1,344 research outputs found

    Finger vein verification algorithm based on fully convolutional neural network and conditional random field

    Get PDF
    Owing to the complexity of finger vein patterns in shape and spatial dependence, the existing methods suffer from an inability to obtain accurate and stable finger vein features. This paper, so as to compensate this defect, proposes an end-to-end model to extract vein textures through integrating the fully convolutional neural network (FCN) with conditional random field (CRF). Firstly, to reduce missing pixels during ROI extraction, the method of sliding window summation is employed to filter and adjusted with self-built tools. In addition, the traditional baselines are endowed with different weights to automatically assign labels. Secondly, the deformable convolution network, through replacing the plain counterparts in the standard U-Net mode, can capture the complex venous structural features by adaptively adjusting the receptive fields according to veins' scales and shapes. Moreover, the above features can be further mined and accumulated by combining the recurrent neural network (RNN) and the residual network (ResNet). With the steps mentioned above, the fully convolutional neural network is constructed. Finally, the CRF with Gaussian pairwise potential conducts mean-field approximate inference as the RNN, and then is embedded as a part of the FCN, so that the model can fully integrate CRF with FCNs, which provides the possibility to involve the usual back-propagation algorithm in training the whole deep network end-to-end. The proposed models in this paper were tested on three public finger vein datasets SDUMLA, MMCBNU and HKPU with experimental results to certify their superior performance on finger-vein verification tasks compared with other equivalent models including U-Net

    Finger Vein Recognition Based on a Personalized Best Bit Map

    Get PDF
    Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition

    Curved Gabor Filters for Fingerprint Image Enhancement

    Full text link
    Gabor filters play an important role in many application areas for the enhancement of various types of images and the extraction of Gabor features. For the purpose of enhancing curved structures in noisy images, we introduce curved Gabor filters which locally adapt their shape to the direction of flow. These curved Gabor filters enable the choice of filter parameters which increase the smoothing power without creating artifacts in the enhanced image. In this paper, curved Gabor filters are applied to the curved ridge and valley structure of low-quality fingerprint images. First, we combine two orientation field estimation methods in order to obtain a more robust estimation for very noisy images. Next, curved regions are constructed by following the respective local orientation and they are used for estimating the local ridge frequency. Lastly, curved Gabor filters are defined based on curved regions and they are applied for the enhancement of low-quality fingerprint images. Experimental results on the FVC2004 databases show improvements of this approach in comparison to state-of-the-art enhancement methods

    Fingervein Verification using Convolutional Multi-Head Attention Network

    Full text link
    Biometric verification systems are deployed in various security-based access-control applications that require user-friendly and reliable person verification. Among the different biometric characteristics, fingervein biometrics have been extensively studied owing to their reliable verification performance. Furthermore, fingervein patterns reside inside the skin and are not visible outside; therefore, they possess inherent resistance to presentation attacks and degradation due to external factors. In this paper, we introduce a novel fingervein verification technique using a convolutional multihead attention network called VeinAtnNet. The proposed VeinAtnNet is designed to achieve light weight with a smaller number of learnable parameters while extracting discriminant information from both normal and enhanced fingervein images. The proposed VeinAtnNet was trained on the newly constructed fingervein dataset with 300 unique fingervein patterns that were captured in multiple sessions to obtain 92 samples per unique fingervein. Extensive experiments were performed on the newly collected dataset FV-300 and the publicly available FV-USM and FV-PolyU fingervein dataset. The performance of the proposed method was compared with five state-of-the-art fingervein verification systems, indicating the efficacy of the proposed VeinAtnNet.Comment: Accepted in IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 202

    A Comparative Study of Finger Vein Recognition by Using Learning Vector Quantization

    Full text link
    ¾ This paper presents a comparative study of finger vein recognition using various features with Learning Vector Quantization (LVQ) as a classification method. For the purpose of this study, two main features are employed: Scale Invariant Feature Transform (SIFT) and Local Extensive Binary Pattern (LEBP). The other features that formed LEBP features: Local Multilayer Binary Pattern (LmBP) and Local Directional Binary Pattern (LdBP) are also employed. The type of images are also become the base of comparison. The SIFT features will be extracted from two types of images which are grayscale and binary images. The feature that have been extracted become the input for recognition stage. In recognition stage, LVQ classifier is used. LVQ will classify the images into two class which are the recognizable images and non recognizable images. The accuracy, false positive rate (FPR), and true positive rate (TPR) value are used to evaluate the performance of finger vein recognition. The performance result of finger vein recognition becomes the main study for comparison stage. From the experiments result, it can be found which feature is the best for finger vein reconition using LVQ. The performance of finger vein recognition that use SIFT feature from binary images give a slightly better result than uisng LmBP, LdBP, or LEBP feature. The accuracy value could achieve 97,45%, TPR at 0,9000 and FPR at 0,0129

    A comparative study of finger vein recognition by using Learning Vector Quantization

    Get PDF
    Abstract¾ This paper presents a comparative study of finger vein recognition using various features with Learning Vector Quantization (LVQ) as a classification method. For the purpose of this study, two main features are employed: Scale Invariant Feature Transform (SIFT) and Local Extensive Binary Pattern (LEBP). The other features that formed LEBP features: Local Multilayer Binary Pattern (LmBP) and Local Directional Binary Pattern (LdBP) are also employed. The type of images are also become the base of comparison. The SIFT features will be extracted from two types of images which are grayscale and binary images. The feature that have been extracted become the input for recognition stage. In recognition stage, LVQ classifier is used. LVQ will classify the images into two class which are the recognizable images and non recognizable images. The accuracy, false positive rate (FPR), and true positive rate (TPR) value are used to evaluate the performance of finger vein recognition. The performance result of finger vein recognition becomes the main study for comparison stage. From the experiments result, it can be found which feature is the best for finger vein reconition using LVQ. The performance of finger vein recognition that use SIFT feature from binary images give a slightly better result than uisng LmBP, LdBP, or LEBP feature. The accuracy value could achieve 97,45%, TPR at 0,9000 and FPR at 0,0129. 

    Advanced Biometrics with Deep Learning

    Get PDF
    Biometrics, such as fingerprint, iris, face, hand print, hand vein, speech and gait recognition, etc., as a means of identity management have become commonplace nowadays for various applications. Biometric systems follow a typical pipeline, that is composed of separate preprocessing, feature extraction and classification. Deep learning as a data-driven representation learning approach has been shown to be a promising alternative to conventional data-agnostic and handcrafted pre-processing and feature extraction for biometric systems. Furthermore, deep learning offers an end-to-end learning paradigm to unify preprocessing, feature extraction, and recognition, based solely on biometric data. This Special Issue has collected 12 high-quality, state-of-the-art research papers that deal with challenging issues in advanced biometric systems based on deep learning. The 12 papers can be divided into 4 categories according to biometric modality; namely, face biometrics, medical electronic signals (EEG and ECG), voice print, and others

    A review of finger vein recognition system

    Get PDF
    Recently, the security-based system using finger vein as a biometric trait has been getting more attention from researchers all over the world, and these researchers have achieved positive progress. Many works have been done in different methods to improve the performance and accuracy of the personal identification and verification results. This paper discusses the previous methods of finger vein recognition system which include three main stages: preprocessing, feature extraction and classification. The advantages and limitations of these previous methods are reviewed at the same time we present the main problems of the finger vein recognition system to make it as a future direction in this field

    Multi-feature Fusion Using SIFT and LEBP for Finger Vein Recognition

    Get PDF
    In this paper, multi-feature fusion using Scale Invariant Feature Transform (SIFT) and Local Extensive Binary Pattern (LEBP) was proposed to obtain a feature that could resist degradation problems such as scaling, rotation, translation and varying illumination conditions. SIFT feature had a capability to withstand degradation due to changes in the condition of the image scale, rotation and translation. Meanwhile, LEBP feature had resistance to gray level variations with richer and discriminatory local characteristics information. Therefore the fusion technique is used to collect important information from SIFT and LEBP feature.The resulting feature of multi-feature fusion using SIFT and LEBP feature would be processed by Learning Vector Quantization (LVQ) method to determine whether the testing image could be recognized or not. The accuracy value could achieve 97.50%, TPR at 0.9400 and FPR at 0.0128 in optimum condition.  That was a better result than only use SIFT or LEBP feature
    • …
    corecore