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Abstract 

In recent years, ring-oscillator based clock generators have drawn a lot of attention due to the merits 

of high area efficiency, potentially wide tuning range, and multi-phase generation. However, the key 

challenge is how to suppress the poor jitter of ring oscillators. There have been many efforts to develop 

a ring-oscillator-based clock generator targeting very low-jitter performance. However, it remains 

difficult for conventional architectures to achieve both low RMS jitter and low levels of reference spurs 

concurrently while having a high multiplication factor. In this dissertation, a time-domain analysis is 

presented that provides an intuitive understanding of RMS jitter calculation of the clock generators from 

their phase-error correction mechanisms. Based on this analysis, we propose new designs of a ring-

oscillator-based PLL that addresses the challenges of prior-art ring-based architectures.  

This dissertation introduces a ring-oscillator-based PLL with the proposed fast phase-error correction 

(FPEC) technique, which emulates the phase-realignment mechanism of an injection-locked clock 

multiplier (ILCM). With the FPEC technique, the phase error of the voltage-controlled oscillator (VCO) 

is quickly removed, achieving ultra-low jitter. In addition, in the transfer function of the proposed 

architecture, an intrinsic integrator is involved since it is naturally based on a PLL topology. The 

proposed PLL can thus have low levels of reference spurs while maintaining high stability even for a 

large multiplication factor.  

Furthermore, it presents another design of a digital PLL embodying the FPEC technique (or FPEC 

DPLL). To overcome the problem of a conventional TDC, a low-power optimally-spaced (OS) TDC 

capable of effectively minimizing the quantization error is presented. In the proposed FPEC DPLL, 

background digital controllers continuously calibrate the decision thresholds and the gain of the error 

correction by the loop to be optimal, thus dramatically reducing the quantization error. Since the 

proposed architecture is implemented in a digital fashion, the variables defining the characteristics of 

the loop can be easily estimated and calibrated by digital calibrators. As a result, the performances of 

an ultra-low jitter and the figure-of-merit can be achieved. 
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1. Introduction 

1.1. Motivations 

 

 

Figure 1-1. Demand on ultra-low-jitter clock generation. 

 

Since the phase-locked loop (PLL) architecture was researched in the 1940s, various clock generation 

architectures have been proposed and developed. However, as high-performance applications are 

emerging such as advanced wireless communications, high-speed interconnections, and high-

performance microprocessors (Figure 1-1) there remains strong demand for a new architecture that can 

provide ultra-low-jitter clock signals. 

Oscillators (OSCs), key components of clock-generation systems, physically generate high-

frequency signals, and they are mainly classified into two categories according to the mechanism of the 

frequency generation: ring OSC and LC OSC (Figure 1-2). A ring OSC has the following advantages 

over its counterpart: small area since it does not require any area-hungry inductor; a very wide frequency 

tuning range; a natural capability of generating multi-phases; and the low impact of frequency pulling.  
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Nevertheless, most low-jitter clock generators have been designed with LC OSCs. This is primarily 

because the jitter (or phase noise) performance of LC OSCs is much superior due to their frequency 

selection mechanism of the LC tank having a high Q-factor. On the other hand, the frequency of ring 

OSCs is defined by the delays of delay cells, which entails an increase in thermal noise [1].  

In order to effectively suppress the jitter of ring OSC while exploiting their merits, many attempts 

have been made to develop ring-OSC-based clock generators targeting very low-jitter performance [2]–

[25], comparable to that of LC-OSC-based architectures. Among many efforts, an injection-locked 

clock multiplier (ILCM) and a switched-loop-filter (SLF) PLL are considered as two promising 

solutions. An ILCM can dramatically remove the ring oscillator’s jitter thanks to its intrinsic phase-

realignment mechanism. However, since an ILCM is based on phase correction rather than frequency 

correction, large reference spurs are induced and the multiplication factor, N, is limited. With the 

extended noise reduction bandwidth, SLF PLLs also can achieve low-jitter performance. In an SLF 

PLL, with an intrinsic integrator present in its loop transfer function and the use of an SLF, a low 

reference spur is also achievable. However, the limit is their jitter performance is still inferior to that of 

ILCMs.  

  

 

Figure 1-2. Comparison between ring OSCs and LC OSCs. 
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1.2. Thesis organization 

As described in Chapter 1.1, the two popular architectures (an ILCM and a SLF PLL) for the design 

of ring-OSC-based clock generators still have limitations. This dissertation discusses detailed analysis 

of conventional ring-OSC-based clock generators and presents new architectures addressing the design 

challenges of the conventional ones. 

This dissertation consists of five chapters. 

 Chapter 1 provides an introduction of demand on ultra-low-jitter clock generators, the merits 

of ring OSCs, reviews of conventional ring-oscillator, and presents the motivation of this 

dissertation. 

 

 Chapter 2 details the design challenges on ring-OSC-based clock generators and analyzes 

the limitations of conventional architectures. 

 

 Chapter 3 demonstrates the proposed fast-phase-error correction (FPEC) technique 

addressing the issues of conventional ring-OSC-based, and presents a prototype ring-OSC-

based PLL using the FPEC technique that solves those challenges with the previous works. 

 

 Chapter 4 presents a design of a digital PLL embodying the FPEC technique (or FPEC 

DPLL). In the proposed FPEC DPLL, a low-power optimally-spaced (OS) TDC that can 

effectively minimize the quantization error is presented.  

 

 Chapter 5 concludes the dissertation. 
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2. Problems and Limits of Prior Ring-Oscillator-Based Clock Generators 

2.1. Traditional Charge-Pump-Based Type-II PLL 

 

 

(a) 

 

 

(b) 

 

Figure 2-1. (a) A traditional charge-pump Type-II PLL (b) characteristics of VCO noise transfer 

function (NTF). 
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A traditional charge-pump Type-II PLL, shown in Figure 2-1(a), is the most popular clock-generation 

architecture for many practical applications due to high system stability and relatively good jitter and 

spur performance. Despite its popularity, Gardner’s limit restricts its loop bandwidth to less than 10% 

of the reference frequency (fREF) [26]. In general, the noise transfer function (NTF) of a voltage-

controlled oscillator (VCO) has a high-pass response with respect to the loop bandwidth, as shown in 

Figure. 2-1 (b). To reduce the jitter of a VCO, the loop bandwidth (fBW) must, therefore, be extended as 

much as possible. From this point of view, it is obvious that a Type-II PLL is not a desirable architecture 

for ring-based clock generators.  

To overcome the limitation of Type-II PLLs, injection-locked clock multipliers (ILCMs) [2]–[17] 

and switched-loop (SLF) filter PLLs [18]–[25] are considered as two promising solutions. Since the 

loop bandwidth in these architectures can be largely extended without the restriction of Gardner’s limit, 

achieving an ultra-low noise signal is feasible even when a ring VCO is used. Chapters 2.2 and Chapter 

2.3 analyze these two architectures in detail. 
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2.2. Injection-Locked Clock Multipliers 

 

 

Figure 2-2. Basic block diagram of an ILCM with waveforms. 

A block diagram and operating mechanism of an ILCM is shown in Figure 2-2. In an ILCM, narrow 

pulses generated from the clean reference clock are physically injected into the VCO. As long as the 

free-running VCO frequency (fVCO) approximates the target one (N·fREF), it achieves a lock and its 

instantaneous phase variation is realigned by the injection. In this mechanism, the phase rather than the 

frequency of the VCO is directly corrected. Therefore, the accumulated jitter of the VCO is removed 

instantaneously with a very wide bandwidth of the VCO noise reduction, achieving an ultra-low jitter 

performance despite the use of a ring VCO. 
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However, the ILCM has a critical problem. Since the mechanism of the phase-error correction in an 

ILCM does not involve an integrator in its loop, the deviation of fVCO from N·fREF cannot be eliminated. 

This leads to periodic phase shifts at the frequency of fREF, as shown in Figure 2-3, thereby significantly 

increasing the level of reference spurs at the output of an ILCM. For example, when N is 10, just 1% of 

the frequency deviation causes approximately –20 dBc-reference spur. Another critical problem of an 

ILCM is the vulnerability of noise performance against PVT variations. In other words, the 

aforementioned excellent noise performance is valid only when fVCO is sufficiently close to N·fREF. The 

 

Figure 2-4. Degradation of phase noise in ILCMs due to frequency deviation. 

 

 

Figure 2-3. Timing diagram of an ILCM when periodic phase shifts are present due to nonzero 

frequency deviation. 
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noise performance is therefore degraded severely when drifts in fVCO occur due to variations in process, 

voltage, and temperature (PVT), as shown in Figure 2-4. Even worse, it is difficult to achieve a high-

multiplication factor of N in ILCMs since their system stability degrades as N increases. 
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2.3. Switched-Loop-Filter PLLs 

 

 

Figure 2-5. A traditional XOR-PD-based Type-I PLL 

 

Another emerging architecture is the switched-loop-filter (SLF) PLL, which makes available the 

extended loop bandwidth. Before discussing the SLF-PLL architecture, it is necessary to first review a 

conventional Type-I PLL. Figure 2-5 shows an architecture of a traditional Type-I PLL using an XOR-

type phase detector (PD). Since the Type-I PLL is not confined by Gardner’s limit, the bandwidth can 

increase much further than a Type-II PLL. However, the use of an XOR-type PD and a continuous RC 

filter is supposed to cause a large fluctuation in the VCO’s control voltage, VC, which leads to a 

significant increase in reference spurs. To address this problem, the bandwidth must be forced to be 

narrow, which negates its merit of the wide bandwidth.  
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To overcome this issue of a conventional Type-I PLL, an SLF PLL has been proposed [18]–[25], 

in which the continuous time loop filter is replaced by the SLF in order not to transfer the fluctuation 

of VC to the VCO. Since the moment of capturing the phase error (i.e., ϕ1) is separated from the moment 

of updating the frequency of the VCO (i.e., ϕ2) the control voltage can be isolated from the fluctuation 

of the voltage of the loop filter, as shown in Figure 2-6, thus achieving a wide bandwidth of the PLL 

without the problem of reference spurs. Note that, unlike an ILCM, an SLF PLL includes an intrinsic 

 

 

Figure 2-6. A switched-loop-filter (SLF) PLL. 
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integrator in the transfer functions of its loop since it is naturally based on a PLL topology. The 

frequency deviation of fVCO from N·fREF can thus be corrected naturally, which frees the SLF PLL from 

the periodic phase shifts as in an ILCM and achieves a very low level of reference spur. In an SLF PLL, 

although the VCO’s jitter can be effectively suppressed without the reference-spur problem, its overall 

jitter performance is still inferior to that of an ILCM. The crucial difference between them is their jitter 

reduction mechanisms, which will be detailed in Chapter 3. 
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3. Proposed Ring-VCO-Based Switched-Loop-Filter PLL Using a Fast 

Phase-Error Correction Technique 

3.1. Motivations and Overview 

The ILCM and SLF PLL are considered as promising solutions to the design of a ring-oscillator-

based clock generator. However, as briefly described in Chapter 2, the difficulty in achieving both low 

RMS jitter and low levels of reference spurs while simultaneously maintaining a high multiplication 

factor remains a problem, which will be detailed in the following chapter. 

Chapter 3 presents a ring-oscillator-based SLF PLL capable of achieving good performances of RMS 

jitter and reference spurs despite the high multiplication factor. The key feature of this architecture is 

the proposed fast phase-error correction (FPEC) technique [27], [28] which is implemented in its loop 

filter. Emulating the phase-realignment mechanism of an ILCM, the phase error of the voltage-

controlled oscillator (VCO) can be quickly removed, thus achieving ultra-low jitter. In addition, since 

the proposed architecture is based on PLL topology, it intrinsically has an integrator in its transfer 

function; the proposed PLL can thus achieve low reference spur while maintaining high stability even 

for a large multiplication factor. We also present a selective frequency-tuning (SFT) technique in the 

implementation of the VCO, which allows the proposed PLL to have much lower reference spur. 

In Chapter 3.2, conventional SLF PLLs and ILCMs are analyzed in terms of the mechanisms of 

phase-error correction. Chapter 3.3 presents the proposed FPEC technique, and Chapter 3.4 presents its 

implementation. Chapter 3.5 details the operation of the FPEC technique. Measurement results are 

presented in Chapter 3.6, and conclusions are drawn in Chapter 3.7.  
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3.2. Phase-Error Correction Mechanisms of ILCMs and SLF PLLs 

 

 

(a) 

 

(b) 

Figure 3-1. Processes of phase-error correction. (a) A conventional SLF PLL; (b) an ILCM. 
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To understand the jitter reduction difference between an SLF PLL and an ILCM, we need first to 

analyze the way in which each of them corrects the phase error, ΔϕE, described by Figure 3-1(a) and 

(b), respectively. For the sake of simplicity, we focus on the correction of the initial phase error, ΔϕE0, 

during a reference period, TREF, and the following conditions are assumed: first, that the two 

architectures operate in a steady state, fVCO being equal to the target frequency; second, that the effect 

of intrinsic noises from the building blocks is neglected, i.e.: no excess phase error occurs except ΔϕE0 

during TREF; third, that ΔϕE0 is eliminated during TREF, i.e.: the realigning factor, β, [2] is 1.  

Figure 3-1(a) shows the process of phase-error correction of a conventional SLF PLL. After detecting 

ΔϕE0, the PD generates the change in VC, ΔVC. This changed voltage is maintained constantly over TREF 

and causes a corresponding change in fVCO. Then, due to the inherent function of the integrator in the 

VCO, ΔϕE0 is gradually removed over the TREF. During TREF, the phase error is corrected by the amount 

of 2π·KVCO·ΔVC·TREF, and given that β is assumed to be 1 this is equivalent to ΔϕE0.  

In contrast to the SLF PLL, an ILCM directly realigns the VCO’s phase by injecting narrow pulses 

into the VCO, as shown in Figure 3-1(b). Consequently, ΔϕE0 is instantaneously removed at the time of 

injection. Since this process is performed without the use of the integrator of the VCO, there is no 

change in fVCO. For this reason, the change in VC is not physically involved in the phase-error correction. 

However, to continue with the analysis of a SLF PLL (Figure 3-1(a)), the change in VC of an ILCM can 

be conceptually represented using a Dirac-delta function, δ(t), as shown in Figure 3-1(b). This 

assumption allows us to conceptualize the ILCM’s phase-error correction as though the VCO has an 

integrating function and is affected by the change in control voltage. Note that the phase error is 

corrected by the same amount as in the case of an SLF in Figure 3-1(a), i.e: 2π·KVCO·ΔVC·TREF, by the 

assumption of β.  

From these observations, we may now proceed to theoretically estimate the RMS jitter of each 

architecture. Since our objective is to compare the suppression of the VCO’s jitter to the phase-error 

correction mechanism of an ILCM and an SLF PLL, it is sufficient to account for only the thermal noise 

of the VCO; the flicker noise of the VCO is thus disregarded. For a similar reason, we do not consider 

noise from other sources, such as the reference clock and loop building blocks. For a fair comparison 

of RMS jitter, we assume a VCO with the same noise profile is used in both architectures. Figures 3-

2(a) and (b) depict how the RMS jitter, σRMS, is determined in an SLF PLL and an ILCM, respectively. 

To provide an intuitive understanding in the illustration, N is set to 8, unlike Figures 3-1(a) and (b) 

where N is 4. Here, JOUT(t) denotes the instantaneous jitter at the output that changes according to the 

time (see Appendix A).  
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Figure 3-2. Timing diagram illustrating how σRMS is determined differently according to phase-

error correction mechanisms (a) in (a) an SLF PLL; (b) an ILCM. 

 

In Figures 3-2(a) and (b), VAR[JOUT](t) represents the variance of JOUT(t) (black solid line), a 

superposition of the variances of JOLD(t) and JNEW(t), which are as follows. JOLD(t) is the jitter that 

accumulated during the previous cycle of TREF by the intrinsic noise of the VCO and is corrected 

according to the process of the phase-error correction during the current cycle. VAR[JOLD](t) (dashed 

red line) denotes JOLD’s variance over time. JNEW(t) is the jitter newly occurring due to VCO noise and 

accumulates during the current cycle of TREF. Because an identical noise profile of the VCO is assumed 

to be used in the two architectures, the variance of this jitter component, VAR[JNEW](t) (dashed grey 

line) of the two architectures, increases linearly and reaches the same value of N·σ2
P at the end of the 
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current TREF [29]–[31], where σP denotes the period jitter of the free-running VCO. Then, since 

VAR[JNEW](t) is the same in the two architectures, the difference in VAR[JOUT](t) of an SLF PLL and 

an ILCM comes from VAR[JOLD](t). In an SLF PLL, ΔϕE decreases linearly over time, as described in 

Figure 3-1(a). Thus, the VAR[JOLD](t) of an SLF PLL at the n-th reference period (i.e.: n·TREF ≤ t < (n 

+ 1)·TREF) corresponds to N·σ2
P·(1 – (t – n·TREF)/TREF)2, as shown in Figure 3-2(a). In contrast, in an 

ILCM, ΔϕE is instantaneously eliminated at the beginning of a TREF, as shown in Figure 3-1 (b); thus, no 

JOLD(t) remains during the current TREF, as shown in Figure 3-2 (b). Due to the difference in 

VAR[JNEW](t), the area under VAR[JOUT](t) is much smaller in an ILCM than an SLF PLL. Here, we 

can quantify the RMS jitter, σRMS, as follows: 

 

 𝜎RMSൌඨ
1

𝑇ோாி
∙ න 𝑉𝐴𝑅ሾ𝐽ை௎்ሿሺ𝑡ሻ𝑑𝑡

்ೃಶಷ

଴
 (3.1)

 

As shown in Figures 3-2(a) and (b), an ILCM can achieve a much lower σRMS than an SLF PLL. 
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3.3. Concept of the Proposed Fast Phase-Error-Correction (FPEC) Technique 

 

Figure 3-3. Concept of the proposed fast phase-error correction (FPEC) technique. 
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In Chapter 3.2, we saw that the cause of low-jitter performance in the ILCM is fast phase-error 

correction by the instantaneous phase-realignment mechanism. Based on this observation, we propose 

an SLF PLL with a fast phase-error correction (FPEC) technique that emulates the phase-realignment 

mechanism of an ILCM, as shown in Figure 3-3 [27], [28]. In the proposed FPEC technique, the speed 

of phase-error correction is intended to be increased by boosting the magnitude of ΔVC in a short time. 

As shown in Figure 3-3, the FPEC process is divided into two phases: 1) the proportional period, TPROP; 

and 2) the integral period, TINT. During the short period of TPROP, the loop gain remains very high so 

that the magnitude of change in VC becomes large like an impulse to rapidly remove most of the detected 

phase error. If the duration of TPROP with a high loop gain is designed to be too large the phase error 

could be overcorrected, thereby degrading loop stability and jitter performance. To avoid this 

overcorrection, the loop gain is switched to be small during the long period of TINT so that the phase 

error remainder is slowly removed while maintaining loop stability. Hence, the proposed SLF PLL with 

the FPEC technique can achieve ultra-low jitter without the stability issue. Note that VC’s shape of the 

conventional charge pump-based Type-II PLL resembles that of the proposed SLF PLL in Figure 3-3. 

However, it is very difficult for the conventional charge pump-based Type-II PLL to suppress the VCO’s 

jitter as much as the proposed SLF PLL can due to a stringent tradeoff between the reference spur and 

jitter concerning the loop bandwidth [32]. In other words, a wide loop bandwidth, which is desirable to 

reduce jitter, causes a large reference spurs in the conventional charge pump-based Type-II PLL.  

One might argue that the FPEC technique could result the reference spur problem since the process 

of error correction resembles that of an ILCM. As mentioned in Chapter 2.2, the reason behind a large 

reference spur in an ILCM is due to the absence of an integrator; the absence of an integrator to eliminate 

the frequency deviation of fVCO occasions periodic phase shifts at the VCO’s output, resulting in large 

reference spurs. Unlike an ILCM, the proposed architecture has an integrator of the VCO in the transfer 

function, so the frequency deviation of fVCO can be completely removed. Since the phase error due to 

any drifts in fVCO remains zero for N cycles of the VCO signal, the proposed SLF PLL can achieve a 

low reference spur, despite a large value of N. 
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3.4. Implementation of the SLF PLL using the FPEC Technique 

3.4.1. Switched-loop filter (SLF) Implementing the FPEC Technique 

 

 

(a) 

 

(b) 

 

Figure 3-4. (a) Conceptual diagram of the proposed SLF with the FPEC technique;  

(b) operational principle of the FPEC SLF. 
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Figures 3-4(a) and (b) show a conceptual diagram and operational principle of the proposed SLF with 

the FPEC. Note that Figure 3-4(b) shows the initial state of the operation, not in a steady state. The key 

functional components of the FPEC-SLF are three capacitors (CP, CI, and CC) and three switches (SWR, 

SWP, and SWI). The capacitances of CP and CI are the same, while that of CC is much smaller than the 

other two capacitors. According to the signal-controlling switches, the three capacitors are connected 

with or disconnected from each other.  

The detailed operation of the FPEC-SLF is as follows: first, before starting the phase-error correction, 

all three switches are open; then, at the moment of PD detection, CP is charged with the corresponding 

amount of charges of ΔϕE0. Since the gain of the PD, KPD, is designed very high, VP exhibits a large 

change even for a small phase error. During TPROP, where SWP and SWI are turned on and off, 

respectively, VP is connected to VC. Since CC is much smaller than CP, VC instantaneously increases 

almost up to the value of VP. In the meantime, ΔϕE rapidly drops. Calculating the change of VC in TPROP, 

i.e.: ΔVC,P, associated with loop parameters, this operation can be represented as: 

                
CP

P
PDE0P,C CC

C
KΔΔV


  .                       (3.2) 

During TINT, where SWP and SWI are turned off and on, respectively, VC connects with from VP to VI. In 

this phase, the charge on CI that holds the frequency information of the VCO is updated by the charge 

from CC having the new information. Since CI is significantly greater than CC, the loop gain during TINT 

becomes very small, which ensures the stable operation of the loop. Due to charge sharing between CC 

and CI during TINT, VC experiences a change by the amount of ΔVC,P·CP/(CI + CC) in the opposite 

direction of the change of ΔVC,P. Then, the net change of VC in TINT with respect to its initial value, ΔVC,I, 

can be calculated as: 

CI

C
PC,I,C CC

C
ΔVΔV


 .                         (3.3) 

In the middle of TINT, VP is initialized by turning on SWR to prepare the next phase-error-correction 

cycle. Associating (3.2) and (3.3) with loop parameters, we can represent the amount of the phase-error 

correction, ΔϕCORR, as: 

)(2

)(2

INTIC,PROPPC,VCO

0 CVCOCORR
REF

TΔVTΔVK

dttΔVKΔ
T



 



.           (3.3) 



21 

 

 

Then, β can be obtained as: 
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where the units of KPD and KVCO are [V/rad] and [Hz/V], respectively (1 rad here is TVCO/2π, where TVCO 

is 1/fVCO). To achieve the minimum RMS jitter, a value of β close to 1 is desirable. By doing so, the 

detected phase error can be almost completely corrected during the current cycle of TREF, so that it is 

not transferred to the next TREF. In the following chapter, we will discuss how these parameters were 

designed. 
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3.4.2. Overall Architecture and Operation of the SLF PLL with the FPEC Technique 

 

(a) 

 

 

(b) 

 

Figure 3-5. (a) Overall architecture of the proposed SLF PLL with the FPEC technique,  

(b) timing diagram. 
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Figure 3-5(a) shows the overall architecture of the proposed SLF PLL with the FPEC technique, 

which consists of the reset PD (R-PD), the FPEC-SLF, the switch-timing controller, a ring VCO, and a 

frequency divider. In the FPEC-SLF, CP, and CI were designed to 3 pF, and CC to 60 fF. The parameters 

by which these components were selected will be discussed in Chapter 3.5. Using the output of the ring 

VCO, the switch-timing controller generates the switching signals, SSWP and SSWI, which dynamically 

control the switches of SWP and SWI, to implement the FPEC operation. To minimize leakage current 

flowing through the gate, SWP and SWI are designed using thick-oxide NMOS transistors. The switch 

initializing the charges in CP (SWR in Figure 3-4(a)), implemented using an NMOS transistor in the R-

PD, is controlled by SDIVB. The output signal of the PLL has a frequency of approximately 3 GHz from 

47-MHz reference clock (the multiplication factor of N is 64).  

Figure 3-5 (b) shows a steady-state timing diagram of the proposed PLL. At t = t0, the R-PD detects 

the phase error of ϕSO+ΔϕE0, where ϕSO and ΔϕE0 respectively are the static offset of the loop and the 

initial phase error to be corrected. As can be seen in the configuration of the FPEC-SLF, this proposed 

PLL is based on a Type-I topology, so it has a finite ϕSO in steady state. During TPROP, SWP is enabled 

by SSWP and a large change in VC occurs, which rapidly reduces ΔϕE0. In the subsequent period of TINT, 

SWI is closed by SSWI, which makes CC and CI share charges. During this period, the remaining part of 

ΔϕE0 is removed slowly, while fVCO is adjusted.  

To lower the RMS jitter, a smaller value of TPROP is desirable since it makes the error-correction 

process of the proposed PLL approximate that of an ILCM. To estimate a theoretical value of RMS jitter 

with respect to TPROP/TREF, behavioral simulations using Simulink® were performed. For simplicity in 

Figure 3-6. Normalized RMS jitter in accordance with TPROP/TREF. 
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analysis, we set the simulation environment such that β is 1 and the phase-error correction is performed 

only during TPROP. As shown in Figure 3-6, the RMS jitter normalized to √𝑁σP, σRMS/(√𝑁σP), decreases 

in proportion to TPROP/TREF. However, if TPROP/TREF is minimized, the PD gain, KPD, should be 

significantly increased to meet β of one in the shorter duration of TPROP. In such a large KPD, the PD 

operates like a bang-bang PD, which narrows the capture range of the PLL. Considering this tradeoff, 

we set TPROP/TREF to 1/8. In this work, in order to set β close to 1, the values of KPD and KVCO were set 

to be approximately 0.4 V/rad (or 7.6 GV/s) and 150 MHz/V. 

In the FPEC-SLF, clock feedthrough perturbing VC occurs as SWP and SWI toggle. In this case, if VC 

controls all delay cells at once, as shown in Figure 3-7, the perturbation of VC coincides with one or 

more transition edges of the outputs of multiple delay cells. This could cause a huge fluctuation of fVCO, 

thereby significantly increasing reference spurs. This situation is described by the timing diagram of 

Figure 3-7, where the falling edges of SD1 and SD3 are affected by transitions of SSWP and SSWI. To resolve 

this issue, we also present a selective frequency-tuning (SFT) ring VCO, as shown in Figure 3-8. The 

SFT VCO is composed of five-stage inverter-based delay cells, D0 – D4, where only D4 is controlled 

using an NMOS transistor, MC. The two-cascaded NMOS switches, M1 and M3, which are controlled 

 
 

Figure 3-7. A typical ring VCO. 
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by SD1 and SD3, respectively, are placed before MC. In this implementation, among the transition edges 

of the delay cells, only the falling ones of SD4 are selectively affected by VC. Note that VC is constant at 

those moments, which ensures all the transition edges of the delay cells to be isolated from the 

perturbations of VC. Since the moments VC affecting the falling edges of SD4 occur at the period of the 

VCO, the SFT technique of the proposed VCO causes no additional spurs. Compared to the topology 

of a typical VCO, the number of delay cells controlled by VC is small, so KVCO is also smaller (150 

MHz/V). Nevertheless, the SFT technique is useful for minimizing the level of reference spur.  

  

 
 

Figure 3-8. Proposed selective frequency-tuning (SFT) ring VCO. 
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3.5. Analysis on the Proposed FPEC Technique 

3.5.1. Effect of Noise Reduction According to FPEC Strength and Design Considerations 

To further investigate the effects of noise reduction of the proposed FPEC technique, we performed 

simulations by changing the strength of the FPEC, described by Figure 3-9(a). The ratio of CP : CI : CC 

is 50 : 50 : 1, and the ratio of TPROP : TINT is 1 : 7, which yields a gain ratio of TPROP to TINT of 1 to 7. 

Figure 3-9(b) describes a case in which the strength of an FPEC is far weaker than that of Figure 3-9(a). 

The ratio of CP : CI : CC is 1 : 2 : 6 and that of TPROP : TINT is 1 : 1, which yields a gain ratio of TPROP to 

TINT of 4 to 3. In this case, VC has a nearly constant shape over TREF, which makes the process of phase-

error correction similar to that of a conventional SLF PLL. The value of β is set to be the same in Figures 

3-9(a) and (b), so the total sum of the areas of TPROP and TINT is the same in both cases.  

 
(a) 

 
(b) 

 

Figure 3-9. Phase noises of the FPEC DPLL in case (a) FPEC is strong; (b) weaker FPEC. 
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To compare the effect of the difference in the FPEC strength, we performed simulations to obtain the 

phase noise of the output for the two cases of Figures 3-9(a) and (b), as shown in Figure 3-10. The noise 

profiles of the free-running VCO and the reference clock were obtained from post-layout simulation 

and the measurement, respectively. As shown in Figure 3-10, the case of the strong FPEC achieves a 

wider loop bandwidth than that with a weak one, since the stronger FPEC allows the PLL to more 

quickly remove the phase error (or jitter) of the VCO than its weaker counterpart. Note that the in-band 

phase noise at frequencies below 200 kHz is saturated by that of the reference clock. At the frequency 

offset above 8 MHz, phase noises of the FPEC PLLs are slightly higher than that of the free-running 

VCO. This is because JOUT(t) abruptly changes by the FPEC operation that increases the magnitudes of 

high-frequency components in the power spectral density (PSD) of JOUT(t) [33]. This effect becomes 

more noticeable as the FPEC strength increases; thus, the phase noise around 40 MHz of the strong 

FPEC PLL is higher than that of the weak one. Despite the higher phase noise, the strong FPEC PLL 

can nevertheless achieve much lower RMS jitter because the noise contribution at those offset 

frequencies is low. 

The values of CP, CI, and CC not only determine the FPEC strength but also affect the noise 

contribution of the FPEC SLF and the reset PD to the overall in-band phase noise. Their values were 

therefore carefully chosen based on the following design considerations. In order to maximize the FPEC 

strength, CC should be much smaller than CP and CI. On the contrary, a lager CC is better for minimizing 

 
 

Figure 3-10. Simulated phase noise plots in different FPEC strengths. 
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the kT/C noise from SWP and SWI. In consideration of this tradeoff in capacitor sizes, CC was therefore 

set to 60 fF.  

Another noise consideration comes from the reset PD. The intrinsic thermal noise of the reset PD is 

delivered to VP whenever it charges CP, rendering a larger CP desirable for its ability to reduce this noise. 

Unlike CC, increasing CP is also beneficial to strengthen the magnitude of the FEPC. However, a large 

CP occupies too much area. The value of CP was thus designed to be 3 pF.  

From these values of CC and CP, using the noise data from the post-layout simulations, the levels of 

the output in-band phase noise from the reset PD and the FPEC SLF are respectively less than –152 

dBc/Hz and –140 dBc/Hz, which are far lower than the overall phase noise. In order to minimize the 

effect of clock feedthrough or charge injection in the FPEC SLF, CI was designed to be identical to CP 

(just as SWI was to SWP). Therefore, the ratio of CP : CI : CC becomes 50 : 50 : 1, by which an FPEC 

with a sufficient strength, as shown in Figure 3-9(a), can be achieved. 
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3.5.2. Transient Behavior of the FPEC-SLF PLL for Frequency Acquisition 

Figure 3-11 shows a transient behavior of the proposed PLL that achieves a lock when the initial fVCO 

is much smaller than N·fREF. At the beginning of the operation, ΔϕE is set to have ΔϕE0 and ϕSO. Due to 

the large initial deviation of fVCO from N·fREF, ΔϕE steeply evolves as the PLL begins the operation. 

During the following TPROP, ΔϕE quickly drops, where the loop gain is high, which leads to a large 

increase in VC. As the operation of the loop switches into TINT, charge sharing between CC and CI causes 

VC to decrease and VI to increase. In this period, since fVCO remains smaller than N·fREF, ΔϕE increases 

again. Note that the values of VC and VI exceed their initial values, as does fVCO. As the process iterates, 

fVCO approaches N·fREF, and the increase of ΔϕE in TINT becomes more gradual. When fVCO finally meets 

N·fREF, the PLL achieves a lock, VP, VC, and VI settle, and the average of ΔϕE equals that of ϕSO. With 

the high gain of the reset PD deployed in this work, ϕSO was less than 100 ps in a steady state. Since ϕSO 

is maintained at such a small value, the proposed architecture resembles a Type-II PLL and can in fact 

be designed as a Type-II architecture.  

 

 

 

Figure 3-11. Transient behavior when initial fVCO < N·fREF. 
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Figure 3-12. Transient behavior when initial fVCO > N·fREF. 

 

Figure 3-13. Illustration of how VP and VC change to correct ΔϕE in steady state. 
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Figure 3-12 describes the transient behavior that follows when fVCO far exceeds N·fREF. At the 

beginning of the operation, since ΔϕE is much smaller than ϕSO, there is no overlap between the pulses 

of SREF and SDIV, and the PD does not increase VP at all, unlike Figure 3-11. Therefore, when VC is 

connected to VP during TPROP, VC drops significantly. This large drop of VC leads to a fast slow-down in 

fVCO, thereby quickly correcting ΔϕE. Through the following iterative process of loop operation, the PLL 

achieves a lock.  

In steady state, ΔϕE, defined by the time difference between the rising edge of SREF and the falling 

edge of SDIV, varies randomly according to the jitter of the VCO. Figure 13 illustrates how VP and VC 

interacts in steady state to correct the variation in ΔϕE. When ΔϕE is perturbed to be larger than ϕSO, VP 

proportionally increases over the steady-state value of VC. As a result, VC instantaneously increases 

during TPROP and the variation in ΔϕE is promptly corrected. Similarly, when ΔϕE is less than ϕSO, VP is 

increased less than the steady-state value of VC, such that VC drops to quickly correct ΔϕE. 
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3.6. Measurement Results 

Figure 3-14(a) shows the micrograph of the proposed PLL. It was fabricated in a 65-nm CMOS 

technology and occupies an active area of 0.047 mm2. The total power consumption was approximately 

4.6 mW as shown in Figure 3-14(b). The nominal supply voltage was 1.2 V, but the circuits relevant to 

drive SWP and SWI (thick-oxide NMOSs) used a 2.2-V supply. The VCO consumed 4.12 mW and other 

circuits of the loop consumed 0.46 mW. Figure 3-15(a) shows the measured phase noise of 3.008-GHz 

output signal, when a 47-MHz reference clock was used. As shown in Figure 3-15(a), a very wide 

bandwidth of more than 20 MHz, (i.e.: comparable to fREF/2) dramatically suppresses the jitter of the 

ring VCO. Before turning on the loop, the 1-MHz noise of the free-running VCO was −98.2 dBc/Hz. 

However, after turning on the loop and as the FPEC operation started, the same spot noise was reduced 

to −121.6 dBc/Hz. The phase noise of the PLL at the frequency offset above 10 MHz is 3 dB higher 

than that of the free-running VCO. This is because the FPEC operation emulates the phase realignment 

mechanism of an ILCM, as detailed in Chapter 3.4.1. The gap between the two phase-noise plots around 

an offset frequency of 20 MHz is slightly larger than 3 dB. This is because the noise from the reference 

 

(a)                                     (b) 

Figure 3-14. (a) Die micrograph; (b) power-breakdown table. 
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clock was introduced (since N is considerably large as 64, the elevation of the noise of the reference 

clock by 20·log N is considerable). The RMS jitter integrated from 1 kHz to 80 MHz was 357 fs. Figure 

 

(a) 

 

(b) 

Figure 3-15. Measured phase noise (a) at 3.008 GHz; (b) at 2.880 GHz. 



34 

 

3-15(b) shows another measured phase noise when the output frequency was 2.880 GHz from a 45-

MHz reference clock. The 1-MHz phase noise and σRMS were respectively −121.5 dBc/Hz and 362 fs. 

 

Figure 3-16. Measured spectrum at 3.008 GHz. 
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Figure 3-16 shows the output spectrum. The level of the reference spur at the 47-MHz offset was −71 

dBc when the output frequency was 3.008 GHz.  

Table 3-I compares the performance of the proposed PLL with that of some of state-of-the-art ring-

VCO-based clock generators. This work achieved excellent performances of RMS jitter and the figure-

of-merit of jitter (FOMJIT), almost comparable to those of ILCMs and an MDLL, while having a much 

lower reference spur and a larger N. Compared to conventional SLF PLLs, this work achieved lower 

RMS jitter, thereby achieving much better FOMJIT.  

Figure 3-17 compares the performances of the proposed architecture, in terms of FOMJIT and the 

level of a reference spur, with those of the state-of-the-art ring-VCO-based clock generators, where N 

is four or more. Figure 3-17 clearly shows the proposed PLL achieved the outstanding performances of 

jitter and reference spur simultaneously. 

  

 

Figure 3-17. Performance comparison with some of state-of-the-art ring-VCO-based clock 

generators (N ≥ 4). 
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3.7. Discussion 

In this work, we have demonstrated a PLL using the proposed FPEC technique. Despite the use of a 

ring VCO, this prototype PLL achieved an ultra-low jitter while maintaining low reference spur. The 

key feature of the FPEC technique is to emulate the mechanism of the phase realignment in an ILCM, 

thereby removing the VCO’s jitter dramatically during a short period. As a result, the proposed PLL 

achieved low RMS jitter of the output signal comparable to that of an ILCM. Since the proposed 

architecture has an intrinsic integrator in its transfer function, it was also able to achieve a low reference 

spur despite a large multiplication of N.  

This work also presented the SFT technique that isolates a VCO from the effect of the clock 

feedthrough which occurs due to the switching operations in the FPEC SLF. As a result, the proposed 

ring-VCO-based SLF PLL with the FPEC technique achieved ultra-low jitter, low reference spur and 

large N concurrently. 
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4. Proposed Ring-DCO-Based Digital PLL Using a FPEC Technique and 

an Optimally-Spaced TDC 

4.1. Motivations and Overview 

 

Figure 4-1. Analog FPEC PLL using an SLF. 

In order to solve the design challenges of conventional ring-oscillator-based ILCMs and SLF PLLs, 

which were limited in their ability to concurrently have good performances of the RMS jitter and 

reference spur with a large N, we proposed an SLF PLL with the FPEC technique [27], [28], as described 

in Chapter 3. This PLL with the FPEC technique (or the FPEC PLL) emulates the phase-realignment 

mechanism of an ILCM. As shown in Figure 4-1, after detecting a phase error, an SLF with the FPEC 

technique generates a significant increase or decrease in the control voltage of a VCO during a short 

period of time (during TFPEC). This mechanism allows the FPEC PLL to correct phase errors more 

quickly than conventional SLF PLLs, thereby achieving low RMS jitter comparable to that of ILCMs. 

Because the transfer function of the FPEC PLL naturally involves an intrinsic integrator, a low level of 

reference spur even for a large N is also achievable. However, based on the analog implementation, the 
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FPEC PLL presented in Chapter 3 [27], [28] has trouble in sustaining an optimal loop gain, and the loop 

parameters could easily vary by the change of the output frequency or PVT variations. For instance, in 

the analog FPEC PLL of Chapter 3, according to post-layout simulation, the value of KVCO varies across 

the tuning range of VC by approximately ±30% from the target value of 150 MHz/V. By PVT variations 

and/or the change of the output frequency, VC could settle to an arbitrary value, and this results in the 

deviation of the β of the loop from 1, thereby increasing RMS jitter. To avoid this, β was initially 

calibrated by controlling KPD in the analog FPEC PLL in Chapter 3 (the PD was designed to have six-

bit switchable PMOSs to change KPD).  

To address this limitation of analog implementation and for a complete design, implementing the 

FPEC technique in a digital PLL (DPLL) can be a solution. By doing so, the variation of loop 

characteristics can be tracked and calibrated in the background by a simple digital algorithm. However, 

simply porting the FPEC technique into a DPLL in a conventional way is insufficient to achieve ultra-

low jitter of the analog FPEC PLL. This is because a typical time-to-digital converter (TDC) used in 

conventional DPLLs provides less precise information regarding the oscillator’s jitter than a PD in 

analog PLLs. Thus, in a DPLL, to fully exploit the FPEC technique, the TDC quantization error must 

be minimized. The relationship between the error and the FPEC technique is discussed in Chapter 4-2, 

along with the explanation on the capability of the jitter reduction in the FPEC DPLL over conventional 

DPLLs. 

In Chapter 4, this work presents an FPEC DPPL that concurrently achieves an ultra-low jitter and a 

low reference spur. As shown in Figure 4-2, a DPLL with the FPEC technique can be implemented by 

increasing or decreasing the frequency-control word, DFCW, of the digital loop filter (DLF) shortly 

during TFPEC. This work also presents a low-power optimally-spaced (OS) TDC capable of minimizing 

the quantization error, τQ effectively [34], [35], thereby overcoming the problem of a conventional TDC. 

Figure 4-2. Proposed FPEC digital PLL (FPEC DPLL) and the optimally-spaced (OS) TDC. 
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In the design of a TDC, the conventional approach to minimize τQ has been to reduce the spacing 

between the decision thresholds (DTs). In this approach, however, the number of DTs inevitably 

increases to cover the dynamic range of a TDC with the minimized steps of DTs [36]. Instead of this 

approach, the proposed OS TDC uses a small number of DTs. In the proposed FPEC DPLL, the DTs 

and the gain of the error correction by the loop are continuously calibrated to be the optimal values 

calculated from the Lloyd-Max algorithm (LMA) [37]. Thus, τQ can be reduced dramatically, even with 

a small number of DTs and low power consumption. Since the proposed architecture is implemented in 

a digital fashion, the variables that define the loop characteristics can be easily estimated and corrected 

by digital calibrators in the background. As a result, the performances of an ultra-low jitter and the 

figure-of-merit (FOM) can be achieved.  

Chapter 4 is organized as follows. Chapter 4.2 describes the capability of the proposed DPLL with 

an FPEC technique and effect of τQ. Chapter 4.3 presents an analysis of the proposed OS TDC. Chapter 

4.4 presents the operation principle and the implementation of the proposed DPLL. Experimental results 

are presented in Chapter 4.5, and conclusions are drawn in Chapter 4.6.  
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4.2. Capability of the proposed DPLL with a FPEC Technique and Effect of Quantization Error 

(τQ) 

 

 

Figure 4-3. Comparison of the phase (or timing) error correction between conventional DPLLs 

and the proposed FPEC DPLL. 

 

Figure 4-3 compares the process of correction in phase (or timing) error between conventional DPLLs 

and the proposed FPEC DPLL. The top of Figure 4-3 shows an architecture of a typical DPLL consisting 

of a TDC, a DLF, a digitally-controlled oscillator (DCO), and a divider. The notations SREF, SDIV, and 

SOUT represent the signals from the reference clock, the divider, and the DCO, respectively. When the 

TDC detects a timing error between SREF and SDIV, which is denoted by τERR, it generates a corresponding 

digital code, DTDC. In Figure 4-3, τ̂ERR denotes a digitized version of τERR that the TDC recognizes. As 
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DTDC is delivered to the following DLF, DTDC is processed and DFCW is adjusted to correct the detected 

timing error. Even though the same DTDC is generated in both the conventional and proposed 

architectures, the change of DFCW (or ΔDFCW) is very different. This difference in ΔDFCW makes a huge 

difference in reduction of the timing error between the two architectures. In a conventional DPLL, the 

DLF maintains ΔDFCW constantly over TREF; thus, τ̂ERR is linearly removed. On the other hand, in the 

FPEC DPLL, the DLF sets its gain to be very high during a short period of TFPEC, thereby making ΔDFCW 

experience a huge change momentarily during TFPEC. Thus, τ̂ERR is quickly removed during the short 

duration. For the remaining time of TREF, the loop gain is reduced to ensure loop stability. In Figure 4-

3, τ̂ERR is assumed to be completely removed within one TREF; thus, the colored area in ΔDFCW is the 

same in both cases. Note that, even though the detected τERR is supposed to be corrected by the amount 

of τ̂ERR, τQ remains in both architectures, since the TDC has difficulty to recognize it due to the limited 

resolution. As described in Chapter 3, the faster the error correction, the lower the RMS jitter, σRMS. We 

may thus intuit that the proposed FPEC DPLL is able to achieve far lower σRMS than conventional 

DPLLs.  

Figures 4-4(a) and (b) represent the way in which σRMS is determined in conventional DPLLs and the 

FPEC DPLL, respectively. To analyze only the PLL’s capability to suppress the jitter of the DCO, all 

noise sources except for the DCO are ignored. For a fair comparison, it is assumed that the identical 

TDC and DCO are used in the two architectures. Notations (e.g.: σP, JOUT(t), JOLD(t), and JNEW(t)) and 

methodology for estimating σRMS are the same as those used in Chapter 3. Then, as shown in Figure 4-

4(a) and (b), we can conclude that the fast error-correction process allows the FPEC DPLL to achieve 

much lower σRMS than conventional DPLLs. 

As described in the above analysis, with the FPEC technique, the FPEC DPLL can achieve much 

lower σRMS jitter than conventional DPLLs. The FPEC DPLL, however, has a problem in that the 

minimum achievable σRMS is still considerably higher than that of an analog FPEC PLL. Due to the 

nature of digitization, the resolution of typical TDCs is finite, which differs from analog PDs. For this 

reason, the timing error that the TDC captures is τ̂ERR not τERR and τQ always remains at the end of the 

TREF in the error-correction process of the FPEC DPLL (and also of typical DPLLs). As shown in Figures 

4-4(a) and (b), since τQ is present, VAR[JOLD](t) cannot be eliminated during the current cycle of TREF. 

At the end point of every cycle of the TREF, VAR[JOLD](t) is thus reduced to a non-zero value of E[τQ2], 

which is defined by the average of the squared τQ, and this degrades σRMS. Therefore, to fully exploit 

the FPEC technique, the quantization error of TDCs (or E[τQ2]) must be minimized. 
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(a) 

 

(b) 

 

Figure 4-4. Conceptual illustration of how σRMS is determined according to error-correction 

mechanisms: (a) in a conventional DPLL; (b) in the FPEC DPLL. 
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4.3. Proposed Optimally-Spaced (OS) TDC 

4.3.1. Limits of BBPDs and Introduction of the Proposed OS TDC 

It seems that reducing the spacing between DTs to a level at which the quantity of jitter is easily 

distinguished (e.g., sub-100-fs level) is fairly straightforward. However, achieving such a fine resolution 

in a typical CMOS process, which is necessary in order to minimize τQ in a typical multi-bit TDC, is 

very difficult. Even if the implementation were possible, it would require a lot of power because the 

number of DTs significantly increases to sufficiently cover a wide dynamic range [36]. Figure 4-5(a) 

shows another approach to reduce τQ, where a bang-bang PD (BBPD) and an error-correction gain (K) 

(a) 

(b) 

Figure 4-5. Conventional BBPD-based DPLL using the gain correction technique: (a) block 

diagram; (b) representative levels and decision thresholds for given PDF of τERR. 
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controller are used [36], [38]–[41]. In this approach, the use of a BBPD offers advantages of a lower 

power consumption and a lower design complexity. However, this method has a critical problem that a 

BBPD has a limit to acquire precise information of τERR. For further analysis about this, let us first 

investigate how the BBPD-based DPLL recognizes and estimates τERR. Figure 4-5 (b) depicts the 

probability density function (PDF) of τERR with a DT and two representative levels (RLs) [36]. In Figure 

4-5 (b), DTs function as a set of time thresholds for TDC and are distinct from τERR, and the RLs function 

as a set of the amounts of the error correction proceeded by the DPLL. Since the BBPD provides only 

the polarity information of τERR, it has only one DT as zero. Consequently, the number of RLs is only 

two, which means the error correction can be performed by the amount of either +K1 or –K1, where K1 

denotes the DPLL error-correction gain. In this case, if the value of K1 is set too small, the DPLL corrects 

(a) 

(b) 

Figure 4-6. Proposed FPEC DPLL using the optimally spaced (OS) TDC: (a) block diagram; (b) 

representative levels and decision thresholds for given PDF of τERR. 
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the error insufficiently, whereas it corrects the error excessively if the value is set too large. Therefore, 

when K1 is optimally set so too is the error correction of the DPLL, minimizing E[τQ2]. The minimum 

value of E[τQ2] is still considerably large, however, since the number of DTs and RLs in the BBPD-

based DPLL is insufficient to precisely detect and correct τQ. In order to overcome this limitation due 

to the nature of a BBPD, we present the optimally-spaced (OS) TDC having multiple DTs and RLS. 

A block diagram of the proposed DPLL with the OS TDC is shown in Figure 4-6(a). The DTs and 

RLs of the OS TDC are drawn with the PDF of τERR, as shown in Figure 4-6 (b). The number of DTs of 

the OS TDC, NTDC, is designed as three, and the set of the DTs is {–τTH, 0, +τTH}, in which τTH denotes 

a reference timing to distinguish τERR. Since NTDC is three, there are four RLs and their set can be 

represented as {– K2, –K1, +K1, +K2}. Here, K2 denotes another value of the error-correction gain of 

which magnitude is larger than K1. In the OS TDC, the key feature is that its DTs and RLs are optimized 

in the background (how they are adjusted to what values will be detailed in the following chapter) using 

two digital calibrators of the τTH controller and the K-gain controller. Then, the proposed FPEC DPLL 

with the proposed OS TDC can significantly lower E[τQ2], thereby achieving far lower σRMS than 

conventional BBPD-based DPLLs. 
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4.3.2. Optimization of Decision Thresholds and Representative Levels of OS TDC 

Let us now focus on determining the optimum values of the DTs and the RLs of the OS TDC. Because 

multiple variables of τTH, K1, and K2, are free to vary, optimizing these values is more challenging than 

one-dimensional optimization. To simplify the procedure, we assume that the distances between the 

RLs remain the same. From this assumption, we can represent the sets of DTs and the RLs as {–τTH, 0, 

+τTH} and {–3K, –K, +K, +3K}, respectively, in which K is an error-correction gain of the PLL. Of 

course, the minimum achievable σRMS of this case would be higher than that of the case in which K1 and 

K2 vary independently. However, the difference of σRMS between the two cases is negligible (validation 

for this will be followed at the end of this chapter). As shown in Figure 4-6 (b), when we assume only 

thermal noise is present in the DCO, the PDF of τERR forms a white Gaussian having the standard 

deviation of σERR. For the given information of τERR’s PDF, the objective is then to figure out the optimal 

values of K and τTH, which minimizes E[τQ2].  

We found that the Lloyd-Max algorithm (LMA) [37] can provide proper solution to this problem. 

Originally, this algorithm was developed to find general solution of DTs and RLs that can minimize the 

variance of the quantization error for any given PDFs. According to this algorithm, the optimal values 

of K and τTH and are calculated to be 0.5σERR and σERR, respectively. The reason behind such a simple 

form of the solutions is because of the assumption that τERR follows Gaussian. When choosing the values 

K and τTH as 0.5σERR and σERR, respectively, the probabilities of P(τERR<–τTH), P(–τTH <τERR< +τTH), and 

P(τERR >+τTH) are equal to 0.16, 0.68, and 0.16, respectively, and these values are used for the calibration 

of τTH (how they are calibrated will be elaborated in the following chapter). 

To validate whether the solutions obtained from LMA offers the minimum σRMS, we performed 

simulations based on the behavioral model, as shown in Figure 4-7(a). The noise profile of the DCO, 

τn,DCO, which is used in the behavioral model, is obtained from the post-layout simulation. Figure 4-7 

(b) shows σRMS with respect to the values of K and τTH and; the dark blue color implies a lower σRMS, 

and the dark red color does a higher σRMS, as shown in the jet colormap. According to the results of the 

simulation, when K and τTH are respectively 0.51σERR and 1.03σERR, the minimum σRMS is achieved and 

they agree well with the solution obtained by theoretical calculation from the LMA. 

If we can independently adjust each of K1 and K2 without the aforementioned assumption that the 

distances between RLs are equal, the optimal values of K1, K2, and τTH obtained from the LMA slightly 

changes to 0.46σERR, 1.51σERR, and 0.98σERR, respectively. With these values, σRMS can be further 

lowered compared to the case in which τTH and K are σERR and 0.5σERR, respectively, but the improvement 

is less than 1%. Note that controlling K1 and K2 independently offers a very slight reduction of σRMS, 

but increases the dimension of the optimization, thereby making analysis and implementation 
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significantly difficult, which justifies the assumption that the distances between RLs are equal. 

In order to know the minimum achievable σRMS with respect to NTDC, we also performed another 

simulation. For each NTDC, we obtained the optimal values of τTH and K with the results of the LMA and 

used them in each run of simulations. When NTDC is three, σRMS is 34% lower than that of a BBPD-based 

DPLL with optimized error-correction gain. As NTDC increases, σRMS decreases gradually since the 

quantization process becomes more accurate, reducing E[τQ2]. When NTDC exceeds three, however, the 

decrease in σRMS becomes noticeably slower. Increasing NTDC to five and seven results in the reduction 

of σRMS by only 4% and 2%, respectively. Therefore, to reduce design complexity and power 

consumption, NTDC was chosen as three in this work. 

 

(a) 

 

(b) 

Figure 4-7. (a) Behavioral model of the proposed PLL with the OS TDC; (b) simulated σRMS across

τTH and K. 
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In order for the analysis derived in Figures 4-7(a) and (b) to be valid, the PDF of τERR in steady state 

must be Gaussian since the optimal values of τTHs and K are derived based on the assumption of 

Gaussian PDF. Reference [38] demonstrates that in a BBPD-based PLL when the loop gain is optimized 

such that the DPLL generates a minimum jitter, a phenomenon known as “stochastic resonance” (SR) 

occurs, and the input of the BBPD has a Gaussian distribution. The SR phenomenon also occurs in the 

proposed DPLL; when τTHs and K are adjusted to values making the DPLL’s jitter minimum, τERR has 

a Gaussian distribution. To verify this, we performed simulations to observe the distributions of τERR 

with different values of τTH and K. To examine the fitness of the distribution of τERR to that of Gaussian 

Figure 4-8. Histogram with curve fitted Gaussian PDF and normal Q-Q plot of τERR, when K = 

KOPT/3 and τTH = τTH,OPT/3. 
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distribution, we performed simulations and obtained the histogram and normal quantile-quantile (Q-Q) 

plots of τERR as shown in Figures 4-8 to 4-10. Here, the optimal values of τTH and K corresponds to 

τTH,OPT (=0.5σERR) and KOPT (= σERR), respectively. When both τTH and K are one-third of the optimal 

values (Figure 4-8) or three times the optimal values (Figure 4-9), the distribution of τERR deviates from 

the Gaussian. However, when τTH and K are the optimal values (Figure 4-10)), the distribution of τERR 

is well-matched with a Gaussian one. Thus, the assumption of the Gaussian PDF in τERR is valid. 

 

 

Figure 4-9. Histogram with curve fitted Gaussian PDF and normal Q-Q plot of τERR, when K = 

3·KOPT and τTH = 3·τTH,OPT. 
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In the foregoing analysis from Figures 4-4 to 4-10, it has been assumed that only thermal noise is 

present in the DCO and that the resultant distribution of τERR is Gaussian. However, in practice, the 

contribution of flicker noise needs to be taken into account as well. Reference [38] also demonstrates 

that in a circumstance of the SR, timing errors detected by the PD follow a Gaussian distribution even 

when the superposition of white thermal noise and colored flicker noise is considered in the DCO. As 

 

 

Figure 4-10. Histogram with curve fitted Gaussian PDF and normal Q-Q plot of τERR, when K 

= KOPT and τTH = τTH,OPT. 
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in [38], for noise analysis of any PLL systems considering the DCO (or VCO) noise, it is generally 

noted that flicker noise, like thermal noise, follows the Gaussian distribution, even though it is colored 

rather than white. Similarly in this work, the effect of flicker noise does not compromise the validity of 

the aforementioned analysis. 
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4.4. Design and Implementation of the FPEC DPLL Using the OS TDC 

4.4.1. Implementation of the FPEC DPLL 

Figure 4-11 shows the overall architecture of the proposed FPEC DPLL that includes the OS TDC, 

the FPEC DLF, a ring DCO, the τTH-controller, and the K-gain controller. The OS TDC detects a timing 

error between SREF and SDIV and generates a digital code of DTDC. The following FPEC DLF processes 

DTDC and controls the DCO through an integral (I-) path and a proportional (P-) path. To avoid the 

phenomenon of jitter peaking, the I-path gain should be far smaller than that of the P-path. The gain 

ratio of the P-path to the I-path is thus designed to be 19:1.  

In addition, to minimize the degradation of RMS jitter due to latency in the FPEC DLF, the digital 

codes of the P- and I-paths (DP and DI, respectively) are separately applied to the DCO [36]. The FPEC 

operation is carried out by boosting the P-path gain during a short period time of TFPEC, in accordance 

with SFPEC generated from the FPEC DLF logic. As analyzed in Chapter 3.4.2, as the duration of TFPEC 

shortens, the more the phase-realignment mechanism of the PLL resembles that of an ILCM, which 

offers a lower value of RMS jitter. In the proposed FPEC DPLL, the duration of TFPEC was chosen as 

one-eighth that of TREF. The OS TDC consists of three pairs of a digital-time converter (DTC) and a D-

flip-flop (DFF). 
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Figure 4-11. Overall architecture of the proposed FPEC DPLL. 
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Figure 4-12 depicts that each DTC consists of two series inverters and 8-bit binary-weighted 

capacitors. Through the delay control word of DTCx (x is either U or L), DDCW,x[7:0], the effective load 

capacitance is changed, and the delay of each DTC is correspondingly adjusted. The capacitance of 

each bit of the capacitors is determined by the number of identical unit MOS capacitors to improve the 

linearity. According to the simulation, the maximum differential non-linearity (DNL) of the DTC is 0.04 

LSB. In the beginning of the loop operation, upper, middle, and lower DTCs (DTCU, DTCM, and DTCL) 

are supposed to generate an identical delay of τ0, as their DDCWs (DDCW,U, DDCW,M, and DDCW,L) are given 

as the same digital code of ‘10000000.’ As the loop operation begins, τTH, DDCW,U and DDCW,L are 

adjusted continuously, while DDCW,M is fixed to the initial digital code. As a result, DTCU and DTCL 

generate positive and negative delays, respectively, relative to the delay generated by DTCM.  

Note that the DTs are determined by these relative delays of DTCU and DTCL (i.e., +τTH and –τTH). 

Ideally, it is not necessary to control DDCW,U and DDCW,L independently to achieve symmetric DTs. 

However, in practice, local mismatches between the DTCs occur, which causes unpredictable offsets. 

To address this problem, the τTH-controller adjusts the positive DT, τU, and the negative DT, τL 

independently through DDCW,U and DDCW,L. The K-gain controller calibrates the error-correction gain, K. 

It provides the DCO a digital code of DK, by which the weighting of DP is determined. In order to speed 

up the frequency-acquisition time, the proposed PLL employs an auxiliary coarse PD activated only 

when the magnitude of τERR is significant. For a very large value of τERR, its output, DCOAR, turns into +1 

or –1 from 0, amplified by 213 times, and fed to the I-path’s accumulator. 

  

  

Figure 4-12. Architecture of 8-bit DTC used in the proposed OS TDC. 
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4.4.2. Principle and Implementation of Calibration of τU, τL, and K 

To achieve the minimum E[τQ2], the values of τU, τL, and K are continuously controlled by the τTH-

controller and the K-gain in background. Figure 4- 13 shows the implementation of the τTH-controller. 

By comparing the average values of DU and DL with the target values, τTH-controller estimates the 

deviations of the current values of τU and τL from the optimal values. After this comparison, it adjusts 

DDCW,U and DDCW,L to correct the detected deviations. The estimation of the deviation of DU or DL, and 

thus that of τU or τL, is proceeded by using a 100-tap finite impulse response (FIR) filter and a sample 

and hold (S&H) circuit. Note that the FIR filter is designed such that all the coefficients are 1. Its output 

thus corresponds to the sum of 100 consecutive values of DU or DL. The S&H circuit samples the FIR 

filter output at every rising edge of SSAMP having a period of 100TREF; the output of the S&H circuit thus 

implies the average of DU or DL, (i.e., E[DU] or E[DL]). As mentioned in Chapter 4.3.1, the PDF of τERR 

in Figure 4-6 (b) can be divided into four areas (i.e., from A1 to A4) according to the three DTs (i.e., –

τTH, 0, and +τTH). Using these, we can calculate the target average values of DU and DL, E[DU]TARG and 

E[DL] TARG, respectively, as: 

 E[DU]TARG  = (+1) ∙ P(τERR > τU) + (–1) ∙ P(τERR < τU) 

                    = A4 – (A3 + A2 + A1)    

                            = 0.16 – (0.68 + 0.16) = –0.68  

(4.1)

 

and 

 E[DL]TARG = (+1) ∙ P(τERR > –τL) + (–1) ∙ P(τERR < –τL) 

                    = (A2 + A3 + A4) – A1 

                    = (0.34 + 0.34 + 0.16) – 0.16 = 0.68. 

(4.2)

 

Figure 4-13. Implementations of τTH-controller. 
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The deviation of τU can thus be estimated by comparing the S&H circuit output with െ  according to 

(4.1), whereas that of τL can be estimated by comparing the S&H circuit output with  according to 

(4.2). Finally, the polarity information of these deviations is added to the following accumulators, and 

DDCW,U and DDCW,L are adjusted to calibrate τU and τL, respectively.  

 

Even in a steady state, the values of τU and τL are slightly toggled, since τTH-controller continuously 

operate in the background. However, as the bandwidth of the τTH-calibrator is set far narrower than that 

the PLL loop bandwidth, the fluctuations in τU and τL have a small influence on the performance of the 

proposed DPLL. To verify this, we performed transient simulations of the time threshold of the upper 

path (τU in Figure 4-11) of the OS TDC with respect to the middle path. As shown in Figure 4-14, in the 

steady state, τU was toggled by an amount corresponding to only 1-LSB control word of the DTC, which 

is 34 fs (the way in which the resolution was chosen will be detailed in Chapter 4.4.3). This effect of 

the continuous calibration corresponds to only 1%-degradation of RMS jitter, when it is compared to 

the case in which τTHs (as well as K) are fixed at an optimal value. 

Figure 4-15 shows a block diagram of the K-gain controller, which is composed of an accumulator 

and a logic investigating an autocorrelation. If K is set too large, the amount of the error correction 

 

 

Figure 4-14. Transient behavior of time threshold of the upper path (τU) of the OS TDC. 
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becomes excessive, which makes DM toggle frequently. In this case, the autocorrelation of DM with 

respect to TREF, RDM[TREF] becomes negative. In contrast, if K is set too small, the amount of the error 

correction becomes insufficient, and DM shows a pattern of repeating +1s or –1s over several TREFs, 

which results in RDM[TREF] > 0. Thus, from these observations, the K-gain controller adjusts DK to 

achieve the condition of RDM[TREF] = 0, and in this condition, K becomes the optimum [36], [38]–[41].  

 

Figure 4-15. Implementations of K-gain controller. 

 

 
Figure 4-16. Settling behavior of DK and DDCWs. 
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In the convergence process, the two digital calibrators are not totally independent, but they actually 

affect each other. However, because we designed the K-gain calibrator to have far wider than that of the 

τTH-calibrator, their convergence can be guaranteed with no stability issue. We performed transient 

simulations to verify their stable operations, as shown in Figure 4-16. In this simulation, to evaluate the 

worst-case (or the longest) settling time, all initial values of digital codes were set to start from their 

extreme corners, i.e., the maximum or the minimum values in their ranges. That is, DK and DDCW,U 

started from their maximum values, while DDCW,L and DI from their minimum. As shown in Figure 4-

16, since the K-gain calibrator has a much wider bandwidth than τTH calibrator, the value of DK changed 

much faster initially and tracked the changes in the values of DDCWs. Finally, the two loops, and thus 

the values, of DK and DDCWs were settled within 1.5 ms. 
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4.4.3. Design and Implementation of DTCs of the OS TDC 

Figure 4-17 shows the block diagram of the OS TDC, consisting of three identical pairs of the DTC 

and the BBPD. The relative delay difference between the three paths determines the DTs of the OS 

TDC. In Figure 4-17, τTOT,x (x can be U, M, or L) denotes the total delay of each path, and it is adjusted 

by changing the effective load capacitance of DTCx in accordance with DDCW,x. In the ideal case where 

no mismatches are present in the three paths, all τTOT,xs are identical to τ0, when all DDCW,xs are given as 

the median value of ‘100…0’ (see Figure 4-18(a)). In this case, to make the relative delays between the 

three paths equal to the target threshold (or τTH,TARG), we need to adjust τTOT,U and τTOT,L to τ0 + τTH,TARG 

and τ0 – τTH,TARG, respectively, while fixing τTOT,M to τ0. The dynamic range of DTCs, τRANGE, is required 

to cover the range of more than 2τTH,TARG.  

In practice, however, due to local mismatches between the DTCs, random time offsets are present in 

τTOT,xs. Figure 4-18 (b) shows this case where τTOT,xs differ from τ0 due to a time offset of each path, τOS,x, 

which is the sum of 𝜏ୗ୘୅୘୍େ,௫, Δ𝜏ୈ୘େ,௫ and Δ𝜏୆୆୔ୈ,௫ even when all DDCWs are provided as the median 

value. Here, τSTATIC,x denotes a static delay that occurs due to asymmetric clock and power routings in 

the layout. ΔτDTC,x and ΔτBBPD,x represent randomly given delays due to local process variations of DTCx 

and BBPDx, respectively. Since ΔτDTC,x and ΔτBBPD,x are random variables, they are unpredictable, but 

 

Figure 4-17. Implementation of the OS TDC. 
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the standard deviation is identical in all three paths and can be obtained through Monte Carlo 

simulations. In consideration with the effect of 𝜏୓ୗ,௫, the required τRANGE for each path differs from the 

(a) 

(b) 

Figure 4-18. Required DTC range in (a) the ideal case; (b) the real situation, where local

mismatches are present. 
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ideal case in Figure 4-18(a). As shown in the case of Figure 4-18 (b), when τOS,x is taken into account, 

we can see that the required τRANGE is different for the upper path (< 2𝜏TH,TARG) and the lower path (> 

2𝜏TH,TARG). 

To ensure that the OS TDC’s DTs are adjusted to the target values, we must design τRANGE of the 

upper and lower paths so that the following conditions are satisfied: 

  τ0 + τOS,U – 
1

2
τRANGE ≤ τ0 + τOS,M + τTH,TARG ≤ τ0 + τOS,U + 

1

2
τRANGE (4.3)

 τ0 + τOS,L – 
1

2
τRANGE ≤ τ0 + τOS,M – τTH,TARG ≤ τ0 + τOS,L + 

1

2
τRANGE, (4.4)

Since the three DTCs are designed to be identical, τRANGE of each path must comply with (4.3) and (4.4) 

even in the worst case (i.e., τOS,U and τOS,L are much smaller and larger than τ0). From the post-layout 

simulations, 𝜏STATIC,U െ 𝜏STATIC,M  and 𝜏STATIC,L െ 𝜏STATIC,M  were obtained as –1.65 and –1.60 ps, 

respectively. The standard deviation of ΔτBBPD,x, 𝜎୼ఛాాౌీ
 was calculated to be 230 fs from Monte Carlo 

simulations. The magnitude of τRANGE and the standard deviation of ΔτDTC,x, 𝜎୼ఛీ౐ి
 , and they are 

correlated with each other since 𝜎୼ఛీ౐ి
 increases in proportion to τRANGE; they therefore need to be 

considered together when calculating (4.3) and (4.4). 

To obtain the value of the minimum required τRANGE, we performed an iterative method. First, a DTC 

was designed without consideration of (4.3) and (4.4). Second, according to Monte Carlo simulations 

based on a given DTC design that gives a specific value of τRANGE, 𝜎୼ఛీ౐ి
was obtained. Third, a random 

sample of Δ𝜏ୈ୘େ,௫ and of Δ𝜏୆୆୔ୈ,௫ were generated from given 𝜎୼ఛీ౐ి
 and 𝜎୼ఛాాౌీ

, and a number of 

simulations (100k runs) were performed to check whether the conditions of (4.3) and (4.4) were met. 

Our goal was to achieve the success rate of the calibration at least 99.7%. When it was failed, we 

modified the DTC to increase τRANGE and restarted the above process. As τRANGE increases, so does 

𝜎୼ఛీ౐ి
, but the rate of increase is much faster in the calibration success rate. Finally, we designed τRANGE 

to be 8.6 ps because it provided a 99.7% success rate. The number of bits of the DTC was 8, so the 

resolution is 34 fs. 
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4.4.4. Implementation of the Ring DCO 

 

 

Figure 4-19. Ring DCO schematic. 

 

The implementation of the ring DCO in this work is based on five-stage inverters, as shown in Figure 

4-19. For the signals of DP and DI, the effective load capacitance of the output of each stage is 

determined, which allows the DPLL to adjust the DCO’s frequency, fDCO. The 7 MSBs of DI, DI[19:13], 

control a bank of 7-bit binary-weighted capacitors that provide a tuning range from 2.30 to 2.55 GHz. 

The 13 LSBs of DI, DI[12:0], are converted to VI through a delta-sigma digital-to-analog converter 

(ΔΣDAC) and an RC filter. With NMOS varactors controlled by VI, fDCO can be adjusted to a resolution 

of 1.5 kHz/LSB within 10 MHz. The ΔΣDAC is composed of a MASH 1-1 ΔΣ-modulator of which 

clocking frequency is 75 MHz (i.e., fREF) and a 5-bit resistor DAC (RDAC). The subsequent low-pass 

filter consists of two cascaded RC networks having the same resistance and capacitance, which are 32 
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kΩ and 2.54 pF, respectively, to configure a 2nd-order RC low-pass filter. Since the capacitors are 

designed to be large, the low-pass filter’s thermal noise itself is sufficiently suppressed and its impact 

on the overall jitter performance becomes negligible.  

To apply the change in DP to the DCO quickly and adjust its weighting through DK accurately, the P-

path tuning and the K-gain control are performed through analog-digital-hybrid switched capacitors 

(ADH-SCs), as shown in Figure 4-19. The unit cell of ADH-SCs is composed of an NMOS capacitor, 

a switch, SWP, and a resistively-degenerating NMOS, MK. The ADH-SCs were implemented with 

identical six-unit cells rather than binary-sized cells to minimize the mismatch effect on nonlinearities 

in tuning characteristics. For the P-path tuning, the 3-bit binary code of DP is decoded into a 6-bit 

thermometer code of DP’, by the binary-to-thermometer (B2T) decoder. By DP’, SWPs in the ADH-SCs 

are turned on and off. In this operation, since DP’ immediately changes ADH-SCs’ capacitance, the loop 

can remove τERR right after updating DP’ with minimal delay. The K-gain can be controlled through MKs 

that determine the weighting of DP’. Their gates are connected with VK that is converted from DK. When 

VK is set low, MK forms a high impedance underneath the NMOS capacitor. In this case, the amount of 

capacitance effectively changing in the unit cell of the ADH-SCs, ΔC, increases, which means the K-

gain becomes large. In contrast, when VK is set high, the impedance due to MK becomes small, thereby 

making ΔC and the K-gain small. As a result, with the ADH-SCs, it is possible to quickly remove τERR 

with minimal latency while precisely controlling K-gain. The pair of ΔΣDAC and the low-pass filter 

are designed identically to those used in I-path. The quantization noise from the ΔΣDAC on this path 

could cause the deviation of K from the optimal value. According to calculation, the value of K is 

deviated by 0.12% from the optimal value, by which the RMS jitter of the DPLL is degraded by less 

than 0.1%.  

To ensure that the ADH-SCs operate robustly, the following two points must be ensured in their 

tuning characteristics. Firstly, according to the change in VK, the variation of fDCO corresponding to the 

change in one LSB of DP, 𝛥𝑓DCO,P,LSB, must be monotonous. As shown in the simulation results in 

Figure 4-20(a), 𝛥𝑓DCO,P,LSB exhibits a monotonous decrease as VK changes from 0.5 to 1.2 V. The rate 

of change in 𝛥𝑓DCO,P,LSB is inversely proportional to VK, but this is not problematic because VK can be 

adjusted to a sufficiently high resolution by the ΔΣDAC. Secondly, for a given value of VK, each SWP 

in the ADH-SCs in Figure 4-19 should have the same amount effect on 𝛥𝑓DCO,P,LSB when it is turned 

on and off. Otherwise, nonlinearities in the P-path tuning increase, which could degrade jitter 

performance.  

In order to quantify this effect of the nonlinearities, we performed Monte Carlo simulations on 

𝛥𝑓DCO,P,LSB of the ADH-SCs. Figure 4-20(b) shows the simulation results of the variations in 𝛥𝑓DCO,P,LSB 
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for VK between 0.7 and 0.9 V. As we can see, the magnitude of the variation at VK of 0.7 V has a larger 

value than the others. At this value of VK, the ratio of the standard deviation of ΔfDCO,P,LSB, 

Stdሾ𝛥𝑓DCO,P,LSB ], to its average value, E[𝛥𝑓DCO,P,LSB ], was 3.2%. We then performed a number of 

behavioral simulations (120 k runs) using the model of Figure 4-7(a). In each run, we considered the 

effect of mismatches on the P-path tuning based on the aforementioned value of variations in ΔfDCO,P,LSB, 

and evaluated RMS jitter. The simulation results showed that the difference between the three-sigma 

value of the RMS jitter and the nominal value is less than 1%, which implies the potential nonlinearities 

present in the ADH-SCs has a negligible effect on the RMS jitter. For the coarse tuning that is enabled 

when a large τERR occurs, the B2T decoder converts DCOAR into a 2-bit thermometer code of DCOAR’ by 

which the two unary-weighted capacitors are controlled. According to 1-LSB change in DCOAR, fDCO 

changes by 32 MHz. 

(a) 

(b) 

Figure 4-20. (a) Change of fDCO by the one LSB of DP, ΔfDCO,P,LSB, across VK; (b) change of 

ΔfDCO,P,LSB across VK. 



65 

 

4.5. Measurement Results 

 

(a) (b) 

Figure 4-21. (a) Die micrograph; (b) power-breakdown table 

The proposed DPLL fabricated in 65-nm CMOS technology occupies an active area of 0.055 mm2, 

as shown in Figure 4-21(a). The total power consumption was 6.0mW from a supply voltage of 1.2 V, 

as shown in Figure 4-21(b). We used Keysight E5052B (signal source analyzer) and Keysight N9030A 

(spectrum analyzer) to measure phase noises and spectrums, respectively. The performance of the ring 

DCO in the proposed DPLL is susceptible to supply noise since it is implemented with a single-ended 

topology. To measure the proposed DPLL’s performances while minimizing the effect of supply noise, 

we thus used a power supply of Keysight E3631A, which has a very low-noise performance.  

Figures 4-22(a) and (b) show the measured phase noise and spectrum of the output signal with the 

frequency of 2.4 GHz (fREF = 75 MHz), respectively. We can see that a very wide bandwidth (almost 20 

MHz) was achieved by using the FPEC technique, as shown in Figure 4-22 (a); thus, low phase noise 
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and RMS jitter were achieved. According to NTDC, the proposed FPEC DPLL exhibits very different 

noise performances. When the FPEC DPLL operated in a mode with NTDC set to one, in which only the 

 

(a) 

 

(b) 

Figure 4-22. Measured (a) phase noise and (b) spectrum of the output signal with the frequency

of 2.4 GHz (fREF = 75 MHz). 
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middle DTC and DFF in the OS TDC are enabled, the RMS jitter and the 100-kHz phase noise and 

were 454 fs and –112 dBc/Hz, respectively. On the other hand, with NTDC set to three where the OS 

  

(a) 

 

(b) 

Figure 4-23. Measured (a) phase noise and (b) spectrum of the output signal with the frequency 

of 2.5GHz (fREF = 78.125 MHz). 
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TDC is completely functional, the RMS jitter and the phase noise at the same offset were significantly 

improved to 320 fs and –117 dBc, respectively. From these, we can say that the proposed DPLL can 

effectively reduce the quantization error present in the loop by using the OS TDC, thereby achieving 

low RMS jitter. The measured spectrum of the proposed FPEC DPLL is at 2.4 GHz is shown in Figure 

4-22(b). The reference spur of the proposed DPLL at the 75 MHz was –75 dBc. The phase noise and 

spectrum were measured at another output frequency of 2.5 GHz, as shown in Figures 4-23(a) and (b), 

respectively. The RMS jitter and the phase noise at the 1-MHz offset were 321 fs and –119 dBc/Hz, 

respectively. At the 78.125-MHz offset, the level of the reference spur was measured as –77 dBc. 

Figure 4-24. JitterRMS and level of reference spur across when the supply voltage changes from 

1.15 to 1.25V. 

 

Figure 4-25. JitterRMS and level of reference spur when fOUT changes from 2.30 to 2.50 GHz with 

a different fREF. 
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When τTHs and K are calibrated to the proper values in the proposed FPEC DPLL, the output of the 

OS TDC, as well as the detected τERR, show a random pattern. In this case, the phase of the DCO does 

not experience any periodic disturbances, so the proposed DPLL is expected to achieve a very low 

reference spur (far lower than the measured ones) systematically. It is thus suspected that the effects of 

nonidealities, such as coupling with the reference clock buffer operating at fREF through substrate or 

power lines, are limiting factors preventing further reference spurs from further decreasing. 

We measured the RMS jitter and the level of reference spur across supply voltage to check how robust 

the performances of the digital calibrators are. As shown in Figure 4-24, the variations in reference spur 

and RMS jitter were restricted to less than 2 dB and 40 fs, respectively, over the variations in supply 

voltage changing from 1.15 to1.25V. Figure 4-25 shows the changes of the level of reference spur and 

RMS jitter across the output frequency, fOUT. The degradations of reference spur and RMS jitter were 

restricted to less than 5 dB and 40 fs, respectively, over the variations in fOUT from 2.3 to 2.5GHz. The 

measurement results of Figures 4-24 and 4-25 imply that the digital calibrators operating continuously 

in the background maintain the OS TDC’s time thresholds and the loop’s error-correction gain to be 

optimum despite the variations in the supply voltage and fOUT.  

Table 4-I shows the performance comparison with recent ring-oscillator-based clock generators. The 

proposed FPEC DPLL achieves excellent performances of RMS jitter, FOMJIT, and FOMJIT,N, in which 

the effect of N is considered in the calculation of FOMJIT. Also, the level of reference spurs of this work 

is lower than the other architectures in Table 4-I. Table 4-II shows the performance comparison with 

prior-art DPLLs [43]–[47]. As shown in Table 4-II, superior performances of RMS jitter, FOMJIT, and 

FOMJIT,N than other ring-oscillator-based DPLLs [43]–[45] were achieved in the proposed FPEC DPLL, 

and these three performances are comparable to those of LC-oscillator-based DPLLs [46], [47]. 

Figure 4-26(a) shows the performance comparison with prior ring-oscillator-based clock generators 

in terms of the level of reference spur and FOMJIT. We can see that the proposed FPEC DPLL achieves 

excellent performances of RMS jitter and level of reference spur concurrently. Compared to the state-

of-the-art DPLLs in Figure 4-26(b), the proposed FPEC DPLL achieves superior FOMJIT. 
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Figure 4-26. (a) Comparison with ring-oscillator-based clock generators. (b) Comparison with

ring-DCO-based DPLLs. 
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4.6. Discussion 

In this work, a new ring-DCO-based DPLL capable of concurrently achieving low RMS jitter and 

low levels of reference spurs is presented. The use of the FPEC technique emulating an ILCM allows 

the proposed DPLL to suppress the ring DCO’s jitter significantly. An OS TDC is presented that lowers 

the quantization error effectively with low power consumption and maximizes the efficacy of the FPEC 

technique. Using the results of the Lloyd-Max algorithm, the digital calibrators optimize the TDC’s 

time thresholds and the loop’s error-correction gain; thus, even with a small number of NTDC and a small 

amount of power, the quantization error present in a loop can be dramatically reduced. Digital 

calibration is performed continuously in the background, so the optimal performances of the DPLL can 

be maintained. As a result, the proposed FPEC DPLL with the OS TDC achieved ultra-low RMS jitter 

(320 fs) and low levels of reference spurs (< −75 dBc). 
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5. Conclusions 

Despite the advantage of a high area-efficiency in silicon integration, the poor performance of jitter 

(or phase noise) has prevented the ring oscillator from replacing its LC-counterpart in the design of 

high-performance clock generators. There have been many efforts to develop a ring-oscillator-based 

clock generator capable of suppressing the oscillator’s jitter. However, conventional architectures are 

still limited by the difficulty in achieving both low RMS jitter and low levels of reference spurs 

simultaneously while having a high multiplication factor.  

In this dissertation, the problems and limits of prior ring-oscillator-based clock generators have been 

detailed with a time-domain analysis that provides an intuitive understanding of RMS jitter calculation 

of the clock generators from their phase-error correction mechanisms. Based on this analysis, new 

designs of a ring-oscillator-based PLL that can address the challenges of prior arts are proposed.  

First, a ring-oscillator-based switched-loop-filter (SLF) PLL with the proposed fast phase-error 

correction (FPEC) technique is presented. The FPEC technique was developed based on the observation 

that an injection-locked clock multiplier (ILCM) has superior RMS-jitter performance than the other 

architectures, which was investigated through the time-domain analysis. With the FPEC technique that 

emulates the mechanism of phase realignment of an ILCM, the phase error of the voltage-controlled 

oscillator (VCO) can be removed quickly, so ultra-low jitter is achievable. In addition, since the SLF 

PLL with the FPEC technique is naturally based on a PLL topology, it has an intrinsic integrator in its 

transfer function; thus, the proposed PLL can achieve low reference spur while maintaining high 

stability even for a large multiplication factor. The prototype was fabricated with a 65-nm CMOS 

process. The measured RMS-jitter, FOM, and reference spur were 378 fs, −242 dB, and −71 dBc, 

respectively. 

Second, another design of a digital PLL with the FPEC technique (or FPEC DPLL) is presented. The 

limit of the analog SLF PLL with the FPEC technique is that its loop characteristics are easily changed 

by PVT variations and/or the change of the output frequency. Unlike that architecture, the FPEC DPLL 

is implemented in a digital fashion, so the variables that define the loop characteristics can be easily 

estimated and corrected.  

To overcome the problem of a conventional TDC, a low-power optimally-spaced (OS) TDC that is 

able to minimize the quantization error effectively is also presented. In the proposed FPEC DPLL, the 

decision thresholds and the loop’s error-correction gain are calibrated to be optimal in the background; 

the quantization error can thus be minimized dramatically. As a result, the performances of an ultra-low 

jitter and an excellent figure-of-merit can be achieved. The proposed architecture was fabricated with a 
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65-nm CMOS process. The measured RMS-jitter, FOM, and reference spur were 320 fs, −242 dB, and 

−75 dBc, respectively. 
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Appendix A 

Figure A-1. Measurement of jitter using TIE. 

To quantify the jitter present in the output signal of a clock generator, we used the notation of JOUT(t). 

The type of JOUT is a time interval error (TIE), one of the most widely used methods of measuring jitter. 

The TIE denotes the timing difference between the measured signal edges and ideal trigger points. As 

shown in Figure A-1, when we consider a case of a free-running oscillator whose output is affected by 

the thermal white noise of an oscillator, τn,OSC, the edges of the output signal, SOUT, deviate from the 

ideal trigger points. Then, measuring TIE at t1, it can be obtained as TB – TA.  

Figure A-2 plots the TIE over time, (or JOUT(t)) in the case of a free-running oscillator of Figure A-1. 

Due to τn,OSC, JOUT fluctuates arbitrarily. Every time we perform this simulation with different random 

seeds for τn.OSC, JOUT evolves differently, as shown in Figure A-3.  



77 

 

 

Figure A-2. Plot of TIE(=JOUT) over time. 

 

 

Figure A-3. Evolution of JOUT(t) that varies with each run of the simulation. 
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Basically, JOUT at a certain t is unpredictable, but we can define its statistical characteristics. To do that, 

we performed a number of simulations of Figure A-1 and were able to acquire the distribution of JOUT 

over time as shown in Figure A-4. The distribution of JOUT exhibits a spreading shape with increasing 

time since the jitter introduced by τn,OSC “accumulates” over time [30]. Thus, we can see that quantifying 

the standard deviation of JOUT at t, STDEV[JOUT](t), causes it to increase over time. If we then plot the 

variance of the output jitter at t, VAR[JOUT](t), it increases linearly over time, as shown in Figure A-5.  

 

 

Figure A-4. Distribution of JOUT over time in the case when an oscillator is free-running. 

 

 

Figure A-5. Plot of VAR[JOUT](t) over time of Figure A-4. 
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(a) 

 

 
(b) 

 

Figure A-6. JOUT and VAR[JOUT](t) in SLF PLL: (a) when the loop does not operate and the effect 

of τn,OSC is considered; and (b) when the loop starts to operate and τn is neglected. 
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Based on the observations in Figure A-4 and A-5, we now continue the analysis for JOUT and 

VAR[JOUT](t) when an oscillator is under the process of phase-error correction. Let us consider for the 

sake of simplicity an ideal case of an SLF PLL as shown in Figures A-6(a) and (b): during 0 ≤ t < TREF, 

only the generation of the oscillator’s jitter due to τn,OSC without the effect of the phase-error correction 

is considered; and during TREF ≤ t < 2TREF, only the error-correction process without newly generated 

jitter is considered. Since there is no phase-error correction, VAR[JOUT](t) increases during 0 ≤ t < TREF. 

At t = TREF, the loop detects the phase error and starts to correct it. Then, during TREF ≤ t < 2TREF, JOUT(t) 

and VAR[JOUT](t) respectively decrease linearly and quadratically (the phase error detected at t = TREF 

is assumed to be completely corrected, i.e., β = 1).  

When we concurrently consider the effects of τn,OSC and error correction of Figures A-6(a) and (b), 

respectively, in a steady state, VAR[JOUT](t) can be represented as shown in Figure A-7. In this case, 

VAR[JOUT](t) is determined by superimposing the variances of 1) the jitter, newly generated by the VCO 

during the current TREF (blue dotted line); and 2) the jitter, generated in the previous TREF and removed 

during the current TREF (red dotted line).  

 

Figure A-7. VAR[JOUT](t) of an SLF PLL in steady state. 
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In the case of the calculation of RMS jitter, σRMS, we can calculate it by literally taking the RMS of 

JOUT, as shown in Figure A-8. Alternatively, since JOUT has the property of a cyclostationary process 

with a period of TREF, σRMS can be obtained by calculating the area under the VAR[JOUT](t), as shown in 

Figure A-9. 

 

 

Figure A-8. Calculation of RMS jitter. 

 

 

Figure A-9. An alternative way to calculate RMS jitter.  
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