527 research outputs found

    A fast spectral method for the Boltzmann equation for monatomic gas mixtures

    Get PDF
    Although the fast spectral method has been established for solving the Boltzmann equation for single-species monatomic gases, its extension to gas mixtures is not easy because of the non-unitary mass ratio between the di↵erent molecular species. The conventional spectral method can solve the Boltzmann collision operator for binary gas mixtures but with a computational cost of the order m3rN6, where mr is the mass ratio of the heavier to the lighter species, and N is the number of frequency nodes in each frequency direction. In this paper, we propose a fast spectral method for binary mixtures of monatomic gases that has a computational cost O(pmrM2N4 logN), where M2 is the number of discrete solid angles. The algorithm is validated by comparing numerical results with analytical Bobylev- Krook-Wu solutions for the spatially-homogeneous relaxation problem, for mr up to 36. In spatially-inhomogeneous problems, such as normal shock waves and planar Fourier/Couette flows, our results compare well with those of both the numerical kernel and the direct simulation Monte Carlo methods. As an application, a two-dimensional temperature-driven flow is investigated, for which other numerical methods find it difficult to resolve the flow field at large Knudsen numbers. The fast spectral method is accurate and elective in simulating highly rarefied gas flows, i.e. it captures the discontinuities and fine structures in the velocity distribution functions

    Extraction of the translational Eucken factor from light scattering by molecular gas

    Full text link
    Although the thermal conductivity of molecular gases can be measured straightforwardly and accurately, it is difficult to experimentally determine its separate contributions from the translational and internal motions of gas molecules. Yet this information is critical in rarefied gas dynamics as the rarefaction effects corresponding to these motions are different. In this paper, we propose a novel methodology to extract the translational thermal conductivity (or equivalently, the translational Eucken factor) of molecular gases from the Rayleigh-Brillouin scattering (RBS) experimental data. From the numerical simulation of the \cite{LeiJFM2015} model we find that, in the kinetic regime, in addition to bulk viscosity, the RBS spectrum is sensitive to the translational Eucken factor, even when the total thermal conductivity is fixed. Thus it is not only possible to extract the bulk viscosity, but also the translational Eucken factor of molecular gases from RBS light scattering spectra measurements. Such experiments bear the additional advantage that gas-surface interactions do not affect the measurements. For the first time, bulk viscosities (due to the rotational relaxation of gas molecules only) and translational Eucken factors of N2, CO2 and SF6 are simultaneously extracted from RBS experiments

    Five-micron laser radiation from a carbon monoxide gasdynamic expansion

    Get PDF
    Laser power at 5 microns from carbon monoxide gasdynamic expansio

    Influence of intermolecular potentials on rarefied gas flows: fast spectral solutions of the Boltzmann equation

    Get PDF
    The Boltzmann equation with an arbitrary intermolecular potential is solved by the fast spectral method. As examples, noble gases described by the Lennard-Jones potential are considered. The accuracy of the method is assessed by comparing both transport coefficients with variational solutions and mass/heat flow rates in Poiseuille/thermal transpiration flows with results from the discrete velocity method. The fast spectral method is then applied to Fourier and Couette flows between two parallel plates, and the influence of the intermolecular potential on various flow properties is investigated. It is found that for gas flows with the same rarefaction parameter, differences in the heat flux in Fourier flow and the shear stress in Couette flow are small. However, differences in other quantities such as density, temperature, and velocity can be very large

    Extraction of the translational Eucken factor from light scattering by molecular gas

    Get PDF
    Although the thermal conductivity of molecular gases can be measured straightforwardly and accurately, it is difficult to experimentally determine its separate contributions from the translational and internal motions of gas molecules. Yet, this information is critical in rarefied gas dynamics as the rarefaction effects corresponding to these motions are different. In this paper, we propose a novel methodology to extract the translational thermal conductivity (or equivalently, the translational Eucken factor) of molecular gases from the Rayleigh–Brillouin scattering (RBS) experimental data. From the numerical simulation of the Wu et al. (J. Fluid Mech., vol. 763, 2015, pp. 24–50) model we find that, in the kinetic regime, in addition to bulk viscosity, the RBS spectrum is sensitive to the translational Eucken factor, even when the total thermal conductivity is fixed. Thus it is not only possible to extract the bulk viscosity, but also the translational Eucken factor of molecular gases from RBS light scattering spectra measurements. Such experiments bear the additional advantage that gas–surface interactions do not affect the measurements. By using the Wu et al. model, bulk viscosities (due to the rotational relaxation of gas molecules only) and translational Eucken factors of N2 , CO2 and SF6 are simultaneously extracted from RBS experiments

    A kinetic model of the Boltzmann equation for non-vibrating polyatomic gases

    Get PDF
    A kinetic model of the Boltzmann equation for non-vibrating polyatomic gases is proposed, based on the Rykov model for diatomic gases. We adopt two velocity distribution functions (VDFs) to describe the system state; inelastic collisions are the same as in the Rykov model, but elastic collisions are modelled by the Boltzmann collision operator (BCO) for monatomic gases, so that the overall kinetic model equation reduces to the Boltzmann equation for monatomic gases in the limit of no translational–rotational energy exchange. The free parameters in the model are determined by comparing the transport coefficients, obtained by a Chapman–Enskog expansion, to values from experiment and kinetic theory. The kinetic model equations are solved numerically using the fast spectral method for elastic collision operators and the discrete velocity method for inelastic ones. The numerical results for normal shock waves and planar Fourier/Couette flows are in good agreement with both conventional direct simulation Monte Carlo (DSMC) results and experimental data. Poiseuille and thermal creep flows of polyatomic gases between two parallel plates are also investigated. Finally, we find that the spectra of both spontaneous and coherent Rayleigh–Brillouin scattering (RBS) compare well with DSMC results, and the computational speed of our model is approximately 300 times faster. Compared to the Rykov model, our model greatly improves prediction accuracy, and reveals the significant influence of molecular models. For coherent RBS, we find that the Rykov model could overpredict the bulk viscosity by a factor of two

    Kinetic modelling of rarefied gas flows with radiation

    Full text link
    Two kinetic models are proposed for high-temperature rarefied (or non-equilibrium) gas flows with radiation. One of the models uses the Boltzmann collision operator to model the translational motion of gas molecules, which has the ability to capture the influence of intermolecular potentials, while the other adopts the relaxation time approximations, which has higher computational efficiency. In the kinetic modelling, not only the transport coefficients such as the shear/bulk viscosity and thermal conductivity but also their fundamental relaxation processes are recovered. Also, the non-equilibrium dynamics of gas flow and radiation are coupled in a self-consistent manner. The two proposed kinetic models are first validated by the direct simulation Monte Carlo method in several non-radiative rarefied gas flows, including the normal shock wave, Fourier flow, Couette flow, and the creep flow driven by the Maxwell demon. Then, the rarefied gas flows with strong radiation are investigated, not only in the above one-dimensional gas flows, but also in the two-dimensional radiative hypersonic flow passing cylinder. In addition to the Knudsen number of gas flow, the influence of the photon Knudsen number and relative radiation strength is scrutinised. It is found that the radiation can make a profound contribution to the total heat transfer on obstacle surface.Comment: 34 pages, 15 figures. arXiv admin note: substantial text overlap with arXiv:2201.0685
    corecore