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ABSTRACT

In lossless coding, compresssion and decompression of source data  result in the exact 
recovery of the individual elements of the original source data. Lossless image /  video 
coding is necessary in applications where no loss of pixel values is tolerable. Examples 
are medical imaging, remote sensing, in image/video archives and studio applications 
where tandem- and trans-coding are used in editing, which can lead to accumulating 
errors. Nearly-lossless coding is used in applications where a small error, defined as a 
maximum error or as an rms error, is tolerable. In lossless embedded coding, a losslessly 
coded bit stream can be decoded at any bit rate lower than the lossless bit rate. In this 
thesis, research on embedded lossless video coding based on a motion compensated 
framework, similar to tha t of MPEG-2, is presented. Transforms that map integers 
into integers and embedded source coding, which are the main ingredients of lossless 
embedded coding are discussed in the contexts of in tra frames, which are similar to  still 
images and non-intra frames, which contain motion compensated prediction errors. The 
lifting concept, which forms the integer wavelet transforms, and the intrinsic properties 
of the block orthogonal transforms, such as the Discrete Cosine (DCT), the Discrete 
Sine (DST) and the Walsh-Hadamard (WHT) are used to design the integer versions of 
the N-point DCT, DST and WHT, where N is any integer power of two. Furthermore, 
the design and the use of transforms with spatially adaptive numbers of vanishing /  
preserving moments, which are suitable for non-intra frames, and non-linear transforms 
are presented. The current and prospective embedded coding scannning methods are 
analysed and an adaptive quad tree splitting (AQS) based scanner is presented. The 
performance of the above transforms for both types of frames is analysed using the 
zeroth order entropy values and the coded bit rates, achieved by Embedded Lossless 
Image Coding (ELIC), which is based on AQS and efficient context modelling. In ad
dition to the above experiments, the use of a transform in coding highly decorrelated 
non-intra frames is also investigated. Finally, the components discussed above are in- 
tregated together to analyse the importance of motion compensation in lossless video 
coding and the robustness of embedded decoding at quasi-lossless decoding in an assy- 
metric codec, where a “Group Of Pictures” (GOP) structure based motion prediction 
is involved.
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Chapter 1

Introduction

Digital video sequences in uncompressed formats require excessive storage capacity 
and huge transmission bandwidth. Therefore compression of digital video sequences is 
necessary for efficient storage and transmission. However, coding at high compression 
factors causes loss of visual quality and information of the original video sequences. 
There are many applications in which no loss of either visual or pixel value information 
is tolerable. Examples are studio quality digital video archives, inter studio video 
transmission and coding of medical and astronomical sequences, in which exact pixel 
recovery for all frames is required. Further, lossless video coding is vital in studio 
applications in order to prevent accumulation of the quantisation effects from repetitive 
encoding and decoding processes performed in programme production.

This thesis investigates lossless and nearly lossless digital video coding techniques. This 
chapter introduces four topics, namely video coding, image coding, lossless coding and 
nearly lossless coding, of relevance to this thesis.

1.1 Digital Video Coding

1.1.1 D igital video

A digital video sequence is a collection of pictures, also called frames, spaced at fixed 
time intervals. In a colour video sequence, each frame consists of three components, 
which can be either red-green-blue (RGB primaries) or luminance and two chrominance
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(YCfcCr format) components. The luminance (Y) component is a monochrome image 
containing the structural information of the frame. The two chrominance (C& and Cr ) 
components contain colour hue and saturation information of the frame. RGB format is 
used in displaying, whereas YCbCr format is the colour space recommended by CCIR- 
601 for coding and transmission [1]. RGB colour space can be converted into YCbCr 
format as in equation 1 .1 .

(  Y  )
( R  > f 16 ^

cb = ( a ) G X1 128

\ C r ) \ B I  1 2 8 /

( 0.257 0.504 0.098 ^
where , A  = -0.148 -0.291 0.439

 ̂ 0.439 -0.368 - 0.071 j
(i.i)

Three types of chrominance sampling formats relative to the luminance are used in 
video coding. These are labelled as 4:4:4, 4:2:2 and 4:2:0. In 4:4:4 format, the same 
sampling grid for all three components is used. In 4:2:2 format, the chrominance is 
sampled 2:1 horizontally but not vertically. The 4:2:0 format has the chrominance 
sampled 2 :1  both horizontally and vertically.

Each component of a frame is a two-dimensional (2-D) signal, which can be represented 
by a matrix. The elements of the frame matrix are called as pixels. Therefore, a video 
sequence can be considered as a three-dimensional (3-D) signal for each spectral (colour) 
component.

Each pixel of each spectral component is stored in 8  bit units. The basic bit rate 
param eter is defined as bits per pixel (bpp) for each frame or as bits per second (bps), 
by considering the third dimension, time length, of the sequence. The bps is the more 
common metric for video.

. Total Bits  . .
bpP = Total Pixels  (1'2)
bps = bpp x (Total Pixe ls ) x (Frames  per second) (1-3)

Total Pixels = Frame Height  x Frame W id th  x No. o f  Frames  (1.4)
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1.1.2 D igital video coding

Digital video coding or compression is concerned with reducing the number of data 
storing units (bps) used to represent given information content in a video sequence. 
In addition to inter pixel spatial redundancy within a frame, video sequences contain 
high temporal (inter frame) redundancy, which is usually exploited in video coding 
algorithms by coding some frames using motion compensated prediction with reference 
to previously coded frames.

There are a few video coding standards, each catering for different requirements, in 
use at the moment [1 , 2]. Examples are MPEG-1, MPEG-2, MPEG-4, H.261, H.262,
H.263, MPEG-7 and MPEG-2 1 . MPEG-1 has been optimised for non-interlaced video 
at bit rates of 1.2 to 1.5 M bit/s, whereas MPEG-2 has been targeted for higher bit 
rate, for example 10 M bit/s, applications such as DVD (Digital Versatile Disk) storage 
and digital television broadcasts. MPEG-4 was started with the emphasis on very low 
bit rate, for example less than 64 kbit/s, applications and was developed into an object 
based video codec in order to accommodate other multimedia requirements such as 
coding of multi view point scenes. MPEG-7 and MPEG-21, the standards under devel
opment at the moment, are being generated on previous standards, M PEG-1/-2 and -4, 
in order to address other multimedia requirements. M PEG-7 is mainly concentrated 
on describing the multimedia content that supports some degree of interpretation of 
the information’s meaning, which can be passed onto, or accessed by, a device or a 
computer code [3], while MPEG-21 is concerned with defining a multimedia framework 
to enable transparent and augmented use of multimedia resources across a wide range 
of networks and devices used by different communities [4]. The ITU-T standard H.261 
is on digital video coding for digital transmission over ISDN, where the bit rates are in 
the range of 64 to 1920 kbit/s. ITU-T also adopted MPEG-2 under the generic name
H.262 for telecommunication applications, while H.263 codec is concerned with very 
low bit rates, such as lower than 64 kb t/s, video coding for mobile network applications.

Single layer M PEG -2  was used as the framework for the research presented in this 
thesis. Therefore, the elements of video coding are discussed below with reference to 
the MPEG-2 video coding layer.

I.1 .2 .1  Single-layer M PE G -2 Codec

In MPEG-2 video codec [2], each video sequence is divided into groups of pictures 
(gop). Each gop consists of frames of three different types, namely I (Intra frames), P
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(Predictive coded frames) and B (Bidirectionally predictive-coded frames) types (Fig
ure 1.1). A gop is defined by two parameters, namely N and M. N is the gop length, 
which is also the distance between two I frames. M is the distance between the P frames 
or I frame and the following P frame within a gop. I type frames are considered as still 
images and coded without any reference to other frames. P and B type frames, col
lectively called non-intra frames, are coded with reference to previously coded frames, 
hence exploiting the temporal redundancy. A P frame is predicted from the nearest 
preceding I or P frame using forward prediction, whereas a B frame is predicted from 
the nearest I and P frames either preceding, following or both using either forward pre
diction, backward prediction or interpolating both forward and backward prediction. 
Hence, these prediction errors are coded in non-intra frames.

iffiai
I B B P B B P B B  I

Figure 1.1: An example for a group of pictures (gop).

In MPEG-1/-2, each frame is divided into macro blocks, which are considered as the 
basic building blocks of an MPEG frame. A macro block consists of a 16 X 16 size 
luminance block together with chrominance blocks, the size of which is determined 
according to the chrominance format. The macro blocks in intra frames are divided 
into 8 x 8  sub blocks and each sub block is coded as in JPEG (Joint Picture Expert 
Group) [18] image coding. These coding models contain the Discrete Cosine Transform 
(DCT), the Human Visual System (HVS) based quantisation tables and entropy coding 
based on pre-defined variable length codes.

The coding strategy for the macro blocks in non-intra frames is decided by considering 
the amount of real motion, thus the difference between the block to be coded and the 
reference blocks within the search window in reference frame(s). These predictions are 
based on the motion compensation, thereby usually described using a vertical motion 
vector and a horizontal motion vector for each macro block. These vectors correspond 
to the displacements that give the best match between the macro block to be coded 
and the corresponding displaced region in the reference frames. The commonly used 
criterion for finding the best match are the minimisation of the mean absolute distortion



(MAD) or the mean square error (MSE). The motion vectors are transm itted to the 
decoder as part of the bit stream. The macro blocks in a P frame are categorised as 
either I-type, where no real motion is predicted, or P-type, where forward motion is 
predicted. Likewise, the macro blocks in a B frame are categorised into any of three 
types, which include the above mentioned two types and a B-type, where forward- 
backward motion is predicted from the preceding and following frames. In both P 
and B frames, the macro blocks classified as I-type are coded as those in intra frames. 
For the macro blocks classified as P-type and B-type, the prediction residuals in each 
block are coded in a similar manner to I-type coding using quantisation parameters 
and variable length codes different from those used in I-type blocks.

1.2 Image Coding

Digital image coding or compression is concerned with reducing the number of data 
storing units (bpp) used to represent a given information content in a digital image. 
Image coding is possible because images in uncompressed formats contain high data 
redundancy. In digital image compression processes, three basic data redundancies, 
namely inter pixel redundancy, psychovisual redundancy and coding redundancy can 
be identified and are successfully exploited.

1.2.1 Im age coding m odel

The basic image compression model consists of three stages (Figure 1.2). They are 
listed below.

1. Transform/Inverse Transform.

2 . Quantisation/Dequantisation.

3. Entropy Coding/Entropy Decoding.

Original
Image

Decoded
Image

Forward
Transform

Quantisation Entropy
coding*

CO

*  i
I  i

Inverse De-
Quantisation

Entropy 6 *o
Transform decoding

Figure 1 .2 : The basic image compression/decompression model.
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In the transform stage, the main goal is to decorrelate the original image data, so that 
the original signal (image) energy is redistributed among only a small set of transform 
coefficients. This decorrelation eliminates the inter-pixel redundancy, thereby, provid
ing a representation tha t can be coded more efficiently. The zeroth order entropy of 
the transformed coefficients is much lower than th a t of the original image. The trans
forms used in coding are reversible, so that the original image can be recovered by 
the inverse transform, provided no quantisation has been performed on the forward 
transform coefficients. So theoretically, the for war d /in  verse transform dual is a lossless 
process.

The DCT and the Discrete Wavelet Transforms (DW T) are the most commonly used 
transforms in current image codecs. W ith each transform having its own merits and 
demerits, the wavelet transforms are more widely used in image coding for their superior 
performance over the DCT. The criteria are discussed in sections 1.2.2 and 1.2.3.

The second stage, quantisation /  dequantisation is the process tha t leads to the lossy 
compression. In the quantisation section, psychovisual redundancy in the image is 
reduced by throwing away unwanted bits from the transform coefficients. This leads 
to high compression ratios and distortion in image fidelity. The third stage, entropy 
coding, determines the number of bits required to represent a particular image at a given 
quantisation level. The combined process of entropy coding and entropy decoding is 
lossless. It maps the quantised transform coefficients into a bit stream using variable 
length codes, thus exploiting the coding redundancy.

1.2.2 The D iscrete Cosine Transform (D C T)

An N-point DCT consists of N real basis vectors with cosine functions. There are four 
types of DCT, namely DCT-I, DCT-II, DCT-III and DCT-IV, derived according to 
the varying boundary conditions [5]. The DCT-II form, originally presented in [6], is 
commonly known as the DCT in signal processing research and widely used in image 
and video coding.

The DCT-II for a one dimensional (1-D) data sequence, x , of length N  and its inverse 
are defined as in equations 1.5 and 1.6 respectively.



The 2-D DCT is performed by applying the 1-D DCT on rows and columns separately. 
The DCT is an orthogonal transform. The DCT possesses good variance distribution 
which leads to efficient energy compaction in the transform domain. When the input 
data  is assumed to be a first order Markov process, the energy compaction efficiency of 
the DCT approaches tha t of the Karhunen-Loeve Transform (KLT), of which the basis 
functions are input dependent [7, 8 ].

The DCT is performed on smaller blocks of the image, normally 8 x 8  sized blocks 
because the basis functions of the DCT are not spatially localised. As quantisation 
errors can be spread throughout the block, this can result in visible errors at image 
edges and at the block boundaries. Consequently, the DCT based coded images are 
characterised by blocky artefacts.

1.2.3 The wavelet transforms

The wavelets are localised waves. Once the “mother wavelet” is defined, the 
mother wavelet can be scaled and translated to obtain a family of other wavelets, 
which can be defined as

W )  =  £ * ( ¥ ) '  (L7)

where a > 1 is the change of scale and b (E11 is the translation in time [5, 9]. Therefore, 
in a wavelet transform, any finite energy signal can be represented by a linear combi
nation of wavelets Then, the wavelet coefficients /(0)&) for the input signal
f ( t )  are defined as in equation 1 .8 .

/oo
V(a,b)(t)f(t)dt  ( 1 .8 )

-oo

The above defined is the Continuous Wavelet Transform (CW T). The Discrete Wavelet 
Transform (DWT) is used in image coding applications. In DWT, the mother wavelet 
is translated and dilated by discrete values, in most cases by a power of 2  (dyadic).



Thus equation 1.7 becomes

*(«,»)(<) =  2“/2 ®(2“t -  6). (1.9)

In current literature, there are two well known methods, namely filter banks and lifting, 
for implementing the DWT. The more widely used method is the filter bank approach. 
The filter bank approach consists of two filter banks, one each for the analysis (forward 
transform) and the synthesis (inverse transform) (Figure 1.3). In the analysis filter 
bank, the input signal is decomposed into two channels using a low pass filter (HO) 
tha t corresponds to averaging the input signal with a scaling function and a high pass 
filter (H I) tha t corresponds to detailing the input signal with the wavelet \P(O|6)(0» 
both followed by a decimator (to down sample the filtered data  by a factor of 2) in each 
channel. In the synthesis filter bank, the transformed coefficients are interpolated (up 
sampled by a factor 2) and then convoluted with the filters FO and F I, the coefficients 
of which are obtained from HI and HO respectively in order to eliminate aliasing.

-► HO -► -► FO

X  — ►

HI 2 ^ >  -*> t  2 FI

Analysis Bank Synthesis Bank

Figure 1.3: The filter bank approach for DWT.

The second approach is using the lifting scheme (Figure 1.4). In the forward transform, 
the input signal is decomposed into two subsets of odd (d) and even (s) samples. 
This process is called the lazy wavelet transform. Then the primal (P ) and dual 
(U) lifting functions are operated repeatedly on the two subsets resulted from the 
lazy wavelet transform, in order to obtain the wavelet transform coefficients with the 
required number of vanishing moments [10]. The (s ) and (d) after lifting correspond 
to  the low and high passed signals respectively. More about lifting scheme is discussed 
in section 3.1.

t H P

-K+b LP

Figure 1.4: The lifting approach for DWT.



The high pass channel in the forward transform decomposes the input signal into details, 
where the signal behaviour is more localised in the spatial domain and wide band in 
the frequency domain. On the other hand, the low pass channel separates the regions 
of high statistical spatial correlation, from the original signal, thereby filtering the 
components more localised in the frequency domain (narrow band) and wide spread in 
the spatial domain. Thus, the wavelet transform coefficients represent two frequency 
sub bands, namely, a low frequency sub band with highly smooth spatial information 
and a high pass sub band with details that mainly correspond the wide band noise and 
the edges in the input signal.

The 2-D wavelet transform is achieved by performing the 1-D DWT separately on rows 
and columns of the 2-D signal (image). It can be performed in any order (either starting 
with row wise or column wise) as these two operations are two separable processes. This 
produces four sub bands, namely LL, LH, HL and HH (where L and H stand for low 
pass and high pass respectively). The LL sub band represents the original signal in 
half resolution and contains smooth spatial data with high spatial correlation. The 
HH sub band consists of details caused by noise and the edges in the image. The 
HL and LH sub bands consist of vertically and horizontally oriented high frequency 
details respectively. Most of the image energy is concentrated in the LL sub band. A 
hierarchy of wavelet coefficients can be obtained by applying the 2-D transform to the 
LL sub band of the current scale repeatedly up to 4 or 5 scales, (Figure 1.5) provided 
the original signal dimensions agree with the down sampling in the process.

LL HLO

LHO HHO

LL HL1
HLO

LHl HH1

LHO HHO

1 Scale 2 Scales

Figure 1.5: The wavelet transform operation.

The Wavelet transforms can be designed as orthogonal or biorthogonal. Wavelets also 
support an efficient energy compaction in the coefficients. Wavelet coefficients can 
be modelled into hierarchical trees using the multiresolution property of the wavelet 
coefficients. The multiresolutional structure of the wavelet transformed coefficients can 
be used to develop efficient quantisation algorithms, [11, 12, 13] tha t help to achieve 
a better picture quality than in DCT methods. Furthermore, spatial and quality wise 
scalability can easily be incorporated into the wavelet transforms based techniques.
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1 .2 .4  Q u a n tisa tio n  and em b ed d ed  co d in g

The dynamic range of the transform coefficients are narrowed by the quantisation 
process, thus achieving high compression. Quantisation can be either scalar (uniform) 
quantisation or vector quantisation. In scalar quantisation, a single coefficient C  is 
divided by a quantisation factor Q and rounded to the nearest integer in order to 
obtain the quantised coefficient T (C ) (equation 1.10).

T(C ) = Round  ( 0  (1.10)

In vector quantisation, the coefficient set is divided into 1-D or 2-D blocks, tha t are 
also called vectors, and a code book is used to  find a pattern  for each block. The 
approximated pattern for each block is coded using a lookup value in the code book. 
The code book can be adaptive and implemented dynamically or fixed, the la tter being 
predefined using a training data set.

The codec can be designed as spatially and quality wise scalable. In a spatially scalable 
codec, the image can be decoded at smaller resolutions than the original dimensions, 
whereas in a quality wise scalable codec, the image can be first decoded as a degraded 
version of the original and then updated progressively up to the targeted bit rate or to 
the required image fidelity. These features can be achieved by employing progressive 
and embedded coding respectively, in the quantiser.

D efin ition  1.1 (Em bedded C oding) In  embedded coding, a signal (image) is coded 
at a bit rate R{ in a such way that the bit streams for all the other lower bit rates 
(Rq < R \  < • • • < R i )  are progressively embedded within the bit stream for R{ and 
( D(Rq) > D {R \ ) > • • • > D (R {) ), where D (R) is the signal distortion at rate R.

The embedded coding quantisers employ scalar quantisation. W ith embedded coding, 
the coded image bit stream can be decoded at any other lower bit rate. Examples 
are Embedded Zero tree coding of Wavelet coefficients (EZW) [12], Set Partitioning 
in Hierarchical Trees (SPIHT) [13], Compression of Reversible Embedded Wavelets 
(CREW ) [14] and Embedded Predictive Wavelet Image Coder (EPW IC) [15], which is 
based on a conditional probability model developed by joint sub band statistics. More 
about embedded quantising in embedded lossless coding is discussed in chapter 4.
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1 .2 .5  E n tro p y  c o d in g

The zeroth order entropy HO for a symbol set of M different symbols considering a 
memoryless source can be computed as in equation 1.11.

M - 1
# 0 =  -  ^ 2  Pi log2 Pi (1.11)

t = 0

Pi is the probability o f  the ith symbol.

Two widely used entropy coding methods are Huffman coding and arithmetic cod
ing [16]. Normally, these coding schemes assume the source as a memoryless model 
and compress it to the zeroth order entropy of the data stream according to the prob
ability density distribution of the data symbols in the input stream [17]. However, 
significant gains can be obtained by exploiting the redundancy in the input stream. 
This is normally achieved by: run length coding followed by the entropy coding, by 
using adaptive entropy coding, by context based entropy coding or by combining two 
or more of the above.

In adaptive coding, the symbol probabilities up to the most recently coded symbol are 
considered in the probability density distribution in computing the probability of the 
current symbol. The probability, p,-, of the current symbol Xi in equation 1.11 is the 
conditional probability conditioned with the previous i — 1 symbols.

Pi =  p(Xi =  Xi\X0 =  x Q, . . .,Xi_i =  z*_i). (1.12)

W ith adaptive entropy coding, no probability information has to be sent to the decoder. 
Adaptive arithmetic coding, presented in [16, 17], uses this concept. Adaptive entropy 
coding provides better coding performance and avoids multiple scans through the input 
symbol stream. Further, it can avoid the use of pre-built coding tables tha t are used 
for entropy coding in the current JPEG  [18] and MPEG standards.

To compress data using adaptive entropy coding methods, a model of the data stream 
is required. This model needs to achieve correct prediction of the probability of the 
incoming symbol and the probability estimations need to deviate from a uniform distri
bution [17]. Finite context models based entropy coding helps to achieve such models. 
In context based entropy coding, probability for each incoming symbol is calculated 
based on the probability distribution function of a coding context in which the symbol 
appears. The finite contexts are usually determined by the statistical modelling of the
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previously coded symbols.

1 .2 .6  Im a g e  q u a lity  m ea su rem en t

The most common method of comparing the decoded image, / ,  with the original image, 
/ ,  of N xM  dimensions is to use the peak signal-to-noise ratio (psnr), which is based on
the root mean square (rms) error of the two images as in equations 1.13 and 1.14.

( 255 \
--------------  ) dB  (1*13)
rm s error J

rm s error =
, N - 1 M —l

T m  E  E  ( K* , v ) - I { x <v ) ) 2 (1-14)N x M  .  .x= 0  y=0

1.3 Lossless and Nearly Lossless Coding

As seen in previous sections, image/video compression reduces the volume of data  by 
discarding some, if not all, irrelevant data while maintaining an information content 
with a reasonable fidelity. Usually in visual media coding, one may reduce one or 
more of spatial (inter pixel and inter frame), spectral (within different spectral bands), 
psycho visual and coding redundancy types, while maintaining image visual quality. 
All coding techniques can be categorised into two groups, namely lossy and lossless 
coding, according to the effect of their compression.

The image coding model described in section 1.2 and the macro block coding described 
in section 1.1 fall into the lossy coding category, as quantisation is involved in these 
coding models. However, there are some applications where no loss of exact pixel values 
is tolerated. Lossless coding is used in such applications. The definition of lossless 
coding, adopted from JPEG-LS [19], the current lossless image coding standard is set 
out below.

D efin ition  1.2 (Lossless C od ing) In lossless coding, compression and decompres
sion of a image /  video sequence results in the exact recovery of the individual pixel 
values of the original image /  video sequence.
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In lossless coding, only spatial and coding redundancies are exploited. The disadvantage 
in lossless coding is tha t only modest compression ratios can be achieved, whereas in 
lossy coding, higher compression ratios can be achieved at the expense of the image 
perceivable quality and exact pixel values.

Preserving the total dynamic range of the pixels is not very im portant and an exact 
recovery is not vital in many applications, where further image analysis based on pixel 
values is not performed. As a consequence, several near exact recovery coding tech
niques have been developed to eliminate the disadvantages of lossless coding. These 
nearly lossless coding methods can be categorised into two classes depending on their 
operation. They are

1. Near-lossless coding.

2. Quasi-lossless coding.

The definition of near-lossless coding, adopted from JPEG-LS [19], is as below.

D efin ition  1.3 (N ear-L ossless C od ing) Near-lossless coding is a lossy encoding and 
decoding process, in which the output of the decoding process is such that each recon
structed pixel of image /  video sequence differs from the corresponding one in the input 
to the encoder by not more than a pre specified value S.

W ith near-lossless coding, the accuracy of the decoded pixel values, which is in the 
range of ±6, is known, so that the accuracy of the pixel value based computations can 
be determined. When 6=0, a near-lossless codec performs losslessly.

Quasi-lossless coding includes high bit rate lossy encoding processes, where the dis
tortion due to quantisation is small. There is no distinct definition for quasi-lossless 
coding. In this research, lossy codec performance up to  a bit rate tha t is about half of 
the corresponding lossless bit rate can be considered as quasi-lossless coding. Examples 
are lossy image coding with no quantisation, but the transform coefficients rounded (or 
truncated) to integers and visually lossless coding techniques.

More about recent work on lossless and near lossless coding can be found in the chapter 
on literature survey (Chapter 2).
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1 .3 .1  L ossless  im a g e  and v id e o  c o d in g

As seen in section 1.1, colour images consist of three spectral bands. For colour images 
in RGB format, lossless coding can be performed for the three bands separately. This 
avoids exploiting inter spectral redundancies. The colour transformation in equation
1.1 cannot be used in lossless coding because the conversion back to RGB space is not 
lossless, due to rounding effects of the decimal values caused in the colour conversion. 
Therefore, a reversible colour space transformation as in equations 1.15 and 1,16 can 
be used [20].

R G B  -  Y C bCr 

Y  

Cb 

Cr

Y C bCr R G B  

G 

R  

B

[.J is the downward rounding operation.

In lossless video coding, the chroma sampling format of 4:4:4 is usually considered as 
other sampling formats (4:2:0 and 4:2:2) cause losses due to chroma sub-sampling.

1 .3 .2  V isu a lly  lo ss le ss  co d in g

In entertainment video and digital picture applications, where the end user is the human 
eye, the knowledge about accuracy on the exact pixel value recovered is not vital at all. 
For such applications, a visually (perceptually) lossless image/video coding technique 
is more useful than lossless or near-lossless codecs, which code information containing 
visual redundancy. Further reduction of bit rates, and thereby higher compression 
ratios can be achieved by coding up to a visually lossless level.

Usually, the compression is said to be visually lossless when a compressed image cannot

R  -f- 2 G -j- B

B - G

R - G

(1.15)

=  Y

Cr -f G 

Cb +  G

(1.16)
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be distinguished from its original [21]. The author in [22] has stated tha t the term 
“visually lossless compression” can be used only if the reconstructed image looks like 
the original when they are compared in a two alternative forced choice test and the 
preference for one image over the other is statistically insignificant. Another definition 
is to keep the probability of detecting an error at each pixel just below the visual 
threshold [23].

Traditional image coding techniques are usually based on optimising rate distortion, 
where distortion is measured mathematically using the rms error metric. Visible dis
tortions caused by quantisation in lossy coding /  decoding are inappropriate for en
tertainm ent video and digital picture applications. This has resulted in the research 
into visual aspects of image /  video coding algorithms. The errors due to quantisation 
and non-integer transforms may begin as mathematical differences, but end up as a 
visual difference once the image is displayed. The main goal of the perceptual coding 
research has been to determine the degree to  which these mathematical differences be
come visible and thereby to formulate visually lossless coding, or to minimise the visual 
distortions for a given bit rate.

The perceptual coding research to determine a perceptually lossless compression is 
mainly based on two methods, namely the Human Visual System (HVS) models and the 
psychovisual tests [24]. In the HVS models the visual process involved in the perception 
of images are modelled using the fundamental theoretical and empirical knowledge of 
the HVS, whereas psychovisual testing involves the use of subjects (potential viewers) 
to  assess the quality of the images.

T he hum an visual system  (H V S) and th e m odel

The HVS has a number of fundamental properties th a t have often been studied and 
modelled. The three main fundamental properties of these, in the order in which they 
occur in the HVS and therefore the order in which they appear in the HVS model [23] 
are: luminance sensitivity, frequency sensitivity and signal content sensitivity.

Luminance sensitivity corresponds to the subjective brightness of the image, which 
is known to be a non linear function of the light intensity incident on the eye and 
normally modelled by a logarithmic model in the amplitude non-linearity component 
of the HVS model [25]. Frequency sensitivity corresponds to the HVS’s sensitivity to 
spatial changes of luminance levels in an image [23], which is modelled as the contrast 
sensitivity function (CSF) in the HVS model [25]. Signal content sensitivity corresponds
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to the sensitivity of the HVS to the signal content of an image. This is normally 
modelled as contrast masking functions, where the noise is masked by the underlying 
image content [23].

P sychovisual testin g

The psychovisual tests use potential viewers, under highly controlled conditions to 
measure the visual quality of images. The conditions for psychovisual testing recom
mended by the ITU-T can be found in the Rec. 500-4 [26]. This recommendation sets 
the viewing conditions for the assessments, with reference to the distance from the 
screen, peak luminance of the screen, room illumination, number of assessors per mon
itor, display brightness and contrast and the nature of the viewing room. Further, it is 
recommended tha t the test images should be presented in a pseudo random sequence.

1.3.2.1 V isual quality m etrics

As mentioned earlier, the traditional image quality measure, the rms error metric, does 
not measure the visual quality of the compressed image. Recently, there has been 
some published research on measuring the visual image quality. One such method is to 
compute the picture quality scale (PQS) [27] over the full range of image quality defined 
by the subjective mean opinion score (MOS). This involves measuring the properties of 
visual perception for both global features and localised disturbances. Another example 
is the wavelet visible difference predictor [23], which computes visible difference in 
wavelet image coding based on the multiple channel models of the HVS [25, 28, 29], 
and their relationship to the wavelet transform.

However, these quality metrics are not yet commonly used in the compression commu
nity due to their computational complexity.

1.4 Summary

The basic concepts of four coherent topics, namely video coding, image coding, lossless 
and nearly lossless coding and visually lossless coding were introduced in this chapter. 
The next chapter will present published research relevant to the topic of this thesis.
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Chapter 2

Literature Review

Image and video coding algorithms can be either lossy or lossless. Lossy image and video 
coding techniques with low bit rate coding have been the preferred coding methods in 
multimedia and internet applications. Therefore, most of the published research has 
been on lossy coding techniques. However, research on lossless image/video coding 
and visually lossless coding has been highly considered in some applications due to 
the reasons discussed in the previous chapter. This chapter discusses the published 
research on lossless image coding, near-lossless image coding and lossless video coding. 
The organisation of this chapter is as follows. Sections 2.1-2.3 report and discuss the 
published research on above topics respectively. Finally, in section 2.4 the research 
objectives and their necessity for this thesis is presented followed by a thesis outline.

2.1 Lossless Image Coding

In lossless coding, the inter pixel redundancy of the image and the coding redundancy 
of the decorrelated symbol stream are exploited in order to achieve compression. The 
lossless coding techniques that have been presented in the current published literature 
can be grouped into three main categories. They are as follows.

1. Prediction based methods.

2. Lossy coding followed by lossless coding of the residuals.

3. Transforms that map integers into integers (integer transforms) based methods.
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2 .1 .1  P r e d ic t io n  b ased  m e th o d s

The predictive coding based on a causal template has been the most commonly used 
lossless image coding method due to its simplicity and efficiency. The philosophy un
derlying the predictive image coding techniques is to remove inter pixel redundancy by 
predicting the current pixel from the previously coded (i.e. using a causal template) 
neighbouring pixels and coding the prediction error losslessly. The probability distri
bution of the prediction error can be modelled as a double sided geometric distribution 
with narrow peaks centred at zero and long tails, thus resulting in significantly lower 
zeroth order entropy than that of the original image.

In the lossless mode of the previous JPEG  standard [18] (JPEG-Lossless), a predictor 
set which uses three neighbouring pixels (N, W and NW as in Figure 2.1) to predict the 
current pixel X has been employed. Then the prediction error for each pixel is entropy 
coded using a Huffman table which is nearly identical to tha t used for DC coefficient 
coding in the JPEG  baseline codec.

NW

Figure 2.1: JPEG-Lossless mode prediction template.

However, such linear and fixed predictive techniques are far from being powerful enough 
to provide a good prediction. Therefore, during the past few years, predictive coding 
techniques have been developed into the combination of predictive coding based on 
adaptive statistical context modelling of images [30, 31] and the entropy coding of the 
prediction error using estimated probability density functions (PDF) conditioned on 
the contexts in which the pixels are observed [17]. Two such examples are the Context 
based Adaptive Lossless Image Codec (CALIC) [31, 32, 33] and the LOw Complexity 
LOssless Compression (LOCO-I) [31, 34].

The CALIC algorithm, which puts heavy emphasis on image data  modelling, uses
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a Gradient Adjusted Predictor (GAP) which adapts the prediction according to the 
local gradients, thereby using a non-linear predictor which adapts to varying source 
statistics. The GAP classifies the gradient of the current pixel X according to the 
estimated gradients in the neighbourhood (Figure 2.2), which is wider than tha t used 
in JPEG-Lossless, and chooses the appropriate predictor according to the classification 
[32, 33]. Then the prediction error is context modelled and entropy coded.

NN NNE

NW N NE

ww w X

Figure 2.2: The GAP prediction template.

The LOCO-I algorithm uses the Median Edge Detection (MED) predictor, which adapts 
in the presence of local edges [34]. The MED classifies the edge type of the current 
pixel X by using a causal template, as in JEPG-Lossless, and one of three predictors are 
used according to the classified edge type. The MED prediction error for each pixel is 
coded using a context model, determined by quantised gradients, followed by Golomb- 
Rice coding [35] for entropy coding. The LOCO-I algorithm was recently standardised 
as the new lossless and near lossless image coding standard, JPEG-LS [19, 36]. More 
about recent developments in context based prediction techniques used in lossless image 
coding research leading to JPEG-LS standardisation can be found in [31].

The other predictive techniques used in lossless image coding include adaptive L- 
predictors (linear combinations of ordered statistics) based on finite state machine 
context selection [37], a prediction model based on backward adaptive recognition of 
local texture orientation (BAROLTO) followed by a Poisson statistical model for error 
coding [38], prediction based on fuzzy switching of a set of linear predictors followed 
by arithmetic coding [39] and prediction based on adaptive median FIR filter followed 
by error mapping and context modelling for entropy coding [40].
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The sequential prediction techniques discussed above have been extended into sub 
band prediction based methods that result in multiresolutional decorrelation. The 
most famous example is the hierarchical interpolation (HINT) [41, 42] algorithm used 
in reversible medical imaging applications. In HINT, image pixels are classified into 
five different types using a 4x4 base block (Figure 2.3) and firstly, the o type pixels 
are coded using DPCM. Then the A  pixels are linear interpolated using four o type 
pixels and the error is variable length coded (VLC). Then the • pixels are predicted by 
interpolating the o and A  pixels followed by the x and * pixel prediction. In all the 
above steps, the prediction is rounded and the prediction error, which is an integer, is 
coded using VLC.

o * • ★ 0
★ X ★ X ★
• * A * •
★ X ★ X ★
o ★ • ★ 0

Figure 2.3: HINT pixel classification.

Similar interpolative sub band prediction techniques have been developed for lossless 
coding. Examples are a prediction technique based on a four channel filter bank [43] and 
an interleaved hierarchical prediction [44] which splits the non separable interpolation 
process into two cascaded directional steps. The author in [45, 46] compared different 
interpolation methods for the prediction in four sub band splitting as in quincunx split
ting and has concluded the median-FIR based interpolation as the best decorrelator.

The sub band interpolative methods followed by context based residual coding has 
not achieved better lossless compression performance compared to  tha t of sequential 
prediction techniques discussed earlier. However, progressive coding /  decoding can be 
incorporated into these sub band interpolative methods.

The two types of prediction based techniques discussed above, namely, sequential and 
interpolative, have used different entropy coding techniques such as Huffman tables 
in JPEG-lossless, Golomb-Rice in LOCO-I, DPCM and VLC in HINT and statistical 
context.modeling, to encode the prediction residuals. As in JPEG-LS, the current 
lossless standard, most of the methods employ context modelling of the error prior 
to entropy coding. A minimum entropy clustering method, where a set of vectors 
are clustered using a minimum entropy criteria as in classical vector quantisation, has 
also been used in literature [47]. It has also been recorded tha t such a method has 
significantly outperformed a single entropy coder based lossless coding.
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2 .1 .2  L o ssy  co d in g  fo llow ed  b y  resid u a l c o d in g

The second approach is using lossy compression followed by entropy coding of the 
error due to lossy coding. In one such lossless coding example, filter banks based 
wavelet transforms were used for lossy compression [48], where wavelet coefficients 
were encoded using a variable block size segmentation and a directional prediction 
scheme. The residual error due to the finite precision arithmetic was coded using 
adaptive arithmetic coding. A similar approach using zero tree coding for the lossy 
coding part, thereby adding the embedded property to the codec, has been presented 
in [49, 50].

The compression ratios achieved by this approach are comparable with those of JPEG- 
Lossless. This approach is more computationally expensive than the predictive coding 
techniques due to the inverse wavelet transform, which has to be performed in the coder 
in order to find the error caused by the finite precision arithmetic in the lossy coding 
part. Therefore, this approach is inferior to the predictive coding approach in lossless 
coding.

2 .1 .3  In te g er  tran sform s b ased  m e th o d s

Although transforms are theoretically designed to be lossless, when implemented on 
computer hardware or software, no perfect reconstruction can be achieved due to fi
nite precision arithmetic in computer operations and the large dynamic range of the 
transform coefficients. However, the image transformations can be modified in order 
to achieve integer coefficients with a finite dynamic range. Therefore such transforms 
tha t map integers into integers can be used for lossless image coding.

The early examples include lossless implementations of Walsh Hadamard transform 
(W HT) [51, 52] and DCT [53]. The WHT comprises combinations of +1 s and - 1  s, 
followed by a normalising factor. If the normalising factor is ignored, the transform can 
be realised by additions and subtractions of the input signal elements. In [51, 52], the 
redundancy in additions and subtractions have been removed by incorporating a lossless 
quantisation scheme. The compression ratios achieved using such lossless WHT were 
better than those from JPEG-Lossless. Since the WHT is an orthogonal transform, the 
embedded coding feature has also been added to the codec using the lossless WHT.

The DCT based lossless coding methods involve factoring the un-normalised DCT 
matrix into upper and lower triangular matrices with unit diagonals. Since the DCT
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is an orthogonal transform, the DCT matrix is unitary. Any unitary m atrix can be 
factorised into two triangular matrices (Upper and Lower triangular) [54] which in turn 
can be used to obtain lossless DCT coefficients. Such a method for the 8-point DCT 
has been introduced in [53]. The lossless DCT, which has also been used for embedded 
coding has shown the lossless and rate distortion performances similar to those of the 
lossless WHT [53].

Recently, the wavelet transforms that map integers into integers have also been im
plemented [55]. Any discrete wavelet transform, or two channel filter bank with fi
nite filters, can be decomposed into a finite set of simple filtering steps called lifting 
steps [55, 56, 57]. This decomposition is normally done by factoring the polyphase 
m atrix of the wavelet or filter bank into elementary matrices using the Euclidean al
gorithm [55, 58]. W ith this, the normal lattice structure associated with the wavelets 
and filter banks is converted to a ladder structure, with which the rounding operations 
can be employed into lifting steps in order to achieve integer coefficients [5, 55]. The 
beauty of the lifting scheme is that it can be used in biorthogonal wavelets, which is a 
non-unitary system, as well [10]. Various lifting factorisations have been introduced in 
literature [56, 59, 60]. The S+P transform (S Transform +  Prediction) [61], which was 
obtained by introducing an additional predictive lifting step on the S transform [56], 
is also an example for integer wavelets. More about integer wavelet transforms using 
lifting and their applications on lossless image coding is discussed in section 3.1.

These integer wavelets have been used in lossless image coding by using the separable 
lifting steps for the rows and columns of the image, and entropy coding of the coefficients 
[20, 62, 63, 64]. Three methods have been considered to  encode the wavelet coefficients 
in the published literature.

The first method was encoding the coefficients using a two pass Huffman coding opti
mised for each image [63].

In the second method, a Magnitude-Set Variable Length Integer (MS-VLI) was defined 
and the Magnitude-Set(MS) information was arithmetic coded conditioned to the mean 
MS of the causal neighbours appearing in a raster scan [63]. This method has been 
improved by using rigorous context modelling based on pixels from the parent and 
sibling sub bands, and thus exploiting the inter sub band dependencies of the coefficients 
[64]. Further, the use of context based arithmetic coding in this method has been 
demonstrated in [65].

The third method was using an embedded or progressive fidelity transmission algorithm

22



to  encode the wavelet coefficients. The embedded coding algorithms, SPIHT [13] and 
CREW [14], have been used in lossless image coding algorithms presented in [63] and 
[20] respectively for progressive coding of integer wavelet coefficients.

The results published in [63] show the superiority of the second method over the first 
and the third. But the third method, using embedded coding, enables the coded bit 
stream to be decoded at any lower bit rate, thereby making the codec versatile for both 
lossy and lossless modes of operations.

2.1.3.1 C ontext m odelling

As seen in above lossless coding examples, it is evident tha t employing a context 
modelling process to choose a prediction context [19, 36, 37] or a coding context 
[17, 30, 31, 33, 39, 49], in which the current pixel or the symbol appears, has im
proved the efficiency of the predictor or the entropy coder or both. A brief literature 
survey on context modelling can be found in section 5.1.1.

2.1.4 Sum m ary

As reported in the literature [31], predictive coding has been the preferred data decor- 
relating method for lossless image coding as they have obtained the best compression 
ratios out of the three coding techniques considered. The current lossless coding stan
dard, JPEG-LS, is also based on a predictive lossless coding technique. The sequential 
predictive coding techniques discussed in section 2.1.1 were based on local predictive 
techniques (using a causal template). The high pass bands in transform coding using 
filter banks or lifting are analogous to prediction error due to global predictions. There
fore, integer wavelet transforms provide a global prediction which uses the neighbour 
pixels from both sides of the pixel concerned (using a non causal template). The ad
vantage of using integer wavelet transforms or any other integer orthogonal transform 
is due to the progressive coding /  decoding by fidelity or by resolution features that 
can be incorporated into the lossless bit stream through embedded coding techniques. 
Furthermore, using sub band interpolative prediction methods, which possess lower 
computational complexity than the integer transforms, also enables progressive coding 
/  decoding. This is the main advantage of using integer transforms or hierarchical split
ting based techniques over sequential predictions based techniques. Recently however, 
there has been an instance of incorporating a rate control mechanism based on visual 
perception into JPEG-LS, so that it can also be used as a quasi-lossless coder [66].
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2.2 Near-Lossless Coding

According to Definition 1.3 on page 13, in near-lossless coding, a maximum pixel error 
±  6 th a t any reconstructed pixel is allowed to have due to lossy coding can be specified 
by the user at the time of coding. Coding is optimised so tha t the decoded image pixels 
differ from those in the original by not more than this pre-specified value.

Near-lossless coding can easily be incorporated into predictive lossless coding techniques 
discussed in section 2.1.1. This is normally performed by quantising the prediction 
error. For example, in JPEG-LS a near-lossless compression with maximum error 
value 6 is achieved by quantising the prediction error values (e) as below [19].

Q(c) = S  ign (e) 1 ^  +  6
2 6 + 1

(2.1)

Q(e) is the quantised error value e. The reconstructed error value i  is obtained as 
below.

c =  <2(e)x(2<!> +  1) (2.2)

In the encoder, the reconstructed error value is used to reconstruct the actual pixel 
values, which are used in context modelling and prediction processes, so that both 
encoder and decoder are synchronised to  each other. For small 6 values, this type of 
near-lossless coding has shown superior PSNR results compared to traditional lossy 
coding methods [36].

The quantiser in equation 2.1 quantises the prediction error uniformly. There are 
a few instances of near-lossless coding methods tha t attem pt to maximise the rate 
achievable for a set of pixels rather than using uniform quantising. For example, rather 
than quantising as in equation 2.1, trellises were constructed describing all possible 
quantised prediction error sequences tha t yield reconstructed images meeting the near- 
lossless requirement and the trellises with minimum entropy were selected to encode as 
in [67, 68, 69].

In lossless image coding methods using integer transforms, it is unpractical to encode 
the transform coefficients to a near-lossless criterion in the transform domain. There
fore, the pixel values were normally pre-quantised in a  similar manner as above prior 
to the integer transform and embedded coding. Such a method using integer wavelet 
transforms has been introduced in [70]. For each pixel x, the quantised pixel value I is 
obtained as below.

x + 6 
[26 + 1

(2.3)
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At the decoder, pixel values are reconstructed as below after the inverse transform.

£ = / x ( 2 M l )  (2.4)

Although the compression ratios achieved with this method were inferior to those of 
predictive techniques, embedded features can be incorporated to near-lossless coding 
with this method. However, this method is not very efficient for the near-lossless 
param eter value, 6, higher than 3 [70].

Recently, a near-lossless coder with successive refinement capability based on the near- 
lossless parameter 6 has also been published [71]. This coder provides a near-lossless 
to lossless progressive coder using a successive refinement method based on pre defined 
S values, for example, Sn > 6n- i  > • • • >  Si > So = 0. This embedded stream can be 
decoded at the 6 values defined a t the coding end.

2.3 Lossless Video Coding

Only a few attem pts on lossless video coding methods have been published thus far. The 
performance of predictive techniques for lossless coding of image sequences of 24 bits per 
pixel in RGB domain hats been investigated in [72], where an adaptive prediction scheme 
th a t exploits temporal and spectral correlation in a  3-D colour signal was presented. 
Those results show that significant advantages can be gained by reducing temporal 
correlation using motion compensation based on a modified block matching. Moreover, 
the authors have shown tha t further advantage can be achieved by considering inter 
band 3-D predictions among colour bands, rather than coding each band individually.

In another example, a 3-D version of CALIC [32, 33], has been used to exploit inter 
band correlation in multispectral lossless coding [73]. Also in this case, the authors have 
shown tha t considering temporal and inter band dependencies would improve lossless 
coding results rather than by applying 2-D techniques on individual frames.

Further, there has been an example of extending the modified HINT [41] into 3-D by 
considering inter frame sub sampling for generalised recursive interpolation (GRINT) 
[74] for lossless coding of medical image sequences.

In another lossless video coding example, a DCT based lossless video coding scheme 
compatible with MPEG-2 was introduced [75]. In this method, a modified DCT, fol
lowed by a lossless quantisation scheme was designed heuristically exploiting the peri-
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odic structure of the coefficients. The main advantage of this type of coding is tha t the 
video sequences coded with this algorithm can be decoded with an MPEG-2 decoder 
for a lossy version.

In summary, from the above examples, it can be concluded tha t the 3-D predictive 
coding methods and the modified integer transforms based techniques have already been 
considered for lossless coding of 3-D data. Further, they have shown tha t incorporating 
motion compensation in prediction schemes would improve the lossless video coding.

2.4 Thesis Outline

In this chapter, the existing research on the topics relevant to this research was pre
sented. However, little research into lossless video coding has been published. Basically, 
3-D predictive methods and modified transforms have been used in lossless video cod
ing. Further, in [72], the authors have shown that higher compression can be achieved 
by incorporating motion compensation into prediction schemes.

In this research, motion compensation based lossless video coding is considered. The 
motion compensation framework used in MPEG-2 is used in this research. This breaks 
this research into two parts, namely, lossless coding techniques tha t can be used for 
intra frames and those tha t can be used for non-intra frames. In entertainment video 
applications, the exact pixel value recovery is not vital where the end user is a human 
viewer. In tha t case, employing embedded to lossless coding provides the added ad
vantage of decoding at lower bit rates from the lossless bit stream. Further embedded 
decoding facility enables quick previewing or a quick inter-studio transmission via a 
low bandwidth channel from a losslessly coded master copy.

The first part of this research is mainly concerned with embedded lossless and nearly 
lossless coding of intra frames (still images). This is normally achieved by employing 
a transform that maps integers into integers and an embedded quantiser. Although 
the use of integer wavelet transforms in lossless image coding has been reasonably 
demonstrated, the use of other transforms has not been considered extensively. This 
is mainly due to the non availability of integer implementations of such transforms 
with generic block sizes. In Chapter 3, Integer wavelet transforms are introduced 
and the integer versions of the DCT, the DST and the Walsh Hadamard (W HT) are 
derived using their intrinsic properties and the lifting concepts. Integer forms of the 
above mentioned block transforms are designed for generic block sizes, so tha t the most
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suitable transform size for lossless coding can be found by experiment. Further, the 
concepts of hierarchical non linear sub band splitting techniques are used to derive a 
new set of integer non-linear transforms for lossless coding experiments.

In Chapter 4, the concept of embedded coding and its framework are introduced. The 
existing scanning techniques of transform coefficients for embedded coding are analysed 
and a novel scanning scheme, Adaptive Quadtree Splitting, is introduced based on the 
integer wavelet coefficients.

Chapter 5 investigates the performance of the Embedded to Lossless Image Coder 
(ELIC) using the integer transforms discussed in Chapter 3 on in tra frames (still im
ages). Further, near-lossless coding performance using pre-quantisation and novel in- 
transform (online) near-lossless quantisation methods are evaluated. Finally, the rate 
distortion performance in quasi-lossless decoding is discussed.

Chapter 6 focusses on lossless coding of the motion compensated prediction residuals 
in non-intra frames. The characteristics of the residuals are presented and the use of 
the integer transforms presented in Chapter 3 is investigated. Finally, the embedded 
quantiser ELIC is used to investigate the performance of the integer transforms on 
residuals and the best lossless coding strategy for the non-intra frames.

Chapter 7 combines the research presented in the previous chapters together. The em
bedded lossless video coder is introduced and its lossless and nearly lossless coding /  
decoding performances are analysed, mainly considering the embedded decoding per
formance at quasi-lossless bit rates in an asymmetric video coding framework. Finally, 
Chapter 8 concludes this thesis with the conclusions of the findings from this research 
and possible future work.

2 .4 .1  T est im a g es  and  v id e o  seq u en ces  se t

The test image set used in this research include 5 images, namely, Gold Hill, B arbaral, 
Barbara2, Boats and Black board. All images were of the dimensions of 576x704. 
The images were in grey scale and consisted of 8 bits per pixel. Four sequences with 
different motion characteristics were used as the test sequences. They were Claire (a 
talking head), Mobile (horizontal, vertical and rotational object motion coupled with 
camera motion), Unicycle (vertically moving texts on a moving background) and Kiel 
harbour (zooming in). All the sequences were in grey scale (Y component only- 8 bits 
per pixel) and in CIF size (288x352).
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Chapter 3

Integer Transforms

Transforms tha t map integers into integers, also known as integer transforms, are the 
main component of transforms based lossless image coding. The main objective of 
this chapter is to introduce and design such integer transforms tha t may be useful 
in lossless coding of intra frames and non-intra frames. In this chapter, the design, 
properties and usage in lossless image coding of integer transforms, namely, the Integer 
Wavelet Transforms (IW T), the Integer Walsh Hadamard Transform (IW HT), the In
teger Discrete Cosine Transform (IDCT), the Integer Discrete Sine Transform (IDST) 
and an Integer Non-Linear Transform (INLT) based on quincunx sub band splitting 
and median filtering are discussed. The rest of the chapter is organised as follows: Sec
tions 3.1-3.5 present the introduction, design and the lossless performance of the above 
transforms respectively. Finally, section 3.6 compares and discusses the performance 
of those transforms on lossless image coding.

3.1 The Integer Wavelet Transforms (IWT)

The wavelets are translates and dilates of a fixed function known as the mother wavelet. 
As mentioned in section 1.2.3, the wavelet transforms can be implemented either using 
filter banks or using lifting steps. In the lifting method, a filter bank operation is split 
into a finite sequence of simple filtering steps by performing lifting steps. This corre
sponds to the factorisation of the polyphase matrix, corresponding to the filter bank 
into elementary matrices [55, 56, 57, 59, 60, 76]. Lifting has been used in constructing 
both orthogonal and biorthogonal wavelets [10].
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3 .1 .1  T h e  lift in g  sch em e

The idea of lifting was originated as a method of building the second generation 
wavelets, where the wavelets are not necessarily translates and dilates of the mother 
wavelet as in the first generation wavelets [76]. The first generation wavelets were con
structed with the aid of Fourier transform techniques. But construction of wavelets 
using the lifting approach does not use Fourier transform techniques. Lifting is entirely 
a spatial method. The lifting concept can be shown in a block diagram as in Figure 3.1.

~r

<±b

H P

L P

Figure 3.1: Lifting Block Diagram.

The first step of lifting is to separate the original sequence (X )  into two sub sequences 
containing the odd indexed samples ( X Q) and the even indexed samples (X e). This sub 
sampling step is also called the lazy wavelet transform.

X Q: di * 2-21 + 1

X e : s i < x 2 1

fo r  i =  0 . . .  (L / 2 — 1), 

where L is the signal length.

(3.1)

(3.2)

Then the lifting steps, dual lifting (P) and primal lifting (U), are performed on these 
two sequences. The two sets X Q and X e are closely correlated. So a predictor P {) 
can be used to predict one set from the other. In this prediction step, which is also 
called dual lifting, the odd indexed samples are predicted using the neighbouring even 
indexed samples and the prediction error (detail) is recorded replacing the original 
sample value, thus providing in-place calculations.

di  <- di -  P ( s A) 

where, A = ( i — \N /  2] +  1 , . . . , *  +  [N /  2J ) 

N  is the number o f  dual vanishing moments in d.

(3.3)
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N is the number of dual vanishing moments, which set the smoothness of the P func
tion. This prediction step is also similar to the prediction performed in state-of-the-art 
lossless coding methods. But in lifting, prediction is only based on the pixels in the 
same row. In predictive lossless coding, the prediction is based on a causal mask, 
whereas in lifting, pixels on either sides of the pixel to be predicted are also used in 
the prediction mask. This is possible due to the sub sampling step performed through 
the lazy wavelet.

In the second lifting step, primal lifting (U), the even samples are replaced with 
smoothed values using the update operator U( ) on previously computed details. The 
U( ) operator is designed to maintain the correct running average of the original se
quence, in order to avoid aliasing.

s .  <- s i  + U (d s )  (3.4)

where , B  =  ( t — [N /  2J \N  /  2] — 1)

N  is the number o f  real vanishing moments.

The U( ) operator preserves the first N  moments in the s sequence. The lazy wavelet is 
lifted to a transform with required properties (number of vanishing moments in analysis 
and synthesis filters as in the filter bank approach) by applying the dual and primal 
lifting pair of operations one or more times. Finally, the output streams are normalised 
using the normalising factor ,k t.

d{ <— di x  1 /k  (3.5)

Si *— Si x  k (3-6)

The output from s channel after dual lifting steps provides a low pass sub band, whereas 
the output from d channel, after dual lifting steps provides a high pass sub band. The 
inverse transform is obtained by reversing the order and the sign of the operations 
performed in the forward transform.

3 .1 .2  In te g er  w a v ele ts

The above transforms and the filter bank based transforms based on filter banks, result 
in floating point values as wavelet coefficients. In many applications the input data 
contains integers. An integer version of transforms is im portant for lossless compression. 
Rounding the floating point coefficients to obtain integers does not provide much help 
as it loses the perfect reconstruction. But the lifting scheme can be easily modified
to achieve a transform that maps integers to integers, while maintaining the perfect
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reconstruction property [56]. This is achieved by rounding off the outputs after P ( ) 
and U( ) operators. This rounding off is normally implemented by adding a factor |  to 
the outputs of P ( ) and U{) operators and subsequently truncating them downward, 
before subtracting from or adding to the signal channels. Thus, the equations 3.3 
and 3.4 become,

di <- di -  [POu) + \

s i s i +  2

(3.7)

(3.8)

These rounding operations cause non-linearity in the transform.

The lifting steps are derived by factoring the polyphase matrix, which corresponds 
to the filter bank, into the elementary matrices. This can be performed in several 
ways using the Euclidean algorithm [55], which is commonly used to find the greatest 
common divisor in two polynomials [58]. The most common method of factoring is to 
achieve a unit normalising factor so tha t the integer property of the coefficients is 
preserved. This is normally performed by ignoring the y/2 normalising factor involved 
in filter bank design from the polyphase m atrix prior to  factoring. According to [55], 
the normalising operator can be replaced by introducing four additional lifting steps 
into the lifting scheme (see page 38 for the lifting steps for k =  y /2 ). More discussion 
on treatm ent on normalising can be found in Section 4.2.1.1.

3 .1 .3  T ests  p erfo rm ed  w ith  in teg er  w a v e le ts

The wavelets designed and implemented by the lifting scheme are normally identified 
with the notation (iV, iV), where N  and N  are the number of vanishing moments in the 
dual and primal lifting steps respectively, as opposed to the number of filter taps in 
the filter bank implementation. The wavelets with different combinations of vanishing 
moments, namely (2,2), (4,2), (4,4), (2+2,2), (2,4), (6,2), (all from [56]), (1,1) (also 
known as S transform and the same as Haar wavelet) and S+P [63] were used in the 
following experiments for lossless image coding. The lifting steps for those integer 
wavelets can be found in Appendix A.

3.1 .3 .1  The treatm ent at signal boundaries

The P()  and U() operators use a template centred on the signal component to be 
predicted and updated respectively. These symmetric templates cannot be used at the 
signal boundaries, thus, requiring a special treatm ent at the boundaries.
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The same problem arises in filtering operations in the filter bank realisation of the 
wavelets. In filter bank realisation, three types of boundary treatm ents, namely zero 
padding, circular extension and symmetric extension [77], are commonly used. In zero 
padding, the signal is padded with zeros according to the filter length, whereas in 
circular extension, the signal is repeated according to the filter length, so tha t the 
circular convolution operations can be performed. In the symmetric extension method, 
the signal is reflected at the boundary on a half or whole point, according to the 
symmetry and the length of the filter. It is widely believed tha t the symmetric extension 
method provides the best performance in lossy image coding [5, 77].

The same three extension methods can be employed in the lifting approach. A new 
boundary treatm ent for lifting by changing the symmetry of the prediction and up
date templates near boundaries has been presented in [76]. In this method, since the 
templates are not placed centering the component to be predicted or updated, the 
weights of the components in the template have to be recomputed according to the 
interpolation polynomial generated by the required vanishing moments of the wavelet. 
In this research, a symmetric extension based method, as shown below, was used as the 
boundary treatm ent, due to its simplicity and better performance in lossy compression.

In P lifting :

• • • s[i — 1] s[i] d[i] s[i +  1] s[i +  2]

For example, d[i] is predicted using s[« — l ] . . . s [ i  +  2]. The prediction templates at
i =  0, i =  L — 1 and i =  L — 2, where L is the sub sample length, using this boundary
treatm ent are as below.

For i = 0 : {s[2] s[0] s[l] s[2]}
For i =  L — 1 : { s [ L - 2] s [ £ - l ]  s [ Z - l ]  s[L—2]}
For i =  L - 2 : { s [ L - 3] s [ L - 2] s [ L - 1] s [£ -3 ]}

In U lifting :

"■d[i — 2] d[i — 1] s[i] d[i] d[i +  1] • • •

For example, s[i] is updated using d[i—2 ].. .d[i+ 1]. The prediction templates at i =  0, 
i =  1 and i = L — 1, where L is the sub sample length, using this boundary treatm ent 
are as below.

For i = 0 :  {d[l] d[0] d[0] d[l]}
For i = 1 : {d[2] d[0] d[ 1] d[2]}
For i = L - 1 : { d [ L - 3] d [ L - 2] d [ L - 1] d [ L - 3]}
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In this method, the neighbours nearest to the component to  be predicted /  updated 
are considered in the prediction /  update templates.

3.1 .3 .2  T he zero-order entropy values

All the transforms were applied on the images in the test image set (in section 2.4.1) 
up to 5 levels of iterations. The weighted average zero-order entropy values (in bpp), 
RQ, calculated using equation 3.9 by considering the zero-order entropy value HQ for 
individual sub bands using the equation 1.11 (on page 11), are as in Table 3.1.

1 3Xs
R Q = I v T ,  (3.9)

*=0
where , N  is the total pixels in the image , 

s is the number o f  scales,

N{ is the total pixels in the ith sub band,

H0{ is the zero — order entropy in the ith sub band.

(2,2) (4,2) (4,4) (2+2,2) (2,4) (6,2) S S+P

Gold Hill 4.705 4.702 4.702 4.694 4.715 4.718 5.038 4.759
B arbaral 4.958 4.810 4.787 4.808 4.951 4.767 5.487 4.876
Barbara2 5.066 5.024 5.008 5.024 5.062 5.030 5.453 5.041

Boats 4.234 4.195 4.192 4.183 4.241 4.197 4.643 4.269
Black Board 3.888 3.886 3.878 3.870 3.893 3.897 4.172 3.974

Average 4.570 4.523 4.513 4.516 4.572 4.522 4.959 4.584

Table 3.1: Weighted zero-order entropy values in bpp for IWT.

From the above results, it is evident that the wavelets with a greater number of vanish
ing moments in the prediction lifting step provide better lossless performance compared 
to the wavelets with a fewer number of vanishing moments in the prediction step. This 
is due to  the high inter pixel correlation present in natural images (as in intra frames 
in video) and the wider prediction masks that lead to better prediction. Further, it can 
be seen tha t the extra prediction step in the S+P transform and the (2+2,2) trans
form have resulted in better performance compared to the S transform and the (2,2) 
transform, respectively. On average, the (4,4) wavelet reported the lowest entropy val
ues. Therefore, the (4,4) wavelet has been used as the preferred lifting steps for the 
succeeding intra frame research presented in this thesis. The performance of the above 
integer wavelets on residuals in non-intra frames are presented in section 6.3.
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3.2 The Integer Walsh Hadamard Transform (IWHT)

The Walsh transform uses Walsh functions (WAL) as the basis vectors. The Walsh 
functions form an ordered set of rectangular waveforms with amplitude values of ±1 [78, 
79]. They are defined by two arguments, namely a time period (t ) and an ordering 
number (n) representing the sequency, which corresponds to the frequency in sinusoidal 
waves. The sequency number corresponds to the number of sign changes (or zero 
crossings) in a rectangular waveform.

The WAL^v(w ,<) for an A-point Walsh function set is defined as in equation 3.10

W A LN(n ,t)  =  /  1 X S ig n (C°S ( +  1 V  : n ^  (3.10)
|  1 x S ig n (sin( , t +  | ) ) ; n odd

fo r  n =  0 , . . . ,  A  — 1. 

fo r  t =  0 , . . . ,  A  — 1.

The Walsh functions are orthogonal [78]. Thereby,

N ~ 1 f  n  . I  z =  m
T '  W A L n (1 , t) WALfi{,m , i) =  < ’ (3.11)
SS I 0 ; m

An orthonormal basis vector set can be obtained by dividing these Walsh functions by 
y/~N. Therefore, the A-point Walsh transform pair (forward and inverse) for 1-D data 
sequence, x , of length, N, is defined as in equations 3.12 and 3.13 respectively.

. N -1
X (k )  = - =  £  * (0  W A L N( k , i) (3.12)

V A i_Q

f o r k  =  0 ,1 , . . . ,  A  — 1.

. N - i
x(i) = - n = Y ,  X (k )  W A L N( k , i) (3.13)

V N k=0
fo r  i = 0 ,1 , . . . ,  A  — 1.

3 .2 .1  T h e  W alsh  H ad am ard  tra n sfo rm

In the Walsh transform, the Walsh function set WALjq can be considered as the trans
form matrix. It is unitary and symmetric. The rows of the transform m atrix are the
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basis vectors of W A L n , which are ordered in the increasing sequency order. There are 
a few other ways of arranging the basis vectors. One such method is according to the 
Natural order (or Hadamard order) derived from successive Kroneckor products (®) of 
the lower order Walsh (Hadamard) matrices while preserving the symmetry and the 
orthogonality [78]. This ordering is commonly known as the Walsh Hadamard trans
form. The lowest order Walsh Hadamard m atrix W H n  is the order of two (N  = 2) as 
in equation 3.14.

"  1 1 
1 - 1

W H 2 =  4 =  
\/2

(3.141

Thereby, the Walsh Hadamard m atrix for the higher orders which are integer powers 
of two can be defined using Kroneckor products as in equation 3.15.

W H n  = WHn/2 ® W H 2 (3.15)

This leads to the redefinition of the W-point discrete Walsh Hadamard transform pair 
as in equations 3.16 and 3.17 respectively.

N - 1
X ( k ) =  J 2  x ( i )W H N( k , i )  (3.16)

t= 0

fo r  k — 0 ,1 ,. .  . , N  — 1.

N - 1
x(i) = ^ 2  X ( k ) W S N(k ,i )  (3.17)

k=0
fo r  i =  0 ,1 ,. .  .,1V — 1.

3 .2 .2  T h e  I W H T  b y  li f t in g

The division by y /N  in the W AL n  functions (or the division by a series of y/2 factors in 
the W H n  matrices) causes non-integer values in the transformed coefficients, rounding 
of which loses the unitary nature, thus resulting in lossy reconstruction. The previous 
versions of integer Walsh Hadamard transforms have been implemented by ignoring the 
normalising factors and incorporating a lossless quantisation scheme [51, 52]. Further, 
they were designed heuristically only for the 8-point WHTs. In this section, a novel 
lossless Walsh Hadamard transform, which maps integers into integers, is introduced. 
Unlike the previous integer WHTs, this derivation incorporates the normalisation fac
tors into the implementation and considers any block size, N, where N is an integer 
power of two.
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The equation 3.16 can be represented in m atrix form as in equation 3.18.

X  =  W H n x (3.18)

This can be rewritten using equations 3.15 and 3.14 as in equation 3.19, which in turn 
can be written as in equation 3.20 using matrix partitions.

X =  " 7=  \/2
W H N /2 W H N /2

W H n/2 - W H n/2 J
(3.19)

X l 1 w h n/2 w h n/2
X2 w h n/2 - w h n/2

Xl
x2

(3.20)

where , X j =  X ( 0 , . . . , N / 2 - 1 ), X 2 =  X ( A /2 , .. . , A - 1 ) 

and x i  =  x (0 , . . . , A / 2  —1),  x 2 =  x ( A / 2 , . . . , A  — 1)

The equation 3.20 can be simplified into the form in equation 3.22 using partitioned 
m atrix multiplication.

X i 1 W H n/2 X l +  W H n/2 x 2

X 2 ~  V2 W H n /2 X l -  W H n/2 x 2
(3.21)

X l W H n/2 U i

X 2 w h n/2  u 2
(3.22)

where ,
U i 1 In /2 In /2 Xl
u 2 " V 2 In/2 l i—i 55 to 1 x 2

where , I n /2 is the Identity  m atrix  o f  size N /2  

and A  corresponds to the W H 2.

(3.23)

The m atrix A in equation 3.23 corresponds to a set of 2-point Walsh Hadamard ma
trices (W H 2). The higher and the lower partitions of the right hand side of equation 
3.22, which are the same as the original form in equation 3.18, can be rewritten us
ing the relationship in equations 3.22 and 3.23 recursively until N  =  2. Thereby, the 
Walsh Hadamard transform can be implemented using the W H 2, applied recursively 
according to a binary partition tree in the higher and the lower partitions of the W H n  
matrix. The pseudo code for implementing the W H n  is as in Figure 3.2.
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function WH_N (x, StartPosition, N)
i

WH_2 (x, StartPosition, N) '/, Do WH_2 
if (N>2)
i

WH_N (x, StartPosition, N/2); */, Lower half
WH_N (x, StartPosition+N/2, N/2); '/, Upper half

>
>

Figure 3.2: The Pseudo code for forward W H n -

3.2.2.1 Integer im plem entation  o f  W H 2

The m atrix W H 2 , the main building block of the WHjq transform, is unitary. Any 
2x2 unitary m atrix (B  = [a b ; c d ] ) with 6 ^ 0  can be factorised into a combination of 
upper and lower triangular matrices to form a ladder network [80], so tha t the rounding 
operations can be performed as in lifting steps. Moreover, the m atrix W H 2 is similar 
to the polyphase m atrix of the S transform, the only difference being the symmetry in 
W H 2 . Therefore, a similar factorisation as in the S transform can be performed to 
obtain the lifting steps as below.

W H2 =
■ 1 r ' V 2 0 ' 1  - r ' 1 o '

1 - 1 0 1
V2 . ° 1 1 - 1 .

(3.24)

K U

The m atrix P  corresponds to the prediction step (dual lifting) and the matrix U cor
responds to the updating step (primal lifting) as in lifting terminology (section 3.1).
They can be implemented in lifting steps with rounding operations as in equations 3.25 
and 3.26. They are similar to the lifting steps in the S transform (See Appendix A 
equations A.3 and A.4), which is also the integer form of the Haar Wavelet.

From  P :  X 2  <— —£ 2  +  ^ 1  (3.25)

From  U : x x x i  -  [ ^ ( ® 2 ) + ^ j  (3.26)

37



3.2 .2 .2  Im plem enting th e scaling m atrix (K )

The scaling factor K  can be incorporated in either of two ways. In the 1-D Walsh 
Hadamard transform, the matrix K  can be replaced by additional four lifting steps as 
in equation 3.27 [55].

a/ 2  0

0  75

1 0  

- 1  1

K3

The lifting steps are as below.

1 - a/2

K2

1 0 

y/2 1
V ........

K1

i i -v*  
1 2

KO

From  KO : X 1 *— X l  -f

From  K 1 : x  2 « - x 2 -

From  K 2  : X i  <- X l  -

From  K 3 : x  2 <— x 2 -

l - y / 2  1

- 2 ~ * 2 +  2

[V 2 * i + i

1

* 2 + 2

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

However, in a 2-D transform, the effect of scaling becomes a multiplication by a scaling 
mask, K K , recursively along a quad tree in the coefficient domain.

K K  =
x 2 x 1
x 1 x — * 2

Therefore, in the 2-D transform, the use of matrix K  can be avoided and the net effect 
of using it can be considered in the quantising and entropy coding stages, as will be 
discussed in Section 4.2.1 .2 .

3.2.2.3 A nother approach for integer W H 2

The W H 2 matrix (equation 3.14) possesses a unit determinant and a non-zero (0,1)^ 
element. Therefore, it can be factorised into a product of upper and lower triangular 
matrices as shown in eqation 3.32 [80].

W H 2 =
1

v/2

1

1 c o s f f M  
1 s in f f ) 1 0 '

1 c o s ( f ) - l
1 - in fe )

1
.  V2

1
72 . 0  1 L s i n ( f )  l j 0  1

(3.32)

F 2 FI FO
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The corresponding lifting steps with rounding operations for the integer realisation are 
as below.

From  FO : x i <— X l +

From  F I  : X 2 <“ x 2 +

From  F 2  : X i  <- X i +

c o s ( g ) - l  1

sin (J) 2

• / 7 F \  1 Is m ( - ) z i  + - J

c o s ( f ) - l  1

s in (f)  2

(3.33)

(3.34)

(3.35)

Only three lifting steps are involved in this method, whereas five lifting steps are 
involved in the K U P  factorisation method in sections 3.2.2.1 and 3.2.2.2.

3 .2 .2 .4  O u tp u t in  sequ en cy  o rd e r

In this implementation, which is based on the Kroneckor product representation of the 
W H n , the output is not ordered in the increasing sequency order, but in the Natural 
order. But for applications such as embedded image coding, the output in increasing 
sequency order is im portant. An increasing sequency ordered output can be obtained 
by permuting the input. This is based on the symmetry of the W H n  matrix. The 
rows of the WALpj m atrix have been permuted to the Natural order in obtaining the 
W H n . The columns of W H n  correspond to the input. Due to symmetry, the Natural 
order arrangement can be set off by rearranging the columns, which in turn corresponds 
to rearranging the input order of the data. The permutation index (Permlndex) for 
an N-point transform (where N is an integer power of two) can be computed as in 
Figure 3.3. Then the input sequence, r ( i) ,  in sequency order is xj^i) =  r(PermIndex(i)) 
for i =  0 , . . . ,  N  — 1.

function [Permlndex]=GetIndex(N) 
if (N==2)
PermIndex=[0 1]; 

else
Permlndex(l:2:N-l)=GetIndex(N/2); 
PermIndex(2:2:N)=N-l-PermIndex(l:2:N-1); 

end

Figure 3.3: MATLAB code for the permutation index.
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3 .2 .2 .5 B lock d ia g ra m  fo r in te g e r  W alsh  H a d a m a rd  tra n s fo rm

The above presented integer implementation of the W H n  can be summarised in a block 
diagram as in Figure 3.4. The inverse transform can be implemented by reversing 
the recursive operations and the lifting steps by changing the sign and the order of 
operation of the lifting equations 3.25, 3.26 and the scaling factor equations. The 
signal flow diagram for the forward integer W H g avoiding the scaling factors is as in 
Figure 3.5.

Figure 3.4: Block diagram for integer W H n -

Input
X2
JO

for

Sequency

Ordering JO
JC7

<*■ x 0.5

Figure 3.5: Signal flow diagram for W H g.
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3 .2 .3  T h e  zero -ord er  en tro p y  va lu es

T he block to  tree structre rearrangem ent

The WHXiv is performed on the partitioned image blocks of size NxN. According to 
this implementation, the WHTjy is analogous to a 1-D wavelet packet transform using 
W H 2 (which in turn is analogous to Haar transform) performing along a complete 
binary tree. The 2-D WHT is analogous to a separable 1-D wavelet packet transform 
applied to rows and columns respectively. Therefore, the transformed blocks can be 
reorganised into wavelet packet sub bands. This rearrangement is shown in Figure 3.7 
as a pseudo code and in Figure 3.6 pictorially for N=4 on a 8 x 8  image. The number of 
scales in the corresponding wavelet packet transform is log2 (N) and the total number 
of packet sub bands is N2. This rearrangement allows the wavelet coding techniques 
to be used for coding the IWHT coefficients.

W HT4 Blocks
00o 01—

H
O

02o 03o 00i Oli 02x 03i
10o llo 120 130 10i 111 12i 13i
20o 210 220 230 20i 21i 22i 23i
30o 310 320 330 30i 31i 32i 33i
002 012 022 032 003 013 023 033
102 112 122 132 103 113 123 133
202 212 222 232 203 213 223 233
302 312 322 332 303 313 323 333

WHT4 Wavelet packet sub bands
00o 00i Olo Oli 02o 02i 030 03i
002 003 012 013 022 023 032 033
10o 10i llo H i 120 12i 130 13i
102 103 112 H 3 122 123 132 133
20o 20i 210 21i 220 22i 230 23i

202 203 212 213 222 223 232 233
30o 30i 310 31i 320 32i 330 33i
302 303 312 313 322 323 332 333

Figure 3.6: Blocks to wavelet tree rearrangement for N=4 on 8 x 8  image
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Block2Tree( Blocks,Tree,rows,columns,tree_levels)
■C
BlkSize = 2~(tree_leveles); 
rblks - rows/BlkSize; 
cblks = columns/BlkSize;

for (i=0:rblks-1) 
for (j=0;cblks-1) 

for (p=0:BlkSize-l) 
for (q=0:BlkSize-l)

Tree[i+rblks*p] [j+cblks*q]=Blocks[i*BlkSize+p][j*BlkSize+q] ;
>

Figure 3.7: The pseudo code for blocks to wavelet tree rearrangement.

T he zero-order entropy values

The zero-order entropy values, calculated using the weighted entropy equation 3.9, for 
the wavelet packet sub band representation of the IWHT applied on the test image set 
for different block sizes are as in Table 3.2.

N 2 4 8 16 32

Gold Hill 5.625 5.122 4.995 4.949 4.870
Barbaral 5.959 5.497 5.304 5.265 5.172
Barbara2 5.928 5.523 5.404 5.350 5.253

Boats 5.191 4.720 4.650 4.683 4.663
Black Board 4.794 4.270 4.182 4.238 4.247

Average 5.499 5.026 4.907 4.897 4.841

Table 3.2: Weighted zero-order entropy values in bpp for IWHT

The weighted entropy values in Table 3.2 show that the greater the block size, N, the 
lower the weighted entropy values. All images, except the black board image, have 
recorded their lowest entropy values for block sizes of 32, which is also analogous with 
a 5 scale (log2 32) wavelet packet transform. However, it is evident tha t the net benefit 
obtained from larger N decreases with the increasing N. For example, the net gain 
achieved by increasing N from 8  to 16 is lower than the gain achieved by increasing N 
from 4 to 8 . Therefore, in the case of a low complexity requirement N= 8  is a better 
option.
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3.3 The Integer Discrete Cosine Transform (IDCT)

The DCT-II, defined in equation 1.5 on page 6 , uses cosine functions as basis vectors. 
Therefore, the transform matrix consists of values between 1 and -1, resulting non inte
ger coefficients in the transform domain. In this section, current methods on designing 
the IDCT-II and a new method for an N-point IDCT-II where N is any integer power 
of two are presented.

The design of the IDCT algorithms can be influenced from the design concepts used 
in designing the fast DCT algorithms, as they involve factorising the DCT matrix 
into sparse matrices. For example, the fast algorithms based on Culey-Tukey type 
(decimation-in-time) and Sande-Tukey (decimation-in-frequency) type algorithms [81] 
using butterfly representation, which are also similar to lattice structures, can be con
verted into ladder structures [5], so that the lifting techniques can be employed. Already 
published fast algorithms for computing the DCT can be categorised into three groups 
based on their methods of approach as below.

1. Direct methods.

2. Indirect methods.

3. Recursive methods.

The direct methods use sparse m atrix factorisation of the DCT matrix. The DCT 
matrix is an unitary matrix, which can easily be factorised into products of sparse 
matrices [82, 83, 84, 85]. The indirect methods include using the fast Fourier transform 
(FFT) [8 6 , 87, 8 8 ], the Walsh-Hadamard transform (W HT) techniques [8 , 89] and the 
Hartley transform [90] to compute the DCT coefficients. In the recursive algorithms 
the higher order DCT is computed from the lower order DCT coefficients [91, 92, 93].

The already published IDCT algorithms mainly use the direct factorisation techniques 
[53] and the indirect deriving methods [94].

The technique presented in [53] (LDCT), uses direct factorisation to decompose the 
un-normalised 8 -point DCT-II matrix into the product of matrices D P 1 L U P 2 , where 
P i  and P 2 are permutation matrices, D is a diagonal matrix representing the scal
ing operations and L and U  are lower and upper triangular matrices with Lt)t- = 
U t)t- =  1, i = 0 , . . . ,  7. The integer coefficients c for an input vector x are obtained by 
c =  P ilL IU P ^ ] ] ,  where [.] denotes rounding to the nearest integer. The above de
compositions are not unique. The authors have derived the particular decomposition
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heuristically. W ith this method, separate decompositions have to be performed for the 
other DCT sizes.

In [94] (IntDCT), the authors have used an indirect factorisation based on the Walsh 
Hadamard transform (W H T ) to decompose the N-point DCT-II m atrix into the prod
uct of matrices i/l/jV B T B H w >  where B is the bit reversal operation, H w  is the 
un-normalised W H T  and T  is a block diagonal matrix. The blocks in the T  matrix 
were implemented using the lifting factorisation of Givens rotations as introduced in 
the perfect reconstruction network techniques in [80].

In both the above methods, the authors have either ignored the scaling factors or 
have incorporated them into the input data. The IntDCT has been designed for an 
8 -point DCT. It can be extended for N values higher than 8 , by computing the angles 
and their Givens rotations for the diagonal block matrices tha t require further sparse 
factorisation operations when their dimensions are higher than two.

A novel technique for N-point IDCT-II with normalised coefficients using recursive 
methods and lifting techniques is discussed in the following section. This derivation 
can be used for any N-point IDCT-II, where N is a power of 2.

3 .3 .1  T h e  I D C T  u s in g  re c u r s iv e  m e th o d s  a n d  l i f t in g

The DCT-II, shown in equation 1.5, can be rewritten as in equation 3.36.

X  =  a N D N x (3.36)

where, X  and x  are column vectors of size N  x l  denoting the DCT output in increasing 
frequency order and the input data sequences respectively. D n  is the N-point DCT 
matrix of size N x N  and c*n is a diagonal matrix of size N x N  denoting the normalising 
constants.

In the recursive fast DCT algorithm presented in [91], the matrix Dyv was rearranged 
by permuting its columns and rows, so that it can be partitioned into four quadrants. 
The row permutation causes the even indexed rows grouped in the upper half of 
and the odd indexed rows grouped in the lower half of D;v, which in turn causes the 
same ordering in X. The column permutation arranges the columns in a way such that, 
for the even indexed rows, the left and the right quadrants are the same and for the odd 
indexed rows, the left and the right quadrants are opposite in sign. The permutated
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coefficient matrices for N=2, 4 and 8  can be found in Appendix B. Since the column 
permutation operation directly relates to the input data, in order to compensate the 
column permutation, the input vector x  is rearranged as in equation 3.37.

*(») = x ( 2 n )  1 „  =  JV /2 -1 . (3.37)
x ( N +  §) = x ( N — (2n +  1)) j  1 K '

The effect of the above permutation operations can be mathematically depicted as 
below (equations 3.38-3.43).

The un-normalised N-point DCT-II coefficients X ( k ), where k = 0 ,... ,N-1 for the input 
signal x ( n ), where n = 0 ,...  ,N-1 are as in equation 3.38.

N ~ 1 /

x (k ) = J 2 *(” ) cos {(2n +  ^ 2 n )  (3-38)

N - l  

n = 0

Using equation 3.38, the even indexed coefficients can be written as in equation 3.39.

W- 1  / ir2k\
X(2k )  =  ^ 2 x (n ) cos ((2n +  X) 2 jV/ ^3*39^

Using the rearranged input sequence x as in equation 3.37, the above can be rewritten 
as in equation 3.40.

N £ - 1

X (2  k) = 2 * ( n )c o s ( (2 (2 n )  +  l ) ^ - J  +  5 3 ® ( f  +  n) cos ((2 ( A - ( 2 n + l ) )  +  l ) ^ J
n = 0  \  l 2 /  n = 0  \  1 2 /

f _ 1  (  T k \  /  JT*\
=  X ) f (n ) cos ((4 n + 1 ) ^ z )  +  ^)cos l27rA; —(4 n + l) -^ -J

n = 0  \  2 /  n = 0  \  2 /

=  £  [*(n ) +  * ( f  +  n )l COS f(4 n + 1 ) S ' )
n = 0  \  1 2 /

( fo r  k = 0 | - 1 ) .  (3.40)

Further, as can be verified from the transform matrices in Appendix B, it can be shown 
that,

cos ( ( 4 n + l ) f ^  

f o r  n =  0 , . . . ,  N/2  — 1
=

D m  =  cos ((2 n + l ) ^ )  
f o r  n = 0 ,2 , . . . ,  M  — 2, M  — 1, M  — 3 , . . . ,  1 

where , M  =  y
(3.41)
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Thereby, the equation 3.40 becomes,

N

X(2k)  =  [*(n) +  +  n)] cos f ( 4 n + l ) ^ - )  (3.42)
2 in = 0  \  Z .

£  point D C T

The equation 3.42 shows that the even indexed coefficient calculations reduce to an 
y -po in t DCT-II coefficient calculation for the sum of the upper and the lower halves 
of the input signal x.

The odd indexed coefficients can be rewritten as in equation 3.43 using a similar ap
proach used for the even indexed coefficients.

X ( 2 k  + l)  = J 2 x (n )cos ((2n+ 1) ^ 22̂ — )

=  *(” ) cos ((4” + !) ̂ 2 N

—  —1

+  £ * ( f +  »)cos f(2(Af- ( 2 n + l ) ) - l ) 7r(2A ^ 1 ))
n = 0 \  1 2 /

= £»(»)005 ((4n+x) 

f - 1

+ X ) * ( f  + n) cos (r(2fc + l)  -  (4 n + l) ’r^ h1 )̂

=  £  [ i ( n ) - i ( f  +  n)] cos ( ( t o + l ) ^ 2̂ 1 )̂
n = 0

E%

( fo r  k = 0 , . . . , y  -  1). (3.43)

The equation 3.43 shows tha t the odd indexed coefficient calculations reduce to a matrix 
multiplication of the difference of the upper and the lower halves of the input signal 
vector x with the m atrix -E(y), the derivation of which for lossless implementation is 
discussed in section 3.3.1.3.
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3.3.1.1 Incorporating th e norm alising factors

The normalising factor a n  for each coefficient is as in equation 3.44.

\ / |  «* (3-44)

j  7 5  * / fc =  ° >
1 1 else.

The normalisation constants for different values of N, where N is an integer power of 2 
are shown in table 3.3.

k =  0

Table 3.3: The normalisation constants for DCT-II

It is evident from the table 3.3 tha t the normalising constants for the N-point DCT 
coefficients can be obtained by multiplying the normalising constants of the y-point 
DCT coefficients by a factor This can be incorporated into equations 3.42 and 3.43 
respectively as below.

X (2k )  =

X (2 k  +1) =

V  2

£ c o s ^ ( 4 r a + l ) ^ j  - ^ [ i ( n )  + i ( f +  ra)] (3.45)

Y  point D C T

——1

J2 cos((4re+1)^ 22fcjv*"1̂ ) ^  [*(")-i ( f  + ")] (3-46)
E l

ocN(k) =  

where, e* =

This can be summarised into matrix format as below.



X 2k D n U i  '

X 2k+1 E n  U 2 L 2 J

where ,
U i 1 In /2 In /2 x ( O . - - - . f - l )
u 2 "  V2 In /2 l 1—

1
3 to 1 x ( f +  N - l )

(3.47)

(3.48)

where, I n /2  Identi ty matrix o f  size y

and A  corresponds to the W H 2 .

3 .3 .1 .2  Lossless rea lisa tio n  o f  th e  ev en -in d ex ed  coefficients

The transformation of x  into U i and U 2 , as in equation 3.48, is the same as trans
forming x  with the 2-point Walsh Hadamard transform, W H 2 . The W H 2 operations 
can be factorised into lifting steps as in equations 3.32 - 3.35 in section 3.2.2.3, thus 
they can be realised with integer coefficients easily.

As shown in equations 3.42 and 3.47, the even-indexed rows of the DCT matrix reduce 
to the y-poin t DCT matrix. Therefore, the even-indexed coefficients can be realised 
by recursively computing D m , where M  =  ( y ,  y , . .  .,2 ). At the recursion termina
tion point, where N=2, the D 2 matrix is the same as the W H 2 matrix, the lossless 
realisation of which has already been discussed in section 3.2.2.3.

3 .3 .1 .3  Lossless rea lisa tio n  o f th e  o d d -in d ex ed  coefficients

The realisation of the odd-indexed coefficients at a given stage is achieved by multi
plying the vector U 2 with the corresponding cosine m atrix, (equation 3.47). Some 
intrinsic properties of Em are discussed below. They can be used for further factorisa
tion of E n ,  so tha t the lifting techniques can be used to obtain integer coefficients.

Let the elements of E n  be Cjyn, where

C fr  = c o s ( ( 4 n + l ) ^ ± ^ )  (3.49)

= cos( ^ F ^ 2fc+10
= cos(<%(2 & +  1))

=  COS{Qkn)

where , k , n  =  0 , . . . ,  y  — 1 .

48



The basic angle, <%• =  corresponds to 0kn for k  =  0.

For a given k (row),

f o r  n0 =  0 , . . . , f - 1

CjT = cos ((4»o+l) *(22*jy+1))
= COS (tffino) (3.50)

f o r  ni = n0 + %

CUT1 = c o s^ n o  + f j + l ) 1^ ^ )

=  c o s (0 k n o +  §(2fc +  l ) )

cos (0kno +  f ) f o r  even k
cos (0 jfcno +  f o r  odd k

(3.51)

The equations 3.50 and 3.51 show that the elements of Cfj1 tha t are separated from an 
^  distance are separated from an angle §(2& +  1). Likewise, it can be shown for any 
distance m, where m  G {^-, y , ^ r , . . . ,  1 }, that

c JH»+m) =  cos (Qkn + 2mjr(2fc +  (3.52)

Similarly, for a given n  (column),

£ikon _ cos

cos(^on) (3.53)

fo r  k\ =  ^ - - 1 - k o

clr -

= cos ( |( 4 n  +  l)  -  0kon)

= cos ( f  -  0fcon) , V n (3.54)

The equation 3.53 shows that the angles in successive rows are separated by an angle 
of 20n, where <f>n is the basic angle for a given column as defined in equation 3.49. The 
matrix O f f  can be rewritten as below using the expressions (equations 3.50 - 3.54) for
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the angles in four quadrants.

/ in k  _ COS (&kono )  COS (Okoni )

_ COS (0/jj ̂  ) COS (&ki n i )  .

c o s ( 0 * ono) COS ( d kono ±  f )

COS ( j  — 0kono) c o s  ( §  — @kono *F 2")

COS ( 0kono ) T  s in  ( Okono )

s in  (Okono) i  c o s  (OkQno)  .
(3.55)

Equation 3.55 shows tha t the elements in Cffl can be rearranged using the indices 
&o, &i, no and n\ into 2 x 2  partial matrices, which can be either of the two forms as 
above with an unit determinant. The matrices with a unit determinant and a non zero 
(0 , l )</l element can be factorised into lifting steps, thus they can be realised losslessly 
[80]. This concept can be used to realise odd-indexed coefficients losslessly.

The DCT m atrix arranged in increasing frequency order and the corresponding WHT 
matrix arranged in increasing sequency order share the same signs. For the same reason, 
some authors had considered the DCT m atrix as an amplitude modulated W HT m atrix 
[8 , 89]. This relationship is used for further analysis of the odd indexed coefficient rows 
in the DCT matrix as below.

Cft* =  { c t f  X W H u )  X W H h  (3.56)

(Because W H n  x W H n  =  In )

So far in this derivation only a factor has been used as the normalising factor for the
odd-indexed coefficients (equation 3.48). The rest of the normalising is incorporated
into the elements of E  N i.e. C at1 .

2 J

CNknew =  (V 2«w  x C t f  x W H h )  x W H js  (3.57)

As seen earlier, the W H n  can be realised losslessly. Therefore, factoring O f f  into
2

lifting steps leads to the lossless realisation of the odd-indexed coefficients of the N- 
point DCT. The columns and the rows of the m atrix 0 $  can be permuted using the 
permutation matrices P 1 n  and P 2 n  and the signs of the columns are set using the 
sign m atrix <Sn, s o  tha t the elements of O1̂  are arranged as in equation 3.58.
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O t f =  P 2 n  x

C2L X 
8

SiI  
8

C jl  X 
1 6

5 J L  X 16

C 5jr X 
16

5 57T X 
16

cjlR jl .
N  2 TV

S JL R  i t  i p i 
N  2 T V 1 4

CotRa(1 

SaRa 2

—S * R j L -  W 2 TV

f i n R n , n 
TV 2 TV 1 4

s a R ai 

ca R a 2

-5JL X [AO]

C97T R  9n 
TV 2 TV

S9n R  9it i pi 
TV 27V  1 4

cpRpi

SpRp2

— 5 9ir i?  9wAT 27V
C9n R  9n , p i 

TV 2 N  1 4

—sp R p i

CpRp2

C i  x  [ 4 1 ]

41

Cbn R  bn — 5 5 i r  5  5 i r
TV 27V TV 27V

bn R  bn i i r  
TV 27V 1 4

Cbn R  bn . ir 
TV 27V  1 4

fisyR^yl

S'y R my2 C*yR*y2

 5 57T X [ 5 0 ]

BO
C13tt 5 l3 j r  

TV 27V
— SJS.R  13tt 

TV 27V

£ 137T 5 13ff i t  C137T R  13tt | n 
TV 27V 1 4 TV 27V 1 4

cs-Rffi

SsR s2

—s$R si 

CsR62

Cbn X  [ 5 1 ]

B l

cs.  x  [ 5 ]

B

X <Sn  X P 1 n

a  =  

0 = 

7  =

re cq = cos(0),

I W f —4)+l)
N

* ( 4 ( f -2)+l)
* ( 4 ( f 3)+1)

a
, a  1 = 2 ’ a 2  = a l + 4 ’

, / ? l  =  f ,  /32 =  /31 +  | ,

iV , 7 l =  o» 7 2  =  7 1  +  7 ’

(3.
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S 2  =  t l  +  L m d

Re =
cos(0 ) — sin(0 ) 
sin(0 ) cos(0 )

(3.59)

Givens Rotation M atrix

The factorised O f f  in equation 3.58 can be re-written using the Kroneckor products of 
rotation matrices and the Identity matrices as below.

O nk
N — P 2 n  X

R jl.
2 N

R jl.
2 N '  4

R jl ®  I n  
32 Te

R jl <S> I n
16 -g

R** 0  In .
32 16

i?5rr 0  I n 16 8

2 N

R s n  0  I n
32 16

R isk 0  I n

X 0  I n ] X «Sn  X P 1 n (3.60)

The Givens rotation matrix (equation 3.59) Re possesses a unit determinant and a 
non-zero (0 ,l) t/l element. The (0 ,l)</l element is — sin(0), which becomes zero only 
when 0 =  kit, where k 6  Af. Such values of 6 do not occur in the above derivation. 
Therefore, they can be factorised into a product of upper and lower triangular matrices 
as shown in [80] and [55].

Re =
cos(0 ) — sin(0 ) 
sin(0 ) cos(0 )

cos(fl)—1
sin(fl) 

0  1

1 0  

sin(0 ) 1

cos(0)—1 
1 sin(0)

0 1
(3.61)

R2 HI RO

The corresponding lifting steps with rounding for the integer realisation are as below.

cos(0 ) — 1
From  RO : x \ X i  +

sin(0 ) x  2 (3.62)
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From  R 1 : x 2 <— x 2 +  [ s in (0 )x i j  (3.63)
I cos(0 ) - l  I

From  R 2  : x i <- x i +  — .   a; 2 (3.64)
L sin(0 ) J

All the sub matrices in equation 3.60 can be realised losslessly with the above lifting 
steps.

The rotation angle values in sub matrices in equations 3.58 and 3.60 are the same as 
the basic angle for n = 0 , . . . ,  ^  — 1 where N  =  4 ,8 , . . . ,  M  for ID C T m  • Equation 
3.60 can be written in generic form as below.

O #5 =  P 2 n x [ diag{R<f)n 0 l g ) n=o ^  x •••

• • • X [ d i a g { R (j>n̂  ®  ]

diag(R^n 0  lN )n=o,...,i j x ® 1̂ ; x <Sn x P 1n  (3.65)

The values of basic angle <%• at each level is computed as in Figure 3.8.

function compute_basic_angle (N, n, Phi)

'/, This computes the basic angles for odd indexed rows of N-point DCT. 
if (N>2)

compute_basic_angle (N/2, 2*n, Phi/2); 
compute_basic_angle (N/2, 2*n+l, (Phi/2)+(PI/4));

>
>

'/.Call the function as below 
•/.PI=3.14159
compute_basic_angle (N/2, 0, PI/8); '/, for N-point DCT

Figure 3.8: The pseudo code for computing the basic angle <%.

3 .3 .1 .4  P e rm u ta tio n  (P 1 n  & P 2 n )  an d  Sign m a trice s  (S t f )

The O$  matrix, the odd-indexed rows of the N-point DCT factorised into sub matrices 
with the Kroneckor products of the rotation matrices of the basic angles at each stage
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with the corresponding identity matrices, needs to be row and column wise permutated 
in order to achieve the correct ordering of the DCT basis vectors as in equation 3.43. 
This is achieved by incorporating P 2 n  and P 1 n  operations corresponding to row 
and column permutation as in equation 3.60. Computing indexes for row and column 
perm utation for O f f  using recursive functions is as in the pseudo codes shown in Figure 
3.9 and 3.10.

function OddDCT.Row.PermlndexCindex.array, N, NN)
I

if (N>2)

OddDCT.Row.Permlndex(index.array,N/2,NN); 
for (i = N/4 : N/2-1)

index_array[i]=N-2-index.array[i-N/4]; 
for (i- NN/2+N/4 : NN/2+N/2-1)

index.array[i]=N-index.array[i-N/4];
>
else

index.array[0]=0; 
index.array[NN/2]=1;

>
>

'/.Call the function as below
OddDCT.Row.Permlndex(index.array,N/2,N/2); '/, for N-point DCT
New.odd_rows=old_odd_rows[index.array];

Figure 3.9: The pseudo code for index computation for row permutation of 0 1$ .

Although some authors have considered the exact sign similarity between the WHT 
(in Hadamard order) and the rearranged DCT [8 , 89], this is only true for 2-point 
and 4-point transforms. There are a few sign mismatches which appear in transforms 
with dimensions higher than four, as can be seen in the transform matrices listed in 
Appendix B. To alleviate this sign mismatch, a sign compensation (St f)  is performed 
in Opj.  The computation of sign compensation up to N=32, N-point DCT is shown as 
in figure 3.11. The upper half of the sign matrix for N-point DCT is the sign matrix 
for the y-point DCT.
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function OddDCT.Col.PoralndexCindex.array, N, NN)
■C

if (N>2)
{

OddDCT.Col.Permlndex(index.array,N/2,NN); 
for (i = N/4 : N/2-1)

index_array[i]=(i-N/4)*4+N/2+l-index_array[i-N/4]; 
for (i= NN/2+N/4 : NN/2+N/2-1)

index.array[i] = (i-(NN/2+N/4))*4+N/2+l-index.array [i-N/4];
>
else
{

index.array[0]=0; 
index.array[NN/2]=1;

>
>

'/•Call the function as below
0ddDCT_col.PermIndex(index_array,N/2,N/2); '/. for N-point DCT
New.odd.cols[index.array]=old_odd_cols;

Figure 3.10: The pseudo code for index computation for column permutation of 0 $ .

function Get_New_Sign(sign.array,N)
I

switch N 
case {2},

sign.array=[l 1];, 
case {4},

sign_array=[Get_New_Sign(sign_array,2) 1 -1];, 
case {8},

sign_array=[Get_New_Sign(sign_array,4) 1 -1 -1 -1 ];, 
case {16},

sign_array=[Get.New_Sign(sign_array,8) 1 -1 -1 -1 -1 -1 -1 1] ;,
}
'/.Call the function as below
Get_New_Sign(sign_array,N/2); '/, for N-point DCT
New_odd_cols=old_odd_cols*sign_array; '/. for each element

Figure 3.11: The sign compensation for odd indexed rows in N-point DCT
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3.3.1.5 A Block diagram for the IDCT

The above discussed integer implementation of the I D C T n  can be summarised in 
a block diagram as in Figure 3.12. The column permutation stage at the beginning 
corresponds to x(n ) —> x{n) conversion shown in equation 3.37, whereas the row per
mutation stage at the end corresponds to rearranging the upper and lower halves of the 
DCT matrix into increasing frequency order. The pseudo code for the middle stage, 
integer DCT operations, is as in Figure 3.13. The inverse transform is implemented 
by reversing the recursive operations and the lifting steps by changing the sign and 
the order of operation of lifting equations. In both forward and inverse transforms, all 
the operations can be performed as in-place computations, which result in low resource 
requirements in software /  hardware implementations.

WH2

Odd,

d c t n

Figure 3.12: Block diagram for integer IDCTn-

The signal flow diagram for the forward I D C T g  is as in Figure 3.14. The inverse is 
computed by following the inverse signal flow with the reversed operations including 
lifting, row /  column permutations and sign changes.
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function LiftDCT(input, N, position)

kron(Walsh2, I (N/2)) '/. Walsh2 is 2X2 Walsh Hadamard Matrix
'/, I is the Identity Matrix
'/, kron is the Kroneckor product operation

if (N>2)
<

'/, Even rows (upper half) operations 
LiftDCT(input, N/2, position);

'/, Odd rows (lower half) operations 
'/, Do WHT(N/2) for position+N/2 to position+N 

DoWalsh(input ,N/2, position+N/2);
Odd_Perm_Cols(input, N/2, position+N/2);
Odd.ChangeSign(input, N/2, position+N/2); 
Do_Basic_Angle_Rotations(input, N/2, position+N/2, PI/8); 
Odd_Perm_Rows(input, N/2, position+N/2);

'/, PI/8 is the starting basic angle for any dimension

'/.Call the function as below for N-point DCT 
Do_Column_order(input, N) '/, Equation 3.37 
LiftDCT(input, N, 0)
Do_Row_order(input, N) '/, to increasing frequency order

Figure 3.13: The pseudo code for integer DCT operations in ID C T n .

a —> a(x) = - cos(0)-l„ (*) + 0.5 
-  sin(0)

b -> b(y) = ~l~ sin(0)(y) + 0.5J

Xo

X,

X2

X3

X4

X5

x6

x 7

Figure 3.14: Signal flow diagram for ID C Ts-
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3 .3 .2  T h e  zero -o rd er  en tro p y  va lu es

The performance of the IDCT on lossless image coding with different block sizes is 
presented here. For each block, the transform is applied separately on rows and columns 
and then the block structure is converted to the corresponding wavelet packet tree 
structure introduced on page 41 using the same algorithm. The weighted entropy 
values, computed based on the packet sub bands for the image set using the IDCT for 
different N values, are as in Table 3.4.

N 2 4 8 16 32

Gold Hill 5.631 5.031 4.825 4.727 4.626
B arbaral 5.965 5.222 4.850 4.656 4.514
Barbara2 5.934 5.362 5.108 4.963 4.824

Boats 5.203 4.556 4.347 4.281 4.214
Black Board 4.809 4.162 3.982 3.955 3.925

Average 5.508 4.867 4.622 4.516 4.421

Table 3.4: Weighted zero-order entropy values in bpp for IDCT

These results show tha t as the block size, N, increases, the weighted entropy values 
decrease, thus giving better results. In this case, the 32-point IDCT provides the best 
performance for all the images in the test image set. However, it is noted tha t the 
net entropy savings gained by opting for greater N, decrease with the increasing N. 
Further, greater N causes higher computational complexity.
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3.4 The Integer Discrete Sine Transform (IDST)

Although the DCT has been widely used in transform based coding of natural images, 
the discrete sine transform (DST), first introduced in [95], has not been used com
monly in image coding due to its poor data decorrelation capability and poor energy 
compaction. Consequently, the DST coefficients of highly correlated source data  are 
also highly correlated [2]. Since the DST does not compute a zero frequency or a bias 
component, the DC component of the source data is spread over other frequencies in 
the transform domain. This effect can be reduced, if not eliminated entirely, by sub
tracting the global mean from the source data, even though the local mean of a given 
block is not completely removed by this method.

However, the DST has been used in modelling of random processes, in order to make 
their KLT fast [95, 96]. Further, it has been used in image reconstruction [97]. The 
authors of [2] and [98] have suggested the possibility of using DST for non-intra frame 
transform coding. An integer version of the DST is implemented in this section, so that 
the performance of DST on lossless image coding and lossless non-intra frame coding 
can be evaluated.

The DST for a one dimensional (1-D) data sequence x(n  +  1), where n =  0 , . .  .,1V — 1, 
and its inverse are defined as in equations 3.66 and 3.67 respectively [96].

n r  N~x 7i-k
* (* )  =  «  V £  X(n  +  X) sin( (2n +  ^ 2 N  ) (3‘66^

n = 0
f o r  k =  1 , . . . ,  N

n r  N  ,r k
x (n +  1) =  y  j f  X ) €k x (k ) sin( (2rc +  1 ) ^  ) (3.67)

f o r  n =  0 , . .  .,1V —1 

where , =

3 .4 .1  D e r iv a tio n  o f  th e  ID S T

There has not been any report of integer implementation of the DST in published
literature. It was shown in section 3.3, how the IDCT can be derived from the fast
algorithm factorisations. The same approach has been followed in this research for the 
derivation of the IDST.

T ,  {f k = N ’
1 else.
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All the fast DST algorithms in literature have used recursive methods. The earliest 
example of the fast DST used a sparse matrix factorisation which leads to a recursive 
structure and consequently leading to an efficient algorithm for implementing the DST 
[96]. Following Hou’s implementation of the fast DCT using recursive methods [91], two 
similar approaches [92, 99] have been presented for the fast implementation of the DST 
using recursive methods. In the fast recursive DCT algorithms, the even-indexed rows 
in the DCT m atrix were used to compute the odd-indexed rows using trigonometric 
identities [91], whereas in the fast recursive DST algorithms, the odd-indexed rows 
in the DST matrix were used to compute the even-indexed rows using trigonometric 
identities.

3.4 .1 .1  T h e  ID S T  using  recu rs iv e  m e th o d s  a n d  lifting

The DST, shown in equation 3.66, can be rewritten as in equation 3.66.

X =  on  T n  x  (3.68)

where, X  and x  are column vectors of size N x l  denoting the DST output in increasing
frequency order and the input data sequences respectively. T n  is the N-point DST
matrix of size N x N  and q n  is a diagonal matrix of size N x N  denoting the normalising 
constants.

This derivation is also started with the un-normalised N-point DST coefficients X ( k ), 
where k = l , . .. ,N for the input signal x(n  -f-1), where n = 0 ,... ,N-1 as shown in equation 
3.69.

N ~ 1 /  j r U \

x (k) =  S x (n +  ! ) sin ((2ra +  ^ 2 n )  (3-69)

Since the Cosines and the Sines are similar functions with a ^  phase difference, the 
column permutation used for the DCT (equation 3.37), adjusted for the DST index 
notations, is used in this derivation.

x (n ) =  x (2 n +  2 ) 1 =  _
x ( A + f )  = x(JV — (2n +  1)) J '

Using equation 3.69, the even indexed coefficients can be written as in equation 3.71.
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^ - 1  /  7r2 k\
X ( 2  k) = £ z ( n  +  l ) s in ( ( 2 n + l ) — J

n = 0
N

=  52 5 ( n ) s i n  K 2  ( 2 n ) + +  X )  *(% +  n ) s i n  f ( 2  ( ^ ~  (2n+1))+1)̂ w
n = 0  \  ^ 2 /  n = 0  \  Z 2 >

=  £ i ( f i ) s i n  l ( 4 n + l) rw  +  X ^ ( f  +  n ) sin (2,r* - ( 4 n + 1) ^ - )
n = 0  \  1 2 /  71=0 \  Z 2 /

wk 
o E

71=0 \  Z 2 >
=  [x (ra ) -z (y  +  n)j sin l(4n +  l)

 ̂point DST

( fo r  k =  l , . . . , y ) .  (3.71)

Similarly for the odd indexed coefficients,

N - l
X ( 2 k  — 1) = ^ a : ( n + 1) sin ^ ( 2 n + l ) ^ ^ - ^

71= 0

=  ^ i ( n ) s i n ( ( 4 n + l ) y ^  ^ )

— —1 /  \

+  5 2 * ( t  +  n ) sin ( ( 2 ( N ~  ( 2 n + l ) ) - l  ^
7i=0 \  Z 2 )

= X ^ i (n ) s in ((4 n + 1 ) ^ 2 Ar
71= 0  

- - 1

+ 5 2 * ( %  +  n ) sin f ^ f c - i )  -  (4 n + 1 ) ~ ^ ]  ^
71= 0

=  s  [*(“ ) +  5 ( y  +  ")] sin ((4n+ 1) OJV ^
n = 0  v ___________________

Ff

( fo r  k  = (3.72)

3.4.1.2. Incorporating the normalising factors

The normalising factor, c^v, for each coefficient is as in equation 3.73.

<*N(k) = ek (3.73)
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where , =
%  i f k  = N ,  
1 e/se.

This is similar to the normalisation factors of the DCT as shown in table 3.3. Therefore, 
the same relationship of the ^  factor as in the DCTs can be considered. This leads 
to the equations below for the normalised X(2k)  and X (2 k  — 1).

X (2k )  = sin f ( 4 n + l ) p ^  ^  [ x ( n ) - x ( f  +  n)] (3.74)
n—0 v v 2 ✓

Y  point DST

K _ _ i

X ( 2 k - l )  = 5 3  s i n f ( 4 n + l ) ^ ^ y - y j  [z(n) +  i ( f +  n)] (3.75)
n = 0  v___________________________✓ *

The above equations can be summarised into m atrix form as below. 

X  =  T n x

X 2k T n U i  '7

1

3N

I 1 d to 1

where ,
Ui 1 I n / 2

l H
H

2 to
1

x ( 0 , - - - , f - l )

U 2 "  V 2 I n / 2 HH 2 to 1 ✓
_ x ( f f l , - . . , J V - l )

(3.76)

(3.77)

where , I n /2  15 Identi ty  matrix o f  size y  

and A  corresponds to ( R i  ® I n ) .

3.4.1.3 T h e  re la tio n sh ip  b e tw een  th e  row s o f  D C T  a n d  D ST  m a trice s

The left half of the DST matrix, T n ,  for any row, k3, can be written as below using 
equations 3.74 and 3.75.

S g ‘ = s i n ( ( 4 » + l ) ^ )  

( | - ( 4 n + l )
irk 
2N

cos ^  

f o r  n = 0 , . . . ,  i\7/2 — 1 

ks =  l , . . . , i V

(3.78)
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Similarly, the left half of the DCT matrix, D n , for any row, ks, can be written as below 
using equations 3.45 and 3.46.

C f r  =  c o e ( ( 4 » + l ) g i )  (3.79)

f o r  n =  0 , . . . ,  N /2  — 1 

fcc =  0 , . . . , l V - l

Then, the condition for S f f 3 =  C $ c is

(( 4 n + 1 ) i r )  =  2' - ± ( | - ( 4 n + i ) ^ )

where, / € Af

((4 n + l ) ! ^ ± M )  = 2 h ± l  (3.80)

f o r  n =  Z, Arc ±  = IV

feasible solution

kc =  JV -fcs (3.81)

Further, the normalisation constants also share the same relationship, according to 
their definitions as in equations 1.5-1.6  and 3.66-3.67.

a kc =  a ( N - k a) ( 3 -8 2 )

The right halves of the DCT and the DST matrices correspond to the second half, 
i.e. x ( y  +  n) of the rearranged input, x(n).  It is seen tha t the signs of x ( y  +  n ) in 
equations 3.45-3.46 for the DCT are opposite to those in equations 3.74-3.75 for the 
DST. W ith this observation, the right half of the DCT and the DST matrices can be
regarded as the same by negating the input i ( y  -f n ). This observation, coupled with
the row permutation resulting from the relationship in equations 3.81 and 3.82 leads 
to computing the DST coefficients using the DCT processes.

X  =  D S T n  x x

= Prows X D C T n  x X (3.83)

where, x  is defined as below.

f x(n) = x(2n  +  2 ) 1 T/ ,
x =  \ v } V ; } rc =  0 , . . . , J V / 2 - l .  (3.84)

\  x(JV +  f )  =  —x(jV — (2n +  1 ) )  J  v '

The Prows consists of operations to rearrange DCT rows into DST rows in increasing
frequency order using equation 3.81.
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3.4.1.4 T he  block d iag ram  for th e  ID ST

With the above derivation, the IDST is computed using the previously designed IDCT 
algorithm. The block diagram and the pseudo code for the IDST are as in Figure 
3.15 and Figure 3.16. The column permutation stage at the beginning corresponds to 
x(n)  —► x(n)  conversion shown in equation 3.70, whereas the row permutation stage 
at the end corresponds to the combined action of ordering rows to achieve the DST 
from the DCT (as in equation 3.81) and rearranging the upper and lower halves of the 
DST matrix into increasing frequency order. The pseudo code for the middle stage, 
integer DCT operations, are as in Figure 3.13. The inverse transform is implemented 
by reversing the recursive operations and the lifting steps by changing the sign and the 
order of operation of lifting equations.

X Q . . . X N 1
WH2

D C T n

w h2

WH,
>WH;

D C T ,

D C T n/2

OddN/2

OddN

Odd,

X o...Xn-i

Figure 3.15: Block diagram for integer ID S T n -

'/, Call the function as below for N-point IDST
Do_Column_order_for_DST(input, N) '/, Equation 3.70
Lift DCT (input, N, 0) '/, Figure 3.13
Row_order_frm_DCT_to_DST(input, N) Equation 3.81 
Do_Row_order_for_DST(input, N) '/, to arrange in frequency order

Figure 3.16: The Pseudo code for integer ID S T n -

As an example, the signal flow diagram for the forward IDSTg is shown in Figure 3.17. 
The inverse is computed by following the inverse signal flow with the reversed operations 
including lifting, row /  column permutations and sign changes.
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coste)-1 (jc) + 0.5
-sin(0) 

-sin(0)(y) + O.5jfc->fc(y) = -

Figure 3.17: Signal flow diagram for IDSTg.

3.4 .2  T he zero-order entropy values

The performance of the IDST on lossless image coding with different block sizes is pre
sented here. The total image mean is removed from the image in order to minimise the 
effect of dc frequency leakage into other frequencies, which is intrinsic to the DST. For 
each block the transform is applied separately on rows and columns and then the block 
structure is converted to the corresponding wavelet packet tree structure introduced 
on page 41 using the same algorithm. The weighted entropy values calculated based 
on the packet sub bands for the image set using the IDST for different block sizes (N) 
are as in Table 3.4.

N 2 4 8 16 32

Gold Hill 5.631 5.710 5.605 5.382 5.053
Barbaral 5.965 6.010 5.875 5.633 5.232
Barbara2 5.934 6.030 5.907 5.656 5.313

Boats 5.203 5.354 5.321 5.157 4.866
Black Board 4.809 4.968 4.975 4.930 4.727

Average 5.508 5.614 5.537 5.352 5.038

Table 3.5: Weighted zero-order entropy values in bpp for IDST

On average, the 32-point IDST has recorded the best entropy performance. As seen 
in previous block transforms, it is also evident that the performance improved as the 
block size, N, of the IDST increased. However, the 4-point IDST has shown the worst 
performance on average and for most of the test images.
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3.5 Integer Non-Linear Transforms (INLT)

In section 2.1.1, the existing work on sub band based predictive techniques [41, 42, 
44, 45, 46] were introduced. In those examples, the authors reported separate use 
of non-linear predictions [45] and multiscale decompositions [46]. In this section, the 
use of median based non-linear prediction guided sub band splitting as an integer 
non-linear transform (INLT) is investigated. The support neighbourhood for median 
prediction in each sub band, the update method for the LL sub band and the number 
of decomposition scales for the INLTs are also analysed.

3 .5 .1  IN L T  D e s ig n

In an early example of designing perfect reconstructing non-linear filter banks, the 
splitting of the input signal into two channels and the use of a lattice structure based 
four or less non-linear functions, based on a new theoretical framework for non-linear 
filter banks, have been presented in [1 0 0 ].

A pyramidal coder using a non-linear filter bank based on quincunx sub band splitting 
was introduced in [1 0 1 ], in which the non-linear transform was obtained by hierarchical 
application of median filter predictor at the sub sampled versions of the original image.

In this section, three types of non-linear transforms, namely, INLT1, INLT2 and INLT3, 
which are based on quincunx splitting followed by non linear sub band coding, similar 
to that in [101] are considered. In this sub band splitting, it is assumed tha t the pixels 
in the input image represent one of the four polyphase components: 0 0 , 0 1 , 1 0  and 1 1 , 
as shown in Figure 3.18. The input image is split into four sub bands which correspond 
to each polyphase component. For an input image, x , the notation xoo?^oi?^io an(l 
a;ii is used to represent the four sub bands.

00 01 00 01 00 01 00
10 11 10 11 10 11 10
00 01 00 01 00 01 00
10 11 10 11 10 11 10
00 01 00 01 00 01 00
10 11 10 11 10 11 10

Figure 3.18: Pixel labelling for quincunx splitting
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3.5.1.1 INLT1

The INLT1 is the same as the non-linear filter used in [101]. This is used as a benchmark 
for the comparison of performance of the INLT2 and the INLT3.

The prediction functions used for Zoi,£io and z n  are as in equations 3.85-3.87.

zoi =  *01 -  L^(xoo,^n)J (3.85)

zio =  zio -  [ / ’(xoo,zn)J (3.86)

arn =  arn -  | / ’(ar0o )J  (3-87)

The median interpolator is used as the prediction function T  due to its low complexity, 
its good interpolation performance at edges, whenever the edge is horizontal, vertical 
or diagonal and its capability of discarding impulse noise components. The prediction 
masks used are shown in Figure 3.19. The polyphase component aroo is regarded as the 
LL output and used as the input to the next level of decompositions using the same 
process as above.

11 00 00 00
00 (01) 00 11 ( 10) 11 ( 11)

11 00 00 00

Figure 3.19: The prediction masks for aroi,ario and a?n for the INLT1.

3.5.1.2 IN L T 2

The INLT2 uses the same sub band decompositions as in the INLT1. An additional 
step is included to update the ar0o component before using it as the input of the next 
level. In a non-linear sub band decomposition example for lossy image coding [102], 
it was concluded tha t employing an updating filter, which is 0.5 of the median of the 
update, mask, had improved the PSNR results. Since the main object of using integer 
transforms in lossless coding is to decode the lossless bit streams at low bit rates, the 
INLT2 is designed to investigate the effect of updating in multilevel non-linear sub 
band decompositions. The update function is as in equation 3.88 and the function T  
is the median of the update mask shown in figure 3.20. The prediction functions are 
the same as equations 3.85-3.87.

Xqq — Xqo "h \ H * n ) (3.88)
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11 11
(00)

11 11

Figure 3.20: The update mask for £00  for INLT2.

3.5 .1 .3  INLT3

The INLT3 is designed to demonstrate a novel selection of the elements of the prediction 
and the update masks used in the INLT1 and the INLT2. The prediction and updating 
functions are as in equations 3.89-3.92 and the templates are as in figure 3.21.

x n =  Z n  -

#10 =  Z io  -

z o i =  Zoi -

Zoo =  Zoo +

/■ ( z o o ) J

2 •^’( * 01» ^ i o j ^ i i )

(3.89)

(3.90)

(3.91)

(3.92)

00 01 00 01 00 01 11 10 11
10 ( 11) 10 ( 10) 00 (01) 00 01 (00) 01
00 01 00 01 00 01 11 10 11

Figure 3.21: The prediction and update masks for z n ,  a?io, £oi and xoo for INLT3.

3 .5 .2  T h e  zero -o rd er  en tro p y  va lu es

These non-linear transforms, applied on the test images, result in a sub band structure 
similar to tha t of the wavelet transforms. The performance of the above transforms, 
measured using the weighted entropy values for up to five scales of decompositions, are 
shown in Table 3.6- Table 3.8. The average values for the test image set are summarised 
in Table 3.9.

It is evident from the tables 3.6-3.8 that as the number of scales increases, the weighted 
entropy values decrease, providing the best results for 5 scales. On average, a weighted 
entropy reduction of 0.5 bpp was experienced by using 5 decomposition levels com
pared to a  single level decomposition. Out of three transforms considered, the INLT3 
outperformed the other two by 0.06 bpp on average for the 5-scale decomposition case. 
The INLT2 has also shown a slight reduction of the weighted entropy values over the 
INLT1.

68



Scales 1 2 3 4 5

Gold Hill 5.547 5.153 5.076 5.061 5.057
B arbaral 5.947 5.653 5.599 5.589 5.587
Barbara2 5.953 5.663 5.605 5.594 5.591

Boats 5.199 4.821 4.751 4.738 4.735
Black Board 4.864 4.473 4.407 4.395 4.393

Average 5.502 5.153 5.088 5.075 5.073

3.6: Weighted zero-order entropy values in bpp for Ih

Scales 1 2 3 4 5

Gold Hill 5.548 5.157 5.081 5.065 5.061
B arbaral 5.946 5.651 5.596 5.585 5.583
Barbara2 5.951 5.657 5.600 5.587 5.584

Boats 5.201 4.822 4.752 4.738 4.734
Black Board 4.852 4.465 4.396 4.383 4.380

Average 5.499 5.150 5.085 5.072 5.068

Table 3.7: Weighted zero-order entropy values in bpp for INLT-2

Scales 1 2 3 4 5

Gold Hill 5.496 5.083 5.001 4.984 4.980
B arbaral 5.897 5.589 5.528 5.517 5.514
Barbara2 5.949 5.662 5.601 5.587 5.584

Boats 5.154 4.771 4.701 4.686 4.682
Black Board 4.781 4.377 4.306 4.293 4.290

Average 5.455 5.096 5.027 5.013 5.010

Table 3.8: Weighted zero-order entropy values in bpp for INLT-3

Scales 1 2 3 4 5

INLT-1 5.502 5.153 5.088 5.075 5.073
INLT-2 5.499 5.150 5.085 5.072 5.068
INLT-3 5.455 5.096 5.027 5.013 5.010

Table 3.9: Summary of average weighted zero-order entropy values in bpp for INLTs

69



3.6 Discussion

In this chapter, the concepts of integer transforms using lifting were introduced with 
the use of lifting factorisation of the wavelet transforms. Novel integer versions of the 
W HT, the DCT, and the DST, influenced by the lifting concepts and the fast transform 
implementation techniques, were designed using the lifting techniques and exploiting 
the intrinsic properties of those transforms.

The IWHT was designed using factorisation of the WHT m atrix (including the nor
malising factor) into sub matrices of the Kroneckor products of the W HT2 and the 
corresponding identity matrices, which leads to the conversion of the W H T# into ap
plying the W HT2 along a binary tree recursively to the lower and the upper halves of 
the signal. The integer version was designed by implementing the W HT2 , which is also 
similar to  the S transform, in integer form using lifting steps.

The IDCT-II was designed by considering its intrinsic properties tha t lead to partition
ing the transform matrix into four quadrants. W ith some row and column permutation 
it was seen tha t the upper left quadrant of the N point DCT transform m atrix is the 
transform m atrix for the y-point DCT. Further, the left and right halves in the upper 
half share the same signs, whereas those in the lower half contain the opposite signs. 
Using those properties, at any given N-point, the integer W HT2 is applied first, so that 
the normalising constants are automatically incorporated into the upper halves at each 
stage. The upper half is recursively y-point DCT transformed until N=2. The lower 
half of the N-point DCT, which corresponds to the odd-indexed rows, is computed
using the IWHTw followed by the Kroneckor products of rotations by the basic angles 

2
and corresponding Identity matrices. The use of IW HT and the lifting factorisation of 
the rotation matrix enabled the integer implementation of the N-point DCT transform, 
where N is an integer power of two, including the normalising factors.

The IDST-II was designed by using the one-to-one relationship of the DCT and the DST 
coefficient matrices. The IDST coefficients were computed by incorporating column 
and row permutation, derived from their relationship, into either ends of the IDCT 
procedure. This relationship can be used to compute the DST coefficients using any 
DCT processors, especially in fast transform applications.

In all the above three designs, the transforms can be implemented as in-place opera
tions, which is an added advantage in software/hardware implementations.

Finally, the non-linear transforms were devised in order to investigate their usability
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in lossless image coding. This was done by using a median based non-linear prediction 
function in predicting the pixels in sub bands obtained by quincunx splitting. A non
linear updating method was also employed in these transforms.

3 .6 .1  T h e  co m p a riso n  o f  th e  tra n sfo rm  p erfo rm a n ces

The integer transforms, with scales of decompositions of 1, 2, 3, 4 and 5 for pyramidal 
sub band based transforms and corresponding block sizes of 2, 4, 8, 16 and 32 for 
block based orthogonal transforms, were tested on the test image set. It is generally 
known tha t the wavelet transforms provide the best performance when used with a 
greater number of scales. From the results already presented in this chapter, it can be 
concluded tha t all the transforms provide their best performance when applied with 5 
scales for pyramidal transforms or with 32x32 block sizes for block based orthogonal 
transforms. Table 3.10 summarises the weighted entropy values for all the transforms 
with 5 scales or with 32x32 blocks applied on the test image set.

Gold
Hill

B arbaral Barbara2 Boats Black
Board

Average

IW T
(5 scales)

(4,4) 4.702 4.787 5.008 4.192 3.878 4.513
(2,2) 4.705 4.958 5.066 4.234 3.888 4.570

(2+2,2) 4.694 4.808 5.024 4.183 3.870 4.516
(4,2) 4.702 4.810 5.024 4.195 3.886 4.523

S (1,1) 5.038 5.487 5.453 4.643 4.172 4.959
S+P 4.759 4.876 5.041 4.269 3.974 4.584

Block
transforms

(32x32)
IWHT32 4.870 5.172 5.253 4.663 4.247 4.841
IDCT32 4.626 4.514 4.824 4.214 3.925 4.421
IDST32 5.053 5.232 5.313 4.866 4.727 5.038

Non-linear 
transforms 
(5 Scales)

INLT-1 5.057 5.587 5.591 4.735 4.393 5.073
INLT-2 5.061 5.583 5.584 4.734 4.380 5.068
INLT-3 4.980 5.514 5.584 4.682 4.290 5.010

Table 3.10: Summary of weighted zero-order entropy values (bpp).
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Out of all the integer wavelet transforms considered, the (4,4) IW T provides the best 
performance on all images due to  its greater number of vanishing moments in the 
primal and dual lifting steps. The IW T results are in accordance with the number of 
vanishing moments involved in the lifting steps. As seen from the results, the greater 
the vanishing moments involved in lifting steps, the lower the weighted entropy values. 
Although the S+P transform shows better performance than the S transform, due to 
the additional prediction step introduced in the S+P transform, it does not outperform 
other IWTs.

The IDCT has the best performance out of all the block transforms and out of all 
the other transforms. As expected, the IDST performance on lossless image coding 
is the worst out of all the block based transforms. This may be due to the IDST’s 
inapplicability to highly correlated images. The IW HT, which can also be considered 
as a wavelet packet decomposition of the S transform, performs better than the S 
transform; however, it does not outperform the S+P transform.

Overall, the non-linear transforms resulted in the highest weighted entropy values, thus 
providing the worst lossless performance. However, the INLT3, the best of the three 
non-linear transforms considered, outperforms the IDST on average and for most of 
the test images.

From the table it can be seen tha t the performance of the IDCT is the best for lossless 
still image coding. On average, the IDCT gains an advantage of 0.09 bpp over the 
second best transform, the (4,4) IWT.

In this section, only the zero-order entropy values were compared for different trans
forms. The entropy coding of the above integer transform coefficients in an embedded 
coding frame work is discussed in Chapter 4 and Chapter 5. In entropy coding, further 
reductions of bit rates can be gained by employing efficient scanning techniques and 
coding contexts. The lossless and rate distortion performance of each transform are 
compared for different block sizes and scale levels for both intra frames and non-intra 
frames in Chapter 5 and Chapter 6 respectively.
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Chapter 4

Em bedded Quantiser Design

4.1 Introduction

In the previous chapter, the transforms tha t map integers into integers were presented 
in terms of their design, implementation and the performance on lossless image coding, 
measured in zero-order entropy values for the test image set. The next step of lossless 
image coding is entropy coding, by which the integer coefficients are packed efficiently 
by exploiting coding redundancy. As mentioned earlier in section 2.4, an embedded 
coding framework has been used in this research. This chapter discusses the embedded 
coding techniques and their usage on embedded to lossless image coding. The rest of 
the chapter is organised as follows. Section 4.2 introduces embedded coding, including 
the coding steps and the integer coefficient weighting. Section 4.3 analyses the existing 
methods for scanning coefficients and presents a novel and more efficient scanning 
scheme, Adaptive Quadtree Splitting (AQS), while sections 4.4 and 4.5 present the 
coding of the sign and coefficient refinement in an embedded coding framework.

4.2 Embedded Coding

As defined in Definition 1.1 (on page 10), in embedded coding, bit streams for all 
other lower bit rates are embedded within any given bit rate of the coded image bit 
stream. This is achieved by grouping the bits in the coded bit stream according to their 
significance. The embedded coding algorithms use scalar quantisation in several passes, 
starting with a quantisation bin size corresponding to the largest quantisation step that
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gives at least one non-zero quantised coefficient and thereafter reducing the bin size 
progressively in successive passes up to the targeted bit rate. In lossless embedded 
coding, the above process is continued up to the unit quantisation bin size. Defining 
these quantisation bin sizes as 2n with n € { msb , . . . , 1 ,0 }  (msb is the most significant 
bit plane number) corresponds to  bit plane-wise embedded coding of the coefficients in 
the sign magnitude binary representation. As in most of the published work [13,12,14], 
a bit plane based embedded coding technique was used in this research. The advantage 
of bit plane coding is tha t the output from each quantisation level is binary, so tha t it 
can be encoded using binary entropy coding.

4 .2 .1  W eig h ted  B it  P la n e s  (W B P )

In order to achieve exact integer representation, the lifting steps in the integer wavelet 
and the Walsh Hadamard transforms presented in Chapter 3 were performed ignoring 
the normalising (scaling) lifting steps, which correspond to the K  matrices. In such a 
coefficient domain, a bit plane across the whole coefficient set does not represent the 
same significance (according to the rms error) for all the sub bands, as the normalising 
factors depend on the transform scale and the sub band where the coefficients belong. 
Therefore, in order to adjust the relative significance of the coefficients in different 
sub bands, such transform coefficients have to  be normalised. A method to  normalise 
the transform coefficients by weighting the sub bands according to the corresponding 
normalising mask is presented in the following sub sections.

4 .2 .1 .1  F o r th e  IW T

In the integer wavelet transforms listed in Appendix A, the normalising operations 
with the factor k =  \/2  were excluded from the lifting steps. In a 1-D transform, the 
net effect of normalising is multiplying the coefficients in the low pass sub band (s) 
by y/2 and dividing the coefficients in the high pass sub band (d) by y/2. In a 2-D 
separable transform the net effect of normalising for a single scale is multiplying the 
coefficients in each sub band, namely, LL, LH, HL and HH by 2, 1, 1 and ^ respectively 
as in Figure 4.1. The zeroth scale normalising factor (NFo) set is |  2, 1, 1, |  j .  The 
normalising factors for higher transform sub bands (NFt) are found by multiplying the 
normalising factor for the LL sub band (NF(t-_x)Li) with the NFo (Figure 4.2).

As all the normalising factors are powers of two, the normalising of coefficients is 
performed by shifting operations. All shifting operations are left-bound and performed
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Figure 4.1: The net effect of scaling on sub bands.
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NF for a 2 scale transform

Figure 4.2: The normalising factors for higher scales.

relative to the smallest normalising factor. The number of bits (brx x ) to be leftward 
shifted in the sub band r x x  is found as in equation 4.1.

^  = log* I  , , p  NFrxx  x )  (4.1)
\ m m  { N F (3_ 1) l l , - - - , N F o h h \ /

The smallest normalising factor for the IW T is ( | ) ,  which occurs in the HHo sub band.

This leftward shifting operation can also be interpreted as vertically sliding of bit 
planes in the sub bands, when all coefficients are considered as a 3-D cube of ones and 
zeros. The weighted bit planes (W BP) are obtained by upward sliding of the coefficient 
bits in each sub band by the number of bit planes calculated from the equation 4.1 
relative to the HHo sub band (Figure 4.3). However, in software implementation, 
no actual bit plane sliding is required. Instead, the lowest significant bit index after 
weighting, which is the also same as the number of bit planes to be slid, brxx  (as 
in equation 4.1), is used as a threshold to stop refining bits for a given sub band. 
W ith this WBP arrangement, the original bit space, according to the dynamic range
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of the coefficients prior to normalising, is preserved. This prevents coding of bits that 
contain no information. No additional information regarding those thresholds needs to 
be coded, as they can be computed using equation 4.3 at the decoding end. Further, 
this method avoids any overhead bits tha t are incurred due to the expanded dynamic 
range resulting from the four extra lifting steps method for lossless normalising, as 
described in section 3.2.2.2.

LL
1

HL
1

LH
1

HH
1

HL
•

LH
•

HH
• WBP

#

LL
1

HL
1

LH
1

HH
1

HL
•

LH
•

HH
•

X 7

IX 6 7 7

7 7 7 7 7 7 7 vni 5 6 6 7 7 7

6 6 6 6 6 6 6 VD 4 5 5 6 6 6 7

5 5 5 5 5 5 5 VI 3 4 4 5 5 5 6

4 4 4 4 4 4 4 V 2 3 3 4 4 4 5

3 3 3 3 3 3 3 IV 1 2 2 3 3 3 4

2 2 2 2 2 2 2 UI 0 1 1 2 2 2 3

1 1 1 I 1 1 1 u 0 0 1 1 1 2

0 0 0 0 0 0 0 1 0 0 0 1

0 0

Sub bands before bit plane sliding Sub bands after bit plane sliding

Figure 4.3: The weighted bit planes by bit plane sliding.

4.2 .1 .2  For th e IW H T

Since the IWHT is a block based transform, the transformed coefficients need to  be 
rearranged in the corresponding tree order as in Figure 3.6 prior to employing any 
embedded quantising.

The scaling factors for a 2-D 2-point IWHT are the same as those for a single scale 
IW T as shown in Figure 4.1. The scaling factors for a 2-D N-point IWHT, where N>2, 
become a recursive multiplication of K K 2 , the scaling mask for a 2-point IWHT, along 
a quadtree in the coefficient domain.

K K 2 =
x 2 x 1
x 1 X — X 2

An example for N=4 is shown in Figure 4.4.
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Figure 4.4: The scaling factors for 2-D IW HT4 block.

Therefore, in a 2 -D IWHT, separable implementation of the lifting steps for the matrix 
K , as in equations 3.27-3.31 is replaced with the bit plane weighting according to  the 
mask K K n  for each W H n  block. The same virtual bit plane sliding can be performed 
as above, relative to the smallest scaling factor, which occurs in the (N -l,N -l)<fc element 
in the 2-D IW HT#. W ith this method, any further increment in the dynamic range of 
the coefficients can be avoided.

4.2.1.3 For the other transforms

The integer implementation of the IDCT and the IDST, introduced in sections 3.3 and 
3.4 respectively, includes the normalisation constants into the factorisation of those 
matrices. Therefore, a scaling operation at this stage is not required.

The INLTs introduced in section 3.5 do not involve any scaling due to their non-linear 
prediction and updating steps, which do not obey the orthogonality property. However, 
in order to arrange the coefficients according to their contribution to the to tal energy, 
a scaling process similar to tha t of IW T is used with the INLTs.

4 .2 .2  E m b ed d ed  c o d in g  s te p s

In bit plane oriented embedded coding, each weighted bit plane is coded from the 
most significant to the least significant bit plane. Within a bit plane, sub bands are 
coded from the lowest frequency to the highest and the highest scale to the lowest. 
For example, in a five scale wavelet transform based embedded coding, the sub bands 
are ordered as in { ZL4 , LH 4 , H L4 , HH,1, LH3 , • • •, HHo } according to the increasing 
frequency.

Each weighted bit plane or output from each quantisation step in general terms is coded 
in two different coding passes, namely

1. Switching pass and

2. Refining pass.
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In the switching pass, coefficients which become significant in the current weighted 
bit plane are switched on followed by their signs. Refinement of already switched 
coefficients is done in the refinement pass. Switching in the switching pass is achieved 
in this research by defining a significance switching mask (SSM) for each weighted bit 
plane. The following three sections (4.3, 4.4 and 4.5) present the three coding steps 
of embedded coding, viz., significant switching mask coding, sign coding and refining 
data  coding respectively.

4.3 Significance Switching Mask (SSM) Coding

An image, / ,  with M  x N  dimensions decomposed using a transform T  produces the 
coefficient set / t ( e ,  y), where x =  0, . . .  , M  — 1 and y =  0, . . . ,  N  — 1. The rth weighted 
bit plane W B P r represents a range (2r ,2 r+1] with a quantisation step 2r . Therefore, as 
seen on the WBP r , the magnitude of any I t (x , y) can be categorised into three groups.

y)]wBPr —

s i f 2r < | I r ( z , 2/) | < 2 r+1
N i f 1 /r(* ,y ) | < 2r (4.2)
X i f 2r+1 < \IT{x,y)\

The significance switching mask used in this research uses the same grouping of co
efficients as above. In embedded coding terms, the coefficients identified as S  type 
become significant in the W BPr. The N  type coefficients are the ones yet to become 
significant, whereas the X  type coefficients are the ones which have already become 
significant in previously scanned bit planes. The encoder needs to  code only the S  
and N  type coefficients in the significance switching mask, since the encoder and the 
decoder are synchronised according to  the mask scanning order.

The cost of embedded coding is the bits used to code N  type coefficients in the SSM. 
As the N  type bits represent bits whose indexes are higher than their corresponding 
most significant bits, coding of N  does not transm it information regarding image en
ergy to .the decoder. This is illustrated with the rate distortion plots as in Figure 4.5 
by comparing the bit rates for a given distortion for an embedded codec with those 
for a non embedded codec using Gold Hill image. The bit rates are in bpp, calculated 
using the zero-order entropy formula (equation 1.11) for the overall symbol stream in 
the embedded coding example and using the weighted entropy formula (equation 3.9) 
considering 5 level wavelet transform in the non embedded coding example. The dis
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tortion measure used is the rms error. The vertical distance between the plots is the 
cost of embedding for a given image distortion. The embedding cost varies from 30% 
to 80% with an average around 50% when measured as a percentage of corresponding 
non-embedded coding bit rates. The bit rates are plotted on the log scale in figure 4.6, 
so that the cost of embedding at low bit rates are shown clearly.

R ate  Distortion Plots

Figure 4.5: The comparison of embedded and non embedded coding.

!
s
gs
s

, 0 -’

Figure 4.6: The comparison of embedded and non embedded coding (log scale repre
sentation).

On the other hand, coding of N bits provides the information regarding the position 
of the S bits in the SSM for a given bit plane. As both the encoder and the decoder 
are synchronised with the scanning, careful selection of a scanning scheme which min
imises the necessity for coding of N  bits would help to reduce the cost of embedding 
significantly.
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Furthermore, the bit space to be coded is reduced by sending the highest msb index 
for each sub band as side information. This process, called depth limiting, will avoid 
unnecessary coding of N  bits above the highest msb bit for a given sub band. The msb 
for each sub band can be coded by using at most 4 bits. The bit space after bit plane 
sliding and depth limiting appears as in Figure 4.7
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Depth limited sub bands before bit 
plane sliding

Depth limited sub bands after 
bit plane sliding

(Effective bit space is in white)

Figure 4.7: The final bit space for embedded coding.

4.3.1 Scanning schem es

D efinition 4.1 (Scan) A scan on a significance switching mask (SSM) with dimen
sions M xN  to order the bits in the SSM is a one-to-one function f s defining an index 
in the closed interval [0, . . . , ( M x iV) — 1] from the original index pairs {($,y) : 0 < 
x < M , Q < y < N } .

[ 0 , . . , ( M x i V ) - l ] A { ( i , y )  : 0 < x < M , 0 < y < N }

In this section, a few scanning schemes that can be used in SSM coding will be presented 
and evaluated using the (4,4) integer wavelet coefficients from the test image set. The 
main object of this exercise is to cluster the TV-type bits in a given SSM at the rear of 
the scanning sequence or into a separate group within the scanned sequence, so that 
coding of such clusters that wholly consist of N  bits can be avoided, thereby reducing 
the cost of embedding.
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Scanning schemes discussed in this section can be grouped into three categories.

1. In tra sub band techniques

2. Inter sub band techniques

3. Whole SSM based techniques

4.3 .1 .1  I n t r a  su b  b an d  tech n iq u es

In intra sub band techniques, each sub band is scanned separately, without considering 
any inter sub band dependencies in coefficients. Scanning of coefficients in any single 
sub band is completed before scanning the following sub bands, which are ordered in 
the increasing frequency order. The sub band order also features decreasing normalised 
sub band energy. The intra sub band scanning can be either 1-D (when scanned into 
an array) or 2-D (when scanned into blocks).

The scanning schemes considered in this exercise are listed below.

A ) R a s te r  : Left to right, top to bottom scan (Figure 4.8). This scan is useful to
exploit horizontal dependencies which are im portant in modelling coding contexts 
(Section 5.1.1). This is a 1-D scan, as the bits are ordered into an array.

B ) Z igzag : This is the scanning method used in the JPEG  baseline standard to
scan the DCT coefficients in an 8x8 block. In this experiment, the zigzag scan 
is performed on the whole sub band (Figure 4.8). Since this scan runs from 
top to bottom  along the diagonals, the diagonal directional dependencies can be 
exploited in the context modelling. This is also a 1-D scan.

C ) Z Scan  : This scan traverses 4 symbols in a square block of 2x2 symbols (min
block) as in a letter Z shape and then four min blocks are traversed using the 
same pattern until the whole sub band is traversed and arranged into an array 
(Figure 4.8). In this method, horizontal vertical and diagonal dependencies can 
be exploited. This is also a 1-D scan.

D ) Q u a d tre e  : The quadtree approach is a 2-D technique. A quadtree is a tree
structure in which each non-terminating node has four children (Figure 4.9). In 
quadtree coding, a square block, which is depicted as a node in the tree termi
nology, is split into four quadrants if it contains at least one S  bit or terminates 
the splitting otherwise. This process is performed until a given minimum block 
(min block) size is reached, or all the nodes in the tree are terminated.
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a). Raster b). Zigzag c). Z scan

Figure 4.8: 1-D intra sub band scanning techniques.
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Figure 4.9: Quadtree scanning.

4.3.1.2 In te r  sub  band  techn iques

These methods exploit inter sub band dependencies based on the hierarchical repre
sentation across the sub bands, as represented by wavelet trees across the scales as in 
Figure 4.10. Two inter band scanning techniques are to be considered.

E) Zero T ree  : In this scanning technique, S and N  bits on a switching plane are
coded using the zero tree symbols introduced in [12]. The S  bits are coded with 
a single symbol irrespective of the sign. The N  bits are categorised into two 
groups, hence represented by either of two symbols. If none of the descending 
coefficients in the wavelet tree which originated from an N  bit is a type 5 , then 
that N  bit is classified as a Zero Tree Root (ZTR) symbol and the descendants 
from that node need not be coded. Otherwise, it is classified as an Isolated Zero 
(IZ) symbol and coding along the tree is continued.

F ) W T V H Z  : In this method, for each pixel in the LL sub band, a corresponding
wavelet tree as a square is constructed and then each tree (square) is scanned 
(as in Figure 4.11 ) vertically in HL sub band, horizontally in LH sub bands and 
z scan in HH sub bands. These scanning patterns for separate sub bands were 
determined after considering the correlation orientation of the coefficients within 
a sub band.
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WT for a  2 scale wavelet transform

Figure 4.10: Wavelet tree organisation.

c ' 4 -

c*1

WT-HVZ for a  3 scale WT

Figure 4.11: WTHVZ scan for a wavelet tree.

4.3 .1 .3  T he w hole SSM  based techniques

The intra sub band scanning techniques described above can be used on the entire SSM 
rather than from sub band to sub band. However, using 1-D scans like raster and zigzag 
in this manner does not scan the coefficients according to their energy contribution, 
which is based on the sub band they appear in. Quadtree and Z scans can traverse 
according to the energy ordering for a square shaped image, which is not common in 
video applications where the aspect ratios are normally 4:3 or 16:9. In this case, this 
type of scanning methods is excluded from this experiment.
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4.3 .1 .4  Scanning schem es : A nalysis

Raster, Zigzag and Z scans

The 1-D in tra band scanning techniques (A, B and C) presented above produce only 
two types of symbols (S and N types) as output. The entropy in bits per symbol for 
such a scan of to tal number of S and N type symbols, T, and the number of S type 
symbols, s, using a memoryless model is as below.

E 1A,B,C = Ps log, (-j-) +  (1 - p .)  log2 ( f r ^ )  (4'3)

where, p,  =  £

Further, coding of N type symbols beyond the last S symbol for a sub band can be 
avoided by introducing an extra symbol ( ‘stop’ symbol) to  term inate scanning for a 
sub band as used in the JPEG  baseline codec [18]. The entropy in bits per symbol for 
such a scan of total number of S and N type symbols, T, with the number of S type 
symbols, s, and the last symbol occurring at the y th position using a memoryless model 
is as below.

E 2 a ,b ,c =  y log, ( i ) + ( . - , )  log, ( £ ) + log, ( l (4.4)

, s y - s
where, ps =  —— , pn =, -I ? r n  —  * 1 ’  r y  —  i 1y + l  y + 1  y y + 1

The performance of E2a ,b ,c varies with T, s and y. A comparison of E1a ,b ,C and 
E2a ,b ,C for T=100 and different values of y (for y=30, 50, 70 and 90) against different 
s values ( s =  1 • • • y for each y value) is shown in Figure 4.12. It is evident that the E2 
values provide plots with lower entropy for lower values of y. According to the figure, 
the E2 plots breakeven with the E l plot at s=4, 7, 14 and 41 respectively for y=30, 
50, 70 and 90. This leads to the conclusion tha t for a given T value, only a smaller s is 
required for E2 to outperform E l when the y value is low. The converse of this is that 
for a given y value, a smaller s is required for E2 to outperform E l when the T value 
is high. This suggests the use of E2 in higher bit planes of high frequency sub bands 
where T is larger and the N bit count is significantly higher than the S bit count, in 
order to achieve lower entropy values in those sub bands.

However, the coefficients in a wavelet transform sub band represent the components 
of a specific frequency band at a local position of a scaled original signal (image). 
Therefore, the coefficients in a sub band are not arranged according to increasing 
frequency as in a transform block in an orthogonal block transform, like the DCT. 
Instead, the coefficients represent the original spatial structure of the image. Therefore,
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Entropy Comparisons
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Figure 4.12: Comparison of 1-D scans with a ‘stop’ symbol and without.

the different 1-D methods, namely, raster, zigzag and Z scan produce the same results 
using E l. Further, the possibility of them producing significantly different results using 
E2 is also low due to the above mentioned coefficient arrangement. None of those scans 
guarantees that any will produce a bit stream with a low y value, which is a requirement 
for the better performance of E2. Due to these reasons and for its simplicity, only the 
raster scan without ’stop’ symbol is considered in this scanning scheme experiment.

Q u ad trees

The quadtree structure and model for representing 2-D binary data were first intro
duced in [103] and further probabilistic models were reported in [104]. A traditional 
quadtree consists of three types of nodes, namely, all white, all black and grey (mixture 
of white and black). In order to keep the output symbol set binary, only all white and 
grey nodes are considered in this experiment. This is similar to the pointer quadtree 
structure, which has only two types of nodes, namely, non-leaf and leaf, introduced in 
[103]. In the SSM, where there are three types of symbols as opposed to two in binary 
images, the S type bits are regarded as black, while the N and X types are considered 
as white. A non-leaf node corresponds to a homogeneous block of white pixels, while 
a leaf node corresponds to a non-homogeneous block containing at least a single S bit.

A quadtree is normally performed on a square block (max block), the dimensions of 
which are a power of two, so that the quadtree terminates with the single pixel nodes, 
corresponding to the elements of the min block. Within a non homogeneous min block, 
only the N type bits are considered as a node since the X type bits are not coded in 
the SSM coding.
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A max block with a side length 2d, generates a quadtree with a maximum depth of d 
non-terminating (leaf) nodes. The number of leaf nodes and non-leaf nodes generated 
by the quadtree are determined by the position and the number of S type bits. Fur
thermore, when the amount of aggregation of the S type bits is minimal, the quadtree 
representation becomes inefficient, producing more symbols than in a corresponding 
1-D scan. The quadtree methods are more efficient when homogeneous regions of N 
and X type bits are present in the SSM, which normally occurs in the most top bit 
planes for a given sub band.

In this experiment, max block sizes of 32, 16 and 8 were used for the sub bands in the 
wavelet scale number s =  0, s =  1 and s > 2 respectively and a min block size of 2 was 
used for all the sub bands to generate the quadtrees, whose cost of representation was 
computed using the to tal number of leaf and non-leaf nodes in all the quad trees for a 
given SSM.

W avelet trees

The sub bands are rearranged into a wavelet tree (square) following the inverse of 
the Block2tree procedure shown on page 42. For example, an I scale wavelet transform 
applied on an M xN  image^produces wavelet squares of 2l x 2 l size. This generates
a tree for each coefficient in the LL sub band (Figure 4.10 on page 83).

The main difference of the quadtree and the wavelet tree is the origin of the tree. The 
quadtrees are originated with reference to the centre point, while the wavelet trees are 
originated from the top left hand corner. The quadtrees contain a four way branching 
process, whereas the wavelet trees follow a three way branching for the highest level 
and four way branching thereafter.

Two techniques to code these wavelet trees are considered in this experiment. The first 
method is the zero tree technique as introduced in the section 4.3.1.2. The zero tree 
coding outputs three different symbols, the additional symbol being used to represent 
groups of non-S type bits present in the deeper levels of the wavelet tree. Although 
it introduces an extra symbol to the alphabet, it reduces the to tal number of symbols 
required to represent a tree.

The second method is the WTHVZ method (Figure 4.11 on page 83), introduced in 
the section 4.3.1.2. A wavelet tree represents the frequency components corresponding 
to a 2l x 2l spatial location. This scanning method tries to use the increasing frequency 
arrangement within a tree following the coefficient traversal shown in Figure 4.11. Fur
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thermore, the truncation of a tree traversal using a ‘stop’ symbol can be incorporated 
into the WTHVZ scanning technique.

In a coding method tha t uses either of the above methods, after completing the tree 
scans (zero tree or WTHVZ), which classify the tree elements and identify the elements 
to be coded, the wavelet squares are organised back to the original form (multiresolu- 
tional wavelet transform). This allows the scanning of a given SSM from sub band to 
sub band from the lowest frequency to the highest frequency.

4.3 .1 .5  Scanning schem es : R esults

From the above discussion, the following scanning techniques were considered in this 
experiment.

1. Raster scan (Representing 1-D intra band methods)

2. Quadtree scan (2-D intra band technique)

3. Wavelet tree - Zero tree

4. Wavelet tree - WTHVZ

The zero-order entropy values in bpp were computed for each weighted bit plane of the 
(4,4) IW T coefficients of each image in the test image set. The results for individual 
images are recorded in the Appendix C. The average entropy values (bpp) for the
whole image set are shown in Table 4.1, where the best method for each bit plane is
shown in bold font.

From Table 4.1 and the tables in Appendix C, it can be seen tha t the quadtree method 
outperforms the other methods, when the total entropy for all bit planes (13 • • *0) is 
considered. The raster technique produces the second best method while the zero tree 
method records the worst performance, although there is only a 0.082 bpp difference 
between the best and the worst techniques. The inferior performance of the zero tree 
technique can be explained by its lack of effect on the W BP bit space resulting from 
the processes of bit plane sliding and depth limiting. Those processes have already 
removed the unnecessary N  bits, which otherwise would have been efficiently coded by 
the zero tree symbols.
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WBP Raster Quad Tree WT-ZT WTHVZ

13 0.0009 0.0008 0.0009 0.0009
12 0.0007 0.0005 0.0006 0.0009
11 0.0013 0.0010 0.0012 0.0012
10 0.0033 0.0027 0.0025 0.0038
9 0.0119 0.0091 0.0094 0.0130
8 0.0421 0.0280 0.0319 0.0394
7 0.1046 0.0711 0.0829 0.1025
6 0.1791 0.1312 0.1494 0.1777
5 0.2785 0.2204 0.2420 0.2729
4 0.4030 0.3644 0.3786 0.3986
3 0.5752 0.6178 0.6290 0.5807
2 0.6222 0.7073 0.7309 0.6284
1 0.3620 0.4051 0.3910 0.3676
0 0.0700 0.0793 0.0700 0.0752

13---O 2.6547 2.6387 2.7205 2.6628

Table 4.1: Average zero-order entropy values (bpp) for the test image set

However, the tables show tha t no single technique has consistently produced the best 
performance for all the bit planes. In general, the raster scan performs best for the 
lower bit planes and so does the quadtree scan for higher bit planes. As can be seen 
from the table, using the quadtree scan from the bit plane 13 to the bit plane 4 and 
using the raster scan for the rest, provides a total bit rate of 2.4586 bpp, which is lower 
than those for any other individual scan.

However, the transition bit plane from quadtrees to raster depends on the sub band 
statistics in a given bit plane for a given image. More advantage can be achieved 
by adaptively deciding the transition of scans from quadtree to raster and vice versa, 
if necessary, rather than using a fixed transition point as above. A novel adaptive 
scan selection scheme, Adaptive Quadtree Splitting (AQS), is investigated in the next 
section.

4 .3 .2  T h e  A d a p tiv e  Q u a d tree  S p lit t in g  (A Q S )

The quadtree scan and the z scan follow the same bit traversal, the only difference 
being in the output symbols, for which the quadtree scan uses two quadtree symbols, 
leaf and non-leaf, to group quadrants of non-S type bits. Therefore, by avoiding the 
use of leaf and non-leaf grouping, a quadtree scan can be transformed into a Z scan
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and vice versa. As stated earlier, the final entropy value for the Z scan, which is a 1-D 
technique, for a sub band is the same as tha t for the raster scan. Therefore, in this 
section, the term ’raster’ is used to address all the 1-D scans.

AQS: T he C om ponents

The adaptive switching between the quadtree and the raster is achieved by designing 
two quadtree algorithms, namely, QT1 and QT2. The first quadtree algorithm, QT1, 
is same as the previous quadtree scanning, in which quadtree splitting is performed 
until a predefined min block size, which is 2x2,  is met. In a min block, the S and N 
bits are the only bits output for entropy coding.

The second quadtree function, QT2, adaptively changes the scanning method from 
quadtree to  raster depending on the occurrence of X  bits within a block. In this, if a 
block contains at least one X symbol, the block is split into four sub blocks without 
producing any quadtree symbols, i.e. leaf and non-leaf symbols, for the block. If the 
block does not contain any X bits, QT1 is used. This is repeated until the min block 
size is met. The S and N bits in a min block are entropy coded as those in the QT1 
algorithm.

AQS: T he A lgorithm

Coding using the QT1 scan is expensive when the probabilities of S  and N  bits are 
similar and when they do not constitute homogeneous regions. This is common in the 
lower bit planes, due to the random nature of S  symbols and the higher number of 
X  symbols. As evident from the Table 4.1, the raster scan outperforms under these 
conditions. The QT2 algorithm can be used in such cases where the homogeneous 
regions of non-S type bits are not present. QT2 is the more im portant scan since it 
can adaptively change from quadtree scanning to raster scanning. If a block consists 
of no S  bits, but with X  and N  bits, then QT2 is costly. In this case QT1 outperforms 
QT2.

The adaptive quadtree splitting technique is designed to choose the better quadtree 
algorithm adaptively for each block. This is achieved by predicting the current block 
from the corresponding block in the parent sub band, which has already been scanned 
and the bits of which are already known to both coder and decoder. If a bit in the 
parent sub band is N  type, then there is a higher probability that all the corresponding 
bits in the immediate child sub band are N  type as well. The zero tree scan used here 
and in the EZW algorithm, makes this hypothesis to all the descendants of a node in
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the wavelet tree. The underlying assumption here is tha t there is a high probability for 
the normalised magnitude of the coefficients in a parent sub band being greater than 
tha t of the corresponding coefficients in the immediate descendant sub bands.

The AQS algorithm predicts four children of a parent as follows:

N  ty p e  : If parent is N  type then child bits are N  type,

A ty p e  : If parent is S  type then child bits are either S  or N  type

B ty p e  : If parent is X  type then child bits are either S  or N  or X  type

A predicted block consists of N, A, B and a priori known X  symbols from the current 
block. If the predicted block consists of only N and X  symbols, QT1 is used and 
otherwise QT2 is used.

The above decision is made not only at the beginning of a max block but also at 
subsequent levels of splitting up to min blocks, where individual S  and N  bits are 
output for entropy coding. This type of decision making allows the AQS to adaptively 
switch between QT1 and QT2 according to the known sub band statistics (from X  
bits) and the predicted sub band statistics. The flow charts summarising two quadtree 
algorithms are shown in Figure 4.13 and 4.14 respectively.
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S symbols? NO
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Code QT symbol 1
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Figure 4.13: The first quadtree scanning (QT1)

90



Start

Is this a min 
block?

Code individual 
pixris 

And move to 
next block

YES

NO

Are there 
any X 

symbols?
QT1

NO

YES

Partition the block into 
4 sub bands

Figure 4.14: The second quadtree scanning (QT2)

Four sub bands in the highest scale are scanned without any prediction from the parent 
sub band, as the parent sub band and the three child sub bands belong to the same 
scale in the wavelet pyramid. Therefore, the decision criteria on choosing QT1 and 
QT2 for these sub bands are based only on the presence of the X  bits in a given block.

AQS: Perform ance com parison

The average zero-order entropy values in bpp for the test image set using the AQS 
scanning method and initial four scanning schemes are summarised in Table 4.2 for 
comparison. The bit rates for individual images can be found in Appendix C. The best 
method for each bit plane is highlighted in bold font.

From Table 4.2 and the tables in Appendix C, it can be seen tha t the AQS scan, 
with a total bit rate of 2.3760 bpp, outperforms all other scans including the com
bined quadtree-raster method switching to raster at bit plane 3, which gives a bit 
rate of 2.4586 bpp. The AQS method produces the best bit rates for most of the bit 
planes, particularly for the middle range bit planes. On average it has an advantage 
of 0.2627 bpp (10%) over the next best single method and 0.0827 bpp (3%) over the 
combined quadtree-raster method.

91



WBP Raster Quadtree WT-ZT WTHVZ AQS

13 0.0009 0.0008 0.0009 0.0009 0.0009
12 0.0007 0.0005 0.0006 0.0009 0.0007
11 0.0013 0.0010 0.0012 0.0012 0.0011
10 0.0033 0.0027 0.0025 0.0038 0.0024
9 0.0119 0.0091 0.0094 0.0130 0.0084
8 0.0421 0.0280 0.0319 0.0394 0.0263
7 0.1046 0.0711 0.0829 0.1025 0.0667
6 0.1791 0.1312 0.1494 0.1777 0.1208
5 0.2785 0.2204 0.2420 0.2729 0.1983
4 0.4030 0.3644 0.3786 0.3986 0.3247
3 0.5752 0.6178 0.6290 0.5807 0.5559
2 0.6222 0.7073 0.7309 0.6284 0.6373
1 0.3620 0.4051 0.3910 0.3676 0.3623
0 0.0700 0.0793 0.0700 0.0752 0.0700

13---0 2.6547 2.6387 2.7205 2.6628 2.3760

Table 4.2: Average zero-order entropy values (bpp) for all scans the image set

4.4 Coding The Signs

The sign of a coefficient needs to be coded only after the coefficient has become signif
icant. The sign values, either positive or negative, can be represented in two symbols. 
The experiments on signs of the significant coefficients revealed th a t the two sign val
ues are equiprobable. The zero centred symmetric Laplacian shape of the probability 
distribution of the wavelet coefficients proves the above observation. This leads to the 
conclusion tha t the sign information cost is equal to the total number of S symbols in 
the SSMs for all the bit planes.

Due to the above reasons, no special scanning schemes for sign are considered. Instead, 
in SSM, as and when an S  type bit is coded, its sign is coded subsequently.

4.5 Data Refinement

In embedded coding, switching of coefficients and refining of switched coefficients are 
done in two different passes for a given bit plane. In this research, the refining pass is 
carried on prior to the switching pass. This helps context modelling for the switching
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pass, which is discussed in section 5.1.1, as it provides more a priori known bits, in 
place of X  bits, in the neighbourhood of S  or N  bits.

The refining bits are either 1 or 0. Since these refining bits correspond to the bit 
planes tha t are lower than the msb for a given coefficient, they are highly decorrelated 
and possess a random nature. Due to these reasons, no special scanning order for data 
refinement for a given bit plane is considered. They are coded in the order of X  symbols 
occurring in the SSM, following a traditional raster scan.

4.6 Summary

The embedded quantiser presented in this chapter follows a simple bit plane based 
embedded coding system. The use of bit planes as the quantisation levels provides a 
quantisation scheme, whose quantisation bins are reduced by a factor of two at each 
bit plane traversal.

The normalisation of integer coefficients of the IW T, the IWHT and the INLT by the 
virtual bit plane sliding process scales the coefficients by their corresponding normal
ising constants while preserving the dynamic range. W ith this method, the unneces
sary coding of zeros resulting from the traditional multiplication based normalising is 
avoided. Furthermore, coding the maximum coefficient height (msb) for each sub band 
as side information (depth limiting process), reduces coding of unnecessary zeros above 
the highest msb of a sub band. These two processes provide a compact effective bit 
space.

The embedded coding is costly compared to  non-embedded coding mainly due to N  
bits, which possess information regarding the position of S  bits, in the SSM. The 
methods to reduce the cost of embedding must concentrate on avoiding of coding such 
bits or clustering such bits into groups, so tha t each group can be represented by fewer 
bits. This was investigated by experimenting the efficient scanning schemes of the SSM. 
Out of the four scanning schemes considered, namely raster, quadtree, wavelet tree - 
zero tree and wavelet tree - HVZ, the quadtree based produced the lowest bit rates. 
However, when individual bit planes were considered, the quadtree scan was the best 
for the higher bit planes as was the raster scan for the lower bit planes.

The adaptive quadtree splitting (AQS) using two quadtree techniques QT1 and QT2 
was designed to switch the raster and quadtree scanning adaptively according to the
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current block statistics. This was achieved by using the decision criteria based on the 
information predicted from the parent sub band and a priori known information from 
the current block. It is evident from the bit rate tables (Table 4.2 and the tables in 
Appendix C) tha t on average, the AQS has improved the results of the previous scans 
by 10%. Furthermore, the AQS has produced the lowest bit rates for most of the bit 
planes.

Finally, coding of signs and refining bits were briefly presented. No special scanning 
techniques for these bits, which were binary, were considered due to their high random
ness in occurrence.
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Chapter 5

Lossless Coding o f Intra Frames

In the previous two chapters, the two main components of an embedded lossless coder, 
namely the integer transforms and embedded quantising were discussed in detail. In 
chapter 3, the integer forms of the wavelet, the Walsh Hadamard, the Discrete Cosine, 
the Discrete Sine and the non-linear transforms were introduced, designed and their 
entropy performances were evaluated. In chapter 4, the essence of embedded coding 
was introduced including the coefficient weighting and the steps, with all coding and 
modelling examples using the (4,4) integer wavelet. In this section the entropy coding 
of embeddedly quantised symbol streams for in tra (I) frames of a video coder, which are 
also considered as still images, is discussed. The rest of the chapter is organised as be
low. In section 5.1, the Embedded to Lossless Image Coding (ELIC) algorithm which 
uses the AQS technique presented in 4.3.2, is discussed with the results using (4,4) 
and other integer transforms. Section 5.2 shows how to incorporate near-lossless fea
tures into ELIC, while section 5.3 presents the quasi lossless compression performance 
of ELIC using all integer transforms. Finally, section 5.4 discusses the compression 
performance of ELIC for intra frames.

5.1 The ELIC Algorithm

The Embedded to Lossless Image Coding (ELIC) algorithm uses the transforms that 
map integers to integers followed by embedded coding of the coefficients. The coding 
is based on bit significance criteria in which the coefficients tha t become significant in 
each bit plane are identified using a significant switch mask as shown in section 4.3. The 
scaled coefficients are coded from the most significant weighted bit plane to the lowest
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significant bit plane. Each weighted bit plane is visited from the lowest frequency (L L ) 
sub band to the highest { H H q )  frequency for coding /  decoding and each sub band in 
a given bit plane is coded in two passes for data  refinement and significant switching, 
the la tter being coded using the AQS scanning scheme. The symbols generated by the 
above process are entropy coded using a context based adaptive arithmetic coding as 
and when they are generated. The individual stages of the ELIC algorithm are shown 
in Figure 5.1.

Input Image

integer
transform

Scaling
Coefficients

MSB

ISB j

DaU
Refining

------►

Significant 
Switching 

Mask Coding

_  c
i s£ u

Bit plane coding

Embedded Bit stream

Figure 5.1: ELIC block diagram.

5 .1 .1  C o n te x t  m o d e llin g  for en tro p y  co d in g  

C ontext m odelling : Basics

In context based entropy coding, the probability for each incoming symbol is calcu
lated based on the probability distribution function of a coding context in which the 
symbol appears. From a universal source coding point of view, a source drawn from 
a smaller alphabet can be better modelled as a Markov process, and can thereby be 
coded efficiently compared to a source with a larger alphabet [105, 106]. This feature 
is satisfied with the embedded quantiser designed in the previous chapter, as all the 
symbols output at each stage are binary, which is the smallest alphabet possible. The 
main objective of context modelling is to remove the statistical redundancy in the out
put symbols. This is normally achieved by using a set of past observations (X ( C )) on 
which the probability of the current symbol (YJ) is conditioned to  predict the condi
tional probability of the current symbol ( P ( Y i \ X ( C ) ) .  The better the model fits the 
source, the smaller the bit rate an entropy coder can achieve.

Context modelling for entropy coding has successfully been used in both lossless image 
coding [32, 33, 34] and lossy image coding [106, 107, 108, 109]. In recent years, context
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based entropy coding of wavelet coefficients have become an im portant component of 
wavelet based image coding. In, one such example, ECECOW (Embedded Conditional 
Entropy Coding of Wavelet Coefficients) [107], an extensive use of coding contexts mod
elled using the already coded neighbouring bits in the same sub band and corresponding 
bits in the parent sub band has produced improved results among the wavelet based 
image coding. However, this has resulted in high modelling costs. In [108], the authors 
have improved the efficiency of context modelling by eliminating repetitive arithmetic, 
logic and memory operations, removing the parent sub bands in the context modelling 
and sharing contexts with signs and texture (switching and refining processes). The 
use of context merging to improve model costs have been demonstrated in [109].

C ontext m odelling in ELIC: For sw itching

The simplest coding context is to use the most previously coded symbol (T i-i) to 
condition the probability of the current symbol (YJ) (Markov-I model). The statisti
cal redundancy can be exploited more effectively by using contexts which involve the 
neighbours and corresponding parent pixels.

The dependencies of the current bit on the parent bits and other neighbouring bits in 
an embedded coding framework are briefly illustrated in this section using the (4,4) 
IW T coefficients of the test image set.

The neighbouring bits for a given bit can be either S,  N  or X  type. For an X  type 
neighbouring bit, the actual refining bit is known, as a bit plane is refined before the 
switching pass. Since in AQS scan, a bit plane is traversed in Z scan form, one or more 
of its neighbours at positions Np, W, NW, SW and NE are already known at a given 
current bit position, Yi, as in Figure 5.2. These bits and the corresponding parent (P) 
are used as the members of the context template.

NW Np NE

W Yi

SW

Figure 5.2: ELIC neighbourhood template for coding context.
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The average probability values of current bit, Yi , being N  type and being equal to the 
predictor bit,C*, for all possible types ( 1 , 0 and 2 for 5 , N  and X  respectively) of each 
predictor bit in the above template for the test image set are tabulated in Table 5.1.

Ci P Np W NW NE SW

P(Yi =  0 |C,- =  0 ) 0.783 0.753 0.753 0.748 0.763 0.793

IIooII«• 0.734 0.597 0.597 0.608 0.620 0.660
P(Yi =  0  | =  2 ) 0.436 0.545 0.544 0.532 0.532 0.531

P(Yi =  Ci | Ci ±  2 ) 0.552 0.652 0.652 0.645 0.659 0 .6 8 8

Table 5.1: The probability values of Y{ being N  type for different types of Ci

From these observations in the table, the following conclusions can be arrived at. The 
insignificance of neighbours and parent has about over 74% influence on the insignifi
cance of the current bit. When P = l ,  there still is a 74% probability of the current bit 
being insignificant. Similarly, when other neighbours are significant there is about a 
60% possibility for Yi to be insignificant. When Ci is X  type, then the significance and 
the insignificance occurrences of Yi are equi-probable. The bit plane wise observation 
suggests tha t these dependencies are stronger in the higher bit planes than in the lower 
bit planes.

Two types of predictions can be performed based on the above context mask. The 
first prediction method is to use the Maximum Likelihood (ML) criteria based on the 
context template. It was found by experiment tha t when the ML is N  type, Yi is also 
insignificant with average probabilities of more than 60% for the higher (un-normalised) 
bit planes and 41% for the lowest bit plane. Similarly, when the ML is S  or X  types, 
Yi is significant with average probabilities of more than 60% for the lowest and the 
highest bit planes and 35%-50% for the rest.

The second method is to use a gradient oriented significance prediction (gosp), adapted 
from GAP [32, 31], using only the already coded neighbouring bits in the context 
template. Provided all neighbouring bits are already coded gosp predicts the current 
bit as follows considering the values 0, 1 and 2  for A , S  and X  types respectively.

D h = \ N W  -  Np\ + \ N p - N E \

Dv = \ N W  - W \  + \W -  SW\

i f  (D h > D v) : {Xi = Np}

i f  (Dh < Dv) : {Xi = W }
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i f  (Dh =  Dv) : {

i f  ( N W  > M a x  (N p , W )  : { X { = M i n  (Np,  W )}

i f  ( N W  < M i n ( N p , W )  : {X; = M a x  ( N p , W ) }

else : {X; =  N W }

}

This type of prediction is used only if at least all of Np, W and NW neighbours are
known to the coder and decoder. If either of SW or NE is not already coded before
coding Y{, then the respective Dv or Dh is weighted accordingly prior to the subsequent 
decision making. When both SW and NE are not already coded or not available at the 
image boundaries, the (Dh = Dv) case is used.

The context model used for arithmetic coding of individual bits in min blocks in AQS 
coding for switching passes of ELIC, includes both the above methods, ML and gosp, 
and the strong influence of an insignificant parent bit. In context based arithmetic 
coding used in ELIC, the probability of the symbol to be coded is found from a collection 
of probability distributions identified by the context index computed as below.

The prediction method is grouped into three types, according to the availability of 
the neighbouring bits. The type 1, where Np, W, NW and either or both of NE and 
SW of the template are available, is predicted using gosp, whereas the type 2, where 
only Np, W and NW are present, is predicted as in the case for (Dh =  Dv). Type 
3, where one or more of Np, W and NW is not available, is predicted using the ML 
criteria conditioned with insignificancy of the parent pixel P (i.e. when P is insignificant 
Yi is also predicted as insignificant irrespective of the ML prediction). A prediction 
value of 2, which corresponds to an X  type prediction, is considered as a prediction of 
significance.

The context index is determined by the prediction type (1, 2 and 3), the predicted 
value (0 and 1) and the sub band orientation (LH, HL and HH) when the prediction 
type is 1 or 2. The probability distributions corresponding to these context indexes are 
initialised at the beginning of each bit plane, so that each distribution can represent 
the statistics related to tha t bit plane.

Two separate global probability distributions are used for quadtree symbols (leaf and 
non-leaf) output in Q T 1 and QT2  respectively.
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C ontext m odelling in ELIC: For signs

In an embedded quantising framework, the sign of a coefficient is coded only after that 
coefficient has become significant. The authors of ECECOW algorithm have claimed 
tha t part of the superior compression performance of it is due to  its sign context 
modelling, which includes three online estimated probabilities, conditioned on the sign 
of neighbours, depending on the sub band orientation [107]. Later, in an extension of 
ECECOW, they have shown that the same performance can be gained by combining 
the sign and texture (switching and refining) contexts together [108].

In most cases, it has generally been assumed tha t no advantage is to  be gained by en
tropy coding of signs. Recently, it was shown tha t the wavelet coefficient signs, resulting 
from 9/7  wavelet, are strongly negatively correlated across edges [110]. However, due 
to bit plane by bit plane switching of the coefficients in embedded coding, the signs of 
only some of the neighbours in a causal /  non causal template are already known for 
all the significant bits on a bit plane. This handicaps the chances of capturing any sign 
correlation mentioned above. Therefore, in ELIC, the sign bits for significant coeffi
cients are coded using a Markov-I context modelling, which considered the previously 
coded sign to condition the probability of the current sign.

C ontext m odelling in ELIC: For refining

In a data  refinement pass in the embedded coding, the neighbouring bits can be of 
three types: Already refined in the current bit plane, not yet refined in the current bit 
plane and yet to become significant. Out of these three types only the first type carry 
information relevant to bit plane statistics. Therefore, the neighbouring bits in a bit 
plane are not considered in designing the context for data  refining in ELIC.

Instead, data  refinement bit contexts are defined using the already coded bits from the 
current coefficient with reference to the original bit positioning in the wavelet domain 
before normalising. The context C; for the bit* of a coefficient is selected using the two 
higher bits, bit,-_i and bitt_2  as in Table 5.2.

Ci bit*_i bit,-_2
1 0 0

2 0 1

3 1 1 or 0

Table 5.2: Context Selection for data refinement bits

The actual coding context is selected by referring to a look up table with two input 
parameters, namely initial context, C,-, and the original bit plane number for the bit*
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prior to normalising. This makes 3 x(m sb index) data contexts for each WBP. The 
memory used for these distributions in one WBP are reused for another W BP by 
resetting the distributions at the beginning of each WBP. This also helps the probability 
distributions to  represent the statistics related to a specific bit plane.

C ontext m odelling in ELIC: Perform ance

The performance of the above presented context modelling for ELIC is demonstrated as 
in Table 5.3, by comparing its lossless bit rates with those of the no context modelling 
case and a Markov-1 context case for the lossless coding case, the bit rates shown in 
the table are the average lossless bit rates for the test image set.

Model Lossless Bit rate

No Contexts 4.549
Markov-I 4.517

ELIC 4.341

Table 5.3: Context modelling comparisons

According to the above table, entropy coding without any contexts compresses the test 
image set to 4.549 bpp on average and use of contexts in entropy coding reduces the bit 
rates to 4.517 bpp and 4.341 bpp for Markov-I context model and the contexts model 
used in ELIC respectively. The context model in ELIC gains an advantage of 0 .2 1  bpp 
(4.6%) and 0.18 bpp (3.9%) over the first two methods respectively.

5.1.2 ELIC results w ith the IW T

Bit rates (bpp) at lossless level for ELIC, using the (4,4) IW T with 5 decomposition 
scales are compared with JPEG-LS, which is a prediction based method, and SPIHT 
lossless, which is based on S+P with embedded coding up to a certain bit rate and 
then progressive coding (ProgCode). The results for the test image set are as in Table 
5.4.

JPEG-LS gives the best compression for most of the images. But the disadvantage 
of JPEG-LS is the coded image can only be decoded to the lossless level since it is 
not an embedded coding technique. On the other hand both SPIHT and ELIC can be 
decoded to other compression levels. On average at the lossless level, ELIC performs 
within 0.1% of JPEG-LS and 0.7% better than SPIHT lossless.
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JPEG-LS SPIHT ELIC

Gold Hill 4.557 4.630 4.602
B arbaral 4.720 4.580 4.524
Barbara2 4.777 4.792 4.792

Boats 3.946 4.053 4.026
Black board 3.684 3.809 3.765

Average 4.337 4.373 4.341

Table 5.4: Lossless performance (in bpp)

5.1.3 ELIC results w ith the other transforms

The lossless performance of other integer transforms, the IWHT, the IDCT, the IDST 
and the INLT, designed in Chapter 3 are also compared using ELIC. According to tables 
3.2, 3.4 and 3.5, the block transforms using a block size of 32x32 result in the lowest 
weighted entropy values, which are computed using the packet sub bands arrangement 
of the block transforms.

However, ELIC was designed in the previous and the current chapters considering the 
usual wavelet sub band decomposition. Earlier it was shown tha t the block transforms 
coefficients can be reorganised into a packet transform sub band structure. In the 
literature, zero tree coding has been used in wavelet packet coding by rearranging 
them back into traditional wavelet sub band structure so th a t the correct positions of 
the parents and their corresponding children coefficients can be considered in wavelet 
tree based coding [111]. A similar approach has been followed in ELIC when used with 
the block transforms.

The performance of IWHT, IDCT and IDST with ELIC using different block sizes are 
as in tables 5.5, 5.6 and 5.7 respectively.

N 4 8 16 32

Gold Hill 4.992 4.973 5.028 5.130
B arbaral 5.196 5.195 5.335 5.519
Barbara2 5.286 5.294 5.402 5.5640

Boats 4.533 4.587 4.737 4.9180
Black board 4.127 4.168 4.335 4.519

Average 4.827 4.843 4.967 5.130

Table 5.5: Lossless performance (in bpp) for IW H T n using ELIC

102



N 4 8 16 32

Gold Hill 4.897 4.778 4.745 4.752
B arbaral 5.002 4.760 4.648 4.640
Barbara2 5.139 4.981 4.915 4.925

Boats 4.386 4.259 4.249 4.289
Black board 4.040 3.943 3.961 4.024

Average 4.693 4.544 4.504 4.526

Table 5.6: Lossless performance (in bpp) for ID C T n  using ELIC

N 4 8 16 32

Gold Hill 5.408 5.474 5.426 5.312
Barbaral 5.649 5.747 5.707 5.551
Barbara2 5.744 5.791 5.733 5.626

Boats 5.052 5.198 5.201 5.118
Black board 4.688 4.872 4.984 4.990

Average 5.308 5.416 5.410 5.319

Table 5.7: Lossless performance (in bpp) for ID S T n  using ELIC

From the above tables it is evident, that the transforms with smaller block sizes pro
duce lower lossless bit rates. On average, the 16-point IDCT, the 4-point IWHT and 
the 4-point IDST, performed better than any other block sizes for respective trans
forms. This discrepancy in the entropy values and the actual bit rates is due to the 
wavelet packet sub band nature of those transforms. In these transforms, the packet sub 
band organisation has to be rearranged in order to use the corresponding parent-child 
orientation as in a dyadic wavelet tree, as used in ELIC.

Since the INLT-3 follows the usual wavelet sub band decomposition, a 5 scale INLT-3 
is used to demonstrate the INLT with ELIC for lossless image coding. Bit rates at the 
lossless level for all above integer transforms including (4,4) IW T are summarised in 
Table 5.8 for comparison.

As can be seen from the above table, ELIC using the IW T produces the best lossless 
performance on average. The 16-point IDCT produces the next best results. The 
INLT-3 and the 4-point IWHT produce comparable results. As expected, the IDST 
provides the worst lossless performance for intra frame type images.
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IWT-(4,4) IW HT4 IDCTis IDST4 INLT-3

Gold Hill 4.602 4.992 4.745 5.408 4.895
B arbaral 4.524 5.196 4.648 5.649 5.211
Barbara2 4.792 5.286 4.915 5.744 5.298

Boats 4.026 4.533 4.249 5.052 4.471
Black board 3.765 4.127 3.961 4.688 4.124

Average 4.341 4.827 4.504 5.308 4.800

Table 5.8: Lossless performance (in bpp) for ELIC using integer transforms

5.2 Near-Lossless Compression

As stated in Definition 1.3 (page 13), in near-lossless coding, each reconstructed pixel of 
the image /  video sequence output from the decoder differs from the corresponding one 
in the input to the encoder by not more than a pre specified value 6. Near-lossless coding 
can easily be incorporated into predictive lossless coding techniques, like JPEG-LS, as 
it is normally achieved by quantising the prediction error according to 6. However, 
this is not possible in transforms based methods, since coding is performed in the 
transform coefficients domain. Therefore, maintaining a maximum error value of k 6  
in the transform domain does not guarantee the same error level in the image pixel 
domain.

Usually, near-lossless coding using the IW T is performed by a pre-quantisation process, 
in which the input to the wavelet transforms is quantised using the near-lossless quanti
sation [70], as in equation 2.3 (on page 24). In the following sub sections, performance 
of this technique for near-lossless image coding is compared with two novel techniques 
where the quantisation process is incorporated into lifting steps.

5 .2 .1  P r e -q u a n tisa tio n

The input to the integer transform is quantised using the maximum allowed error, 6, as 
in Q u an t( ), Q$( ), process and the output from the inverse transform is dequantised 
to achieve the decoded value as in D eq u an t(  ), D$( ), process as shown in below 
equations.

I Ixl 4- 6 I
Q u an t(z )  : Qs(x) = sign(x)  x i  ̂  ̂ I (5.1)

D eq u an t(x ) : D$(x) =  x X (26 +  1) (5-2)
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The main advantage of this method is that it can be used with any integer transform. 
The disadvantages are tha t the pre-quantisation reduces the dynamic range of the input 
to  the transform and tha t the coding is not optimised according to 6 as in predictive 
near-lossless techniques. The reduction of dynamic range through pre quantisation 
represents an image with statistical characteristics different from those of the image 
prior to quantisation.

5 .2 .2  In co rp o ra tin g  n ea r-lo ss le ss  q u a n tisa tio n  in to  lif t in g  s tep s

As mentioned earlier in section 3.1, the input signal is split into two channels using 
the lazy wavelet transform and then P and U lifting steps are performed on those two 
channels to obtain the wavelet coefficients. In this section, the possibility of incorporat
ing above near-lossless quantisation functions, Q u a n t( ) and D e q u a n t( ), into lifting 
steps is considered. In addition to these two processes, a new process, R e q u a n t(  ), 
R$( ), is introduced to re-quantise a quantised and dequantised input signal value. The 
R e q u a n t(  ) process, which is the inverse of D e q u a n t(  ) process, is performed as in 
equation 5.3.

R eq u an t(x ) : R 6(x) =  j (5-3)

Two techniques based on 1-D transform and 2-D transform are designed and evaluated 
as follows.

5 .2 .2 . 1  1 -D  on line  ( in -tra n sfo rm ) near-lossless q u a n tise d  lifting

In this method, near-lossless quantisation is incorporated considering the 1-D lifting 
transform. Let the output from the lazy wavelet be s and d. The Q5 , D$ and R$ 
processes are used on s and d channels in line with P and U lifting steps. The online
(in-transform) near-lossless lifting steps are as follows,

s <- Qs(s) (5.4)

s <— Ds(s) (5.5)

d ♦- d — P M +  5
(5.6)

d -  Qs(d) (5.7)

s *- Rs{s) (5.8)

s S + P M + 2 (5.9)
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Steps 5.4-5.5 represent incorporation of the effect of near-lossless quantising of s channel 
prior to using it to predict d channel. Step 5.7 represents near-lossless quantising of the 
prediction error as performed in predictive coding techniques. In step 5.8, s channel 
coefficients are quantised back to their near-lossless quantised dynamic range. The 
inverse transform, as shown in steps 5.10-5.13, reverses the order and the operation of 
corresponding steps in the forward transform (steps 5.4-5.9).

s <_ s _ | p W +  I j  (5.10)

s <- Ds(s) (5.11)

d «- Ds{d) (5.12)

d <— d +  +  —J (5.13)

In general, the stand alone Q$ and processes in the forward transform are replaced 
with the D$ process in the inverse transform. The sequential Q$ and D* processes, 
as in steps 5.4 and 5.5, in the forward transform do not need to be inversed, as their 
operations are off set against each other in the forward transform.

In a 1-D transform the above steps are performed only for the first decomposition level. 
The higher decompositions are performed as in a normal wavelet transform, using steps 
5.6 and 5.9. In a 2-D transform, where the 1-D transform is applied separately for rows 
and columns, the above steps are performed only in the 1-D transform performed in 
the first dimension i.e. usually for rows.

5.2.2.2 2-D  online (in-transform ) near-lossless quantised lifting

This method incorporates online near-lossless quantised lifting into a 2-D wavelet trans
form. As evident from the above section, due to the inability of applying the 1-D tech
nique separably into the 2-D case, a non separable method using quincunx sub band 
splitting is introduced. In the following design the usual four sub bands namely, 00, 01, 
10 and 11, obtained from quincunx splitting (section 3.5), are named as LL, HL, LH 
and HH respectively, in accordance with the traditional wavelet transform sub band 
notation.

LL H L
LH H H
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The online near-lossless lifting steps for the forward transform are as follows,

LL <- Qs{LL) (5.14)

LL - D S{LL) (5.15)

LH - L H - h “ ) + 2 (5.16)

L H - Qs(LH) (5.17)

LL LL + U(LH)  +  -J (5.18)

H L 4— H L - (5.19)

H L - Qs(HL) (5.20)

LL «- LL - U(LH) + i j (5.21)

LH 4— Ds(LH) (5.22)

L H - L H  + [ P ( L L ) + -2 \ (5.23)

H H <- H H  - \p (l h ) + \ j (5-24)

H H Qs(HH) (5.25)

H H - I I H  - [ p (H L )  + \j (5-26)

H L - H L  + [ u ( H H ) + \ j (5-27)

L H 4— L H - \pm+\ I (5.28)

LH 4— Rs(LH) (5.29)

LL - Rs(LL) (5.30)

LL LL + U(LH) + - (5.31)

LL - LL + U(LH) + i (5.32)

LH 4— L H  + U (H H )  +  i (5.33)

The inverse transform is obtained by reversing the operating order and the sign of the 
forward transform steps. As in the 1-D case, this is done by replacing stand alone
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Q$ and R$ processes in the forward transform with the D$ process and ignoring the 
sequential Q$ and D$ processes in the forward transform.

5 .2 .3  N e a r -lo ss le ss  resu lts

The performance of the above three methods using ELIC quantiser is compared with 
the near-lossless performance of the JPEG-LS (JPEG-NLS) for different 8 values, 8=1, 
3 and 5. The near-lossless bit rates for those 8 values for the test image set are shown 
in Tables 5.9 -5.11 and the average bit rates for different 8 values are summarised as 
in Table 5.12.

JPEG-NLS Pre-quant Online 1-D Online 2-D

Gold Hill 3.039 3.136 3.111 3.099
B arbaral 3.174 3.129 3.095 3.068
Barbara2 3.222 3.361 3.337 3.316

Boats 2.487 2.712 2.664 2.643
Black board 2.209 2.488 2.430 2.406

Avergage 2.826 2.965 2.927 2.906

Table 5.9: Near-lossless performance (in bpp) for tf= l.

JPEG-NLS Pre-quant Online 1-D Online 2-D

Gold Hill 1.970 2.200 2.140 2.106
B arbaral 2.178 2.276 2.205 2.139
Barbara2 2.172 2.420 2.377 2.334

Boats 1.514 1.882 1.823 1.760
Black board 1.276 1.664 1.603 1.560

Average 1.822 2.088 2.030 1.980

Table 5.10: Near-lossless performance (in bpp) for <5=3.

JPEG-NLS Pre-quant Online 1-D Online 2-D

Gold Hill 1.525 1.794 1.713 1.655
B arbaral 1.717 1.884 1.798 1.702
Barbara2 1.674 1.959 1.908 1.845

Boats 1.130 1.501 1.435 1.357
Black board 0.861 1.328 1.271 1.189

Average 1.381 1.693 1.625 1.550

Table 5.11: Near-lossless performance (in bpp) for 8 —5.
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6 JPEG-NLS Pre-quant Online 1-D Online 2-D

1 2.826 2.965 2.927 2.906
3 1.822 2.088 2.030 1.980
5 1.381 1.693 1.625 1.550
7 1.147 1.428 1.343 1.259

Table 5.12: Summarised Near-lossless performance (in bpp) for the image set.

The summarised near lossless bit rates in Table 5.12 show that JPEG-NLS, which is 
a predictive technique, performs better than any other method. However, the newly 
designed 1-D and 2-D online quantisation methods outperform the pre-quantisation 
method, which has been commonly used in integer transforms based near-lossless cod
ing. It is also evident from the table that the 2-D online method produces better 
results than those of the 1-D online quantiser. The superiority of in-transform quan
tising techniques over pre-quantising is evident not only in the bit rates, but also in 
corresponding rms error values of the decoded image. The rms error - bit rate plots for 
Gold Hill, Barbaral and for the whole image set is as in figures 5.3-5.5. The 2-D online 
(in-transform) quantisation method achieves better rms error /  bit rate performance 
compared to the pre-quantisation method.

Near-Lossless performance for Gold Hill
4.5

delta-7

JPEG-NLS 
■+■ Pre-quantising 
-O - 2-D Online-quantising

3.5

delta=5

S2.5

b  +

1.5

0.5

2.5 3.5 4.5
Bit rate (bits per pixel)

Figure 5.3: Near-lossless performance for Gold Hill.
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Near-Lossless performance for Barbara 1
4.5

delta-7
JPEG-NLS 

+■ Pre-quantising 
-O - 2-D  Online-quantising

3.5

® 2.5

delta-3

0.5

4.52.5 3.5
Bit rate (bits per pixel)

Figure 5.4: Near-lossless performance for Barbaral.

Average Near-Lossless performance tor ttie image set
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Figure 5.5: Average near-lossless performance for the image set.
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5.3 Q uasi Lossless C om pression Perform ance

The ELIC algorithm can code /  decode to other bit rates lower than the lossless bit 
rate. The quasi lossless performance of ELIC using the (4,4) IWT and the IDCT is 
compared with those of SPIHT algorithm for bit rates up to 1 bpp starting from the 
lossless bit rates. The rms error vs. bit rate plots for Gold Hill and Barbara 1 are in 
Figure 5.6 and 5.7 respectively.

Quasi lossless performance for Gold HUI
4.5

ELIC-IWT 
O ELIC-IOCT-16 

—i— SPIHT-Lossless
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2.5
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4.51.5 2.5 3
Bit rate (bits per pixel)

3.5

Figure 5.6: Quasi lossless performance for Gold Hill.

Quasi lossless performance for Barbara 1
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- * -  ELIC-IWT 
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- t -  SPIHT-Lossless
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Figure 5.7: Quasi lossless performance for Barbaral.
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As seen from the above plots, ELIC algorithm with (4,4) IW T produces the best quasi 
lossless results at bit rates higher than 3 bpp. Furthermore, it is evident tha t although 
the 16-point IDCT based ELIC performs less well at lossless and high bit rates, the 
performance of it becomes comparable with ELIC-IWT at the lower bit rates.

5.4 Discussion

In this section, the use of the integer transforms and embedded quantising on embedded 
lossless image coding was investigated. First, it was shown tha t further reduction of 
bit rates can be gained by using context based entropy coding as used in ELIC. The 
extensively designed context model for ELIC reduces its lossless bit rates by 4.6% on 
average for the test image set. Lossless bit rates for ELIC-IWT outperform those of 
SPIHT by 0.7% on average. Moreover, on average, ELIC-IWT performs within 0.1% 
of JPEG-LS, which is a predictive lossless coding method where the lossless bit stream 
can only be decoded at the lossless bit rate.

The experiments on performance of other transforms using ELIC show a discrepancy 
on the optimum block sizes for the block based orthogonal transforms, with those found 
in the initial entropy computations. This is mainly due to their wavelet packet type 
sub band arrangement being reorganised into such a way tha t the correct parent-child 
relationship can be used in ELIC. A block size of 16 for the IDCT and a block size of 4 
for the IWHT and the IDST produce the lowest lossless bit rates for those transforms. 
However, when all the transforms are compared, the best results were achieved by the 
IWT-(4,4), followed by the IDCTie, INLT-3, the IWHT4 and the IDST4.

The near-lossless coding, in which each reconstructed pixel in the output from decoder 
differs from the input to the coder by not more than a value 6 specified at the time 
of coding, is more commonly used with the prediction based lossless coding methods. 
Normally near-lossless coding in integer transforms based lossless coding is achieved by 
quantising the input using 6 prior to the forward transform. The near-lossless results, 
both bit rates and rms error, achieved through pre-quantisation are always inferior to 
those obtained from predictive techniques. It was shown in this chapter, tha t such 
performance can be improved by incorporating near-lossless quantisation into lifting 
steps in the transform either by considering 1-D or 2-D transforms. The latter has 
shown lower bit rates and rms error values at the tested near-lossless levels for the 
image set.
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Finally, the quasi lossless performance of ELIC using the (4,4) IW T and the 16-point 
IDCT, was compared with those achieved from the lossless mode of SPIHT. ELIC-IWT 
provides the best performance at lossless level and the bit rates higher than 3 bpp for 
most of the images in the image set. ELIC with the 16-point IDCT produces results 
comparable with ELIC-IWT at lower bit rates.
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Chapter 6

Lossless Coding of N on-intra  
Frames

6.1 Introduction

In previous chapters the main components of lossless embedded coding were discussed 
in detail. The performance of the integer transforms, presented in Chapter 3, for 
embedded lossless coding of intra frames using the ELIC quantiser was evaluated for 
both lossless and quasi-lossless bit rates in Chapter 5. In this chapter, the performance 
of those integer transforms for embedded lossless coding of non-intra frames in a lossless 
video coder, using the MPEG-2 video motion compensated prediction framework is 
presented. The non-intra frames of such codec contain the prediction residuals, which 
need to be coded to correct the predicted frames. The rest of this chapter is organised 
as follows. Section 6.2 looks at the characteristics of the motion compensated prediction 
residuals, the knowledge of which is vital for transform and quantiser selection. The 
use of wavelet transforms on non-intra frames is discussed in section 6.3. Likewise, 
the performance of the other integer transforms on non-intra frames are investigated 
in section 6.5. Section 6.6 presents the entropy coding of integer transform coefficients 
using ELIC and finally section 6.7 discusses the findings of these experiments.
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6.2 C haracteristics o f  N on-intra Frames

The statistical characteristics of intra and non-intra frames are significantly different. 
Therefore, careful investigation of the statistical properties is vital for efficient encod
ing. The main properties, including the magnitude histograms, the normalised auto 
correlation coefficients, the magnitude spectrums and the energy in the DCT coeffi
cients are compared for intra and non-intra frame. These comparisons are illustrated 
below using a non-intra frame and its corresponding intra frame from Mobile sequence.

M ag n itu d e  h istog ram s

The magnitude histogram plots of a non-intra frame and its corresponding intra frame 
are as in Figure 6.1. It can be seen from the figure, that the magnitude histogram of 
the intra frame is spread over a range of 0-255, with short peaks according to the local 
luminance values of the image. Likewise, the magnitude histogram of the residuals 
of the non-intra frame constitute a zero centred double sided geometrical distribution 
with a high narrow peak at zero and mean value close to zero. It spans a range of 
-255 to 255. The width of the peak of the geometrical distribution is dependent on the 
motion content of the frame. Frames with low motion content give a high and narrow 
peak at zero and short tails, while the frames with high motion content produce longer 
tails. This shape of distribution suggests that the values in the residuals are already 
decorrelated to a certain extent depending on the level of motion present in the frame.

Figure 6.1: Magnitude histograms of Intra and Non-intra type frames.
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A u to  co rre la tion  coefficients

The normalised auto correlation plots for a pixel neighbourhood of -4- • *4 in both x 
and y directions for intra and non-intra frame are as in Figure 6.2. Intra frame pixels 
contain a high positive inter pixel correlation, whereas, non-intra frame pixels contain 
a low inter pixel correlation, where most of the values are close to zero. This also 
suggests that the residuals from motion compensated prediction in a lossless video are 
already highly decorrelated by the prediction processes.

Intra Non-intra

Figure 6.2: Auto correlation coefficients of Intra and Non-intra type frames.

M ag n itu d e  S p ec tru m

The average normalised magnitudes of the coefficients from the FFT performed both 
row and column wise for both types of frames are shown in Figure 6.3. As can be 
seen from the figure, intra frames possess an exponentially decreasing power spectrum 
in both directions. The normalised magnitudes of the high frequency components in 
intra frames are smaller compared to those of non-intra frames. The high frequency 
components with comparatively large magnitudes present in non-intra frame residuals 
can be costly in compression of such frames.

T he  D C T  coefficient m agn itudes

The DCT is used as the transform for both intra and non-intra type frames in MPEG-2 
and most other video coding standards. The magnitudes of the a.c. components of the 
2-D 16-point DCT coefficients normalised with respect to the d.c. component for both 
types of frames are as in Figure 6.4. The 16-point DCT was used in this analysis as it 
is the same as the size of a macro block used in motion compensation. The 2-D DCT
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Figure 6.3: Magnitude spectrum of Intra and Non-intra type frames.
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Figure 6.4: Normalised magnitudes of a.c. components of the DCT coefficients for Intra 
and Non-intra type frames.

coefficients are usually arranged in increasing frequencies along the diagonals, starting 
from the top left corner, which corresponds to the d.c. value. As can be seen from the 
figure, the presence of comparatively large amplitude high frequency components in 
non-intra frame residuals is further made evident in the DCT coefficients.

R esiduals in lossy coding Vs R esiduals in lossless coding

Since the reference frames used for forward and backward motion compensated predic
tion in a lossless video coding framework are coded losslessly, the residuals in lossless 
video coding do not contain quantisation errors resulting from lossy coding of reference 
frames as in lossy video coding. These residuals mainly consist of the noise due to
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the motion compensated prediction process and the natural noise in individual frames, 
whose level is increased by the subtraction used to find the residuals.

By the above statistical properties, it can be concluded tha t the residuals in lossless 
video coding are fairly decorrelated frames with large magnitude high frequency com
ponents. This amount of decorrelation may be adequate for efficient lossless coding 
without using a transform. However, in addition to decorrelation of data, a transform 
is required for efficient compaction of input energy, which is vital for embedded cod
ing. Therefore, coding of residuals has to use a transform, which should be selected by 
considering the statistical characteristics of the residuals.

6.3 Integer Wavelet Transforms on Non-intra Frames

Although the DCT has been the preferred transform method for residuals in current 
video coding standards including MPEG-2, with the success of using wavelet transforms 
in still image coding, the wavelet transforms also have been used for coding non-intra 
frames [112]. In this section, the use of integer wavelet transforms is considered for 
lossless coding of such frames.

In lossless image coding, it is well known that wavelet transforms with more vanishing 
moments, such as (4,4), (4,2) and (2+2,2) outperform wavelet transforms with fewer 
vanishing moments, since still images mainly consist of highly smooth regions and a  few 
edges. Such wavelets use a larger neighbourhood of pixels for predicting and updating 
lifting steps. This was again evident from the entropy values for still images listed in 
Table 3.1. Since the residuals contain a higher proportion of high frequency information, 
wavelets with fewer vanishing moments, such as (0,0) (lazy wavelet), (1,1) (S transform) 
and (2,2) transform were chosen for initial experiments on residuals. Residuals from Y 
components of the test sequence set were used in the following experiments.

6 .3 .1  S u b  b and  en tro p y  and  e n erg y  d is tr ib u tio n s

Wavelet transforms are applied separately in horizontal and vertical directions produc
ing four sub bands. When still images or intra frames are wavelet transformed, most 
of the image energy is concentrated in the LL sub band, which normally contains a 
sub sampled original image with statistics similar to those of the original image. Fur
ther, the LL sub band contains higher entropy compared to tha t of the other three
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sub bands. These characteristics lead to iteration of the wavelet transforms on LL sub 
band for four or five levels of decomposition in still image coding.

On the other hand, the LL sub band in the wavelet transformed residuals does not 
possess the highest entropy or the highest energy compared to the other sub bands. 
This is illustrated for 40 non-intra frames obtained from the Mobile sequence using the 
(2,2) transform as in Figure 6.5-6.6. The average sub band entropy and energy values 
for the Mobile sequence using wavelets (1,1), (2,2) and (4,4) are as in Figure 6.7.

It can be seen from Figure 6.5 and 6.6, that there is no single sub band consistently 
containing the highest entropy or energy percentages for all the frames. LL sub band 
has shown the highest energy and entropy only for a few frames, mostly for P types. The 
entropy and energy average % values using different wavelets, as shown in Figure 6.7, 
also reveal that all four sub bands contain comparable energy and entropy values. This 
is due to the larger proportion of high frequency information present in the residuals. 
Because of this, further decomposition of LL sub band as in still image coding does 
not improve the total weighted entropy. Therefore, in these experiments, the wavelet 
transforms were applied only up to one scale, resulting in only four sub bands.

Sub band entropy distribution for Mobile using (2,2)
28

a.

- S -  HL

- e -  HHw
a
£CL

2 4 <
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Figure 6.5: The entropy of each sub band as a % of the entropy of the frame for Mobile 
residuals.
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Sub band energy distribution for Mobile using (2,2)

Frame No.

Figure 6.6: The energy of each sub band as a % of the energy of the frame for Mobile 
residuals.
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Figure 6.7: Sub band entropy and energy average distributions as a % of total entropy 
and energy using different wavelets
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6.3.2 T he best w avelet basis

The zero-order weighted entropy values in bits per pixel (bpp) for each non-intra frame 
in the test sequences using the transforms applied up to a single level of iteration were 
computed. As an example those values for non-intra frames from Mobile and Kiel 
sequences are shown in Figure 6.8 and 6.9. The average entropy values for all non-intra 
frames are recorded in Table 6.1.

MOBILE
5.4

Original 
(0.0) 

—  (1.1) -e- (2.2) 
-fr" L4!4-L -

5.2

4.8
CL£
CD

4.6

UJ

4.2

3.8
Frame No.

Figure 6.8: Total entropy (in bpp) using different wavelets for Mobile residuals

KIEL

Original -e- (0.0) 
-x- (1.1) -6- (2,2) 
•»- I4'4)

CL
Q.co

UJ

3.5
Frame No.

Figure 6.9: Total entropy (in bpp) using different wavelets for Kiel residuals
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original
entropy (0,0) (1,1) (2,2) (4,4)

Claire 2.176 2.174 2.204 2.160 2.208
Mobile 4.529 4.524 4.531 4.594 4.625

Kiel 4.502 4.499 4.428 4.439 4.452
Unicycle 4.499 4.494 4.383 4.326 4.338

Avergage 3.927 3.923 3.886 3.880 3.906

Table 6.1: Average entropy (in bpp) using different IW T

These entropy values show tha t applying the wavelet transforms on residuals achieves 
only a slight advantage over not using a transform. The (1,1) transform and the (2,2) 
transform produce the lowest entropy values for the sequences. None of the transforms 
performed as the best option for all the sequences. Generally, any one of the transforms 
can perform best for a given sequence according to the extent to  which they are initially 
decorrelated. It is further apparent from Figure 6.8 and 6.9, tha t the performance of 
each transform varies for different frames of the same sequence. However, wavelets with 
fewer vanishing moments performed better compared to  those with more vanishing 
moments, as expected.

6.4 Spatially Adaptive Lifting

As stated above, the four wavelet transforms considered perform differently for each 
of the sequences. In this section, a novel method to choose P and U functions in the 
lifting process adaptively depending on the local statistics of the residuals is presented. 
A similar approach has been used in adaptive switching between different predictors 
based on the local edginess of the image in still image coding [113, 114, 115].

In any given frame, there are regions with different amounts of motion. Regions with 
low motion content produce smooth regions of low valued residuals due to accurate 
predictions. As a result, a high decorrelation can be seen in such regions. The regions 
with high motion cause high valued residuals, decorrelated to a certain extent, due to 
inaccurate predictions. Therefore, the amount of local motion present in a frame causes 
regions of high and low decorrelated regions in a residual field. A priori knowledge of 
such regions can be used to choose a suitable wavelet to transform the residual field. 
Spatially adaptive selection of wavelet basis, resulting in non-linear wavelets can easily 
be achieved with the lifting process. As the templates used to predict or update the

122



members in one sub sample belong to the other sub sample, the members of tha t sub 
sample, which are a priori known at both coding and decoding ends, can be used for 
adaptive selection criteria. Because of this, the spatially adaptive lifting presented 
here can be used without coding any extra information regarding the basis function 
being used for each pixel. The problem of adaptively choosing vanishing /  preserving 
moments is formulated based on two approaches, namely, an optimal prediction (AL-1) 
and an adaptive interpolation (AL-2), as discussed below.

6.4.1 An optim al prediction approach for adaptive lifting (AL-1)

In this approach the P lifting step is considered as a prediction process. The conditions 
for minimising the prediction error, which is represented as the d channel, are derived 
in this approach. The same approach is used to minimise the s channel coefficients in 
the U lifting step. These processes are described in the following two sub sections.

6.4.1.1 Choosing the Predictor (P)

W ith the initial results, the four predictors, namely (0,1V), (1 ,1V), (2,A ) and (4,A ), 
where 0, 1, 2 and 4 are the numbers of vanishing moments to be introduced in the P 
lifting step and N  is the number of preserving moments in U lifting, which is indepen
dent of the number of vanishing moments in P lifting, are considered in this analysis. 
The mathematical formulation of the problem is as follows.

The prediction lifting step for d{ using the neighbouring samples from s channel :

di <- di -  P ( s A) (6.1)

where , A = ( i  — [W/2] +  1 , . . . , i -J- |_A/2J)

N  is the number o f  dual vanishing moments in d.

This can be rewritten as below.

LWJ
d{ < d{ )  ] ^Nn^i+n (®* )̂

n = - \ N / 2 \ + l

awn represents the prediction weights corresponding to the number of vanishing mo
ments (N) of the predictor function as shown in Table 6.2.
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n - 1 0  1 2
Predictors

N=0
N=1
N=2
N=4

0 0 0 0 
0 1 0  0

0 |  \  0
1 9  9 1 16 16 16 16

Table 6.2: The Predictor weights

It is known th a t the lower the new value for d,-, which is the prediction error, the higher 
the compression achieved. Therefore, the objective is to minimise the summed squared 
values of d{ over the signal length. The cost function E p , which is the summed squared 
error for the channel length, j  is as below.

f-i / LJV/2J \ 2
Ep  =  £  [di -  £  aNnsi+n (6.3)

i=0 \  n= -W 2l+ l /

The minimum point of the above function occurs when its first differential with respect
to a given predictor weight, is zero, as demonstrated below.

0 =  I t - (6 4 )00>Nk„ /f-1 / I.W/2J
= J -  E U - E

OdNk y i=0 y  n = - \ N / 2 ] + l

7 - 1  /  /  [N/2\  \  \

=  —2  I I d{  — a N n s i+n  J 5 i+fc J ( 6 - 5 )
t = 0 \ \  n=-rN/2l+l /  /

f-1 L̂ v/2J £ -i
= —2 ^ ' d { S i + k  "H 2 ^ ] c i N n  ' y   ̂St+n t̂+fc (^*6)

t=0 n=-fAr/2l+l t= 0

^Nn Si+n

Equation 6.6 leads to the condition for the minimum error as below.

f - l  [N/2\  f-1
^  ' diSi+k =  y  ] dNn y  '] ^i+n^i+k (®*̂ )
t=0 n=—[N/2]+l J=0

rdi(fc) rss(A:-n)
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where, r<f5 is the cross correlation between d and s channels and rss is the auto cor
relation of the s channel. Although the whole channel length, L/2, was considered 
in the preceding mathematical modelling of this problem, from this point onwards a 
finite window of length, N, which is the same as the predictor length, spanning from 
— \N /2 \  +  1 to 1N/2 \  is used in correlation computations. The points outside the 
window are considered as zero.

i=o
5 3  s i + n s i+k  ^  Si Si + {k - n )  ~  r s s { k  n ) N

0

f -1
5 3  diSi+k =  r ds(&)jV

(6 .8)

(6.9)
t=0

Further, by considering the initial spatial positions of the members of the s and d 
channels in the original data vector, z,

rds(k)N -
[ N /2 \—k 

^   ̂ d{Si+k
i = - \ N j 2 - \ + l  

\ N f 2 \ - k

5 3  %2i + lx 2i+2k
i= - \N /2 - ] + l

^11(2 ^ l)jv

(6 .10)

Hence, equation 6.7 becomes,

l)^V —
LAT/2J

5 3  aHn rs s ( k -  n)N
n = - \ N / 2 ) + l

(6 .11)

which in turn can be written in matrix form as in equation 6.11 by considering the 
predictors in Table 6.2.

f'xxi, 3 ) tv

Txxi. l)w
;(1 )N
;(3)aT

f*5s(0)jV rss( - l ) N rSs(~2)N
7*ss(1)n rss(0)N rss( ~ l ) N
Tss{^)n rss(l)N rss(Q)N
7*ss(3)n rss(2)N rss( l)N

r(~l)  = r(l). If all rss(l)N and

^ s( - 3 ) tv 
^ss(—2)tv

rss( - l ) N
Tss(0)n

0-N- 1

<INQ

a N2 

(6.12)

the equation 6.11 can be solved for the adaptive predictor weights, a ^ n. Equations 
6.11 and 6.12 are similar to Wiener-Hopf equations for adaptive prediction based on 
minimum mean square error criteria [116, 117].
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In this case, from a decoding viewpoint, although all members of s channel are a priori 
known, not all members of d channel are known a priori. Therefore, only the causal d 
channel values are used to compute rxx(l)^ .  For this reason and due to the fact that 
the predictor weights are already defined in Table 6.2, the m atrix equation 6.12 is used 
to determine the adaptive predictor selection criteria.

The maximum predictor length of the predictors in 6.2 is four and therefore, four 
equations can be written as in matrix equation 6.12. For each equation an error value 
e(k) is computed as below.

LN/2J

e(k) =  rxx(2k -  1)N -  ^  aNn ras(k -  n)N (6.13)
n = - r N /2 l+ l

Hence, a mean squared error Epj for each predictor is computed.

k=2
E n  = \  £  e { k f  (6.14)

k - - l

The objective here is to select the predictor, so tha t the mean squared error for the 
constraint equation set is minimum. Therefore, the order of the predictor for a given 
signal member is determined as the predictor tha t corresponds to  the minimum E(N ) .

Pn () =  {UN-! OATo UNi aN2}

where , N  =  E Z 1 I min E m 
N  I AT£{0,1,2,4}

6.4.1.2 C hoosing th e  U pdator (U )

The main objective of the updating process is to preserve the running average of the 
low passed sub samples the same as tha t of the original signal and to avoid aliasing due 
to poor frequency separation in sub sampling operations. Updating is more im portant 
when the transform is iterated on the LL sub band and the coefficients are quantised in 
lossy coding applications. However, in adaptive updator selection criteria design, it is 
not feasible to incorporate either of the above objectives. In tha t case, the cost function 
to be minimised in this process is chosen as the summed squares of the updated value 
in s channel. This leads to minimising the upper limit of the zero-order entropy of the 
s channel.

(6.15)
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As were considered in prediction, four corresponding updators, namely (iV,0), (N ,  1), 
(iV,2) and ( N , 4), where 0, 1, 2 and 4 are the number of moments preserved in s 
channel in the U lifting step and N  is the number of vanishing moments in the P 
lifting step, which is independent of the number of preserving moments in U lifting, 
are considered. The problem of adaptive selection of an updator is mathematically 
formulated as follows.

The updating lifting step for s; using neighbouring samples from d channel :

* S{ “I- U(d jj)

where , B  =  ( i — [N/  2J , . . . ,  i +  \ N /  2] — 1)

N  is the number o f  preserving moments in s.

This can be rewritten as below.

[ N / 2 ] - l

Si < S{ T  ^   ̂ b^^d{+n (6.17)
n = — [n / 2j

bftn represents the updating weights corresponding to the number of preserving mo
ments (N ) of the updator function as shown in Table 6.3.

(6.16)

n - 2 - 1 0  1
Predictors

N=0
N=1
N=2
N=4

0 0 0 0 
0 0 £ 0 

0 U  0
1 9  9 1 

32 32 32 32

Table 6.3: The Predictor weights

As discussed earlier, the summed squared value of updates s channel coefficients for 
the channel length, ^  is considered as the cost function E u , shown in equation 6.18.

E u = J 2
i-0

r w i - i
si +  ^2

n = - [ N / 2 \
^Nn di+n (6.18)

The minimum value of the above cost function occurs when its first differential with
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respect to a  given updator weight is zero. This is demonstrated below with respect to

d E v

bfjk as follows.

0 =

d
dbNk

f-1 / /

f f - 1  /  TiV/2] - l  \ 2 \

5 3  I 5 3  bftndi+n
V,=0\ n = - [ N / 2 \  y  )

[ N / 2 ] - l  \  \

/
2E * + E bfjnd>t+n I di+k

i =0 \ \  n=-L^/2j J
f-1 |W /2]-l f-1

2 'y  ̂Sid{+k "h 2 y ] bftn y ] d{+ndi+k
n = — [7V/2J *'=oi=0

(6.19)

(6 .20)

(6.21)

Equation 6.21 leads to the condition for the minimum cost as below.

f - i  |w /2 ]-i 2"1
~  53 =  53 ^ Nn 53 di+ndi+k

£ n=- [ N/ 2 \  r °  .

T*«d(Ar) rdd(k-n)

(6.22)

where, rad is the cross correlation between s and d channels and r<id is the auto cor
relation of the d channel. Also in this case, a finite window of length, N, which is the 
same as the updator length, spanning from — |^ / 2 j  to  j"iV/2"j — 1 is used in correlation 
computations. The points outside the window are considered as zero.

f - i  .  [ N / 2 ] - l - k
v —' , P 7V/2~| —1—k ^
2 _ ^ s i d i + k = >  2_/n= - |  JV/21 5 * *+* — x 2ix 2(i+k)+l
*'=0 n = - [ N / 2 \

= rxx(2k +  l)^v (6.23)
L_l
Y , d i+ndi+k=> E ^ _ L 2| ^*^t+(A:-n) = r dd(k — Tl)ft (6.24)
i= 0  L J

Hence equation 6.22 becomes,

r* /2 i- i
—rxx{2k -f- l)yy = y   ̂ ^Nn Tdd{k ~  (6.25)

n = - [ N / 2 \
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The following m atrix equation can be written from equation 6.25.

f*xx( 3)j/V r d d (  T d d { -  1 ) j v  Td d { - ^ ) f [  r d d ( - 3 ) f r

^ x x (  — l ) ^ r d d ( l ) f j  r dd{^) j \ f  r d d ( ~  l ) j y  r d d { ~  t y f j

rxx(l)jv r d d { ^ ) f f  r dd{ l )^ v  ^ < ^ ( 0 ) ^  r d d { ~  1 ) ^ h , :
f*X x(3)^ r Tdd{ 3 )  r d d { ^ ) f j  r d d ( \ ) f j  r dd (0 ) f i f

(6.26)

It should be noted that r (—I) =  r(l). If all r^ (/)iv  and rxx(l)]v values are known, the 
equation 6.25 can be solved for the adaptive updator weights, 6 ^ .  In this case, from 
a decoding viewpoint, although all members of d channel are a priori known, not all 
members of s channel are known a priori. Therefore, only the causal s channel values 
are used to compute rxx(l)ft. For this reason and due to the fact tha t the updator 
weights are already defined in Table 6.3, the matrix equation 6.26 is used to determine 
the adaptive updator selection criteria.

The maximum updator length of the updators in 6.3 is four and therefore, four equa
tions can be written as in matrix equation 6.26. For each equation a final value f ( k )  
is computed as below.

\ N / 2 ] - l

f {k )  =  rxx{2k + 1)# +  Y !  bNn rd d ( k - n ) f t  (6.27)
n = — [ N /2 \

Hence, a  mean squared final value Fn  for each updator is computed.

f n  = ? £  / ( fc)2 (6-28)
k——2

The objective here is to select the updator, so tha t the mean squared final value for 
the constraint equation set is minimum. The order of the updator for a given signal 
member is the updator that corresponds to the minimum f n ■

UftQ = {bN-1 bN0 bNi bN2}

where , N  = F ^ 1 ( min (FVv)j (6.29)
\N e { 0 , l , 2 , 4 }  )
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6 .4 .2  A n  in te r p o la t io n  b ased  approach  for a d a p tiv e  lif t in g  (A L -2 )

The first step in lifting is sub sampling the input data  vector into two sub channels, 
s and d. The P lifting step can be regarded as interpolating the s channel to obtain 
the missing points due to previous sub sampling and the d channel recording the error 
between the interpolated value and the corresponding original value. In the U lifting 
step, these interpolation errors in the d channel are interpolated and a half of the 
interpolated value is added to the corresponding element in the s  channel, thereby 
maintaining the running average of the original input.

Traditionally, the process of interpolation is mostly associated with image re-sampling 
applications, where the interpolation of the discrete image to a continuous image and 
then sampling the interpolated image are involved [118]. The interpolation is mainly 
concerned with fitting a continuous function to discrete points in a digital signal. The 
most common interpolation functions are the nearest neighbour, linear and cubic func
tions, which are also analogous to the first, second and fourth moments of the polyno
mials used in the lifting steps respectively.

It is well known tha t a signal can be reconstructed from samples if the signal is band 
limited and the sampling is done at a frequency higher than the Nyquist rate. However, 
the residuals, and thereby their sub sampled channels, cannot be considered as band 
limited signals, as can be seen from the magnitude spectrum plots in Figure 6.3. The 
down sampling process can also be considered as replicating the frequency spectrum 
at the multiples of 2u;3, where u>s is the original sampling frequency. The interpolation 
process removes those replicates of the spectrum. According to the Wiener-Khintchine 
theorem, the spectrum of a finite energy signal can be obtained by the Fourier transform 
of the auto correlation sequence of the input signal. This suggests tha t the auto corre
lation sequence can be used to determine the interpolation criteria in the space domain. 
However, in this case, due to the time variant property of the down sampling processes, 
the famous relationship among input-output cross and auto correlation sequences and 
the filter impulse response cannot be used for the above purpose.

The nearest neighbour and the linear interpolation functions use two successive points 
in the down sampled stream to determine the point equidistant to those two points. 
The use of two successive points corresponds to the unit lag auto correlation of the 
down sampled signal. In this approach, the interpolator tha t maintains the unit lag 
normalised auto correlation of the down sampled signal at the local point of interest 
after the interpolation process is used to interpolate the local point. The derivation of 
the selection criteria are as below.
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Let X and Y be the values of the two points to be interpolated. It is also noted that 
|Y |>|X | and X and Y are not necessarily at the left and the right sides respectively. 
Since the normalised auto correlation is considered in this analysis, the two values 1 
and y ,  where — 1 < y  < 1 and Y /0 , are used as the two values to be interpolated. 
It is expected to interpolate these two points into |( Y  + Y) (o r|(y - + 1) ), using the 
linear interpolation and into X (or ^ ) ,  which is the lower absolute value, or Y (or 
1), which is the higher absolute value, using the nearest neighbour interpolation. The 
latter interpolation is different from the prediction method used in the S transform, 
where the left side value in the P lifting and the right side value in the U lifting are 
always chosen irrespective of the value of the other point. The unit lag normalised auto 
correlation computed using the two points with values 1 and y  for the down sampled 
signal and the corresponding unit lag normalised auto correlation using three points 
(original two points + interpolated value) for the interpolated signal for the above three 
scenarios are shown in the Figure 6.10.

A uto-correlation com parisons for various predictions

—  Original 2 -point correlations 
-  (X>Y)/2 Prediction

E

1

X/Y ratio

Figure 6.10: Resulting auto-correlation values for different interpolators

The plots of absolute difference of the unit lag normalised auto correlation for the three 
interpolated signals and that of the two points to be interpolated are shown in Figure 
6.11. The resulting unit lag normalised auto correlation difference due to zero padded 
interpolation, which corresponds to the lazy wavelet, is also shown in the figure. It can 
be seen from the plots, that for 0 < y  < ^  the nearest lower neighbour interpolation 
provides the closest auto correlation match and for -4= < y  < 1 the linear interpolator

V
provides the closest match. The values y  < 0 correspond to X and Y with different 
signs and to negative correlation. It is clear from Figure 6.11.a. that the nearest lower 
neighbour interpolation produces the closest match in this region. However, due to 
the sign difference of the neighbours, and thereby the negative auto correlation, a zero 
padded interpolation is considered in this region. The same treatment is given when 
X=Y=0.
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Figure 6.11: Resulting auto-correlation difference for different interpolators. 

6.4.2.1 E x tension  to  cubic in terp o la tio n

The cubic interpolation uses four points to find the value at the mid point (using the 
two most immediate neighbours from either sides), whereas the above analysis for the 
nearest neighbour and the linear interpolation considered only two points. The weights 
in cubic interpolation for points at i-1, i, i+1 and i+2 positions are { — T?, 
respectively . This can be interpreted as a linear interpolation of two points at i + |  and 
i + | ,  the values of which are computed by extrapolating the values at i-1 and i by 9:-l 
ratio and extrapolating the values at i+1 and i+2 by -1:9 ratio, respectively as shown 
in Figure 6.12. The interpolated values a and b (Figure 6.12) at positions i + |  and i + |  
can be considered as X and Y in the previous analysis for linear /  nearest neighbour 
interpolation. The use of cubic interpolation can be determined by considering the 
ratio y .

x(i+2)x(i-l)

Figure 6.12: Two point interpretation of the cubic interpolation
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6.4 .2 .2  T he algorithm

The adaptive interpolation function selection can be summarised as in Figure 6.13. The 
same algorithm can be used in both P and U lifting steps. In P lifting the interpolated 
value is used to predict the members of the d channel, whereas, in U lifting a half of the 
interpolated value is added to the corresponding members in the s channel to update 
them with the running average.

X=x(i); Y=x(i+1);
if ((X==0) AND (Y-=0)) {"Use No Interpolation"}; 
else {

if (sign(X) == sign(Y)) {
if (abs(X) >= abs(Y)) {ratio = abs(Y)/abs(X)}; 
else {ratio = abs(X)/abs(Y)>;
if (ratio < l/sqrt(2)) {

if (abs(X) >= abs(Y)) {"Nearest Neighbour Int. with Y"}; 
else {"Nearest Neighbour Int. with X"};

}
else {

a=(9*x(i)-x(i-l))/8; b=(9*x(i+l)-x(i+2))/8;
if (abs(a) >= abs(b)) {ratio.c = abs(b)/abs(a)}; 
else {ratio., c = abs(a)/abs(b)};

if (ratio > ratio.c) {"Linear Interpolation"}; 
else {"Cubic Interpolation"};

}
}
else {"Use No Interpolation"}

Figure 6.13: AL-2 Summary.

6 .4 .3  T h e  zero -o rd er  en tro p y  v a lu es

According to  the above derivations, the adaptive lifting schemes possess the ability 
to choose the best wavelet basis from the basis set (JV, N ) ,  where N, N  € {0,1,2,4}, 
for a point by considering the statistics of its neighbours. The performance of two 
adaptive lifting approaches, namely optimal prediction based (AL-1) and interpolation 
based (AL-2), is compared against the usual wavelet filters, considered in section 6.3, 
by considering 40 consecutive non-intra frames from each sequence in the test sequence 
set. The average entropy values in bpp are as in Table 6.4.
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Original
entropy (0,0) (1,1) (2,2) (4,4) AL-1 AL-2

Claire 2.176 2.174 2.204 2.160 2.208 2.236 2.164
Mobile 4.529 4.524 4.531 4.594 4.625 4.525 4.469

Kiel 4.502 4.499 4.428 4.439 4.452 4.465 4.439
Unicycle 4.499 4.494 4.383 4.326 4.338 4.454 4.359

Avergage 3.927 3.923 3.886 3.880 3.906 3.920 3.858

Table 6.4: Average entropy (in bpp) comparison for adaptive lifting

CUURE MOBILE

&

NoNo

6.14.a. Claire 6.14.b. Mobile

KIEL UNICYCLE

se.

i No
25 30 350 S 10 15 40

6.14.C. Kiel 6.14.d. Unicycle

Figure 6.14: Entropy comparison in bpp for non-intra frames using AL-2.
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As can be seen from Table 6.4, the adaptive lifting algorithm, AL-2, provides the 
overall lowest entropy for the non-intra frame set. The entropy values using AL-2 and 
the original entropy values without a transform for individual frames of the sequence 
tests are shown in Figure 6.14.

On the other hand, the AL-1 entropy values are only lower than the entropy values of 
the lazy wavelet transform and the original residuals without a transform. The inferior 
performance of the AL-1 may be due to the a priori non availability of points at the 
right hand side of the point to be predicted or updated for the rxx(l) computations. The 
approach in AL-1 is more suitable for determining the adaptive weights (ajvn and 6 ^ )  
by solving the equations 6.12 and 6.26 rather than for adaptive selection of the order, 
i.e. the number of vanishing /  preserving moments of the predictor or the updator by 
approximating the left and the right hand sides of those equations.

6.5 The Other Integer Transforms on Residuals

In this section the performance of the other integer transforms, presented and designed 
in Chapter 3 is compared in terms of zero-order entropy values. The IDCT, for its 
non-integer version’s usual use in video coding, the IWHT, for its analogy with the S 
transform and the IDST, due to the highly decorrelated nature of the residuals were 
found by experiment as the transform option in non-intra frame coding. The best block 
size for the above transforms that gives the lowest entropy values for the residuals in 
non-intra frames were investigated and the average entropy values for such frames in 
the test sequence set are presented in Table 6.5 - Table 6.7. In the tables, the lowest 
entropy values for each sequence in each transform method are depicted in bold font.

N 2 4 8 16 32

Claire 2.172 2.270 2.369 2.469 2.523
Mobile 4.530 4.685 4.840 4.841 4.569

Kiel 4.421 4.441 4.487 4.477 4.258
Unicycle 4.382 4.438 4.530 4.582 4.418

Avergage 3.876 3.958 4.056 4.092 3.942

Table 6.5: Average entropy (in bpp) using IW H T^
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N 2 4 8 16 32

Claire 2.213 2.354 2.486 2.641 2.720
Mobile 4.539 4.669 4.806 4.822 4.644

Kiel 4.432 4.447 4.493 4.498 4.349
Unicycle 4.388 4.395 4.443 4.471 4.389

Avergage 3.893 3.966 4.057 4.108 4.025

Table 6.6: Average entropy (in bpp) using IDCTat

N 2 4 8 16 32

Claire 2.213 2.377 2.516 2.661 2.733
Mobile 4.539 4.707 4.834 4.836 4.650

Kiel 4.432 4.491 4.533 4.522 4.361
Unicycle 4.388 4.489 4.559 4.582 4.438

Avergage 3.893 4.016 4.110 4.150 4.045

Table 6.7: Average entropy (in bpp) using IDSTyv

The above results show tha t the smaller the block size, N, the lower the average weighted 
entropy of the residual frames. For most of the instances, the lowest entropy values were 
achieved for N=2. Unlike with still images, all three transforms performed comparably 
on residuals. Based on the overall averages, the 2-point IW HT has recorded the best 
results, followed by the 2-point IDST and the 2-point IDCT, which are the same. It 
can also be noted tha t a block size of 2 corresponds to a single scale wavelet transform, 
which is also the desired number of scales for the wavelet transforms based residual 
coding as shown earlier. The entropy values for the non-linear transform, INLT-3 are 
shown in Table 6.8 for different numbers of scales. In this case also it is evident tha t 
no entropy gains can be achieved by applying the transform in higher scales for the 
non-intra frames, as already seen for the other transforms.

Scales 1 2 3 4 5

Claire 2.209 2.249 2.261 2.264 2.265
Mobile 4.686 4.742 4.757 4.760 4.760

Kiel 4.620 4.655 4.665 4.667 4.667
Unicycle 4.439 4.471 4.483 4.486 4.486

Avergage 3.988 4.029 4.041 4.044 4.044

Table 6.8: Average entropy (in bpp) using INLT-3
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6 .5 .1  T ran sform s on  resid u a ls  : S u m m a r y

The entropy values using the integer transforms on non-intra frames can be summarised 
as in Table 6.9. The average entropy values for the (2,2)-IWT, AL-1, Al-2 and the 
INLT-3 (all on a single scale) and 2-point block transforms (IW HT, IDST and IDCT) 
are compared with the original entropy values in the table below.

Original
entropy

IWT
(2,2) AL-1 AL-2 i w h t 2 i d c t 2 i d s t 2 INLT-3

Claire 2.176 2.160 2.236 2.164 2.172 2.213 2.213 2.209
Mobile 4.529 4.594 4.525 4.469 4.530 4.539 4.539 4.686

Kiel 4.502 4.439 4.465 4.439 4.421 4.432 4.432 4.620
Unicycle 4.499 4.326 4.454 4.359 4.382 4.388 4.388 4.439

Avergage 3.927 3.880 3.920 3.858 3.876 3.893 3.893 3.988

Table 6.9: Average entropy (in bpp) comparison for integer transforms

As can be seen from the above table, the overall lowest entropy value is recorded for the 
spatially adaptive lifting algorithm, AL-2. However, unlike in still image coding, the 
overall differences in entropy values among different transforms are small. This is due 
to the decorrelation caused by the motion compensated prediction process. This is also 
made evident by comparing the average original entropy, which has only been decreased 
by 0.069 bpp when the best transform option, AL-2 is used. Therefore, the use of 
transforms on lossless coding of non-intra frames may sometimes not be useful when 
the high computational costs associated with the transforms are taken into account. 
However, the use of transforms may become necessary when there presents a high 
motion content in frames, thereby producing higher residual energy due to  inaccurate 
motion compensated predictions. In this case, the use of an adaptive algorithm like, 
Al-1 or AL-2 is beneficial as they can adapt the transformation according to the spatial 
statistics of the residuals.

6.6 ELIC on Residuals

In this section, the possible further bit rate reductions by using an embedded quantiser 
are investigated. The embedded quantiser, ELIC, based on the adaptive quadtree 
splitting, designed in section 4.3.2 and the context model designed in section 5.1.1 is
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used with the above experimented integer transform options. Although the ELIC has 
been designed for still images, it can be used for non-intra frames, since the probability 
distributions of the sub bands after transformations in both types of frames can easily 
be fitted to a zero centred double sided geometrical distribution.

6 .6 .1  L ossless  r e su lts  for th e  sub  band  b ased  tra n sfo rm s

The lossless bit rates for non-intra frames, coded using ELIC with sub band based 
transforms are compared with the bit rates coded without using a transform as in 
Table 6.10. The table summarised the average bit rates for the non-intra frames using 
the (2,2)-IWT, AL-1, AL-2 and INLT-3 transforms with ELIC.

No
Transform

(2,2) 
(1 Scale)

AL-1 
(1 Scale)

AL-2 
(1 Scale)

INLT-3 
(1 Scale)

Claire 1.951 2.059 2.122 2.067 2.107
Mobile 4.221 4.451 4.421 4.378 4.563

Kiel 4.124 4.186 4.228 4.213 4.357
Unicycle 4.208 4.233 4.372 4.284 4.368

Average 3.626 3.732 3.786 3.735 3.849

Table 6.10: Average lossless bit rates (in bpp) using integer wavelet transforms

As can be seen from the above table, the lowest lossless bit rates are achieved by 
not employing a  transform. The lossless coding performance of the next best options, 
the (2,2)-IWT and the AL-2 transforms, are comparable to each other. However, on 
average 0.106 bpp advantage can be gained by not using a transform when compared 
with the (2,2) transform. The lossless bit rates for individual non-intra frames of 
the test sequence set using the non-transform case, the AL-2 transform and the (2,2) 
transform are compared in Figure 6.15.

It can be seen from the plots in Figure 6.15, that all the frames not using a transform 
give the lowest bit rates at the lossless levels. Although the AL-2 transform gives the 
second best rates for all the non-intra frames in the Mobile sequence, it is comparable 
or slightly worse than the (2,2) lossless bit rates for the frames in other sequences.
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Figure 6.15: Lossless bit rate comparison in bpp for non-intra frames.

6.6.2 Lossless results for the integer block transform s

The integer block transforms are applied on the residual frames and they are reorganised 
back to the sub band structure by considering their analogy to the complete tree wavelet 
packet transform structure, as shown in Figure 3.6, so that the ELIC algorithm can be 
performed on those coefficients. Although it is evident from section 6.5, that the 2-point 
transforms provide the lowest entropy values, the performance of ELIC is investigated 
for all the block sizes considered in section 6.5. The bit rates in bpp at lossless levels 
for IWHTn , IDCTjv, IDSTjv, are as in tables 6.11, 6.12 and 6.13 respectively.
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N 2 4 8 16 32

Claire 2.060 2.310 2.520 2.756 2.983
Mobile 4.384 4.704 4.985 5.186 5.371

Kiel 4.163 4.355 4.550 4.759 4.955
Unicycle 4.254 4.454 4.666 4.876 5.083

Avergage 3.715 3.956 4.180 4.394 4.598

6.11: Average lossless bit rates (in bpp) using IW

N 2 4 8 16 32

Claire 2.081 2.283 2.408 2.616 2.825
Mobile 4.391 4.552 4.691 4.852 5.037

Kiel 4.175 4.274 4.351 4.456 4.599
Unicycle 4.253 4.316 4.390 4.510 4.725

Avergage 3.725 3.856 3.960 4.108 4.297

Table 6.12: Average lossless bit rates (in bpp) using ID C T#

N 2 4 8 16 32

Claire 2.081 2.281 2.420 2.631 2.838
Mobile 4.391 4.591 4.719 4.869 5.045

Kiel 4.175 4.321 4.389 4.484 4.615
Unicycle 4.253 4.391 4.471 4.596 4.772

Avergage 3.725 3.896 3.999 4.145 4.318

Table 6.13: Average lossless bit rates (in bpp) using IDSTjv

It is evident from the above tables that the lowest lossless bit rates are achieved with 
the smallest block sizes for each of the block transforms. Following the same pattern 
as entropy computations in section 6.5, the higher the block size, N, the higher the 
lossless bit rates. Although the lossless bit rates for 2-point transforms provide the 
lowest entropy for the respective transform, none of those rates are lower than the 
lossless bit rates obtained by not using a transform. However, according to the tables, 
the IW HT2 , IDCT2 and IDST2 have achieved lossless bit rates lower than those of the
(2,2) transform and the AL-2 transform in a few instances.
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6.7 Discussion

In this chapter, the main components of embedded lossless coding of non-intra frames 
were discussed. The main consideration was given to choosing an appropriate transform 
that maps integers into integers by considering the statistical properties of such frames.

The non-intra frames, which contain motion compensated residuals, are already decor- 
related to  a certain extent by the motion compensated prediction process. This was 
made evident by the comparisons of the properties such as the magnitude histogram 
distribution, the auto correlation coefficients, the magnitude spectrum and the DCT 
coefficients of the non-intra frames and the corresponding in tra frame as shown in Fig
ures 6.1 - 6.4. Since the reference frames used in the motion compensated prediction in 
a lossless video coding framework are also losslessly coded, the energy of the residuals 
in non-intra frames contain only the errors due to the inaccuracy in the motion predic
tion process. Unlike in lossy coding, the non-intra frames in lossless video coding do 
not propagate the quantisation errors in the reference frames.

It was evident that the integer wavelet transforms with a fewer number of vanishing /  
preserving moments produced lower lossless bit rates compared to those achieved form 
the wavelet transforms with a greater number of vanishing /  preserving moments, due to 
the above mentioned intrinsic properties of the non-intra frames. However, it has been 
understood tha t the motion content of a sequence changes for each frame in different 
extents and so does the decorrelation gained by the motion compensated prediction 
process for each frame. This has suggested tha t no single transform would produce the 
best lossless rates for all the non-intra frames in a  given sequence. On average, the
(2,2) transform has produced the best lossless bit rates. Spatially adaptive selection of 
the number of vanishing moments in the prediction and updating steps in the lifting 
was considered as a solution for the above problem.

Two approaches, namely an optimal prediction approach (AL-1) and an interpolation 
based approach (AL-2), were derived and investigated. The optimal prediction ap
proach for spatially adaptive lifting considers minimising the local mean square error 
and derives an equation set to match as in Wiener-Hopf normal equations for differ
ent lifting predictors and the predictor tha t minimises the error in the equation set is 
chosen as the best predictor. The same approach is followed in the updating steps. In 
the interpolation based approach the unit lag normalised auto correlation values for 
each point, using the three main interpolators, namely, the nearest neighbour, linear 
and cubic, which correspond to 1, 2 and 4 vanishing moments in the lifting steps, are 
considered. It was discovered that the AL-2 algorithm produced the best lossless en
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tropy values on average. A further advantage of the above adaptive lifting algorithms 
are tha t they are spatially adaptive and no additional information needs to be sent to 
the decoder regarding the adaptive selection of the number of vanishing /  preserving 
moment criteria. However, the AL-1 has not improved lossless entropy results from the 
normal wavelet transforms with the fixed numbers of vanishing /  preserving moments. 
This may be due to the a priori non availability of points at the right hand side of the 
point to be predicted or updated in the rxx{l) computations. It is further understood 
tha t the approach in AL-1 is more suitable for determining the adaptive weights {a^n 
and bftn) by solving the constraint equation sets 6.12 and 6.26 rather than for adap
tive selection of the number of vanishing /  preserving moments of the predictor or the 
updator by approximating the left and the right hand sides of those equations.

Further, it was discovered for the above mentioned sub band based transforms and 
the integer non-linear transform (INLT-3) that the improvement in lossless entropy 
bit rates achieved by further splitting of LL sub band repetitively into higher wavelet 
scales, as performed in still image coding, was not significant. This was due to the 
decorrelation caused by motion compensated prediction. It was evident from the sub 
band energy and entropy distributions after a single scale transform, tha t they were 
equally distributed among the four sub bands. Moreover, the amount of low frequency 
components were comparable with those of high frequency components, so tha t the 
further decomposition of LL sub band was not logical. Therefore, in these experiments 
only single scale transforms were considered.

The other integer transforms, the IWHT, the IDCT and the IDST also showed a 
similar pattern to the above by producing the lowest lossless entropy values with the 2- 
point transforms, which are analogous to a single scale sub band splitting. The IWHT 
produced the best lossless entropy rate. However, it was also evident by comparing 
with the average original entropy values tha t the entropy reductions gained by using 
a transform is small, for example, the AL-2, which achieved the lowest entropy rates, 
has managed to decrease the original bit rates only by 0.069 bpp. Therefore, the use 
of a transform on lossless coding of non-intra frames may be justifiable only when the 
data  needs to be organised in the order of their significance as in embedded coding. In 
this case, the use of an adaptive algorithm like, Al-1 or AL-2 is beneficial as they can 
adapt according to the spatial statistics of the residuals.

The similar result patterns were experienced when the transform coefficients were en
tropy code with the embedded coder, ELIC. It was discovered tha t the motion compen
sated prediction residuals coded using ELIC but without a transform produced the best 
lossless bit rates, which was on average 0.106 bpp lower than the next best transform 
methods the (2,2) IW T and the AL-2 adaptive lifting transform.
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Chapter 7

Em bedded Lossless V ideo  
Performance

7.1 Introduction

In the previous chapters, the main components of an embedded lossless video coding 
based on a motion compensated prediction framework were discussed. In Chapter 3, 
the lifting concept based integer wavelet transforms were introduced and the integer 
versions of the other orthogonal transforms: the WHT, the DCT and the DST were 
derived. In Chapter 4, the concepts of embedded coding that can be used for a single 
video frame were discussed. The use of integer transforms and frame-wise embedded 
coding techniques into lossless /  nearly-lossless coding of in tra frames and lossless 
embedded coding of non-intra frames were discussed in Chapters 5 and 6 respectively. 
In this chapter, all the components discussed individually in the previous chapters are 
integrated together to form an embedded lossless video coder, so tha t the lossless and 
nearly-lossless coding and decoding performance of the codec can be compared and 
analysed.

The rest of the chapter is organised as below. Section 7.2 summarises the lossless 
video codec system. In section 7.3, the lossless coding performance of the coder is 
analysed by comparison with different transform options based on the results of the 
previous chapters. Further, the use of motion compensation in such a video framework 
is also analysed by comparing the results with those from Motion-ELIC and Motion- 
JPEG-LS, where ELIC and JPEG-LS are used on individual frames without motion
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compensation respectively. The quasi-lossless results are compared in a similar manner 
as above, with both the coding and decoding point of view in section 7.4. Finally, a 
discussion of the findings in this chapter can be found in 7.5.

7.2 The Embedded Lossless Video Codec (ELViC)

This research on the lossless video coding was based on a motion compensated predic
tion based framework, similar to tha t of MPEG-2. The motion compensated prediction 
and motion vector coding stage of the codec was based on the motion compensation 
stage of MPEG-2. The same “Group Of Pictures” (GOP) structure, with I, P and 
B frames, as in MPEG was followed with the GOP parameters of M=6 and N=3. 
The in tra (I) frames of the codec were encoded using the (4,4) IW T followed by ELIC 
quantiser a t lossless or quasi-lossless rates. Likewise, the performance of three types of 
transform options, viz., not using a transform, the (2,2) IW T and the AL-2 transform, 
followed by ELIC was researched with the non-intra frames. As ELIC is an embedded 
quantiser, the coding /  decoding of any frame can be stopped at any given bit rate lower 
than the targeted bit rate or the lossless bit rate. A block diagram for the encoding 
part of the lossless video codec is shown in Figure 7.1

Intra

Frame
Input Non-intra

Motion
Vectors

Image
Decoder

Motion
Prediction

Frame
Store

Embedded 
Image Coder

Motion
Compensation

Figure 7.1: ELViC Block Diagram.
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7.3 Lossless Coding Results

The lossless coding performance of ELViC, using three different transform options 
for non-intra frames is compared with those of Motion-JPEG-LS and Motion-ELIC. 
In Motion-JPEG-LS, the individual frames of a video sequence are coded losslessy 
using the current still image lossless coding standard, JPEG-LS. In Motion-JPEG-LS, 
the frames can be coded /  decoded only at the lossless bit rate. In Motion-ELIC, 
the same concept as in Motion-JPEG-LS, but using the embedded quantiser ELIC is 
followed. W ith this method, each frame can be independently decoded at other bit rates 
lower than the lossless or the targeted bit rate. In both these methods, the temporal 
redundancy of video sequences have not been taken into account. On the other hand, 
the third algorithm, ELViC, employs a motion compensated prediction framework and 
a frame wise embedded coding strategy. Further, the three transform options, namely 
a zero-scale transform, i.e. not using a transform, the (2,2)-IWT and the AL-2 adaptive 
transform, considered for non-intra frames in ELViC are also analysed for its lossless 
performances. The lossless bit rates (in bpp) using fifty luminance (Y) frames of each 
test sequence are shown in Table 7.1. The lossless bit rates for individual frames are 
as in Figure 7.2.

Motion
JPEG-LS

Motion
ELIC (0 scales)

ELViC
(2,2) (AL-2)

Claire 2.312 2.612 2.121 2.210 2.217
Mobile 5.312 5.836 4.569 4.757 4.698

Kiel 4.973 5.159 4.367 4.417 4.440
UniCycle 5.039 5.246 4.449 4.469 4.511

Avergage 4.409 4.713 3.877 3.963 3.966

Table 7.1: Lossless coding performance (in bpp) of the lossless video codecs

As can be seen from Table 7.1, it is evident that significant reductions in bit rates can 
be achieved by using the motion compensation process. The three methods involving 
motion compensation have outperformed the other two methods for all four test se
quences. The method that does not use a transform on residual frames has resulted in 
the lowest lossless bit rates, whereas the (2,2)-IWT and the AL-2 based techniques for 
residuals have produced rather inferior, but mutually comparable lossless bit rates.

The plots in Figure 7.2 have further confirmed the superiority of not using a transform 
option over the other transform options, as it has produced the lowest lossless bit rate
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Figure 7.2: Lossless bit rate comparison in bpp for lossless video codecs.

for almost all the frames in the test sequences. Finally, it can be seen that Motion-ELIC 
has resulted in comparatively higher lossless bit rates compared to the Motion-JPEG- 
LS algorithm.

7.4 Q uasi-Lossless R esu lts

The main advantage of ELViC is the capability of lossless coding /  decoding at other 
bit rates lower than the targeted bit rates. The quasi-lossless performance of ELViC 
using the three different transform options are investigated in this section. In a video 
codec, the reference frames are coded and decoded according to the bit rates, prior
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to using them for prediction of the current frame at the encoding end. This produces 
the reference frames as seen at the decoding end, provided th a t they are encoded and 
decoded to the same bit rate. However, in an embedded codec, the decoding bit rate 
is always equal or lower than the coding bit rate. This mismatch of bit rates at the 
decoding end for I and P frames, which are used as reference frames, could cause 
an accumulation of errors within a GOP, and thereby resulting in higher rms errors 
compared to the corresponding case where they are coded and decoded to the same bit 
rate. The susceptibility of ELViC at quasi-lossless bit rates are analysed using Mobile 
sequence as in Table 7.2.

Bit Rates Average Case 1 Case 2
Bit Rate (bpp) rms error rms error

I P B 1 2 3 1 2 3 1 2 3

i L L L 4.569 4.757 4.698 0 0 0 0 0 0
ii L L 3 3.835 3.872 3.859 0.579 0.965 1.093 0.579 0.965 1.093
iii L L 2 3.195 3.232 3.219 1.155 1.614 1.851 1.155 1.614 1.851
iv L 3 3 3.562 3.562 3.562 0.731 1.186 1.371 0.851 1.324 1.530
V L 3 2 2.922 2.922 2.922 1.256 1.779 2.058 1.304 1.847 2.135
vi L 2 2 2.742 2.742 2.742 1.478 2.042 2.361 1.658 2.246 2.592
vii 3 3 3 3.051 3.051 3.051 1.670 1.931 2.152 2.807 2.976 3.075
viii 3 3 2 2.411 2.411 2.411 2.058 2.461 2.785 3.002 3.266 3.445
ix 3 2 2 2.232 2.232 2.232 2.331 2.777 3.168 3.161 3.486 3.731
X 2 2 2 2.051 2.051 2.051 3.392 3.690 4.125 5.228 5.417 5.588

Table 7.2: Quasi-lossless coding performances of ELViC

In Table 7.2, the bit rate values for I, P and B type frames used are as combinations 
of the lossless bit rate L, and the quasi-lossless bit rates, 2 bpp and 3 bpp. In all 
combinations, the bit rate for an I frame has been chosen as equal to or higher than 
the bit rates for the other two frames and the bit rate for a B frame has been chosen 
as equal to or lower than the bit rates for the other two frames. The average bit rate 
in the third column is the final bit rate achieved by coding, using corresponding bit 
rates for I, P and B and coding of the motion vectors. The case 1 rms error refers to 
coding and decoding to the same bit rates, whereas the case 2 rms error corresponds 
to the lossless coding using the L-L-L bit rates and decoding to the bit rates up to the 
values in column 2 of the table. The sub columns, numbered 1, 2 and 3 correspond 
to the three transform techniques for non-intra frames, viz., zero-scale transforms, the
(2,2) and the AL-2 respectively.
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7.4.1 T he em bedded coding perform ances (Case 1)

The performance of coding and decoding a sequence using the same bit rates are anal
ysed under this category. From the rms error values for the three methods in case 1, 
it is evident that not using a transform has resulted in the lowest rms errors for all bit 
rates. From these results, it can be inferred that even at quasi-lossless bit rate levels, 
the residuals are sufficiently decorrelated, so that they can be encoded without using a 
transform. The rate-distortion plots for all three methods, using the results available 
from Table 7.2 can be found in Figure 7.3. The higher rms error at bit rate 3.051 bpp, 
which corresponds to the scenario number vii, with ralative to the other neighbouring 
bit rates demonstrates the accumulated error caused by quasi-lossless coding of intra 
frames. This is also evident in Case 2, where quasi-lossless decoding is performed.

R - 0  Plots lot coding/decoding i t  **m* bit rat*

bit tat*  (bpp)

Figure 7.3: Rate-Distortion plots for Mobile coding and decoding to the same bit rates.

7 .4 .2  T h e  e m b e d d e d  d e c o d in g  p e r fo rm a n c e s  (C ase  2)

The performance of decoding a losslessly coded sequence into the lower bit rates shown 
in Table 7.2 is discussed under this category. The corresponding rms error values are 
reported under the case 2 category in Table 7.2. In this case also the non transform 
option has produced the lowest rms error values. The rate-distortion plots for the 
case 1, where coding and decoding are at the same bit rates, and the case 2, which 
corresponds to the quasi-lossless decoding of a losslessly a coded bit stream, for the 
three transform options are as in Figure 7.4.a-7.4.c.

It can be seen from the plots, that an additional error is incurred in the embedded de-
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Figure 7.4: Embedded decoding R-D plots

coding process due to the inaccurate reference frames resulting from the above process. 
However, it is also evident that no additional errors due to the motion compensated 
prediction are accrued when all reference frames, i.e. I and P types, are coded and de
coded losslessly and the non-reference frames, i.e. B type are decoded at quasi-lossless 
levels, as in bit rates ii and iii in Table 7.2. The extra rms error values produced by 
embedded decoding of the losslessly coded bit stream for the three transform meth
ods are shown in Figure 7.5. As can be seen from the figure, although the zero scale 
transform option has produced the lowest increase in rms error at high bit rates, the 
AL-2 transform option has resulted in the lowest increase in rms error due to embedded 
decoding at lower bit rates. This also suggests the benefit of using a transform when 
decoding at lower bit rates.
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Figure 7.5: The rms error increment due to embedded decoding

7.5 D iscussion

In this chapter, the lossless and the quasi-lossless performance of the embedded lossless 
video codec was analysed. As seen from the previous chapter, the superiority of not 
using a transform for non-intra frames was further confirmed in this section when com
pared with other lossless coding methods. Further, additional bit rate reductions by 
employing motion compensation processes were evident when the lossless bit rates for 
Motion-JPEG-LS and Motion-ELIC were compared with those of ELViC, which em
ploys motion compensation. Although Motion-ELIC resulted in bit rates higher than 
those of the Motion-JPEG-LS, Motion-ELIC possesses the added advantage of embed
ded coding /  decoding. With Motion-ELIC, the lossless bit stream can be decoded into 
other lower bit rates by considering frame by frame. Moreover, the embedded coding 
bit rate in Motion-ELIC can be more easily controlled compared to the rate control 
in ELViC, as all frames are equally important in Motion-ELIC. Embedded decoding 
of Motion-ELIC bit streams does not introduce additions to rms error values, whereas 
embedded decoding of ELViC bit streams at bit rates lower than the coded bit rate 
increases the rms errors.

The quasi-lossless decoding performance of ELViC, which is a motion compensation 
based video coder, was analysed from both a coding and decoding point of view in 
terms of the transform options used for non-intra frames. From the coding point of 
view, the lowest rms error values were achieved when a transform was not used in
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non-intra frame coding. The similar results were experienced from the decoding point 
of view. However, increased rms errors due to the inaccurate reconstruction of the 
reference frames were seen. This increment is lower when a transform is used for the 
lower quasi-lossless bit rates and AL-2 produced the smallest increments for low bit 
rates.

Finally, it can be concluded tha t although the motion compensation prediction process 
results in significant reductions in the lossless bit rates, the use of it can cause increased 
rms errors when decoded to lower bit rates in an embedded coding framework. However, 
this increase in rms error can be reduced by choosing an appropriate transform for 
coding non-intra frames.
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Chapter 8

Conclusions

In lossless coding, compression and decompression of source data  result in the exact 
recovery of the values of the individual elements in the original data  source. Lossless 
video coding is useful in applications in which no error in pixel values is accepted 
after coding decoding processes. Lossless coding is vital in image /  video archives, 
in temporary studio recordings in order to prevent accumulation of the quantisation 
artefacts caused by repeated coding decoding in programme editing, in inter studio 
transmissions and in coding of medical and remote sensing images. Although the 
lossless image coding has been given due consideration in published research, a little 
consideration has been given to research of lossless video coding. In this thesis, research 
on lossless and nearly-lossless video /  image coding was presented. The majority of 
the lossless image coding techniques have used predictive coding techniques as the data 
correlation technique. Most of the lossless video coding research has been focussed on 
extending the 2-D techniques into lossless coding of 3-D signals. This thesis investigated 
the integer transforms based embedded lossless coding of video sequences using a motion 
compensated prediction based framework. Adding the embedded features into lossless 
coding has enabled decoding of a lossless bit stream at lower bit rates and has made 
the codec versatile, so that it can be used in both lossless /  lossy coding /  decoding.

The research presented in this thesis was mainly focussed on the integer transform 
options for intra frames (still images) and non-intra frames, an embedded quantiser 
that can be employed on intra and non-intra frames and the performance of frame-wise 
embedded coding /  decoding in a motion compensated prediction based framework. 
The following remarks, grouped under the chapter names in which they appeared in, 
can be concluded from this research. Finally in section 8.6, the work that can be 
continued from this research is listed.
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8.1 Integer Transforms

In Chapter 3, the concepts of integer transforms using lifting were introduced with 
the use of lifting factorisation of the wavelet transforms. The novel integer versions 
of the WHT, the DCT, and the DST, influenced by the lifting concepts and the fast 
transform implementation techniques, were designed using lifting and exploiting their 
intrinsic properties.

The IWHT was designed using factorisation of the WHT m atrix (including the normal
ising factor) into sub matrices of Kroneckor products of W HT2 and the corresponding 
Identity matrices. W ith this derivation, the W H T# can be regarded as applying the 
W HT2 along a binary tree recursively to the lower and the upper halves of the signal. 
The integer version was designed by implementing the integer W HT2 , which is also 
similar to the S transform, using lifting steps.

The IDCT-II was designed by considering its intrinsic properties which lead to parti
tioning the transform m atrix into four quadrants. W ith row and column permutations, 
it was seen tha t the upper left quadrant of the N-point DCT transform matrix is the 
same as the transform matrix for the y-point DCT. Further, the left and the right 
halves in the upper half share the same signs, whereas those in the lower half are with 
opposite signs. Further, it was shown that the upper and the lower half of the DCT 
m atrix can be achieved by operating the IWHT2 on the input data  vector. The DCTs 
of smaller sizes, thereby the upper half of the N-point DCT m atrix, can be obtained 
by recursively repeating this process until N=2. The lower half of the N-point DCT 
was computed using the IWHT n  followed by the Kroneckor products of rotations by

2
the basic angles and corresponding Identity matrices. The use of IWHT and the lifting 
factorisation of the rotation matrix enabled the integer implementation of the N-point 
DCT transform, where N is an integer power of 2, with the normalising factors being 
incorporated into the derivation.

The IDST-II was designed by using the relationship of the DCT and the DST coeffi
cient matrices. The IDST coefficients were achieved by incorporating column and row 
permutation, derived from their relationship, into either ends of the IDCT algorithm. 
This relationship can be used to compute DST coefficients using any DCT processors, 
and can be used in other applications, such as fast transform design.

The non-linear transforms were devised in order to investigate their usability in lossless 
video coding. This was done by using a median based non-linear prediction function 
in predicting the pixels in sub bands obtained by quincunx splitting. A non-linear
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updating method was also introduced.

All these designs can be implemented as in-place operations, which lead to low resource 
demands. It was further shown tha t the block transform coefficients can be rearranged 
into a corresponding wavelet packet transform like sub band structure.

The zero-order weighted entropy values obtained from the integer wavelet transforms 
and the other integer transforms designed in chapter 3 for intra frames suggested the 
sub band based transforms with 5 scales and the block based transforms with 32x32 
block sizes providing the best lossless bit rates.

The (4,4)-IW T resulted in the best lossless entropy values on all images, when compared 
with the other integer wavelet transforms, due its greater number of vanishing moments 
in primal and dual lifting steps. Further, it can be concluded tha t the IW T results are 
in accordance with the number of vanishing moments involved in lifting steps. As seen 
from the results, the greater the vanishing moments involved in lifting steps, the lower 
the weighted entropy values. Although the S+P transform shows better performance 
than the S transform, due to the additional prediction step, it has not outperformed 
the other IW Ts. A similar performance can be seen with the (2+2,2) transform, which 
also includes an extra prediction step.

The IDCT has achieved the best zero-order entropy results, when compared with all 
the block transforms and the other transforms.

As expected, the ID ST performance on lossless image coding was the worst out of all 
the block based transforms. It was assumed that this was due to its inapplicability to 
highly correlated data. The IWHT, which can also be considered as a wavelet packet 
decomposition of the S transform, performed better than the S transform; however, did 
not outperform the S+P transform.

As a whole, the non-linear transforms resulted in the highest weighted entropy values, 
thereby providing the worst lossless performance. However, the INLT3, the best of the 
three non-linear transforms considered, has outperformed the IDST on average and for 
most of the test images.

From the summarised lossless entropy values, it is evident tha t the performance of the 
IDCT is the best for lossless still image coding. On average, the IDCT32 has achieved 
an advantage of 0.09 bpp over the second best transform, the (4,4) IWT.
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8.2 Embedded Quantiser Design

The embedded quantiser presented in Chapter 4 used a simple bit plane based em
bedded coding system. The use of bit planes as the quantisation levels provided a 
quantisation scheme, of which the quantisation bins are reduced by a factor of two at 
each level.

The normalisation of the integer coefficients of the IW T, IW HT and INLT by virtual 
bit plane sliding process normalises the coefficient by their corresponding normalising 
constants while preserving the dynamic range. W ith this method, the unnecessary 
coding of zeros resulting from traditional multiplication based normalising was avoided. 
Furthermore, coding the maximum coefficient height (msb) for each sub band as side 
information (depth limiting process), avoided the coding of unnecessary zeros above 
the highest msb of a sub band. These two processes provided a compact effective bit 
space.

It was found tha t the cost of embedded coding can be reduced, if not eliminated, by 
devising SSM scanning schemes that can group insignificant bits, IV, which possess 
information regarding the position of S  bits together so tha t they can be coded using 
fewer bits. This was investigated by experimenting with the efficient scanning schemes 
for the SSM. Out of the four scanning schemes considered: raster, quadtree, wavelet 
tree - zero tree and wavelet tree - HVZ, the quadtree based scanner produced the lowest 
bit rates. However, when individual bit planes were considered, the quadtree scan was 
the best for the higher bit planes as was the raster scan for the lower bit planes.

These observations were used to design an intelligent scanning scheme that can adap
tively switch between the raster and the quadtree scans. This was achieved by the 
novel scanning scheme, adaptive quadtree splitting (AQS), which uses two quadtree 
techniques, QT1 and QT2, which are capable of switching between scans adaptively 
according to the current block statistics. A decision criteria based on the information 
predicted from the parent sub band and a priori known information from the current 
block was designed. It is evident from the bit rate tables (Table 4.2 and the tables in 
Appendix C) tha t the AQS has improved the results from the earlier scans by 10% on 
average. Furthermore, AQS has produced the lowest bit rates for most of the individual 
bit planes.

No special scanning techniques for coding the coefficient signs and refining data bits, 
which also constitute a binary symbol alphabet, were considered due to high random
ness present in those bits.
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8.3 Lossless Coding of Intra Frames

The use of integer transforms and embedded quantising on embedded to lossless image 
coding (ELIC) tha t can be used for intra frames was presented in Chapter 5.

It was evident from the experiments that further reduction of bit rates can be gained 
by using context based entropy coding in ELIC. The context model, designed for ELIC, 
reduces the lossless bit rates by 4.6% on average for the test image set. Only a sim
ple context model using the Markov-1 prediction was used in modelling contexts for 
coding sign, due to the non availability of knowledge of most of the neighbouring sign 
information in an embedded coding framework.

The lossless bit rates for ELIC-IWT, using the (4,4) IW T, have outperformed those 
of SPIHT by 0.7% on average. Moreover, on average, ELIC-IWT has produced bit 
rates within 0.1% of JPEG-LS, which is a predictive lossless coding method, where the 
lossless bit stream can only be decoded at the lossless bit rate.

The optimum block sizes tha t give the lowest lossless bit rates for the other integer 
transforms using ELIC were found to be different from those discovered using initial 
entropy computations in Chapter 3. This is mainly due to their wavelet packet type 
sub band arrangement being reorganised into a such way tha t the correct parent-child 
relationship is considered in ELIC. A block size of 16 for the IDCT and a block size of 4 
for the IWHT and the IDST produced the lowest lossless bit rates for those transforms. 
However, when all the transforms were considered, the lowest lossless bit rates for intra 
frame type images were achieved by the IWT-(4,4), followed by the IDCT16 , INLT-3, 
the IW HT4 and the IDST4 .

The near-lossless coding, in which each reconstructed pixel in the output from decoder 
differs from the input to the encoder by not more than a value, 6 , specified at the time 
of coding, is more commonly used with the prediction based lossless coding methods. 
Usually, near-lossless coding in integer transforms based lossless coding is achieved by 
quantising the input using 6 prior to the forward transform. The near-lossless results, 
both bit rates and rms error, obtained using pre-quantisation are always inferior to those 
obtained from predictive techniques. Two novel near-lossless coding methods, based 
on incorporating the near-lossless quantisation into lifting steps in the first transform 
scale, by considering separable (1-D online) and non-separable (2-D online) transforms, 
was introduced. It was evident from the bit rate and rms error results, th a t the online 
(in-transform) quantisation methods have improved the transforms based near lossless 
coding performances. The 2-D online method produced lower bit rates and rms error
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values compared to those from the 1-D online method and the pre-quantisation method 
at the tested near-lossless levels for the image set.

The quasi lossless performance of ELIC using the (4,4) IW T and the 8-point IDCT, 
was compared with tha t of the lossless mode of SPIHT. ELIC-IWT produced the best 
performance at the lossless level and at the bit rates higher than 3 bpp for most of 
the images in the image set. Although ELIC with the 8-point IDCT produced inferior 
rate distortion performance at high bit rates, it has shown a trend of comparable 
performance with ELIC-IWT at lower bit rates.

8.4 Lossless coding of Non-intra Frames

The non-intra frames, which contain motion compensated residuals, are already decor
related to a certain extent by the motion compensated prediction process. This was 
evident from the comparisons of the properties such as the magnitude histogram dis
tribution, the auto correlation coefficients, the magnitude spectrum and the DCT co
efficients of such frames and the corresponding in tra frame. Since the reference frames 
used in the motion compensated prediction in a lossless coding frame work are also 
coded losslessly, the energy of the residuals in non-intra frames contain only the errors 
due to inaccuracy in the motion prediction process. Unlike lossy coding, the non-intra 
frames do not propagate the quantisation errors in the reference frames.

It was evident tha t the integer wavelet transforms with a fewer number of vanishing /  
preserving moments produced lower lossless bit rates compared to those achieved form 
the wavelet transforms with a greater number of vanishing /  preserving moments due 
to  the above mentioned intrinsic properties of the non-intra frames. On average the
(2,2) transform produced the best lossless bit rates. However, it has been understood 
tha t the motion content of a sequence changes for each frame in different extents and so 
does the decorrelation gained by the motion compensated prediction process for each 
frame. This has suggested that no single transform would produce the best lossless 
rates for all non-intra frames in a given sequence. A spatially adaptive selection of 
a number of vanishing moments in the prediction and the update steps in lifting was 
considered as a solution for the above problem.

Two spatially adaptive lifting algorithms, based on an optimal prediction approach 
(AL-1) and an adaptive interpolation based approach (AL-2), were designed and ex
perimented with for non-intra frames. In the optimal prediction approach, an equation
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set as in Wiener-Hopf normal equations tha t minimise the local mean square error for 
different lifting predictors was derived and it was used to choose the best predictor. 
The same approach was used for the updator. In the interpolation based approach, 
the unit lag normalised auto correlation values for each point, using the three main 
interpolators, namely, the nearest neighbour, linear and cubic, which correspond to 
1, 2 and 4 vanishing moments in the lifting steps, were considered to decide the best 
interpolator in the lifting steps.

On average, the AL-2 algorithm produced the best lossless entropy values. A further 
advantage of the above adaptive lifting algorithms is that they are spatially adaptive 
and no additional information needs to be sent to the decoder regarding the adaptive 
selection of the number of vanishing /  preserving moment criteria. However, the AL-1 
did not improve lossless entropy results from the normal wavelet transforms with a 
fixed number of vanishing /  preserving moments. This may be due to the a priori non 
availability of points at the right hand side of the point to be predicted or updated in 
?*xx(0 computations. It is further understood that the approach in AL-1 is more suitable 
for determining the adaptive weights (a/v„ and ) by solving the normal equation 
sets rather than for adaptive selection of the number of vanishing /  preserving moments 
of the predictor or the updator by approximating the left and the right hand sides of 
those equations.

Further, it was discovered for the above mentioned sub band based transforms and 
the integer non-linear transform (INLT-3) tha t the improvement in lossless entropy 
bit rates achieved by further splitting of LL sub band repetitively into higher wavelet 
scales, as performed in still image coding, was not significant. This was due to the 
decorrelation caused by motion compensated prediction. It was evident from the sub 
band energy and entropy distributions after a single scale transform tha t the total 
energy and the entropy were equally distributed among the four sub bands. Moreover, 
the amount of low frequency components in residuals were comparable with those of 
high frequency components, so that the further decomposition of LL sub band was not 
logical. Therefore, in these experiments only single scale transforms were considered.

The other integer transforms, the IWHT, the IDCT and the IDST also showed a 
similar pattern  to the above by producing the lowest lossless entropy values with the 
2-point transforms, which are analogous to a single scale sub band splitting. The 
IWHT produced the best lossless entropy rate out of above three. However, it was 
also evident by comparing with the average original entropy values tha t the entropy 
reductions gained by using a transform is small; for example, the AL-2, which achieved 
the lowest entropy rates, has managed to decrease the original bit rates only by 0.069
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bpp. Therefore, the use of a transform on lossless coding of non-intra frames may be 
justifiable only when data needs to be organised in the order of its significance as in 
embedded coding. In this case, the use of an adaptive algorithm like, Al-1 or AL-2 is 
beneficial as they can adapt according to the spatial statistics of the residuals.

The similar result patterns were experienced when the transform coefficients were en
tropy coded with the embedded coder, ELIC. It was discovered tha t the motion com
pensated prediction residuals coded using ELIC but without a transform produced 
the best lossless bit rates, which was on average 0.108 bpp lower than the next best 
transform methods the (2,2) IW T and the AL-2, adaptive lifting transform.

8.5 Embedded Lossless Video Coding

The lossless and the quasi-lossless performance of the embedded lossless video codec 
(ELViC) were compared with the non-motion compensated methods, Motion-JPEG-LS 
and Motion-ELIC in chapter 7. From the lossless bit rate results, it can be concluded 
tha t incorporating the motion compensation achieves reasonable bit rate reductions in 
lossless coding. On average, it has achieved about 0.537 bpp bit rate reduction.

Three transforms techniques, namely a zero-scale transform, the (2,2)-IWT and the AL- 
2 were used as the transform option for the non-intra frames. The superior performance 
achieved by not using a transform for non-intra frames was further confirmed in this 
section when compared with other transforms methods. The other two transforms 
produced comparable results.

Out of non-motion compensated methods, although Motion-ELIC resulted in bit rates 
higher than those of the Motion-JPEG-LS, the lossless bit streams from Motion-ELIC 
can be decoded into other lower bit rates due to its embedded property, with which the 
bit rates can be more easily controlled. Since a motion compensation is not involved, 
embedded decoding can be performed without incurring extra rms error.

The quasi-lossless performance of ELViC, which is a motion compensation based video 
coder, was analysed from both a coding and decoding point of view in terms of the 
transform options used for non-intra frames. From the coding point of view, where 
the sequences are coded and decoded at the same bit rate, the lowest rms error values 
were achieved when a transform was not used in non-intra frame coding. The similar 
results were experienced from the decoding point of view, where a sequence is coded

159



losslessly and decoded to a lower bit rate. However, increased rms errors due to the 
inaccurate reconstruction of the reference frames were seen in this case. This increment 
is lower when a transform is used for lower quasi-lossless bit rates and AL-2 produced 
the smallest increments for low bit rates.

It can be concluded that although the motion compensation prediction process results 
in significant reductions in the lossless bit rates, the use of it can cause increased rms 
errors when decoded to lower bit rates in an embedded coding frame work. However, 
this increase in rms error can be reduced by choosing an appropriate transform for 
coding non-intra frames. The results at lower bit rates suggest the use of the AL-2 for 
lower increments of rms errors.

8.6 Future Work

As a solution to the above problem experienced with the motion compensated pre
diction based embedded video coding, the use of 3 D transforms and 3-D embedded 
quantisers can be designed. W ith a 3-D transforms based embedded quantiser, the 
coding and decoding can be synchronised following the same pattern, as no motion 
compensation is involved. Due to this, it will result in the same rms error values in 
case 1 and case 2 type coding and decodings.

Further, the above experiments were performed only on luminance frames. The normal 
practice within the research community is to allocate the bit budget into three spectral 
bands according to  a predetermined rate and to perform embedded coding individually 
on each spectral band. However, this can be made fully embedded by extending the 
dimensions of the transform and the embedded quantiser by one step, so tha t all three 
spectral bands can be taken into account in the embedding process. These types of 
transforms are applicable in the RGB domain rather than in the YUV domain, since 
the latter is the output of a principal component analysis process, tha t can also be 
considered as a form of transform.

In this research, the coefficients in embedded coding have been organised according to 
the bit significance criteria, which in turn is related to the image energy. By employing 
a visually embedding criterion, the lossless stream can be made visually embedded 
and thereby it can be decoded at a visually lossless bit rate, which is more useful in 
entertainment video applications.
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Appendix A

Lifting Steps

The analysis (forward) lifting steps for the wavelet transforms tested in section 3.1.3 
are as below. The channels, s and d represent low and high pass bands respectively.
All the lifting steps are for i =  0, . . .  , (L / 2 — 1), where L is the length of the input
signal.

T he lazy w avelet - also known as (0 ,0) w avelet [56]

di  <- £ 2 »' + 1 (A .l)

Si  « -  x 2 i ( A . 2 )

T he S transform  - also known as (1 ,1) w avelet [56]

di

Si

d i  - S i

s i -f 1 j  1 1
.2 i+d

(A.3)

(A.4)

T he (2 ,2) w avelet [56]

di

Si

d i -  

Si +

1  /  v 1-  (s , -f 5 t+i)  +  -

1 j   ̂ 1
-  ( d i - 1 - f  di )  +  -

(A.5)

(A.6)
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T he (4 ,2 ) w avelet [56]

9  ,  1 /  v 1Yg (s i +  S ,+i)  — — («s i_i +  S i+2) + -

1 J  N 1- ( d i - i  + d{)  + -

T he (4 ,4 ) w avelet [56]

d i  ̂ d {

S i  4 -  S i  +

9 / N 1 / N , 1— +  5 I+i)  -  — (5 i - i  + 5 t-+2) +  g

— (di - 1 +  di) -  —  (di - 2 +  di +1) +  -

T he (2 + 2 ,2 )  w avelet [56]

di

Si

di

d i -  

s i +  

d i  -

9 , N 1 , N 1
— ( 5  i +  5 ;+i)  -  — ( s  i- 1 +  S t+2) +  2

— (d ,_ i +  (£,■) -  — (di - 2 +  d ,+ 1) +  -

/ I  I n
a  ( 2  5l_1 Si 2  5*+1'

+/? ( ~ 2 Si Si+1 ~  2  5,+2  ̂ ^  ^*+1 2 ]

w h e r e , a  = /? = ^ and 7 =  6.

T he (2 ,4 ) w avelet [56]

di  <— di  -  

S i * 5 -f"

1 / N 1
2 (s * + ^i+ l) +  2 

—  (d ,_ i  +  di )  -  —  ( d i - 2  +  d i +1) +  -

T he (6 ,2 ) w avelet [56]

di

$ {

d i -
75 , 25 ,
128 (5 * + 5 * + !)-  256 (5 *-1 + 5 ‘+2)

+  2^6 (5l - 2 +  5i+3) +  ^.
1 / \ 1 S i +  - ( d i _ i  +  d,-) + -
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(A.8)

(A.9)

(A.10)

(A .ll)

(A.12)

(A.13)

(A.14)

(A.15)

(A. 16) 

(A.17)



T he Scalar and P rediction  transform  (S + P  w avelet) [63]

di <— d i -  .U
1 i

(A. 18)

Si <— S i + 1 , 1 — d i H—  
2 * 2. (A. 19)

d i <- d{ — -  (2(A5t- +  A st+i — di+1) +  Aj5,-+i)  +  -1 (A.20)

where ,

A  si = 5t'_i 5j

The synthesis (inverse) lifting steps are obtained by reversing the operating order and 
the sign of the lifting steps.
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Appendix B

Block Transform M atrices

The 2-, 4- and 8-point WHT, DCT and DST are tabulated below in their increasing 
sequency /  frequency formats and permuted row-column formats tha t correspond to 
the Hadamard orders.

B .l Increasing sequency /  frequency order

The basis functions for the 2-, 4- and 8-point W HT, DCT and DST, organised in 
increasing sequency /  frequency are as below. This order is useful for arranging the 
transformed coefficients according to their significance.

B .1 .1  T h e  W alsh  H ad am ard  T ran sform  (W H T )

The number of sign changes in a basis vector corresponds to the sequency number.

2 -p o in t  W H T

0.7071 0.7071
0.7071 -0.7071
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4 -p o in t W H T

0.5000
0.5000
0.5000
0.5000

0.5000
0.5000

-0.5000
-0.5000

0.5000
-0.5000
-0.5000
0.5000

0.5000
-0.5000
0.5000

-0.5000

8 -p o in t W H T

0.3536 0.3536 0.3536 0.3536
0.3536 0.3536 0.3536 0.3536
0.3536 0.3536 -0.3536 -0.3536
0.3536 0.3536 -0.3536 -0.3536
0.3536 -0.3536 -0.3536 0.3536
0.3536 -0.3536 -0.3536 0.3536
0.3536 -0.3536 0.3536 -0.3536
0.3536 -0.3536 0.3536 -0.3536

0.3536 0.3536 0.3536 0.3536
-0.3536 -0.3536 -0.3536 -0.3536
-0.3536 -0.3536 0.3536 0.3536
0.3536 0.3536 -0.3536 -0.3536
0.3536 -0.3536 -0.3536 0.3536

-0.3536 0.3536 0.3536 -0.3536
-0.3536 0.3536 -0.3536 0.3536
0.3536 -0.3536 0.3536 -0.3536

B .1 .2  T h e  D isc r e te  C o sin e  T ransform  (D C T )

The basis vectors are organised according to the increasing frequency order. Each row 
corresponds to the frequency index k = 0 ,.. .,N-1.

2 -p o in t D C T

0.7071 0.7071
0.7071 -0.7071

4 -p o in t D C T

0.5000
0.6533
0.5000
0.2706

0.5000
0.2706

-0.5000
-0.6533

0.5000
-0.2706
-0.5000
0.6533

0.5000
-0.6533
0.5000

-0.2706
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8 -p o in t D C T

0.3536 0.3536 0.3536 0.3536
0.4904 0.4157 0.2778 0.0975
0.4619 0.1913 -0.1913 -0.4619
0.4157 -0.0975 -0.4904 -0.2778
0.3536 -0.3536 -0.3536 0.3536
0.2778 -0.4904 0.0975 0.4157
0.1913 -0.4619 0.4619 -0.1913
0.0975 -0.2778 0.4157 -0.4904

0.3536 0.3536 0.3536 0.3536
-0.0975 -0.2778 -0.4157 -0.4904
-0.4619 -0.1913 0.1913 0.4619
0.2778 0.4904 0.0975 -0.4157
0.3536 -0.3536 -0.3536 0.3536

-0.4157 -0.0975 0.4904 -0.2778
-0.1913 0.4619 -0.4619 0.1913
0.4904 -0.4157 0.2778 -0.0975

B .1 .3  T h e  D isc r e te  S in e  T ransform  (D S T )

The basis vectors are organised according to the increasing frequency order. Each row 
corresponds to the frequency index k = l , . . .,N.

2 -p o in t D S T

0.7071 0.7071
0.7071 -0.7071

4 -p o in t D S T

0.2706
0.5000
0.6533
0.5000

0.6533
0.5000

-0.2706
-0.5000

0.6533
-0.5000
-0.2706
0.5000

0.2706
-0.5000
0.6533

-0.5000

8 -p o in t D S T

0.0975 0.2778 0.4157 0.4904
0.1913 0.4619 0.4619 0.1913
0.2778 . 0.4904 0.0975 -0.4157
0.3536 0.3536 -0.3536 -0.3536
0.4157 0.0975 -0.4904 0.2778
0.4619 -0.1913 -0.1913 0.4619
0.4904 -0.4157 0.2778 -0.0975
0.3536 -0.3536 0.3536 -0.3536

0.4904 0.4157 0.2778 0.0975
-0.1913 -0.4619 -0.4619 -0.1913
-0.4157 0.0975 0.4904 0.2778
0.3536 0.3536 -0.3536 -0.3536
0.2778 -0.4904 0.0975 0.4157

-0.4619 0.1913 0.1913 -0.4619
-0.0975 0.2778 -0.4157 0.4904
0.3536 -0.3536 0.3536 -0.3536
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B.2 The Rearranged Transform Matrices

B.2.1 W alsh Hadamard Transform (W H T)

2-point W H T

0.7071 0.7071
0.7071 -0.7071

4-point W H T

0.5000
0.5000

0.5000
-0.5000

0.5000
0.5000

0.5000
-0.5000

0.5000 0.5000 -0.5000 -0.5000
0.5000 -0.5000 -0.5000 0.5000

8-point W H T

0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536
0.3536 -0.3536 0.3536 -0.3536 0.3536 -0.3536 0.3536 -0.3536
0.3536 0.3536 -0.3536 -0.3536 0.3536 0.3536 -0.3536 -0.3536
0.3536 -0.3536 -0.3536 0.3536 0.3536 -0.3536 -0.3536 0.3536
0.3536 0.3536 0.3536 0.3536 -0.3536 -0.3536 -0.3536 -0.3536
0.3536 -0.3536 0.3536 -0.3536 -0.3536 0.3536 -0.3536 0.3536
0.3536 0.3536 -0.3536 -0.3536 -0.3536 -0.3536 0.3536 0.3536
0.3536 -0.3536 -0.3536 0.3536 -0.3536 0.3536 0.3536 -0.3536

The relationship

WN =  W n  ® w2 
2

The basis vectors are organised to the Hadamard order.

(B.l)
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B .2 .2  D isc r e te  C o sin e  T ransform  (D C T )

The following tables show rearranged DCT matrices where the columns are arranged 
according to equation 3.37. The rows are arranged by grouping the odd indexed vec
tors to the lower half and the even indexed vectors to the upper half and recursively 
performing this on the upper half until N is 2.

2 -p o in t  D C T

0.7071 0.7071
0.7071 -0.7071

4 -p o in t D C T

0.5000 0.5000 0.5000 0.5000
0.5000 -0.5000 0.5000 -0.5000
0.2706 0.6533 -0.2706 -0.6533
0.6533 -0.2706 -0.6533 0.2706

8 -p o in t  D C T

0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536
0.3536 -0.3536 0.3536 -0.3536 0.3536 -0.3536 0.3536 -0.3536
0.1913 0.4619 -0.1913 -0.4619 0.1913 0.4619 -0.1913 -0.4619
0.4619 -0.1913 -0.4619 0.1913 0.4619 -0.1913 -0.4619 0.1913
0.0975 0.4157 0.4904 0.2778 -0.0975 -0.4157 -0.4904 -0.2778
0.4157 -0.4904 0.2778 0.0975 -0.4157 0.4904 -0.2778 -0.0975
0.4904 0.2778 -0.0975 -0.4157 -0.4904 -0.2778 0.0975 0.4157
0.2778 . 0.0975 -0.4157 0.4904 -0.2778 -0.0975 0.4157 -0.4904



B .2 .3  D isc r e te  S in e  T ransform  (D S T )

The following tables show rearranged DCT matrices where the columns are arranged 
according to equation 3.70. The rows are arranged by grouping the odd indexed vec
tors to the lower half and the even indexed vectors to the upper half and recursively 
performing this on the upper half until N is 2.

2 -p o in t  D S T

0.7071 -0.7071
0.7071 0.7071

4 -p o in t  D S T

0.5000
0.5000

0.5000
-0.5000

-0.5000
-0.5000

-0.5000
0.5000

0.2706 0.6533 0.2706 0.6533
0.6533 -0.2706 0.6533 -0.2706

8 -p o in t D S T

0.3536 0.3536 0.3536 0.3536 -0.3536 -0.3536 -0.3536 -0.3536
0.3536 -0.3536 0.3536 -0.3536 -0.3536 0.3536 -0.3536 0.3536
0.1913 0.4619 -0.1913 -0.4619 -0.1913 -0.4619 0.1913 0.4619
0.4619 -0.1913 -0.4619 0.1913 -0.4619 0.1913 0.4619 -0.1913
0.0975 0.4157 0.4904 0.2778 0.0975 0.4157 0.4904 0.2778
0.4157 -0.4904 0.2778 0.0975 0.4157 -0.4904 0.2778 0.0975
0.4904 0.2778 -0.0975 -0.4157 0.4904 0.2778 -0.0975 -0.4157
0.2778 . 0.0975 -0.4157 0.4904 0.2778 0.0975 -0.4157 0.4904
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Appendix C

Scanning Schemes R esults

The weighted entropy values (in bpp) for the five scanning schemes, namely, Raster, 
Quadtree, Wavelet Tree - Zero tree(W T-ZT), wavelet tree - HVZ scan (WTHVZ) and 
Adpative Quadtree Splitting (AQS) using the (4,4) IW T coefficients of the test image 
set are shown in tables C.1-C.6. The best method for each bitplane is shown in bold 
font.

W BP Raster Quadtree WT-ZT WTHVZ AQS

13 0.0008 0.0007 0.0008 0.0008 0.0008
12 0.0006 0.0006 0.0006 0.0010 0.0006
11 0.0010 0.0008 0.0009 0.0009 0.0010
10 0.0024 0.0022 0.0021 0.0032 0.0021
9 0.0077 0.0061 0.0062 0.0068 0.0055
8 0.0251 0.0196 0.0202 0.0235 0.0182
7 0.0797 0.0553 0.0593 0.0686 0.0512
6 0.1608 0.1272 0.1375 0.1621 0.1166
5 0.3140 0.2620 0.2855 0.2948 0.2384
4 0.4983 0.4899 0.5101 0.4910 0.4416
3 0.6553 0.7275 0.7388 0.6599 0.6519
2 0.5676 0.6429 0.6518 0.5730 0.5713
1 0.2990 0.3395 0.3199 0.3049 0.2990
0 0.0610 0.0698 0.0610 0.0665 0.0610

13---O 2.6734 2.7440 2.7948 2.6572 2.4592

Table C .l: zero-order entropy values (bpp) for different scans on each WBP for Gold 
Hill
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WBP Raster Quadtree WT-ZT WTHVZ AQS

13 0.0009 0.0010 0.0009 0.0009 0.0009
12 0.0005 0.0006 0.0005 0.0010 0.0005
11 0.0017 0.0013 0.0012 0.0014 0.0012
10 0.0045 0.0036 0.0032 0.0048 0.0031
9 0.0156 0.0115 0.0124 0.0172 0.0105
8 0.0520 0.0334 0.0404 0.0511 0.0312
7 0.1461 0.0985 0.1288 0.1561 0.0936
6 0.2447 0.1644 0.2135 0.2362 0.1512
5 0.3205 0.2424 0.2907 0.3233 0.2187
4 0.4238 0.3669 0.4031 0.4321 0.3267
3 0.5633 0.5906 0.6077 0.5702 0.5291
2 0.5914 0.6751 0.6841 0.5976 0.6048
1 0.3538 0.3966 0.3795 0.3593 0.3542
0 0.0714 0.0808 0.0714 0.0765 0.0714

13---O 2.7902 2.6667 2.8376 2.8275 2.3972

Table C.2: zero-order entropy values (bpp) for different scans on each W BP for Bar
bara!

WBP Raster Quadtree WT-ZT WTHVZ AQS

13 0.0010 0.0009 0.0010 0.0010 0.0010
12 0.0004 0.0003 0.0004 0.0009 0.0004
11 0.0008 0.0007 0.0008 0.0008 0.0008
10 0.0023 0.0021 0.0019 0.0030 0.0018
9 0.0142 0.0105 0.0116 0.0162 0.0099
8 0.0574 0.0354 0.0446 0.0529 0.0334
7 0.1380 0.0944 0.1163 0.1447 0.0890
6 0.2528 0.1892 0.2126 0.2414 0.1743
5 0.3639 0.2937 0.3183 0.3524 0.2627
4 0.4694 0.4435 0.4464 0.4709 0.3929
3 0.5980 0.6666 0.6699 0.6023 0.5942
2 0.5537 0.6304 0.6537 0.5602 0.5616
1 . 0.2874 0.3254 0.3088 0.2923 0.2875
0 0.0517 0.0597 0.0517 0.0564 0.0517

1 3 - - 0 2.7909 2.7529 2.8382 2.7953 2.4612

Table C.3: zero-order entropy values (bpp) for different scans on each WBP for Bar- 
bara2
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WBP Raster Quadtree WT-ZT WTHVZ AQS

13 0.0009 0.0009 0.0009 0.0009 0.0009
12 0.0009 0.0006 0.0008 0.0008 0.0009
11 0.0012 0.0007 0.0009 0.0010 0.0009
10 0.0033 0.0027 0.0028 0.0040 0.0026
9 0.0101 0.0090 0.0086 0.0125 0.0083
8 0.0407 0.0283 0.0295 0.0368 0.0264
7 0.0857 0.0598 0.0628 0.0762 0.0555
6 0.1420 0.1068 0.1150 0.1483 0.0974
5 0.2394 0.1819 0.1943 0.2303 0.1625
4 0.3532 0.2974 0.3062 0.3366 0.2624
3 0.5324 0.5461 0.5495 0.5385 0.4922
2 0.6703 0.7644 0.7897 0.6767 0.6947
1 0.4243 0.4714 0.4603 0.4305 0.4249
0 0.0831 0.0936 0.0831 0.0887 0.0831

13 • • - 0 2.5872 2.5637 2.6045 2.5819 2.3127

Table C.4: zero-order entropy values (bpp) for different scans on each W BP for Boats

WBP Raster Quadtree WT-ZT WTHVZ AQS

13 0.0009 0.0007 0.0009 0.0009 0.0009
12 0.0009 0.0005 0.0008 0.0007 0.0009
11 0.0018 0.0013 0.0020 0.0018 0.0018
10 0.0038 0.0028 0.0027 0.0041 0.0026
9 0.0119 0.0084 0.0083 0.0123 0.0077
8 0.0354 0.0235 0.0249 0.0328 0.0222
7 0.0735 0.0474 0.0472 0.0670 0.0444
6 0.0953 0.0684 0.0684 0.1003 0.0645
5 0.1548 0.1220 0.1214 0.1637 0.1093
4 0.2704 0.2243 0.2274 0.2622 0.2001
3 0.5272 0.5580 0.5791 0.5327 0.5123
2 0.7278 0.8236 0.8752 0.7345 0.7542
1 0.4454 0.4926 0.4867 0.4511 0.4458
0 0.0827 0.0928 0.0827 0.0879 0.0827

13 • •-0 2.4319 2.4663 2.5276 2.4521 2.2495

Table C.5: zero-order entropy values (bpp) for different scans on each WBP for Black 
board
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WBP Raster Quadtree WT-ZT WTHVZ AQS

13 0.0009 0.0008 0.0009 0.0009 0.0009
12 0.0007 0.0005 0.0006 0.0009 0.0007
11 0.0013 0.0010 0.0012 0.0012 0.0011
10 0.0033 0.0027 0.0025 0.0038 0.0024
9 0.0119 0.0091 0.0094 0.0130 0.0084
8 0.0421 0.0280 0.0319 0.0394 0.0263
7 0.1046 0.0711 0.0829 0.1025 0.0667
6 0.1791 0.1312 0.1494 0.1777 0.1208
5 0.2785 0.2204 0.2420 0.2729 0.1983
4 0.4030 0.3644 0.3786 0.3986 0.3247
3 0.5752 0.6178 0.6290 0.5807 0.5559
2 0.6222 0.7073 0.7309 0.6284 0.6373
1 0.3620 0.4051 0.3910 0.3676 0.3623
0 0.0700 0.0793 0.0700 0.0752 0.0700

13 • • -0 2.6547 2.6387 2.7205 2.6628 2.3760

Table C.6: Average zero-order entropy values (bpp) for different scans on each WBP 
for the image set
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Appendix D

A uthor’s Publications

In Refereed Conference Proceedings

1. “Incorporating near-lossless quantisation into lifting steps for near-lossless image 
coding” , G.C.K. Abhayaratne and D.M. Monro, Submitted to A C M  Multimedia 
2002 - will be held in December 2002.

2. “Embedded to Lossless Image Coding (ELIC)”, G.C.K. Abhayaratne and D.M. 
Monro, Proc. IEEE Nordic Signal Processing Symposium (NORSIG 2000), pp. 
255-258, Kolmdrden, Sweden, 13-15 June 2000.

3. “Embedded to lossless coding of motion compensated prediction residuals in loss
less video coding”, G.C.K. Abhayaratne and D.M. Monro, Visual Communica
tions and Image Processing 2001, Proc. SPIE  vol. 4310, pp. 175-185, San Jose, 
CA, 21-26 January 2001.

In Progress

1. An Integer version of the Walsh Hadamard Transform using lifting.

2. An Integer version of the Discrete Cosine Transform using lifting.

3. An Integer version of the Discrete Sine Transform using lifting.

4. Incorporating Near-lossless quantisation into lifting steps for near-lossless image 
coding.
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