1,233 research outputs found

    Testing devices under different source impedances: a novel technique for on-line measurement of source and device reflection coefficients

    Get PDF
    This paper describes a new approach for fast and accurate determination of the source reflection coefficient in microwave source-pull measurements. To the authors' knowledge, this is the only technique that allows the simultaneous measurement of the source and the DUT gammas. A traditional vector network analyzer is used as a three-channel receiver. The calibration procedure is based on a new reflectometer model that extends the traditional error box concept. Experimental results are presented and compared to data obtained with traditional techniques

    Design of Digital Frequency Synthesizer for 5G SDR Systems

    Get PDF
    The previous frequency synthesizer techniques for scalable SDR are not compatible with high end applications due to its complex computations and the intolerance over increased path interference rate which leads to an unsatisfied performance with improved user rate in real time environment. Designing an efficient frequency synthesizer framework in the SDR system is essential for 5G wireless communication systems with improved Quality of service (QoS). Consequently, this research has been performed based on the merits of fully digitalized frequency synthesizer and its explosion in wide range of frequency band generations. In this paper hardware optimized reconfigurable digital base band processing and frequency synthesizer model is proposed without making any design complexity trade-off to deal with the multiple standards. Here fully digitalized frequency synthesizer is introduced using simplified delay units to reduce the design complexity. Experimental results and comparative analyzes are carried out to validate the performance metrics and exhaustive test bench simulation is also carried out to verify the functionality

    NIKA: A millimeter-wave kinetic inductance camera

    Get PDF
    Current generation millimeter wavelength detectors suffer from scaling limits imposed by complex cryogenic readout electronics. To circumvent this it is imperative to investigate technologies that intrinsically incorporate strong multiplexing. One possible solution is the kinetic inductance detector (KID). In order to assess the potential of this nascent technology, a prototype instrument optimized for the 2 mm atmospheric window was constructed. Known as the N\'eel IRAM KIDs Array (NIKA), it was recently tested at the Institute for Millimetric Radio Astronomy (IRAM) 30-meter telescope at Pico Veleta, Spain. The measurement resulted in the imaging of a number of sources, including planets, quasars, and galaxies. The images for Mars, radio star MWC349, quasar 3C345, and galaxy M87 are presented. From these results, the optical NEP was calculated to be around 1×10−151 \times 10^{-15} W/ / Hz1/2^{1/2}. A factor of 10 improvement is expected to be readily feasible by improvements in the detector materials and reduction of performance-degrading spurious radiation.Comment: Accepted for publication in Astronomy & Astrophysic

    An embedded tester core for mixed-signal System-on-Chip circuits

    Get PDF

    LOW-JITTER AND LOW-SPUR RING-OSCILLATOR-BASED PHASE-LOCKED LOOPS

    Get PDF
    Department of Electrical EngineeringIn recent years, ring-oscillator based clock generators have drawn a lot of attention due to the merits of high area efficiency, potentially wide tuning range, and multi-phase generation. However, the key challenge is how to suppress the poor jitter of ring oscillators. There have been many efforts to develop a ring-oscillator-based clock generator targeting very low-jitter performance. However, it remains difficult for conventional architectures to achieve both low RMS jitter and low levels of reference spurs concurrently while having a high multiplication factor. In this dissertation, a time-domain analysis is presented that provides an intuitive understanding of RMS jitter calculation of the clock generators from their phase-error correction mechanisms. Based on this analysis, we propose new designs of a ring-oscillator-based PLL that addresses the challenges of prior-art ring-based architectures. This dissertation introduces a ring-oscillator-based PLL with the proposed fast phase-error correction (FPEC) technique, which emulates the phase-realignment mechanism of an injection-locked clock multiplier (ILCM). With the FPEC technique, the phase error of the voltage-controlled oscillator (VCO) is quickly removed, achieving ultra-low jitter. In addition, in the transfer function of the proposed architecture, an intrinsic integrator is involved since it is naturally based on a PLL topology. The proposed PLL can thus have low levels of reference spurs while maintaining high stability even for a large multiplication factor. Furthermore, it presents another design of a digital PLL embodying the FPEC technique (or FPEC DPLL). To overcome the problem of a conventional TDC, a low-power optimally-spaced (OS) TDC capable of effectively minimizing the quantization error is presented. In the proposed FPEC DPLL, background digital controllers continuously calibrate the decision thresholds and the gain of the error correction by the loop to be optimal, thus dramatically reducing the quantization error. Since the proposed architecture is implemented in a digital fashion, the variables defining the characteristics of the loop can be easily estimated and calibrated by digital calibrators. As a result, the performances of an ultra-low jitter and the figure-of-merit can be achieved.clos
    • 

    corecore