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A kinetic model of the Boltzmann equation for non-vibrating polyatomic gases is
proposed, based on the Rykov model for diatomic gases. We adopt two velocity
distribution functions (VDFs) to describe the system state; inelastic collisions are the
same as in the Rykov model, but elastic collisions are modelled by the Boltzmann
collision operator (BCO) for monatomic gases, so that the overall kinetic model
equation reduces to the Boltzmann equation for monatomic gases in the limit of
no translational-rotational energy exchange. The free parameters in the model are
determined by comparing the transport coefficients, obtained by a Chapman—Enskog
expansion, to values from experiment and kinetic theory. The kinetic model equations
are solved numerically using the fast spectral method for elastic collision operators
and the discrete velocity method for inelastic ones. The numerical results for normal
shock waves and planar Fourier/Couette flows are in good agreement with both
conventional direct simulation Monte Carlo (DSMC) results and experimental data.
Poiseuille and thermal creep flows of polyatomic gases between two parallel plates
are also investigated. Finally, we find that the spectra of both spontaneous and
coherent Rayleigh—Brillouin scattering (RBS) compare well with DSMC results, and
the computational speed of our model is approximately 300 times faster. Compared
to the Rykov model, our model greatly improves prediction accuracy, and reveals the
significant influence of molecular models. For coherent RBS, we find that the Rykov
model could overpredict the bulk viscosity by a factor of two.

Key words: computational methods, kinetic theory, rarefied gas flow

1. Introduction

The Boltzmann equation is the fundamental equation describing the collective
motion of gas molecules from the continuum-fluid to the free-molecular flow regimes
(Chapman & Cowling 1970; Cercignani 1990). It underpins a broad range of research
areas from aerodynamics to microfluidics. While at small Knudsen numbers (i.e. when
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the molecular mean free path is much smaller than the characteristic flow length)
macroscopic equations, such as the Navier—Stokes, Burnett, and Grad equations,
can be used in some instances (Galkin & Rusakov 2005; Greenshields & Reese
2007; Garcia-Colin, Velasco & Uribe 2008; Gu & Emerson 2009; Rana, Torrilhon
& Struchtrup 2013; Rahimi & Struchtrup 2014), in the transition and free-molecular
regimes the Boltzmann equation itself should be solved. However, its intricate collision
operator makes a solution difficult to obtain by deterministic numerical methods. For
monatomic gases, the computational cost of the Boltzmann collision operator (BCO)
is usually of the order of N7, although this can be reduced to O(M*N?logN,) using
the fast spectral method for some special collision kernels (Mouhot & Pareschi 2006;
Wu et al. 2013; Wu, Reese & Zhang 2014), where M? and N, are the number of
discrete solid angles and velocity grid points in each velocity direction, respectively.

The problem becomes even more serious if the internal degrees of freedom (such
as rotation and vibration) of a polyatomic gas are considered in the framework
of the Wang-Chang—Uhlenbeck (WCU) equation (Wang-Chang & Uhlenbeck
1951). Buet (1997) proposed conservative and entropy schemes for the polyatomic
collision operator; however these have never been used because of their prohibitive
computational cost. Tcheremissine & Agarwal (2008) solved the WCU equation
for normal shock waves in nitrogen, and found that the computational cost is
larger by about two orders of magnitude than for a monatomic gas. Recently, a
spectral-Lagrangian method with computational memory and cost of the order of NIN?
has been proposed (Munafd et al. 2014), where N, is the number of discrete internal
energy levels; for N, =35 and N, =16, the memory needed is approximately 88 GB,
while the time needed for calculating the collision operators once is approximately
3 s using 12 compute threads, which restricts its suitability when applied to real
problems.

The direct simulation Monte Carlo (DSMC) method proposed by Bird (1994), using
the Larsen—Borgnakke collision rule (Borgnakke & Larsen 1975) for the translational—
internal energy exchange, is a good alternative because of its linear computational cost
with the number of simulated particles and far smaller memory requirements. It is
efficient for hypersonic flows, but becomes time-consuming for microflow simulations
when the flow velocity is well below the speed of sound (Hadjiconstantinou et al.
2003).

These concerns have stimulated researchers to develop kinetic models with
simplified collision operators for polyatomic gases (Morse 1964; Holway 1966;
Rykov 1975; Andries et al. 2000; Fernandes & Marques 2007). In these models, the
gain part of the BCO is modelled by the Gauss, ellipsoidal Gauss, and Gauss—Hermite
polynomials, while the loss part describes the exponential decay of the distribution
function with a rate independent of molecular velocity. Recently, Gorji and co-workers
have also proposed a model replacing the BCO by the Fokker—Planck collision
operator (Gorji, Torrilhon & Jenny 2011; Gorji & Jenny 2013), which models the
drift and diffusion in velocity space. Although this model is faster than the DSMC
method near the continuum-fluid regime, for microflow simulations it suffers the same
slowness as the DSMC method because of its particulate nature.

A common drawback of all these kinetic models for polyatomic gases is
that they do not reduce to the Boltzmann equation for monatomic gases when
translational—internal energy exchange is absent. Also, they cannot capture the
differences in flow properties for different molecular models even in isothermal
flows. For instance, for monatomic gases, the Shakhov kinetic model (Shakhov 1968)
predicts the same mass flow rate for linearized Poiseuille flow with various viscosity
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indices, while the Boltzmann equation shows different mass flow rates for different
molecular models (viscosity indices) (Sharipov & Bertoldo 2009; Wu et al. 2014).

In this paper, we present a new kinetic model for non-vibrating polyatomic gases,
in which elastic collisions are modelled by the BCO for a monatomic gas, while
inelastic collisions are the same as those in the Rykov model (Rykov 1975). Our
model exactly recovers the Jeans’ relaxation equation for the translational-rotational
energy exchange, and it reduces to the Boltzmann equation for monatomic gases when
translational-rotational energy exchange is absent. Importantly, it can capture the
influence of different molecular models on the flow properties, and the computational
efficiency is nearly the same as that of the Boltzmann equation for monatomic gases.

This paper is organized as follows. In §2, the Rykov kinetic model of the
Boltzmann equation for non-vibrating diatomic gases is introduced, and then extended
to polyatomic gases. A new kinetic model for non-vibrating polyatomic gases, which
recovers the elastic velocity-dependent collision frequency, is then proposed. In §3,
the kinetic model equations are solved by the fast spectral method and the discrete
velocity method. Numerical results for normal shock waves and planar Fourier/Couette
flows are compared with DSMC results and experimental data. In §4, the mass
and heat flow rates in Poiseuille and thermal creep flows of polyatomic gases are
calculated. In §5, the spectra of both spontaneous and coherent Rayleigh—Brillouin
scattering (RBS) in polyatomic gases are obtained, and the influence of the molecular
model is analysed. We conclude in § 6.

2. Kinetic modelling of polyatomic gases

We consider polyatomic gases in which the vibrational degrees of freedom are not
excited and the rotational degrees of freedom can be treated classically; for nitrogen,
this corresponds to a temperature range of 100—600 K (Nyeland & Billing 1988). In
this case, the gas molecule has three translational degrees of freedom and d rotational
degrees of freedom, where d = 2 and 3 for diatomic and nonlinear polyatomic
gases, respectively. For the rotational degrees of freedom, only the rotational energy
is relevant (KuScer 1991). Therefore, the system state can be described by the
distribution function f(z, x, v, I), where t is the time, x = (x1, xp, x3) is the spatial
coordinate, v = (v;, vy, v3) is the molecular translational velocity, and 1% is the
rotational energy with I > 0. Macroscopic quantities, such as the molecular number
density n(t, x), the bulk velocity U(t, x), the pressure tensor P(t, x), the translational
temperature 7,(¢, x), the rotational temperature 7,(f, x), and the heat fluxes g¢,(, x)
and ¢,(¢, x) produced by the transfer of translational and rotational energies, are
defined as:

1
n= / fdvdl, U=- / fodvdl, P;= / £ meic;dvdl, th / f—dvdl
(2 la—d)

—kT / frMdvdl, ¢q,= / f—cdvdl q,= / fI*%cdvdl, (2.2a—c)

where k is the Boltzmann constant, m is the molecular mass, and ¢ =v — U is the
peculiar velocity. The equilibrium temperature is 7 = (37, 4+ dT,)/(d + 3) and the total
heat flux is ¢ =¢,+¢,. We also define the pressures p, =nkT;, p, =nkT,, and p =nkT
in terms of the translational, rotational, and total degrees of freedom, respectively.
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The evolution of the polyatomic gas distribution function is governed by the WCU
equation. The additional rotational degrees of freedom make the WCU equation much
more complicated than the Boltzmann equation for monatomic gases. Kinetic model
equations are therefore needed to simplify the complicated BCO. In the following,
we first introduce the Rykov kinetic model (Rykov 1975) for diatomic gases because
it can predict density profiles in normal shock waves (Larina & Rykov 2010; Liu
et al. 2014). We then extend the Rykov model to model polyatomic gases. Finally, we
propose a kinetic model with modified elastic collision operators, in order to improve
the accuracy of rarefied gas flow simulations.

2.1. The Rykov kinetic model and its extension

Like most kinetic models for polyatomic gases (Morse 1964; Holway 1966), elastic
and inelastic collisions are treated separately in the Rykov model (Rykov 1975).
The original Rykov model was for non-vibrating diatomic gases, but the method of
construction can be extended straightforwardly to nonlinear polyatomic gases. In the
absence of an external force, the evolution of the distribution function is described
by the following equation:

U U &=l s

= + ==, (2.3)
ot ox T VA
——  ——
elastic inelastic

where the terms on the right describe elastic and inelastic collisions. The elastic
collision conserves the translational energy, while the inelastic collision exchanges
the translational and rotational energies. The relaxation time t and the parameter Z
are independent of the molecular velocity. The reference distribution functions g, and
g- characterize the energy distributions of the particles that have undergone elastic
and inelastic collisions, and are given by

m \* —mc?\ 2 (kT,)~? 1?4
=n ex exp | —
8 =1\ okt P\, ) ar@p) P\,
2 . 2 21 —§ . J2/d
[y 2mace (me 5N 20 -8)mg, e (P d\]
15kT,p, \2kT, 2 d kTp, \ kT, 2
m \3/2 —mc?\ 2 (kT)™%? 1?4
g,:n( ) exp exp | ——
2nkT 2kT ) dI'(d/2) kT
2mq,-c¢ (mc* 5 N 2w1(1=8)mgq,-¢c (I’ d
15kTp \2kT 2 d kTp Ny
where I" is the gamma function, w, and w; are constants to recover the thermal
conductivity coefficients of polyatomic gases (see appendix A), and § = u(7;)/mnD,
with w and D being the coefficients of the shear viscosity and diffusion, respectively.
In numerical computations, it is useful to use the following reduced velocity
distribution functions (VDFs): G(¢t, x, v) = fooo f@, x, v, )dl and R(¢, x, v) =

fooo f(t, x, v, DI*?dI, in order to eliminate the rotational energy variable to save

computational memory and cost. Multiplying (2.3) by 1 and /*/¢ and integrating the
resulting equations with respect to / from zero to infinity, (2.3) can be transformed
into the following two coupled equations:

G G G, -G G,—G;
_ Ve — = +
at ox T VAs

(2.4)

KT 2

X |:1+(1)0

: 2.5)
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oR ,  OR_R—R R—R,
_— Ve — = .
at ax T ZT

(2.6)

where the reference VDFs, i.e. G,(t, x, v), G,(t, x, v), R(t, x, v), and R.(¢t, x, v), are
given by

G m \"* —mc? 1+ 2mq,-c [(mc* 5
=n ex — — ,
‘ 27kT, P\ 2k, 15kT,p, \2kT, 2

G ( m )3/2 —mc? 4 2mq,-c (mc* 5
y=n—=) ex — =1,
2k P\t P sktp \ T 2

" . (2.7)
R,=dkTrG,+( m ) eXp(—mc >(1_5)m‘1r""

2 27kT, 2KT, kT,
R="T6 1 () e (W) (1= 5™

2 2mkT 2kT kT

with macroscopic quantities calculated as: n= [ Gdv, U= [ Gvdv/n, P;= [ Gmc;c;dv,
T,= [ Gmc*dv/(3nk), T, =2 [ Rdv/(ndk), q,= [ Gmc?cdv/2, and ¢, = [ Redv.

If G is the VDF for a monatomic gas, the elastic collision operator (G, — G)/t
in (2.5) is just the Shakhov simplification of the BCO for monatomic gases. In the
limit of no translational-rotational energy exchange (i.e. Z — 00), (2.5) reduces to
the Shakhov model equation for monatomic gases (Shakhov 1968). In this sense,
the Rykov kinetic model can be viewed as an extension to polyatomic gases of the
Shakhov kinetic model for monatomic gases.

2.2. A kinetic model for non-vibrating polyatomic gases

The Rykov kinetic model has been applied to normal shock wave problems (Larina
& Rykov 2010; Liu et al. 2014). It predicts density profiles in nitrogen with a
viscosity index of 0.74; however, the translational temperature profiles are not in
good agreement with DSMC results, especially at large Mach numbers (Liu et al.
2014). Note that the early rising of the translational temperature in normal shock
waves has also been observed when using the Shakhov kinetic model for monatomic
gas simulations (Xu & Huang 2011). The reason for this is the use of a single
relaxation time 7, while in the Boltzmann equation the relaxation time depends on
the molecular velocity. For monatomic Maxwell molecules, the relaxation time is
independent of the molecular velocity, and we find that the Shakhov model gives
temperature profiles in good agreement with those of the Boltzmann equation (not
shown here).

To improve the model accuracy, we introduce a relaxation time that depends on the
molecular velocity. It has already been shown that this can improve predictions for
a monatomic gas flow (Mieussens & Struchtrup 2004). Here, we recover the realistic
elastic relaxation time by replacing the elastic collision operator (G, — G)/t in the
Rykov model (2.5) with the BCO Q(G, G) for monatomic gases:

0(G, G) =/ / B(cos 8, v — v, )[GW.,)G(V) — G(v,)G(v)]d2dv.,. (2.8)
R3 Js2

For more information about the deflection angle 6, collision kernel B, and post-
collision velocity v’, see Wu ef al. (2013).
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From (G, — G)/t = Q we have G, = 1Q + G. Then the elastic collision operator
(R, —R)/t in (2.6) is reduced to (R’ — R)/t, where

-~ (1—5Td ¢ 2.9)
P o, KT, '

R=%00+6) + ("
= — r T
2 kT,

This new kinetic model for polyatomic gases, which treats translational and
rotational degrees of freedom, is therefore:

26 0. 29 06,6+ &Y
Ta. Ve —= 5 )

R OR_R-R R—R :
. Ve — = s

ot ox T Zt

which, in the limit of no translational-rotational energy exchange, reduces to the
Boltzmann equation for monatomic gases. Note that the transport coefficients derived
according to the Chapman—Enskog expansion from the kinetic model (2.10) are the
same as from the Rykov model (considering that for monatomic gases, if the BCO
is replaced by the Shakhov collision operator we can obtain the same shear viscosity
and thermal conductivity).

The parameters 7, Z, §, wy, and w; remain to be determined. First, according to
(A 6), the relaxation time t is determined by the shear viscosity, the molecular number
density, and the translational temperature. Second, the parameter § depends on the
intermolecular potential. For example, § = 1/1.33 for nitrogen if the Lennard-Jones
potential is considered; for inverse power-law potentials, as the viscosity index w
increases from 0.5 to 1, § decreases from 1/1.2 to 1/1.55. Third, it follows from
(2.10) that the relaxation of the rotational temperature in spatially-homogeneous
problems is described by:

T, T—-T,  T,—T,
o Zt  (d+3)Zr/3’

(2.11)

while in kinetic theory the Jeans’ equation 07,/0t= (T, — T,)/(Z,,tT /4) is frequently
used, where Z,, is the rotational collision number. Therefore, the parameter Z is
related to the rotational collision number Z,, as:

37

Z=—"" 7 . 2.12
4d+3)"" (2.12)

Fourth, according to the kinetic theory of Mason & Monchick (1962) regarding the
thermal conductivity coefficients due to the transfer of translational and rotational
energies, wy and »; may be determined from the following two equations:

5d 2 4 1—wo\ !
- —(1-= =(1 , 2.13
12( 53) 77, ( Y > (2.13)
5 2 4 A=8)1 —w)\ ™"
1+ (1-= (14— V) 2.14
+4( 55) TZ o (+ Zs ) @19

or one may choose wy and w; to make the Eucken factor, as defined by (AS8), equal
to experimentally measured values.
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3. Validation cases

For practical calculations it is convenient to use dimensionless variables. The
following are therefore introduced: G= v3G/ny, R= V3 R/nokTy, x =x/¢, (v,¢,U) =
W, ¢, U)/vy, T=tv,/l, 7 =n/ng, (T, T,, T,) = (T, T,, T,)/To, Pj = P;/noksTp, and
4. 4,» 9,) = q.4q,,9,)/nokgTov,, where ny and T, are the reference molecular
number density and temperature, respectively, £ is the characteristic flow length,
and v,, = +/2kgTy/m is the most probable molecular speed. The dimensionless kinetic
model equations (2.10) can then be written as follows:

3G _ G G, — G,

?—Fv-a—_Q(G G)+

r x T 3.1)
8R+~ OR R’—R+R,—R,

— Ve — = — —.

Jat 0x T VA4

Here, the dimensionless BCO for inverse power-law intermolecular potentials (Wu
et al. 2013) is

é _ 5 // sin!—20+7 Q cos~ Q v — o, 20—
27T (3 —w) I'2—y/2)Kn 2 2

x [G@)G@) — G(T,)G(V)]dS2d,, (3.2)

= d/DT,(TO + G) + 2(1 — 8)(nT)~*? exp(—¢?/T))q,-¢/T,, and the four

) |: 5”’ ’1.~ (2:’12 Z>:|
1 ~(~t)2 ~t N

~ 7 N3

G, =n (TET,) exp (

~ o\ 46, -¢c (¢* 5

G, =n (nT) exp — | =—= ],
lSnT2 T 2

g s . N (3.3)
R = (nT) exp ( ) 21 — &)

2 T, Tt
4T~ N\ —3)2 2 z
R="G+ (nT) exp ( = > 20, (1 — )€

where
Kkn= "1 T (3.4)
nol \| 2mkgT,

is the unconfined Knudsen number, T = Z(T,)“)”Kn/ /71 is the normalized relaxation
time, and y is a free parameter. Usually we choose y =0, but to solve the linearized
BCO we choose y = (2w — 1)/2 to double the computational efficiency (Wu et al.
2013, 2014). Finally, the macroscopic quantities are calculated as:

PP B PO = 2 [,
=/de, U:~/Gvdv, P,-j=2/Gc,»cjdv, T,=— [ G¢*dv,
n

L ) ) 3n (3.5)
T— 2 / RS, §,= / Gi%ds, §— / Redv.
@i
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The BCO (3.2) can be solved by the fast spectral method (Wu et al. 2013) with
a computational cost of O(MZNS log(N,)), while the other collision operators in (3.1)
can be solved by the discrete velocity method (Huang & Giddens 1967) with a cost
of O(N?). Since we have two VDFs, the computational memory required is twice that
for monatomic gases; however, the computational cost only increases slightly.

To validate this kinetic model, we compare numerical solutions of shock waves and
planar Fourier/Couette flows with DSMC solutions and experimental data. With the
exception of the DSMC results for normal shock waves in § 3.1, the DSMC results
reported in this paper have been obtained using the dsmcFoam solver (Scanlon et al.
2010). This is a parallelized, open source solver developed within the OpenFOAM
framework by OpenCFD Ltd in collaboration with researchers at the University of
Strathclyde. The in-house version of the dsmcFoam solver we use enables us to
model polyatomic gases and to measure a much wider range of gas properties than
the standard OpenFOAM release.

Note that in the dsmcFoam solver, when the variable hard-sphere model is used
(Haas et al. 1994), 0T,/0t=(T —T,)/[7Zpsuct (7T —2w)(5 — 2w)/96]. Thus, we have

(= 2w)(5 —2w)m
N 96

Z

Zpsmc- (3.6)

3.1. Normal shock waves in gases

For normal shock wave simulations, the characteristic length is chosen to be the
upstream mean free path (16u/5n+/2mmkT), where the reference molecular number
density n, gas viscosity w, and temperature 7 are all measured upstream of the
shock. Therefore, the unconfined Knudsen number is Kn = 5m/16. In the DSMC
simulations, nitrogen has a viscosity index @ = 0.74 and rotational collision number
Zpsuc = 3.5. We choose § = 1/1.33, hence according to (2.13), (2.14) and (3.6), we
obtain Z = 2.226, wy, = 0.477 and w; = 1.919, for both the Rykov model (2.3) and
our kinetic model (3.1). The Eucken factor is 1.96.

With a shock wave travelling in the x; direction, the kinetic model equations (3.1)
can be solved in the following iterative manner (for simplicity, the tildes are omitted):

Gt Fleas . G-G G

—+u =G, G+~ — 4 —,

AT 0x; VAL AT 3.7)

Rt N ORY! Ri_R N RJ; _Rf[' N R ’
v = - , —,

AT ! 0x; T/ Ztl AT

where j is the iteration step, At is the local time step (usually three times smaller
than the local relaxation time 7), and the spatial derivative is approximated by the
second-order upwind finite difference. The Rykov model can be solved in the same
way. Given the molecular number density, temperature, and Mach number Ma at the
upstream end, the equivalent quantities at the downstream end can be found by the
Rankine-Hugoniot relations. The VDFs at the upstream and downstream ends are
Maxwellian.

Figure 1 compares the normal shock profiles obtained by the two kinetic models
with DSMC results. As expected, our kinetic model resolves the problem of early
rising of the temperatures, and produces results in good agreement with the DSMC
data.
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FIGURE 1. (Colour online) Comparisons of kinetic model results and DSMC data (Liu
et al. 2014) for normal shock waves in nitrogen: (a) Ma =4; (b) Ma=35; (c) Ma=1.
The squares, circles, stars and triangles are the normalized translational temperature in the
x, direction, the translational temperature, the rotational temperature, and the molecular
number density, respectively, all obtained from the DSMC simulations. The solid and
dashed lines are, respectively, the results of our kinetic model (3.1) and the Rykov kinetic
model (2.3). Here Q represents the value of the macroscopic quantity, and subscripts u and
d represent the upstream and downstream values, respectively.

We now compare our model results with experimental data for normal shock waves
in nitrogen (Robben & Talbot 1966). Two upstream Mach numbers are considered.
The rotational collision number is given by the formula proposed by Parker (1959):

ZOO
Z pes rot , .
"L+ (/2 YTHT, + (n2 /4 + (T /T) G9

where we take 7% =91.5 K and ZZ, =18 (Gorji & Jenny 2013).
Figure 2 shows the profiles of the normalized density and rotational temperature.
Excellent agreement between our kinetic model (3.1) and the experimental data can

be observed.
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FIGURE 2. Comparisons of normal shock wave profiles in nitrogen from our kinetic model
and the experimental data of Robben & Talbot (1966): (a) Ma="17; (b) Ma=12.9. Here
L* is the mean free path based on the sonic temperature.

3.2. Planar Fourier flow

Consider nitrogen gas between two parallel plates a distance £ apart. The normalized
temperature of the lower plate at x, =0 is 7, =2/3, while that of the upper plate at
x,=2¢ 1s T,=4/3. We choose ny to be the average molecular number density, and test
two different Knudsen numbers: Kn=0.1 and Kn=1. Diffuse boundary conditions are
adopted; for example, at x; =0 we have

n, v? d
= W exXp <_'Tl> s R= ET]G, (39(1,[))

for v, > 0, where n,, = —2/n/T; fvz<0 v,G(x, =0, v)dv. The boundary condition at
X, =¥ can be given in a similar way.

Figure 3 shows the resulting density and translational temperature profiles (the
rotational temperatures are not shown because they are very close to the translational
ones) in this planar Fourier flow. Excellent agreement between the results of our
model and the DSMC simulations can be seen.

3.3. Planar Couette flow

The planar Couette flow configuration is the same as for the planar Fourier flow above,
although the two plates now have the same temperature 7y, and the top plate moves in
the x; direction with a speed v,, while the bottom plate moves in the opposite direction
at the same speed. In addition to nitrogen, we consider methane gas with a viscosity
index w =0.84. In the DSMC simulations, we choose Zpgyc = 3.5. For methane, Z =
2.023, and from (2.13) and (2.14) we obtain wy=0.316 and w; =1.774. The resulting
Eucken factor 1.74 is close to the experimentally measured value. Good agreement
between our model predictions and the DSMC results can be seen in figure 4.
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FIGURE 3. (Colour online) Comparisons of (a) density and (b) translational temperature
between our kinetic model (lines) and our DSMC simulations for planar Fourier flows.
The squares and circles are the dsmcFoam results at Kn = 0.1 and Kn = 1, respectively.
The working gas is nitrogen.

4. Application to Poiseuille and thermal creep flows

Calculating the mass and heat flow rates in Poiseuille and thermal creep flows
between two parallel plates can be extremely slow using the DSMC method when
the temperature and pressure gradients are small. Here we solve these two classical
flows using our deterministic method.

The configuration is the same as for planar Fourier flow. The pressure and
temperature gradients along the plates are Kp = ¢dIlnp/dx; and Ky = €dInT/dx;.
When Kp and Ky are small, the kinetic model equations can be linearized. We
express the two VDFs as G = Gy + hy and R = Ry + h;, where Gy = n~%? exp(—v?)
and Ry = (d/2)G, are equilibrium VDFs. The VDFs A, and h; describe the deviations
from the corresponding equilibrium states and satisfy |hy/Gol, |h/Ro| < 1. In the
following, the VDF h, = h; — (d/2)hy is used instead of h;, for convenience.

When the Rykov kinetic model is considered, the evolution of A, and %, is governed
by the following two linear equations (Titarev & Shakhov 2012):

he ht—h
uzﬂz 0 ™y Kp— 2> Kr, .1
0x, T 2
dh, hi—hy, d
v— = 2—2 — “uKy, (4.2)
8x2 T 2

where

4 l—w 5
]’la_:ZU]U]GQ"‘qu]U]GO (1— 7 0) <U2—> s

1 — o (4.3)
h; =2qr1U1GQ (1 - 7 ) (1 - (S)
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FIGURE 4. (Colour online) Comparisons between our kinetic model (lines) and our DSMC
simulations (squares) for planar Couette flows of (a) nitrogen and (b) methane gases at
Kn=1.
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When the kinetic model (3.1) is considered, (4.1) and (4.2) remain unchanged, but
hg in (4.3) becomes

4 wy— 1 5
ha_ = ho + Tg(ho) + qulleoo? <U2 — 2) , (44)

where £ (hy) = 2, (ho) — vegho is the linearized BCO. A detailed expression for . (hy)
and its fast spectral approximation can be found in Wu et al. (2014).

The macroscopic quantities of interest are U, = f hovidv, g, = f hovi (V2 — 5/2)dv,
and ¢, = f hyvidv. The mass flow rate .#, translational heat flow rate 2,, and
rotational heat flow rate 2, can be calculated as

1

1 1
~///=/ Uidx,, o@t=/ qndx,, 2, = gri1dx;. (4.5a—c)
0 0

0

As with (3.7), (4.1) and (4.2) can be solved by an implicit method iteratively.
Diffuse boundary conditions are adopted, so that the values of VDFs hy, and h,
entering the domain are zero. We set Kp = 1 and Ky = 0 for Poiseuille flow, and
Kp=0 and Ky =1 for thermal creep flow.

Some observations can be made before discussion of the numerical results. First,
the mass and translational heat flow rates are determined by Ay, which is governed by
(4.1). The expressions for i} suggest that the mass and translational heat flow rates
are different for the Rykov model and our model. However, for both the Rykov model
and our model there is no difference in flow rates between diatomic and nonlinear
polyatomic gases with the same Z and w, values. Second, the rotational heat flow rate
is related to hy, which is governed by (4.2). It is always zero in Poiseuille flow. In
thermal creep flows, since the Rykov and our kinetic models have the same equation
for h, they produce the same rotational heat flow rates. Also, since the source term
in (4.2) is proportional to the number of rotational degrees of freedom, the rotational
heat flow rates of nonlinear polyatomic gases are one-and-a-half times larger than
those of diatomic gases, provided the values of Z, w;, § for diatomic and nonlinear
polyatomic gases are the same. Third, (4.3) is independent of the viscosity index w,
so the molecular model has no influence on the flow rates when using the Rykov
model. When our model (3.1) is used, the linearized BCO in (4.4) shows that different
molecular models have different flow rates, according to the results in Sharipov &
Bertoldo (2009) and Wu et al. (2014) for monatomic gases.

For these reasons, only the mass and heat flow rates in Poiseuille and thermal
creep flows of diatomic gases are presented below. We consider hard-sphere molecules
with Z=1 and Z=35. Values of wy and w; are chosen according to (2.13) and (2.14)
with § =1/1.33.

Table 1 shows the numerical results for Poiseuille flow of a diatomic gas. The
mass flow rates from our model are nearly the same as those for a monatomic gas.
However, the translational heat flow rates are affected by diatomicity: for a fixed
Kn, 2, increases with Z and, in the limit of Z — oo, 2, approaches that of a
hard-sphere monatomic gas. This behaviour may be related to the magnitude of the
translational thermal conductivity k,, see (A 7). That is, from (2.13) we see that «,
decreases with Z; as a consequence, .2, decreases with Z. At high Knudsen number,
however, the difference between the translational heat flow rates in the Z =1 and
the Z =15 cases is very small, and both are very close to the monatomic gas value.
This is because there are not enough collisions for the exchange of translational and



A kinetic model for non-vibrating polyatomic gases 37

Z=1 Z=5
Our model Rykov model Our model Rykov model = Monatomic

8Kn/5/n —M 2, -M 2, -MH 2 -M 2, -M 2,

0.1 1.1887 0.0441 1.2266 0.0455 1.1916 0.0545 1.2300 0.0560 1.1951 0.0550
0.15 0.9893 0.0605 1.0219 0.0619 0.9928 0.0739 1.0259 0.0753 0.9948 0.0758
0.2 0.8950 0.0748 0.9250 0.0755 0.8990 0.0904 0.9293 0.0908 0.9006 0.0931
0.3 0.8097 0.0986 0.8368 0.0972 0.8142 0.1169 0.8413 0.1148 0.8156 0.1205
0.4 0.7745 0.1178 0.7999 0.1141 0.7791 0.1375 0.8044 0.1327 0.7804 0.1415
0.6 0.7507 0.1477 0.7747 0.1399 0.7554 0.1685 0.7790 0.1592 0.7566 0.1727
0.8 0.7481 0.1707 0.7718 0.1594 0.7527 0.1915 0.7759 0.1785 0.7537 0.1957
1 0.7526 0.1893 0.7765 0.1753 0.7570 0.2099 0.7804 0.1940 0.7580 0.2139
1.5 0.7727 0.2249 0.7983 0.2056 0.7768 0.2441 0.8017 0.2231 0.7778 0.2479
2 0.7950 0.2511 0.8225 0.2284 0.7987 0.2690 0.8256 0.2447 0.7998 0.2726
3 0.8360 0.2895 0.8673 0.2625 0.8393 0.3052 0.8700 0.2769 0.8405 0.3085
4 0.8713 0.3176 0.9058 0.2881 0.8743 0.3316 0.9082 0.3011 0.8755 0.3348
6 0.9290 0.3585 0.9681 0.3261 0.9315 0.3704 0.9702 0.3372 0.9326 0.3731
8 0.9751 0.3885 1.0176 0.3546 0.9772 0.3989 1.0194 0.3644 0.9781 0.4013
10 1.0135 0.4124 1.0587 0.3774 1.0154 0.4217 1.0603 0.3863 1.0161 0.4239
15 1.0889 0.4570 1.1387 0.4208 1.0904 0.4646 1.1400 0.4281 1.0907 0.4664
20 1.1463 0.4897 1.1993 0.4528 1.1476 0.4962 1.2004 0.4591 1.1475 0.4977
100 1.5142 0.6864 1.5815 0.6485 1.5147 0.6889 1.5820 0.6510 1.5139 0.6897

TABLE 1. Mass (.#) and translational heat (2,) flow rates in Poiseuille flow of a hard-
sphere diatomic gas between parallel plates. Note that the rotational heat flux is zero.

rotational energies in the free-molecular regime. Comparisons between the Rykov
and our models are also shown in this table: the Rykov model overpredicts the
mass flow rates, and underpredicts the translational heat flow rate at large Kn. This
observation is consistent with the monatomic gas result when the Shakhov model is
used (Sharipov & Bertoldo 2009).

Next we consider thermal creep flows. Figure 5 shows that the Onsager—Casimir
relation holds for the diatomic gases we consider, that is, the heat flow rates in
Poiseuille flows are identical to the mass flow rates in thermal creep flows. Table 2
shows the predicted heat flow rates in thermal creep flows of diatomic gases. As with
Poiseuille flow, 2, and «, decrease with Z. However, 2, increases as Z decreases,
because the rotational thermal conductivity k, increases with decreasing Z; see (A7)
and (2.14).

Finally, we investigate the influence of the molecular model on the mass flow rate
in thermal creep flow. We only consider hard-sphere and Maxwell gases; for a gas
interacting through inverse power-law potentials with a viscosity index between 0.5
and 1, the mass flow rates lie between those of the hard-sphere and Maxwell cases.
As for monatomic gases (Wu et al. 2014), figure 6 shows that at large Kn the mass
flow rate increases when the viscosity index decreases. Although the Rykov model
underpredicts the mass flow rates relative to our model for a hard-sphere gas, it gives
almost the same mass flow rate as Maxwell gases when Kn <4 and larger mass flow
rates when Kn > 4.

5. Application to Rayleigh-Brillouin scattering

An important application for kinetic models of non-vibrating polyatomic gases is the
calculation of the Rayleigh—Brillouin scattering (RBS) spectra. RBS is an invaluable
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FIGURE 5. (Colour online) Onsager—Casimir relation for the hard-sphere diatomic gas:
comparison between the heat flow rate in Poiseuille flow and the mass flow rate in thermal
creep flow.

Z=1 Z=5
Our model Rykov Our model Rykov  Monatomic

8Kn/5/m -2, -2, -2, -2, -2, -2, -2,

0.1 0.1673  0.0998 0.1629 0.2054 0.0807 0.1989 0.2148
0.15 0.2394 0.1406 0.2326 0.2910 0.1150 0.2810 0.3036
0.2 0.3045 0.1763 0.2954 0.3666 0.1457 0.3535 0.3816
0.3 0.4173  0.2357 0.4046 0.4937 0.1986 0.4760 0.5118
0.4 0.5119 0.2833 0.4970 0.5968 0.2425 0.5765 0.6165
0.6 0.6636 03565 0.6469 0.7565 0.3125 0.7348 0.7774
0.8 0.7822 0.4117 0.7661 0.8773 0.3670 0.8570 0.8983
1 0.8793 0.4559 0.8650 0.9741 04116 0.9565 0.9948
1.5 1.0644 0.5389 1.0570 1.1550 0.4968 1.1461 1.1743
2 1.2010 0.5996 1.2014 1.2862 0.5601 1.2866 1.3042
3 1.3988 0.6877 1.4143 1.4746 0.6526 1.4917 1.4906
4 1.5424 0.7520 1.5708 1.6107 0.7202 1.6417 1.6254
6 1.7487 0.8450 1.7976 1.8066 0.8180 1.8588 1.8195
8 1.8980 09127 19622 1.9488 0.8889 2.0165 1.9606
10 2.0155 09662 2.0917 2.0611 0.9449 2.1409 2.0721
15 22330 1.0656 2.3305 22701 1.0482 2.3709 2.2795
20 23905 1.1376 2.5021 24222 1.1227 2.5369 2.4306
100 33156 1.5592 3.4866 3.3277 1.5535 3.5000 3.3315

TABLE 2. Heat flow rates in thermal creep flow of a hard-sphere diatomic gas between
parallel plates. Note that the rotational heat flow rates for both the Rykov model and our
kinetic model are the same.

non-destructive optical diagnostic technique for measuring the properties of gases and
liquids, such as the sound speed, temperature, and bulk viscosity. This information
can be extracted by comparing the experimental and theoretical spectra, where the
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FIGURE 6. (Colour online) Mass flow rates in thermal creep flow between parallel plates,
varying with the Knudsen number.

accuracy of the obtained information depends on how reliable the experimental and
theoretical results are. Recently, rapid improvements in the experimental resolution
have been achieved (Vieitez et al. 2010; Gerakis, Shneider & Barker 2013; Gu &
Ubachs 2013); however, accurate theoretical line shapes are lacking, although several
kinetic models have been proposed (Tenti, Boley & Desai 1974; Pan, Shneider &
Miles 2002, 2004; Marques 2007).

In RBS experiments, the light is scattered due to gas density variations, which either
arise spontaneously or are induced by external optical potentials. Correspondingly, we
have spontaneous RBS and coherent RBS. The spectrum of the scattered light depends
on the Knudsen number, intermolecular interactions, and rotational collision number;
in the hydrodynamic or free-molecular regimes, the spectrum can be calculated
analytically. In the transition regime, a kinetic model must be used. Due to the high
oscillation frequency of the optical field, the vibrational modes of the rarefied gas
molecules are not excited, which justifies