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Influence of intermolecular potentials on rarefied gas flows: fast spectral solutions of

the Boltzmann equation
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The Boltzmann equation with an arbitrary intermolecular potential is solved by the

fast spectral method. As examples, noble gases described by the Lennard-Jones

potential are considered. The accuracy of the method is assessed by comparing

both transport coe�cients with variational solutions and mass/heat flow rates in

Poiseuille/thermal transpiration flows with results from the discrete velocity method.

The fast spectral method is then applied to Fourier and Couette flows between two

parallel plates, and the influence of the intermolecular potential on various flow prop-

erties is investigated. It is found that for gas flows with the same rarefaction param-

eter, di↵erences in the heat flux in Fourier flow and the shear stress in Couette flow

are small. However, di↵erences in other quantities such as density, temperature, and

velocity can be very large.

a)Electronic mail: lei.wu.100@strath.ac.uk
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I. INTRODUCTION

When the ratio of the molecular mean free path to the characteristic flow length becomes

significant, the Boltzmann equation (BE) is the best tool to investigate the rarefied gas

dynamics1. The BE employs a one-particle velocity distribution function (VDF) to describe

the state of a macroscopic volume of gas consisting of a large number of molecules, where

the linear streaming operator models the molecular transport and the nonlinear Boltzmann

collision operator (BCO) describes the binary molecular collisions.

The intermolecular potential is incorporated into the BCO through the di↵erential cross-

section (DCS). As the DCSs for realistic potentials such as Lennard-Jones (LJ) or the po-

tentials from ab initio calculations are very complicated, the simple hard-sphere (HS) model

with a constant value of DCS is widely adopted2. However, the viscosity and heat conductiv-

ity of the HS model are proportional to the square root of the gas temperature, which does

not agree with experimental data for common gases. To overcome this drawback, variable

HS2, variable soft-sphere3, generalized HS4, and generalized soft-sphere5 models have been

proposed for the direct simulation Monte Carlo (DSMC) simulation of the BE. Also, the

µ-DSMC method has been proposed in order to reproduce an arbitrary viscosity variation

with temperature6. In our recent fast spectral approximation of the BCO, some special

forms of the DCS were used to recover Sutherland’s formula for viscosity, as well as the

viscosity of the LJ potential7,8.

Note that all these DCSs were proposed in order to match the viscosity, and sometimes

the mass di↵usion coe�cient, with experimental data or theoretical values, but they ignore

or simplify the detailed dependence of the DCS on the deflection angle and the relative

collision energy that are characteristic of realistic potentials. For gas mixtures, the use of

simplified DCSs becomes problematic, since it is di�cult to recover the mass di↵usion and

thermal di↵usion coe�cients simultaneously for general intermolecular potentials. As the

intermolecular potential can strongly influence certain phenomena in rarefied gases9,10, a

numerical method to solve the BE with realistic potentials is urgently needed.

Implementation of the LJ potential in DSMC has been reported previously11, but was

time-consuming as the deflection angle was calculated for every binary collision. Recently,

the LJ potential and some ab initio potentials were successfully implemented into the DSMC

method by pre-calculating the deflection and storing the results in a table12–14. Alternatively,
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an LJ polynomial approximation model was proposed to represent the deflection angle as a

polynomial expansion in non-dimensional collision parameters15,16. Realistic intermolecular

potentials have also been used in some deterministic numerical methods for solutions of the

BE10,17,18. However, the discrete velocity method developed for the linearized BE10,17 has

a very high computational cost, which means it can only be applied to simple geometries,

while the accuracy of the projection-interpolation method18 is not clear when the VDF has

steep variations or large discontinuities.

The aim of the present paper is to implement realistic intermolecular potentials in the

fast spectral method (FSM), which is a promising numerical method for solving the BE de-

terministically7,8,19,20. By testing the proposed method, we also demonstrate the conditions

in which the variable HS model can be adopted.

II. BOLTZMANN EQUATION

The state of a dilute monatomic gas is described by the VDF f(t, x, v) of the molecular

velocity v = (v1, v2, v3) at spatial location x = (x1, x2, x3) and time t. The evolution of f is

governed by the BE:

@f

@t
+ v

@f

@x
= Q(f, f⇤), (1)

where v@/@x is the streaming operator, while Q is the BCO defined by

Q(f, f⇤) =

Z

R3

Z

S2
|v � v⇤|�(✓, |v � v⇤|)[f(v0⇤)f(v0)� f(v⇤)f(v)]d⌦dv⇤. (2)

In the above equations, v, v⇤ are the molecular velocities before the binary collision,

while v0, v0⇤ are the corresponding post-collision velocities. Conservation of momentum and

energy yields v0 = v + (|u|⌦ � u)/2 and v0⇤ = v⇤ � (|u|⌦ � u)/2, where u = v � v⇤ is the

relative pre-collision velocity and ⌦ is a vector in the unit sphere S2 along the relative post-

collision velocity v0 � v0⇤. The deflection angle ✓ between the pre- and post-collision relative

velocities satisfies cos ✓ = ⌦ · u/|u|, with 0  ✓  ⇡. Finally, �(✓, |v � v⇤|) is the DCS.

For HS molecules with a molecular diameter d, it is d2/4, while for a general intermolecular

potential the dependence of � on |u| and ✓ is complicated and the numerical calculation of

the DCS is necessary. Detailed information can be found in a recent publication17.
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In this paper, we consider the following (6-12) LJ potential as an example:

U 0(⇢0) = 4✏

"✓
d

⇢0

◆12

�
✓
d

⇢0

◆6
#
, (3)

where ⇢0 is the intermolecular distance, ✏ is a potential depth, and d is the distance at which

the potential is zero. As the interaction range of the LJ potential is ostensibly infinity, the

total cross-section, i.e. the integral of the DCS with respect to the deflection angle, is infinity

too. In practice, however, a finite cuto↵ either in the deflection angle16,18,21,22 or in the radial

potential10,17,23 is introduced.

A. Normalizations

For practical calculations, it is convenient to introduce dimensionless variables. Here,

the spatial location is normalized by the characteristic length `, temperature is normalized

by T0, velocity is normalized by the most probable molecular speed vm =
p
2kBT0/m,

time is normalized by `/vm, molecular number density is normalized by n0, and the VDF is

normalized by n0/v
3
m, where kB is the Boltzmann constant. Also, in the numerical evaluation

of the DCS for the (6-12) LJ potential, the intermolecular distance ⇢0 is normalized by d.

Therefore, the BE becomes

@f

@t
+ v

@f

@x
= n0d

2`

Z

R3

Z

S2
|u|�(✓, |u|vm)f(v0⇤)f(v0)d⌦dv⇤

| {z }
Q+

�⌫(v)f, (4)

where ⌫(v) = n0d
2`
R
R3

R
S2 |u|�(✓, |u|vm)f(v⇤)d⌦dv⇤ is the collision frequency and �(✓, |u|vm)

is exactly the same as the DCS �(✓, E) in Ref.17 with the dimensionless relative collision

energy E = u2kBT0/(2✏).

The normalized density, flow velocity, and temperature are given by

n =

Z
fdv, V =

1

n

Z
vfdv, T =

2

3n

Z
|v � V |2fdv, (5)

while the pressure tensor and heat flux, which are normalized by n0kBT0 and n0kBT0vm,

respectively, are given by

Pij = 2

Z
(vi � Vi)(vj � Vj)fdv, qi =

Z
|v � V |2(vi � Vi)fdv, (6)

where i, j = 1, 2, 3.
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B. Linearized Boltzmann equation

When the system state deviates only slightly from equilibrium, the BE (4) can be lin-

earized. We express the VDF around the global equilibrium state as

f(t, x, v) = feq(v) + h(t, x, v), feq(v) = ⇡�3/2exp(�v2), (7)

where h is the deviation function satisfying |h/feq| ⌧ 1. The evolution of h is governed by

the linearized BE:
@h

@t
+ v

@h

@x
= L(h), (8)

with the linearized BCO

L(h) = n0d
2`

Z

R3

Z

S2
|u|�[feq(v0⇤)h(v0) + h(v0⇤)feq(v

0)� h(v⇤)feq(v)]d⌦dv⇤
| {z }

L+(h)

�⌫eqh, (9)

where ⌫eq = n0d
2`
R
S2 |u|�feq(v

0
⇤)d⌦dv⇤ is the equilibrium collision frequency.

III. FAST SPECTRAL METHOD FOR THE BOLTZMANN COLLISION

OPERATOR

In this section, we focus on the numerical approximation of the BCO; the approximation

of the linearized collision operator (9) can be performed according to the relation L(h) =

Q[feq(v), h(v⇤)] +Q[h(v), feq(v⇤)]. For simplicity, the coe�cient n0d
2` is regarded as 1.

We rewrite the BCO in the Carleman representation as7

Q(f, f⇤) = 4

Z

R3

Z

R3

��(y · z)[f(v + z)f(v + y)� f(v + y + z)f(v)]dydz, (10)

where � is Dirac’s delta function, and the DCS becomes

�(✓, |u|vm) = �

✓
2arctan

|y|
|z| , vm

p
|y|2 + |z2|

◆
⌘ �0(|y|, |z|). (11)

The VDF is periodized on the truncated velocity domain DL = [�L,L]3. For simplic-

ity, we adopt uniform discretization in velocity space: vk(jk) = 2jkL/Nk with k = 1, 2, 3,

where jk 2 [�Nk/2,�Nk/2 + 1, · · · , Nk/2 � 1] and Nk is the number of velocity grid

points in the k-th velocity direction, although in the simulation of highly rarefied gas

flows the velocity space would be better discretized non-uniformly8,20. The VDF is ap-

proximated by a truncated Fourier series: f(v) =
P(N1,N2,N3)/2�1

j=�(N1,N2,N3)/2
f̂j exp(i⇠j · v), where
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f̂j =
R
DL

f(v) exp(�i⇠j · v)dv/(2L)3, j = (j1, j2, j3) is the Fourier spectrum of the VDF, i is

the imaginary unit, and ⇠j = j⇡/L are the frequency components.

Equation (10) is truncated to Q(f, f⇤) = 4
R
BR

R
BR
�0(|y|, |z|)�(y · z)[f(v + z)f(v + y) �

f(v+y+z)f(v)]dydz, where R �
p
2S, and BS (a sphere of radius S centered on the origin)

is the support of the VDF19. Our numerical experience suggests that R = 2
p
2L/(2 +

p
2)

is a good choice7,8. The truncated BCO is also expanded by the Fourier series, where its

j-th Fourier mode is related to the Fourier coe�cient f̂ of the VDF as follows:

bQj =
1

(2L)3

Z

DL

Q(v) exp(�i⇠j · v)dv =
(N1,N2,N3)/2�1X

l+m=j
l,m=�(N1,N2,N3)/2

f̂lf̂m[�(l,m)� �(m,m)], (12)

where l = (l1, l2, l3), m = (m1,m2,m3), and the kernel mode �(l,m) is

�(l,m) =

Z Z
�(e · e0)

Z R

�R

Z R

�R

|⇢⇢0|�0(|⇢|, |⇢0|) exp(i⇢⇠l · e+ i⇢0⇠m · e0)d⇢d⇢0
�
de0de, (13)

with e, e0 being the vectors in the unit sphere S2.

The integration with respect to ⇢ in Eq. (13) can be approximated by a numerical quadra-

ture. Suppose ⇢r and !r (r = 1, 2, · · · ,Mr) are the abscissas and weights of a quadrature for ⇢

in the region [0, R], Eq. (13) becomes �(l,m) =
P

r !r

R
�(⇢r, ⇠l ·e)

R
�(e·e0) (⇢r, ⇠m ·e0)de0de,

where  (⇢r, s) = 2
R R

0 ⇢0�0(⇢r, ⇢0) cos(⇢0s)d⇢0 and �(⇢r, s) = 2⇢r cos(⇢rs). Following the steps

from Eq. (34) to Eq. (39) in Ref.7, the final expression for the kernel mode is

�(l,m) = 4
M,M,MrX

p,q,r=1

!p!q!r�(⇢r, ⇠l · e✓p,'q) 
0
⇣
⇢r,

q
|⇠m|2 � |⇠m · e✓p,'q |2

⌘
sin ✓p, (14)

where ✓p ('q) and !p (!q) are the p (q)-th point and weight in the Gauss-Legendre quadrature

with ✓,' 2 [0, ⇡], and

 0(⇢r, s) =

Z ⇡

0

 (⇢r, s cos ✓2)d✓2 = 2⇡

Z R

0

⇢0�0(⇢r, ⇢
0)J0(⇢

0s)d⇢0, (15)

with J0 being the zeroth-order Bessel function of first kind.

Thus, combining Eqs. (12) and (14), bQ can be calculated through FFT-based convolution,

with a computational cost of O(M2MrN
3 logN). Since M and Mr can be far smaller than

N , the FSM proposed here is faster than conventional spectral methods that have a cost

of O(N6). Note that in our previous works7,8, a special form of DCS was proposed to

approximate the DCS for the LJ potential, and since that special DCS can be decomposed
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into the form of �0(|y|, |z|) = �0
1(|y|)�0

2(|z|), the integration with respect to ⇢ in Eq. (13)

can be expressed analytically, resulting in a computational cost of O(M2N3 logN) for the

BCO. Here, for general DCSs, one must approximate the integration with respect to ⇢ or

⇢0 by a numerical quadrature to get a computational gain; and this approximation extends

the applicability of the FSM.

Finally, when bQ is obtained, the BCO is then calculated throughQ(v) =
P bQj exp(i⇠j ·v).

As with the FSM that was developed for specific forms of DCS, this new FSM conserves

mass, while momentum and energy are conserved at spectral accuracy.

To obtain the kernel mode �(l,m), ⇢ is first discretized and then  0(⇢r, s) is calculated.

For the (6-12) LJ potential, for each relative collision energy E, the DCS is a continuous

function of the deflection angle at E = u2kBT0/(2✏) = (⇢2r + ⇢02)kBT0/(2✏) . 1 and has one

discontinuous point at E > 117. Therefore, the integration region 0  ⇢  R is divided

into two regions: the first region [0,
p

2✏/kBT0] is divided into 9 uniform sections, while the

second region [
p
2✏/kBT0, R] is discretized according to the Gauss-Legendre quadrature of

order 7. So the number of points in the discretization of ⇢ is Mr = 16.

When ⇢r is determined, the integral given by Eq. (15) is calculated numerically, where

s 2 [0,max(
p
3⇠)] is uniformly discretized into 8000 sections. The key part is to calculate the

DCS �0(⇢r, ⇢0). We first check the continuity of the DCS as ⇢0 goes from 0 to R. If �0(⇢r, ⇢0)

is continuous, then Eq. (15) is approximated by the Gauss-Legendre quadrature of order

120. Otherwise, suppose �0(⇢r, ⇢0) is discontinuous at ⇢0 = ⇢0d, then the region ⇢0 2 [0, ⇢0d) is

discretized non-uniformly by 60 points, with most of the points located near ⇢0d, while the

remaining region ⇢0 2 [⇢0d, R] is approximated by the Gauss-Legendre quadrature of order

60. In the numerical integration of  0, a DCS with deflection angle less than 0.05 radians

is neglected. Finally, when  0 (⇢r, s) is obtained,  0 �⇢r,
p
|⇠m|2 � |⇠m · e✓p,'q |2

�
is calculated

through cubic interpolation.

IV. NUMERICAL ACCURACY

To assess the accuracy of the proposed FSM, we run two test cases. The first is the

calculation of the transport coe�cients of five noble gases, and the second is the calculation

of mass/heat flow rates in Poiseuille/thermal transpiration flows. We compare our results

with those from the variational method24 and the discrete velocity method10,17.
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A. Transport coe�cients

The shear viscosity µ0 and thermal conductivity 0 are calculated as

µ0 =
mvm
d2

Z
hµ(v)v1v2dv ⌘ mvm

d2
µ,

0 =
kBvm
d2

Z
h(v)v1

✓
v2 � 5

2

◆
dv ⌘ kBvm

d2
,

(16)

where µ and  are the reduced shear viscosity and thermal conductivity, respectively. The

two functions hµ(v) and h(v) satisfy the following integral equations:

L(hµ) = �2feqv1v2,

L(h) = �feqv1

✓
v2 � 5

2

◆
, and

Z
hv1dv = 0.

(17)

To find hµ and h, Eq. (17) is solved by the following iterative scheme (with k the iteration

step):

h(k+1)
µ =

L+(h(k)
µ ) + 2feqv1v2

⌫eq
,

eh(k+1)
 =

L+(h(k)
 ) + feqv1

�
v2 � 5

2

�

⌫eq
, h(k+1)

 = eh(k+1)
 � 2feqv1

Z
eh(k+1)
 v1dv.

(18)

The molecular velocity space [�6, 6]3 is discretized by 64⇥ 24⇥ 24 uniform grid points,

while M = 8 is chosen in the discretization of the solid angle, see Eq. (14). Potential depths

for the five noble gases are adopted from Ref.17: kBT0/✏ are 29.35, 8.403, 2.419, 1.579, and

1.310 for He, Ne, Ar, Kr, and Xe, respectively, at T0 = 300 K. The iterations of Eq. (18) are

terminated when the relative di↵erence in the transport coe�cient between two consecutive

iterative steps is less than 10�6. When the DCS is obtained, our FSM needs less than

30 seconds to obtain one transport coe�cient, through a Matlab program running on an

Intel Xeon 3.3 GHz CPU. Numerical results for the transport coe�cients are summarized

in Table I, where we see that the di↵erence between the FSM results and those from the

variational and discrete velocity methods17 is small: the maximum relative error is less than

0.5%.

It is interesting to see how the inverse Schmidt number, defined as the ratio of mass

di↵usivity to momentum di↵usivity (viscosity), changes between the various noble gases.

Here, the mass-di↵usion coe�cient is calculated as

D0 =
vm
nd2

Z
h(v)v1dv ⌘ vm

nd2
D, (19)
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TABLE I. Comparisons of reduced transport coe�cients obtained from the FSM with those from

the variational method with third-order Chapman-Cowling approximation24 and the discrete ve-

locity method17.

Reduced shear viscosity µ Reduced thermal conductivity 

Gas Variational

method

µ

(3)

Discrete

velocity

method

FSM Variational

method 

(3)

Discrete

velocity

method

FSM

He 0.17873 0.1787 0.1789 0.67320 0.6740 0.6742

Ne 0.14878 0.1480 0.1486 0.56018 0.5600 0.5596

Ar 0.11314 0.1130 0.1132 0.42479 0.4260 0.4251

Kr 0.09690 0.0968 0.0967 0.36349 0.3645 0.3629

Xe 0.08928 0.0892 0.0894 0.33485 0.3358 0.3354

TABLE II. Comparisons of inverse Schmidt number (nmD

0
/µ

0) obtained from the FSM with those

from the variational method with first-order Chapman-Cowling approximation24,25.

Gas HS He Ne Ar Kr Xe

Variational method 1.2 1.32 1.35 1.33 1.29 1.33

FSM 1.2128 1.3541 1.3321 1.3139 1.3199 1.3237

Relative error 1.1% 2.2% 1.5% 1.5% 2.3% 0.8%

where D is the reduced mass-di↵usion coe�cient and hD(v) satisfies the following equation

n0d
2`

Z

R3

Z

S2
|u|�[feq(v0⇤)h(v0)� h(v0⇤)feq(v

0) + h(v⇤)feq(v)]d⌦dv⇤
| {z }

L+
D(h)

�⌫eqh = �2feqv1. (20)

Similar to Eq. (17), Eq. (20) is solved in the following iterative scheme:

h(k+1) =
L+

D(h
(k)) + 2feqv1
⌫eq

. (21)

Numerical results from the FSM for noble gases and the HS gas at T = 300 K are shown

in Table II, together with those from the variational method1,25. We find that the relative

error between the two methods is about 2%.
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TABLE III. Mass flow rate GP in the Poiseuille flow of various gases between parallel infinite

plates. The data in columns denoted by SB are from Ref10.

He Ne Ar Kr Xe

� FSM SB FSM SB FSM SB FSM SB FSM SB

0.010 2.713 2.668 2.607 2.581 2.535 2.502 2.538 2.495 2.547 2.497

0.020 2.432 2.424 2.362 2.358 2.292 2.280 2.286 2.269 2.290 2.270

0.025 2.348 2.345 2.289 2.287 2.219 2.211 2.211 2.199 2.214 2.199

0.040 2.180 2.182 2.141 2.140 2.076 2.072 2.063 2.058 2.064 2.057

0.050 2.105 2.107 2.074 2.073 2.011 2.009 1.998 1.995 1.998 1.993

0.100 1.892 1.893 1.879 1.876 1.829 1.830 1.815 1.816 1.813 1.813

0.200 1.713 1.715 1.708 1.707 1.677 1.679 1.666 1.668 1.663 1.665

0.250 1.665 1.667 1.661 1.661 1.636 1.637 1.626 1.628 1.624 1.625

0.400 1.581 1.582 1.579 1.580 1.564 1.566 1.558 1.559 1.556 1.557

0.500 1.550 1.552 1.549 1.550 1.539 1.540 1.534 1.535 1.532 1.533

1.000 1.505 1.507 1.505 1.508 1.505 1.507 1.505 1.507 1.505 1.507

1.600 1.532 1.534 1.533 1.536 1.537 1.540 1.540 1.543 1.541 1.544

2.000 1.568 1.570 1.568 1.572 1.575 1.578 1.579 1.582 1.580 1.583

2.500 1.622 1.624 1.623 1.626 1.630 1.634 1.636 1.639 1.637 1.641

4.000 1.817 1.819 1.818 1.822 1.828 1.833 1.835 1.839 1.838 1.842

5.000 1.960 1.963 1.961 1.966 1.972 1.978 1.980 1.985 1.983 1.988

10.00 2.732 2.740 2.732 2.743 2.743 2.756 2.752 2.764 2.756 2.768

B. Poiseuille and thermal transpiration flows

We now consider a monatomic gas confined between two parallel infinite plates located

at x2 = ±`/2. In Poiseuille flow, the wall temperature is fixed at T0, and a uniform pressure

gradient is imposed on the gas in the x3 direction: the pressure is given by n0kBT0(1 +

⇠Px3/`) with |⇠P | ⌧ 1. In thermal transpiration flow, the pressure is fixed at n0kBT0, but a

temperature gradient is imposed on both walls: the wall temperature is T = T0(1 + ⇠Tx3/`)

with |⇠T | ⌧ 1. The VDF is expressed as f = feq + ⇠P (x3feq +hP )+ ⇠T [x3feq(v2� 5/2)+hT ],
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TABLE IV. Heat flow rates QP and QT in Poiseuille flow of various gases between parallel infinite

plates. The data in columns denoted by SB are results from Ref10.

He Ne Ar Kr Xe

� FSM SB FSM SB FSM SB FSM SB FSM SB

0.010 1.152 1.142 1.070 1.103 1.057 1.055 1.065 1.053 1.072 1.056

0.020 1.021 1.027 0.961 0.990 0.930 0.937 0.933 0.933 0.938 0.935

0.025 0.981 0.989 0.929 0.954 0.893 0.900 0.894 0.895 0.898 0.897

0.040 0.900 0.909 0.862 0.878 0.819 0.824 0.815 0.818 0.818 0.819

0.050 0.863 0.870 0.831 0.843 0.785 0.790 0.780 0.782 0.782 0.783

0.100 0.749 0.751 0.732 0.734 0.688 0.689 0.679 0.680 0.679 0.679

0.200 0.637 0.637 0.629 0.627 0.596 0.595 0.586 0.585 0.584 0.583

0.250 0.601 0.601 0.595 0.593 0.566 0.565 0.557 0.556 0.555 0.554

0.400 0.526 0.526 0.523 0.521 0.504 0.503 0.497 0.495 0.495 0.493

0.500 0.491 0.491 0.489 0.487 0.474 0.473 0.468 0.467 0.466 0.465

1.000 0.385 0.385 0.384 0.383 0.380 0.379 0.378 0.377 0.377 0.376

1.600 0.315 0.315 0.315 0.314 0.315 0.315 0.316 0.315 0.315 0.315

2.000 0.282 0.282 0.283 0.282 0.285 0.284 0.286 0.285 0.286 0.286

2.500 0.251 0.251 0.251 0.251 0.254 0.254 0.256 0.256 0.257 0.256

4.000 0.188 0.188 0.189 0.189 0.193 0.193 0.196 0.196 0.197 0.197

5.000 0.161 0.161 0.162 0.162 0.166 0.166 0.169 0.169 0.170 0.170

10.00 0.093 0.093 0.093 0.093 0.097 0.097 0.099 0.099 0.100 0.100

and the perturbation functions hP and hT satisfy

v2
@h↵

@x2
=L(h↵) + S↵, ↵ = P, T,

SP =� v3feq, ST = �v3

✓
v2 � 5

2

◆
feq,

(22)

where subscripts P and T stand for the Poiseuille and thermal transpiration flows, respec-

tively.

We assume a di↵use gas-wall interaction, so h↵ is zero for gas molecules entering the

computational domain. Due to symmetry, only half of the spatial domain is considered:

the normalized x2 varies from �1/2 to 0. The dimensionless mass and heat flow rates are
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TABLE V. Heat flow rates QP and QT in thermal transpiration flow of various gases between

parallel infinite plates. The data in columns denoted by SB are results from Ref10.

He Ne Ar Kr Xe

� FSM SB FSM SB FSM SB FSM SB FSM SB

0.010 5.946 5.879 5.761 5.684 5.585 5.512 5.589 5.496 5.606 5.500

0.020 5.263 5.263 5.139 5.121 4.983 4.958 4.969 4.934 4.977 4.935

0.025 5.051 5.059 4.946 4.936 4.796 4.779 4.777 4.754 4.783 4.754

0.040 4.614 4.626 4.544 4.542 4.409 4.404 4.384 4.376 4.385 4.373

0.050 4.411 4.421 4.354 4.353 4.228 4.225 4.201 4.197 4.199 4.193

0.100 3.789 3.792 3.761 3.761 3.665 3.669 3.637 3.641 3.633 3.635

0.200 3.172 3.174 3.159 3.162 3.096 3.103 3.073 3.080 3.068 3.074

0.250 2.974 2.977 2.964 2.968 2.911 2.918 2.890 2.897 2.884 2.891

0.400 2.559 2.562 2.553 2.560 2.517 2.525 2.500 2.508 2.495 2.502

0.500 2.364 2.367 2.359 2.366 2.329 2.337 2.314 2.322 2.309 2.317

1.000 1.767 1.770 1.765 1.771 1.748 1.756 1.738 1.745 1.735 1.741

1.600 1.383 1.385 1.382 1.387 1.370 1.377 1.363 1.369 1.361 1.366

2.000 1.212 1.213 1.210 1.216 1.201 1.207 1.195 1.201 1.193 1.198

2.500 1.050 1.051 1.049 1.053 1.042 1.046 1.037 1.041 1.035 1.039

4.000 0.754 0.750 0.748 0.752 0.744 0.747 0.741 0.744 0.740 0.743

5.000 0.628 0.629 0.627 0.630 0.624 0.627 0.622 0.625 0.621 0.624

10.00 0.345 0.345 0.345 0.346 0.343 0.345 0.343 0.344 0.342 0.344

GP = �4
R 0

�1/2 VPdx2, GT = 4
R 0

�1/2 VTdx2, QP = 4
R 0

�1/2 qPdx2, and QT = �4
R 0

�1/2 qTdx2,

where the gas velocity is V↵ =
R
v3h↵dv and the heat flux is q↵ =

R
v3

�
v2 � 5

2

�
h↵dv. These

flow rates are a function of the rarefaction parameter, defined as

� =
n0kBT0`

µ0vm
. (23)

In the numerical simulations, the spatial domain �0.5  x2  0 is divided into 100

non-uniform sections, with most of the discrete points placed near the wall: x2 = (10 �

15s+6s2)s3� 0.5, where s = (0, 1, · · · , 100)/200. Because of the symmetry and smoothness

of the VDF in the v1 and v3 directions, N1, N3 = 12 uniform grids are used in the v1(>
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0) and v3(> 0) directions, where the maximum molecular velocity is at L = 6. In the

discretization of v2, N2 = 128 non-uniform grid points are used: v2 = 4(�N2 + 1,�N2 +

3, · · · , N2 � 1)3/(N2 � 1)3, with most of the grid points located near v2 ⇠ 0. This choice

is necessary at small values of the rarefaction parameter, as the VDF over-concentrates in

this region21. The number of frequency components in the ⇠1 and ⇠3 directions are 24⇥ 24,

while there are 64 frequency components in the ⇠2 direction. For more details, see Ref.8.

We use the following iterative scheme to solve Eq. (22):

v2
@h

(k+1)
↵

@x2
+ ⌫eq(v)h

(k+1)
↵ = L+(h(k)

↵ ) + S↵, (24)

where k is the iteration step and the spatial derivative is approximated by a second-order

upwind finite di↵erence. Iterations are terminated when the relative di↵erence in mass and

heat flow rates between two consecutive steps is less than 10�6.

Tables III, IV, and V compare our numerical results for GP , GT , and QT with those by

Sharipov and Bertoldo10. The mass flow rate GT is not shown, as GT = QP according to

the Onsager-Casimir relation, and our numerical results show that the relative di↵erence

between GT and QP is less than 0.2%. For � � 0.025, the di↵erence between our results

and those of Sharipov and Bertoldo is . 1%, which increases to about 2% at � = 0.01.

These di↵erences are small, as the numerical accuracy of the discrete velocity method itself

is about 0.8%.10

V. APPLICATIONS

We now apply the FSM for the BE with LJ potentials to solve Couette and Fourier flows

between two parallel plates. The five noble gases He, Ne, Ar, Kr, and Xe, as well as the

variable HS gas, are considered and the e↵ect of the intermolecular potential on the flow

properties is investigated. Note that for the variable HS gas, the DCS is proportional to

|u|1�2!, where ! is the viscosity index (i.e. the gas viscosity is proportional to T !). For the

HS gas, ! = 0.5, while for He and Xe at T = 300 K, !=0.66 and 0.85, respectively.

A. Planar Fourier flow

The geometry is the same as that of the Poiseuille flow in Section IVB, except that

the plate at x2 = �1/2 has a temperature T0 � �T/2, while the plate at x2 = 1/2 has a

13
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FIG. 1. Normalized density and temperature half-channel profiles in the linearized Fourier flow of

various gases between two parallel plates with � = 0.1.

temperature T0 +�T/2. Also, there is no pressure gradient along the x1 and x3 directions.

We first assume that the temperature di↵erence �T is negligible compared to T0, so that

the BE (4) can be linearized to Eq. (8) by expressing the VDF as f = feq + h�T/T0.

The spatial region �1/2  x2  0 is discretized by 100 non-uniform grid points, with

most of the grid points located near the wall. The three-dimensional molecular velocity

domain [�6, 6]3 is discretized by 32 ⇥ 128 ⇥ 32 grid points, and the number of frequency

components is 32⇥ 48⇥ 32. Assuming di↵use gas-wall interaction, the boundary condition

reads

h(v, x2 = �0.5) =


1� 1

2
v2 � 2

p
⇡

Z

v2<0

v2h(v, x2 = �0.5)dv

�
feq, at v2 > 0, (25)

while at x2 = 0, symmetry leads to h(v1, v2, v3) = �h(v1,�v2, v3) when v2 < 0. The

iterative scheme v2@h
(k+1)/@x2 + ⌫eq(v)h(k+1) = L+(h(k)) is used, and the iterations are

terminated when the maximum relative di↵erence in the density n =
R
hdv, temperature

T = 2
R
hv2dv/3 � n, and heat flux q2 =

R
hv2v2dv between two consecutive steps is less

than 10�5.

Typical density and temperature profiles are shown in Fig. 1 for a rarefaction parameter

of � = 0.1 and T0 = 300 K. Although they have the same rarefaction parameter, the

macroscopic properties of the six gases are quite di↵erent. The di↵erences are summarized

14



TABLE VI. Normalized gas density (n) and temperature (T ) at the plate located at x2 = �0.5,

and the heat flux (q2) in the linearized Fourier flow at T0 = 300 K.

� = 0.1 � = 1 � = 10

n �T q2 n �T q2 n �T q2

HS 0.050 0.064 0.536 0.176 0.206 0.406 0.392 0.405 0.137

He 0.061 0.074 0.534 0.184 0.214 0.403 0.395 0.408 0.136

Ne 0.065 0.077 0.533 0.187 0.216 0.402 0.396 0.408 0.136

Ar 0.069 0.081 0.531 0.193 0.221 0.398 0.398 0.410 0.135

Kr 0.070 0.080 0.530 0.196 0.224 0.397 0.398 0.411 0.135

Xe 0.070 0.080 0.530 0.196 0.224 0.396 0.399 0.411 0.134

in Table VI for � = 0.1, 1, and 10. At the wall, when � = 0.1, the relative di↵erence in

density between He and the HS gas is 22%. This di↵erence between LJ and HS potentials

increases as kBT0/✏ decreases: the density of Xe at the wall is 40% larger than that of the

HS gas. For the temperature, the largest di↵erence between the noble gases and the HS

gas reaches 25%. As � increases, relative di↵erences in the densities and the temperature

decrease: when � = 1, relative di↵erences in the density and temperature of the HS gas and

Xe at the wall are reduced to 11.4% and 8.7%, respectively, while they are 1.8% and 1.5%

by � = 10. As � further increases, the hydrodynamic flow regime is reached and there is no

di↵erence between the various gases. Interestingly, the di↵erences in the heat flux between

the various gases are small and first increase and then decrease with �. At � = 0.1, the

relative heat flux di↵erence between the HS gas and Xe is only 1.1%; this increases to 2.5%

at � = 1, and then decreases to 2% by � = 10. Therefore, if only the heat flux is of interest,

the HS gas model can be safely used, with a numerical error of less than two percent.

We also consider the variable HS gas with viscosity index ! = 0.66 and 0.85, at � = 0.1:

at x2 = �0.5, the gas densities are 0.051 and 0.058, respectively. When compared to that of

He and Xe, we find that the variable HS model does not produce significant improvement

on the HS model, i.e. there are still about 20% and 14% relative di↵erences in gas density

and temperature between the variable HS model and the LJ potential, respectively.

We then consider the nonlinear heat transfer between the two parallel plates by reducing

the temperature of the plate at x2 = �0.5 to T0/2, while that at x2 = 0.5 remains at
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FIG. 2. Density and temperature profiles in the nonlinear Fourier flow between two parallel plates

when � = 0.1 (top row) and � = 1 (bottom row). Dash-dotted lines: HS gas; Solid lines: He;

Dashed lines: Kr.

T0 = 300 K. The BE (4) is solved in an iterative manner:

v2
@f (k+1)

@x2
+ ⌫(v)f (k+1) = Q+(f (k)), (26)

with the following di↵use boundary conditions

f(v, x2 = �0.5) =
nw1

(⇡T0/2)3/2
exp

✓
�2v2

T0

◆
, for v2 > 0,

f(v, x2 = 0.5) =
nw2

(⇡T0)3/2
exp

✓
�v2

T0

◆
, for v2 < 0,

(27)

where nw1 = �2
p
2⇡/T0

R
v2<0 fv2dv and nw2 = 2

p
⇡/T0

R
v2>0 fv2dv.

We compare He and Kr with the HS gas, as the results for Xe are very close to Kr, while

the results for Ne and Ar lie between those for He and Kr. Figure 2 shows the density and

temperature profiles when � = 0.1 and 1. As in the linear case, the variations in the density
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FIG. 3. Velocity half-channel profiles in the linearized planar Couette flow of various gases when

� = 0.1.

and temperature of He and Kr are steeper than the HS gas, and as � increases the di↵erences

between He, Kr, and the HS gas decrease. The heat flux in the HS gas, He, and Xe are,

respectively, 0.223, 0.221, and 0.219 when � = 0.1; 0.170, 0.168, and 0.159 when � = 1; and

0.059, 0.056, 0.052 when � = 10. Unlike the heat transfer in the linearized case, here the

di↵erence in the heat flux between the HS gas and Xe reaches about 7% at � = 1 and 13%

by � = 10. This is due to the HS gas having a higher thermal conductivity near the plate

at x2 = �`/2.

B. Planar Couette flow

The geometry is the same as that for the Poiseuille flow in Section IVB, except that the

plate at x2 = �`/2 moves in the x3 direction with a speed Vwall, while the other plate moves

in the opposite direction with the same speed. Also, there is no pressure gradient along the

x1 and x3 directions. We first consider the case when the wall speed is far smaller than the

most probable molecular speed vm, hence the BE can be linearized to Eq. (8) by expressing

the VDF as f = feq + hVwall/vm. The numerical method is then exactly as that for Fourier

flow, except that the di↵use gas-wall boundary condition becomes h(v, x2 = �0.5) = 2v3feq
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TABLE VII. Velocity V3 at the plate and the shear stress P23 in the linearized Couette flow at

T0 = 300 K.

� = 0.1 � = 1 � = 10

V3 P23 V3 P23 V3 P23

HS 0.157 1.042 0.502 0.681 0.881 0.167

He 0.173 1.038 0.511 0.678 0.882 0.167

Ne 0.179 1.037 0.515 0.677 0.883 0.167

Ar 0.188 1.033 0.522 0.674 0.884 0.166

Kr 0.191 1.031 0.525 0.671 0.885 0.166

Xe 0.192 1.031 0.526 0.670 0.885 0.166

for v2 > 0, and h(v1, v2, v3, x2 = 0) = h(v1,�v2,�v3, x2 = 0) for v2 < 0 due to symmetry.

We are interested in the gas velocity and the shear stress. The velocity, which is normalized

by the wall speed, is V3 =
R
hv3dv; the shear stress, which is normalized by n0kBT0Vwall/vm,

is P23 = 2
R
hv2v3dv.

Figure 3 depicts the typical velocity profiles when � = 0.1, where the influence of the

molecular potential is clearly seen. Table VII lists the gas velocity at the wall and the shear

stress for the di↵erent gases when � = 0.1, 1, and 10. As � increases, the di↵erences in the

velocity profiles of the six gases decrease. For instance, the relative di↵erence between the

HS gas and Xe decreases from 22.3% when � = 0.1, to 4.5% at � = 1, and to 0.5% by � = 10.

Similar to heat fluxes in the Fourier flows, the relative di↵erences in shear stress between

the various gases in Couette flow are small, and first increase and then decrease with �.

We also consider the variable HS gas with viscosity index ! = 0.85 at � = 0.1, and

compare the gas velocity at the plate to that Xe. As in the linearized Fourier flow, the

variable HS model does not produce significant improvement when compared to the HS

model, as the velocity at the plate is 0.167 for ! = 0.85, so that for Xe the relative di↵erence

between the variable HS model and LJ potential is 15%.

Finally, we consider nonlinear Couette flow, with a wall speed Vwall = vm. The wall

temperature is set to be T0/2. The iterative scheme is the same as in the nonlinear Fourier

flow case, see Eq. (26). The boundary condition is:

f(v, x2 = �0.5) =
nw

(⇡T0/2)3/2
exp

✓
�2

v21 + v22 + (v3 � 1)2

T0

◆
, for v2 > 0, (28)
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FIG. 4. Half-channel profiles of the density, velocity, temperature, and heat flux in nonlinear

Couette flow at � = 0.1. Dash-dotted lines: HS gas; Solid lines: He; Dashed lines: Xe. The profiles

for the variable HS model are not shown, since for ! = 0.66 and 0.85 the results are close to that

of the HS model and He, respectively.

where nw = �2
p
2⇡/T0

R
v2<0 fv2dv. At x2 = 0, we have f(v1, v2, v3) = f(v1,�v2,�v3) for

v2 < 0 due to symmetry.

The profiles of macroscopic quantities and reduced VDFs when � = 0.1 are shown in

Figs. 4 and 5, respectively, where we see that the relative di↵erence in gas velocity is close

to that in the linearized Couette flow, and the use of the variable HS model only slightly

improves the accuracy. The reduced VDF also has a relatively large di↵erence between the

noble gas and the HS gas at v2 ⇠ 0. The shear stresses in the various gases are, however,

very close to each other in nonlinear Couette flow. This is because the gas temperature is

around T0 so the rarefaction parameters are nearly the same. Therefore, if only the shear

stress is of interest, the HS model can be used.
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FIG. 5. Reduced VDFs
R
fdv1dv3 in the nonlinear Couette flow at � = 0.1. (a) x2 = �0.5, (b)

x2 = 0. Dash-dotted lines: HS gas; Solid lines: He; Dashed lines: Xe. Triangles: variable HS

model with viscosity index ! = 0.85. The reduced VDF for the variable HS model with ! = 0.66

is not shown, since it nearly overlaps that of the HS model.

VI. CONCLUSIONS

We have presented a general fast spectral method to solve the Boltzmann equation with

arbitrary intermolecular potentials. Specifically, through comparison with results from the

variational and discrete velocity methods, we have demonstrated the accuracy of the FSM

for the realistic (6-12) LJ potential. As an application, the FSM has been applied to planar

Fourier and Couette flows. Our results indicate that, for the same value of rarefaction

parameter, the di↵erences in the heat flux in Fourier flow, and the di↵erences in the shear

stress in Couette flow, are small between various noble gases. However, di↵erences in other

macroscopic quantities, and in the reduced velocity distribution functions, are large when

the rarefaction parameter � . 1. For instance, when � = 0.1, the relative di↵erence in

the HS gas and Xe densities in Fourier flow is about 40%, while the relative di↵erence in

velocities in Couette flow is about 22%. In the nonlinear Couette flow considered in this
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paper, the relative di↵erence in the reduced velocity distribution functions of the HS gas

and Xe can reach 20% at some velocity grid points. These di↵erences increase when the

rarefaction parameter decreases. We have also found that the variable HS model provides a

slightly better result than the HS model.

This is a new numerical method for the Boltzmann equation, and we have also indicated

the region of the rarefaction parameter in which the Boltzmann equation with the hard-

sphere potential can be applied. For linearized and nonlinear problems where temperature

does not vary too much, and when only the heat flux in Fourier flow and the shear stress

in Couette flow are required, the hard-sphere model can be safely adopted. Otherwise, the

di↵erential cross-section of a realistic intermolecular potential should be adopted when the

molecular mean free path is comparable to, or smaller than, the characteristic flow length.

Although we have only considered one-dimensional flows here, the computational time

required for the Boltzmann collision operator remains unchanged for two- and three-

dimensional flows, as the molecular velocity space is always three-dimensional. Our proposed

numerical method can also be applied to mixtures of monatomic gases using ab initio po-

tentials13.
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