results in the desired constraints for legal schedules.

Multi-Dimensional Schedules

A multi-dimensional schedule can be composed iteratively from sev-
eral one-dimensional schedules, which are referred to as the dimen-
sions of a schedule in contrast to the dimensions of the search space.
There are two properties that have to be taken into account for multi-
dimensional schedules. First, the satisfaction constraints for depen-
dences carried by an outer schedule dimension are not necessary for
inner dimensions and can be removed to enlarge the search space.
Second, the schedule dimensions associated with a multi-dimensional
schedule should be linearly independent: a dimension that is linearly
dependent on outer ones will assign the same time value to statement
instances that also receive the same time value in outer dimensions
and, thus, can be ignored. Its generation can be prevented by adding
appropriate constraints to the search space [8, 54]. The linear indepen-
dence can be enforced either statement-wise, or for the whole schedule
dimension, i. e., the whole vector. While the former discards some
legal schedules, such a restriction may be beneficial in some cases,
e. g., if a spacial tiling is desirable.

Note that equation (3.1) captures not only strong, but also weak
satisfaction of the dependences. But, since we compute a complete,
i. e., bijective schedule, the property ~xS 6= ~xT ⇒ ΘS(~xS) 6= ΘT (~xT )

holds. This implies that there is a c such that ΘSc(~xS) 6= ΘTc (~xT ) for
each dependence from ~xS to ~xT . That is, the dependence is strongly
satisfied at some level.

Tiling

A mandatory optimization of higher-dimensional loop nests is space
tiling, as presented in Section 3.6.1: the transformed iteration space
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algorithm 3.3: An abstract, exhaustive polyhedral search space ex-
ploration.
input: set of not yet carried dependences D and an incomplete

schedule s
output: set of legal, complete schedules

1 function exploration(D, s):
2 searchSpace← search_space(D)

3 searchSpace← searchSpace ∩ linear_independent(s)

4 if searchSpace = { } then
5 return {s}

6 Ss← { }

7 foreach sd ∈ searchSpace do
8 s ′ ← add_schedule_dimension(s, sd)
9 D ′ ← D r carried(sd, D)

10 Ss← Ss ∪ exploration(D ′, s ′)

11 return Ss

is partitioned into multi-dimensional chunks that are executed atomi-
cally in sequence. Such a tiling can improve cache efficiency and is
only allowed if there is an affine schedule for the tiles [43], which
is the case for a sequence of dimensions if they weakly satisfy all
data dependences in the considered fused loop nest [8, 34]. This can
be achieved easily by selecting several linearly independent sched-
ule dimensions from the same search space without removing the
constraints for carried dependences between them.

3.7.2 Exhaustive Exploration

Based on the search space introduced in the previous subsection, Algo-
rithm 3.3 is an abstract description of a naïve, exhaustive exploration.
Its first input is the set of dependences that must not be violated. The
second input represents a partial, incomplete schedule, whose outer
dimensions have been set, while the inner ones are to be determined
by exploration. The function starts with the search space generation
(line 2): the computation of all legal one-dimensional schedules for the
set of dependences as outlined in Section 3.7.1. As mentioned earlier,
a strong satisfaction is not required here. Additionally, only sched-
ule dimensions linearly independent of the previously selected ones
need be explored, so appropriate constraints are added to the search
space (line 3). For this algorithm, linearly independent constraints
are not computed statement-wise but for the entire vector, i. e., the
complete row of the schedule matrix. If this leads to an empty space,
the schedule is complete and returned (lines 4 and 5). Otherwise, one
has to iterate over all of its elements sd (line 7), add each one as an
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Listing 3.10: 3D 1st-order Jacobi stencil.

for (int t = 0; t < TS; t++)

for (int i = 1; i <= N; i++)

for (int j = 1; j <= N; j++)

for (int k = 1; k <= N; k++)

A[t%2][i][j][k] = a*A[(t+1)%2][i][j][k] + b*B[i][j][k]

+ c*(A[(t+1)%2][i+1][j][k] + A[(t+1)%2][i-1][j][k]

+ A[(t+1)%2][i][j+1][k] + A[(t+1)%2][i][j-1][k]

+ A[(t+1)%2][i][j][k+1] + A[(t+1)%2][i][j][k-1]);

inner dimension to the schedule (line 8), remove all newly carried
dependences (line 9), and issue the recursive call (line 10). Function
carried returns only those dependences from the given set D for
which the source and target are mapped to different time steps by
schedule sd.

A severe problem of this approach is the enumeration of elements of
the search space. First, iterating over an arbitrary integer polyhedron
can become computationally complex. isl provides support for the
enumeration of a bounded space. The set of all legal transformations
is unbounded and, hence, must be restricted heuristically. However,
the choice of a suitable restriction that results in a sufficiently small
space to be explored completely and that contains the good schedules
is very difficult. For example, consider a three-dimensional 1st-order
Jacobi stencil (Listing 3.10). If all variables that define the search space
are restricted to -1, 0 and 1, there are 2 186 one-dimensional schedules.
755 are legal schedules. Since there is only a single statement, we
can set the coefficient for the structural parameters and the constant
part to 0, which reduces the search space further to 27 elements. But,
for a complete, four-dimensional schedule (three in space and one in
time), there are still almost 274 = 531 441 different schedules—“almost”
since, for all except the outermost dimension, the linearly dependent
solutions must be ignored. Thus, in general, the search space must be
restricted further for this approach to become feasible [70, 71].

3.7.3 Guided Exploration

We implemented a heuristic approach to an efficient polyhedral search
space exploration tuned to stencil codes. In its current state, it cannot
be applied to domains other than ours. However, we believe it could
be generalized or adapted, and we point out a required modification
to this end in the last paragraph of this subsection. The basic idea is to
refrain from restricting the search space via additional constraints and
performing a full exploration over the remaining elements, but instead
to evaluate only a subset with the aid or guidance of a dual represen-
tation. Therefore, the search space we are exploring (as presented in
Section 3.7.1) is larger than with other techniques such as, e. g., the
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Feautrier scheduler [27, 28], which greedily carries dependences by
adding appropriate constraints outermost. We use basically the same
search space as the PLuTo+ algorithm [1] and the isl scheduler [100],
but the former restricts the absolute values of the schedule coefficients
and adds dimensions to minimize the upper bound of the reuse dis-
tances. In the isl scheduler, adding bounds to the schedule coefficients
is optional but it may speed up the calculation of the schedule. Even
though our search space may be larger, our search does not select
larger schedule coefficients since this usually results in a schedule
with poor performance.

Generator Representation

In contrast to the implicit, constraint-based representation referred to
previously, polyhedra can also be represented by a set of vertices V ,
rays R, and lines L. Each element ~x inside polyhedron P can then be
generated as follows:

(∀ ~x ∈ P : ∃ ~v,~r,~l ∈ Rd : ~x = ~v+~r+~l

∧ (∃ 0 6 λ1...k 6 1,
∑
i λi = 1 : ~v = λ1~v1 + ... + λk~vk)

∧ (∃ µ1...m > 0 : ~r = µ1~r1 + ... + µm~rm)

∧ (∃ ν1...n ∈ R : ~l = ν1~l1 + ... + νn~ln))

where d is the dimensionality of polyhedron P, V = {~v1, ...,~vk }, R =

{~r1, ...,~rm }, and L = {~l1, ...,~ln }. The vertices can be viewed as starting
points to generate the elements of the polyhedron: exactly one point
~v inside the convex hull of the vertices is required. Then, any linear
combination~l of the lines, as well as any positive linear combination ~r

of the rays can be added. Using Chernikova’s algorithm [83, 94], one
can compute such a generator representation of a polyhedron from
an implicit one. A line can be converted to two rays. Thus, without
loss of generality, lines receive no special treatment. Additionally, we
refrain from removing the zero vector beforehand, since this allows
for a much handier representation. So the set of all vertices for the
corresponding polyhedron contains only a single element: the origin.
In the end, the search space is described fully by a set of rays.

Search Space Generation

The new exploration technique is specified by Algorithm 3.4. Function
guided_exploration is the entry point; it is called with the set of all
dependences. The first step is to compute the search space for the
given dependences (line 2) as described in Section 3.7.1. The second
is to apply Chernikova’s algorithm to compute the set of generators
for the polyhedron (line 3). Since we are at the very beginning of
the exploration and have not yet selected any schedule dimension,
there are no linear independence constraints to be dealt with. Thus,
chernikova returns only a single vertex, the origin, and a set of rays.
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algorithm 3.4: A guided polyhedral search space exploration for
stencil codes.
input: set of not yet carried dependences D
output: set of legal, complete schedules

1 function guided_exploration(D):
2 searchSpace← search_space(D)

3 rays← chernikova (searchSpace)
4 scheds← combine_rays (rays)
5 scheds← scheds r constant (scheds)
6 return guided_exploration_tileable(D, { }, scheds)

7 function guided_exploration_tileable(D, s, scheds):
8 linIndep← linear_independent(s)

9 if linIndep = { } then
// add any constant dimension that carries all

remaining dependences

10 s ′ ← add_cst_schedule_dimension(s, D)
11 return {s ′}

12 Ss← { }

13 foreach sd ∈ scheds do
14 if sd ∈ linIndep then
15 s ′ ← add_schedule_dimension(s, sd)
16 D ′ ← D r carried(sd, D)
17 Ss← Ss ∪ guided_exploration_tileable(D ′, s ′, scheds)

18 return Ss

Function combine_rays in line 4 computes the set of one-dimensional
schedules to be considered during the exploration, by combining up
to n rays. This affects seriously how many different schedules are
generated. For n = 1, the rays are only considered individually, which
results in generating only schedules at the edges of the search space.
If two rays are combined, i. e., their vectors are added point-wise
and the result is scaled down by the greatest common divisor of
all its elements, it is either on a face of the polyhedron, or inside
it. Adding combinations of three or more rays is straight-forward.
However, it increases the exploration effort dramatically and results
in larger schedule coefficients, which makes a poor performance more
likely. Depending on the dimensionality of the stencil, we use either
n = 2 or n = 3 to keep the overall number of generated schedules
manageable. As demonstrated in Section 4.3, there are still some
schedules remaining that exhibit good performance. From the result-
ing set of schedules, all constant ones are removed (line 5), since they
stand in the way of a fully tileable loop nest, for which we aim. Or,
at least, allowing constant schedule dimensions would result in an
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undesired code structure after tiling. Next, the recursive function
guided_exploration_tileable is called with an empty schedule.

Explore Tileable Schedule Dimensions

Function guided_exploration_tileable is designed to add greedily
as many tileable dimensions as possible to a given incomplete sched-
ule s. This can be achieved by simply selecting several schedule
dimensions from the same search space or, in this particular case, from
the same set scheds. Function linear_independent computes the
space of all vectors linIndep that are linearly independent to s. Note
that, in contrast to the same function of Algorithm 3.3, it is computed
per statement and it does not consider the coefficients of the structural
parameters or the constant values, but only the coefficients of the loop
iterators. This is due to the fact that we would like to exclude constant
schedule dimensions in a sequence of tileable dimensions. Therefore,
if linIndep is empty, there could still be dependences left to be consid-
ered. These have to be carried by a single, constant dimension added
in line 10. At this point, only the textual ordering inside the loops has
to be determined. Then, the complete schedule is returned.

If linIndep is not empty, the exploration is continued. Every sched-
ule dimension in set scheds (line 13), that is part of linIndep (line 14),
is considered once for expansion of the incomplete schedule s: it
is added to s (line 15), carried dependences are removed (line 16),
the recursive call is issued, and the complete schedules are collected
(line 17) and eventually returned (line 18).

With this algorithm, only schedules that are fully tileable can be ex-
plored. An n-dimensional iteration domain is fully tileable if and only
if n-dimensional tiles exist. This is the case for the stencil codes we
consider. One can extend the algorithm to non-tileable schedules: if Ss
in line 18 is empty, one can optionally add a constant dimension to per-
form a loop fission and start over with function guided_exploration

for the current, incomplete schedule s rather than an empty one.

3.7.4 Exploration in ExaStencils

In our domain, the domain of multigrid methods, some of the most
time-consuming parts are pre- and post-smoothing. As explained in
Section 3.6.1, these rarely consist of more than a handful of stencil
applications with a very low computational intensity. In order to
optimize them, data locality is increased by a variant of time tiling:
fully unrolling the time loop and fusing the loop nests for the time
steps, i. e., the stencil applications, to a single nest. The low number
of time steps justifies a complete unrolling of the time loop in the
ExaStencils code generator and, thus, simplifies the border handling.
The polyhedron model is well suited for this type of optimization.
Different techniques exist that are easy to integrate in a code generator,
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Table 3.1: Transformed access for different schedules.

Access Schedule Transformed Access

S a[i,j,k] S[i,j,k]->[x=i, y=j, z=i+j+k] a[x, y, z-x-y]

T a[i,j,k] T[i,j,k]->[x=i+1,y=j+1,z=i+j+k+1] a[x-1,y-1,z-x-y+1]

a[i,j,k] T[i,j,k]->[x=i+1,y=j+1,z=i+j+k+2] a[x-1,y-1,z-x-y]

such as the PLuTo algorithm, the isl scheduler, but also independent
platforms such as PolyMage [59] or Polyite [31]. However, as our
evaluation revealed (see Section 4.3.3), there are cases for each of the
above in which they are unable to identify a good schedule. This is
where our guided exploration comes in.

For a narrower domain, such as ours, it pays to analyze the explored
schedules and investigate what the well, or ill performing schedules
have in common. We were able to identify a set of properties on
the basis of which we developed a sequence of seven filters that are
employed to restrict the search space and speed up the exploration. In
contrast to other work, these properties are not meant to be applicable
in other domains or even for other representations of stencil codes,
such as for a rolled-up time loop. Their current role is to assist our
understanding of the problem domain; an in-depth comparison with
other tools and techniques remains for future work.

Vector Optimizations

Some of the schedules generated during the exploration lead to vector-
izable loops nests: a parallelizable inner loop and array accesses with a
stride of 0 or 1. However, not all of them can be vectorized by the code
generator if unaligned memory accesses should be avoided. An access
is unaligned if it refers to a memory location whose address is not
evenly divisible by the vector size. The problem arises, for example,
with two statements accessing the same array as shown in Table 3.1.
In this example, i, j and k correspond to the loop iterators of the
input program, while x, y and z are the loop iterators of the target
code—the result of the transformation by the given schedule. Let us
describe the two alternative schedules for T. Consider the schedule
for S and the first schedule for T. Both statements access the same
memory location a[i, j, k]. The resulting loop nest after transforma-
tion contains the two memory accesses a[x, y, z-x-y] in statement
S and a[x-1, y-1, z-x-y+1] in statement T, both surrounded by the
same loop nest. The accesses differ only in a constant of 1 in all three
dimensions. While the differences in the first two dimensions are
irrelevant, since the generator ensures that the extent of each dimen-
sion is a multiple of the vector size, the third prevents both accesses
from being aligned simultaneously. They access adjacent elements
in this dimension and, thus, cannot be evenly divisible by the vector
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size at the same time. A better schedule that avoids this problem is
the second one for T, which differs only in the constant of the third
dimension. Since the ExaStencils code generator vectorizes the gener-
ated code itself, if possible, it generates, for each explored schedule
that suffers from this problem, a second version by modifying only
the constant parts accordingly. It is not possible (without a major
data layout transformation [40]) to generate a version of a stencil code
for which all read accesses are aligned simultaneously since, in a
single statement, neighboring data elements are accessed. However,
for write accesses only, it is possible in most cases. Similar and more
advanced techniques have been presented elsewhere [47]; we focus on
the additive constant only.

The basic idea of how the second schedule is computed is as follows.
The first schedule,

T[i,j,k] -> [x=i+1, y=j+1, z=i+j+k+1]

can be viewed as a sequence of three equations:

(I) : x = i+ 1

(II) : y = j+ 1

(III) : z = i+ j+ k+ 1

The innermost dimension of the original access is k, so the trans-
formed access’ innermost dimension is an expression based on the
new iterators that has the same value as the original k at run time,
namely z− x− y+ 1 = k. This equation (and, therefore, the trans-
formed array subscript) can be derived from the schedule equations:
(III) − (I) − (II) + 1. Here, an addition or subtraction of two equations
is defined analogously to the elementary row operations used, e. g.,
in a Gaussian elimination: adding αl = αr and βl = βr results in the
equation αl +βl = αr +βr. The summand 1 is short for the equation
1 = 1 and gives rise to the constant part in the transformed array sub-
script, which is required for the right-hand-side to become k. To get
rid of it, its right-hand-side can be merged with any schedule dimen-
sion, depending on which one results in a legal schedule. For example,
(III) : z = i+ j+ k+ 1 can be replaced with (III ′) : z = i+ j+ k+ 2,
which results in (III ′) − (I) − (II) and the transformed access z-x-y

for the innermost dimension.
This optimization is also relevant for architectures that support

unaligned accesses without a performance penalty, such as current
Intel processors. It can result in a smaller number of access operations
to the memory hierarchy, as explained in Section 3.5.1.

Exploration Filter Levels

Even though the guided exploration leads to a manageable set of
schedules for our domain, testing thousands of versions of a given
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problem is not always practical. Therefore, we investigated which
properties the poorly and the well-performing schedules have in com-
mon and what distinguishes them. Based on this evaluation, we
created several filters to reduce the set of explored schedules while
keeping the good ones. This also reduces the exploration time, since
some filters can be applied early in the exploration process. For ex-
ample, if we can exclude schedules based on their first, outermost
dimension, we need not explore their remaining dimensions. But there
are also filters that can only be applied to a complete schedule. If
not specified otherwise, the filters are applied after the exploration.
Note that we developed these filters unprejudiced and without any
previous research in mind. I. e., on the one hand, any similarities
to prior findings can be seen as a verification of previous work. On
the other hand, differences may be explained reasonably by our very
specialized domain and the differences in the input program.

The filtering process is structured into levels 0 to 7. Level i applies
filters 1 to i. The order is immaterial, i. e., each level stands for a set,
not a sequence, of filters. Level 0 does not apply any filter. Note that
the filters are designed specifically for the domain of stencil codes.
For other domains, other filters will apply.

level 0 This level completely disables all heuristic filters.

level 1 Dependences should be either loop-independent or carried
by the outer loop of the resulting code. This can be integrated in
Algorithm 3.4 by ensuring that line 17 (the recursive call) is only exe-
cuted if either s is empty or D = D ′. Thus, of the explored schedules,
only the first dimension, which corresponds to the outer loop, and the
last dimension, which is constant and therefore represents a textual
ordering, should strongly satisfy any dependence. The semantics of
this filter is that the innermost loop should be parallel, which pro-
vides sufficient parallelism for a two-dimensional case and also allows
vectorization. For a three-dimensional stencil, the middle loop of the
nest should also be parallel to reduce the number of synchronization
points and increase the workload between synchronizations. This filter
is related to the idea of the Feautrier scheduler [27, 28], which carries
dependences greedily as early as possible. In contrast, we also allow
dependences to be carried by the innermost, constant dimension.

level 2 Every schedule with a non-zero coefficient for the inner-
most loop iterator in any but the last non-constant dimension is
discarded. For the codes generated, this preserves only the schedules
whose innermost target loop traverses the memory linearly, since the
innermost loop iterator in the original code prescribes the innermost
array dimension. Since the main memory can only be accessed in
larger chunks, namely cache lines, the use of all of its elements before
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they are evicted is mandatory. Additionally, a non-linear memory
access complicates vectorization. Even though it is achieved in a totally
different way, the effect of this filter is similar to other approaches
that combine the polyhedron model with vectorization [47]. It can be
implemented by extending the condition in line 14 accordingly.

level 3 For some stencil codes, our exploration yields both sched-
ules with all data dependences carried by the outer loop and others in
which some dependences are not carried by any loop but are strongly
satisfied by the textual ordering of the statements in the loop nest. If
the latter exist, this group usually contains better schedules and, there-
fore, the former are discarded by this filter. This may be explained
by the fact that a read-after-write dependence specifies the reuse of a
data element. If such a dependence is carried by a loop, the distance
between the write and the corresponding read is at least one loop
iteration of the outer loop (cf. level 1) while, for dependences carried
by the textual ordering, the reuse distance is much shorter and the
data is still in cache.

level 4 As explained previously, preventing unaligned memory
accesses—even if supported by hardware—may allow further, poten-
tially beneficial, optimizations. Therefore, this filter discards schedules
for which not all write accesses can be aligned simultaneously.

level 5 Discard schedules for which the innermost loop traverses
the main memory in a non-positive direction. Our code generator
currently does not support vectorization of this type of loops. Also,
due to the regularity of the stencil codes in our domain, for every
schedule removed by this filter, there is a counterpart that traverses
the inner loop in the opposite direction and that is also valid.

The filters introduced at levels 5 to 7 can be applied even before the
actual exploration starts by filtering set scheds appropriately before
guided_exploration_tileable is called in line 6.

level 6 Every schedule with negative coefficients is removed. This
and the next filter are designed only to reduce the number of remain-
ing schedules.

level 7 Enforce small schedule coefficients and constants. Sched-
ules with coefficients for loop iterators larger than 2 are excluded. The
absolute values of the additive constants must not be restricted, since
the data dependences may require them to be different. Thus, we limit
the allowed constants to be either all 0, or increasing with a stride of
at most 2.
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Integration in the ExaStencils Code Generator

Our guided exploration, as well as the filter levels, have been im-
plemented in the ExaStencils code generator. The exploration is per-
formed semi-automatically. In its current state, the user has to provide
the following:

• either a list of IDs to specify for which SCoPs the exploration
should be performed, or a wildcard to select all feasible SCoPs,

• a pattern for the exploration result files, and

• optionally, a schedule identifier for each SCoP ID to select one
of the explored schedules for the current generation run.

Each SCoP in a generated application is preceded with its ID. Thus,
the generator must be invoked with any model-based scheduler first
to determine the IDs of the SCoPs for which an exploration should be
conducted. The exploration result files—one for each SCoP—contain
all explored schedules along with a schedule identifier. If any of these
files does not exist, the actual exploration for the SCoP is performed
and the file is generated. The schedule identifiers passed to the
generator then determine which of the explored schedules for a SCoP
should be chosen. If there is no appropriate identifier, the generator
defaults to 0, which selects the identity schedule. Thus, a single call of
our generator generates only a single variant. This allows generating
code for as many explored schedules concurrently as computing
resources are available. An integration into a job scheduler, such as
slurm1, is straight-forward, too. The drawback is that an external, yet
simple logic is required to schedule different calls to the ExaStencils
code generator.

3.8 data layout optimizations

The indices of field accesses are not stated in ExaSlang 4, which means
the computation is abstracted from the actual memory layout that
specifies how field elements are organized in memory. The default
memory layout is a direct mapping of the loop iteration vector to the
position of the element accessed inside the memory. However, for a
red-black coloring as, e. g., the one in Listing 3.11, this results in an
update of only every other element in both generated loop nests. In
turn, it reduces the effective memory bandwidth since data can only
be transferred in contiguous chunks (e. g., of 512 bit) from and to main
memory on current processor architectures. This becomes even more
problematic if more than two colors are required. Our solution to
this and similar problems is a language extension of ExaSlang 4 that

1 https://slurm.schedmd.com/

https://slurm.schedmd.com/
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Listing 3.11: ExaSlang 4 code for a RBGS smoother.

Function Smoother@(all but coarsest) {

color with {

(i0+i1+i2) % 2,

loop over Solution {

Solution = Solution +

1.0 / diag(Laplace) *
(RHS - Laplace * Solution)

}

}

}

provides a mechanism for the specification of arbitrary affine memory
layout transformations. On the one hand, this gives users the ability
to experiment with different memory layouts. On the other hand, it
represents a concise interface for the automatic tuning of the memory
layouts of present fields in the future.

3.8.1 New ExaSlang 4 Features

A new top-level block, LayoutTransformations, gives ExaSlang 4 pro-
grammers or generators the opportunity to add three new kinds of
directives. Figure 3.6 contains a simplified grammar of this extension.
Here, 〈X-list〉 specifies a repetition of the non-terminal 〈X〉, using a
comma as a delimiter for all except the 〈layoutStmt-list〉, which does
not require any special delimiter (other than spaces or newlines). The
〈field-list〉 and 〈fieldName-list〉 can be delimited alternatively with ‘and’.
〈levels?〉 is an optional level specification prefixed with an @ operator
as introduced in Section 2.2.1. In the absence of a level specification,
all levels are affected.

Renaming

The first new statement, rename, is the simplest one. It takes the name
of an existing field and a new, unused identifier. The original name is

〈layoutBlock〉 ::= ‘LayoutTransformations {’ 〈layoutStmt-list〉 ‘}’

〈layoutStmt〉 ::= ‘rename’ 〈field〉 ‘to’ 〈field〉
| ‘transform’ 〈field-list〉 ‘with [’ 〈ident-list〉 ‘] => [’ 〈expr-list〉 ‘]’
| ‘concat’ 〈levels?〉 〈fieldName-list〉 ‘into’ 〈fieldName〉

〈field〉 ::= 〈fieldName〉〈levels?〉

Figure 3.6: Simplified grammar of the new LayoutTransformations block.
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Listing 3.12: ExaSlang 4 code for a layout transformation.

LayoutTransformations {

transform Solution and RHS

with [x,y,z] => [x,y,z,(x+y+z)%2]

transform Solution and RHS

with [x,y,z,c] => [x/2,y,z,c]

}

then replaced at all specified levels by the new one. The sole intent of
this statement is to support the linking of generated code to external
or legacy code. Note that rename is not intended to introduce aliasing
and, thus, the new name introduced cannot be used in the ExaSlang 4
code.

Transformation

An actual layout transformation can be specified with the transform

statement. It is applied to all given fields individually and the desired
transformation is specified by a linear mapping that assigns every
element of the input field a new location.

For example, a color splitting of the fields Solution and RHS in
Listing 3.11 is given in Listing 3.12. The first transformation adds a
new dimension outermost with two possible values: one for the red
and one for the black points. In ExaSlang 4, unlike in C, the elements
of the leftmost dimension are stored consecutively in memory, i. e.,
data is organized in column-major order. This transformation results
in the use of only every other element of the generated arrays. The
second transformation then closes the gaps by scaling the innermost
dimension down. Shrinking any other dimension would be possible
as well but this would result in non-contiguous accesses. In contrast
to two successive transformations for the color separation and the
scaling, a single transformation specifying the composition of both
is possible, too. Note that one need not specify how the extent of
a dimension is affected by a transform statement or which extent a
new dimension has. This is incorporated automatically by the code
generator as described in Section 3.8.2.

Since ExaSlang 4 supports also vectors and matrices as field element
types [82], dimensions induced by them may also be specified in a
transformation statement. Without such a directive, the new dimen-
sions for vectors and matrices are added outermost, i. e., the default is
a struct-of-arrays (SoA) representation. However, since the additional
dimensions are not treated differently from the field dimensions, they
can be interchanged with the latter to achieve, e. g., an array-of-structs
(AoS) layout. In the case of a 2D field and vector components, such a
transformation is given by the expression [x,y,v] => [v,x,y]. As im-
plied earlier, in case one wants to transform only the field dimensions,



3.8 data layout optimizations 63

Listing 3.13: ExaSlang 4 code to copy data from RHS to RHSn.

Function CopyField@all {

loop over RHSn {

RHSn = RHS

}

}

the additional dimensions of vectors or matrices need not be stated
explicitly. Thus, the left-hand side of such a transformation may read
[x,y].

If a layout transformation is only advisable for a part of the applica-
tion, an explicit conversion between different data layouts during the
execution of the generated code is also possible. One simply declares
separate fields for each data layout and targets them individually by
appropriate layout transformations. Finally, an explicit conversion is
initiated by a simple copy loop as shown in Listing 3.13. Even though
this loop looks like a naive one-to-one copy, existing data layout trans-
formations for both fields are applied in the generated C++ code. E. g.,
for the layout transformation in Listing 3.12, the resulting C++ code is
similar to the pseudocode in Listing 3.14.

Concatenation

The concat statement concatenates two or more fields to a new one.
Only fields at the same level can be merged. Optionally, the level can
be specified before the field names are listed. While the ExaSlang 4
code uses only the original, separated fields, their elements are placed
in a single array in the generated C++ code. To separate the different
input fields, a new dimension is added outermost whose possible
values enumerate the original fields. Thus, this statement can be
viewed as creating a SoA from the given fields. The extents of the
inner dimensions are set to the maximum of the extents of all involved
fields, which potentially introduces unused areas at the upper end
of each dimension. An optional centering of a smaller field in the
new, larger space can be issued via a transform statement for a simple

Listing 3.14: Pseudocode, that is semantically equivalent to the function in
Listing 3.13, for the layout conversion specified in Listing 3.12.

void CopyField() {

for (z = ...)

for (y = ...)

for (x = ...)

RHSn[z][y][x] =

RHS[(x+y+z)%2][z][y][x/2];

}
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constant shift. The benefit of this statement is that the memory layout
of the new, merged field can be adapted with the transform statement.
For example, the new dimension can then be permuted innermost
to create an AoS. This may be useful in situations where elements of
different fields are only accessed jointly. Furthermore, the original
fields can also be transformed before concatenation and the code
generator takes care of the order in which the different transformation
statements are applied: transformations of the original fields always
take precedence over any concatenation.

3.8.2 Implementation

To apply such data layout transformations, we take advantage of isl.
It was designed and implemented for polyhedral compilation, but
also provides functionality that matches our requirements perfectly:
it offers functionality to represent and manipulate sets and relations
of integer points bounded by affine inequalities. For example, the
application of a relation to a set, and the extrema computation for a set
can be used to compute the new extents of a transformed data layout.
And, since our code generator is capable of polyhedral optimization,
as explained in Sections 3.6 and 3.7, isl is already integrated and in
use.

Overview

The overall structure of our layout transformation strategy is straight-
forward:

(i) Collect all layout transformation statements.

(ii) Apply transform statements.

(iii) Perform all rename operations.

(iv) Create new fields for concat statements.

(v) If there is at least one concat statement, create and incorporate
accesses to new fields and apply transform statements for them.

The first step (i) searches the entire AST for LayoutTransformations
blocks and collects all their statements. In the second step (ii), all
access expressions to fields are updated as specified by the transform

statements. Excluded are only accesses to fields created with a concat

statement, since they do not exist at this point but are introduced
later in step (v). Additionally, the field extents are adapted to ensure
that the linearization is correct and a large enough chunk of memory
will be allocated. Details of how a transform statement is applied are
presented later in this section. Step (iii) performs all requested rename

operations. Since every field is represented by a single object and these
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are not referenced by name in the AST, we can simply replace the name

attribute of all targeted fields. The concat statements are processed
in steps (iv) and (v). In the former, the new, concatenated fields are
generated and some sanity checks are performed. For example, the
data type of the field elements must be identical. The dimensionality
of the new field is one larger than that of the original fields. The extent
of this new dimension is the number of fields to be merged, while
for the other dimensions, the maximum of the extents from the old
fields is set. Finally, in the last step (v), all accesses to any field that is
to be concatenated with others are replaced by an access to the new
field and a potential transformation is applied. Additionally, all other
occurrences of an original field (in internal structures) are replaced by
the new one.

Access Transformation

The basic idea of the automatic data layout transformations is to
modify all accesses to a field in a common way. Additionally, the
layout information of the fields must be updated, i. e., the extent
of each dimension must be adjusted. Algorithm 3.5 computes new
field accesses for the specified transformations. Prior to the execution
of this function, level specifications introduced in Section 2.2.1, are
completely resolved: all objects, including the field accesses and the
fields themselves, are specialized for each level. Thus, a field is
identified not only by its name but by a combination of its name and
level.

Initially, in line 2, the field that is referenced by the given access
expression is extracted. The remainder of the function can then be
divided into two parts:

(i) lines 4 to 11 update the field layout and generate a template with
which the new, transformed accesses to the same field can be
generated, while

(ii) lines 12 to 15 retrieve a previously computed template, specialize
it to the given access and simplify the result.

On the one hand, the field layout modification of part (i) must be
executed exactly once per field to ensure correctness. On the other
hand, the template generation need not be repeated since its result can
be cached and reused later. The accessTemplates mapping performs
such a caching. Therefore, part (i) is executed only if there is no
template available yet for the field in question (line 3). It starts by
retrieving a list of transform statements for the current field from
the transformStmts mapping (line 4). For each of these statements,
an isl representation of the transformation expression is generated
(line 7) and these individual transformations are composed to yield a
single one with the same semantics (line 8). isl provides an according
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algorithm 3.5: Layout transformation for access expressions.
input: The access expression to be transformed and a list of

enclosingConditions for the current program location.
output: The new, transformed field access expression.
data: accessTemplates is an initially empty mapping of a field to an

access template whose content is preserved between different
calls and transformStmts is a mapping of each field to a list
of transformation statements for it.

1 function process_access(access, enclosingConditions):
2 field← get_field(access)

3 if field /∈ accessTemplates.keys() then
4 stmts← transformStmts(field)

5 trafo← identity()

6 foreach stmt ∈ stmts do
7 aff← create_isl_multi_aff(stmt)

8 trafo← aff ◦ trafo
9 update_layout(field, trafo)

10 accTempl← create_access_template(trafo)

11 accessTemplates(field)← accTempl

12 accTempl← accessTemplates(field)

13 newAccess← specialize(accTempl, access)
14 newAccess← simplifyWith(newAccess,

enclosingConditions)

15 return newAccess

composition operation. Updating the field layout for the transfor-
mation in line 9 also relies on methods provided by isl. In detail,
the affine expression representing the layout transformation is first
transformed to a relation between two integer sets. Second, an integer
set containing all valid indices for the old field layout is created and,
third, the previously computed relation is applied to it which results
in the set of all valid indices for the new, transformed layout. Finally,
it is ensured that the minimal value of every individual dimension
of the new integer set (after projecting all other dimensions out) is
nonnegative and the new extent of that dimension is set to its maxi-
mum value plus 1. Line 10 recreates an AST, namely the template for
the transformed access, from the isl transformation expression with
predefined dummies for the input variables. This new template is
then stored in the accessTemplates mapping (line 11) for a later use
and to indicate that the field layout is already modified.

In contrast to part (i), part (ii) must be executed for each access
expression that has to be transformed. The access template for field
is retrieved in line 12. This template is specialized in line 13 by
replacing the i-th dummy variable with the i-th expression of the old
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access. Line 14 performs an optimization that targets explicitly a color
splitting for a colored loop nest. For example, the loop in Listing 3.11 is
executed once for all loop iterations [x,y,z] for which the expression
(x+y+z)%2 equals to 0 and once for 1. If additionally a color splitting,
as presented in Listing 3.12, is applied, the modulo computation in
the new field access expressions inside these loops can be specialized
to the constant 0 or 1, respectively. The information to which value
the coloring expression is restricted in the current context is given via
the enclosingConditions parameter. This simplification tackles the
more complex memory address computations introduced by a color
splitting and, thus, has the potential to increase the performance of the
generated code even further. The transformed and simplified access is
eventually returned in line 15.

This algorithm is likely to generate some unoptimized arithmetic
expressions. However, we refrain from an explicit optimization step at
this point, since this would unnecessarily increase the code generation
time dramatically: all accesses are linearized in a later step of the
code generation process and this linearization may reveal further
optimization opportunities. Hence, the simplifications presented in
Section 3.2 are applied after linearization.





4 E VA L U AT I O N

The optimizations presented in Chapter 3 have been implemented in
the ExaStencils code generator and their evaluation is presented and
discussed throughout this chapter. Since the set of optimizations is
quite diverse and some of them target very specific aspects, they are
evaluated one after the other.

Section 4.1 starts with a description of the available software and
hardware for our experiments and Section 4.2 provides a brief overview
over the kernels and applications. The extensive but detailed evalua-
tion of the most complex optimizations implemented in the ExaStencils
code generator are presented in Section 4.3: the polyhedral trans-
formations and, especially, the polyhedral search space exploration.
Section 4.4 targets both an address precalculation and a vectorization.
The redundancy elimination approaches and data layout transforma-
tions are evaluated in Sections 4.5 and 4.6, respectively, and Section 4.7
closes this chapter with a brief summary.

A function inlining and the arithmetic normalizations are not evalu-
ated separately, since several other code optimization and even gener-
ation strategies depend on them. E. g., the arithmetic normalizations
are frequently used to simplify newly generated expressions. This
reduces the complexity of several strategies and, in turn, increases
their maintainability. Thus, they cannot be disabled entirely.

We would like to stress that the ExaStencils code generator was and
still is under active development. Therefore, the performance numbers
presented here differ in some cases from those published previously,
but the conclusions drawn in previous work are still valid.

Also note that, when referring to byte quantities, we do not use SI
prefixes: K, M, and G refer to the factors 210, 220, and 230, respectively.
For example, 1MB is exactly 1 048 576 bytes.

4.1 setup of the experiment

This section provides information on the hardware and software setup
for all experiments. This includes the hardware specifications of all
machines, their system environments, the programming languages,
and compilers. We also discuss some special properties of our test
platforms.

69
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Table 4.1: Machine overview.

Machine Workstation Chimaira Pontipine

CPU Core i7-4770 Xeon E5-2690 v2 Xeon E5-2620 v4
Nodes 1 17 12

Interconnect — 10GbE 1GbE
Sockets 1 1 2

NUMA No No Yes
Memory Controller 2 4 2 · 4

RAM 32GB 64GB 2 · 128GB
DDR4 2133 DDR3 1866 DDR4 2133

Stream Bandwidth 22.0GB/s 45.2GB/s 90.1GB/s

Table 4.2: CPU architectures.

Processor Core i7-4770 Xeon E5-2690 v2 Xeon E5-2620 v4

Architecture Haswell Ivy Bridge EP Broadwell EP
Cores/Threads 4/8 10/20 8/16

Base Frequency 3.4GHz 3.0GHz 2.1GHz
Turbo (all cores) 3.7GHz 3.3GHz 2.3GHz

Turbo (1 core) 3.9GHz 3.6GHz 3.0GHz
L3 Cache 8MB 25MB 20MB

Vector Ext. AVX2 & FMA AVX AVX2 & FMA
DP Peak 236.8GFLOP/s 264.0GFLOP/s 294.4GFLOP/s

4.1.1 Hardware

All evaluations were conducted on one of three different platforms
we can access. A short overview of the machines and their respective
CPU architectures is provided in Tables 4.1 and 4.2. One machine is a
simple workstation that was used primarily to generate and compile
all experiments. The experiments were then conducted on two clusters
named Chimaira and Pontipine.

CPUs

Chimaira consists of 17 nodes, each equipped with an Intel Xeon
E5-2690 v2 CPU, 64 GB DDR3 1866 RAM and interconnected via
10 Gbit/s Ethernet. The processor is based on the Ivy Bridge EP
architecture and it supports Intel’s Advanced Vector Extensions (AVX)
but, in contrast to the other CPUs, not the fused multiply-add (FMA)
extension. I. e., each of the ten cores can issue an addition and an
independent multiplication instruction per clock cycle. Their operands
are 256 bit registers that can contain either four double-precision or
eight single-precision values. Thus, with a clock frequency of 3.3 GHz
for all ten cores, its double-precision peak performance is

3.3GHz · 10 · 4 · 2 FLOP = 264.0GFLOP/s.
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While the double-precision peak performance (line “DP Peak”) is
a computed theoretical peak, the memory bandwidth (line “Stream
Bandwidth”) is measured with a streaming benchmark from the likwid
tools [88]. A performance close to the processor’s theoretical peak
compute performance can be achieved by a very specialized binary,
but the main-memory bandwidth is usually not as close. Therefore,
we provide benchmark results instead of a theoretical value.

The more recent Intel architectures, starting with Haswell, also
support fused multiply-add instructions of the form (a× b) + c. Since
two of these instructions can be issued per cycle, the peak floating-
point performance per clock cycle and core is twice as high as with
previous architectures. Both our standard workstation and the second
cluster, Pontipine, support these instructions. But, while Pontipine’s
raw compute performance is higher than Chimaira’s, the former’s
12 nodes are connected via Gigabit Ethernet only. Another specialty
of Pontipine is its non-uniform memory access (NUMA): each node
powers two processors with independent memory controllers and
memory modules that are directly connected to one processor. Thus,
each processor manages its own part of the memory, which is called
a memory domain. Software can access data in both memory domains
seamlessly and independently of the CPU on which it runs. Due to the
abstract virtual memory, it is even unaware of where data is located
physically. However, accesses to the memory domain of another
processor must be routed through that processor, which increases
access times and reduces bandwidth compared to the local memory
domain.

GPUs

16 Chimaira nodes are also equipped with an NVIDIA GeForce GTX
Titan Black GPU. It has 2 880 cores and 6 GB of GDDR5 memory. In
default mode, its base clock rate is 889 MHz, with a boost frequency
of 980 MHz. However, in this operating mode, the peak performance
for double-precision computations is cut down to a mere 24th fraction
of the single-precision performance. As a remedy, the Titan Black
features a special mode in which the ratio from single- to double-
precision performance is 1:3, but the maximum clock frequency is
reduced to 677 MHz. This mode is always active in our environment.
Unfortunately, this GPU does not support GPUDirect1 and, thus, data
exchanges between different nodes have to be performed by the CPU.
I. e., both sender and receiver must transfer the communicated data
between the host and the device memory, which imposes an additional
overhead.

1 https://developer.nvidia.com/gpudirect

https://developer.nvidia.com/gpudirect


72 evaluation

Table 4.3: Software used in the evaluation.

Operating System 64-bit Debian 9, Linux kernel 4.9
Java Virtual Machine OpenJDK 1.8 with Scala 2.12

C/C++ Compiler icc 19.0 (gcc 8.3, clang 8.0)
CUDA Compiler CUDA Toolkit 8.0 (requires gcc 4.9)

MPI Library OpenMPI 2.1 (MPI API 3.1)

4.1.2 Software

The software environment installed on all machines for the evaluation
is listed in Table 4.3. Java and Scala are required for the ExaStencils
code generator but not for the emitted applications. The CPU code
is C++, which is compiled with the Intel compiler version 19, if not
specified otherwise. We always request the most aggressive optimiza-
tions the target compiler provides (-O3) and we allow it to generate
specialized code for the target hardware (e. g., via -xCORE-AVX2). If
vectorization is enabled, we configure our code generator to replace
calls to math functions by their vectorized versions provided by the
compiler-independent library vecmathlib2.

Shared-memory parallelism of multicore processors is leveraged
with OpenMP while, for distributed memory, the MPI implementation
OpenMPI 2.1 is employed. The GPU experiments involve CUDA
code, which is passed to the CUDA compilation tools version 8.0.
The host code, i. e., the CPU code, is again compiled by the Intel
compiler. CUDA is a parallel computing platform and programing
model specifically developed to exploit the compute capabilities of
NVIDIA GPUs.

As an alternative to CUDA, there is the open standard OpenCL, de-
veloped by the Khronos Group. It is not as commonly used as CUDA,
since compiler and tools for OpenCL are not as mature. However,
a drawback of CUDA is that it is tied to NVIDIA GPUs only, while
OpenCL is supported by many other vendors, too, such as AMD and
Intel. But, according to the TOP500 list as of November 2018, NVIDIA
GPUs are the most common accelerators, which is why the ExaStencils
code generator has been focusing on CUDA.

4.2 evaluated codes

The optimizations implemented in the ExaStencils code generator are
quite diverse and, thus, different codes are needed to evaluate them.
For example, the polyhedral search space exploration is meant to apply
a suitable time tiling to multiple iterations of a stencil. Therefore, it
is reasonable to focus on the smoothing components of a multigrid

2 https://bitbucket.org/eschnett/vecmathlib/wiki/Home

https://bitbucket.org/eschnett/vecmathlib/wiki/Home
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(a) 2D cc1 (b) 2D cc2 (c) 2D ccd (d) 2D vc1

(e) 3D cc1 (f ) 3D cc2 (g) 3D ccd (h) 3D vc1

Figure 4.1: 2D and 3D stencil shapes.

method, as introduced in Section 1.2. But an evaluation on an entire
application should not be neglected either.

4.2.1 Smoothers

The first group of codes for our evaluations are smoothers, i. e., classi-
cal iterative methods such as Jacobi or Gauss-Seidel. The shapes of the
stencil codes are illustrated in Figure 4.1. Four are two-dimensional,
four are three-dimensional. The colored variants represent stencils
with constant coefficients, the gray ones are stencils with variable coef-
ficients. In the latter case, each neighbor gets its own coefficient. The
colors in the constant coefficients stencils correspond to the values of
the coefficients in the generated code: neighbors with the same color
share the same coefficient. We use ‘ccX’ and ‘vcX’ as abbreviations for
constant, respectively, variable coefficient stencils, where ‘X’ specifies
either the radius (‘1’ or ‘2’) or whether the stencil is dense (‘d’), in
which case the radius is 1.

The ExaSlang 4 code of a Jacobi smoother is shown in Listing 4.1.
The definition of the discretized operator Laplace determines the
stencil shape. Note that not only two slots of the field Solution are
accessed but also a field RHS from which one element per loop iteration
is fetched.

In addition to the Jacobi smoothers, colored Gauss-Seidel smoothers
were part of the experiments for all presented stencil shapes with
radius 1, including the dense. The versions cc1 and vc1 get along
with two colors while the two-dimensional dense version requires
four and its three-dimensional equivalent eight colors. Listing 4.2 is
the ExaSlang 4 code of a 3D RBGS stencil. In contrast to the Jacobi
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Listing 4.1: ExaSlang 4 code for a Jacobi smoother.

Function Smoother {

loop over Solution {

Solution[next] = Solution[active] +

0.8 / diag(Laplace) *
(RHS - Laplace * Solution[active])

}

advance Solution

}

stencils, the coefficient of the center element for the colored stencils
we evaluate simplifies to 0, i. e., the red or black marked elements in
Figure 4.1 are not read during the computation. This can be seen in
the ExaSlang 4 code: after factoring Solution out, the coefficient of its
center element is

1.0+ 1.0/Laplace[0, 0] · (−Laplace[0, 0]) = 0

where Laplace[0, 0] denotes the center element of the stencil. Thus, no
load instruction for the corresponding element of the grid is generated,
not even in the variable coefficients versions.

4.2.2 Applications

Besides isolated smoothers, three different multigrid applications
have been selected for the evaluation of our optimizations. Their
current implementation in ExaSlang 4 was developed by our colleague
Sebastian Kuckuk3 from the Friedrich-Alexander-Universität Erlangen-
Nürnberg, who has been one of the main developers of the ExaStencils
code generator. We made only minor modifications of his code, such
as an adaption of the problem sizes.

3 https://www.cs10.tf.fau.de/person/sebastian-kuckuk/

Listing 4.2: ExaSlang 4 code for a RBGS smoother.

Function Smoother@(all but coarsest) {

color with {

(i0+i1+i2) % 2,

loop over Solution {

Solution = Solution +

1.0 / diag(Laplace) * (RHS - Laplace * Solution)

}

}

}

https://www.cs10.tf.fau.de/person/sebastian-kuckuk/
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Poisson

The first application is the well-known model problem given by Pois-
son’s equation:

−∆u = f in Ω,

u = g on δΩ

Different versions of 2D and 3D multigrid solvers for this equation
were generated automatically, based on a finite-difference discretiza-
tion of the equation on a d-dimensional hypercube Ω = (0, 1)d. The
V-cycles had three pre- and three post-smoothing RBGS steps with
constant coefficients. Termination occurs when the L2 norm of the
initial residual has been reduced by a factor of 105.

Optical Flow

A second, more complex application is a multigrid version of an opti-
cal flow detection method [42]. Here, an approximate motion within
an image sequence is computed based on gray value respectively
color intensity changes. The termination criterion for the solver was
the same as in the previous application. Details can be found in the
literature on this application and an earlier version of the implementa-
tion [82] as well as on multigrid methods for optical flow [9, 44]. Since
the motion, or flow, of a single pixel consists of multiple coordinates,
namely one per dimension, the element type of the corresponding
field is a vector, not a scalar. This application was chosen to evaluate
the data layout transformations in Section 4.6.

Fluid Flow

The third and final application is a simulation of non-isothermal and
non-Newtonian fluid flows. Such fluids usually consist of suspensions
of particles or macromolecules and they can occur as gels, pastes, or
foams. Relevant examples include organic fluids such as blood, food
products such as fruit juice, and industrial fluids such as drilling fluids
and mining pulps. These fluids are important in both academia and
industry. Details on the implementation can be found elsewhere [51].
We make use of this application in Section 4.5 to demonstrate the
effectiveness of our redundancy elimination techniques.

4.3 polyhedral search space exploration

Let us start with an evaluation of the polyhedral optimizations. Its
most complex part is the polyhedral search space exploration, intro-
duced in Section 3.7, on which we focus in this section. A detailed
evaluation of an extensive exploration is given in Sections 4.3.1 to 4.3.4.
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Listing 4.3: Color splitting for the RBGS 3D cc1 cs exploration.

LayoutTransformations {

transform Solution, RHS

with [x, y, z] => [x/2, y, z, (x+y+z)%2]

}

Section 4.3.1 presents the setup of the experiment. Statistics of the
entire exploration are given in Section 4.3.2. An overview of the ex-
ploration results and a comparison with other algorithms and tools
can be found in Section 4.3.3 and Section 4.3.4 presents an in-depth
analysis of the exploration results for some experiments.

Additional experiments to evaluate our exploration can be found
in Sections 4.3.5 to 4.3.7. The influence of Intel’s vectorizer on our
exploration results is illustrated in Section 4.3.5. Section 4.3.6 analyzes
the results of an exploration on a system with a NUMA architecture.
The quirks of multiple memory domains and their influence on perfor-
mance optimizations for bandwidth-bound codes are also portrayed.
Finally, the benefits of our exploration for a complete multigrid cycle
are presented in Section 4.3.7.

4.3.1 Setup of the Experiment

We evaluated our polyhedral search space exploration on twelve dif-
ferent stencils. Eight are the Jacobi stencils introduced in Section 4.2.1.
The remaining four are the two- and three-dimensional RBGS ker-
nels with constant (cc1) and variable coefficients (vc1). These four
stencils were evaluated twice: with and without a data layout trans-
formation to perform a color splitting. The former are labeled ‘cs’.
Listing 4.3 is the data layout transformation code for the 3D RBGS
kernel with constant coefficients. In the variable-coefficient variant,
the field holding said coefficients is transformed the same way. 2D
layout transformations are analogous.

All experiments presented in Sections 4.3.3 and 4.3.4 were executed
on our cluster Chimaira. The code generator was configured to add
OpenMP pragmas for parallelization and to emit vectorized code for
double-precision computations using AVX intrinsics. We disabled the
autovectorizer of the Intel compiler explicitly in all activations of our
code generator. This is due to the fact that, in some cases, it altered
the execution order automatically by, e. g., reversing a loop, to be able
to vectorize it, which effectively resulted in a different schedule. We
did not encounter a situation in which the vectorizer of icc was able
to generate a noticeably faster code than our vectorizer, which addi-
tionally justifies focusing on the latter. A more detailed comparison of
the exploration results with and without icc’s vectorizer are presented
in Section 4.3.5. Other optimizations of our code generator, such as
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Table 4.4: Exploration time and properties of all experiments.

Jacobi 3D RBGS 3D
cc1 cc2 ccd vc1 cc1 vc1

expl. time filter lvl 0 27.0 s 23.6 s 49.2 s 15.1 s 48.5 s 20.8 s
expl. time filter lvl 7 0.64 s 0.68 s 0.75 s 0.36 s 1.15 s 0.49 s
Chernikova run time 0.22 s 0.30 s 0.24 s 0.10 s 0.52 s 0.17 s
#time steps 5 4 3 3 4 2

#search space dims 50 40 30 30 80 40

#rays 26 25 22 24 29 25

#comb. rays for lvl 0 2 2 3 2 2 2

#schedules filter lvl 0 12 048 12 048 21 872 12 048 12 048 12 048

#schedules filter lvl 7 4 4 6 4 4 4

Jacobi 2D RBGS 2D
cc1 cc2 ccd vc1 cc1 vc1

expl. time filter lvl 0 0.55 s 0.66 s 0.72 s 0.41 s 1.01 s 0.92 s
expl. time filter lvl 7 0.31 s 0.39 s 0.40 s 0.26 s 0.59 s 0.51 s
Chernikova run time 0.14 s 0.22 s 0.19 s 0.11 s 0.38 s 0.34 s
#time steps 5 5 5 4 5 5

#search space dims 35 35 35 28 70 70

#rays 18 18 18 17 23 23

#comb. rays for lvl 0 3 3 3 3 3 3

#schedules filter lvl 0 108 108 112 108 108 108

#schedules filter lvl 7 1 1 1 1 1 1

address precalculation and a rectangular tiling, were applied to all
versions generated.

We focus on CPUs only. An evaluation as part of a supervised
master thesis [98] revealed that the presented time tiling techniques
are not beneficial for GPUs. Custom techniques necessary for such
accelerators [35] remain future work.

4.3.2 Exploration Statistics

For the three-dimensional experiments, each stencil application up-
dates 5123 double-precision elements, while 16 3842 values are com-
puted in the two-dimensional case. The times required to perform the
search space generation and exploration, the number of time steps
per experiment as well as some other statistics about the search space
are presented in Table 4.4. The statistics for the color splitting ver-
sion are not stated explicitly since the exploration is not affected by
the layout transformation: the latter is applied after the polyhedral
techniques. The exploration time of filter levels 0 and 7 contain the
dependence analysis, the search space generation, the Chernikova call
and the actual schedule enumeration. In the three-dimensional case
without any filter applied, not more than one minute was required
on our workstation, using a single thread (the exploration itself is not
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parallelized). The filters are applied after Chernikova is called, so its
run time does not depend on the filter level. It completes in less than
one second, while the majority of the run time is spent in function
guided_exploration_tileable of Algorithm 3.4. For filter level 7, the
exploration time is significantly lower than the code generation and
optimization time required for a single variant, which is usually in the
range of 10 to 30 seconds for the presented experiments. In summary,
for every filter level, the most time-consuming part is not the explo-
ration itself but the code generation, compilation, and evaluation of
all variants.

The maximum number of rays combined for filter level 0 is 3 for 2D
and 2 for 3D. The only exception is the dense 3D stencil. According to
the higher number of constraints for a legal schedule due to the stencil
shape, we succeeded in the full exploration of the sets generated for
up to three rays combined. For a filter level of 2 and higher, we always
combined three rays. However, at level 7, all additional schedules that
originated from combining three rays were removed by the filters.

4.3.3 Exploration Overview

A performance comparison of our exploration with other algorithms
and tools is shown in Table 4.5. For every experiment, the absolute
performance of the fastest version is presented in both million lattice
updates per second (MLUP/s) and billion floating-point operations
per second (GFLOP/s). The performance of the different algorithms
and tools is then given as the percentage of the best variant. Remember
that, when computing a new element for a stencil application, not
only the neighbors, as specified by the stencil shape, are fetched from
the memory but one additional value is read from a separate array,
as presented in Section 4.2.1. Since this array is not modified, it does
not cause any additional data dependences but it must be taken into
account when comparing the performance results with other work.

Each experiment was subject to an individual tile size exploration;
see Table 4.6. The leftmost entry of each list is the tile size for the outer
loop, the rightmost is for the innermost loop. PolyMage autotunes
the tile size automatically and RBGS stencils cannot be diamond-
tiled, so they do not appear here. For each experiment, we evaluated
every combination of tile sizes from the set {4, 8, 10, 16, 20, 32, 50,
64, 100, 128, 150, 200, 256, ∞} for all but the innermost dimension.
“∞” indicates that a value larger than the iteration domain for this
dimension was chosen. For the innermost dimension, values less than
100 were removed to keep the number of combinations manageable.
Exploring the tile size and the schedule together would increase the
number of tests by a factor of roughly 1 000 in 3D, so the evaluated
exploration techniques use the same tile size as the isl heuristics
experiment. The tile size exploration for the latter revealed that the
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Table 4.5: Performance comparison for the exploration.

Jacobi 3D RBGS 3D
cc1 cc2 ccd vc1 cc1 vc1 cc1 cs vc1 cs

best [MLUP/s] 4 537 2 702 1 874 1 040 3 347 521 4 803 719

best [GFLOP/s] 45.4 45.9 60.0 17.7 26.8 7.3 38.4 10.1

baseline 33% 56% 81% 53% 30% 58% 32% 77%
Exploration

filter level 0 98% 97% 96% 99% 97% 98% 100% 94%
filter level 2 98% 99% 95% 100% 75% 99% 100% 94%
filter level 7 98% 96% 95% 97% 75% 95% 100% 93%
tile opt. 100% 100% 99% 100% 100% 100% 100% 100%

isl
simple 10% 11% 6% 31% 22% 55% 15% 44%
heuristics 95% 96% 6% 100% 22% 53% 15% 44%

PLuTo
rectangular 69% 84% 89% 90% 8% 38% 6% 31%
unrolled 51% 38% 49% 53% 72% 67% 32% 57%
diamond 71% 84% 100% 90% — — — —

PolyMage 49% 56% 66% 48% 29% 47% — —

Polyite 31% 48% 67% 50% — — — —

Jacobi 2D RBGS 2D
cc1 cc2 ccd vc1 cc1 vc1 cc1 cs vc1 cs

best [MLUP/s] 5 997 4 816 5 327 2 126 4 709 1 249 5 283 1 838

best [GFLOP/s] 48.0 62.6 69.3 27.6 28.3 12.5 31.7 18.4

baseline 25% 31% 28% 32% 21% 30% 29% 37%
Exploration

filter level 0 84% 91% 86% 79% 67% 99% 99% 97%
filter level 7 84% 91% 84% 79% 67% 99% 99% 97%
tile opt. 84% 91% 86% 79% 67% 100% 100% 100%

isl
simple 8% 7% 6% 11% 15% 13% 12% 10%
heuristics 84% 91% 6% 79% 14% 13% 12% 10%

PLuTo
rectangular 50% 63% 53% 46% 11% 16% 10% 12%
unrolled 66% 56% 52% 77% 100% 90% 66% 58%
diamond 77% 86% 83% 85% — — — —

PolyMage 100% 100% 100% 100% 56% 86% — —

Polyite 24% 29% 38% 32% — — — —
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best tile sizes have a comparable performance with differences of
only few percentage points. Thus, with regard to the exploration, we
refrain from tiling the innermost and the outermost dimension. Tiling
the innermost dimension potentially impairs the hardware prefetcher,
which fetches data from main memory in advance to hide memory
latency. Tiling the outermost dimension is not necessary either, since
only few consecutive lines in 2D or planes in 3D are reused. I. e., we
can simply stream through the outer dimension.

Baseline

As a baseline for our experiments, we chose the roofline performance
of a single time step, i. e., without any kind of time tiling and with
a barrier synchronization between stencil applications. In this case,
the performance depends solely on the memory bandwidth. E. g.,
for all Jacobi versions with constant coefficients and a spacial tiling,
one lattice update amounts to four double-precision values to be
transferred. Three are required by the computation: one element is
loaded from both input arrays (all others are assumed to be in the
processor’s cache) and one updated value is written to memory. The
remaining one is due to the write-allocate for the update, since a cache
line has to be loaded before it be can be modified. Therefore, the
roofline for one Chimaira node is:

45.2 · 230B/s
4 · 8B/LUP

≈ 1 517MLUP/s

In most cases, a performance close to the roofline without a temporal
reuse between subsequent time steps can be achieved by choice of a
suitable tile size.

Exploration

The two, respectively, three subsequent rows in Table 4.5 show the
performance of the best among the explored schedules for the given
filter level. The three-dimensional case involved, for all but the dense
stencil, two exploration runs. In the first run, we configured the guided
exploration to combine up to two rays only, along with a filter level
of 0, i. e., no filter applied. The second run combined up to three rays
with a filter level of 2. This results in larger sets of schedules before
the filters are applied. Finally, we optimized the tile sizes for the best
explored variants by testing all combinations mentioned previously.
The performance values and tile sizes for these “tile opt.” versions are
given in Tables 4.5 and 4.6, respectively. For the 3D experiments, no
other tool or algorithm tested was able to generate a noticeably faster
code than our exploration. The same is true for the RBGS stencils
with color splitting enabled. A more in-depth analysis of the most
interesting results is presented in Section 4.3.4.
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Table 4.6: Tile sizes for the exploration experiments.

Jacobi 3D
cc1 cc2 ccd vc1

expl. / Polyite ∞, 128,∞ ∞, 128,∞ ∞, 100,∞ ∞, 100,∞
expl. tile opt. ∞, 150,∞ ∞, 150,∞ ∞, 200,∞ ∞, 100,∞
isl

simple 200, 128,∞ 150, 150,∞ 32, 256,∞ ∞, 64,∞
heuristics ∞, 128,∞ ∞, 128,∞ ∞, 100,∞ ∞, 100,∞

PLuTo
rectangular 100, 4,∞ 100, 4,∞ 100, 10,∞ 50, 4,∞
unrolled 16, 16,∞ 10, 10,∞ 4, 4,∞ 8, 8,∞
diamond 20, 20, 4, 150 100,∞, 4,∞ 8, 8, 4,∞ 50,∞, 4,∞

RBGS 3D
cc1 vc1 cc1 cs vc1 cs

expl. / Polyite ∞, 150,∞ ∞, 64,∞ ∞, 150,∞ ∞, 64,∞
expl. tile opt. ∞, 200,∞ ∞, 100,∞ ∞, 150,∞ 200, 100,∞
isl

simple 64, 100,∞ ∞, 52,∞ ∞, 150,∞ ∞, 64,∞
heuristics ∞, 150,∞ ∞, 64,∞ ∞, 150,∞ ∞, 64,∞

PLuTo
rectangular 10, 128,∞ 16, 8,∞ 64, 16,∞ 20, 4,∞
unrolled 20, 20,∞ 8, 4, 100 8, 10,∞ 8, 8,∞

Jacobi 2D
cc1 cc2 ccd vc1

expl. / Polyite ∞,∞ ∞,∞ ∞,∞ ∞,∞
expl. tile opt. ∞,∞ 52,∞ 256,∞ 200,∞
isl

simple 150,∞ 8,∞ 16,∞ 150,∞
heuristics ∞,∞ ∞,∞ ∞,∞ ∞,∞

PLuTo
rectangular 256, 200 256, 150 256, 150 10,∞
unrolled 4, 150 8, 100 4, 150 4, 256
diamond 150, 150, 128 100, 100, 128 50, 50, 200 50, 50, 100

RBGS 2D
cc1 vc1 cc1 cs vc1 cs

expl. / Polyite ∞,∞ ∞,∞ ∞,∞ ∞,∞
expl. tile opt. 100,∞ 64,∞ 26,∞ 8,∞
isl

simple 128,∞ ∞,∞ 52,∞ 13,∞
heuristics ∞,∞ ∞,∞ ∞,∞ ∞,∞

PLuTo
rectangular 4,∞ 4,∞ ∞,∞ 16,∞
unrolled 20, 128 150, 100 16, 150 4, 200
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isl Scheduler

Both isl versions have been integrated directly in the ExaStencils
code generator and use the scheduler implemented in isl version 0.18,
which is a variant of the PLuTo algorithm. The difference between
experiments “isl simple” and “isl heuristics” is that the latter features
our modifications to its input as described in Section 3.6.2. We did not
modify any other settings of the isl scheduler, since we did not expect
any improvement.

The performance of isl simple is always below the baseline, which
renders it unusable for stencil codes. But, if our heuristics kicks in,
which is the case for the non-dense Jacobi stencils only, the determined
schedule is very promising. Otherwise, the heuristics is without effect.

For comparison, the schedule computed for the classical Jacobi 3D
cc1 without the heuristics reads

{ S[i,j,k] -> [i, j, k, 0];

T[i,j,k] -> [i+1, j+1, k+1, 1]; ... }

while the schedule with it is

{ S[i,j,k] -> [i, i+j, i+j+k, 0];

T[i,j,k] -> [i+1, i+j+1, i+j+k+1, 1]; ... }

The best performing schedule in the exploration is similar to the
one with the heuristics:

{ S[i,j,k] -> [j, i+j, i+j+k, 0];

T[i,j,k] -> [j+1, i+j+1, i+j+k+1, 1]; ... }

PLuTo Algorithm

“PLuTo rectangular” and “PLuTo diamond” show the performance
of the schedule detected by PLuTo version 0.11.44 with and without
diamond tiling [4, 7] used for a rolled-up time loop, while “PLuTo
unrolled” shows the performance for the time loop unrolled. Remem-
ber that the RBGS experiments exclude diamond tiling. The options
enabled in all experiments are --tile --parallel. For the rolled-up
experiments, we switched to a different frontend with the --pet op-
tion. This enabled us to select the input and output arrays via the
modulo computations t%2 and (t+1)%2 for time step t. Diamond tiling
was switched on with --partlbtile and, for the RBGS experiments,
we also had to add the option --lastwriter to prevent PLuTo from
crashing due to a constraint explosion. We also evaluated PLuTo+ [1],
which effectively removes a restriction of the original PLuTo algorithm
and allows negative schedule coefficients, but the results were no
different. For a precise comparison, we gave the schedules computed

4 Git revision 8606c3d on https://github.com/bondhugula/pluto.git

https://github.com/bondhugula/pluto.git
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by PLuTo to our code generator and selected the exact same set of
optimizations.

For an unrolled time loop, PLuTo computes the same schedules as
the isl scheduler without the heuristics. The difference is that PLuTo
performs an additional scheduling step after tiling. For Jacobi 3D cc1,
the schedule computed by the PLuTo algorithm with a rolled-up time
loop before tiling is:

{ S[t,i,j,k] -> [t, t+i, t+j, t+k] }

The time dimension is the outermost schedule dimension while, in
the unrolled versions, the time steps are enumerated innermost. This
is the case in all experiments. Overall, PLuTo performs quite well
and, in one experiment (RBGS 2D cc1), it is even able to outperform
the other tools. While the computed schedule for this experiment
was also detected by our exploration, we did not perform a separate
tile scheduling. However, once we activate color splitting, the best
schedules explored by our code generator take the lead. The reason
that diamond tiling performs worse than reported by others [7] could
be the very small number of time steps, which is less than 6 in all our
examples.

PolyMage

PolyMage [59] is a combination of a DSL and an optimizing code
generator for image processing. Since stencil codes are also part of
its domain, a comparison is relatively easy. PolyMage searches for
the best tile sizes in a given set of candidates and also evaluates
different grouping options for the statements. According to the tile
sizes, the same set as for the other tools was supplied. The Intel
compiler served to generate the final binary and perform low-level
optimizations. Note that, in contrast to the PLuTo experiments, the
ExaStencils code generator was not used here and PolyMage is unable
to apply a color splitting automatically. Therefore, the corresponding
entries in Table 4.5 are left blank. For the Jacobi 2D stencils, PolyMage
is able to create faster versions than our exploration detected. This is
due to the fact that PolyMage applies overlapped tiling [49], which
reduces the number of synchronization points by replicating some
computations for different tiles. If overlapped tiling is considered part
of the schedule, the latter is no longer a function since some statement
instances are mapped to multiple time steps. Such a schedule cannot
be detected with our exploration by design: we only explore bijective
schedules. Also, we did not implement any tiling techniques other
than a rectangular tiling so far.
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Polyite

Another external tool we compared against is the polyhedral search
space exploration tool Polyite [31]5 built for Polly/LLVM. In contrast
to our exploration, it is not domain-specific and uses a genetic algo-
rithm to traverse the search space. We chose the same tile sizes as
for our exploration. Unlike all other experiments, a different target
compiler had to be used here, which may have had an impact on the
performance. E. g., LLVM was not able to emit vectorized code. In
principle, our code generator could be made a backend of Polyite,
but this would be an extensive effort and we do not expect a genetic
algorithm to perform better than our approach in the stencil domain.
The reason is that, as shown in Section 4.3.4, the number of good
schedules is extremely small and the majority performs equally bad.
A general-purpose genetic search is likely to require significantly more
exploration time to find the best variant.

The optimum found by Polyite for Jacobi 3D cc1 is the schedule

{ S[t,i,j,k] -> [t, 3t + i, -t + 3j, -i + k] }

The missing performance numbers for the RBGS experiments are
due to a timeout in Polyite when the initial population is created.
However, we expect a similar result as for the Jacobi stencils.

This completes our explanations of the rows in Table 4.5. We con-
tinue with further discussions of the most interesting exploration
results by column.

4.3.4 Exploration Details

Jacobi 3D cc1

Let us first look at the leftmost column: an experiment with a sequence
of five iterations of a 3D Jacobi stencil with radius 1 and constant
coefficients. We performed two runs. In the first, we configured the
guided exploration to combine up to two rays, along with a filter level
of 0, i. e., no filter applied. The second combined up to three rays with
a filter level of 2. Table 4.7 reveals how many schedules at each filter
level were explored in the two versions.

Without any filter, the combination of two rays leads to 12 048
schedules, while only four remain at the highest filter level. Column
%Opt contains the speed of the worst and the best version for the
given filter level compared to the overall best version found by the
exploration. In this experiment, one of the fastest schedules is still
among the four remaining at the highest filter level. The performance
distribution for all filter levels with two rays combined is shown in
Figure 4.2. For each level, there are both a jittered scatterplot and
a violin plot. A jittered scatterplot contains every data point with a

5 Git revision fbf02eb on https://github.com/stganser/polyite.git

https://github.com/stganser/polyite.git
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Figure 4.2: Performance distribution of all filter levels for Jacobi 3D cc1.

small, random horizontal shift to disentangle them. In a violin plot,
the width of the violin represents the density at this performance value.
Thus, the wider the violin at a given position, the more schedules
with the respective performance were found. Additionally, the dashed
line represents the baseline for a single time step, as explained earlier.
The dotted line shows the performance of the schedule computed
by isl with the previously mentioned heuristics. This is the best our
code generator can do without an exploration. For filter level 0, the
vast majority (11 515, i. e., more than 95%) of all schedules lead to a
very poor performance—even worse than an untiled and unoptimized
version, which achieves 975 MLUP/s. The first two filters already
reduce the set of explored schedules to 128, and none of these results
in a performance noticeably worse than the baseline. With all filters
applied, not more than four remain. At this point, it is sufficient to
select the first explored schedule and to skip the evaluation phase
completely, since all perform very well.

Table 4.7: Number of schedules and their performance range for each filter
level for Jacobi 3D cc1.

combine two rays combine three rays

Level #Schedules %Opt #Schedules %Opt

0 12 048 0 - 100 152 592

1 368 8 - 100 22 832

2 128 33 - 100 496 25 - 100
3 48 46 - 100 80 46 - 100
4 48 46 - 100 80 46 - 100
5 24 92 - 100 40 92 - 100
6 4 96 - 100 6 96 - 100
7 4 96 - 100 4 96 - 100
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Figure 4.3: Performance distribution of all filter levels for Jacobi 2D ccd.

The combination of three rays leads to an order of magnitude more
schedules at filter level 0. Evaluating all of them would have been far
too time consuming, so we decided to start at filter level 2 to test if
there are even better schedules. Almost four times as many schedules
pass this level, but none of them is an improvement. With all filters,
again, the same set of four schedules remains. This is also true for the
other eleven stencils tested: at filter level 7, it does not matter whether
two or three rays are combined.

Jacobi 2D ccd

This experiment covers a sequence of five iterations of a 2D dense
Jacobi stencil with radius 1 and constant coefficients. For a 2D stencil,
only two linearly independent schedule dimensions are required. This
results in a significantly smaller number of explored schedules: for
three combined rays, an exploration at filter level 0 results in only 112
schedules, as shown in Table 4.8. Thus, we skipped an exploration
with only two rays combined.

Table 4.8: Number of schedules and their performance range for each filter
level for Jacobi 2D ccd.

combine three rays

Level #Schedules %Opt

0 112 2 - 100
1 48 17 - 100
2 24 46 - 100
3 24 46 - 100
4 8 61 - 100
5 4 98 - 100
6 2 98 - 100
7 1 98 - 98
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The performance distribution for the schedules explored at all filter
levels is shown in Figure 4.3. Note that, for filter levels 6 and 7, in
the violin plots, no actual violins but only the data points themselves
appear, since the number of data points is too small. The distribution
reveals that there is a huge gap between the four fastest schedules and
the remaining 108. Those four schedules are the only ones that pass
all filters up to level 5. With filter level 7, a single schedule is selected.
It is not the one with the best performance, but the difference is very
small.

This is one of the experiments in which our heuristics for the isl
scheduler fails. It selects a schedule whose performance is significantly
below an unoptimized and also untiled version. Choosing the one
schedule that passes all filters is as simple as an invocation of the isl
scheduler but its performance is clearly superior.

RBGS 3D cc1 (cs)

To conclude the detailed exploration evaluation, let us discuss four
iterations of a 3D RBGS stencil with radius 1 and constant coefficients.
This evaluation has been performed both with and without a data
layout transformation that specifies a color splitting, as introduced in
Section 4.3.1.

The number of explored schedules per filter level is identical to the
Jacobi 3D cc1 experiment presented previously in this section and
the performance distribution without a color splitting is shown in
Figure 4.4(a). In this case, already the first filter removes the best
schedules. This filter’s purpose is to ensure that the resulting code
can be vectorized. However, the code generator is not capable of
vectorizing a RBGS stencil without a color splitting or, more specif-
ically, of vectorizing the non-contiguous memory accesses induced
by it. A suitable data layout transformation resolves this issue and
the schedules that pass higher filter levels perform much better on
the processors’ vector units. Their performance is boosted by almost
a factor of 2 and they outperform all other schedules, as evident in
Figure 4.4(b).

It is also worth mentioning that not all schedules benefit from a color
splitting, which complicates the address computations. E. g., the slow-
est variants that pass the first filter drop from more than 500 MLUP/s
to even below 400 MLUP/s. There are also two prominent schedules
that are negatively affected: the one selected by the isl scheduler—
even though it gets vectorized after the layout transformation—and
the schedule of the “PLuTo unrolled” experiment, whose performance
is cut by one third with color splitting enabled.
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(a) without color splitting
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(b) with color splitting

Figure 4.4: Performance distribution of all filter levels for RBGS 3D cc1.

4.3.5 Intel Vectorizer

As mentioned in Section 4.3.1, we disabled Intel’s auto-vectorizer in
our polyhedral search space exploration since it altered the execution
order, i. e., the schedule, in some cases. To strengthen our results,
we conducted a quantitative analysis of the vectorizer’s impact on
the performance of the generated code: we repeated the evaluation
with the auto-vectorizer enabled for all 2D experiments and a reduced
set of the 3D experiments. We did not switch our code generator’s
vectorization capabilities off, i. e., vector intrinsics were generated.
For the three-dimensional cases, a filter level of 2 instead of 0 was
selected to reduce the evaluation time from weeks to days. However,
the filtering enabled the exploration to combine up to three rays in all
experiments instead of two for all 3D stencils.

Figures 4.5(a) and 4.5(b) are performance distributions for Jacobi
3D vc1 with Intel’s auto-vectorizer enabled, respectively disabled. The
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(a) with Intel’s auto-vectorizer
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(b) without Intel’s auto-vectorizer

Figure 4.5: Performance distribution for Jacobi 3D vc1.

performance numbers in the former case are more clustered than
in the latter but their overall distribution is very similar. There is
also no noticeable difference in the best schedules. For filter level 7,
the performance with Intel’s vectorizer ranges from 1 010 MLUP/s
to 1 017 MLUP/s, while the performance without it ranges from
987 MLUP/s to 1 004 MLUP/s.

For all other experiments, the influence of Intel’s auto-vectorizer
is roughly equal to or even smaller than for Jacobi 3D vc1. Thus, it
is no problem to disable icc’s vectorizer during an evaluation of our
polyhedral search space exploration.

4.3.6 NUMA Architecture

All presented exploration experiments were run on the cluster Chi-
maira, which has a rather simple and pleasing architecture: each node
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powers a single processor that manages a single memory domain. In
order to verify that our exploration, and especially our filters, are
applicable on other systems, too, a smaller exploration has been con-
ducted on cluster Pontipine. As explained in Section 4.1.1, the main
difference to Chimaira is that Pontipine has a NUMA architecture
with two processors and two memory domains per node. Thus, it is
advisable to keep data local to the CPU on which it is processed.

First-Touch Policy

A common strategy to select in which memory domain new data is
allocated is the so-called first-touch policy. It means that a memory
region is allocated locally to the processor that accesses it the first
time.

In detail, remember that the allocation of new memory in a process,
e. g., via malloc, only allocates virtual memory which has not yet
been mapped to the physical memory. Virtual memory is divided into
memory pages, which are usually 4 KB wide. The first-touch policy
maps a memory page to an address in (physical) main memory only
when it is accessed first, no matter whether the access is a read or a
write. Which processor issues the access determines in whose memory
domain the page is allocated. Therefore, in a parallel application
with multiple threads distributed among both processors, the data
initialization may have a huge impact on performance, especially for
bandwidth-bound codes.

Adjustments of the Experiments

The generated codes for the Chimaira experiments of our search space
exploration initialize all fields sequentially. This is unproblematic on
Chimaira but it leads to a poor data placement on Pontipine, since all
memory pages are allocated on one processor while the other accesses
non-local memory only.

Our first change to deal with this problem was to simply parallelize
the initialization in the same way as the computation. For the two-
dimensional stencils, the inner loop is parallelized, i. e., the first half
of each line is processed on one processor while the other handles
the second half. The field size was 16 3842 elements (excluding ghost
layers). This results in roughly 16 384 · 8B = 128KB per line. Assum-
ing a memory page size of 4 KB, a single line is distributed to at least
32 memory pages. Some of them are accessed from both processors:
those in the center of each line, as illustrated in Figure 4.6, and those
on the transition from one line to the next. If the others are allocated
in the processor’s memory that accesses them solely, a performance
increase can be expected.

However, after some disappointing results, we realized that our
assumption concerning the memory page size was incorrect. Since
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memory pages
accessed by CPU 1

accessed by CPU 2

Figure 4.6: Memory pages accessed in the center of a grid line.

version 2.6.38, the Linux kernel supports so-called huge pages and
their transparent usage6. I. e., the Linux kernel allocates 2 MB pages
automatically without program modifications if transparent huge
pages are (system-wide) enabled, which is the case on our machines.
The goal of larger page sizes is to reduce the number of pages for
applications with high memory requirements, which may reduce the
time required to determine the physical address of a memory page.
This does have a positive impact on our codes, too, but the drawbacks
of the non-local memory accesses outweigh the benefits: as mentioned
earlier, a single line of our fields consumes only 128 KB, which fits
entirely into one huge memory page and, therefore, one processor
always accesses non-local memory. One solution to this problem is
to forgo huge pages on Pontipine. But, in that case, the benefit of
huge pages, namely fewer memory pages to handle and a reduced
overhead, vanishes, too.

Another option to optimize the data placement is to launch one
MPI process per socket. This ensures that each processor accesses only
local memory during the computation and explicit communication
routines are triggered to transfer data between both memory domains.
Even though OpenMPI detects a shared virtual memory and issues
in-memory copy operations only, there is a small communication
overhead. However, since this approach is much easier to realize—
support for MPI communication is in any case mandatory for our
generator—it is used in the following experiments.

Evaluation

The overall performance distributions of our experiments on Pontipine
are quite similar to those on Chimaira. Consequently, we do not
present all results but, rather, focus on two of them. Note that we did
not tune the tile sizes specifically for Pontipine but stuck to the tile
sizes in the previous exploration given in Table 4.6.

The first experiment we discuss consists of five iterations of a 2D
Jacobi stencil with radius 1 and constant coefficients. Its performance
distribution is shown in Figure 4.7. Again, baseline is the roofline
of a single iteration without a time tiling. In 2D, it is easy to reach
the roofline for a single time step since no space tiling is required.
Measurements show a performance only 1.1% below the roofline. Con-
cerning the exploration, most of the schedules perform very poorly:

6 see https://lwn.net/Articles/423584/

https://lwn.net/Articles/423584/
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Figure 4.7: Performance distribution for Jacobi 2D cc1 on Pontipine.

100 out of the explored 108 schedules are below the baseline. Never-
theless, the first two filters are able to remove these 100 and none of
the faster ones. The fastest is 2.8 times as fast as the baseline and it is
also the single schedule that passes all seven filters.

The second experiment worth discussing executes three iterations of
a 3D dense stencil with constant coefficients. As evident in Figure 4.8,
all explored schedules are below the theoretical baseline. However, the
baseline itself cannot be reached in this experiment, since we measure
only 2 047 MLUP/s for a not time-tiled version. This is mainly due to
the implications of a higher dimensionality and the stencil shape. E. g.,
the communication volume is significantly higher in 3D than in 2D:
instead of a few lines, a few planes have to be exchanged. Additionally,
a single lattice update accesses 28 elements, which results in as many
load instructions per loop iteration. If we restrict ourselves voluntarily
to aligned accesses, as explained in Sections 3.5.1 and 3.5.3, in theory
18 of them can be reused from the previous iteration. But, since there
are not enough registers available, most of them are spilled to memory
which cancels any benefit of this optimization. Finally, a better tile
size for a baseline experiment is able to increase the performance to
roughly 2 300 MLUP/s, which is still below the performance of the
best explored schedules with a non-optimized tile size.

Another observation is that filter level 4 effectively removes the best
performing schedules. The filter applied at level 4 is designed to re-
move schedules that prevent the vectorization optimization mentioned
above and introduced in Section 3.5.3: it favors schedules for which
aligned accesses are possible. As explained above, this optimization
is ineffective here. A remedy would be to tie the filter applied at
level 4 to the mentioned vectorization optimization. If the latter is not
requested or not reasonable, this filter should not be applied. However,
such a dependence has not been implemented yet.



4.3 polyhedral search space exploration 93

baseline

isl heuristics

0

500

1 000

1 500

2 000

2 500

3 000

2 3 4 5 6 7

Filter Level

Pe
rf

or
m

an
ce

[M
LU

P/
s]

[ April 12, 2019 at 8:28 – classicthesis v4.6 ]

Figure 4.8: Performance distribution for Jacobi 3D ccd on Pontipine.

A dense stencil is one of those for which our heuristics to improve
the isl scheduler fails and both techniques select the same schedule.
With only 240 MLUP/s, its performance is even worse than that of a
completely unoptimized, naïve variant.

The performance gain of our exploration for the other, not shown
experiments did not always reach the same high level as for the
presented Jacobi 2D cc1 experiment, but it was never as low as for the
Jacobi 3D ccd either. Additionally, we encountered no other situation
in which all of the best schedules have been removed by our seven
filters.

4.3.7 Poisson

To conclude the polyhedral search space exploration, its influence on
a complete multigrid solver for Poisson’s equation was analyzed. It
features a V-cycle with three pre- and post-smoothing steps using a
RBGS stencil. The previous experiments focused on the smoother com-
ponent only, which is the most time-consuming part of this application.
No other multigrid components are currently targeted by a time tiling
but some may be affected by it. E. g., in an MPI parallel version, the
increased number of ghost layers consolidates communication during
smoothing: the communication steps between time steps are removed
but the communication volume of the rest increases. Additionally,
since parts of the solution field’s ghost layers are computed instead of
communicated, the field for the right-hand side also requires ghost
layers, which must be communicated; see Section 3.6.1. The 2D version
operates on 13 multigrid levels with roughly 8 1922 elements per MPI
node on the finest level. In 3D, nine multigrid levels with up to 5123

elements per node are computed. We configured our code generator
to perform a time tiling on the three finest levels. The others are too
small to benefit from such an optimization.
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Table 4.9: Achieved speedup of a multigrid solver for Poisson’s equation
with time tiling.

Poisson 2D 3D
1 Node 12 Nodes 1 Node 12 Nodes

base [ms] 1 622 1 872 3 906 6 582

time tiling 1.60× 1.49× 1.57× 1.26×

Performance

We did not carry out a full exploration but simply selected the first
schedule that passes all seven filters. This may not result in the fastest
code but it also unburdens the user from the effort of a search space
exploration, such as the evaluation of several variants on the target
hardware. Table 4.9 presents the performance improvements for a 2D
and 3D version, both with and without MPI communication, on our
cluster Chimaira. The first row is the run time of the entire solver
with all optimizations, including color splitting and vectorization,
except a time tiling. Reducing the L2 norm of the initial residual by
a factor of 105 requires three V-cycles in 2D and four in 3D. Both
“12 Nodes” versions are slower than their “1 Node” counterparts since
they perform twelve times as many computations and an additional
MPI communication. Time tiling is able to increase the performance
of the smoothing component significantly and, since it is the most
computationally intense component, the performance of the entire
solver is noticeably reduced, too. Note that the second row shows the
speedup and not the factor by which the time is multiplied. Thus,
the actual run time of these versions is the base time divided by the
speedup. The improvement of the MPI parallel versions is not as high,
due to additional communication phases as explained above. The
communication volume in 3D is higher than in 2D, which reduces the
benefit of this optimization. Nevertheless, a speedup of 1.26 is still
notable.

Generation Time

The code generation and compilation times for these experiments on
our workstation are given in Table 4.10. The first number is how long
the ExaStencils code generator takes to emit the target C++ code, while

Table 4.10: Code generation and compilation times for the applications in
Table 4.9.

Poisson 2D 3D
1 Node 12 Nodes 1 Node 12 Nodes

base 8.3 s+ 12.3 s 21.5 s+ 38.2 s 18.4 s+ 10.1 s 35.5 s+ 30.9 s
time tiling 13.0 s+ 12.9 s 27.5 s+ 39.1 s 56.5 s+ 24.8 s 75.6 s+ 45.0 s
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the second is the compilation time with four simultaneous invocations
of the Intel compiler. Time tiling increases the code generation time
significantly, especially for the 3D variants. A closer inspection re-
vealed that the exploration itself is rather cheap and the integration of
the explored schedule, i. e., the abstract syntax tree (AST) generation
consumes a huge portion of the additional run time. In detail, isl is
configured to avoid conditions inside a loop nest, which is realized
by an unrolling. This dramatically increases the code volume that
has to be generated and optimized by the following transformations:
the number of lines of the smoother function on one of the three
optimized levels increase from 82 to 3 220.

4.4 address precalculation & vectorization

Address precalculation and vectorization, as described in Sections 3.3
and 3.5, are two rather basic and almost supplementary optimizations
integrated in the ExaStencils code generator since both are supposedly
applied by contemporary production compilers. However, not every
compiler is capable of realizing both optimizations in all situations, es-
pecially subsequently to other more complex transformations such as
time tiling. In addition, they do not require much configuration effort.
Actually, the address precalculation does not have any configuration
option at all and the vectorization provides a single binary option only:
one can generate either unaligned or aligned vector load and store
operations, given that both are supported by the target hardware.

4.4.1 Setup of the Experiment

Both the address precalculation and the vectorization compete with
the corresponding techniques in production compilers. Therefore, we
evaluated the optimizations integrated in the ExaStencils code genera-
tor with a variety of C++ compilers. Besides our standard compiler
icc 19, binaries generated by the GNU compiler gcc version 8.3 and
LLVM/clang version 8.0 were measured. All experiments ran on our
cluster Chimaira. The ExaStencils code generator was configured to
apply a time tiling and an OpenMP parallelization to load all ten cores.
A color splitting was also performed, if appropriate. The problem size
was set to 5123 and 8 1922 per MPI node in 3D, respectively 2D for all
experiments.

4.4.2 Evaluation

The effect of the address precalculation and the vectorization imple-
mented in the ExaStencils code generator was evaluated for an isolated
Jacobi smoother and a multigrid solver for Poisson’s equation both in
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Table 4.11: Achieved speedup for 2D and 3D Jacobi kernels with address
precalculation and vectorization.

Jacobi 2D cc1 1 Node 12 Nodes
icc gcc clang icc gcc clang

base [MLUP/s] 2 883 1.08× 1.42× 32 592 1.09× 1.39×
address precalculation 1.03× 1.10× 1.42× 1.03× 1.11× 1.39×

vectorization (unaligned) 1.54× 1.39× 1.35× 1.54× 1.36× 1.25×
(aligned) 1.55× 1.41× 1.28× 1.50× 1.39× 1.28×

both (unaligned) 1.52× 1.45× 1.40× 1.54× 1.43× 1.33×
(aligned) 1.55× 1.50× 1.40× 1.49× 1.46× 1.38×

Jacobi 3D cc1 1 Node 12 Nodes
icc gcc clang icc gcc clang

base [MLUP/s] 2 569 1.22× 0.89× 19 992 1.12× 0.92×
address precalculation 1.06× 1.26× 1.63× 1.04× 1.15× 1.36×

vectorization (unaligned) 1.78× 1.71× 1.58× 1.42× 1.36× 1.27×
(aligned) 1.76× 1.78× 1.61× 1.39× 1.39× 1.33×

both (unaligned) 1.77× 1.80× 1.79× 1.42× 1.41× 1.41×
(aligned) 1.76× 1.79× 1.80× 1.39× 1.40× 1.42×

2D and 3D. The former is a preferred target of optimizations since it
consumes a significant portion of the run time in a multigrid solver.
The latter is a simple but complete multigrid solver.

Jacobi Smoother

In a first step, the optimizations were evaluated for Jacobi smoothers
with constant coefficients and a stencil with radius 1. It was executed
either on a single node or on 12 nodes and, as mentioned previously,
a time tiling with five time steps was configured. Table 4.11 contains
the results. The base version was compiled by the Intel compiler icc
and its performance is given in million lattice updates per second
(MLUP/s), while all other variants, including the base versions of the
other compilers, are shown as a speedup over icc’s base.

A remarkable result is that, for the 2D stencils, the binaries compiled
with clang perform exceptionally well without the address precalcu-
lation or vectorization of our code generator. A closer inspection of
the generated code reveals that clang was able to vectorize the most
performance critical loop automatically, despite the very complex code
structure caused by time tiling. However, in 3D, clang’s base version
performs worse than the bases of icc and gcc and the auto-vectorizer
only targets said loop if an address precalculation is enabled, which is
then sufficient to outperform the other compilers, again. Another dif-
ference between the 2D and 3D variants with clang is that, in the latter
case, the vectorization capabilities of the ExaStencils code generator
lead to the fastest version while, in 2D, clang’s vectorizer is slightly
better.



4.4 address precalculation & vectorization 97

Table 4.12: Achieved speedup of a 2D and 3D solver for Poisson’s equation
with address precalculation and vectorization.

Poisson 2D 1 Node 12 Nodes
icc gcc clang icc gcc clang

base [ms] 1 119 0.98× 0.96× 1 398 1.02× 0.97×
address precalculation 1.00× 0.99× 0.97× 1.05× 1.03× 1.01×

vectorization 1.10× 1.04× 0.99× 1.08× 1.07× 1.03×
both 1.10× 1.04× 1.04× 1.11× 1.08× 1.07×

Poisson 3D 1 Node 12 Nodes
icc gcc clang icc gcc clang

base [ms] 3 030 0.91× 0.92× 5 969 0.97× 0.98×
address precalculation 1.04× 1.08× 1.05× 1.06× 1.08× 1.07×

vectorization 1.18× 1.14× 1.11× 1.12× 1.11× 1.08×
both 1.22× 1.20× 1.18× 1.15× 1.15× 1.14×

The performance of the different icc and gcc versions are more
predictable: while an address precalculation reduces the run time
slightly, best performance is achieved with our vectorization routine.
The effect of favoring aligned over unaligned fetch operations differs
from case to case but has never been crucial in these experiments.

Poisson

The second application, a multigrid solver for Poisson’s equation, lever-
ages three iterations of a RBGS smoother for pre- and post-smoothing.
Therefore, a color splitting at the three finest multigrid levels was
specified. The performance results for the different versions are given
in Table 4.12. In this experiment, we did not generate a vectorized
version that focuses on aligned accesses only, since unaligned accesses
usually result in a better performance for RBGS smoothers on current
Intel processors. Again, absolute run time values are given for the base
version compiled with icc while, for all other experiments, the relative
performance improvement over icc’s base is given. The actual run time
of the latter can be reconstructed by a division of the corresponding
base with the given speedup.

The effects of our optimizations are similar for all three compilers:
vectorization is better for performance than address precalculation
but, usually, both are required to achieve best performance. The
improvements are not as good as for the smoother-only experiments.
This is expected since there are only three consecutive smoothing
steps that can be merged via a time tiling, instead of five in the
previous experiments. Thus, the bandwidth requirements are still
higher, which lessens the potential of a vectorization. Additionally,
the other multigrid components do not benefit that much from a
vectorization. Finally, the generated code has always been parallelized
via OpenMP to load all ten cores. The vectorization would be much
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algorithm 4.1: SIMPLE algorithm.

1 foreach time step do
2 while not converged do
3 update physical quantities
4 set up and solve LSEs for velocity components (u, v, and w)
5 set up and solve LSE for pressure correction (pc)
6 apply pressure correction
7 set up and solve LSE for temperature (t)

more beneficial for a sequential code but, in practice, there is hardly
any reason to forgo OpenMP parallelization, which renders sequential
experiments useless.

4.5 redundancy elimination

This section evaluates the redundancy elimination techniques intro-
duced in Section 3.4. Solving simple partial differential equations
(PDEs), such as Poisson’s equation, is not suitable for their evalua-
tion since the resulting code is already quite simple. Consequently,
subexpressions occur only rarely and, if they do, they are not very
complex. Thus, we chose the application of simulating non-isothermal
and non-Newtonian fluid flows instead.

4.5.1 Application Overview

There are many approaches to simulating such fluid flows. The
implementation used for our experiments [51] is based on the SIMPLE
algorithm (Semi-Implicit Method for Pressure Linked Equations). Its
derivation is not of interest here and can be found elsewhere in the
literature [69, 91]. A brief overview of our implementation as in
Algorithm 4.1 is sufficient: in each time step, a series of linear systems
of equations (LSEs) for the velocity components, the temperature, and
a pressure correction is set up and solved via dedicated geometric
multigrid solvers. For each of these solvers, all other components are
fixed, which introduces some errors. Thus, they have to be applied
repeatedly until convergence is reached.

We rely on a finite-volume approach on non-uniform staggered
grids for discretization, as depicted in Figure 4.9. Details can be found
elsewhere [91, 95]. In general, finite volume discretizations, especially
on staggered grids, require frequent interpolation and integration
of values and expressions with respect to control-volume interfaces.
Usually, at least parts of these computations on interfaces are inde-
pendent of the direction of the evaluation. E. g., the evaluation of a
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Figure 4.9: 2D illustration of the lower left part of a non-equidistant, stag-
gered grid.

physical quantity located at the cell centers on the east/right, respec-
tively west/left interface will be identical for neighboring cells. This
translates to equivalent computations in subsequent loop iterations
and, consequently, a loop-carried common subexpression elimination
(CSE) has the potential to benefit most codes based on these types of
discretizations.

4.5.2 Setup of the Experiment

The complete simulation computes 10 000 time steps for a grid size of
643 and ran on a single node of our cluster Chimaira. The binaries
were created by the Intel compiler icc 19 and OpenMP is used to load
all ten processor cores. Four execution times were extracted from each
experiment: the time to update physical properties such as viscosity
(“up. quant.”), the time to set up the LSEs for all variables (“comp.
LSEs”) and to solve them (“solve LSEs”), as well as the total time
which consists of the previously mentioned and also other factors
such as convergence checks and the application of the computed
pressure correction. Each of these times is the average over all 10 000
time steps for a single simulation.

4.5.3 Evaluation

Table 4.13 presents the run times and the speedups achieved by the
redundancy elimination techniques in conjunction with vectorization.
The proportions of the total run time are in parentheses. On the
one hand, neither the update of the quantities nor the solving of
the LSEs benefit from the CSE techniques. This is expected since
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Table 4.13: Achieved speedup for a non-Newtonian fluid flow simulation
with syntactic (syn) and loop-carried (lc) CSE.

Fluid Flow up. quant. set up LSEs solve LSEs total

base [ms] 1.91 (3%) 34.7 (63%) 14.3 (26%) 54.7
syn CSE 1.00× (5%) 1.54× (53%) 1.00× (34%) 1.29×

syn & lc CSE 1.00× (5%) 1.97× (47%) 1.00× (38%) 1.48×
syn CSE + vect 1.07× (6%) 2.87× (38%) 0.99× (45%) 1.71×

syn & lc CSE + vect 1.07× (6%) 3.28× (35%) 0.99× (47%) 1.80×

the corresponding codes do not contain any redundant computation
between different loop iterations and the few ones found by the
syntactic CSE are too small to influence the run time. Vectorization
also does not affect the performance of solving the LSEs, since they
are clearly memory-bandwidth-bound. However, it does increase the
performance of the quantity update by a few percentage points. On
the other hand, the compilation of the LSEs, which requires almost
two thirds of the total run time in the base version, does benefit from
both CSE approaches and a vectorization: their combined run time
can be reduced to roughly 30% of the base. Considering only the
CSE techniques, roughly half of the base run time for these parts of
the application was wasted for redundant computations. In the fully
optimized version, the compilation of the LSEs only demand a bit
more than one third of the total run time.

The base version of this code contains several larger redundant
computations, both inside the loop bodies and between subsequent
loop iterations, which can be factorized out by the two CSE techniques.
To quantify the effect of these optimizations further, we counted
the floating-point instructions in the generated assembler codes that
correspond to the innermost loop nests of the compilation of the LSEs.
These numbers are given in Table 4.14. No unrolling, neither by icc nor
by our code generator, was performed. On average, even the syntactic
CSE is able to save half of the floating-point operations. Note that
the base version was compiled with aggressive optimizations (-O3)
enabled. I. e., the redundancy elimination techniques implemented in
icc 19 were not able to eliminate these common expressions. The loop-
carried CSE eliminates an additional 20% of the remaining operations.
Note that only the operations that are executed in every loop iteration

Table 4.14: Number of floating point operations executed per loop iteration
during the LSE set up phases.

set up LSE pc t u v w total

base 136 342 460 462 460 1 860

syn CSE 75 178 219 221 219 912

syn & lc CSE 54 133 176 186 188 737
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are counted, which means that those required to initialize the new
buffers are ignored here.

In total, our redundancy elimination approaches uncovered that
roughly 60% of the total floating-point arithmetic instructions executed
during the set up of the LSEs are redundant. Their elimination results
not only in a speedup of 1.97 for these parts but also in a speedup
of 1.48 for the entire application. In conjunction with a vectorization,
these values increase to 3.28 and 1.80, respectively, which is very
promising for a real-world application.

4.6 data layout transformations

This section addresses the performance influence of data layout trans-
formations introduced in Section 3.8, both for a single smoother and
for the complete multigrid code. As part of the evaluation, the cor-
responding layout transformation statements are provided and dis-
cussed for all experiments.

4.6.1 Setup of the Experiment

All experiments were executed on our Cluster Chimaira and we gen-
erated code for both the CPU and GPU. The code generator was
configured to add OpenMP pragmas for parallelization and to emit
vectorized code for double-precision computations using AVX intrin-
sics on the CPU. Other optimizations, such as address precalculation
and common subexpression elimination, were applied to all versions
generated, while a rectangular, spacial tiling was only applied to the
3D versions. If not stated otherwise, we chose a problem size of 8 1922

per node in 2D and 5123 per node in 3D. Thus, each MPI node per-
forms roughly the same amount of work. The only difference is due
to overlapping and potentially redundant computations of neighbors.

4.6.2 Colored Gauss-Seidel Smoother

We start with a performance evaluation of our layout transformations
for a colored Gauss-Seidel kernel. The kernel was run in isolation,
not as part of a multigrid application. As previously, the performance
of the baseline experiments are presented in million lattice updates
per second (MLUP/s) and those of other versions as speedups over
the baseline. Both constant-coefficient (cc1) and variable-coefficient
versions (vc1) were executed. The problem size of the 3D vc1 version
running on the GPU had to be reduced to 2563 to comply with the
GPU’s memory limit.
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Listing 4.4: ExaSlang 4 code for a RBGS smoother.

Function Smoother@(all but coarsest) {

color with {

(i0+i1+i2) % 2,

loop over Solution {

Solution = Solution +

1.0 / diag(Laplace) * (RHS - Laplace * Solution)

}

}

}

Two Colors

Our first experiments address the performance of RBGS kernels with
constant and variable coefficients for a stencil with radius 1. The
ExaSlang 4 code of the kernel in 3D without time tiling and communi-
cation is shown in Listing 4.4. The variable Laplace is a discretized
operator and, as such, either a stencil in the cc1 version or a stencil
field in the vc1 version. An appropriate layout transformation for the
former is given in Listing 4.5 while, for the latter, the stencil field is
transformed in the same way as the other fields. The 2D experiments
are analogous. In addition to the performance of a single kernel exe-
cution, we evaluated a time-tiled version of five subsequent steps in
both 2D and four, respectively, two steps subsequently in the 3D cc1
and 3D vc1 cases. Time tiling is applied by selecting the first schedule
that passes all seven filters in a polyhedral search space exploration.

Table 4.15 summarizes the results of all RBGS kernel experiments.
The values in parentheses for the single-node base and its color-
splitting version represent the fraction of the roofline performance,
which is based on the measured memory bandwidth of 45.2 GB/s.
For the base cc1 versions in both 2D and 3D, the computation of one
new value, i. e., one lattice update (LUP) requires six double-precision
values to be transferred between the CPU and main memory. Three
are required by the computation: one element is loaded from both the
Solution and the RHS fields (all others are still in the processor’s cache)
and one updated value is written to the memory. The remaining three

Listing 4.5: Data layout transformation for a RBGS smoother.

LayoutTransformations {

transform Solution, RHS

with [x, y, z] => [x/2, y, z, (x+y+z)%2]

}
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Table 4.15: Achieved speedup of 2D and 3D RBGS kernels with color split-
ting and time tiling.

RBGS 2D cc1 3D cc1
1 Node 12 Nodes 1 Node 12 Nodes

CPU base [MLUP/s] 965 (95%) 10 992 960 (95%) 6 900

color splitting 1.44× (91%) 1.44× 1.44× (91%) 1.38×
time tiling 3.26× 3.10× 2.83× 2.25×

both 4.69× 4.42× 4.91× 2.82×

GPU base [MLUP/s] 4 650 43 920 3 693 13 104

color splitting 1.87× 1.58× 1.75× 1.15×

RBGS 2D vc1 3D vc1
1 Node 12 Nodes 1 Node 12 Nodes

CPU base [MLUP/s] 378 (100%) 4 440 292 (96%) 3 084

color splitting 1.70× (95%) 1.64× 1.65× (87%) 1.48×
time tiling 3.17× 2.65× 1.75× 1.62×

both 4.41× 4.18× 2.37× 2.07×

GPU base [MLUP/s] 1 696 18 540 1 287 5 448

color splitting 2.03× 1.87× 1.98× 1.18×

are due to the inefficient memory layout: their direct neighbors have
to be transferred, too. Therefore, the roofline is:

45.2 · 230B/s
(3 · 2) · 8B/LUP

≈ 1 011MLUP/s

A color splitting reduces the number of transferred elements to one
read from both fields and one store, as well as a write-allocate for the
store, which results in 1 517 MLUP/s. The write-allocate is required
since the hardware has to load a cache line from the memory before
it can be modified. Without color splitting, this additional load has
already been performed since the direct neighbors are required to
compute the new value and data is fetched in chunks of eight double-
precision values.

A Gauss-Seidel kernel with variable instead of constant coefficients
has an even higher requirement of memory bandwidth. Not only the
field elements but also the coefficients of all neighbors must be loaded
from main memory, which requires five and seven additional values
from main memory in 2D and 3D. Without a layout transformation,
only every other element is needed and, thus, twice as much data is
fetched. The performance results confirm that a color splitting can be
more effective for variable than for constant coefficients, at least if no
time tiling is applied or possible.

To cut a long story short, a color splitting is able to raise the roofline
and the measurements are in good agreement. Additionally, a time
tiling was able to reduce the bandwidth requirements even further,
which leads directly to a higher performance. However, the resulting
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Listing 4.6: ExaSlang 4 code of a colored dense Gauss-Seidel kernel.

(a) Transformation for a single time step

LayoutTransformations {

transform Solution and RHS

with [x,y] => [x/2,y/2,x%2,y%2]

}

(b) Transformation for time tiling

LayoutTransformations {

transform Solution and RHS

with [x,y] => [x/2,y,x%2]

}

(c) Smoother code

Function Smoother {

color with {

i0 % 2,

i1 % 2,

loop over Solution {

Solution = Solution +

1.0 / diag(LaplaceDense) *
(RHS - LaplaceDense * Solution)

}

}

}

code becomes very complex and we are no longer able to provide a
meaningful roofline. On GPUs, a color splitting is even more effec-
tive since the accelerators are much more vulnerable to non-optimal
memory accesses.

The only disappointing results are for the three-dimensional GPU
kernels running on twelve nodes. Since a direct communication be-
tween GPUs—as part of NVIDIA GPUDirect—is not supported by
our hardware, the MPI communication has to be handled by the CPU.
Thus, a single communication consists of three sequential steps: data
has to be transferred

(i) over the PCI Express bus from the GPU to the main memory,

(ii) from one node to the other over Ethernet and

(iii) back from the main memory to the GPU on the receiver node.

Such communication steps are required twice per time step, which
consumes a large part of the overall run time for the larger communi-
cation volume in 3D. In fact, this high overhead makes the optimized
CPU versions outperform the GPU in the 3D cc1 experiment.

Multiple Colors

Besides the sparse radius 1 stencils, we also evaluated dense constant-
coefficient versions. These stencils access the neighbors not only along
the axes, but also along the diagonals. This results in a 9-point sten-
cil in 2D and a 27-point stencil in 3D, as presented in Figures 4.1(c)
and 4.1(g). Listing 4.6 shows the ExaSlang 4 code of the 2D smoother
and the layout transformations that employ a colored dense stencil.
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Table 4.16: Achieved speedup of a 2D four-color and a 3D eight-color Gauss-
Seidel kernel with color splitting and time tiling.

MCGS 2D ccd 3D ccd
1 Node 12 Nodes 1 Node 12 Nodes

CPU base [MLUP/s] 725 (96%) 8 112 462 (91%) 2 652

color splitting 1.30× (93%) 1.28× 1.28× (97%) 1.10×
time tiling 1.74× 1.71× 1.90× 1.68×

both 1.94× 1.89× 2.25× 1.76×

GPU base [MLUP/s] 2 844 25 932 1 039 3 336

color splitting 1.76× 1.49× 1.77× 1.17×

Two different layout transformations are given, since the one in List-
ing 4.6(a) excels for a single time step, while the other performs better
with temporal blocking and is also superior in the 3D GPU experi-
ments. Evaluating both requires only the adaptation of the presented
transformation statement; no additional modifications are necessary.
Four different colors are required here for an easy parallelization. A
3D version of a 27-point stencil with eight colors is straight-forward.
Note that the actual loop over Solution statement is taken over from
the RBGS code. Only the coloring scheme and the stencil are different.
The definition of the latter (namely LaplaceDense) is not shown here;
it is a simple list of nine mappings of the neighboring indices to the
corresponding constant coefficients.

The performance results for the multi-color Gauss-Seidel experi-
ments are shown in Table 4.16. The results are similar to the two-color
versions. The performance of a single smoothing step both with and
without color splitting is close to the expected performance based on
the memory bandwidth. However, time tiling is not as beneficial or, at
least, the chosen schedule may not be the best. But an overall speedup
of roughly 2 in the CPU experiments is still satisfactory.

4.6.3 Multigrid Solvers

The previous experiments evaluated the performance impact of color
splitting for the smoother component of a multigrid application. How-
ever, there are other multigrid components that are also affected by a
layout transformation. To demonstrate the applicability and benefit of
a color splitting for a complete multigrid application, we conducted
experiments with two different applications. The first is the well-
known model problem given by Poisson’s equations and the second
is a multigrid version of an optical flow detection method, as intro-
duced in Section 4.2.2. For both applications, the same variants as
for the smoother-only experiments were generated: a shared-memory
OpenMP or CUDA version running on a single CPU or GPU and a
hybrid OpenMP/MPI or CUDA/MPI parallel version for 12 nodes.
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Table 4.17: Achieved speedup of a 2D and 3D solver of Poisson’s equation
with color splitting and time tiling.

Poisson 2D 3D
1 Node 12 Nodes 1 Node 12 Nodes

CPU base [ms] 2 201 2 410 5 275 7 902

color splitting 1.36× 1.29× 1.35× 1.20×
time tiling 2.11× 1.89× 1.77× 1.47×

both 2.17× 1.92× 2.12× 1.52×

GPU base [ms] 551 917 1541 5299

color splitting 1.41× 1.19× 1.41× 1.10×

The memory layout changes are integrated solely via a single layout
transformations block, no other changes are applied. Thus, there is no
copy kernel to change the memory layout dynamically and the kernels
for the restriction or interpolation are also not modified. Consequently,
these kernels access elements of both colors, regardless of where they
are stored.

In the case of the baseline experiments, we give the performance of
the multigrid solvers as the total time required by the complete solver.
Performance improvements of the layout transformations and time
tiling are again stated as speedups over the baseline. Thus, the inverse
of the speedup is the fraction of the execution time over the base.

Poisson

Let us start with the multigrid solvers for the Poisson equation. Its
V-cycles have three pre- and three post-smoothing RBGS steps with
constant coefficients and, thus, the same layout transformation as
for the previous RBGS smoother experiments, i. e., a color splitting
was applied to the three finest multigrid levels. At coarser levels,
color splitting is not recommended: since the fields fit into cache, its
benefit vanishes while the drawback of more complicated address
computations still persists. In all 2D experiments, three V-cycles were
executed, in 3D four.

Performance results of these experiments are given in Table 4.17.
Remember that the “12 Nodes” version also computes twelve times as
many unknowns. In all experiments, the storage of the red and black
colored elements in distinct memory locations increased the perfor-
mance. The improvements are not as high as in the smoother-only
experiments in Section 4.6.2. This is due to the other multigrid com-
ponents, such as the restriction or interpolation, whose performance
slightly deteriorates. A time tiling is also not as effective since there
are only three time steps to be merged instead of five or four in the
previous experiments. Nevertheless, the performance improvements
are quite good for an entire multigrid solver.
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Listing 4.7: Layout transformations for the optical flow computation.

LayoutTransformations {

concat @finest Ix, Iy, Iz, It into I

concat IxIx, IxIy, IxIz, IyIy, IyIz, IzIz into II

transform I@finest,

II@((finest-1) to finest),

rhs@((finest-1) to finest),

flow@((finest-1) to finest)

with [x,y,z] => [x/2,y,z,(x+y+z)%2]

transform residual, cgTmp0, cgTmp1,

II@(0 to (finest-2)),

rhs@(0 to (finest-2)),

flow@(0 to (finest-2))

with [x,y,z,v] => [v,x,y,z]

}

Optical Flow Detection

A second, more complex multigrid solver is for an approximation
of the optical flow, as introduced in Section 4.2.2. It computes an
approximate motion in an image sequence. Concerning the problem
size, roughly 17 million pixel per image were chosen in both 2D and
3D. The termination criterion is met after four V-cycles in the 3D
version, running on a single node, and five V-cycles in the others.

The motion, or flow, of a single pixel consists of multiple compo-
nents, namely one per dimension, which means that the element type
of the corresponding field is a vector, not a scalar. This increases the
dimensionality of the entire field but, as explained in Section 3.8.1, a
layout transformation statement may ignore these additional dimen-
sions if they should not be modified.

The layout transformations evaluated for the 3D optical flow com-
putation are shown in Listing 4.7. It pays to concatenate some of
the helper fields to enable an struct-of-arrays (SoA)-to-array-of-structs
(AoS) transformation, as shown in the second concat and transform

statement. The first concat does not affect the performance of the
generated code, but it allows a more compact transformation state-
ment. Its individual parts need not be listed separately to perform a
color splitting. In general, the RBGS smoother allows for two mutually
exclusive field layout schemes to increase the performance:

(i) split by color and place the different components of the higher-
order elements in distinct memory locations,

(ii) do not split by color but store the higher-order elements together
in memory.

The former increases the data locality of the smoother code and allows
it to be vectorized. Other, not colored parts suffer from a more complex
address computation. The latter provides a simpler memory layout
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Table 4.18: Achieved speedup of a 2D and 3D solver for an optical flow
simulation with color splitting.

Optical Flow Simulation 2D 3D
1 Node 12 Nodes 1 Node 12 Nodes

CPU base [ms] 2 661 3 040 3 397 6 367

layout transformations 1.36× 1.28× 1.41× 1.23×

GPU base [ms] 691 1 286 1 022 3 795

layout transformations 1.27× 1.10× 1.27× 1.08×

and an increased data locality for those not colored parts. For the finer
levels, the performance of the smoother is the dominant factor and,
hence, layout scheme (i) is advisable. At coarser levels, larger parts
of the fields fit into cache and the effort of the address computation
becomes more relevant: layout scheme (ii) is preferable.

The first transformation statement applies a two-color split to field I

and to the two finest levels of fields II, rhs, and flow. Note that these
fields refer to 4D data structures: the first three dimensions (x, y, and z)
correspond to the problem dimensions and the fourth (not named) to
the vector elements. Since the dimensions added by higher-order data
types, such as vectors or matrices, are appended rightmost/outermost,
this corresponds to layout scheme (i). The second transformation
statement permutes the vector dimension innermost for some other
fields and coarser levels of II, rhs, and flow, i. e., an SoA-to-AoS
transformation is applied and layout scheme (ii) takes hold.

Table 4.18 presents the speedups achieved by the layout transforma-
tions of the different versions. In contrast to the previous experiments,
a time tiling was not evaluated here since the Neumann boundary
condition enforces the ghost elements to be updated after every time
step, which is not yet supported by the code generator in conjunction
with time tiling. The results are similar to those of the Poisson ex-
periments and, thus, as expected. The layout transformations in this
experiment may be more complex and not obvious but, in contrast to
a manual integration, evaluating several different versions is as simple
as writing very few lines that specify the transformation and execute
our code generator.

4.7 summary

We conducted several different experiments to evaluate the perfor-
mance of our implemented optimizations, as given in Table 4.19. These
optimizations target different codes: while the polyhedral search
space exploration can be used to select an efficient time tiling for the
smoother, the redundancy elimination techniques mainly affect the
computation of variable coefficients.
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Table 4.19: List of all experiments.

Section Experiments

Section 4.3: Polyhedral
Search Space Exploration

Jacobi & RBGS smoother
(also on a NUMA architecture),

Poisson

Section 4.4: Address Precal-
culation & Vectorization

Jacobi smoother (with icc, gcc, clang),
Poisson (with icc, gcc, clang)

Section 4.5: Redundancy
Elimination

non-Newtonian fluid flow simulation

Section 4.6: Data Layout
Transformations

colored Gauss-Seidel smoother,
Poisson, optical flow simulation

(also on GPU)

Address precalculation and vectorization are not so specific and
target potentially all generated loops. They compete against the
corresponding optimizations in production compilers but, at least in
conjunction with other techniques that make the generated code more
complex, our implementation outperforms the others. However, its
impact is not as high as for the specialized techniques.

Our evaluation of the data layout transformations focuses mainly
on color splitting, since this class of transformations has a high impact
on performance. But our implementation is by no means limited to
color splitting.

Each of our implemented techniques is beneficial for at least some
applications and they perform well in conjunction, too. E. g., a multi-
grid solver for Poisson’s equation can be targeted by most techniques
and a speedup of more than 2 can be reached in 2D and 3D running
on a single node. MPI parallel versions running on 12 nodes benefit
with a speedup of almost 2 and 1.5.





5 R E L AT E D W O R K

Interest in the optimization of stencil codes is not new. In the previous
decades several different techniques have been developed that target
numerous aspects of this domain. While we are not able to discuss
all of them, this chapter provides a brief overview of some related
work: we focus on stencil DSLs and on techniques related to our most
advanced optimizations.

5.1 stencil dsls

To begin with, let us briefly comment on tools and frameworks that
offer a DSL for stencil codes. Patus [12] is a code generation framework
for the domain of stencil codes. It can generate code for both CPUs and
GPUs and its strong point is the autotuning of different optimization
parameters. SDSLc [77] is a compiler for the Stencil DSL (SDSL),
which is embedded in C, C++ and MATLAB. The SDSL compiler is
capable of generating code not only for CPUs and GPUs but also
for FPGAs. Halide [75, 76] and PolyMage [59] are image processing
libraries and, therefore, can be used to generate optimized codes
for stencil applications, too. The latter is described in more detail in
Section 4.3.3. In contrast to the custom tool chains on which all of these
approaches are based, Pochoir [87] and STELLA [37] provide DSLs and
C++ libraries to be used directly with a standard production compiler
for C++. Pochoir programs can be translated with the regular C++
compiler, but there is also an optimizing compiler if performance is
important. STELLA does not offer any custom tool chain or compiler.
The optimization and code generation proceeds via C++ template
metaprogramming only.

5.2 redundancy elimination

Common subexpression elimination (CSE) and global value num-
bering (GVN) are well-known and also well-understood compiler
optimization techniques incorporated in almost all production com-
pilers [2, 17, 58]. These implementations are suitable for removing
redundancies introduced by the compiler itself, e. g., when it creates
address-computation instructions from abstract array accesses. How-
ever, common subexpressions at source code level are not always
identified as such, since the target compiler must make worst-case
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assumptions for aliasing and other language features. More powerful
CSE techniques were presented by Debray [20] and Saabas et al. [78],
and elsewhere. Additionally, there exist several specialized CSE ap-
proaches [45, 91], which focus on problems in different application
domains, such as digital signal processing.

Neither of these take redundancies between loop iterations into
account. Hammes et al. [39] present a temporal CSE for a special type
of loops from the language SA-C. For these loops, the programmer
can explicitly specify a so-called window for the data structure to be
traversed. This window defines how many neighboring elements are
accessed per loop iteration. It is also used to identify redundancies
between subsequent loop iterations, which simplifies the detection
process but also limits its applicability. A more powerful approach
was presented by Faber et al. [26]. It is based on the polyhedral model
and can therefore detect redundancies between any loop iterations.
On the downside, this approach only detects common expressions
for which the non-array parts are structurally equivalent, i. e., the
example of Listing 3.6 cannot be optimized. Additionally, even if a
single scalar is sufficient to carry information from one loop iteration
to the next, every instance of this value gets its own memory loca-
tion. In contrast to the loop-carried CSE presented in Section 3.4.4,
this increases memory consumption unnecessarily. Deitz et al. [21]
developed their so-called array subexpression elimination. It is special-
ized to redundancies between subsequent iterations of the innermost
loop that occur during the computation of dense stencils. However,
these common expressions only consist of very few operations for
the stencils in our domain. A recent and more complex redundancy
elimination that also targets redundancies across loop bounds was
published by Ding and Shen [22]. Their technique is based on a new
symbolic notation for loop nests and it can target a broader spectrum
of redundancies than other approaches, such as expressions invariant
for only some of the loops in a nest.

5.3 vectorization

Vectorization is an important topic and the usage of the corresponding
hardware units is crucial for optimal performance. Eichenberger et
al. [25] present a transformation that is mainly focused on vectoriz-
ing codes with unaligned memory accesses if these are not directly
supported by the hardware. Strides in the memory access pattern
or interleaved data may also impede vectorization. The latter occurs,
e. g., when dealing with a sequence or vector of complex numbers,
since they are represented by a pair of floating-point values. But other
techniques exist to vectorize such codes [60, 64]. Further vectorization
techniques focus on outer loops [65], integrate a software prefetching
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and non-temporal stores [48], or split the vectorization into an offline
and an online phase to allow integration in a JIT compiler [63]. There
are also attempts to use polyhedral techniques to detect vectorizable
schedules [47, 84]. However, one of the most advanced automatic
vectorizer in use is the one implemented in the Intel compiler. It is
also regularly being improved: approaches to the optimization of data
accesses for complex patterns have been published recently [3].

Much like other code generation systems, such as Spiral [74] for
linear transforms or SLinGen [85] for the domain of linear algebra, the
vectorization capabilities of the ExaStencils code generator are highly
specialized to its domain. Also, a large portion of the implementa-
tion effort was spent to overcome problems and limitations induced
by other optimizations and transformations. Therefore, other work
concerning vectorization is usually more general and, to some extent,
more advanced than our vectorization approach. E. g., Caballero et
al. [10] present how to optimize overlapped vector loads. Such over-
lapped loads appear also in a very simple form in stencil codes, as
shown in Section 3.5.1.

5.4 data locality optimizations

Data locality optimizations are crucial for high performance of stencil
codes, which are usually limited by the memory bandwidth. There
are several different approaches; they can be divided roughly into
non-polyhedral and polyhedral techniques.

5.4.1 Non-Polyhedral Techniques

Many tools and algorithms for the optimization of stencil codes come
with a tiling scheme. E. g., there are different space tiling techniques,
such as cache blocking and register blocking, that focus on different
levels in the cache hierarchy [23]. Besides other optimizations, Kaushik
Datta [18] implements and evaluates several of these approaches into
an tuner. A time tiling increases the optimization potential further.
Frigo et al. [30] developed a cache-oblivious tiling scheme to increase
data locality between subsequent time steps. Cache obliviousness
means that the actual cache sizes are not parameters of their approach.
It does not use fixed block sizes but the iteration space is divided
recursively. However, an evaluation of several time tiling techniques
performed by Datta et al. [19] revealed that cache-aware techniques
perform better than cache-oblivious ones. More advanced and also
more specialized cache-aware approaches for stencil codes lead to
very good results [61, 89, 96, 97], but they are also hard to integrate
automatically. In contrast, polyhedral techniques benefit from a high
level of automation.
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5.4.2 Polyhedral Techniques

In the polyhedron model, there are several different optimization tech-
niques and approaches not specific to stencil codes. A model-based
scheduling algorithm due to Feautrier [27, 28] maximizes the paral-
lelism for a given loop nest. However, for modern processors, data
locality is frequently at least as important as parallelism. Bondhugula
et al. [8] developed the PLuTo scheduling algorithm that recognizes
data locality by detecting both tileable and parallel schedules auto-
matically. Acharya et al. [1] later removed some of the restrictions
imposed by the first PLuTo implementation, e. g., by allowing negative
schedule coefficients. Especially for stencil computations, improved
tiling mechanisms, such as split tiling [41], overlapped tiling [49],
diamond tiling [4, 7], and hexagonal tiling [35] were developed. A
comparison of our exploration with some of these techniques is given
in Section 4.3. The scheduler by Kong et al. [47] was developed to
take advantage of the vector units provided by modern processors.
It computes directly a schedule for which vectorized code can be
emitted. However, there is no exploration of the space of vectorizable
schedules.

The polyhedron model offers a wide spectrum of transformations,
which makes a search space exploration computationally complex. A
genetic algorithm to explore the search space of affine schedules was
implemented by Nisbet [62] in the GAPS framework. Long et al. [56]
presented a polyhedral exploration to optimize Java programs. Like
the GAPS framework, it uses the Unified Transformation Framework
(UTF) developed by Kelly [46]. Both suffer from the fact that they gen-
erate huge search spaces with predominantly illegal transformations.

With LeTSeE, Pouchet et al. [71] provide a search space exploration
for one-dimensional schedules. It searches all legal schedules with
small coefficients and constants exhaustively. This is feasible but, for
a multi-dimensional loop nest, a single dimension is not sufficient
to specify the execution order of all statement instances. LeTSeE’s
extension to multi-dimensional schedules [70] imposes additional re-
quirements, such as a (heuristically predetermined) order in which the
data dependences are strongly satisfied. Since LeTSeE’s exploration
is designed for sequential codes, dependences are carried greedily
when generating the search spaces for different dimensions. Thus,
dependences are carried outermost only and schedules that pass our
filter level 3, as presented in Section 3.7.4, cannot be generated: they
require some dependences to be carried innermost. Our guided ex-
ploration does not impose a restriction on the dimension by which
the dependences are carried. The basic difference is that LeTSeE’s
exploration restricts the search space as early as possible to keep it
small enough for an exhaustive exploration, while our technique adds
as few constraints to the search space as possible and then selects
heuristically a subset for evaluation. Alternatively, LeTSeE can be
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configured to leverage a genetic algorithm to search the space of legal
transformations. As a follow-up, Pouchet et al. [72] combined the
exploration with model-based approaches: a good loop fusion and
distribution structure is searched empirically, while the resulting loop
nests are optimized by the PLuTo algorithm. Ganser et al. [31] recently
developed a polyhedral search space exploration, named Polyite, that
is also based on the generator representation of the search space; see
Section 4.3.3. In contrast to our exploration, it is not domain-specific
and is based on the production compiler LLVM. It uses a genetic
algorithm to traverse the search space.

5.5 data layout transformations

The use of data layout transformations for performance optimization
is not new. O’Boyle and Knijnenburg [66] present a very detailed
low-level view of layout transformations. These are represented by
nonsingular matrices and, thus, enable only dimensionality-preserving
transformations. This excludes the kinds of color splitting that we
use. Clauss et al. [14] try to optimize the spacial locality by providing
a new array reference function to the compiler. Array elements are
ordered in the order in which they are accessed during the execution
of the loop nest. This approach works perfectly if every element is
accessed only once. In case of a later reuse, the address computation
can become very complex.

Layout transformations similar to the ones in our examples are part
of existing libraries and frameworks, such as Kokkos [24] or YASK [99].
The latter is a framework for stencil code generation, which supports—
besides several other optimizations—a specific data layout optimiza-
tion called vector folding. But, no other layout transformations are
supported. In contrast, ExaStencils facilitates such extensions with
the support of generic layout transformations expressed via affine
transformations.

Kokkos is a C++ performance portability programming ecosystem.
It relies heavily on C++ template programming to generate optimized
kernels for different hardware architectures, including GPUs. Like
other code generation approaches, it supports the choice of an appro-
priate layout for a given hardware. However, if the required layout
is not yet available, a custom implementation is necessary. Moreover,
Kokkos is focused on parallelization within one MPI rank and, in
consequence, the synchronization of data between ranks is still the
user’s responsibility. Thus, when modifying the memory layout, other
parts of the code might require an according adaptation, e. g., the in-
corporation of MPI data types. ExaStencils does not have this problem
since it generates code for data exchange via MPI as well which, thus,
can be adapted to the optimized layout automatically.
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There are also several approaches to the automatic computation of
a suitable data layout transformation, either directly [11, 14, 53, 57, 66]
or in combination with a loop transformation [13, 55, 68]. We have
not done so, but it would be possible to add one or more of these
techniques to our code generator.



6 C O N C L U S I O N S

To conclude, this chapter summarizes the optimization techniques
presented in Chapter 3 and the evaluation in Chapter 4. All of these
techniques have been implemented in the ExaStencils code generator,
which applies them to the generated code without user intervention.
Some possible directions for future work are also mentioned.

6.1 summary

Chapter 3 describes several different optimizations to increase the per-
formance of generated stencil codes, while Chapter 4 evaluates them.
The inlining and arithmetic normalization approaches developed in
Sections 3.1 and 3.2 are two supplementary transformations. While
the former eliminates small functions to unburden other optimiza-
tions from dealing with function calls, the latter is used in numerous
strategies throughout the entire code generation process.

The techniques of redundancy elimination in Section 3.4 also rely
on both. A traditional, syntactic version of a common subexpression
elimination (CSE) leverages them as preliminary transformations to
increase the size and the number of common subexpressions found.
E. g., the arithmetic simplifications prevent an interference of the com-
mutativity and associativity law of addition and multiplication with
the redundancy detection. Also in Section 3.4, a simple extension of
the syntactical CSE to be applicable across loop boundaries is formu-
lated. This allows reusing already evaluated subexpressions from the
previous iteration of any surrounding loop. However, it comes at a
cost since for outer loops more than a single scalar must be preserved:
for each iteration of the inner loops an additional value has to be
stored. We demonstrate the usefulness of the redundancy elimination
techniques with a real-world application, namely a non-isothermal
and non-Newtonian fluid-flow simulation in Section 4.5. The perfor-
mance of the affected code parts was tripled, while a speedup of 1.8 for
the entire real-world application was achieved. A text-based version
can be profitable, or at least not harmful, for any stencil computation,
while a loop-carried approach is especially useful for finite-volume
discretizations.

Another rather standard but crucial optimization implemented in
the ExaStencils code generator is an automatic vectorization of the
emitted code. Its implementation is presented in Section 3.5. The vec-
torization process is architecture-independent and the most common
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vector instruction sets are supported: Intel’s SSE3, AVX, AVX2, and
AVX-512, as well as IBM QPX and ARM Neon. The evaluation of the
vectorization and an address precalculation presented in Section 4.4
confirmed that our implementation outperforms the corresponding
techniques in current production compilers. We also describe how an
additional data dependence introduced by the loop-carried CSE can
be treated by the vectorizer.

The polyhedral techniques in Sections 3.6 and 3.7 tackle the very low
arithmetic intensity of stencil codes via both a space and a time tiling.
In this context we propose an efficient multi-dimensional polyhedral
search space exploration of the unbounded set of all legal affine
transformations to find the best time tiling scheme. A subset of the
search space is selected using its dual representation computed by the
Chernikova algorithm. This allows to control how many schedules
are explored while favoring simple ones, i. e., schedules with small
coefficients since the hope is that the better performing ones are simple.
In principle, the exploration can target any domain. We propose a
set of heuristic filters customized for the domain of stencil codes.
The exploration procedure and the filters have been implemented
in the ExaStencils code generator and the experimental evaluation
of different codes in Section 4.3 shows promising results. While
one would require to try different frameworks and libraries, such as
PolyMage, isl, or PLuTo, to identify the best performing schedule, our
unified approach in a single framework automatically finds a schedule
that achieves 79% or more of the performance that these individual
frameworks can achieve. With all filters switched on, the number of
schedules to be evaluated can be reduced to at most six, and even
the one with the worst performance does reasonably well. In some of
the experiments, the exploration even yields exclusively much better
schedules than all other tools and algorithms in our evaluation. If
one does not strive for optimality, one might be happy with any one
of them and save any further exploration effort. Also, the use of few
rather than many filters trades compile-time optimization effort for
run-time performance.

Finally, we offer a new language feature of the DSL ExaSlang and
describe the corresponding implementation in Section 3.8: a set of
layout transformation statements for a fast and easy modification of
data layouts. With the help of these statements, the laborious and
error-prone modification of every access to a data field, including its
initialization, is done automatically by the ExaStencils code generator.
One use case is a simple RBGS smoother, which is very profitable
because of its parallelizability and numerical properties. Without
any modifications, it accesses only every other data element, which
complicates the use of vector units provided by modern processor
architectures and also wastes memory bandwidth, which tends to
be the most critical resource. In Section 4.6, we demonstrated that
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these problems can be solved by adding only one single transformation
statement. Even for larger applications, only few additional statements
are required, which enables the testing of several different layout
schemes with very little effort. Since some of the concepts required
by automatic layout transformations and for polyhedral compilation
are identical or at least similar, the isl, which was actually developed
to support polyhedral compilation, is of great help. It is the key
component in our implementation to support not only a specialized
color splitting but any affine transformation.

6.2 future directions

The optimization techniques detailed in Chapter 3 increase the per-
formance of generated stencil codes in various ways but they are not
complete. There are still countless other stencil optimizations that can
be integrated in the ExaStencils code generator, such as a hexagonal
tiling for GPUs [35] or other, more complex tiling techniques [7, 41,
59]. And, even if the performance of the generated smoothers is now
satisfactory, it may be worth to develop and integrate optimizations
for other components of a multigrid solver, too.

Additionally, the presented techniques can be refined further. E. g.,
the polyhedral techniques for time tiling impose some restrictions on
the loops to be applicable. Eliminating these restrictions is always
an option. Also, a more in-depth evaluation of the properties of the
explored schedules and the ones computed by other tools could grant
a deeper insight into the requirements for stencil codes to achieve best
performance. These findings may be used to refine our filters or to
develop new techniques.

To sum up, the ExaStencils code generator already provides a set of
powerful optimizations but there is the room and the opportunity for
more. We offer it as a solid foundation for further research.
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