29 research outputs found

    Power and area efficient reconfigurable delta sigma ADCs

    Get PDF

    A Continuous-Time Delta-Sigma Modulator for Ultra-Low-Power Radios

    Get PDF
    The increasing need of digital signal processing for telecommunication and multimedia applications, implemented in complementary metal-oxide semiconductor (CMOS) technology, creates the necessity for high-resolution analog-to-digital converters (ADCs). Based on the sampling frequency, ADCs are of two types: Nyquist-rate converters and oversampling converters. Oversampling converters are preferred for low-bandwidth applications such as audio and instrumentation because they provide inherently high resolution when coupled with proper noise shaping. This allows to push noise out of signal band, thus increasing the signal-to-noise ratio (SNR). Continuous time delta-sigma ADCs are becoming more popular than discrete-time ADCs primarily because of inherent anti-aliasing filtering, reduced settling time and low-power consumption. In this thesis, a 2nd-order 4-bits continuous-time (CT) delta-sigma modulator (DSM) for radio applications is designed. It employs a 2nd-order loop filter with a single operational amplifier. Implemented in a 65-nanometer CMOS technology, the modulator runs on a 0.8-V supply and achieves a SNR of 70dB over a 500-kHz signal bandwidth. The modulator operates with an oversampling ratio (OSR) of 16 and a sampling frequency of 16MHz. In the first chapter the principles of ΔΣ modulators are analysed, introducing the differences between discrete-time (DT) modulators and continuous-time (CT) modulators. In the next chapter the techniques to design a ΔΣ modulators for ultra-low-power radios are presented. The third chapter talks over the design of the operational amplifier, which appears inside the loop filter. In the fourth chapter the performance of the complete ΔΣ modulator, which employs a flash quantizer, is shown. Finally, in the last chapter, a performance analysis is carried out replacing the flash quantizer with an asynchronous SAR quantizer. The analysis shows that a further reduction of the quantizer power consumption of about 40% is possible. The conjunction of this replacement with the power-saving technique implemented in the loop filter appears relevant

    Design techniques for low noise and high speed A/D converters

    Get PDF
    Analog-to-digital (A/D) conversion is a process that bridges the real analog world to digital signal processing. It takes a continuous-time, continuous amplitude signal as its input and outputs a discrete-time, discrete-amplitude signal. The resolution and sampling rate of an A/D converter vary depending on the application. Recently, there has been a growing demand for broadband (>1 MHz), high-resolution (>14bits) A/D converters. Applications that demand such converters include asymmetric digital subscriber line (ADSL) modems, cellular systems, high accuracy instrumentation, and medical imaging systems. This thesis suggests some design techniques for such high resolution and high sampling rate A/D converters. As the A/D converter performance keeps on increasing it becomes increasingly difficult for the input driver to settle to required accuracy within the sampling time. This is because of the use of larger sampling capacitor (increased resolution) and a decrease in sampling time (higher speed). So there is an increasing trend to have a driver integrated onchip along with A/D converter. The first contribution of this thesis is to present a new precharge scheme which enables integrating the input buffer with A/D converter in standard CMOS process. The buffer also uses a novel multi-path common mode feedback scheme to stabilize the common mode loop at high speeds. Another major problem in achieving very high Signal to Noise and Distortion Ratio (SNDR) is the capacitor mismatch in Digital to Analog Converters (DAC) inherent in the A/D converters. The mismatch between the capacitor causes harmonic distortion, which may not be acceptable. The analysis of Dynamic Element Matching (DEM) technique as applicable to broadband data-converters is presented and a novel second order notch-DEM is introduced. In this thesis we present a method to calibrate the DAC. We also show that a combination of digital error correction and dynamic element matching is optimal in terms of test time or calibration time. Even if we are using dynamic element matching techniques, it is still critical to get the best matching of unit elements possible in a given technology. The matching obtained may be limited either by random variations in the unit capacitor or by gradient effects. In this thesis we present layout techniques for capacitor arrays, and the matching results obtained in measurement from a test-chip are presented. Thus we present various design techniques for high speed and low noise A/D converters in this thesis. The techniques described are quite general and can be applied to most of the types of A/D converters
    corecore