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A kinetic model of the Boltzmann equation for non-vibrating polyatomic gases is
proposed, based on the Rykov model for diatomic gases. We adopt two velocity
distribution functions (VDFs) to describe the system state; inelastic collisions are the
same as in the Rykov model, but elastic collisions are modelled by the Boltzmann
collision operator (BCO) for monatomic gases, so that the overall kinetic model
equation reduces to the Boltzmann equation for monatomic gases in the limit of
no translational–rotational energy exchange. The free parameters in the model are
determined by comparing the transport coefficients, obtained by a Chapman–Enskog
expansion, to values from experiment and kinetic theory. The kinetic model equations
are solved numerically using the fast spectral method for elastic collision operators
and the discrete velocity method for inelastic ones. The numerical results for normal
shock waves and planar Fourier/Couette flows are in good agreement with both
conventional direct simulation Monte Carlo (DSMC) results and experimental data.
Poiseuille and thermal creep flows of polyatomic gases between two parallel plates
are also investigated. Finally, we find that the spectra of both spontaneous and
coherent Rayleigh–Brillouin scattering (RBS) compare well with DSMC results, and
the computational speed of our model is approximately 300 times faster. Compared
to the Rykov model, our model greatly improves prediction accuracy, and reveals the
significant influence of molecular models. For coherent RBS, we find that the Rykov
model could overpredict the bulk viscosity by a factor of two.

Key words: computational methods, kinetic theory, rarefied gas flow

1. Introduction
The Boltzmann equation is the fundamental equation describing the collective

motion of gas molecules from the continuum-fluid to the free-molecular flow regimes
(Chapman & Cowling 1970; Cercignani 1990). It underpins a broad range of research
areas from aerodynamics to microfluidics. While at small Knudsen numbers (i.e. when
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the molecular mean free path is much smaller than the characteristic flow length)
macroscopic equations, such as the Navier–Stokes, Burnett, and Grad equations,
can be used in some instances (Galkin & Rusakov 2005; Greenshields & Reese
2007; Garcia-Colin, Velasco & Uribe 2008; Gu & Emerson 2009; Rana, Torrilhon
& Struchtrup 2013; Rahimi & Struchtrup 2014), in the transition and free-molecular
regimes the Boltzmann equation itself should be solved. However, its intricate collision
operator makes a solution difficult to obtain by deterministic numerical methods. For
monatomic gases, the computational cost of the Boltzmann collision operator (BCO)
is usually of the order of N7

v , although this can be reduced to O(M2N3
v log Nv) using

the fast spectral method for some special collision kernels (Mouhot & Pareschi 2006;
Wu et al. 2013; Wu, Reese & Zhang 2014), where M2 and Nv are the number of
discrete solid angles and velocity grid points in each velocity direction, respectively.

The problem becomes even more serious if the internal degrees of freedom (such
as rotation and vibration) of a polyatomic gas are considered in the framework
of the Wang-Chang–Uhlenbeck (WCU) equation (Wang-Chang & Uhlenbeck
1951). Buet (1997) proposed conservative and entropy schemes for the polyatomic
collision operator; however these have never been used because of their prohibitive
computational cost. Tcheremissine & Agarwal (2008) solved the WCU equation
for normal shock waves in nitrogen, and found that the computational cost is
larger by about two orders of magnitude than for a monatomic gas. Recently, a
spectral-Lagrangian method with computational memory and cost of the order of N4

e N6
v

has been proposed (Munafò et al. 2014), where Ne is the number of discrete internal
energy levels; for Ne = 5 and Nv = 16, the memory needed is approximately 88 GB,
while the time needed for calculating the collision operators once is approximately
3 s using 12 compute threads, which restricts its suitability when applied to real
problems.

The direct simulation Monte Carlo (DSMC) method proposed by Bird (1994), using
the Larsen–Borgnakke collision rule (Borgnakke & Larsen 1975) for the translational–
internal energy exchange, is a good alternative because of its linear computational cost
with the number of simulated particles and far smaller memory requirements. It is
efficient for hypersonic flows, but becomes time-consuming for microflow simulations
when the flow velocity is well below the speed of sound (Hadjiconstantinou et al.
2003).

These concerns have stimulated researchers to develop kinetic models with
simplified collision operators for polyatomic gases (Morse 1964; Holway 1966;
Rykov 1975; Andries et al. 2000; Fernandes & Marques 2007). In these models, the
gain part of the BCO is modelled by the Gauss, ellipsoidal Gauss, and Gauss–Hermite
polynomials, while the loss part describes the exponential decay of the distribution
function with a rate independent of molecular velocity. Recently, Gorji and co-workers
have also proposed a model replacing the BCO by the Fokker–Planck collision
operator (Gorji, Torrilhon & Jenny 2011; Gorji & Jenny 2013), which models the
drift and diffusion in velocity space. Although this model is faster than the DSMC
method near the continuum-fluid regime, for microflow simulations it suffers the same
slowness as the DSMC method because of its particulate nature.

A common drawback of all these kinetic models for polyatomic gases is
that they do not reduce to the Boltzmann equation for monatomic gases when
translational–internal energy exchange is absent. Also, they cannot capture the
differences in flow properties for different molecular models even in isothermal
flows. For instance, for monatomic gases, the Shakhov kinetic model (Shakhov 1968)
predicts the same mass flow rate for linearized Poiseuille flow with various viscosity
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indices, while the Boltzmann equation shows different mass flow rates for different
molecular models (viscosity indices) (Sharipov & Bertoldo 2009; Wu et al. 2014).

In this paper, we present a new kinetic model for non-vibrating polyatomic gases,
in which elastic collisions are modelled by the BCO for a monatomic gas, while
inelastic collisions are the same as those in the Rykov model (Rykov 1975). Our
model exactly recovers the Jeans’ relaxation equation for the translational–rotational
energy exchange, and it reduces to the Boltzmann equation for monatomic gases when
translational–rotational energy exchange is absent. Importantly, it can capture the
influence of different molecular models on the flow properties, and the computational
efficiency is nearly the same as that of the Boltzmann equation for monatomic gases.

This paper is organized as follows. In § 2, the Rykov kinetic model of the
Boltzmann equation for non-vibrating diatomic gases is introduced, and then extended
to polyatomic gases. A new kinetic model for non-vibrating polyatomic gases, which
recovers the elastic velocity-dependent collision frequency, is then proposed. In § 3,
the kinetic model equations are solved by the fast spectral method and the discrete
velocity method. Numerical results for normal shock waves and planar Fourier/Couette
flows are compared with DSMC results and experimental data. In § 4, the mass
and heat flow rates in Poiseuille and thermal creep flows of polyatomic gases are
calculated. In § 5, the spectra of both spontaneous and coherent Rayleigh–Brillouin
scattering (RBS) in polyatomic gases are obtained, and the influence of the molecular
model is analysed. We conclude in § 6.

2. Kinetic modelling of polyatomic gases

We consider polyatomic gases in which the vibrational degrees of freedom are not
excited and the rotational degrees of freedom can be treated classically; for nitrogen,
this corresponds to a temperature range of 100–600 K (Nyeland & Billing 1988). In
this case, the gas molecule has three translational degrees of freedom and d rotational
degrees of freedom, where d = 2 and 3 for diatomic and nonlinear polyatomic
gases, respectively. For the rotational degrees of freedom, only the rotational energy
is relevant (Kuščer 1991). Therefore, the system state can be described by the
distribution function f (t, x, v, I), where t is the time, x = (x1, x2, x3) is the spatial
coordinate, v = (v1, v2, v3) is the molecular translational velocity, and I2/d is the
rotational energy with I > 0. Macroscopic quantities, such as the molecular number
density n(t, x), the bulk velocity U(t, x), the pressure tensor P ij(t, x), the translational
temperature Tt(t, x), the rotational temperature Tr(t, x), and the heat fluxes qt(t, x)
and qr(t, x) produced by the transfer of translational and rotational energies, are
defined as:

n=
∫

f dvdI, U= 1
n

∫
f vdvdI, P ij =

∫
f mcicjdvdI,

3
2

kTt = 1
n

∫
f

mc2

2
dvdI,

(2.1a−d)

d
2

kTr = 1
n

∫
f I2/ddvdI, qt =

∫
f

mc2

2
cdvdI, qr =

∫
f I2/dcdvdI, (2.2a−c)

where k is the Boltzmann constant, m is the molecular mass, and c = v − U is the
peculiar velocity. The equilibrium temperature is T = (3Tt+ dTr)/(d+ 3) and the total
heat flux is q= qt+ qr. We also define the pressures pt= nkTt, pr= nkTr, and p= nkT
in terms of the translational, rotational, and total degrees of freedom, respectively.
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The evolution of the polyatomic gas distribution function is governed by the WCU
equation. The additional rotational degrees of freedom make the WCU equation much
more complicated than the Boltzmann equation for monatomic gases. Kinetic model
equations are therefore needed to simplify the complicated BCO. In the following,
we first introduce the Rykov kinetic model (Rykov 1975) for diatomic gases because
it can predict density profiles in normal shock waves (Larina & Rykov 2010; Liu
et al. 2014). We then extend the Rykov model to model polyatomic gases. Finally, we
propose a kinetic model with modified elastic collision operators, in order to improve
the accuracy of rarefied gas flow simulations.

2.1. The Rykov kinetic model and its extension
Like most kinetic models for polyatomic gases (Morse 1964; Holway 1966), elastic
and inelastic collisions are treated separately in the Rykov model (Rykov 1975).
The original Rykov model was for non-vibrating diatomic gases, but the method of
construction can be extended straightforwardly to nonlinear polyatomic gases. In the
absence of an external force, the evolution of the distribution function is described
by the following equation:

∂f
∂t
+ v ·

∂f
∂x
= gt − f

τ︸ ︷︷ ︸
elastic

+ gr − gt

Zτ︸ ︷︷ ︸
inelastic

, (2.3)

where the terms on the right describe elastic and inelastic collisions. The elastic
collision conserves the translational energy, while the inelastic collision exchanges
the translational and rotational energies. The relaxation time τ and the parameter Z
are independent of the molecular velocity. The reference distribution functions gt and
gr characterize the energy distributions of the particles that have undergone elastic
and inelastic collisions, and are given by

gt= n
(

m
2πkTt

)3/2

exp
(−mc2

2kTt

)
2 (kTr)

−d/2

dΓ (d/2)
exp

(
− I2/d

kTr

)
×
[

1+ 2mqt · c
15kTtpt

(
mc2

2kTt
− 5

2

)
+ 2(1− δ)

d
mqr · c
kTtpr

(
I2/d

kTr
− d

2

)]
,

gr= n
( m

2πkT

)3/2
exp

(−mc2

2kT

)
2 (kT)−d/2

dΓ (d/2)
exp

(
− I2/d

kT

)
×
[

1+ω0
2mqt · c
15kTp

(
mc2

2kT
− 5

2

)
+ 2ω1(1− δ)

d
mqr · c

kTp

(
I2/d

kT
− d

2

)]
,


(2.4)

where Γ is the gamma function, ω0 and ω1 are constants to recover the thermal
conductivity coefficients of polyatomic gases (see appendix A), and δ = µ(Tt)/mnD,
with µ and D being the coefficients of the shear viscosity and diffusion, respectively.

In numerical computations, it is useful to use the following reduced velocity
distribution functions (VDFs): G(t, x, v) = ∫∞0 f (t, x, v, I)dI and R(t, x, v) =∫∞

0 f (t, x, v, I)I2/ddI, in order to eliminate the rotational energy variable to save
computational memory and cost. Multiplying (2.3) by 1 and I2/d and integrating the
resulting equations with respect to I from zero to infinity, (2.3) can be transformed
into the following two coupled equations:

∂G
∂t
+ v ·

∂G
∂x
= Gt −G

τ
+ Gr −Gt

Zτ
, (2.5)
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∂R
∂t
+ v ·

∂R
∂x
= Rt − R

τ
+ Rr − Rt

Zτ
, (2.6)

where the reference VDFs, i.e. Gt(t, x, v), Gr(t, x, v), Rt(t, x, v), and Rr(t, x, v), are
given by

Gt = n
(

m
2πkTt

)3/2

exp
(−mc2

2kTt

) [
1+ 2mqt · c

15kTtpt

(
mc2

2kTt
− 5

2

)]
,

Gr = n
( m

2πkT

)3/2
exp

(−mc2

2kT

) [
1+ω0

2mqt · c
15kTp

(
mc2

2kT
− 5

2

)]
,

Rt = dkTr

2
Gt +

(
m

2πkTt

)3/2

exp
(−mc2

2kTt

)
(1− δ)mqr · c

kTt
,

Rr = dkT
2

Gr +
( m

2πkT

)3/2
exp

(−mc2

2kT

)
ω1(1− δ)mqr · c

kT
,


(2.7)

with macroscopic quantities calculated as: n= ∫ Gdv, U= ∫ Gvdv/n, P ij=
∫

Gmcicjdv,
Tt =

∫
Gmc2dv/(3nk), Tr = 2

∫
Rdv/(ndk), qt =

∫
Gmc2cdv/2, and qr =

∫
Rcdv.

If G is the VDF for a monatomic gas, the elastic collision operator (Gt − G)/τ
in (2.5) is just the Shakhov simplification of the BCO for monatomic gases. In the
limit of no translational–rotational energy exchange (i.e. Z →∞), (2.5) reduces to
the Shakhov model equation for monatomic gases (Shakhov 1968). In this sense,
the Rykov kinetic model can be viewed as an extension to polyatomic gases of the
Shakhov kinetic model for monatomic gases.

2.2. A kinetic model for non-vibrating polyatomic gases
The Rykov kinetic model has been applied to normal shock wave problems (Larina
& Rykov 2010; Liu et al. 2014). It predicts density profiles in nitrogen with a
viscosity index of 0.74; however, the translational temperature profiles are not in
good agreement with DSMC results, especially at large Mach numbers (Liu et al.
2014). Note that the early rising of the translational temperature in normal shock
waves has also been observed when using the Shakhov kinetic model for monatomic
gas simulations (Xu & Huang 2011). The reason for this is the use of a single
relaxation time τ , while in the Boltzmann equation the relaxation time depends on
the molecular velocity. For monatomic Maxwell molecules, the relaxation time is
independent of the molecular velocity, and we find that the Shakhov model gives
temperature profiles in good agreement with those of the Boltzmann equation (not
shown here).

To improve the model accuracy, we introduce a relaxation time that depends on the
molecular velocity. It has already been shown that this can improve predictions for
a monatomic gas flow (Mieussens & Struchtrup 2004). Here, we recover the realistic
elastic relaxation time by replacing the elastic collision operator (Gt − G)/τ in the
Rykov model (2.5) with the BCO Q(G,G) for monatomic gases:

Q(G,G)=
∫
R3

∫
S2

B(cos θ, |v − v∗|)[G(v′∗)G(v′)−G(v∗)G(v)]dΩdv∗. (2.8)

For more information about the deflection angle θ , collision kernel B, and post-
collision velocity v′, see Wu et al. (2013).
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From (Gt − G)/τ = Q we have Gt = τQ + G. Then the elastic collision operator
(Rt − R)/τ in (2.6) is reduced to (R′ − R)/τ , where

R′ = d
2

kTr(τQ+G)+
(

m
2πkTt

)3/2

exp
(−mc2

2kTt

)
(1− δ)mqr · c

kTt
. (2.9)

This new kinetic model for polyatomic gases, which treats translational and
rotational degrees of freedom, is therefore:

∂G
∂t
+ v ·

∂G
∂x
=Q(G,G)+ Gr −Gt

Zτ
,

∂R
∂t
+ v ·

∂R
∂x
= R′ − R

τ
+ Rr − Rt

Zτ
,

 (2.10)

which, in the limit of no translational–rotational energy exchange, reduces to the
Boltzmann equation for monatomic gases. Note that the transport coefficients derived
according to the Chapman–Enskog expansion from the kinetic model (2.10) are the
same as from the Rykov model (considering that for monatomic gases, if the BCO
is replaced by the Shakhov collision operator we can obtain the same shear viscosity
and thermal conductivity).

The parameters τ , Z, δ, ω0, and ω1 remain to be determined. First, according to
(A 6), the relaxation time τ is determined by the shear viscosity, the molecular number
density, and the translational temperature. Second, the parameter δ depends on the
intermolecular potential. For example, δ = 1/1.33 for nitrogen if the Lennard-Jones
potential is considered; for inverse power-law potentials, as the viscosity index ω
increases from 0.5 to 1, δ decreases from 1/1.2 to 1/1.55. Third, it follows from
(2.10) that the relaxation of the rotational temperature in spatially-homogeneous
problems is described by:

∂Tr

∂t
= T − Tr

Zτ
= Tt − Tr

(d+ 3)Zτ/3
, (2.11)

while in kinetic theory the Jeans’ equation ∂Tr/∂t= (Tt − Tr)/(Zrotπτ/4) is frequently
used, where Zrot is the rotational collision number. Therefore, the parameter Z is
related to the rotational collision number Zrot as:

Z = 3π

4(d+ 3)
Zrot. (2.12)

Fourth, according to the kinetic theory of Mason & Monchick (1962) regarding the
thermal conductivity coefficients due to the transfer of translational and rotational
energies, ω0 and ω1 may be determined from the following two equations:

1− 5d
12

(
1− 2

5δ

)
4

πZrot
=
(

1+ 1−ω0

2Z

)−1

, (2.13)

1+ 5
4

(
1− 2

5δ

)
4

πZrot
=
(

1+ (1− δ)(1−ω1)

Zδ

)−1

, (2.14)

or one may choose ω0 and ω1 to make the Eucken factor, as defined by (A 8), equal
to experimentally measured values.
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3. Validation cases

For practical calculations it is convenient to use dimensionless variables. The
following are therefore introduced: G̃= v3

mG/n0, R̃= v3
mR/n0kT0, x̃= x/`, (ṽ, c̃, Ũ)=

(v, c,U)/vm, t̃ = tvm/`, ñ = n/n0, (T̃, T̃t, T̃r) = (T, Tt, Tr)/T0, P̃ ij = P ij/n0kBT0, and
(q̃, q̃t, q̃r) = (q, qt, qr)/n0kBT0vm, where n0 and T0 are the reference molecular
number density and temperature, respectively, ` is the characteristic flow length,
and vm=√2kBT0/m is the most probable molecular speed. The dimensionless kinetic
model equations (2.10) can then be written as follows:

∂G̃
∂ t̃
+ ṽ ·

∂G̃
∂ x̃
= Q̃(G̃, G̃)+ G̃r − G̃t

Zτ̃
,

∂R̃
∂ t̃
+ ṽ ·

∂R̃
∂ x̃
= R̃′ − R̃

τ̃
+ R̃r − R̃t

Zτ̃
.

 (3.1)

Here, the dimensionless BCO for inverse power-law intermolecular potentials (Wu
et al. 2013) is

Q̃ = 5
27−ωΓ

(
5
2 −ω

)
Γ (2− γ /2)Kn

∫∫
sin1−2ω+γ

(
θ

2

)
cos−γ

(
θ

2

)
|ṽ − ṽ∗|2(1−ω)

×[G̃(ṽ′∗)G̃(ṽ′)− G̃(ṽ∗)G̃(ṽ)]dΩdṽ∗, (3.2)

R̃′ = (d/2)T̃r(τ̃ Q̃ + G̃) + 2(1 − δ)(πT̃t)
−3/2 exp(−c̃ 2/T̃t)q̃r · c̃/T̃t, and the four

normalized reference VDFs are

G̃t = ñ
(
πT̃t

)−3/2
exp

(−c̃ 2

T̃t

) [
1+ 4q̃t · c̃

15ñ(T̃t)2

(
c̃ 2

T̃t

− 5
2

)]
,

G̃r = ñ
(
πT̃
)−3/2

exp
(−c̃ 2

T̃

) [
1+ω0

4q̃t · c̃
15ñT̃2

(
c̃ 2

T̃
− 5

2

)]
,

R̃t = dT̃r

2
G̃t +

(
πT̃t

)−3/2
exp

(−c̃ 2

T̃t

)
2(1− δ) q̃r · c̃

T̃t

,

R̃r = dT̃
2

G̃r +
(
πT̃
)−3/2

exp
(−c̃ 2

T̃

)
2ω1(1− δ) q̃r · c̃

T̃
,


(3.3)

where

Kn= µ

n0`

√
π

2mkBT0
(3.4)

is the unconfined Knudsen number, τ̃ = 2(T̃t)
ω−1Kn/

√
πñ is the normalized relaxation

time, and γ is a free parameter. Usually we choose γ = 0, but to solve the linearized
BCO we choose γ = (2ω − 1)/2 to double the computational efficiency (Wu et al.
2013, 2014). Finally, the macroscopic quantities are calculated as:

ñ=
∫

G̃dṽ, Ũ= 1
ñ

∫
G̃ ṽdṽ, P̃ ij = 2

∫
G̃ c̃ic̃jdṽ, T̃t = 2

3ñ

∫
G̃ c̃ 2dṽ,

T̃r = 2
dñ

∫
R̃dṽ, q̃t =

∫
G̃ c̃ 2c̃dṽ, q̃r =

∫
R̃c̃dṽ.

 (3.5)
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The BCO (3.2) can be solved by the fast spectral method (Wu et al. 2013) with
a computational cost of O(M2N3

v log(Nv)), while the other collision operators in (3.1)
can be solved by the discrete velocity method (Huang & Giddens 1967) with a cost
of O(N3

v ). Since we have two VDFs, the computational memory required is twice that
for monatomic gases; however, the computational cost only increases slightly.

To validate this kinetic model, we compare numerical solutions of shock waves and
planar Fourier/Couette flows with DSMC solutions and experimental data. With the
exception of the DSMC results for normal shock waves in § 3.1, the DSMC results
reported in this paper have been obtained using the dsmcFoam solver (Scanlon et al.
2010). This is a parallelized, open source solver developed within the OpenFOAM
framework by OpenCFD Ltd in collaboration with researchers at the University of
Strathclyde. The in-house version of the dsmcFoam solver we use enables us to
model polyatomic gases and to measure a much wider range of gas properties than
the standard OpenFOAM release.

Note that in the dsmcFoam solver, when the variable hard-sphere model is used
(Haas et al. 1994), ∂Tr/∂t= (T − Tr)/[πZDSMCτ(7− 2ω)(5− 2ω)/96]. Thus, we have

Z = (7− 2ω)(5− 2ω)π
96

ZDSMC. (3.6)

3.1. Normal shock waves in gases
For normal shock wave simulations, the characteristic length is chosen to be the
upstream mean free path (16µ/5n

√
2πmkT), where the reference molecular number

density n, gas viscosity µ, and temperature T are all measured upstream of the
shock. Therefore, the unconfined Knudsen number is Kn = 5π/16. In the DSMC
simulations, nitrogen has a viscosity index ω = 0.74 and rotational collision number
ZDSMC = 3.5. We choose δ = 1/1.33, hence according to (2.13), (2.14) and (3.6), we
obtain Z = 2.226, ω0 = 0.477 and ω1 = 1.919, for both the Rykov model (2.3) and
our kinetic model (3.1). The Eucken factor is 1.96.

With a shock wave travelling in the x1 direction, the kinetic model equations (3.1)
can be solved in the following iterative manner (for simplicity, the tildes are omitted):

Gj+1

1τ
+ v1

∂Gj+1

∂x1
=Q(Gj,Gj)+ Gj

r −Gj
t

Zτ j
+ Gj

1τ
,

Rj+1

1τ
+ v1

∂Rj+1

∂x1
= R

′j − Rj

τ j
+ Rj

r − Rj
t

Zτ j
+ Rj

1τ
,

 (3.7)

where j is the iteration step, 1τ is the local time step (usually three times smaller
than the local relaxation time τ ), and the spatial derivative is approximated by the
second-order upwind finite difference. The Rykov model can be solved in the same
way. Given the molecular number density, temperature, and Mach number Ma at the
upstream end, the equivalent quantities at the downstream end can be found by the
Rankine–Hugoniot relations. The VDFs at the upstream and downstream ends are
Maxwellian.

Figure 1 compares the normal shock profiles obtained by the two kinetic models
with DSMC results. As expected, our kinetic model resolves the problem of early
rising of the temperatures, and produces results in good agreement with the DSMC
data.
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FIGURE 1. (Colour online) Comparisons of kinetic model results and DSMC data (Liu
et al. 2014) for normal shock waves in nitrogen: (a) Ma = 4; (b) Ma = 5; (c) Ma = 7.
The squares, circles, stars and triangles are the normalized translational temperature in the
x1 direction, the translational temperature, the rotational temperature, and the molecular
number density, respectively, all obtained from the DSMC simulations. The solid and
dashed lines are, respectively, the results of our kinetic model (3.1) and the Rykov kinetic
model (2.3). Here Q represents the value of the macroscopic quantity, and subscripts u and
d represent the upstream and downstream values, respectively.

We now compare our model results with experimental data for normal shock waves
in nitrogen (Robben & Talbot 1966). Two upstream Mach numbers are considered.
The rotational collision number is given by the formula proposed by Parker (1959):

Zrot = Z∞rot

1+ (π2/2)
√

T∗/Tt + (π2/4+π)(T∗/Tt)
, (3.8)

where we take T∗ = 91.5 K and Z∞rot = 18 (Gorji & Jenny 2013).
Figure 2 shows the profiles of the normalized density and rotational temperature.

Excellent agreement between our kinetic model (3.1) and the experimental data can
be observed.
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FIGURE 2. Comparisons of normal shock wave profiles in nitrogen from our kinetic model
and the experimental data of Robben & Talbot (1966): (a) Ma= 7; (b) Ma= 12.9. Here
L∗ is the mean free path based on the sonic temperature.

3.2. Planar Fourier flow
Consider nitrogen gas between two parallel plates a distance ` apart. The normalized
temperature of the lower plate at x2 = 0 is Tl = 2/3, while that of the upper plate at
x2= ` is Tu= 4/3. We choose n0 to be the average molecular number density, and test
two different Knudsen numbers: Kn= 0.1 and Kn= 1. Diffuse boundary conditions are
adopted; for example, at x1 = 0 we have

G= nw

(πTl)3/2
exp

(
−v

2

Tl

)
, R= d

2
TlG, (3.9a,b)

for v2 > 0, where nw = −2
√

π/Tl
∫
v2<0 v2G(x2 = 0, v)dv. The boundary condition at

x2 = ` can be given in a similar way.
Figure 3 shows the resulting density and translational temperature profiles (the

rotational temperatures are not shown because they are very close to the translational
ones) in this planar Fourier flow. Excellent agreement between the results of our
model and the DSMC simulations can be seen.

3.3. Planar Couette flow
The planar Couette flow configuration is the same as for the planar Fourier flow above,
although the two plates now have the same temperature T0, and the top plate moves in
the x1 direction with a speed vm while the bottom plate moves in the opposite direction
at the same speed. In addition to nitrogen, we consider methane gas with a viscosity
index ω= 0.84. In the DSMC simulations, we choose ZDSMC = 3.5. For methane, Z=
2.023, and from (2.13) and (2.14) we obtain ω0= 0.316 and ω1= 1.774. The resulting
Eucken factor 1.74 is close to the experimentally measured value. Good agreement
between our model predictions and the DSMC results can be seen in figure 4.
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FIGURE 3. (Colour online) Comparisons of (a) density and (b) translational temperature
between our kinetic model (lines) and our DSMC simulations for planar Fourier flows.
The squares and circles are the dsmcFoam results at Kn = 0.1 and Kn = 1, respectively.
The working gas is nitrogen.

4. Application to Poiseuille and thermal creep flows

Calculating the mass and heat flow rates in Poiseuille and thermal creep flows
between two parallel plates can be extremely slow using the DSMC method when
the temperature and pressure gradients are small. Here we solve these two classical
flows using our deterministic method.

The configuration is the same as for planar Fourier flow. The pressure and
temperature gradients along the plates are KP = `d ln p/dx1 and KT = `d ln T/dx1.
When KP and KT are small, the kinetic model equations can be linearized. We
express the two VDFs as G= G0 + h0 and R= R0 + h1, where G0 = π−3/2 exp(−v2)

and R0= (d/2)G0 are equilibrium VDFs. The VDFs h0 and h1 describe the deviations
from the corresponding equilibrium states and satisfy |h0/G0|, |h1/R0| � 1. In the
following, the VDF h2 = h1 − (d/2)h0 is used instead of h1, for convenience.

When the Rykov kinetic model is considered, the evolution of h0 and h2 is governed
by the following two linear equations (Titarev & Shakhov 2012):

v2
∂h0

∂x2
= h+0 − h0

τ
− v1KP − v1

(
v2 − 5

2

)
KT, (4.1)

v2
∂h2

∂x2
= h+2 − h2

τ
− d

2
v1KT, (4.2)

where

h+0 = 2U1v1G0 + 4
15

qt1v1G0

(
1− 1−ω0

Z

)(
v2 − 5

2

)
,

h+2 = 2qr1v1G0

(
1− 1−ω1

Z

)
(1− δ).

 (4.3)
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FIGURE 4. (Colour online) Comparisons between our kinetic model (lines) and our DSMC
simulations (squares) for planar Couette flows of (a) nitrogen and (b) methane gases at
Kn= 1.
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When the kinetic model (3.1) is considered, (4.1) and (4.2) remain unchanged, but
h+0 in (4.3) becomes

h+0 = h0 + τL (h0)+ 4
15

qt1v1G0
ω0 − 1

Z

(
v2 − 5

2

)
, (4.4)

where L (h0)=Lg(h0)− νeqh0 is the linearized BCO. A detailed expression for L (h0)
and its fast spectral approximation can be found in Wu et al. (2014).

The macroscopic quantities of interest are U1 =
∫

h0v1dv, qt1 =
∫

h0v1(v
2 − 5/2)dv,

and qr1 =
∫

h2v1dv. The mass flow rate M , translational heat flow rate Qt, and
rotational heat flow rate Qr can be calculated as

M =
∫ 1

0
U1dx2, Qt =

∫ 1

0
qt1dx2, Qr =

∫ 1

0
qr1dx2. (4.5a−c)

As with (3.7), (4.1) and (4.2) can be solved by an implicit method iteratively.
Diffuse boundary conditions are adopted, so that the values of VDFs h0 and h2
entering the domain are zero. We set KP = 1 and KT = 0 for Poiseuille flow, and
KP = 0 and KT = 1 for thermal creep flow.

Some observations can be made before discussion of the numerical results. First,
the mass and translational heat flow rates are determined by h0, which is governed by
(4.1). The expressions for h+0 suggest that the mass and translational heat flow rates
are different for the Rykov model and our model. However, for both the Rykov model
and our model there is no difference in flow rates between diatomic and nonlinear
polyatomic gases with the same Z and ω0 values. Second, the rotational heat flow rate
is related to h2, which is governed by (4.2). It is always zero in Poiseuille flow. In
thermal creep flows, since the Rykov and our kinetic models have the same equation
for h2 they produce the same rotational heat flow rates. Also, since the source term
in (4.2) is proportional to the number of rotational degrees of freedom, the rotational
heat flow rates of nonlinear polyatomic gases are one-and-a-half times larger than
those of diatomic gases, provided the values of Z, ω1, δ for diatomic and nonlinear
polyatomic gases are the same. Third, (4.3) is independent of the viscosity index ω,
so the molecular model has no influence on the flow rates when using the Rykov
model. When our model (3.1) is used, the linearized BCO in (4.4) shows that different
molecular models have different flow rates, according to the results in Sharipov &
Bertoldo (2009) and Wu et al. (2014) for monatomic gases.

For these reasons, only the mass and heat flow rates in Poiseuille and thermal
creep flows of diatomic gases are presented below. We consider hard-sphere molecules
with Z= 1 and Z= 5. Values of ω0 and ω1 are chosen according to (2.13) and (2.14)
with δ = 1/1.33.

Table 1 shows the numerical results for Poiseuille flow of a diatomic gas. The
mass flow rates from our model are nearly the same as those for a monatomic gas.
However, the translational heat flow rates are affected by diatomicity: for a fixed
Kn, Qt increases with Z and, in the limit of Z → ∞, Qt approaches that of a
hard-sphere monatomic gas. This behaviour may be related to the magnitude of the
translational thermal conductivity κt, see (A 7). That is, from (2.13) we see that κt
decreases with Z; as a consequence, Qt decreases with Z. At high Knudsen number,
however, the difference between the translational heat flow rates in the Z = 1 and
the Z = 5 cases is very small, and both are very close to the monatomic gas value.
This is because there are not enough collisions for the exchange of translational and
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Z = 1 Z = 5
Our model Rykov model Our model Rykov model Monatomic

8Kn/5
√

π −M Qt −M Qt −M Qt −M Qt −M Qt

0.1 1.1887 0.0441 1.2266 0.0455 1.1916 0.0545 1.2300 0.0560 1.1951 0.0550
0.15 0.9893 0.0605 1.0219 0.0619 0.9928 0.0739 1.0259 0.0753 0.9948 0.0758
0.2 0.8950 0.0748 0.9250 0.0755 0.8990 0.0904 0.9293 0.0908 0.9006 0.0931
0.3 0.8097 0.0986 0.8368 0.0972 0.8142 0.1169 0.8413 0.1148 0.8156 0.1205
0.4 0.7745 0.1178 0.7999 0.1141 0.7791 0.1375 0.8044 0.1327 0.7804 0.1415
0.6 0.7507 0.1477 0.7747 0.1399 0.7554 0.1685 0.7790 0.1592 0.7566 0.1727
0.8 0.7481 0.1707 0.7718 0.1594 0.7527 0.1915 0.7759 0.1785 0.7537 0.1957
1 0.7526 0.1893 0.7765 0.1753 0.7570 0.2099 0.7804 0.1940 0.7580 0.2139
1.5 0.7727 0.2249 0.7983 0.2056 0.7768 0.2441 0.8017 0.2231 0.7778 0.2479
2 0.7950 0.2511 0.8225 0.2284 0.7987 0.2690 0.8256 0.2447 0.7998 0.2726
3 0.8360 0.2895 0.8673 0.2625 0.8393 0.3052 0.8700 0.2769 0.8405 0.3085
4 0.8713 0.3176 0.9058 0.2881 0.8743 0.3316 0.9082 0.3011 0.8755 0.3348
6 0.9290 0.3585 0.9681 0.3261 0.9315 0.3704 0.9702 0.3372 0.9326 0.3731
8 0.9751 0.3885 1.0176 0.3546 0.9772 0.3989 1.0194 0.3644 0.9781 0.4013
10 1.0135 0.4124 1.0587 0.3774 1.0154 0.4217 1.0603 0.3863 1.0161 0.4239
15 1.0889 0.4570 1.1387 0.4208 1.0904 0.4646 1.1400 0.4281 1.0907 0.4664
20 1.1463 0.4897 1.1993 0.4528 1.1476 0.4962 1.2004 0.4591 1.1475 0.4977
100 1.5142 0.6864 1.5815 0.6485 1.5147 0.6889 1.5820 0.6510 1.5139 0.6897

TABLE 1. Mass (M ) and translational heat (Qt) flow rates in Poiseuille flow of a hard-
sphere diatomic gas between parallel plates. Note that the rotational heat flux is zero.

rotational energies in the free-molecular regime. Comparisons between the Rykov
and our models are also shown in this table: the Rykov model overpredicts the
mass flow rates, and underpredicts the translational heat flow rate at large Kn. This
observation is consistent with the monatomic gas result when the Shakhov model is
used (Sharipov & Bertoldo 2009).

Next we consider thermal creep flows. Figure 5 shows that the Onsager–Casimir
relation holds for the diatomic gases we consider, that is, the heat flow rates in
Poiseuille flows are identical to the mass flow rates in thermal creep flows. Table 2
shows the predicted heat flow rates in thermal creep flows of diatomic gases. As with
Poiseuille flow, Qt and κt decrease with Z. However, Qr increases as Z decreases,
because the rotational thermal conductivity κr increases with decreasing Z; see (A 7)
and (2.14).

Finally, we investigate the influence of the molecular model on the mass flow rate
in thermal creep flow. We only consider hard-sphere and Maxwell gases; for a gas
interacting through inverse power-law potentials with a viscosity index between 0.5
and 1, the mass flow rates lie between those of the hard-sphere and Maxwell cases.
As for monatomic gases (Wu et al. 2014), figure 6 shows that at large Kn the mass
flow rate increases when the viscosity index decreases. Although the Rykov model
underpredicts the mass flow rates relative to our model for a hard-sphere gas, it gives
almost the same mass flow rate as Maxwell gases when Kn< 4 and larger mass flow
rates when Kn> 4.

5. Application to Rayleigh–Brillouin scattering
An important application for kinetic models of non-vibrating polyatomic gases is the

calculation of the Rayleigh–Brillouin scattering (RBS) spectra. RBS is an invaluable
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FIGURE 5. (Colour online) Onsager–Casimir relation for the hard-sphere diatomic gas:
comparison between the heat flow rate in Poiseuille flow and the mass flow rate in thermal
creep flow.

Z = 1 Z = 5
Our model Rykov Our model Rykov Monatomic

8Kn/5
√

π −Qt −Qr −Qt −Qt −Qr −Qt −Qt

0.1 0.1673 0.0998 0.1629 0.2054 0.0807 0.1989 0.2148
0.15 0.2394 0.1406 0.2326 0.2910 0.1150 0.2810 0.3036
0.2 0.3045 0.1763 0.2954 0.3666 0.1457 0.3535 0.3816
0.3 0.4173 0.2357 0.4046 0.4937 0.1986 0.4760 0.5118
0.4 0.5119 0.2833 0.4970 0.5968 0.2425 0.5765 0.6165
0.6 0.6636 0.3565 0.6469 0.7565 0.3125 0.7348 0.7774
0.8 0.7822 0.4117 0.7661 0.8773 0.3670 0.8570 0.8983
1 0.8793 0.4559 0.8650 0.9741 0.4116 0.9565 0.9948
1.5 1.0644 0.5389 1.0570 1.1550 0.4968 1.1461 1.1743
2 1.2010 0.5996 1.2014 1.2862 0.5601 1.2866 1.3042
3 1.3988 0.6877 1.4143 1.4746 0.6526 1.4917 1.4906
4 1.5424 0.7520 1.5708 1.6107 0.7202 1.6417 1.6254
6 1.7487 0.8450 1.7976 1.8066 0.8180 1.8588 1.8195
8 1.8980 0.9127 1.9622 1.9488 0.8889 2.0165 1.9606
10 2.0155 0.9662 2.0917 2.0611 0.9449 2.1409 2.0721
15 2.2330 1.0656 2.3305 2.2701 1.0482 2.3709 2.2795
20 2.3905 1.1376 2.5021 2.4222 1.1227 2.5369 2.4306
100 3.3156 1.5592 3.4866 3.3277 1.5535 3.5000 3.3315

TABLE 2. Heat flow rates in thermal creep flow of a hard-sphere diatomic gas between
parallel plates. Note that the rotational heat flow rates for both the Rykov model and our
kinetic model are the same.

non-destructive optical diagnostic technique for measuring the properties of gases and
liquids, such as the sound speed, temperature, and bulk viscosity. This information
can be extracted by comparing the experimental and theoretical spectra, where the
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FIGURE 6. (Colour online) Mass flow rates in thermal creep flow between parallel plates,
varying with the Knudsen number.

accuracy of the obtained information depends on how reliable the experimental and
theoretical results are. Recently, rapid improvements in the experimental resolution
have been achieved (Vieitez et al. 2010; Gerakis, Shneider & Barker 2013; Gu &
Ubachs 2013); however, accurate theoretical line shapes are lacking, although several
kinetic models have been proposed (Tenti, Boley & Desai 1974; Pan, Shneider &
Miles 2002, 2004; Marques 2007).

In RBS experiments, the light is scattered due to gas density variations, which either
arise spontaneously or are induced by external optical potentials. Correspondingly, we
have spontaneous RBS and coherent RBS. The spectrum of the scattered light depends
on the Knudsen number, intermolecular interactions, and rotational collision number;
in the hydrodynamic or free-molecular regimes, the spectrum can be calculated
analytically. In the transition regime, a kinetic model must be used. Due to the high
oscillation frequency of the optical field, the vibrational modes of the rarefied gas
molecules are not excited, which justifies the use of kinetic models (2.3) and (3.1).
For monatomic gases, theory and experiment have demonstrated that intermolecular
interactions have little influence on the spectra of spontaneous RBS (Sugawara, Yip &
Sirovich 1968; Clark 1975; Ghaem-Maghami & May 1980). However, for polyatomic
gases and for coherent RBS, the role of the intermolecular interaction has never been
studied. The current prevailing model is the s6 model (Tenti et al. 1974; Pan et al.
2004), which is derived for Maxwell molecules only. In the following, through our
kinetic model (3.1), we investigate the influence of the molecular model on both the
spontaneous and coherent RBS spectra.

5.1. Spontaneous Rayleigh–Brillouin scattering
The scattering of light due to spontaneous density fluctuations in gases is called
spontaneous RBS. The light spectrum can be quantitatively interpreted by solutions
of the linearized Boltzmann equation. Suppose scattered light with wavelength λ
propagates along the x2 direction, and let the characteristic length be equal to λ. The
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spectrum S( fs) of the scattered light is determined by the density fluctuation spectrum
(Sugawara et al. 1968) as

S( fs)= 2Re
{∫ 1

0
dx2

∫ ∞
0

dt exp[2πi(x2 − fst)]1n0(x2, t)
}
, (5.1)

where Re denotes the real part of a complex number, i is the imaginary unit, fs is
the shifted frequency normalized by vm/λ, and 1n0(x2, t)= ∫ h0(x2, t)dv denotes the
density variation.

According to our kinetic model, the evolution of h0 and h1 is governed by the two
coupled equations:

∂h0

∂t
+ v2

∂h0

∂x2
=C0 ≡L (h0)+ G0

Zτ

[
(T − Tt)

(
v2 − 3

2

)
+ 4(ω0 − 1)

15
qt2v2

(
v2 − 5

2

)]
,

∂h1

∂t
+ v2

∂h1

∂x2
=C1 ≡ d

2
L (h0)+ 1

τ

[
d
2

h0 + d
2

TrG0 − h1

]
+ dG0

2Zτ

[
(T − Tt)

(
v2 − 1

2

)
+ 4(ω0 − 1)

15
qt2v2

(
v2 − 5

2

)]
+ 2(Z +ω1 − 1)(1− δ)

Zτ
qr2v2G0,



(5.2)

with the macroscopic quantities Tt =
∫
(2v2/3− 1)h0dv, Tr =

∫
(2h1/d− h0)dv, qt2 =∫

(v2 − (5/2))v2h0dv, and qr2 =
∫
v2(h1 − dh0/2)dv. Similar equations can be written

for the Rykov kinetic model.
The initial conditions describing the density impulse are h0=G0 and h1= (d/2)G0 at

x2= 0, and h0, h1= 0 at x2 6= 0. Applying the Laplace–Fourier transform to (5.2) in the
temporal–spatial domains, we obtain 2πi( fs − v2)ĥ0 = Ĉ0 + G0 and 2πi( fs − v2)ĥ1 =
Ĉ1 + (d/2)G0, where quantities with a hat denote the Laplace–Fourier transform of
the corresponding quantities. The two algebraic equations are rewritten as 2πi( fs −
v2)ĥ0 + νĥ0 = Ĉ0 + G0 + νĥ0 and 2πi( fs − v2)ĥ1 + νĥ1 = Ĉ1 + (d/2)G0 + νĥ1 with
ν = 2/τ , which can then be solved in an iterative manner:

ĥ j+1
0 (v)= Ĉ j

0 +G0 + νĥ j
0

2πi( fs − v2)+ ν ,

ĥj+1
1 (v)= Ĉ j

1 + (d/2)G0 + νĥj
1

2πi( fs − v2)+ ν .

 (5.3)

The spectrum of the spontaneous RBS, according to (5.1), is calculated by

S(Kn, ω, fs)=
∫

Re(ĥ0)dv. (5.4)

Given the Knudsen number Kn, viscosity index ω, and frequency shift fs, the
iterations are terminated when the difference in the spectrum between two consecutive
steps is smaller than 10−6. Our method takes about one minute to produce a line
shape, which is much faster than the DSMC method used by Bruno et al. (2006).
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FIGURE 7. (Colour online) Spontaneous RBS spectra for different kinetic models and gas
molecular models. In this and the following figures, the spectrum is normalized by its
maximum value. (a) Diatomic gas Kn= 0.06; (b) diatomic gas Kn= 0.08; (c) nonlinear
polyatomic gas Kn= 0.06; (d) nonlinear polyatomic gas Kn= 0.08.

We first compare the spontaneous RBS spectra obtained from both the Rykov model
and our kinetic model with those from the s6 kinetic model (Pan et al. 2004). We
choose δ = 1/1.33 and ω0 in the Rykov model and our kinetic model according to
(2.13), while we choose ω1 to make the Eucken factor equal to 1.9 and 1.75 for
diatomic and nonlinear polyatomic gases, respectively. The s6 model is derived for
a Maxwell gas, and in figure 7 we see that for this gas the three models yield almost
identical results. When a hard-sphere gas is considered, the Rykov model produces the
same results as for the Maxwell gas, while our kinetic model (3.1) predicts a relatively
higher spectrum near the Rayleigh peak ( fs ∼ 0) when Kn = 0.06 and a relatively
lower spectrum near the Brillouin peak ( fs ∼ 0.8) when Kn= 0.08. We conclude that
the intermolecular potential does indeed influence the spontaneous RBS spectrum of
polyatomic gases.

Experimentally, the bulk viscosity is obtained by comparing the experimental
spectra with those from the s6 model (Vieitez et al. 2010; Gu & Ubachs 2013). If
the viscosity index of the gas is 0.5, some errors will be introduced. For instance,
using the s6 model, the bulk viscosity is overpredicted by approximately 33 %
and 50 %, respectively, in figure 7(a,b) for hard-sphere diatomic gases, and 20 %
and 33 %, respectively, in figure 7(c,d) for hard-sphere nonlinear polyatomic gases.
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FIGURE 8. (Colour online) Spontaneous RBS spectra for nitrogen, comparing our model
(lines) to the experimental data (dots) of Gu & Ubachs (2013). (a) T = 254.7 K, P =
2.563 bar; (b) T = 275.2 K, P = 2.784 bar; (c) T = 296.7 K, P = 3.000 bar; (d) T =
336.6 K, P= 3.400 bar. The fitted values of Z are (a) 1.8, (b) 2.3, (c) 2.6 and (d) 3.3.

Further numerical simulations show that the closer the viscosity index is to one, the
smaller the error that is introduced when comparing experimental spontaneous RBS
spectra with those of the s6 model.

Figure 8 compares the spontaneous RBS spectra of nitrogen produced by our
model with the experimental data of Gu & Ubachs (2013). The experimental
spectrum is the convolution of the spectrum S and the instrumental spectral response
function, which can be found in Vieitez et al. (2010). In our simulation, we use
ω = 0.7383, µ = 1.656 × 10−5 kg m−1 s−1 at T = 273.15 K, and the effective
wavelength λ = 259.4 nm. Therefore, the shear viscosities in figure 8(a–d) are
(1.57, 1.67, 1.76, 1.93) × 10−5 kg m−1 s−1, respectively. To extract the bulk
viscosity, the convolved spectrum from our theory is multiplied by c1 and then
added to c2, where c1 and c2 are obtained by least-squares fitting; the standard
error in the fitting is a function of Z. We choose the value of Z when the
standard error is minimum. The resulting bulk viscosities in figure 8(a–d) are
(0.75, 1.02, 1.22, 1.70)× 10−5 kg m−1 s−1, respectively.

5.2. Coherent Rayleigh–Brillouin scattering
In coherent RBS experiments (Grinstead & Barker 2000; Pan et al. 2002; Vieitez et al.
2010; Cornella et al. 2012), an individual molecule is subject to an external optical
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dipole force. When the beam intensities are small, the spectrum can be obtained by
solving the linearized Boltzmann equation. Since the density fluctuations are induced
by the external optical dipole force, the coherent RBS spectra are different to the
spontaneous ones.

With the characteristic flow length being the effective wavelength λ, (3.1) with the
external optical potential is linearized to

∂h0

∂t
+ v2

∂h0

∂x2
− a

∂h0

∂v2
=C0,

∂h1

∂t
+ v2

∂h1

∂x2
− a

∂h1

∂v2
=C1,

 (5.5)

where a= cos(x2 − fdt) is the acceleration from the external optical potential, and fd
is the frequency difference between the two pump beams, which has been normalized
by the characteristic frequency vm/λ. Similar equations can be written for the Rykov
model.

To find the coherent RBS spectrum, the Fourier transform is applied to (5.5) in
both the spatial and temporal directions, and the resultant equations are solved in an
iterative manner. That is, given the frequency difference fd, Knudsen number Kn, and
viscosity index ω, we have the following iterative scheme:

h
j+1
0 (v)= C

j
0 +G0v2 + νh

j
0

2πi( fd − v2)+ ν ,

h
j+1
1 (v)= C

j
1 + (d/2)G0v2 + νh

j
1

2πi( fd − v2)+ ν ,

 (5.6)

where an overline denotes a spatial–temporal Fourier transformation. Since the
intensity of the scattered light is proportional to the square of the gas density
variations (Pan et al. 2004), the spectrum of the coherent RBS is then given by:

S(Kn, ω, fd)=
∣∣∣∣∫ h0dv

∣∣∣∣2 . (5.7)

Starting from h̃0 = h̃1 = 0, the iterations are terminated when the relative error of
S between two consecutive iteration steps is less than 10−6. We consider hard-sphere
and Maxwell gases. The accuracy and efficiency of our kinetic model is outlined in
appendix B.

Figure 9 shows the coherent RBS line shapes for polyatomic gases at Kn = 0.08.
The influence of the molecular model is clear: the spectrum near the Rayleigh peak
increases as the viscosity index decreases. The Rykov model, as expected, gives results
that are independent of the molecular model and agree only with the Maxwell gas
case.

The difference in spectra between different molecular models greatly affects the
accuracy when measuring the bulk viscosity of polyatomic gases. Suppose the
viscosity index of a gas is 0.5; if we compare the experimental line shape with
that obtained from the s6 model (Pan et al. 2004) to extract the bulk viscosity,
then the bulk viscosities in figure 9(a,c) are overpredicted by 43 %, while the bulk
viscosities in figure 9(b,d) are overpredicted by 100 %. Generally speaking, the larger
the Z value, the larger the overprediction. At room temperature, nitrogen and oxygen
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FIGURE 9. (Colour online) Coherent RBS spectra for hard-sphere and Maxwell gases, at
Kn= 0.08: (a) and (b) diatomic gases; (c) and (d) nonlinear polyatomic gases.

have viscosity indices close to 0.75. If one obtains Z= 3 and Z= 6 by comparing the
experimental line shapes with those from the s6 kinetic model, then by comparing
with our kinetic model the actual values are Z = 2.5 and Z = 4, respectively.

Figure 10 compares the coherent RBS spectra of our model with the experimental
data of Vieitez et al. (2010) for nitrogen at T = 293 K and λ= 266 nm. Our kinetic
model predicts a bulk viscosity of 1.21 × 10−5 kg m−1 s−1, which agrees well with
the literature value 1.28× 10−5 kg m−1 s−1 (Prangsma, Alberga & Beenakker 1973).

6. Conclusions

We have proposed a kinetic model for the Boltzmann equation for non-vibrating
polyatomic gases, based on the Rykov model for diatomic gases with a Jeans’
relaxation model for the translational–rotational energy exchange. Transport
coefficients, such as shear viscosity, bulk viscosity and thermal conductivities, derived
by the Chapman–Enskog technique, were used to determine the model parameters.
Comparisons with DSMC simulations showed that the new kinetic model improves
the accuracy of the Rykov model. This is due to the introduction of a realistic
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FIGURE 10. (Colour online) Coherent RBS spectra for nitrogen, comparing our model
with Z= 2.6 (lines) to the experimental data (dots) of Vieitez et al. (2010): (a) P= 2 bar,
(b) P= 3 bar.

elastic relaxation time that is dependent on the molecular velocity. With this kinetic
model, we investigated the flow rates in both Poiseuille and thermal creep flows
of polyatomic gases, and the spectra of both spontaneous and coherent RBS. In
Poiseuille/thermal creep flows, we found that the proposed kinetic model satisfies
Onsager’s reciprocity relations. We also showed how the molecular model affects
flow properties, and evaluated the error in extracting the bulk viscosity from RBS
experiments. The present model may therefore be useful in gas microflow simulations
where the molecular model plays an important role, for instance thermally driven
flows (Wu et al. 2014).

Acknowledgements

Y.H.Z. thanks the UK’s Royal Academy of Engineering (RAE) and the Leverhulme
Trust for the award of an RAE/Leverhulme Senior Research Fellowship. This work
is financially supported by the UK’s Engineering and Physical Sciences Research
Council (EPSRC) under grants EP/I036117/1 and EP/I011927/1. We thank Z. Gu and
W. Ubachs for the experimental data on spontaneous Rayleigh–Brillouin scattering.

Appendix A. Transport coefficients from kinetic model equations

We use the Chapman–Enskog expansion (Chapman & Cowling 1970) to obtain
transport coefficients (such as the shear viscosity, bulk viscosity and thermal
conductivities) from the Rykov kinetic model (2.3) for non-vibrating polyatomic
gases.

When the system is close to equilibrium, the distribution function can be expanded
as f = f0 + f1, where

f0 = n
( m

2πkT

)3/2
exp

(−mc2

2kT

)
2 (kT)−d/2

dΓ (d/2)
exp

(
− I2/d

kT

)
(A 1)

is the global equilibrium distribution function and f1 is the perturbed distribution
function satisfying | f1| � 1. Linearizing the reference distribution functions gt and gr
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around the equilibrium temperature T , and considering the fact that |Tt − T|� 1, and
qt and qr are small, it is found that

f1 = −τ
(
∂f0

∂t
+ v ·

∂f0

∂x

)
+
(

1− 1
Z

)
Tt − T

T
f0

[(
mc2

2kT
− 3

2

)
− 3

d

(
I2/d

kT
− d

2

)]
+
(

1− 1
Z

)
f0

[
2mqt · c
15kTp

(
mc2

2kT
− 5

2

)
+ 2(1− δ)

d
mqr · c

kTp

(
I2/d

kT
− d

2

)]
+ 1

Z
f0

[
ω0

2mqt · c
15kTp

(
mc2

2kT
− 5

2

)
+ 2(1− δ)ω1

d
mqr · c

kTp

(
I2/d

kT
− d

2

)]
, (A 2)

where, according to Chapman & Cowling (1970), we have

∂f0

∂t
+ v ·

∂f0

∂x
= f0

[
2d

3(d+ 3)

(
mc2

2kT
− 3

2

)
− 2

d+ 3

(
I2/d

kT
− d

2

)]
∂Uk

∂xk

+ f0
m

2kT
c<icj>

∂U<i

∂xj>
+ f0

[(
mc2

2kT
− 5

2
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+
(

I2/d

kT
− d

2

)]
c · ∇ ln T,

(A 3)

with c<icj> = cicj − c2δij/3, ∂U<i/∂xj> = (∂Ui/∂xj)+ (∂Uj/∂xi)− 2/3(∂Uk/∂xk)δij, and
δij being the Kronecker delta function.

The pressure tensor P ij =
∫
( f0 + f1)mcicjdvdI is

P ij =
(

pt + p− pt

Z

)
δij − pτ

∂U<i

∂xj>
− 2d

3(d+ 3)
pτ
∂Uk

∂xk
δij. (A 4)

Taking the trace of P ij, we obtain p − pt = (2dZ/3(d+ 3))pτ(∂Uk/∂xk). Substituting
this expression into (A 4), we obtain

P ij = pδij − pτ
∂U<i

∂xj>
− 2Z

3(d+ 3)
pτ
∂Uk

∂xk
δij. (A 5)

So the shear viscosity is µ = pτ , while the bulk viscosity is $ = 2dZµ/3(d+ 3).
Note that the shear viscosity is derived under the assumption |Tt − T| � 1 and,
physically, the relaxation time is related to the translational temperature instead of
the rotational temperature. Therefore, the shear viscosity and the bulk viscosity are
expressed as follows:

µ(Tt)= ptτ , $(Tt)= 2dZ
3(d+ 3)

ptτ . (A 6a,b)

Similarly, the heat fluxes qt and qr, which are related to the transfer of translational
and rotational energies, are given by

qt =−
15k
4m

µ

(
1+ 1−ω0

2Z

)−1

∇T ≡−κt∇T,

qr =−
dk

2δm
µ

[
1+ (1− δ)(1−ω1)

δZ

]−1

∇T ≡−κr∇T,

 (A 7)
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where κt and κr are the coefficients of the translational and rotational thermal
conductivity, respectively. Finally, the Eucken factor is

feu = 2m(κt + κr)

(d+ 3)kµ
= 15

2(d+ 3)

/(
1+ 1−ω0

2Z

)
+ d
δ(d+ 3)

/[
1+ (1− δ)(1−ω1)

δZ

]
.

(A 8)
For diatomic gases, the transport coefficients are the same as those found by Rykov

& Skobelkin (1978).

Appendix B. Accuracy of our model for coherent RBS
We validate our kinetic model by comparing the coherent RBS line shape with those

produced by the DSMC method and by Pan’s s6 model (Pan et al. 2004).
We solve the nonlinear Boltzmann equation using the DSMC method with the

Larsen–Borgnakke translational–rotational energy exchange scheme. Unlike the DSMC
method used by Cornella et al. (2012), which solves at each frequency difference, we
solve for the whole line shape in a single run using dsmcFoam. The key point is to
use the broadband acceleration where each frequency difference has equal amplitude:

a(x2, t)= a0

√
2kBT0

m
cos
(

2π

λ
x2

)
sin(2πfmt)

t
, (B 1)

where a0 is a constant and fm is the maximum frequency difference. We choose
a0 = 0.07 to keep a relatively high signal-to-noise ratio that still enables us to
linearize the Boltzmann equation (this is validated for monatomic gases by solving
the nonlinear Boltzmann equation using DSMC and comparing the obtained spectra
with those from the linearized Boltzmann equation solved by the fast spectral method).
To cover all frequency differences, fm is set to be approximately 10 times the
characteristic frequency.

In the DSMC simulations, approximately 10 million simulated particles are
uniformly distributed in the spatial domain from x2 = 0 to λ. The initial Maxwellian
distribution is sampled at a given molecular number density, zero bulk velocity
and equilibrium temperature. The length of the spatial cell is about a quarter of
the molecular mean free path, and periodic boundary conditions are employed.
The variable hard-sphere model is used to model the binary collisions. We record
ρ(t)= ∫ λ0 n(x2, t) cos(2πx2/λ)dx2 at each time step. When the simulation is finished,
we take the Fourier transformation of ρ(t) to obtain the spectrum, i.e.

S(Kn, ω, fd)=
∣∣∣∣∫ e−i2πfd tρ(t)dt

∣∣∣∣2 . (B 2)

Figure 11(a) shows that our kinetic model (3.1) can predict accurate coherent RBS
spectra, as compared to those from the DSMC method. Since the spatial variable has
been eliminated, and (5.6) is solved using the fast spectral method, we obtain one line
shape in about one minute (on a PC with an Intel Xenon 3.3 GHz CPU). However,
the DSMC method takes approximately 5 h on the same PC to obtain a line shape.
This demonstrates the accuracy of our kinetic model and efficiency of the numerical
method: our method is approximately 300 times faster than the DSMC method.

We have also compared our model results with those from the s6 kinetic model.
Note that the s6 model is derived for Maxwell molecules, so we choose the viscosity
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FIGURE 11. (Colour online) Coherent RBS spectra generated by DSMC, the s6 model,
and our kinetic model for (a) hard-sphere and (b) Maxwell diatomic gases, at Kn= 0.1.

index ω = 1 in our kinetic model. Good agreement between the s6 model and our
model can be seen in the results in figure 11(b).
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